Самодельный частотник: Самодельный частотник. Разрабатываем преобразователь вместе

Частотный преобразователь своими руками — с асинхронным приводом

Содержание

Частотный преобразователь своими руками

Частотный преобразователь своими руками-1Частотный преобразователь своими руками-1

Частотный преобразователь своими руками — представляю вам небольшую статью о асинхронном двигателе и частотном преобразователе, который мне ранее приходилось делать. Вот и теперь потребовался хороший привод для циркулярной пилы. Конечно можно было бы взять в магазине фирменный частотник, но все-таки вариант самостоятельного изготовления оказался для меня наиболее приемлемым.

К тому же, качество регулировки скорости привода пилорамы не требовало абсолютной точности. Однако с нагрузками ударного типа и длительными перегрузками он должен справляться. К тому же хотелось сделать управление наиболее простым, без всяких там параметров, а просто установить пару кнопок.

Главные преимущества привода с регулировкой частоты:

  • Создаем из однофазного напряжения 220v полновесные три фазы 220v, сдвиг у которых будет 120°, при этом получаем абсолютный вращательный момент с мощностью на валу
  • Повышенный момент старта с плавным запуском без максимального пускового тока
  • Нет сильного замагничивания и излишнего перегрева мотора, как это бывает когда применяются конденсаторы
  • При необходимости можно свободно управлять скоростью вращения и менять направление

Ниже показана принципиальная схема устройства:

Частотный преобразователь своими руками-2

Частотный преобразователь своими руками-2

Трехфазный мост выполнен на гибридных IGBT транзисторах c диодами обратной проводимости. В целом это представляет собой бустрепное управление микроконтроллером PIC16F628A, осуществляемое с помощью специализированных оптодрайверов HCPL-3120. Во входном тракте установлен конденсатор гашения напряжения, выполняющего функцию мягкой зарядки электролитических конденсаторов в цепи постоянного напряжения.

Быстродействующая защита

Далее по схеме он зашунтирован электромагнитным реле, при этом на PIC16F628A подается цифровой логический уровень готовности. В схеме предусмотрена быстродействующая защита по току от короткого замыкания и критической перегрузке мотора, выполненная по триггерной схеме. Все это управляется при помощи двух кнопок и одного переключателя, который изменяет направление вращения вала.

Частотный преобразователь своими руками, в частности участок силовых напряжений был собран методом навесного монтажа, а контроллер размещен на печатной плате, которая показана ниже:

Частотный преобразователь своими руками-3Частотный преобразователь своими руками-3

Постоянные резисторы с номиналом 270к, шунтирующие конденсаторы установленные в цепи затвора IGBT, запаял со стороны дорожек, так как упустил из виду сделать для них площадки. Их конечно можно заменить на smd.

Здесь показано фото печатной платы контроллера после распайки компонентов:

Частотный преобразователь своими руками-4

Частотный преобразователь своими руками-4

А это с противоположной стороны

Частотный преобразователь своими руками-5Частотный преобразователь своими руками-5

Для подачи напряжения питания в модуль управления был изготовлен стандартный обратноходовой импульсный источник питания.

Принципиальная схема блока питания:

Частотный преобразователь своими руками-6Частотный преобразователь своими руками-6

Чтобы изготовить частотный преобразователь своими руками в принципе можно использовать практически любой источник питания с выходным напряжением 24v. Однако, этот блок питания должен быть стабилизированный и с задержкой напряжения на выходе с момента исчезновения напряжения сети, хотябы в пределах 3-х секунд. Это обусловлено тем, что двигатель смог отключится в случае возникновения ошибки по DC. Достигается подбором электролитического конденсатора С1 с большим значением емкости.

Ну, а теперь нужно подробнее разобраться в самом важном компоненте данного устройства — в программе микроконтроллера. В интернете подходящей для меня информации по этому вопросу я не нашел, хотя были предложения установить специальные фирменные контроллеры. Но как я уже говорил, мне принципиально нужно было установить, что-то собственной разработки. Приступил во всех подробностях анализировать ШИМ модуляцию, в какое время и каким способом открыть определенный транзистор…

Программа формирования задержек

Выяснились некоторые закономерности и получился образец несложной программы формирования задержек. При ее использовании получается произвести достаточно хорошую синусоидальную ШИМ с возможностью изменять напряжение. Естественно контроллер делать какие либо вычисления не успевал, задержки не давали того эффекта, который был нужен. Следовательно, такой вариант обсчитывания ШИМ на микроконтроллере PIC16F628A я забраковал сразу.

В результате образовалась констант матрица, а ее уже отрабатывал PIC16F628A. Они формировали и диапазон частоты и напряжение питания. Конечно эта работа по созданию данного устройства несколько затянулась. Циркуляркой уже полным ходом пилили на конденсаторах, когда появился необходимый вариант прошивки. Первоначально тестировал схему на моторе от вентилятора, мощностью 180 Вт. Вот фото прибора на стадии экспериментальных работ:

Частотный преобразователь своими руками-7Частотный преобразователь своими руками-7

Тестирование устройства

Чуть позже, в процессе испытания программа подвергалась усовершенствованию, а после запуска двигателя мощностью на 4 кВт я практически был удовлетворен итогом своей работы. Защита от короткого замыкания прекрасно срабатывает, полутора-киловаттный мотор на 1440об/мин с диском 300мм свободно справлялся с приличными брусками. Шкивы были установлены одинаковые, что на двигатель, что на вал циркулярки. При попадании пилы на сучок сетевое напряжение немного падало, хотя двигатель продолжал работать.

По ходу работы потребовалось немного натянуть ремень, поскольку при увеличении нагрузки он начинал скользить на шкиве. В дальнейшем применили двойную передачу. Но на этом решил не останавливаться, поэтому сейчас начал усовершенствовать программу, в итоге она будет значительно эффективней. Принцип работы ШИМ-контролера немного усложняется, появится больше режимов, появится ресурс раскручивания выше номинального значения.

В конце статьи файлы для того самого простого варианта устройства, которое прекрасно работает с циркулярной пилой уже больше года.

Характеристики:

  • Частота на выходе: 2,5-50Гц, шаг 1,25Гц; Частота ШИМ-контроллера синхронная, с возможностью изменения. Диапазон частот в пределах 1750-3350Гц.; Скалярное управление частотным преобразователем, мощность мотора около 4кВт. Самая меньшая частота работы при разовом нажатии кнопки «Пуск» — составляет 10Гц.
  • Во время удержании кнопки нажатой появляется разгоняющий момент, а когда кнопка отпускается, то частота буде той, до какой смог разогнаться. Частота по максимуму — 50Гц информирует светодиодный индикатор. Номинальное время разгоняющего момента составляет 2 секунды.
  • Индикатор «Готов» сообщает о готовности устройства к старту двигателя.

Файлы:
Программа ШИММ1.0r для PIC16F628(A)
Плата управления в SPLANe

РадиоКот :: Частотный преобразователь

РадиоКот >Схемы >Цифровые устройства >Защита и контроль >

Частотный преобразователь

Всем здравствуйте. Вот решил написать статейку про асинхронный привод и преобразователь частоты, который я изготавливал. Моему товарищу надо было крутить пилораму, и крутить хорошо. А сам я занимался импульсной электроникой и сразу предложил ему частотник. Да, можно было купить фирмовый преобразователь, и мне приходилось с ними сталкиваться, параметрировать, но захотелось своего, САМОДЕЛАШНОГО! Да и привод циркулярки к качеству регулирования скорости не критичен, только вот к ударным нагрузкам и к работе в перегрузе должен быть готов. Также максимально-простое управление с помощью пары кнопок и никаких там параметров.

 Основные достоинства частотнорегулируемого привода (может для кого-то повторюсь):

 Формируем из одной фазы 220В полноценные 3 фазы 220В со сдвигом 120 град., и имеем полный вращающий момент и мощность на валу.

 Увеличенный пусковой момент и плавный пуск без большого пускового тока

 Отсутствует замагничивание и лишний нагрев двигателя, как при использовании конденсаторов.

 Возможность легко регулировать скорость и направление, если необходимо.

 Вот какая схемка собралась:

 3-фазный мост на IGBT транзисторах c обратными диодами (использовал имеющиеся G4PH50UD) управляется через оптодрайвера HCPL 3120 (бутстрепная схема запитки) микроконтроллером PIC16F628A. На входе гасящий конденсатор для плавного заряда электролитов DC звена. Затем его шунтирует реле и на микроконтроллер одновременно приходит логический уровень готовности. Также имеется триггер токовой защиты от к.з. и сильной перегрузки двигателя. Управление осуществляют 2 кнопки и тумблер изменения направления вращения.

Силовая часть мною была собрана навесным монтажом. Плата контроллера отутюжина вот в таком виде: 

 

Параллельные резисторы по 270к на проходных затворных конденсаторах (забыл под них места нарисовать) припаял сзади платы, потом хотел заменить на смд но так и оставил.

 Есть внешний вид этой платы, когда уже спаивал:

 С другой стороны

 

Для питания управления был собран типовой импульсный обратноходовой (FLAYBACK) блок питания.

Его схема:

 Можно использовать любой блок питания на 24В, но стабилизированный и с запаздыванием пропадания выходного напряжения от момента пропажи сетевого на пару тройку секунд. Это необходимо чтобы привод успел отключиться по ошибке DC. Добивался установкой электролита С1 большей ёмкости. 

Теперь о самом главном…о програме микроконтроллера. Программирование простых моргалок для меня сложности не представляло, но тут надо было поднатужить мозги. Порыскав в нете, я не нашёл на то время подходящей информации. Мне предлагали поставить и специализированные контроллеры, например контроллер фирмы MOTOROLA MC3PHAC. Но хотелось, повторюсь, своего. Принялся детально разбираться с ШИМ модуляцией, как и когда нужно открыть какой транзистор… Открылись некие закономерности и вышел шаблон самой простой программы отработки задержек, с помощью которой можно выдать удовлетворительно синусовую ШИМ и регулировать напряжение. Считать ничего контроллер конечно не успевал, прерывания не давали что надо и поэтому я идею крутого обсчёта ШИМ на PIC16F628A сразу отбросил. В итоге получилась матрица констант, которую отрабатывал контроллер. Они задавали и частоту и напряжение. Возился честно скажу, долго. Пилорама уже во всю пилила конденсаторами, когда вышла первая версия прошивки. Проверял всю схему сначала на 180 ватном движке вентиляторе. Вот как выглядела «экспериментальная установка»:

 

 Первые эксперименты показали, что у этого проекта точно есть будущее.

 

Программа дорабатывалась и в итоге после раскрутки 4кВТ-ного движка её можно было собирать и идти на лесопилку.

Товарищ был приятно удивлён, хоть и с самого начала относился скептически. Я тоже был удивлён, т.к. проверилась защита от к.з. (случайно произошло в борно двигателя). Всё осталось живо. Двигатель на 1,5кВт 1440об/мин легко грыз брусы диском на 300мм. Шкивы один к одному. При ударах и сучках свет слегка пригасал, но двигатель не останавливался. Ещё пришлось сильно подтягивать ремень, т.к. скользил при сильной нагрузке. Потом поставили двойную передачу.

Сейчас ещё дорабатываю программу она станет еще лучше, алгоритм работы шим чуть сложнее, режимов больше, возможность раскручиваться выше номинала…а тут снизу та самая простая версия которая работает на пиле уже около года.

Её характеристики:

Выходная Частота: 2,5-50Гц, шаг 1,25Гц; Частота ШИМ синхронная, изменяющаяся. Диапазон примерно 1700-3300Гц.; Скалярный режим управления U/F, мощность двигателя до 4кВт.

Минимальная рабочая частота после однократного нажатия на кнопку ПУСК(RUN) — 10Гц.

При удержании кнопки RUN происходит разгон, при отпускании частота остаётся та, до которой успел разогнаться. Максимальная 50Гц- сигнализируется светодиодом. Время разгона около 2с.

Светодиод «готовность» сигнализирует о готовности к запуску привода. 

Реверс опрашивается в состоянии готовности.

Режимов торможения и регулирования частоты вниз нет, но они в данном случае и не нужны.

При нажатии Стоп или СБРОС происходит остановка выбегом.

На этом пока всё. Спасибо, кто дочитал до конца.

 

 

 

 

 

 


Файлы:
Программа ШИММ1.0r для PIC16F628(A)
Плата управления в SPLANe


Все вопросы в Форум.


Как вам эта статья?

Заработало ли это устройство у вас?

частотный преобразователь своими руками, как сделать

Прибор частотникСегодня асинхронные двигатели являются основными тяговыми приводами для станков, конвейеров, и прочих промышленных агрегатов.

Для того чтобы моторы могли нормально функционировать, им нужен частотный преобразователь. Он позволяет оптимизировать работу агрегата и продлить срок его службы. Покупать устройство необязательно — частотник для трехфазного электродвигателя можно сделать своими руками.

Назначение частотного преобразователя

Назначение частотникаАсинхронный электродвигатель может работать и без частотника, но в этом случае у него будет постоянная скорость без возможности регулировки. К тому же отсутствие частотного преобразователя приведет к возрастанию пускового тока в 5−7 раз от номинального, что вызовет увеличение ударных нагрузок, повысит потери электроэнергии и приведет к существенному сокращению срока службы агрегата.

Для нивелирования всех вышеперечисленных негативных факторов были изобретены преобразователи частоты для асинхронных двигателей трехфазного и однофазного тока.

Частотник дает возможность в широких пределах регулировать скорость электродвигателя, обеспечивает плавный пуск, позволяет регулировать как скорость запуска, так и скорость торможения, подключать трехфазный мотор к однофазной сети и многое другое. Все эти функции зависят от микроконтроллера, на котором он построен, и могут отличаться у разных моделей.

Принцип работы устройства

Схема частотникаПеременный ток поступает из сети на диодный мост, где он выпрямляется и попадает на батарею сглаживающих конденсаторов, где окончательно превращается в постоянный ток, который поступает на стоки мощных IGBT транзисторов, управляемых главным контроллером. Истоки транзисторов, в свою очередь, подключены к двигателю.

Вот упрощенная схема преобразователя частоты для трехфазного асинхронного двигателя.

Теперь рассмотрим, что происходит с транзисторами и как они работают.

Полевой транзистор (он же ключ, мосфет и пр.) — это электронный выключатель, принцип его действия основан на возникновении проводимости между двумя выводами (сток и исток) мосфета, при появлении на управляющем выводе (затворе) напряжения, превышающего напряжение стока.

В отличие от обычных реле, ключи работают на очень высоких частотах (от нескольких герц до сотен килогерц) так что заменить их на реле не получится.

Как используется частотникС помощью этих быстродействующих переключателей микроконтроллер получает возможность управления силовыми цепями.

К контроллеру, кроме мосфетов, также подключены датчики тока, органы управления частотником, и другая периферия.

При работе частотного преобразователя микроконтроллер измеряет потребляемую мощность и, в соответствии с установленными на панели управления параметрами, изменяет длительность и частоту периодов, когда транзистор открыт (включен) или закрыт (выключен), тем самым изменяя или поддерживая скорость вращения электродвигателя.

Самостоятельное изготовление прибора

Несмотря на множество агрегатов заводского производства, люди делают преобразователи частоты самостоятельно, благо на сегодняшний день все его компоненты можно купить в любом радиомагазине или заказать из Китая. Такой частотник обойдется вам значительно дешевле покупного, к тому же вы не будете сомневаться в качестве его сборки и надежности.

Делаем трехфазный преобразователь

Трехфазный частотник своими рукамиСобирать наш преобразователь будем на мосфетах G4PH50UD, которыми будет управлять контроллер PIC16F628A посредством оптодрайверов HCPL3120.

Собранный частотник при подключении в однофазную сеть 220 В будет иметь на выходе три полноценные фазы 220 В, со сдвигом 120°, и мощность 3 КВт.

Схема частотника выглядит так:

Так как частотный преобразователь состоит из частей, работающих как на высоком (силовая часть), так и на низком (управление) напряжении, то логично будет разбить его на три платы (основная плата, плата управления, и низковольтный блок питания для неё) для исключения возможности пробоя между дорожками с высоким и низким напряжением и выхода устройства из строя.

Вот так выглядит разводка платы управления:

Для питания платы управления можно использовать любой блок питания на 24 В, с пульсациями не более 1 В в размахе, с задержкой прекращения подачи питания на 2−3 секунды с момента исчезновения питающего напряжения 220 В.

Блок питания можно собрать и самим по этой схеме:

Обратите внимание, что номиналы и названия всех радиокомпонентов на схемах уже подписаны, так что собрать по ним работающее устройство может даже начинающий радиолюбитель.

Перед тем как приступить к сборке преобразователя, убедитесь:

  1. Прибор частотникВ наличии у вас всех необходимых компонентов;
  2. В правильности разводки платы;
  3. В наличии всех нужных отверстий для установки радиодеталей на плате;
  4. В том, что не забыли залить в микроконтроллер прошивку из этого архива:

Если вы все сделали правильно и ничего не забыли, можете приступать к сборке.

После сборки у вас получится что-то похожее:

Самодельный частотникТеперь вам осталось проверить устройство: для этого подключаем двигатель к частотнику и подаем на него напряжение. После того как загорится светодиод, сигнализирующий о готовности, нажмите на кнопку «Пуск». Двигатель должен начать медленно вращаться. При удержании кнопки двигатель начинает разгоняться, при отпускании — поддерживает обороты на том уровне, до которого успел разогнаться. При нажатии кнопки «Сброс» двигатель останавливается с выбегом. Кнопка «Реверс» задействуется только при остановленном двигателе.

Если проверка прошла успешно, то можете начинать изготавливать корпус и собирать в нем частотник. Не забудьте сделать в корпусе отверстия для притока холодного и оттока горячего воздуха от радиатора IGBT транзисторов.

Частотник для однофазного двигателя

Принцип работы частотникаПреобразователь частоты для однофазного двигателя отличается от трехфазного тем, что имеет на выходе две фазы (ошибки тут нет, двигатель однофазный, при подключении без частотника рабочая обмотка подключается в сеть напрямую, а пусковая — через конденсатор; но при использовании частотника пусковая обмотка подключается через вторую фазу) и одну нейтраль — в отличие от трех фаз у последнего, так что сделать частотник для однофазного электродвигателя, используя в качестве основы схему от трехфазного, не получится, поэтому придется начинать все сначала.

В качестве мозга этого преобразователя мы будем использовать МК ATmega328 с загрузчиком ардуины. В принципе, это и есть Arduino, только без своей обвязки. Так что, если у вас в закромах завалялась ардуинка с таким микроконтроллером, можете смело выпаивать его и использовать для дела, предварительно залив на него скетч (прошивку) из этого архива:

К атмеге будет подключен драйвер IR2132, а уже к нему — мосфеты IRG4BC30, к которым мы подключим двигатель мощностью до 1 КВт включительно.

Схема частотного преобразователя для однофазного двигателя:

Также для питания ардуины (5в) и для питания силового реле (12в), нам понадобятся 2 стабилизатора. Вот их схемы:

Стабилизатор на 12 вольт.

Стабилизатор на 5 вольт.

Принцип работы стабилизатораВнимание! Эта схема не из простых. Возможно, придется настраивать и отлаживать прошивку для достижения полной работоспособности устройства, но это несложно, и мануалов по программированию Arduino в интернете — великое множество. К тому же сам скетч содержит довольно подробные комментарии к каждому действию. Но если для вас это слишком сложно, то вы можете попробовать найти такой частотник в магазине. Пусть они и не так распространены, как частотники для трехфазных двигателей, но купить их можно, пусть и не в каждом магазине.

Еще обратите внимание на то, что включать схему без балласта нельзя — сгорят выходные ключи. Балласт нужно подключать через диод, обращенный анодом к силовому фильтрующему конденсатору. Если подключите балласт без диода — опять выйдут из строя ключи.

Если вас все устраивает, можете приступать к изготовлению платы, а затем — к сборке всей схемы. Перед сборкой убедитесь в правильности разводки платы и отсутствии дефектов в ней, а также — в наличии у вас всех указанных на схеме радиодеталей. Также не забудьте установить IGBT-транзисторы на массивный радиатор и изолировать их от него путем использования термопрокладок и изолирующих шайб.

Сборка частотникаПосле сборки частотника можете приступать к его проверке. В идеале у вас должен получиться такой функционал: кнопка «S1» — пуск, каждое последующее нажатие добавляет определенное (изменяется путем редактирования скетча) количество оборотов; «S2» — то же самое, что и «S1», только заставляет двигатель вращаться в противоположном направлении; кнопка «S3» — стоп, при её нажатии двигатель останавливается с выбегом.

Обратите внимание, что реверс осуществляется через полную остановку двигателя, при попытке сменить направление вращения на работающем двигателе произойдет его мгновенная остановка, а силовые ключи сгорят от перегрузки. Если вам не жаль денег, которые придется потратить на замену мосфетов, то можете использовать эту особенность в качестве аварийного тормоза.

Возможные проблемы при проверке

Если при проверке частотника схема не заработала или заработала неправильно, значит, вы где-то допустили ошибку. Отключите частотник от сети и проверьте правильность установки компонентов, их исправность и отсутствие разрывов/замыканий дорожек там, где их быть не должно. После обнаружения неисправности устраните её и проверьте преобразователь снова. Если с этим все в порядке, приступайте к отладке прошивки.

Простой преобразователь частоты для асинхронного электродвигателя. РадиоКот >Схемы >Питание >Преобразователи и UPS >

Простой преобразователь частоты для асинхронного электродвигателя.

Итак коль уж асинхронный двигатель так распространён и трехфазная система напряжения созданная М. О. Доливо-Добровольским так удобна.  А  современная элементная база так хороша. То сделать преобразователь частоты –это лишь вопрос личного желания и некоторых финансовых возможностей.  Возможно кто  то скажет « Ну, зачем мне инвертор , я поставлю фазосдвигающий  конденсатор и все решено» . Но при этом обороты не покрутишь и в мощности потеряешь и потом это не интересно.

Возьмём за основу – в быту есть однофазная  сеть 220в, народный размер двигателя до 1 кВт.  Значить соединяем обмотки двигателя треугольником.  Дальше –проще, понадобится драйвер трехфазного моста IR2135(IR2133) выбираем  такой потому, что он применяется в промышленной технике имеет вывод  SD и удобное расположение выводов. Подойдёт и IR2132 , но у неё dead time больше и выхода SD нет. В качестве генератора PWM выберем микроконтроллер AT90SPWM3B  — доступен, всем понятен, имеет массу возможностей и недорого стоит, есть  простой программатор   -https://real.kiev.ua/avreal/. Силовые транзисторы  6 штук IRG4BC30W выберем с некоторым запасом по току  — пусковые токи АД могут превышать номинальные в 5-6 раз. И пока  не ставим «тормозной»  ключ и резистор, будем тормозить и намагничивать перед пуском  ротор постоянным током, но об этом позже …. Весь процесс работы отображается на 2-х строчном ЖКИ индикаторе.  Для управления достаточно 6 кнопок (частота +, частота -, пуск, стоп, реверс, меню).
Получилась вот такая схема.

Я вовсе не претендую  на законченность конструкции и предлагаю  брать данную конструкцию за некую основу для энтузиастов домашнего  электропривода.  Приведённые здесь платы были сделаны под имеющиеся в моём распоряжении детали.

Конструктивно инвертор выполнен на двух платах – силовая часть ( блок питания , драйвер и транзисторы моста , силовые клеммы) и цифровая часть (микроконтроллер + индикатор ). Электрически платы соединены гибким шлейфом. Такая конструкция выбрана для  перехода в будущем  на контроллер TMS320 или STM32 или STM8.
Блок питания собран по классической схеме и в комментариях не нуждается. Микросхема  IL300 линейная опто развязка  для управления током 4-20Ма. Оптроны ОС2-4 просто дублируют  кнопки «старт, стоп, реверс» для гальванически развязанного управления. Выход оптрона  ОС-1 «функция пользователя» (сигнализация и пр.)
Силовые транзисторы и диодный мост закреплены на общий радиатор. Шунт  4 витка манганинового провода диаметром 0.5мм  на оправке 3 мм.
Сразу замечу некоторые узлы и элементы вовсе не обязательны.  Для того что бы просто крутить двигатель ,  не нужно внешнее управление током 4-20 Ма. Нет необходимости в трансформаторе тока, для оценочного измерения подойдёт и токовый шунт. Не нужна внешняя сигнализация.  При мощности  двигателя 400 Вт и площади радиатора 100см2  нет нужды в термодатчике.

ВАЖНО! – имеющиеся на плате  кнопки управления изолированы от сети питания только пластмассовыми толкателями. Для безопасного управления необходимо использовать опторазвязку.

Возможные изменения в схеме в зависимости от микропрограммы.
Усилитель DA-1 можно подключать к трансформатору тока или к шунту. Усилитель DA-1-2 может быть использован для измерения напряжения сети или для измерения сопротивления терморезистора если не используется термодатчик  PD-1.
В случае длинных соединительных  проводов необходимо на каждый провод хотя бы надеть помехоподавляющие кольцо.  Имеют место помехи. Так например –пока я этого не сделал у меня «мышь» зависала.
Так же считаю важным отметить проверку надёжности изоляции АД –т.к. при коммутации силовых транзисторов выбросы напряжение на обмотках могут достигать значений 1,3 Uпит.

Общий вид.

Немного про управление.

Начитавшись  книжек с длинными  формулами в основном описывающих как делать синусоиду при помощи PWM. И как стабилизировать скорость вращения вала двигателя посредством таходатчика и ПИД регулятора. Я пришёл к выводу –АД имеет достаточно  жёсткую характеристику во всём диапазоне допустимых нагрузок на валу.
Поэтому для личных нужд вполне подойдет  управление описанное законом Костенко М.П. или как его ещё называют  скаляроное.  Достаточное для большинства практических случаев применения частотно регулируемого электропривода с диапазоном регулирования частоты вращения двигателя до 1:40.  Т.е. грубо говоря мы в самом простом случае делаем обычную 3-х фазную розетку с переменной частотой и напряжением меняющимися в прямой зависимости.  С небольшими «но» на начальных участках характеристики необходимо выполнять IR компенсацию т.е. на малых частотах нужно фиксированное напряжение . Втрое «но» в питающие двигатель напряжение замешать 3 гармонику.  Всё остальное сделают за нас физические принципы  АД.  Более подробно про это можно прочесть в документе AVR494.PDF
Основываясь на моих личных наблюдениях и скромном опыте именно эти   методы без особых изысков чаще всего применяются в приводах мощностью до 15 кВт.
Далее не буду углубляться в теорию и  описание мат моделей АД. Это и без меня достаточно хорошо изложили профессора ещё в 60-х.
 
Но ни  в коем случае не стоит недооценивать сложности управления АД. Все мои упрощения  оправданны только некоммерческим применением инвертора.

Плата силовых элементов.

В программе V-1.0 для AT90SPWM3B  реализовано
1-  Частотное  управление  АД .Форма напряжения синусоида с 3 гармоникой.
2-  Частота  задания 5 Гц -50 Гц с шагом  1 Гц. Частота ШИМ  4 кГц.
3-  Фиксированное время разгона –торможения
4-  Реверс (только через кнопку СТОП)
5-  Разгон до заданной частоты с шагом 1 Гц
6 – Индикация показаний канала АЦП 6 (разрядность 8 бит.,  оконный фильтр апертура 4 бита)
       я использую этот канал для замера тока  шунта.
7 – Индикация режима работы START,STOP,RUN,RAMP, и Частота в Гц.
8-  Обработка сигнала авария от мс IR2135

Торможение двигателя принудительное – без выбега. При этом нужно помнить – если на валу будет висеть огромный вентилятор или маховик  то напряжение на звене постоянного тока может достичь опасных значений. Но я думаю вертолёты с приводом от АД строить никто не будет

Функции микропрограммы в будущих версиях    

1 -намагничивание ротора перед пуском
2- торможение постоянным током
3 –прямой реверс
4 – частота задания 1 -400  Гц.
5 – ограничение, контроль  тока двигателя.
6 —  переключаемые зависимости U/F
7 – контроль звена постоянного тока.
8 – некоторые макросы управления –это вообще в далёких планах.

Испытания.
Данная конструкции была проверена с двигателем 0.18кВт  и  0.4 кВт  и  0.8 кВт. Все двигатели остались довольны.
Только при малых оборотах и долговременной работе необходимо принудительное охлаждение АД.


 Строка для программатора
av_28r4.exe -aft2232 -az  +90pwm3b -e -w -v -fckdiv=1,psc2rb=0,psc1rb=0,psc0rb=0,pscrv=0,bodlevel=5 -c01.hex

Небольшое «вечернее» видео испытаний

Файлы:
плата микроконтроллера -layout5.0
силовой модуль -layout5.0
Программа для МК
Схема
схема S_plan7 -архив rar

Все вопросы в Форум.


Как вам эта статья?

Заработало ли это устройство у вас?

Частотник для трехфазного электродвигателя своими руками (схема)

С целью охраны окружающей среды везде вводятся правила, рекомендующие производителям электрооборудования выпускать продукцию, экономно расходующую электроэнергию. Зачастую это достигается эффективным управлением скорости электродвигателя.

Частотник для трехфазного электродвигателя или частотный преобразователь имеет множество наименований: инвертор, преобразователь частоты переменного тока, частотно регулируемый привод. На сегодняшний день частотники производят многие фирмы, но есть немало энтузиастов, создающих преобразователи своими руками.

Назначение и принцип работы инвертора

Частотный преобразователь на трехфазный двигательИнвертор управляет скоростью вращения асинхронных электродвигателей, т. е. двигателей, преобразующих энергию электрическую в механическую. Полученное вращение приводными устройствами трансформируется в другой вид движения. Это очень удобно и благодаря этому асинхронные электродвигатели приобрели большую популярность во всех областях человеческой жизни.

Важно отметить, что скорость вращения могут регулировать и другие устройства, но все они имеют множество недостатков:

  • сложность в использовании,
  • высокую цену,
  • низкое качество работы,
  • недостаточный диапазон регулирования.

Многим известно, что использование частотных преобразователей для регулировки скорости является самым эффективным методом. Это устройство обеспечивает плавный пуск и остановку, а также осуществляет контроль всех процессов, которые происходят в двигателе. Риск возникновения аварийных ситуаций, при использовании преобразователя частоты, крайне незначителен.

Схема частотного преобразователя

Для обеспечения плавной регулировки и быстродействия разработана специальная схема частотного преобразователя. Его использование в значительной мере увеличивает время непрерывной работы трехфазного двигателя и экономит электроэнергию. Преобразователь позволяет довести КПД до 98%. Это достигается увеличением частоты коммутации. Механические регуляторы на такое не способны.

Регулировка скорости инвертором

Первоначально он изменяет поступающее из сети напряжение. Затем из преобразованного напряжения формирует трехфазное, необходимой амплитуды и частоты, которое подается на электродвигатель.

Диапазон регулировки достаточно широкий. Есть возможность крутить ротор двигателя и в обратном направлении. Во избежание его поломки необходимо учитывать паспортные данные, где указаны максимально допустимые обороты и мощность в кВт.

Составные части регулируемого привода

Ниже представлена схема преобразователя частоты.

Схема преобразователя частоты

Он состоит из 3 преобразующих звеньев:

  • выпрямителя, формирующего напряжение постоянного тока при подключении к питающей электросети, который может быть управляемым или неуправляемым,
  • фильтра, сглаживающего уже выпрямленное напряжение (для этого применяют конденсаторы),
  • инвертора, формирующего нужную частоту напряжения, являющегося последним звеном перед электродвигателем.

Режимы управления

Частотники различают по видам управления:

  • скалярный тип (отсутствие обратной связи),
  • векторный тип (наличие обратной связи, или ее отсутствие).

При первом режиме подлежит управлению магнитное поле статора. В случае векторного режима управления учитывается взаимодействие магнитных полей ротора и статора, оптимизируется момент вращения при работе на разной скорости. Это является главным различием двух режимов.

Кроме этого, векторный способ более точен, эффективен. Однако в обслуживании — более затратен. Рассчитан он на специалистов с большим багажом знаний и навыков. Скалярный способ проще. Он применим там, где параметры на выходе не требуют точной регулировки.

Подключение инвертора «звезда — треугольник»

После приобретения инвертора по доступной цене возникает вопрос: как подключить его к двигателю своими руками? Прежде чем это сделать будет нелишним поставить обесточивающий автомат. В случае возникновения короткого замыкания хотя бы в одной фазе, вся система будет немедленно отключена.

Подключение преобразователя к электродвигателю можно осуществить по схемам «треугольник» и «звезда».

Способы подключения преобразователя

Если регулируемый привод однофазный, клеммы электродвигателя подключают по схеме «треугольник». В этом случае потерь мощности не происходит. Максимальная мощность такого частотника 3 кВт.

Трехфазные инверторы более совершенны. Они получают питание от промышленных трехфазных сетей. Подключаются по схеме «звезда».

Чтобы ограничить пусковой ток и снизить пусковой момент во время запуска электродвигателя мощностью более 5 кВт используют вариант переключения «звезда-треугольник».

При пуске напряжения на статор используется вариант «звезда». Когда скорость двигателя станет номинальной, питание переключается на схему «треугольник». Но такой способ применяется там, где существует возможность подключения по обеим схемам.

Важно отметить, что в схеме «звезда-треугольник» резкие скачки токов неизбежны. В момент переключения на второй вариант скорость вращения резко снижается. Чтобы восстановить частоту оборотов, необходимо увеличить силу тока.

Наибольшей популярностью пользуются преобразователи для электродвигателей мощностью от 0,4 кВт до 7,5 кВт.

Инвертор своими руками

Наряду с выпуском промышленных инверторов многие изготавливают их своими руками. Особой сложности в этом нет. Такой частотник может преобразовать одну фазу в три. Электродвигатель с подобным преобразователем можно использовать в быту, тем более что мощность его не теряется.

Схема частотного преобразователя своими руками

Выпрямительный блок идет в схеме первым. Затем идут фильтрующие элементы, отсекающие переменную составляющую тока. Как правило, для изготовления таких инверторов используют IGBT-транзисторы. Цена всех составляющих частотника, изготовленного своими руками, намного меньше цены готового производственного изделия.

Частотники подобного типа пригодны для электродвигателей мощностью от 0,1 кВт до 0,75 кВт

Использование современных инверторов

Современные преобразователи производятся с использованием микроконтроллеров. Это намного расширило функциональные возможности инверторов в области алгоритмов управления и контроля за безопасностью работы.

Преобразователи с большим успехом применяют в следующих областях:

  • в системах водоснабжения, теплоснабжения для регулирования скорости насосов горячей и холодной воды,
  • в машиностроении,
  • в текстильной промышленности,
  • в топливно-энергетической области,
  • для скважинных и канализационных насосов,
  • для автоматизации систем управления технологическими процессами.

Цены источников бесперебойного питания напрямую зависят от наличия в нем частотника. Они становятся «проводниками» в будущее. Благодаря им, малая энергетика станет наиболее развитой отраслью экономики.

Частотный Преобразователь Схема Электрическая Принципиальная

Циркуляркой уже полным ходом пилили на конденсаторах, когда появился необходимый вариант прошивки. Модули содержат шесть силовых ключей и схему управления.


Рядом с микропроцессором показан SWD -разъем P2 интерфейса прошивки микропроцессора и отладки кода с последовательным доступом. Убеждаемся, что привод функционирует.

Они задействованы для измерений напряжений шины постоянного тока, аналогового входа, фазных противо-ЭДС. И с одной парой полюсов и с мя.
Cтруктура и схема преобразователя частоты. Часть 1.

Долгий является также автором цикла статей о микроконтроллерах и многих других конструкций. Три диода и десяток резисторов, подключенных к процессору — хоть и не лучше схемотехническое решение, но решать задачу подхвата ротора или промышленной сети .

Следует отметить, что по современной терминологии подобные генераторы-формирователи называются контроллерами. Первый метод основан на назначении определенной зависимости чередования последовательностей широтно-импульсной модуляции ШИМ инвертора для заранее подготовленных алгоритмов.

Каков принцип частотных методов регулирования?

Также происходит насыщение магнитопровода статора. Конечно можно было бы взять в магазине фирменный частотник, но все-таки вариант самостоятельного изготовления оказался для меня наиболее приемлемым.

Выходное напряжение изменяется с помощью отношения между длительностью открытого и закрытого состояния, причем для получения требуемого напряжения это отношение можно менять. Следует отметить, что по современной терминологии подобные генераторы-формирователи называются контроллерами.

Подключение электродвигателя через частотный преобразователь. Плюсы и минусы

Функциональная схема подключения частотного преобразователя

При ее использовании получается произвести достаточно хорошую синусоидальную ШИМ с возможностью изменять напряжение. Крутим мотор-колесо коляски рукой, нажимаем кнопку «Пуск». Можно делать копии содержимого данной папки в родительской, переименовывать её и одноименные файлы с расширениями ewp, ewd, dep.


Обычный инвертор тока промежуточной цепи изменяющегося напряжения.

Способ ограничения зависит от вида модуляции. А так же функцию обработки прерывания таймера.

А так же функцию обработки прерывания таймера.

Они обеспечивают широкий диапазон регулировки частот, обладают высоким КПД и другими отличными техническими характеристиками. Справа от моста изображены операционные усилители нормирующие сигналы датчиков тока.

Преимуществом управляемых выпрямителей является их способность возвращать энергию в питающую сеть. Имеются три основных варианта задания режимов коммутации в инверторе с управлением посредством широтно-импульсной модуляции.

При этом амплитуда и частота напряжения на выходе преобразователя регулируются по скольжению и нагрузочному току, но без использования обратных связей по скорости вращения ротора.
ПОДКЛЮЧЕНИЕ ЧАСТОТНИКА к однофазному асинхронному двигателю.

Преобразователь частоты

Ответ на главный вопрос жизни, вселенной и бездатчикового электропривода — Чтобы избежать этих негативных последствий, при уменьшении частоты приходится снижать и эффективное значение напряжения на обмотках двигателя.


Функционирование без датчика положения. Таким образом, амплитуда отрицательных и положительных импульсов напряжения всегда соответствует половине напряжения промежуточной цепи. Способ векторов точнее и эффективнее.

Выходные сигналы с элементов DD3. Данные документируются протоколом обмена и используются пользователями, создающими программы управления для электронной техники и контроллеров.

Использование в работе частотника дает возможность работать двигателю без перерыва, экономично. Большая часть экономической эффективности заключается в возможности регулирования при помощи частотного преобразователя технологических характеристик процессов, температуры, давления, скорости движения, скорости подачи главного движения.

Данные параметры также регулируются широтно-импульсной модуляцией, а сама ширина импульсов модулируется по синусоидальному закону. Промежуточная цепь одного из трех типов: a преобразующая напряжение выпрямителя в постоянный ток. Примечание: для большинства приложений использование только пропорциональной и интегральной составляющей без использования дифференциальной составляющей даёт хорошие результаты. Такой вид управления инвертором называется амплитудно-импульсной модуляцией АИМ.


Такие преобразователи используются в мегаваттном диапазоне мощности для формирования низкочастотного питающего напряжения непосредственно из сети частотой 50 Гц, при этом их максимальная выходная частота составляет около 30 Гц. Все это управляется при помощи двух кнопок и одного переключателя, который изменяет направление вращения вала. Резисторы, соединил параллельно по кОм с помощью затворных проходных конденсаторов, позади платы их напаял. А удерживание инициирует дальнейший разгон до 50 Гц в течении приблизительно 2 секунд. SFAVM SFAVM — пространственно-векторный способ модуляции, который позволяет случайным образом, но скачкообразно изменять напряжение, амплитуду и угол инвертора в течение времени коммутации.

В описываемой схеме вполне возможно применить драйверы IR или IR В каждом из проектов имеются 7 файлов: mckits.

Механические устройства не могут выполнить такие функции. Также происходит насыщение магнитопровода статора. Моторы переделывают электроэнергию в механическое движение. Катушка индуктивности преобразует изменяющееся напряжение выпрямителя в изменяющийся постоянный ток.
Самодельный частотный преобразователь 220-380V собственной сборки

Схема прямого матричного преобразователя Непрямой матричный преобразователь indirect matrix converter состоит из двунаправленного трехфазного выпрямителя, виртуального звена постоянного тока и трехфазного инвертора.

Диоды позволяют току протекать только в одном направлении: от анода А к катоду К. И они творят революцию — успешно перевели на веб-платформу комплекс программных средств для разработки электрических принципиальных схем и печатных плат.

Состоит из выпрямителя и фильтрационных устройств.

Эти значения времени коммутации должны устанавливаться таким образом, чтобы допускать только минимум высших гармоник. Печатная плата комплекта разработчика устройств управления электродвигателями Есть особенность, которую должен учитывать разработчик устройств управления электродвигателями. В наше время существует несколько компоновок инверторов с управляемыми ключами: запираемые GTO тиристоры; биполярные IGBT-транзисторные ключи с затвором.

Выходное напряжение является результатом комбинации сегментов входного напряжения в котором основная гармоника следует за опорным сигналом. Транзистор-прерыватель управляет напряжением промежуточной цепи Фильтр промежуточной цепи сглаживает прямоугольное напряжение после прерывателя. Три проекта написаны так, чтобы в режиме сравнения файлов по содержимому однозначно идентифицировалось все, что с ней связано параметры, межблочные связи, расчетный код.

В состав преобразователей частоты входят четыре основных элемента: Рис. Нажимаем кнопку Event в окне программы. Аварийные ситуации при этом сводятся на нет.

Электрическая принципиальная схема частотного преобразователя

Частота задается конденсатором C1, регулировка частоты осуществляется переменным резистором R2. Проекты пошаговой разработки программного кода цифровой системы управления В дополнение к аппаратной части, инженеру предоставлен комплект проектов для пошаговой разработки программного кода векторной системы управления.

Задача перевода объекта из одного состояния в другое решается «программной машиной состояний». Расчёт производится по значению ошибки управления — расхождению между заданным значением и значением сигнала обратной связи обычно показания датчика какого-либо технологического параметра. Электрическая принципиальная схема комплекта разработчика устройств управления электродвигателями В нижней части схемы изображены импульсный преобразователь напряжения и линейные стабилизаторы, питающие фрагменты схемы. Основным различием способов являются критерии, которые используются при вычислении значений активного тока, тока намагничивания магнитного потока и крутящего момента.
Частотник для регулирования оборотов трёхфазного двигателя

Частотный преобразователь своими руками — RadioRadar

Частотный преобразователь применяется для того, чтобы из одной фазы получить три. Трехфазное питание используется, в основном, в промышленности. Однако и в бытовых ситуациях потребуется управление, например, трехфазным асинхронным двигателем. На этот случай вполне можно обойтись самостоятельным изготовлением частотника, что позволит использовать устройство с минимальными потерями мощности.

Существует много схем, которые дают возможность запустить трехфазный двигатель. Но, часть из них не предусматривает плавного включения или выключения, или же создают дополнительные неудобства, которые не дадут использовать двигатель полноценно. Исходя из этого, и были изобретены частотные преобразователи. Они позволяют полностью контролировать работу двигателя, при экономичном расходе электроэнергии и безопасности эксплуатации.

Рис. 1. Схема запуска трехфазного двигателя

Составляющие частотного преобразователя

Для наглядности, схему можно разбить на три составляющих или три взаимосвязанных блока:

1. Выпрямитель.

2. Фильтр, предназначение которого есть сглаживание напряжения на выходе.

3. Инвертор, который собственно и отвечает за производство необходимой частоты.

Его использование дает значительное уменьшение пускового тока, при включении оборудования, что существенно продлевает эксплуатационный срок двигателя и устройства, где данный двигатель используется. Естественно, что избавившись таким образом от высоких показаний пускового тока, удается и сэкономить электроэнергию, которая уходила ранее при запуске оборудования. А это особенно актуально в условиях, где предусмотрены частые запуски и остановки устройств.

Рис. 2. Составляющие частотного преобразователя

Современные покупные инверторы широко используются в таких сферах, как производство, водоснабжение, энергетика, сельское и городское хозяйства, в электронике, и в автоматических линиях и комплексах.

Стоимость фирменного частотного преобразователя слишком высока, для того, чтобы изучить его процессы работы или использовать в быту или домашней мастерской. Поэтому часто используются в таких ситуациях самодельные частотники.

Сборка устройства

Стоит обратить внимание на то, что в домашних условиях крайне не рекомендуется использование двигателей, рассчитанных на мощность большую, чем 1 кВт. Таковы особенности домашней сети.

Имея необходимый двигатель, потребуется для начала соединить его обмотки между собой способом «треугольник».

Рис. 3. Трёхфазный двигатель

Рис. 4. Соединение треугольник

Рис. 5. Соединение треугольник

Схема самого частотного преобразователя.

Рис. 6. Схема частотного преобразователя

Питание осуществляется от блока питания 27 Вольт постоянного напряжения. Это может быть, как регулируемый БП, так и сделанный собственноручно, рассчитанный на данное напряжение. Схема подключения двигателя;

Рис. 7. Схема подключения двигателя

Схема простая и проверенная и не содержит компонентов, которые сложно будет купить. Но, к сожалению, не лишена недостатков и годится для применения лишь в быту.
Более сложная в сборке схема, но и более результативная представлена ниже.

Рис. 8. Схема подключения двигателя

На данный момент это самая обсуждаемая схема частотного преобразователя, который можно сделать собственноручно. Прошивки микроконтроллера изобилуют на тематических форумах. Потребуется не только умение грамотно паять, но и прошивать микроконтроллеры.

Печатная плата.

Рис. 9. Печатная плата

Потребуется надежный источник питания на 24 Вольта. Предлагается его также изготовить собственноручно по схеме.

Рис. 10. Схема источника питания

Естественно, что устройство можно приобрести и готовым. Они бывают фирменными или сделанными народными мастерами, которые обладают положительными рекомендациями.

Автор: RadioRadar

Домашнее видео и любительские порно видео

  • Зарегистрируйтесь
  • Войти в систему
Поиск
  • Домой
  • Последний
  • Самые просматриваемые
  • Альбомы
  • категории
  • Места
  • модели
  • Загрузить
  • *>
    • Девушка мастурбирует3606
    • Solo Female6479
    • Webcam4171
    • Straight Sex2605
    • Большие натуральные сиськи3127
    • Doggy Style3498
    • German5457
    • Vintage3175
    • HD Видео25233
    • Masturbation12587
    • British4695
    • Toys5331
    • Squirting5537
    • Грубый секс6555
    • French5205
    • Bondage3291
    • Celebrity2932
    • Групповой секс2395
    • Женский оргазм5772
    • Dildo2721
    • BDSM4352
    • Большой петух7012
    • European4100
    • Киска лижет4878
    • Fingering5596
    • Fetish7784
    • BBW6630
    • Татуированные женщины2454
    • Lesbian9407
    • Cuckold5572
    • Voyeur4091
    • homemade7134
    • Gangbang3638
    • Old & Young2903
    • HD12563
    • Hairy4682
    • Swingers2519
    • Ebony11267
    • Granny4024
    • Большая жопа18678
    • 60FPS3561
    • Проверено Любители12202
    • Маленькие сиськи10760
    • Mature13293
    • Большой член14788
    • Amateur46525
    • Squirt3754
    • PAWG3863
    • BBC7640
    • Большие сиськи26595
    • Asian9333
    • Public4396
    • Russian2535
    • Beach3502
    • HD Porn37891
    • Проверенные пары2562
    • Japanese6572
    • Interracial12841
    • Orgasm5630
    • Handjob6762
    • Зрелый Nl811
    • Япония HDV329
    • Brazzers592
    • Юридическое порно Trailers535
    • Скаут 69417
    • Jav Hd310
    • Реальность Kings359
    • Поддельный Hub209
    • Team Skeet375
    • Все внутренние177
    • Jordi El Nino Polla88
    • Ева Эльфи35
    • Брианна Бич42
    • Ксев Беллрингер33
    • pornstar3060
    • Миа Малкова141
    • Жасмин Jae84
    • Ева Notty42
    • Эльза Жан133
    • Эмма Батт55
    • Райли Рейд356
    • Aj Applegate102
    • Джесса Родос107
    • Габби Картер71
    • Тайлер Никсон89
    Последний
    • Самые просматриваемые
    • Самые популярные
    • самый длинный
    • Самые комментируемые
    • Самые любимые
    ,

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *