Самодельный водородный генератор: Как сделать водородный генератор для дома своими руками

Содержание

Водородный генератор своими руками для отопления дома, схема

Использование водорода в качестве энергоносителя для обогрева дома – идея весьма заманчивая, ведь его теплотворная способность (33.2 кВт / м3) превышает более чем в 3 раза показатель природного газа (9.3 кВт / м3). Теоретически, чтобы извлечь горючий газ из воды с последующим сжиганием его в котле, можно использовать водородный генератор для отопления. О том, что из этого может получиться и как сделать такое устройство своими руками, будет рассказано в данной статье.

Принцип работы генератора

Как энергоноситель водород действительно не имеет себе равных, а запасы его практически неисчерпаемы. Как мы уже сказали, при сжигании он выделяет огромное количество тепловой энергии, несравнимо большее, нежели любое углеводородное топливо. Вместо вредных соединений, выбрасываемых в атмосферу при использовании природного газа, при горении водорода образуется обычная вода в виде пара. Одна беда: данный химический элемент не встречается в природе в свободном виде, только в соединении с другими веществами.

Одно из таких соединений – обычная вода, представляющая собой полностью окисленный водород. Над ее расщеплением на составные элементы работали многие ученые в течение долгих лет. Нельзя сказать, что безрезультатно, ведь техническое решение по разделению воды все же было найдено. Его суть – в химической реакции электролиза, в результате которой происходит расщепление воды на кислород и водород, полученную смесь назвали гремучим газом или газом Брауна. Ниже показана схема водородного генератора (электролизера), работающего на электричестве:

Электролизеры производятся серийно и предназначены для газопламенных (сварочных) работ. Ток определенной силы и частоты подается на группы металлических пластин, погруженных в воду. В результате протекающей реакции электролиза выделяются кислород и водород вперемешку с водяным паром. Для его отделения газы пропускаются через сепаратор, после чего подаются на горелку. Дабы избежать обратного удара и взрыва, на подаче устанавливается клапан, пропускающий горючее только в одну сторону.

Для контроля за уровнем воды и своевременной подпитки конструкцией предусмотрен специальный датчик, по сигналу которого производится ее впрыск в рабочее пространство электролизера. За превышением давления внутри сосуда следит аварийный выключатель и сбросной клапан. Обслуживание водородного генератора заключается в периодическом добавлении воды, и на этом все.

Водородное отопление: миф или реальность?

Генератор для сварочных работ – это на данный момент единственное практическое применение электролитическому расщеплению воды. Использовать его для отопления дома нецелесообразно и вот почему. Затраты энергоносителей при газопламенных работах не так важны, главное, что сварщику не нужно таскать тяжеленные баллоны и возиться со шлангами. Другое дело – отопление жилища, где каждая копейка на счету. И тут водород проигрывает всем существующим ныне видам топлива.

Важно. Затраты электроэнергии на выделение горючего из воды методом электролиза будут гораздо выше, нежели гремучий газ сможет выделить при сжигании.

Серийные сварочные генераторы стоят немалых денег, поскольку в них используются катализаторы процесса электролиза, в состав которых входит платина. Можно сделать водородный генератор своими руками, но его эффективность будет еще ниже, чем у заводского. Получить горючий газ вам точно удастся, но вряд ли его хватит на обогрев хотя бы одной большой комнаты, не то что целого дома. А если и хватит, то придется оплачивать баснословные счета за электричество.

Чем тратить время и усилия на получение бесплатного топлива, которого не существует априори, проще смастерить своими руками простой электродный котел. Можете быть уверены, что так вы израсходуете гораздо меньше энергии с большей пользой. Впрочем, домашние мастера – энтузиасты всегда могут попробовать свои силы и собрать дома электролизер, с целью провести эксперименты и убедиться во всем самолично. Один из подобных экспериментов показан на видео:

Как изготовить генератор

Масса интернет-ресурсов публикуют самые разные схемы и чертежи генератора для получения водорода, но все они действуют по одному принципу. Мы предложим вашему вниманию чертеж простого устройства, взятый из научно-популярной литературы:

Здесь электролизер представляет собой группу металлических пластин, стянутых между собой болтами. Между ними установлены изоляционные прокладки, крайние толстые обкладки тоже изготовлены из диэлектрика. От штуцера, вмонтированного в одну из обкладок, идет трубка для подачи газа в сосуд с водой, а из него – во второй. Задача емкостей – отделять паровую составляющую и накапливать смесь водорода с кислородом, чтобы подавать его под давлением.

Совет. Электролитические пластины для генератора надо делать из нержавеющей стали, легированной титаном. Он послужит дополнительным катализатором реакции расщепления.

Пластины, что служат электродами, могут быть произвольного размера. Но надо понимать, что производительность аппарата зависит от их площади поверхности. Чем большее число электродов удастся задействовать в процессе, тем лучше. Но при этом и потребляемый ток будет выше, это следует учитывать. К концам пластин припаиваются провода, ведущие к источнику электричества. Здесь тоже есть поле для экспериментов: можно подавать на электролизер разное напряжение с помощью регулируемого блока питания.

В качестве электролизера можно применить пластиковый контейнер от водяного фильтра, поместив в него электроды из нержавеющих трубок. Изделие удобно тем, что его легко герметизировать от окружающей среды, выводя трубку и провода через отверстия в крышке. Другое дело, что этот самодельный водородный генератор обладает невысокой производительностью из-за малой площади электродов.

Заключение

На данный момент не существует надежной и эффективной технологии, позволяющей реализовать водородное отопление частного дома. Те генераторы, что имеются в продаже, могут успешно применяться для обработки металлов, но не для производства горючего для котла. Попытки организовать подобный обогрев приведут к перерасходу электроэнергии, не считая затрат на оборудование.

Делаем водородный генератор для отопления дома своими руками. Жми!

Водородный генератор (электролизер) это прибор, работающий за свет двух процессов: физического и химического.

В процессе работы под воздействием электротока вода разлагается на кислород и водород. Данный процесс носит название электролиз. Электролизер довольно популярен среди самых известных видов водородных генераторов.

Как устроен прибор

Электролизер состоит из нескольких пластин из металла, погруженных в герметическую емкость с дистиллированной водой.

Сам корпус имеет клеммы, чтобы подключать источник питания и есть втулка, через которую выводится газ.

Работу прибора можно описать так: электроток пропускается через дистиллированную воду между пластинами с разными полями (у одной — анод, у другой — катод), расщепляет её на кислород и водород.

В зависимости от площади пластин электроток имеет свою силу, если площадь большая, то и тока по воде проходит много и больше выделяется газа. Схема подключения пластин поочередная, сначала плюс, потом минус и так далее.

Электроды рекомендуется делать из нержавеющей стали, которая в процессе электролиза не вступает в реакцию с водой. Главное найти нержавейку высокого качества. Между электродами лучше сделать расстояние маленькими, но так, чтобы пузыри газа легко между ними передвигались. Крепеж лучше изготовить из соответствующего металла, что и электроды.

[warning]Примите во внимание: в связи с тем, что технология изготовления связана с газом, то во избежание образования искры, необходимо произвести плотное прилегание всех деталей.[/warning]

В рассматриваемом варианте устройство включает в себя 16 пластин, расположены они друг от друга в пределах 1 мм.

За счет того, что пластины имеют достаточно немалую площадь поверхности и толщину, можно будет пропустить через такое устройство высокие токи, однако нагрева металла не произойдет. Если измерить на воздухе емкость электродов, то она составит 1nF, данный набор использует до 25А в простой воде из водопровода.

Для сбора водородного генератора своими руками можно применить контейнер пищевой, так как его пластик термоустойчив. Затем нужно в контейнер опустить электроды для сбора газа с разъемами изолированными герметично, крышкой и другими соединениями.

Если использовать контейнер из металла, то во избежание короткого замыкания, электроды крепятся на пластике. С двух сторон медных и латунных фитингов устанавливаются два разъема (фитинг – монтировать, собирать) для извлечения газа. Разъемы контактные и фитинги нужно прочно закрепить, применяя герметик из силикона.

Изготовить газогенератор также можно в домашних условиях. Методика подробно изложена здесь: https://teplo.guru/pechi/piroliznye/gazogenerator-svoimi-rukami.html

Соблюдение мер безопасности

Электролизер представляет собой устройство повышенной опасности.

Поэтому во время его изготовления, монтирования и работы обязательно нужно соблюдение как общих, так и специальных мер безопасности.

Специальные меры включают следующие пункты:

  • следует контролировать концентрацию смеси водорода с кислородом, в целях недопущения взрыва;
  • если уровень жидкости не просматривается в смотровом окне водородного генератора, то его использовать нельзя;
  • во время выполнения ремонта нужно удостовериться, что в конечной точке системы полностью отсутствует водород;
  • противопоказано использование открытого огня, электрических нагревательных приборов и переносных ламп напряжением более 12 вольт рядом с электролизером;
  • во время работы с электролитом следует себя обезопасить, используя средства защиты (спецодежда, перчатки и очки).

Советы специалистов

Квалифицированные мастера считают, что изготавливать самодельные водородные генераторы для автомобилей в домашних условиях рискованное занятие.

Они объясняют это тем, что электролизер для авто имеет сложную и небезопасную систему устройств.

Заниматься изготовлением таких агрегатов нужно, применяя специальные материалы и реагенты.

[advice]Примите к сведению: в случае самостоятельного установления электролизера, который был изготовлен своими руками, рекомендуется строгое исключение возможности, когда газ попадает в камеру сгорания при заглушенном двигателе. Во время отключения двигателя, обязательно должен автоматически отключиться водородный генератор от сети электрического питания автомобиля.[/advice]

Если все-таки решили самостоятельно изготовить автомобильный гидролизер, то обязательно следует оснастить его барботером – это специальный водяной клапан. При его использовании значительно повысится безопасность при вождении автомобиля.

Электрический ток можно получить из земли и воздуха самостоятельно. Подробности в этой статье: https://teplo.guru/elektrichestvo/besplatnoe-elektrichestvo.html

Отопление дома газом Брауна

Схема работы водородного генератора. (Для увеличения нажмите)

Водород является самым распространенным химическим элементом, поэтому экономически выгодно его использовать.

Для многих владельцев домов и дач часто встает вопрос, как получить «чистую» и дешевую энергию для нужд в быту. Ответ можно найти в таких инновациях, как водогенератор для отопления жилища.

Ученые, благодаря своим разработкам, позволили многим использовать такое устройство для получения газа. Установка способна генерировать водород (газ Брауна) и этот газ будет использован для получения энергии.

Можно это соединение представить химической формулой, как hho. Данный газ можно получить из воды с помощью метода электролиза. Есть много примеров в жизни, когда люди хотят свой дом отапливать оксиводородом. Но чтобы этот вид топлива получил популярность, надо сначала научиться получать его (газ Брауна) в бытовых условиях.

Пока еще нет технологии водородного отопления частного дома, которая была бы достаточно надежной.

Нюансы организации отопления дома газом Брауна рассмотрены здесь: https://teplo.guru/sistemy/otoplenie-gazom-brauna.html

Смотрите видео, в котором опытный пользователь разъясняет, как сделать водородный генератор своими руками:

Оцените статью: Поделитесь с друзьями!

Как сделать водородный генератор — советы и пошаговые инструкции

Здесь вы узнаете:

Перед тем, как сделать водородный генератор, необходимо изучить все тонкости — экономическую целесообразность, безопасность. Предлагаем несколько простых схем и конструкций водородного генератора.

Описание и принцип работы водородного генератора

Есть несколько методик выделения водорода и из других веществ, перечислим наиболее распространенные:

  1. Электролиз, данная методика наиболее простая и может быть реализована в домашних условиях. Через водный раствор, содержащий соль, пропускается постоянный электрический ток, под его воздействием происходит реакция, которую можно описать следующим уравнением: 2NaCl + 2h3O→2NaOH + Cl2 + h3↑. В данном случае пример приведен для раствора обычной кухонной соли, что не лучший вариант, поскольку выделяющийся хлор является ядовитым веществом. Заметим, что полученный данным способом водород наиболее чистый (порядка 99,9%).
  2. Путем пропускания водяного пара над каменноугольным коксом, нагретым до температуры 1000°С, при таких условиях протекает следующая реакция: Н2О + С ⇔ СО↑ + h3↑.
  3. Добыча из метана путем конверсии с водяным паром (необходимое условие для реакции – температура 1000°С): СН4 + Н2О ⇔ СО + 3Н2. Второй вариант – окисление метана: 2СН4 + О2 ⇔ 2СО + 4Н2.
  4. В процессе крекинга (переработки нефти) водород выделяется в качестве побочного продукта. Заметим, что в нашей стране все еще практикуется сжигание этого вещества на некоторых нефтеперерабатывающих заводах ввиду отсутствия необходимого оборудования или достаточного спроса.

Из перечисленных вариантов последний наименее затратный, а первый наиболее доступный, именно он положен в основу большинства генераторов водорода, в том числе и бытовых. Их принцип действия заключается в том, что в процессе пропускания тока через раствор, положительный электрод притягивает отрицательные ионы, а электрод с противоположным зарядом – положительные, в результате происходит расщепление вещества.


Пример электролиза на растворе хлорида натрия

Основные достоинства отопления на водороде

Данный способ обогрева дома имеет несколько существенных преимуществ, которыми обусловлена возрастающая популярность системы.

  1. Впечатляющий КПД, который нередко достигает 96%.
  2. Экологичность. Единственный побочный продукт, выделяющийся в атмосферу – это водяной пар, который не способен навредить окружающей среде в принципе.
  3. Водородное отопление постепенно заменяет традиционные системы, освобождая людей от необходимости в добыче природных ресурсов – нефти, газа, угля.
  4. Водород действует без огня, тепловая энергия образуется путем каталитической реакции.

Область применения

Сегодня электролизёр — такое же привычное устройство, как и генератор ацетилена или плазменный резак. Изначально водородные генераторы использовались сварщиками, поскольку носить за собой установку весом всего несколько килограмм было намного проще, чем перемещать огромные кислородные и ацетиленовые баллоны.

 При этом высокая энергоёмкость агрегатов решающего значения не имела — всё определяло удобство и практичность. В последние годы применение газа Брауна вышло за рамки привычных понятий о водороде, как топливе для газосварочных аппаратов. В перспективе возможности технологии очень широки, поскольку использование HHO имеет массу достоинств.

  • Сокращение расхода горючего на автотранспорте. Существующие автомобильные генераторы водорода позволяют использовать HHO как добавку к традиционному бензину, дизелю или газу. За счёт более полного сгорания топливной смеси можно добиться 20 – 25 % снижения потребления углеводородов.
  • Экономия топлива на тепловых электростанциях, использующих газ, уголь или мазут.
  • Снижение токсичности и повышение эффективности старых котельных.
  • Многократное снижение стоимости отопления жилых домов за счёт полной или частичной замены традиционных видов топлива газом Брауна.
  • Использование портативных установок получения HHO для бытовых нужд — приготовления пищи, получения тёплой воды и т. д.
  • Разработка принципиально новых, мощных и экологичных силовых установок.

Генератор водорода, построенный с использованием «Технологии водяных топливных ячеек» С. Мейера (а именно так назывался его трактат) можно купить — их изготовлением занимается множество компаний в США, Китае, Болгарии и других странах. Мы же предлагаем изготовить водородный генератор самостоятельно.

Конструкция водородного генератора

Для постройки генераторов водорода своими руками обычно берут в качестве основы классическую схему установки Брауна. Такой электролизёр средней мощности состоит из группы ячеек, каждая из которых содержит группу пластинчатых электродов. Мощность установки определяется общей площадью поверхности пластинчатых электродов.

Ячейки помещаются внутрь ёмкости, хорошо изолированной от внешней среды. На корпус резервуара выводятся патрубки для подключения водяной магистрали, вывода водорода, а также контактная панель подключения электричества.


Аппарат генерации водорода, спроектированный по схеме Брауна. По всем расчётам эта установка вполне должна обеспечить домашнее хозяйство теплом и светом. Другой вопрос – какие габариты и мощности позволят это сделать (+)

Схема генератора Брауна, кроме всего прочего, предусматривает наличие водяного затвора и обратного клапана. За счёт этих элементов организуется защита установки от обратного хода водорода. По такой схеме теоретически не исключается сборка водородной установки, к примеру, для организации отопления загородного дома.

Как изготовить генератор

Масса интернет-ресурсов публикуют самые разные схемы и чертежи генератора для получения водорода, но все они действуют по одному принципу. Мы предложим вашему вниманию чертеж простого устройства, взятый из научно-популярной литературы:

Здесь электролизер представляет собой группу металлических пластин, стянутых между собой болтами. Между ними установлены изоляционные прокладки, крайние толстые обкладки тоже изготовлены из диэлектрика. От штуцера, вмонтированного в одну из обкладок, идет трубка для подачи газа в сосуд с водой, а из него – во второй. Задача емкостей – отделять паровую составляющую и накапливать смесь водорода с кислородом, чтобы подавать его под давлением.

Совет. Электролитические пластины для генератора надо делать из нержавеющей стали, легированной титаном. Он послужит дополнительным катализатором реакции расщепления.

Пластины, что служат электродами, могут быть произвольного размера. Но надо понимать, что производительность аппарата зависит от их площади поверхности. Чем большее число электродов удастся задействовать в процессе, тем лучше. Но при этом и потребляемый ток будет выше, это следует учитывать. К концам пластин припаиваются провода, ведущие к источнику электричества. Здесь тоже есть поле для экспериментов: можно подавать на электролизер разное напряжение с помощью регулируемого блока питания.

В качестве электролизера можно применить пластиковый контейнер от водяного фильтра, поместив в него электроды из нержавеющих трубок. Изделие удобно тем, что его легко герметизировать от окружающей среды, выводя трубку и провода через отверстия в крышке. Другое дело, что этот самодельный водородный генератор обладает невысокой производительностью из-за малой площади электродов.

Делаем простейший генератор водорода своими руками пошагово

Расскажем, как можно сделать самодельный генератор для получения смеси водорода и кислорода (ННО). Его мощности на отопления дома не хватит, но для газовой горелки для резки металла количество полученного газа будет достаточным.


Рис. 8. Схема газовой горелки

Обозначения:

  • а – сопло горелки;
  • b – трубки;
  • c – водные затворы;
  • d – вода;
  • е – электроды;
  • f – герметичный корпус.

В первую очередь делаем электролизер, для этого нам понадобится герметичная емкость и электроды. В качестве последних используем стальные пластины (их размер выбираем произвольно, в зависимости от желаемой производительности), прикрепленные к диэлектрическому основанию. Соединяем между собой все пластины каждого из электродов.

Когда электроды готовы их надо укрепить в емкости таким образом, чтобы места подключения проводов питания были выше предполагаемого уровня воды. Провода от электродов идут к блоку питания на 12 вольт или автомобильному аккумулятору.

В крышке емкости делаем отверстие под трубку для выхода газа. В качестве водных затворов можно использовать обычные стеклянные банки емкостью 1 литр. Заполняем их на 2/3 водой и подключаем к электролизеру и горелке, как показано на рисунке 8.

Горелку лучше взять готовую, поскольку не каждый материал может выдержать температуру горения газа Брауна. Подключаем ее к выходу последнего водного затвора.

Наполняем электролизер водой, в которую добавлена обычная кухонная соль.

Подаем напряжение на электроды и проверяем работу устройства.

Отопление дома газом Брауна


Схема работы водородного генератора.

Водород является самым распространенным химическим элементом, поэтому экономически выгодно его использовать.

Для многих владельцев домов и дач часто встает вопрос, как получить «чистую» и дешевую энергию для нужд в быту. Ответ можно найти в таких инновациях, как водогенератор для отопления жилища.

Ученые, благодаря своим разработкам, позволили многим использовать такое устройство для получения газа. Установка способна генерировать водород (газ Брауна) и этот газ будет использован для получения энергии.

Можно это соединение представить химической формулой, как hho. Данный газ можно получить из воды с помощью метода электролиза. Есть много примеров в жизни, когда люди хотят свой дом отапливать оксиводородом. Но чтобы этот вид топлива получил популярность, надо сначала научиться получать его (газ Брауна) в бытовых условиях.

Пока еще нет технологии водородного отопления частного дома, которая была бы достаточно надежной.

Смотрите видео, в котором опытный пользователь разъясняет, как сделать водородный генератор своими руками:

Безопасность установки

Многие умельцы размещают пластины в пластиковых ёмкостях. Не стоит экономить на этом. Нужен бак из нержавеющего металла. Если его нет, можно использовать конструкцию с пластинами открытого типа. В последнем случае необходимо применять качественный изолятор тока и воды для надёжной работы реактора.

Известно, что температура горения водорода составляет 2800. Это самый взрывоопасный газ в природе. Газ Брауна – не что иное, как «гремучая» смесь водорода. Поэтому водородные генераторы на автомобильном транспорте требуют качественной сборки всех узлов системы и наличия датчиков для слежения за течением процесса.

Датчик температуры рабочей жидкости, давления и амперметр не будут лишними в конструкции установки. Особое внимание стоит уделить гидрозатвору на выходе из реактора. Он жизненно необходим. Если произойдёт воспламенение смеси, такой клапан предотвратит распространение пламени в реактор.

Водородный генератор для отопления жилых и производственных помещений, работающий на тех же принципах, отличается в несколько раз большей производительностью реактора. В таких установках отсутствие гидрозатвора представляет смертельную опасность. Водородные генераторы на автомобилях в целях обеспечения безопасной и надёжной работы системы также рекомендуется оборудовать таким обратным клапаном.

Генератор промышленного изготовления

На уровне промышленного производства технологии изготовления водородных генераторов бытового назначения постепенно осваиваются и развиваются. Как правило, выпускаются энергетические станции домашнего применения, мощность которых не превышает 1 кВт.

Такой аппарат рассчитан на выработку водородного топлива в режиме постоянного функционирования не более чем в течение 8 часов. Главное их предназначение – энергоснабжение отопительных систем.

Также разрабатываются и производятся установки под эксплуатацию в составе кондоминиумов. Это уже более мощные конструкции (5-7 кВт), назначение которых не только энергетика отопительных систем, но также выработка электричества. Такой комбинированный вариант быстро набирает популярность в западных странах и в Японии.

Комбинированные водородные генераторы характеризуются как системы с высоким КПД и небольшим выбросом углекислого газа.


Пример реально действующей промышленно изготовленной станции мощностью до 5 кВт. Подобные установки в перспективе планируется делать под оснащение коттеджей и кондоминиумов

Российская промышленность тоже начала заниматься этим перспективным видом добычи топлива. В частности, «Норильский никель» осваивает технологии производства водородных установок, в том числе бытовых.

Планируется использовать самые разные типы топливных элементов в процессе разработки и производства:

  • протонно-обменные мембранные;
  • ортофосфорно-кислотные;
  • протонно-обменные метанольные;
  • щелочные;
  • твердотельные оксидные.

Между тем процесс электролиза является обратимым. Этот факт говорит о том, что есть возможность получать уже нагретую воду без сжигания водорода.

Кажется, это очередная идея, ухватившись за которую можно запускать новый виток страстей, связанных с бесплатной добычей топлива для домашнего котла.

Экономическая целесообразность

В домашних условиях изготовить качественную водородную установку очень сложно. Мастеру придется учитывать массу параметров. Например, нужно точно подобрать металл для электродов. Он должен обладать определенными свойствами.


Всеми любимая нержавейка — доступное, но недолговечное решение. Топливные ячейки на них довольно быстро выйдут из строя.

Также при сборке гидролизатора нужно соблюдать монтажные размеры. Чтобы их получить, нужно произвести сложные расчеты с учетом качества воды, необходимой мощности на выходе и т. д.

При изготовлении устройства значение имеет даже сечение проводов, по которым на электроды подается ток. Речь идет не о производительности генератора, а о безопасности его эксплуатации, но и этот важный нюанс нужно учитывать.

Главная проблема таких приборов — большие затраты электричества для получения оксиводорода. Они превышают энергию, которую можно получить от сжигания такого топлива.

Из-за низкого КПД цена водородной установки для дома делает производство этого газа и его последующее использование для отопления невыгодным. Чем впустую расходовать электричество, проще установить любой электрокотел. Он будет эффективнее.

Что касается автомобильного транспорта, то здесь картина не сильно отличается. Да, можно сделать гидролизер для экономии топлива, но при этом снижается безопасность и надежность.

Единственное, где водород можно эффективно применять как топливо, — газосварка. Аппараты на hydrogen весят меньше, они компактнее, чем кислородные баллоны, но намного эффективнее. К тому же стоимость получения смеси здесь не играет никакой роли.

электролизер своими руками, чертежи, получение в домашних условиях, для автомобиля

Водородный генератор может отличаться по размерам и качеству материалов, которые применялись при его изготовлении Раньше загородные дома можно было отапливать только одним способом – растапливали печь дровами или углем. Сегодня же для отопления частного дома используют разнообразное топливо: дизель, мазут, природный газ, электричество. Однако с ростом цен на топливо многие владельцы домов стараются найти более дешевый способ отопления. Одним из них является обычная вода, которую использует водородный генератор для образования такого топлива, как водород. Водород является неиссякаемым источником энергии. Его можно применять не только для обогрева помещений, но и для автомобиля.

Генератор водорода: устройство и его принцип работы

Использовать водород для обогрева жилых домов очень выгодно, так как он обладает высокой теплотворной способностью и при этом не происходит выделения вредных веществ. Однако в чистом виде добыча водорода невозможна, большое содержание его находится в реках, морях и океанах. Организм человека даже состоит из 63% водорода.

Чистый водород можно получать из многих различных химических соединений, например, водорода и кислорода. Самый известный способ получения водорода – это электролиз воды.

Чтобы получить чистый водород необходимо воду расщепить на два атома (НН) водорода и атом кислорода (О). Это и есть принцип работы водяного генератора: получение водорода с помощью электролиза. Газ, который выделяется при этом, назвали в честь великого физика Брауна и он имеет формулу ННО. Такой газ при сгорании не образует вредных веществ и является экологически чистым продуктом. Однако смесь водорода с кислородом образует в итоге горючий газ, который является взрывоопасным. Поэтому используя в домашних условиях электролизер, нужно соблюдать дополнительные меры безопасности.

Перед тем как приступить к использованию генератора водорода, нужно тщательно ознакомиться с инструкцией

Водяной двигатель имеет такое устройство:

  • Генератор водородного типа, где и происходит электролиз;
  • Горелка, она устанавливается в самой топке;
  • Котел, он выполняет функцию теплообменника.

На производство такого газа, как браун, используется в четыре раза меньше энергии, чем выделяется при его сгорании. Электричество при этом расходуется очень экономно, а топливо, которое ему необходимо – это обычная вода.

Водородный генератор: его достоинства и недостатки

Сегодня электролизёр является таким же привычным устройством, как например, плазменный резак или ацетиленовый электрогенератор. Такая электролизная установка, работающая на воде (печка), стала достаточно популярной, ее применяют для обогрева частных домов, а так же устанавливают на мотоцикл или авто для экономии топлива.

Водородный генератор является экологически чистым топливом, единственным отходом, который он вырабатывает, есть вода. Она выделяется в газообразном состоянии и известна нам, как водяной пар. А он, в свою очередь, никакого негативного влияния на окружающую среду не оказывает.

Такое устройство обладает и другими положительными достоинствами, но так же и недостатками. Самый важный недостаток – это его взрывоопасность. Однако соблюдая все предосторожности и правила безопасности, можно избежать негативных последствий.

Водородный реактор имеет свои преимущества:

  • Работает на воде;
  • Экономит электричество;
  • Является экологически чистым;
  • Высокий КПД;
  • Простота обслуживания.

Такой прибор HHO можно приобрести в готовом виде в специализированном магазине, стоит он будет, конечно совсем не дешево. Однако можно сделать его и своими руками из доступных деталей, сэкономив при этом приличную сумму. Однако ему нужна защита от воды и отдельный домик для хранения.

Самодельный водородный генератор: пошаговая инструкция

Изготовление водородного генератора можно осуществит в домашних условиях, но для этого будут нужны чертежи и пошаговая инструкция всего процесса. Схема электролизера очень проста (ее можно смотреть в интернете), поэтому каких-либо специфических материалов практически не понадобится.

Для создания самодельного генератора водорода нам понадобятся некоторые инструменты и материалы: пластиковый контейнер или полиэтиленовая канистра с крышкой, прозрачная трубка длиной 1м, с диаметром 8 мм, болты, гайки, силиконовый герметик, лист нержавейки, 3 штуцера, обратный клапан, фильтр, ножовка по металлу, гаечные ключи и нож.

Собрав все это, можно приступать к его изготовлению. Сборка осуществляется по чертежам, которые можно найти в интернете или же заказать у специалиста.

Инструкция изготовления:

  • Из листа нержавейки вырезаем 16 одинаковых пластин.
  • Сверлим отверстие в одном из углов. Угол должен быть одинаковым у всех 16.
  • Противоположный угол обязательно спиливаем.
  • Устанавливаем пластины поочередно на приготовленные болты, изолируя их шайбами и полиэтиленовыми трубками. Они не должны контактировать между собой.
  • Стягиваем всю конструкцию гайками, получается батарея.
  • Крепим данную конструкцию в пластиковую емкость, отверстия смазать герметиком.
  • Просверливаем отверстия в крышке, обрабатываем их так же силиконом, затем вставляем штуцера.

Чтобы сделать самодельный водородный генератор, нужно предварительно посмотреть обучающее видео и изучить советы профессионалов

Самодельный кислородный гидролизер готов. Теперь его только нужно проверить на работоспособность. Для этого нужно заполнить емкость водой до болтов крепления и закрыть ее крышкой. Одеваем на один из трех штуцеров шланг из полиэтилена, а второй его коней опускаем в отдельную емкость, заполненную так же водой. К болтам нужно подключить электричество, если на поверхности появились пузырьки, значит, генератор работает и выделяет водород. После такого подключения и проверки, воду сливаем, а затем заливаем в емкость готовый щелочной электролит, чтобы получить больше выделяемого газа.

Электролизер для автомобиля: виды катализаторов

Водородный генератор, при установке, способен снизить расход топлива у легковых или грузовых машин, мотоциклов, а так же сократит выброс в атмосферу вредных веществ. На сегодняшний день, такой генератор для автомобиля приобретает популярность. Процесс электролиза в авто происходит благодаря применению специального катализатора. В конечном итоге получается оксиводород (ННО), который смешиваясь с топливом, что и способствует его полному сгоранию.

Благодаря такой установке можно сэкономить горючее на 50%. А так же, установив данную конструкцию в свой автомобиль, вы не только уменьшите токсичные выхлопы, но и: увеличите эксплуатационный срок двигателя, снизите температуру самого мотора и при этом повысите мощность всего силового агрегата.

Все процессы, которые происходят в водородном генераторе, происходят автоматически по специальной программе. Эта программа вшита в компьютер, который и управляет всем автомобилем. Машина без него попросту не будет работать.

Существует несколько видов катализаторов:

  • Цилиндрические;
  • С открытыми пластинами или их еще называют сухими;
  • С раздельными ячейками.

Самостоятельно водородный генератор можно изготовить, однако специалисты делать этого не рекомендуют, так как это устройство очень сложное по конструкции и при этом еще не безопасно. Если вы все же решили сделать его сами, тогда лучше всего подойдет для этих целей аккумулятор, вышедший из строя.

Авто на воде своими руками: чертежи (видео)

В настоящее время, водородный генератор – это не просто плод воображения, а действительно реальное устройство, которое поможет эффективно обогреть ваш дом, а так же снизит расходы бензина для автомобиля. Так же водород является безопасным для атмосферы.


Добавить комментарий

Водородный генератор своими руками для отопления дома

Развитие технологий привело к замене классических дровяных печек на котельные агрегаты. В качестве топлива, помимо дров и угля стали использоваться газ, масло, солярка и даже электричество. В последнее время энергию для автономных отопительных систем дополнительно получают с помощью солнечных батарей и геотермальных установок. Учитывая, что неиссякаемым источником энергии является водород, можно попробовать собрать водородный генератор своими руками для получения экологичного топлива.

Водородный генератор своими руками

Принцип работы устройства

Водородный генератор для отопления считается перспективной разработкой, поскольку получать горючее с высокой теплотворной способностью можно из обычной воды. Главная задача — получить чистый водород максимально простым и дешевым способом.

Получение водорода

Традиционно для этих целей используется метод электролиза. Его суть в следующем: в воду, недалеко друг от друга, помещают металлические пластины, которые подключены к источнику высокого напряжения. Вода проводит электрический ток, поэтому при подаче электроэнергии молекулу воды разрывает на составляющие. Высвобождение из каждой молекулы двух атомов водорода и одного атома кислорода позволяет получить так называемый газ Брауна с формулой ННО.

Теплотворная способность газа Брауна составляет 121 МДж/кг. При горении вещества не образуется вредных веществ, а для того, чтобы его использовать в качестве энергоносителя для отопления дома достаточно немного модернизировать стандартный газовый котел. Однако при создании установки для получения водорода своими руками особое внимание следует уделить мерам безопасности — при соединении водорода с кислородом образуется гремучая смесь.

Конструкция генератора

Электролизер, установка для выработки газа Брауна путем электролиза воды в больших объемах, состоит из нескольких ячеек, в которые вмонтированы металлические пластинчатые электроды. Чем больше суммарная площадь поверхности электродов, тем мощнее установка.

Ячейки находятся в герметичной емкости, которая оснащена патрубком для подключения к источнику воды, патрубком для отвода полученного газа, клеммами для подсоединения электропитания. Также генератор снабжен водяным затвором, предотвращающим контакт водорода с кислородом, и защитным клапаном для предотвращения эффекта обратного пламени — газ сгорает только в горелочном устройстве.

Принцип работы водородного генератора

Водородное отопление

Водородное отопление дома требует использования установки с большой площадью электродов, иначе отопительный котел не сможет эффективно нагревать теплоноситель. Применять обычный электролизер, нарастив его габариты, нерентабельно, поскольку на получение водорода будет тратиться больше электроэнергии, чем ушло бы на работу отопительного электрокотла для обогрева дома такой же площади.

Ведутся разработки более эффективных установок для получения водородного топлива без лишних энергозатрат. Известна история американского изобретателя Стенли Мейера, который создал «водородную ячейку», потребляющую в десятки раз меньше электроэнергии по сравнению с традиционными установками. Однако ученому не удалось совершить переворот в современных технологиях — он скоропостижно скончался от отравления, а чертежи установки исчезли.

Над созданием водородного генератора с попытками реализовать идею Мейера трудятся и в технических лабораториях, и в мастерских домашних умельцев во всем мире. Изобретение американского ученого заключалось в создании резонанса раскачивающейся молекулы воды с электрическими импульсами — в этом случае она расщепляется на атомы без использования высокого электрического напряжения.

Радужные перспективы

Водород — крайне перспективный энергоноситель по целому ряду причин:

  1. Он в наличии во всей Вселенной, на Земле занимает десятое место по степени распространенности — энергоресурс можно назвать неисчерпаемым.
  2. Газ не токсичен, не способен причинить вред живым организмам. Важно лишь предпринимать меры безопасности, чтобы исключить утечку с образованием «гремучей смеси» водорода с кислородом.
  3. Продукт горения водорода — обычный водяной пар.
  4. Энергоноситель отличается высокой теплоемкостью, температура горения составляет 3000°С.
  5. При утечке газа он быстро улетучится, не причинив никакого вреда, поскольку в 14 раз легче воздуха. Но поблизости не должно быть открытого огня или искрящей проводки, иначе гремучая смесь взорвется.
  6. Кубический метр водорода обладает теплотворной способностью 13000 Дж.
Преимущества водородного отопления

Водород как энергоноситель — сфера применения

Водород высоко оценивается как энергоноситель и активно используется, к примеру, в качестве топлива для космических ракет. Используются разные способы его получения в промышленных масштабах. В основном это газификация угля или нефтепродуктов, конверсия метана и его гомологов. Такой дешевый водород нельзя рассматривать как экологичное топливо, поскольку его добыча связана с вредными выбросами в атмосферу. Электролиз воды для получения водорода в больших объемах, применяется только в Норвегии, где имеется избыток дешевой электроэнергии.

Компактный электрический газогенератор нашел применение в сфере газорезки. Оборудование, производящее водород, удобнее в использовании по сравнению с баллонным газом — нет необходимости транспортировать тяжелые баллоны, зависеть от поставок сжиженного газа и т.д. Но в угоду удобству была принесена экономия — для электролитического процесса требуется достаточно много электроэнергии, в итоге стоимость энергоносителя существенно возрастает. При этом разница в стоимости купленного и произведенного водорода во многом компенсируется отсутствием затрат на его доставку.

Водородные отопительные котлы

На многих сайтах, посвященных системам отопления, можно встретить информацию о том, что водород составляет достойную конкуренцию природному газу в качестве энергоносителя для отопительного котла. Упор делается на то, что смонтировав генератор водорода, вы получаете возможность тратить на отопление не больше средств, чем на газовое, при этом не придется оформлять множество документов и платить серьезные суммы за подключение дома к центральной газовой сети.

На основании вышеизложенного в статье можно сделать выводы, что себестоимость водорода низка только при его промышленном производстве. То есть, получение топлива электролизом заведомо обойдется дороже, и ориентироваться на завлекательные цифры стоимости килограмма сжиженного водорода не имеет смысла.

Рассмотрим котельное оборудование, представленное на рынке. Выпуском водородных котлов занимается итальянская компания Giacomini, которая специализируется в сфере альтернативной энергетики. Также аналогичные агрегаты изготавливают некоторые китайские компании, успешно скопировавшие технологию.

Водородный котел на твердом топливе

Разработки компании Giacomini направлены на создание отопительного оборудования, которое было бы полностью безопасно для окружающей среды.

Водородный котел этой компании относится к указанной категории — его работа связана с выделением водяного пара, какие-либо вредные выбросы отсутствуют. В качестве энергоносителя используется водород, при этом его добывают путем электролиза.

Однако стоит обратить особое внимание на принцип действия этого котла. Полученный в системе водород не сжигается, он вступает в реакцию с кислородом в присутствии катализатора. В результате выделяется тепловая энергия, которой достаточно для нагрева отопительного контура до 40°С.

То есть, водородные котлы, которые предлагается приобрести по солидной цене, подходят лишь для использования в качестве теплогенератора для контура водяного пола, плинтусного или потолочного отопления.

Можно сделать вывод, что мировые производители котельного оборудования не нашли приемлемого технического решения, чтобы создать эффективный отопительный котел, способный использовать тепловую энергию сжигаемого водорода. Или рассчитали, что такой вариант нерентабелен.

Изготовление генератора собственными силами

В сети Интернет можно найти немало инструкций, как сделать водородный генератор. Следует отметить, что собрать такую установку для дома своими руками вполне реально — конструкция достаточно проста.

Компоненты водородного генератора своими руками для отопления в частном доме

Но что вы будете делать с полученным водородом? Еще раз обратите внимание на температуру горения этого топлива в воздухе. Она составляет 2800-3000°С. Если учесть, что при помощи горящего водорода режут металлы и другие твердые материалы, становится понятно, что установить горелку в обычный газовый, жидкотопливный или твердотопливный котел с водяной рубашкой не получится — он попросту прогорит.

Умельцы на форумах советуют выложить топку изнутри шамотным кирпичом. Но температура плавления даже лучших материалов данного типа не превышает 1600°С, долго такая топка не выдержит. Второй вариант — использование специальной горелки, которая способна понизить температуру факела до приемлемых величин. Таким образом, пока не найдете такую горелку, не стоит начинать монтировать самодельный водородный генератор.

Советы по сборке и эксплуатации генератора

Решив вопрос с котлом, выберите подходящую схему и инструкцию на тему, как сделать водородный генератор для отопления частного дома.

Самодельное устройство будет эффективным только при условии:

  • достаточной площади поверхности пластинчатых электродов;
  • правильного выбора материала для изготовления электродов;
  • высокого качества жидкости для электролиза.

Какого размера должен быть агрегат, генерирующий водород в достаточных количествах для отопления дома, придется определять «на глазок» (на основании чужого опыта), либо собрав для начала небольшую установку. Второй вариант практичнее — он позволит понять, стоит ли тратить деньги и время на монтаж полноценного генератора.

В качестве электродов в идеале используются редкие металлы, но для домашнего агрегата это слишком дорого. Рекомендуется выбрать пластины из нержавеющей стали, желательно ферромагнитной.

Конструкция водородного генератора

К качеству воды предъявляются определенные требования. Она не должна содержать механические загрязнения и тяжелые металлы. Максимально эффективно генератор работает на дистиллированной воде, но для удешевления конструкции можно ограничиться фильтрами для очистки воды от ненужных примесей. Чтобы электрическая реакция протекала интенсивнее, в воду добавляют гидроксид натрия в соотношении 1 столовая ложка на 10 л воды.

Экономический вопрос

Прежде чем начать подробно разбираться, как сделать водородный генератор, желательно вспомнить школьный курс физики. Все преобразования происходят с потерей энергии, то есть, затраты электроэнергии на получение водорода не окупятся тепловой мощностью при сжигании полученного топлива.

Если учесть, что сжигать водород с максимальной температурой и теплоотдачей в домашних условиях попросту невозможно, становится понятным, что реальные потери будут даже выше тех, что рассчитаны для идеальных условий.

Итак, использовать водородный генератор, сделанный для отопления своими руками, не имеет никакого смысла, если у вас нет доступа к бесплатной электроэнергии. Установить для отопления дома электрический котел и тратить электроэнергию напрямую, без сложных преобразований, обойдется вам в 2-3 раза дешевле. Кроме того, электрокотел полностью безопасен, а эксплуатация кустарной установки грозит взрывом при несоблюдении правил монтажа и эксплуатации.

Очевидно, что получение дешевого водорода экологически чистым способом, к которым относится электролиз, — это вопрос будущего, над которым сегодня работают ученые в передовых странах мира.

Как собрать водородный генератор своими руками

Для отопления частного дома используют разные способы. Они различаются между собой как по способу передачи тепла, так и по типу используемого энергоносителя. При использовании водяного отопления выделяют несколько типов котлов в зависимости от вида топлива:

Водородный генератор для отопления частного дома

  1. Твердотопливные – используют для работы твердое топливо, которое при сгорании выделяет тепло.
  2. Электрические – в таких котлах тепло получают путем преобразования электроэнергии.
  3. Газовые – тепло выделяется при сгорании газа.

Если рассматривать газовые котлы, то они в основном работают на природном газе, хотя есть модели и под сжиженный газ, а в последнее время начинают применять в качестве топлива водород, вырабатываемый из воды в специальных устройствах – водородных генераторах.

Принцип работы

Из школьного курса физики известно, что вода при воздействии на нее электрического тока разлагается на две составляющие: водород и кислород. На основании этого явления построен так называемый генератор водорода. Это устройство представляет собой агрегат, в котором происходит электрохимическая реакция для получения из воды водорода и кислорода. Процесс электролиза воды показан на рисунке ниже.

Процесс электролиза воды

На выходе генератора образуется не водород и кислород в чистом виде, а так называемый газ Брауна, по имени ученого, который впервые получил его. Его еще называют «гремучим газом», так как он при определенных условиях взрывоопасен. Причем при сгорании этого газа можно получить почти в четыре раза больше энергии, чем было затрачено на его производство.

Такая установка для производства водорода изображена на рисунке ниже.

Промышленная установка для производства водорода

Плюсы и минусы

Из достоинств такого вида отопления можно выделить следующие:

  1. Это экологически чистый вид отопления, так как при сгорании водорода в кислородной среде образуется вода в виде пара, и больше нет выброса никаких вредных веществ в атмосферу.
  2. Можно без особых переделок подключить генератор к существующей системе водяного отопления частного дома.
  3. Установка работает бесшумно, поэтому не требует какого-то особого помещения.

Недостатки:

  1. У водорода большая температура горения, которая в среде кислорода может достигать 3200°С, поэтому обычный котел может выйти из строя очень быстро. В современных устройствах ученые добились результата сгорания газа при температуре 300°С, поэтому проблему можно считать практически решенной.
  2. При работе с газом Брауна нужно быть очень осторожным, поскольку он взрывоопасен. Это решается использованием в устройстве различных предохранительных клапанов и автоматики.
  3. Требует использования для работы дистиллированной воды или воды со щелочью.
  4. Большая стоимость оборудования. Для решения этой проблемы многие пытаются собрать установку для получения водорода своими руками.

Генератор водорода своими руками

Самодельное устройство схематически представляет собой емкость с водой, куда помещены электроды для преобразования воды в водород и кислород.

Для того чтобы своими руками сделать подобное устройство, понадобятся:

  1. Лист нержавеющего металла толщиной 0,5-0,7мм. Подойдет нержавейка марки 12Х18Н10Т.
  2. Пластины из оргстекла.
  3. Резиновые трубки для подвода воды и отвода газов.
  4. Листовая бензомаслостойкая резина толщиной 3 мм.
  5. Источник напряжения – ЛАТР с диодным мостом для получения постоянного тока. Он должен обеспечивать ток 5-8 ампер.

Сначала нарезают нержавеющие пластины на прямоугольники 200×200мм. Уголки на пластинах нужно срезать для того, чтобы потом стянуть всю конструкцию болтами. В каждой пластине просверливаем отверстие диаметром 5мм, на расстоянии 3см от низа пластин, для циркуляции воды. Также к каждой пластине припаивают провод для присоединения к источнику питания.

Перед сборкой из резины делают кольца с внешним диаметром 200мм и внутренним – 190мм. Еще нужно приготовить две пластины из оргстекла толщиной 2см и размерами 200×200мм, при этом нужно предварительно сделать в них отверстия по четырем сторонам под стягивающие болты М8.

Сборку начинают так: сначала кладут первую пластину, затем резиновое кольцо, промазанное с обеих сторон герметиком, далее следующую пластину и так до последней пластины. После этого необходимо всю конструкцию стянуть с двух сторон с помощью шпилек М8 и пластин из оргстекла. В пластинах просверливаются отверстия: в одной – внизу для подвода жидкости, в другой – вверху для отвода газа. Туда вставляется штуцер. На эти штуцера одеваются медицинские полихлорвиниловые трубки. В итоге должна получиться конструкция, как на рисунке ниже.

Водородный генератор своими руками

Для того чтобы исключить попадание газа обратно в газогенератор, на пути от генератора к горелке необходимо сделать водяной затвор, а еще лучше два затвора.

Конструкция затвора – это емкость с водой, в которую со стороны генератора трубка опущена в воду, а та трубка, что идет к горелке, выше уровня воды. Схема генератора водорода с затворами изображена на рисунке ниже.

Схема генератора водорода с водяными затворами

В электролизере – герметичной емкости с водой с опущенными электродами при подаче напряжения начинает выделяться газ. По трубке 1 он подается к 1 затвору. Конструкция водяного затвора устроена таким образом, как видно из рисунка, что газ может двигаться только в направлении от электролизера к горелке, а не наоборот. Этому мешает разная плотность воды, которую нужно преодолеть на обратном пути. Далее по трубке 2 газ движется к 2 затвору, который предназначен для большей надежности системы: если вдруг по какой-то причине не сработает первый затвор. После этого газ подается к горелке с помощью трубки 3. Водяные затворы являются очень важной частью устройства, поскольку препятствуют движению газа в обратную сторону.

При попадании газа обратно в электролизер может произойти взрыв устройства. Поэтому ни в коем случае нельзя эксплуатировать прибор без водяных затворов!

Эксплуатация

После сборки можно начинать испытания прибора. Для этого на конце трубки устанавливают горелку из медицинской иглы и начинают заливать воду. В воду нужно добавить KOH или NaOH. Вода должна быть дистиллированная или талая на крайний случай. Для работы устройства достаточно 10% концентрации щелочного раствора. При заливке воды не должно быть никаких подтеков. Лучше всего перед заливкой продуть конструкцию воздухом, давлением до 1атм. Если водородный генератор выдерживает это давление, то можно заливать воду, если нет, нужно устранить протечки.

После этого к электродам по схеме подсоединяют ЛАТР с диодным мостом. В цепь устанавливают амперметр и вольтметр для контроля работы. Начинают с минимального напряжения и потом постоянно увеличивают, наблюдая за газовыделением.

Предварительно работы лучше проводить на открытом воздухе вне дома. Поскольку установка взрывоопасна, все работы следует проводить с особой осторожностью.

При испытаниях наблюдают за работой прибора. Если имеет место маленькое пламя горелки, то может быть или низкое газовыделение в генераторе, или где-то происходит утечка газа. Если раствор помутнел, грязный, его нужно заменить. Также необходимо следить, чтобы прибор не перегревался, а вода не закипела. Для этого регулируют напряжение на источнике тока. И еще одно – пластины при нагревании немного деформируются и могут прилипать одна к одной. Чтобы это исключить, нужно сделать прокладки из резины. Могут также наблюдаться плевки водой – для устранения этого нужно уменьшить уровень воды.

Генератор в системе отопления

После того как проведены испытания можно подсоединять установку к газовому котлу дома. Для этого котел нужно немного переделать, а именно своими руками сделать жиклер с отверстием меньшего диаметра, чем у заводского, рассчитанного на природный газ. Генератор в собранном виде изображен на рисунке ниже.

Генератор водорода в собранном виде

В систему отопления частного дома обязательно должна быть залита вода. Пламя горелки может расплавить котел, если там не будет воды.

После этого регулируют подачу воды в устройство и начинают устранять пробки в системе отопления дома. Затем с помощью регулировки подачи воды и напряжения питания настраивают работу котла.

При эксплуатации установки в течение отопительного сезона проводят окончательное испытание, в ходе которого решаются несколько вопросов:

  1. Хватает ли газа для отопления дома. Если его недостаточно, то можно своими руками сделать установку большей производительности.
  2. Насколько хорошо работает котел на водороде, то есть насколько котел долго прослужит.
  3. Стоимость такого отопления – для этого можно завести журнал, в котором вести подсчеты расходов на отопление и температуры в доме и на улице во время работы котла. На основании этих данных потом можно сделать вывод, насколько выгодно отапливать дом водородом.

На основании этих данных можно к следующему отопительному сезону подготовиться более основательно. Во время эксплуатации можно увидеть, что нуждается в усовершенствовании, может какую-то часть устройства нужно переделать. Возможно, в переделке и модернизации нуждается сам котел, для того чтобы он не вышел быстро из строя. Также если в дальнейшем планируется пользоваться устройством, может, есть смысл приобрести дистиллятор для воды?

Видео про генератор

Как сделать водородный генератор своими руками без электричества, можно узнать из этого видео.

Главный вопрос, который интересует многих, – настолько дорого или дешево обходится такое отопление? Это можно узнать, если вести статистику во время отопительного сезона. Причем необходимо подбивать все затраты, такие как стоимость дистиллированной воды, стоимость щелочи, расходы на электричество, на ремонт котла и на изготовление установки. На основании этого можно принимать решение, подходит такой вид отопления для дома или нет.

Facebook

Twitter

Вконтакте

Одноклассники

как изготовить в домашних условиях

Ракета мчит космический корабль в просторы Вселенной. Неимоверную мощь двигателей верхней её ступени питает сжиженное топливо: водород и кислород. Водород (Hydrogenium) не уступает по теплотворности природному газу, для работы на нём с минимальной переделкой подходят все существующие бензиновые ДВС и газовые котлы отопления. h3 — единственный известный науке абсолютно чистый вид топлива. В процессе горения образуется соединение с кислородом — прозрачная, как слеза, дистиллированная водица. Запасы водорода во Вселенной неисчерпаемы, этот чудесный газ вместе с гелием является основным строительным материалом мироздания.

Даже организм человека на 63% состоит из молекул водорода. Он окружает нас со всех сторон: протяни руки — и они полны гидрогениума. Больше всего h3 содержится в океанах, морях и реках. Одна беда: в свободном состоянии на Земле находится лишь ничтожная его часть, добыча в чистом виде невозможна. Небольшой процент h3 содержит биогаз, сепарацией его не занимаются, предпочитая сжигать вместе с метаном. Однако существует ряд технологий, позволяющих получать чистый водород из различных химических соединений. Наиболее перспективным является метод электролиза, сырьём служит вода.

Принципиальная схема получения водорода методом электролиза

В последнее время интернет заполонила коммерческая реклама недешёвых реакторов (генераторов) водорода, а сайты для домашних умельцев охотно клонируют статьи о том, как сделать водородный генератор для отопления своими руками.

О выделении горючего газа при взаимодействии кислот и металлов известно было ещё средневековым алхимикам. Но только в 1783 году Лавуазье и Меньё смогли превратить эмпирические знания в прибор по получению «горючего воздуха» из воды. С тех пор не прекращаются научные исследования и попытки построить эффективный водородный генератор для отопления или автомобиля, который сделал бы водородную энергетику рентабельной.

На сегодняшний день нет никаких проблем в переходе энергетики и транспорта на водородное топливо, производители готовы сделать это хоть завтра. В 2008 году авиастроительная компания Airbus подтвердила свою готовность перейти с авиакеросина на h3, проведя испытательный полёт на модели A320. Первый серийный водородомобиль HondaFCX уже колесит по дорогам Японии. Тем не менее, в общей массе мировой энергетики это капля в море. Для массового развития водородной энергетики не хватает главного — дешёвого чистого h3. «Халявный»  Hydrogenium получают лишь в качестве побочного продукта некоторых химических производств, именно на таком топливе работает на предприятии «Саянскхимпласт» с 2005 года первая и пока единственная в России «водородная» котельная. Активно работает в России с 2006 года «Институт водородной экономики», издавший уже более 60 томов научных исследований. Не ограничиваются научными трудами более предприимчивые зарубежные компании, в научно-технические разработки по генерации чистого водорода вкладывают миллиарды долларов.

Возможно, в будущем мы все будем ездить на водородомобилях

Увы, воз и ныне там. Большую часть мирового производства h3, главным образом для нужд ракетной техники, производят сегодня не с помощью генерации из воды, а паровой конверсией газа и газификацией угля. Ни о какой экологичности либо экономии ресурсов в данном случае и речи не идёт, просто бензином ракету не заправишь.

Но учёные не сдаются: в конце концов придумал же Эдисон после долгих лет исследований эффективную и при этом недорогую электрическую «лампочку Ильича». И в течение века это изобретение, пусть и в значительно усовершенствованном виде, устраивало человечество.

С помощью электролиза (см. школьную программу по физике и химии) вода разлагается на водород и кислород.

Площадь поверхности электродов должна быть велика, поэтому их собирают в пакеты (ячейки). Кстати, электролизер нельзя перегревать свыше 65 ºС, иначе пластины придётся долго очищать либо вообще заменить

Сепарировать газы не нужно, горючую смесь направляют в теплогенератор, в котором происходит обратная реакция: водород и кислород воссоединяются, вновь образуя воду.

Простейший самодельный генератор водорода — герметичная ёмкость с погруженными в жидкость электродами, источник питания 12 Вольт.

Заряд есть, вода «булькает», Hydrogenium пошёл

На крышке ёмкости располагают штуцер для отведения к потребителю смеси водорода с кислородом (газ Брауна, «гремучая смесь»).

Помимо штуцера, на крышке желательно иметь развоздушиватели

Вот такая ёмкость является основой генератора водорода для автомобиля с карбюраторным двигателем. ДВС работает на смеси с бензином, нужен ещё дополнительный накопитель и аккумулятор. Корпус прочный, от водопроводного фильтра, нехитрая установка, созданная «народными академиками», называется «АкваКар», предлагалась на Украине за 1600 гривен в дореволюционных ценах

Генератор водорода для дома, тоже в корпусе водяного фильтра. Здесь применены более производительные цилиндрические электроды, есть датчик давления. На стенках сосуда видны пузырьки — вожделенный Н2 и кислород

Но ведь дело не просто в том, чтобы выделить из воды «гремучку», это сделать немудрено. Газ нужно получить из сырья в максимальном количестве, в сжатые сроки, при этом потратить минимум энергии. Для повышения эффективности используют не обычные электроды из меди или нержавейки, а изделия сложной формы из дорогих сплавов. Сила электрического тока должна изменяться в ходе реакции, соответственно, нужен электронный блок.

Вариант исполнения электронного блока чудо-генератора

Вода расходуется, её уровень следует поддерживать постоянно и если делать это не вручную, понадобится система автоматической подпитки. Наконец, чтобы электролиз проходил с достаточной интенсивностью, вода должна содержать достаточное количество растворённых солей, в мягкой воде реакция будет слабой, а в дистиллированной вовсе отсутствовать. Значит, наливать воду из крана нельзя: её придётся готовить (самый простой вариант — столовая ложка гидроксида натрия на 10 л воды), а это дополнительные резервуары, трубопроводы и т.д.

На рисунке показана схема генератора водорода для автомобиля, но разница с устройством для отопления лишь в том, что потребителем газа являются не форсунки двигателя, а горелка котла

Но и это не всё. Теплогенератор (котёл) потребляет топливо неравномерно, к тому же требует определённого его давления и влажности. Чтобы система реактор топлива + генератор тепла работали взаимосвязано и чётко, hydrogenium должен поступать сначала в осушитель, потом компрессор, который будет закачивать его в хранилище, где с помощью дополнительной автоматики должно поддерживаться требуемое давление.

Всё в природе взаимосвязано. Если куда-то что-то прибыло, значит, откуда-то убыло. Эта народная мудрость упрощённо, но в целом верно описывает закон сохранения энергии. Водород, сгорая, выделяет тепловую энергию. Но, чтобы получить газ методом электролиза, придётся затратить некоторое количество электроэнергии. Которая, в свою очередь, по большей части получается за счёт генерации тепла при сжигании других видов топлива. И если брать чистую тепловую энергию, необходимую для получения электричества и ту энергию, которую даст при сгорании водород, даже на самых продвинутых установках получаются двукратные потери. Половину денег мы буквально выбрасываем. И это только эксплуатационные затраты, но ведь следует учесть и стоимость весьма недешёвого оборудования.

Проект ветро-водородного дирижабля AeromodellerII. Картинку бельгийские инженеры нарисовали красивую, остаётся подкрепить её конкретными экономически оправданными технологиями

По данным исследовательской лаборатории  INEEL, на промышленных генераторах водорода США себестоимость одного килограмма водорода составила:

  • Электролиз от промышленной электросети — 6,5 usd.
  • Электролиз от ветрогенераторов — 9 usd.
  • Фотоэлектролиз от солярных устройств — 20 usd.
  • Производство из биомассы — 5,5 usd.
  •  Конверсия природного газа и угля — 2,5 usd.
  •  Высокотемпературный электролиз на атомных электростанциях — 2,3 usd. Это наименее дорогой способ и наиболее далёкий от домашних условий.

Причём, даже самый лучший генератор водорода в домашних условиях будет заметно уступать промышленному в эффективности. С такими ценами нет никаких оснований говорить о сколь-нибудь серьёзной конкуренции водородного топлива по сравнению не только с дешёвым природным газом, но и с дорогим электроотоплением, дизельным топливом и даже тепловыми насосами.

Есть ли реальные пути серьёзного снижения себестоимости чистого Hydrogenium? Конечно. Это, в первую очередь, получение дешёвого электричества из возобновляемых источников. Во-вторых, применение более совершенных химических катализаторов процесса. Они, кстати, давно известны и применяются в автомобильных топливных водородных ячейках. Но опять всё упирается в слишком большую их стоимость.

Реально полезное применение альтернативной энергетики: серийное газосварочное устройство со встроенным водородным реактором. В данном случае стоимость газа не имеет решающего значения, для сварщика имеет значение то, что вместо неудобных в транспортировке баллона и сварочника он имеет один относительно небольшой и лёгкий ящик

Наука идёт вперёд, техника совершенствуется. Когда-нибудь нефть закончится и человечеству придётся перейти на иные источники энергии. Пока же можно с уверенностью сказать — водородная энергетика убыточна (за исключением тех случаев, когда горючий газ является побочным продуктов технологических процессов), а программы развития водородного транспорта возможны только благодаря государственным и корпоративным программам поддержки альтернативной энергетики.

Муниципалитеты крупных немецких городов компенсируют транспортным компаниям все убытки, чтобы эти прекрасные гидрогениумные автобусы перевозили пассажиров, не отравляя окружающую среду

А что у нас, в среде отечественных «кулибиных»? Интернет-форумы полны споров о возможности постройки генератора водорода своими руками. Адепты гидрогениума тычут в глаза скептикам фотками самогонных аппаратов, переделанных в установки по производству чистого топлива. Скептики: покажите конкретный пример постоянно работающего устройства. В ответ — тишина. Кто-то что-то собрал, подключил к кухонной плите, пожарил на водороде яичницу, съел. Теперь вот стоит в сарае, а к плите опять подключен газ, это проще, дешевле, безопаснее. Правда, умные люди всё же извлекают из «диванной» гидрогениумной энергетики пользу: завлекательные посты обеспечивают владельцев аккаунтов лайками, большим числом просмотров и подписчиков, что приносит неплохие деньги.

Если кто-то из читателей хочет повторить опыт гаражных мастеров, то, пожалуйста, вот достаточно подробное описание конструкции «самопального» водородного реактора. Ничего сложного.

В этом ролике нам красиво показывают, как мелкосерийное отечественное устройство обслуживает два десятка радиаторов, но не называют ни его тепловую мощность, ни себестоимость килокалории тепла.

Сегодня сложно сказать, какая из перспективных энергетических технологий «выстрелит» в будущем, когда запасы углеводородов иссякнут. Будет ли это термоядерный синтез, солярные или гравитационные системы, водородная энергетика? Пока что идёт эволюционное развитие перспективных направлений и революционных прорывов в ближайшее время в этой области не предвидится, о чём бы ни писал «жёлтый» интернет. По оценке специалистов, появление электролизных реакторов водорода, которые могли бы составить реальную конкуренцию традиционным видам топлива, ожидается не ранее, чем через лет 20-30. Многие эксперты вообще скептически оценивают перспективы водородной энергетики, оставляя этому виду топлива лишь узкую нишу в ракетостроении. Но все, кто занимается этим делом профессионально, сходятся на том, что действительно эффективные водородные реакторы будут продуктом высоких технологий, а не «приспособами», собранными из старых кастрюль и других ненужных железок на коленке.

 

Сделай сам самодельный генератор водорода HHO

ОПАСНОСТЬ: Этот проект включает создание смеси водорода и кислорода, которая является очень ВЗРЫВЧАТОЙ ГАЗОЙ. В замкнутом пространстве детонация газа очень опасна и может привести к серьезным травмам.

Как это работает
Вода — это соединение, состоящее из двух элементов: водорода и кислорода. Он имеет химический символ h3O, который указывает на то, что каждая молекула представляет собой комбинацию одного атома кислорода и двух атомов водорода.

Все атомы могут образовывать «ионы». Это тот же атом, за исключением небольшой надбавки. Атомы могут ионизироваться в присутствии электрического поля. Вы можете увидеть крайние примеры этого в проекте DIY Tesla Coil. Водород образует положительные ионы, а кислород — отрицательные. Мы используем это в своих интересах, используя электрическое поле, чтобы разлучить молекулы воды.

Поместив два электрода (металлические пластины) в воду, мы можем создать между ними электрическое поле, подключив их к клеммам батареи или источника питания.Положительный электрод известен как анод, а отрицательный — катод. Чистая вода на самом деле не проводит электричество, поэтому ее нельзя использовать без добавления чего-либо в воду. Водопроводная вода уже содержит много растворенных соединений, которые позволяют воде проводить. Ионы, образующиеся в воде, будут притягиваться к электроду противоположной полярности, то есть положительные ионы водорода будут двигаться к катоду, а отрицательные ионы кислорода — к аноду. Как только ионы достигают поверхности электродов, заряды нейтрализуются путем добавления или удаления электронов.Затем газ должен пузыриться из оставшейся воды, которую необходимо собрать.

Электроды обычно изготавливаются из металла или графита (углерода), поэтому они могут пропускать электричество в воду. Важно, чтобы выбранный материал не реагировал легко с кислородом или одним из растворенных соединений, в противном случае реакции будут происходить на поверхности катода (отрицательного электрода), и вода будет загрязнена продуктами этих реакций. Ниже вы увидите пример этого, когда используются медные электроды.Это также означает, что газообразный кислород не выделяется или выделяется очень мало, когда он соединяется с металлическим электродом и остается в контейнере.

Проект

Это простой проект, который используется для создания газообразного водорода и кислорода путем электролиза воды. Цель заключалась в том, чтобы добиться хороших показателей добычи газа без использования дополнительных химикатов или эрозии электродов.

Первые опробованные электроды остались от другого проекта. Они были сделаны из углеродных стержней с медным покрытием, которые не идеальны из-за способности меди вступать в реакцию с водой.Идея заключалась в том, что в конечном итоге вся медь отреагирует, и останется только углерод, который не будет загрязнять воду.

Медь, казалось, слишком долго реагировала, и было решено, что это вообще бесполезно. Ниже вы можете увидеть результат использования медного электрода для электролиза. Голубой осадок, плавающий на поверхности воды, является реактивом меди и водопроводной воды.

Многие люди используют электроды, сделанные из кухонной посуды из нержавеющей стали или пластины переключателя, потому что нержавеющая сталь не реагирует так легко.Проблема в том, что качество стали, часто встречающейся в таких изделиях, невелико, и через несколько минут работы у вас останется коричневый осадок. Они также довольно тонкие, обычно менее 1 мм, что означает, что они не прослужат очень долго, прежде чем полностью разрушатся. Эрозия электродов происходит намного быстрее, когда используются высокие токи или растворенные вещества (часто называемые катализаторами).

Объем произведенного газа пропорционален заряду, проходящему через воду (току), и поэтому большой ток означает больше газа.Для этого расстояние между электродами должно быть как можно более близким, но при этом должно быть достаточно места для свободного выхода газа.

Металлом, выбранным для изготовления пластин, была специальная высококачественная нержавеющая сталь для уменьшения коррозии. Такой металл не такой проводящий, как, например, медь, поэтому эти пластины были сделаны из листов толщиной 2 мм, чтобы противостоять этому потенциальному ограничивающему фактору. Был использован металл очень высокого качества, что означало, что его было слишком сложно резать обычными инструментами для самостоятельной резки, поэтому эти пластины были вырезаны с помощью струи воды под высоким давлением.

ИНФОРМАЦИЯ: Даже нержавеющая сталь самого высокого качества будет реагировать с водой и выделять токсичные химические вещества. Избегайте прикосновения к воде после использования.

Пластины уложены друг на друга с помощью нейлоновых шайб, используемых в качестве промежутка. Их размещают в чередующихся положениях, чтобы пластины были + — + — + -. Затем были использованы крепления из нержавеющей стали, чтобы собрать все вместе. Важно, чтобы он был собран хорошо, иначе в зоне добычи газа могут возникнуть искры, что приведет к взрыву.

Всего было использовано 16 пластин с расстоянием между ними 1 мм. Большая общая площадь поверхности и толщина пластин и болтов означали, что они могут пропускать очень большие токи без значительного резистивного нагрева металла. Общая емкость электродов составляла 1 нФ при измерении на воздухе, что указывает на большую близкую площадь поверхности для производства газа. Этот набор электродов потребляет около 25 А из обычной водопроводной воды. Чтобы собрать газ, электроды нужно поместить в какой-то контейнер.Используемый контейнер был просто чем-то из супермаркета и изначально предназначался для хранения чего-то вроде чая!

На этом видео показан результат приложения 12 В к электродам при погружении в обычную водопроводную воду. В воду вообще не добавлялись «катализаторы», это просто водопроводная вода!

Это рисунок около 25А. Питание ячейки регулируется с помощью схемы широтно-импульсной модуляции.

Контейнер был сделан из металла, поэтому важно было разместить электроды на пластиковом основании, чтобы предотвратить короткое замыкание.На этом изображении показано, как две банановые розетки были установлены по обе стороны от медных и латунных фитингов, используемых для отвода газа. Силовая и трубопроводная арматура были плотно завинчены и герметизированы силиконовым герметиком, чтобы закрытый контейнер был герметичным.

Образующийся газ представляет собой взрывоопасную смесь водорода и кислорода, и с ним следует обращаться с особой осторожностью. Внутри контейнера находится большой объем газа, который при воспламенении взорвется и разрушит контейнер. Чтобы избежать детонации газа, труба от баллона подводится к основанию другого баллона, наполовину заполненного водой.Это позволяет газу пузыриться через воду, а затем собирать ее через другую трубу, которая используется в качестве выхода газа. Теперь, если на выходе произойдет какое-либо возгорание, пламя не сможет пройти обратно через барботер в большой объем газа в электролизной ячейке. Это абсолютно необходимое предохранительное устройство, которое нельзя пропускать.

Сейчас только решаю, что делать с газом! Хороший способ увидеть, насколько взрывоопасна газовая смесь, — пузырьки газа через другой контейнер с водой, например кружку, зажечь пузырьки, когда они достигают поверхности.Каждый пузырь очень громко взорвется и, возможно, задует зажигалку.

Похожий проект, в котором используются взрывные свойства газа, — это эксперимент с водородной пушкой.

Вы должны знать, что взрыв этой газовой смеси HHO ОЧЕНЬ-ОЧЕНЬ громкий.

Произведите свой собственный водород — Самодельный генератор водорода — LED Journal

В Интернете можно найти множество различных конструкций генераторов водорода. Существует также множество схем, доступных для загрузки, показывающих, как именно построить собственный генератор водорода (или газа Брауна).Добавляя этот компонент к своему автомобилю, имейте в виду, что некоторые автомобили могут не получить выгоду от впрыска газа Брауна, но многие будут, особенно в небольших старых автомобилях.

Совместимость транспортных средств с газом Брауна

Некоторые автомобили, особенно новые автомобили со всеми компьютерными средствами управления, могут работать с перебоями, если вы введете газ Брауна в систему впуска воздуха. В первую очередь это связано со всеми датчиками, которые сегодня устанавливают на автомобили.

Когда газ Брауна вводится в систему забора воздуха, он улучшает качество воздуха, добавляя водород и кислород.Датчики двигателя транспортного средства предназначены для определения «нормального» качества воздуха и внесения любых необходимых корректировок в двигатель при изменении качества воздуха. Когда они обнаруживают воздух, обогащенный водородом и кислородом, в системе воздух / топливо, компьютер автоматически вносит изменения в смесь воздух / топливо и заставляет двигатель работать хаотично.

Некоторые люди избежали этой проблемы, сняв датчики воздуха с автомобиля и заменив их поддельным датчиком, который заставляет компьютер думать, что датчик все еще там, но, в отличие от датчика воздуха, поддельный датчик не отправляет никаких сигналов на автомобильный компьютер.Существуют также другие методы, позволяющие избежать этой проблемы, и быстрый поиск в Интернете по запросу «автомобильные датчики и газ Брауна» покажет способы избежать проблем с компьютером.

Самодельный генератор водорода

Водородный генератор, который вы создаете, должен быть разработан специально для автомобиля, в котором вы его устанавливаете. Вам нужно место для водородного генератора, и он также должен быть расположен рядом с аккумулятором (для питания).

Список компонентов

Для начала сборки водородного генератора вам потребуются как минимум следующие компоненты:

  • Канистра, достаточно большая, чтобы вместить воду, электролитические пластины и проводку.
  • Как минимум две настенные пластины для розеток из нержавеющей стали.
  • Втулки, пластиковые или резиновые шайбы и винты из нержавеющей стали.
  • Провода для тяжелых условий эксплуатации (калибр от 6 до 8) — красный (положительный) и черный (отрицательный).
  • Коробки предохранителей с предохранителями не менее 30 А
  • Пластиковая трубка достаточна для подсоединения канистры к системе впуска топлива.
  • Выключатель питания, позволяющий управлять мощностью генератора

Основные инструкции по созданию генератора водорода

Для создания водородного генератора можно использовать множество различных типов контейнеров, но наиболее распространенным является стандартная труба из ПВХ от 6 до 8 дюймов, обрезанная до нужной длины.Труба должна быть полностью герметичной, чтобы газ мог удерживаться и улавливаться. Для этого можно использовать заглушки из ПВХ или резьбовые наконечники.

Стеновые пластины из нержавеющей стали используются для закрытия старой емкости, которая больше не используется. Их можно найти в любом строительном магазине. Необходимо использовать нержавеющую сталь, потому что она не подвержена коррозии, как обычная сталь. Электролиз разъедает обычную сталь за считанные минуты.

Стальные стеновые панели должны быть зажаты между собой, но не касаться друг друга.Установите втулки внутри «отверстий для винтов» настенных пластин, используйте резиновые шайбы на внешней стороне пластин и прикрепите их вместе винтами из нержавеющей стали, но оставьте каждый винт для крепления отдельной пластины. Пластины не должны касаться друг друга, но каждый винт должен касаться каждой пластины.

Подсоедините красный (положительный) провод к винту на одной из пластин, а черный (отрицательный) провод к противоположному винту на другой пластине. Теперь у вас должно быть около 1/8 дюйма пространства между двумя пластинами с каждым проводом, соединяющим каждую пластину.Одна пластина служит положительным проводником, а другая пластина — отрицательным проводником. При включении ток проходит через воду внутри канистры, расщепляя воду на отдельные атомы (водород и кислород).

Пластиковая трубка (обычно около ¾ дюйма) должна быть вставлена ​​через просверленное отверстие в верхней части канистры, где будет собираться газ. Именно эта трубка будет подключаться к впускной системе вашего автомобиля; поставка газа Брауна. В качестве меры предосторожности подсоедините шланг к канистре водородного генератора и опустите его в отдельную канистру, содержащую воду, а затем, наконец, подсоедините его к впускной системе вашего автомобиля.Эта вторичная канистра поможет предотвратить катастрофу в случае возгорания газа в двигателе.

Установите выключатель питания внутри автомобиля и подключите его к красному проводу, подающему питание на водородный генератор. Есть несколько разных способов подключения переключателя питания, так что изучите этот вопрос. Также установите блок предохранителей на одной линии с проводом источника питания. Если провод каким-то образом закорочен, предохранитель перегорит, а не вызовет электрическое повреждение или возгорание вашего автомобиля.

Подключение к системе забора воздуха

Большинство автомобилей оснащено резиновым элементом воздухозаборника, который соединяется от воздушного фильтра автомобиля непосредственно с воздухозаборником двигателя. Именно к этому резиновому компоненту вы захотите подсоединить трубки от водородного генератора. Когда водородный генератор работает, внутри контейнера будет расти давление, которое заставит газ попадать в камеры сгорания двигателя.

Дополнительная информация о создании этих систем

Эта короткая статья ни в коем случае не может описать всю науку, связанную с созданием самодельного генератора водорода.Он был написан, чтобы охватить самые основы этого компонента и дать вам краткое представление о том, как они работают и подключаются к транспортному средству. Ниже я привел несколько ссылок, которые следует просмотреть, прежде чем пытаться построить собственный водородный генератор.

И помните; будьте осторожны при их строительстве, потому что они могут взорваться!

Генератор водорода QL-300 PEM

Генератор водорода QL используется для производства водорода чистотой до 99,9995% с помощью передовой мировой технологии PEM.Полученный водород можно использовать в газовой хроматографии (ГХ) для газа-носителя и топливного газа, газа столкновений ICP-MS, реактора гидрирования, топливных элементов и оборудования для испытаний на выбросы. Это идеальное оборудование для замены обычных газовых баллонов в лаборатории. Генератор водорода QL — идеальное решение для добычи газа на месте.

В системах QL Hydrogen Generation используются платиновый катализатор и технология PEM (протонообменная мембрана) для разделения деионизированной воды на составные части.Протонообменная мембрана (PEM) позволяет только воде и положительным ионам перемещаться между отсеками. Мембрана также служит электролитом в ячейке, устраняя необходимость в опасных жидких электролитах, таких как концентрированный гидроксид калия. Электролиз воды PEM просто расщепляет чистую деионизированную воду (H 2 O) на составляющие ее части, водород (H 2 ) и кислород (O 2 ) по обе стороны мембраны.

Когда на электролизер подается постоянное напряжение, вода подается на анод или кислородный электрод и окисляется до кислорода и протонов, а электроны высвобождаются.Протоны (ионы H + ) проходят через PEM на катод или водородный электрод, где они встречаются с электронами с другой стороны цепи и восстанавливаются до газообразного водорода. В клетке происходят две реакции:

1. 2H 2 O -> 4H + + 4e + O 2
2. 4H + + 4e -> 2H 2

Таким образом, единственно возможными компонентами потоков являются водород, кислород и водная влага.

Заявки:

• Газ-носитель и топливный газ для газовой хроматографии
• Подача водорода для топливного элемента
• ИСП-МС газ для столкновений
• Подача водорода в реактор гидрирования
• Подача водорода для оборудования для испытаний на выбросы
• Газоанализатор опорный газ
• Реакционный газ ELCD (детектор проводимости)
• АЭД (атомно-эмиссионный детектор) реакционного газа
• Другая область применения чистого водорода

Преимущества продукта:

• Технология твердого полимерного электролита
• Структура нескольких электродов и многоэлементной электролизной ячейки
• Электролиз чистой воды (без добавления щелочи)
• Низкое энергопотребление
• Низкое напряжение ячейки
• Высокая эффективность электролиза

Основные характеристики:


Модель Блок QL-150 QL-300 QL-500 QL-1000 QL-2000
h3 Расход куб.см / мин 0–150 0–300 0–500 0–1000 0–2000
h3 Чистота % > 99.9995
Выходное давление бар 0,2 — 4,0
Точка росы ° С — 65,0
Входная мощность Ватт <90 <150 <300 <500 <1000
Напряжение AC 220 В / 110 В, 50-60 Гц
Емкость резервуара для воды Литр 3.0 3,0 3,0 6,0 6,0
Условия эксплуатации В помещении От 5 ° C до 45 ° C, <80% влажности в помещении
Вес кг <15 <15 <15 <27 <30
Водонепроницаемость МОм * см > 1
Размеры (Д x Ш x В) мм 420 х 227 х 352 420 х 227 х 352 420 х 227 х 352 485 х 368 х 352 505 х 368 х 352
Мембрана Мембрана Nafion PFSA

Ожидается, что общее время выполнения заказа составит две-три недели.

Руководство по эксплуатации генератора водорода QL-300 PEM

Почему бортовые генераторы водорода не увеличивают пробег

Исторически всякий раз, когда цены на газ выросли, шарлатаны вышли из работы, предлагая водителям всевозможные устройства, которые, как утверждается, обеспечивают резкое сокращение расхода топлива. От магнитов, прикрепленных к топливопроводам, до различных устройств подачи вакуума, генераторов впускных вихрей и волшебных карбюраторов — ни один из них не продемонстрировал свою эффективность.Многие из этих старых школьных устройств все еще можно найти, но одним из самых популярных новых устройств является бортовой водородный генератор и система впрыска.
Основная предпосылка заключается в том, что введение водорода во всасываемый поток приведет к вытеснению части необходимого бензина, уменьшая как потребление бензина, так и выбросы. Просто возьмите водород и впрысните его, чтобы добиться этого результата, поскольку водород горит и производит только воду и следовые количества NOx (хотя и намного меньше, чем бензин или дизельные двигатели).Сжигание большего количества водорода означает меньшее потребление бензина. Легко, правда? Не так быстро, дружище! Откуда этот водород? Маркетологи продают бортовые водородные генераторы, которые, как утверждается, обеспечивают достаточное количество водорода для снижения потребления газа на 30-40 процентов и более. Это правдоподобно? Даже не близко. Прочтите после прыжка, чтобы узнать, почему.

[Источники: Википедия, Hypertextbook.com, answers.com] Электролиз воды — это процесс, известный уже более двух веков.Это несложно, просто воткните пару электродов в воду и пропустите через них ток. На одном электроде будут образовываться пузырьки кислорода, а на другом — водород. К сожалению, как и все подобные процессы, он не эффективен на 100 процентов. Часть электроэнергии, вводимой в систему, теряется в виде тепла. С годами процесс улучшился, но в лучшем случае он по-прежнему составляет около 70 процентов.

Если конвертировать 1 галлон воды в водород при электролизе дает 420.6 г водорода ( газ h3). Если электролиз на 100% эффективен, потребуется 16,821 кВт-ч электроэнергии, чтобы расщепить 1 галлон воды. Эти 420 г h3 имеют плотность энергии всего 14 кВтч. (33,3 кВтч / кг * .4206). Это на 16% больше энергии для взлома воды, чем вы получаете из нее. При 70-процентном КПД это означает, что потребуется около 24 кВтч входящей энергии для производства водорода с 14 кВтч энергии на выходе.

Электролиз воды на лету означает, что энергия должна поступать от двигателя через генератор.Какое бы электричество ни вырабатывал генератор, он должен исходить от механической энергии, приводящей его в движение через ремень двигателя. Это означает, что 24 кВтч энергии в конечном итоге будет поступать от двигателя, в то время как только 14 кВтч будет возвращено обратно. В результате этих паразитных потерь генерация водорода на борту представляет собой процесс с отрицательной энергией, который фактически снижает общую топливная экономичность транспортного средства, поскольку нагрузка на двигатель будет увеличиваться.

Единственный способ снизить потребление топлива транспортным средством с помощью впрыска водорода — это производить водород вне транспортного средства и хранить его в виде газа на борту.Общая потребность в энергии не меняется, но внешняя генерация открывает возможность использования возобновляемых источников, таких как солнце и ветер, для электролиза.

Поскольку все компании, продающие бортовые электролизные системы, заявляют о снижении расхода топлива, в новостях даже появлялись сообщения о том, что эти системы работают. Ответ на это — обман. Спросите любого ветерана Механик NASCAR о местах для хранения дополнительного топлива на борту автомобиля. То же самое делают эти мошенники.Они используют накопленный водород где-то на борту, чтобы создать впечатление, что их системы полезны.

Впрыск водорода можно использовать в качестве временной остановки, но водород должен производиться вне автомобиля. Если бытовые системы электролиза или водородные заправочные станции легко доступны, существующие автомобили можно довольно легко дооснастить системами впрыска, чтобы снизить потребление бензина. В Индии уже экспериментируют с автомобилями, работающими на фитане (смесь природный газ и водород), но они производятся и продаются именно так.

Суть в том, что не тратьте деньги на эти устройства. Хотите сэкономить деньги и использовать меньше топлива? Меньше ездите, объединяйте поездки, управляйте менее агрессивно

Недорогой водородный генератор высокого давления (Технический отчет)

Кропли, Сесилия С. и Норман, Тимоти Дж. Недорогой водородный генератор высокого давления . США: Н. П., 2008. Интернет. DOI: 10,2172 / 926321.

Кропли, Сесилия К. и Норман, Тимоти Дж. Недорогой водородный генератор высокого давления . Соединенные Штаты. https://doi.org/10.2172/926321

Кропли, Сесилия С. и Норман, Тимоти Дж. Ср. «Недорогой водородный генератор высокого давления». Соединенные Штаты. https://doi.org/10.2172/926321. https://www.osti.gov/servlets/purl/926321.

@article {osti_926321,
title = {Недорогой водородный генератор высокого давления},
author = {Кропли, Сесилия С. и Норман, Тимоти Дж.},
abstractNote = {Электролиз воды, особенно в сочетании с возобновляемыми источниками энергии, потенциально является рентабельным и экологически безопасным методом производства водорода на рассредоточенных площадках АЗС, таких как автозаправочные станции.Первичным сырьем для электролизера является электричество, которое может производиться из возобновляемых источников, таких как ветер или солнце, которые не производят выбросов углекислого газа или других парниковых газов. Однако современные системы электролизеров не являются экономически конкурентоспособными для производства водорода на заправках из-за их высоких капитальных и эксплуатационных затрат, особенно стоимости электроэнергии, используемой батареей электролизеров. В этом проекте компания Giner Electrochemical Systems, LLC (GES) разработала недорогую, высокоэффективную систему электролиза с протонообменной мембраной (PEM) для производства водорода при умеренном давлении (от 300 до 400 фунтов на кв. Дюйм).Электролизерная батарея работает при дифференциальном давлении, при этом водород образуется при умеренном давлении, а кислород выделяется при давлении, близком к атмосферному, что снижает стоимость подсистем подачи воды и обработки кислорода. Проект включал фундаментальные исследования катализаторов и мембран для повышения эффективности реакции электролиза, а также разработку передовых материалов и методов изготовления компонентов для снижения капитальных затрат на батарею электролизера и систему. Проект завершился доставкой прототипа модуля электролизера в Национальную лабораторию возобновляемых источников энергии для тестирования в Национальном центре ветроэнергетики.Эффективность электролизера 72% (исходя из более низкой теплотворной способности водорода) была продемонстрирована с использованием усовершенствованной высокопрочной мембраны, разработанной в этом проекте. Эта мембрана позволит системе электролизера превысить целевой показатель эффективности DOE 2012 в 69%. Компания GES значительно снизила капитальные затраты на комплект электролизеров из ПЭМ за счет разработки недорогих компонентов и методов изготовления, включая сокращение количества деталей в батарее на 60%. Экономический анализ показывает, что водород можно производить за 3 доллара.79 за гигабайт при затратах на электроэнергию 0,05 доллара США / кВтч с помощью более дешевого электролизера PEM, разработанного в этом проекте, при условии крупносерийного производства крупномасштабных электролизерных систем.},
doi = {10.2172 / 926321},
url = {https://www.osti.gov/biblio/926321}, журнал = {},
номер =,
объем =,
place = {United States},
год = {2008},
месяц = ​​{4}
}

Проточная батарея / водородный генератор IFBattery | Национальная транспортная ассоциация обороны

Я тихо сидел и слушал ведущих ученых со всего мира, которые выступали с 15-30-минутными презентациями в Международном обществе пористых сред, проходившем в Испании в мае 2019 года.

В аудитории воцарилась тишина, когда к трибуне подошел следующий докладчик, доктор Джон Кушман, заслуженный профессор факультета Земли, атмосферных и планетарных наук и математики Университета Пердью и президент IFBattery, Inc. Большинство из присутствовавших на этой конференции или другие подобные ему в прошлом уже слышали о технологии, над которой он и его команда в IFBattery работали почти пять лет.

Наблюдение за реакцией его коллег-ученых вызвало у меня интерес, когда я наблюдал, как глаза становятся большими, а челюсти отвисают, когда доктор.Кушман начал объяснять эту новую технологию. Один человек воскликнул: «Это невозможно!» Другие наклонились вперед на своих стульях, надеясь узнать, как это могло быть возможно.

Как непрофессионал, мое объяснение того, что он представил, сводится к следующему: доктор Кушман и его команда из IFBattery разработали батарею, которая может заставить машину двигаться по воде. Если вы спросите доктора Кушмана, он добавит «и еще кое-что», подмигнув и кивнув. Доктор Кушман объяснил, что эта новая технология, о которой до сих пор говорили только как о «зеленой» сказке, на самом деле является «гибридной проточной батареей / водородным генератором на водной основе.Он может производить водород по запросу, а также электричество или любую бинарную комбинацию в зависимости от химии и механического дизайна ». Проще говоря, он может производить водород на ходу, а также электричество, и в зависимости от применения он может работать в основном на водороде, в основном на электричестве или на некоторой их смеси.

Он может стать известен как гибридная серия проточных электрических «БЕЗОПАСНЫХ» водородных генераторов на водной основе.

ТЕКУЩИЕ ИСТОЧНИКИ ЭНЕРГИИ ДЛЯ СИЛОВЫХ ТРАНСПОРТНЫХ СРЕДСТВ

Текущими источниками энергии для транспортных средств являются газ, дизельное топливо, электричество, водород или гибриды.У каждого из этих источников питания есть много преимуществ, но есть и недостатки.

Автомобили с бензиновым и дизельным двигателем

Наиболее распространенными источниками энергии для автомобилей сегодня являются газ и дизель. «Сеть» уже существует, но они используют природные ресурсы и выбрасывают разрушительные парниковые газы.

Электромобили

Наиболее образованным потребителям нравится идея использовать в своих автомобилях аккумуляторные батареи вместо того, чтобы закачивать галлон за галлоном невозобновляемого газа или дизельного топлива в свои баки.Однако большинство из них никогда не рассматривало полный круг требований для работы современных электромобилей.

Рассмотрим Дайан, гордого потребителя, который в конце дня едет домой и подключает свой электромобиль. Утром она радостно выезжает из дома, чувствуя удовлетворение от того, что она не использует невозобновляемые ископаемые газы и не выделяет парниковые газы.

Но так ли это? Не совсем. Диана может не осознавать, что большинство электростанций используют невозобновляемые ископаемые виды топлива, такие как уголь, природный газ и нефть, которые создают парниковые газы, поскольку они потребляются для выработки электричества в ее доме, которое используется для питания ее автомобиля.

Среди других недостатков — возможность проехать только короткие расстояния без подзарядки, от 35 до 300 миль в зависимости от размера батареи. Время зарядки может составлять от 30 минут до 12 часов ( https://pod-point.com/guides/driver/how-long-to-charge-an-electric-car ).

Подумайте, что происходит, когда Дайан уезжает из дома и ей нужно подзарядиться. Предполагая, что она может найти заправочную станцию, она подъезжает и подключается к электросети. Большинство заправочных станций могут вместить только одну или две машины в час.Чтобы вместить нацию, полную этих автомобилей, каждая заправочная станция в Америке должна была бы увеличиться в размере в пять раз.

Настоящее препятствие для электромобилей заключается в том, что электрическая сеть нашей страны не может поставлять столько электроэнергии, если не будет полностью модернизирована на миллиарды, если не триллионы долларов.

Транспортные средства водородных топливных элементов

Современные автомобили, работающие на водороде, непрактичны, потому что уровень давления в баке с водородом чрезвычайно высок (часто 10 000 фунтов на квадратный дюйм), что делает его чрезвычайно опасным.В качестве альтернативы, добавляет доктор Кушман, «h3 может адсорбироваться на гидридах металлов, создавая очень тяжелую и непрактичную систему». В первом случае, если произошло значительное столкновение с искрой любого вида, мог произойти большой взрыв, похожий на автомобильную бомбу, который, вероятно, испепелил бы автомобиль, всех людей в транспортном средстве и, возможно, даже людей, находящихся рядом с транспортным средством.

Еще одна проблема с современными автомобилями на водородных топливных элементах заключается в отсутствии практической системы доставки, позволяющей людям заменить или пополнить свои водородные баки.Современные танки имеют высоту и ширину с человека ростом 6 футов и чрезвычайно взрывоопасны. Потребовалось бы огромное количество инфраструктуры, чтобы преобразовать существующие системы доставки в безвоздушную систему.

Гибриды

Гибриды

— отличная ступенька для людей, которые «заботятся об окружающей среде», но не хотят испытывать неудобства, связанные с полностью электрическим транспортным средством. К сожалению, хотя это может несколько уменьшить некоторые недостатки автомобилей, работающих на бензине, дизельном топливе или водороде, преимущества незначительны.

IFBattery

Технология

IFBattery — это следующий и, возможно, последний шаг в «зеленом» движении. Он уменьшает или полностью устраняет многие недостатки, связанные с другими источниками энергии для транспортных средств, и имеет другие существенные преимущества:

  • Устраняет выбросы парниковых газов при вождении транспортных средств
  • Не требует подзарядки
  • Не потребляет ископаемое топливо
  • Не требует реконструкции сетки

В дополнение к непосредственному производству электричества технология IFBattery производит водород по запросу под давлением менее 35 фунтов на квадратный дюйм, что означает, что при сравнительных столкновениях это, возможно, даже безопаснее, чем у автомобиля с бензиновым двигателем.

Технология

IFBattery требует, чтобы на существующие заправочные станции доставлялись только концентрированные гранулы, которые затем просто объединяли бы их с существующей водой в помещении. Человек мог подъехать к заправочной станции и закачать раствор в бак автомобиля, как на заправке. Это делает его не только безопасным и экономичным, но и удобным для потребителей.

Эта технология также обеспечивает огромную гибкость; его можно настроить на производство в основном электричества или водорода или чего-либо еще.

Автомобили с дизельным двигателем

Технология

IFBattery предназначена для помощи дизельным транспортным средствам в увеличении пробега и ограничении вредных выбросов за счет добавления водорода в дизельное топливо. Это простое упражнение с системой IFBattery, и полученная в результате система является экологически чистой и безопасной.

Рис. 1. Проверка выбросов дизельного топлива и мощности для небольших двигателей с дизельным вспомогательным двигателем.

Технология Go-Green IFBattery:

  • Безопаснее
  • Более экономично
  • Возобновляемый
  • Удобство для потребителя

Водород в сочетании с кислородом может использовать огромное количество энергии.Хотя для большинства людей это может вызывать в воображении образы взрывающихся в космос ракет или взрывающихся бомб.

Команда инженеров

IFBattery, включая доктора Эрика Наумана, Майкла Дзикана, Брэдфорда Торна, Марка Забита и Джареда Кросса, выводит революционные технологии доктора Кушмана на совершенно новый уровень, используя эту чистую зеленую энергию в замкнутой системе, которая практически на 100 процентов пригоден для вторичной переработки и экологически безопасен.

КАК РАБОТАЕТ ТЕХНОЛОГИЯ БАТАРЕИ

Генератор водорода

В течение некоторого времени было известно, что когда алюминий помещается в основную (с высокой концентрацией гидроксильной группы (ОН) -) водную среду, образуется газообразный водород.(ОН) — разрушает слой оксида алюминия, покрывающий металлический алюминий, позволяя ему окисляться. Каждый окисленный атом алюминия высвобождает три электрона. Вода у поверхности алюминия диссоциирует на протон, H + и гидроксильную группу (OH) -. Затем два протона забирают два электрона из окисляющего алюминия и восстанавливаются с образованием газа h3, в то время как атом Al3 + поглощает три гидроксила, чтобы нейтрализовать себя. Если основанием, которое придает воде ее основной характер, является NaOH, то молекула Al (OH) 3 будет образовывать комплекс с NaOH с образованием алюмината натрия NaAl (OH) 4.Алюминат натрия можно легко превратить обратно в металлический алюминий (это промежуточный продукт в процессе преобразования бокситовой руды в металлический алюминий). Эти реакции являются сильно экзотермическими и образуют разновидность химического теплового двигателя.

Проточная батарея

Рассмотрим батарею, состоящую из алюминиевого анода в основном электролите, который отделен мембраной от католита (электролита, содержащего окислитель) со встроенным катодным токосъемником.Токосъемник электрически соединен с анодом через нагрузку. Когда батарея вырабатывает ток, анод окисляется, производя электроны, которые проходят через нагрузку на катодный токоприемник, где католит восстанавливается за счет поглощения электронов. Анионы и катионы в электролите одновременно перераспределяются через мембрану для поддержания электронейтральности. Стандартные знания предполагают, что если мембрана будет удалена, католит войдет в контакт с анодом и закроет систему, вызвав окислительно-восстановительную реакцию на аноде.IFBattery сконструировал систему, которая бросает вызов этой стандартной логике. Система IFBattery сочетает в себе описанный выше водородный генератор с концепцией окислительно-восстановительной батареи, но без использования мембраны.

В системе проточной батареи IFBattery / генерации водорода один основной электролит находится в конвективном движении и находится в прямом контакте с алюминиевым анодом, который электрически соединен через нагрузку с токосъемником. В электролит вводится сильный окислитель, что делает его католитом.В результате возникает значительный ток через нагрузку, электрически соединяющую анод с токосъемником. Поле потока постоянно пополняет католит, устраняя необходимость в электрической подзарядке системы. Напрашивается вопрос: почему батарея не замыкается?

Вот то, что, по мнению доктора Кушмана, происходит: как и в системе генерации водорода, газообразный водород образуется на аноде, но поскольку окислитель представляет собой очень большую молекулу по сравнению с размером протона, он эффективно экранируется от окисляющего алюминия. источник электронов за счет восстановления протонов на поверхности алюминия.На токосъемнике остается немного свободных протонов, которые нужно восстанавливать до газообразного водорода, и поскольку коллектор электрически соединен с окисляющим алюминием, он свободно принимает электроны для восстановления окислителя на токосъемнике (который фактически становится катодным токосъемником). Таким образом, происходит окисление алюминиевого анода (теряется три электрона на атом) в сочетании с восстановлением двух протонов (принимает два электрона на два протона) на поверхности алюминия с образованием газообразного водорода h3.В среднем имеется много свободных электронов, которые могут переноситься по проводнику к токоприемнику, где они сталкиваются с окислителем, который впоследствии восстанавливается, тем самым вызывая электрический ток через нагрузку.

Увеличение мощности отдельного элемента

В большинстве батарей ток, а затем и мощность, увеличиваются за счет увеличения размера анода и катода (обычно путем скатывания их вместе с разделяющей их мембраной, что придает многим батареям цилиндрическую форму).Это эквивалентно большому скоплению примитивных ячеек в параллельном расположении с током, линейно пропорциональным площади, и напряжением, неизменным с площадью электродов. В системе IFBattery размер анода и катода имеет ограниченное значение.

Итак, возникает вопрос, как система IFBattery увеличивает мощность элементарной ячейки? Ответ несколько удивителен: за счет увеличения числа ячеек в последовательном расположении в общем католите.Технически, поскольку они имеют общий электролит, элементы не находятся в истинном последовательном расположении, как серия изолированных батарей, соприкасающихся анодом с катодом. Если серия IFBattery имеет длину N ячеек, мощность серии увеличивается примерно как WN = W0 N2, где W0 — мощность изолированной примитивной ячейки, а WN — мощность серии из N ячеек. Для классической серии мощность серии будет линейно увеличиваться с N. Читатель должен заметить, что мощность отдельной ячейки в последовательном расположении линейно возрастает с количеством ячеек в серии, что резко контрастирует с классическая последовательная компоновка, при которой мощность отдельной ячейки остается постоянной независимо от N.

Доктор Кушман и его команда полагают, что в проточной батарее происходит несколько критически важных процессов: окисление алюминиевого анода, восстановление протонов с образованием газообразного водорода на поверхности анода, восстановление окислителя на катодном токосъемнике, и дополнительные события, являющиеся результатом запатентованного дизайна расположения серий. Распределение электронов между производством газообразного водорода и производством электрического тока смещается в сторону электричества с увеличением количества ячеек в последовательном расположении.Например, если вы возьмете одну ячейку, которая имеет три ватта при максимальной мощности, затем разрежете ее на восьмые и разместите части анод-катод в общем католите, максимальная мощность будет чуть менее 200 Вт для того же количества металла. Сопоставимая классическая система имела бы менее 24 Вт, если бы она была организована в классическом последовательном порядке для одноэлементных батарей.

Термодинамические преимущества батареи

Одним из реальных преимуществ системы IFBattery является то, что производство водорода представляет собой экзотермическую реакцию, которая нагревает аккумулятор даже в самом холодном климате.Благодаря этому электрическая часть батареи работает в холодных условиях намного эффективнее, чем ее аналоги.

БУДУЩЕЕ

В настоящее время IFBattery обсуждает применение этой технологии с военными силами США и различными промышленными конгломератами.

Краткосрочные цели — помочь военным безопасно добавлять водород в свое дизельное топливо (дизельное топливо) для повышения эффективности до пяти процентов и снижения вредных выбросов.Этот продукт для поддержки дизельного топлива с технологией plug-n-play позволит автомобилям работать намного чище и горячее, что позволит им работать дальше на одном баке топлива.

Долгосрочные цели включают в себя универсальный продукт plug-n-play с дизельным двигателем, который позволит дизельным транспортным средствам ездить при экстремально низких температурах без быстрой разрядки аккумулятора, иначе известного как классический термодинамический износ аккумулятора.

Конечная цель будет заключаться в полной замене громких дизельных двигателей с резким запахом, которые в настоящее время используются в вооруженных силах, на тихие, чистые, экологичные водородно-электрические батареи, которые значительно снизят расходы на топливо, которые в настоящее время составляют более 400 долларов. 1 галлон в некоторых театрах и, что наиболее важно, улучшит скрытность транспортных средств наших военных в сверхсекретных операциях, требующих бесшумного входа.

«IF» в IFBattery

Хотя д-р Кушман говорит, что «IF» в IFBattery сначала означало Immiscible Fluid, когда я сейчас слышу «IF» в IFBattery, я думаю, что ЕСЛИ моя машина могла бы работать на воде, что ЕСЛИ все в моем доме, от фонарей до тепло для компьютеров могло работать на воде. И то, что IF имеет еще большее значение для коммерции. Что ЕСЛИ трактор фермера может работать на воде? Какая большая установка грузовика IF может работать на воде? Это уже не сказка.Эта технология реальна и становится доступной.

Карин Кристакс, MBA-HR, CSBO

Благодарности: J.H. Кушман предоставил большую часть технических деталей о проточной батарее / водородном генераторе от IFBattery, Inc.

Норвежская команда обнаружила более дешевый способ производства водородного топлива

От Новости Близнецов 23.08.2019 01:58:48

[Георг Матисен]

Норвежские ученые разработали материал, который может производить водород из водяного пара, а не из жидкой воды.Это окупается, потому что тепло дешевле электричества.

Результаты исследования были недавно опубликованы в Nature Materials в статье под названием «Смешанные протоно- и электронопроводящие двойные перовскитные аноды для стабильных и эффективных трубчатых протонно-керамических электролизеров».

Водород может занять место, когда батареи больше не могут выполнять свою работу. Когда важно хранить большое количество энергии, например, больше, чем нужно для того, чтобы водить машину в течение нескольких часов, становится дешевле и эффективнее хранить ее в виде водорода.

Проще говоря, вы используете энергию для расщепления воды на водород и кислород. Когда вам нужно производить энергию, вы обращаете весь процесс вспять, повторно вводя водород и производя энергию и воду.

«Наиболее часто применяемый метод для этого остается таким же, как и метод, применявшийся на водородном заводе« Ваннстоффен »на электростанции Веморк в Телемарке столетие назад», — объясняют Эйнар Велестад и Рагнар Страндбакке. Веллестад — научный сотрудник SINTEF. Индустрия и Страндбакке, аспирант Центра материаловедения и нанотехнологий Университета Осло.

Низкотемпературный электролиз

Речь идет о низкотемпературном электролизе. Метод стал лучше, дешевле и эффективнее, но по-прежнему требует много энергии.

«В течение многих лет практически ничего не происходило, потому что было очень дешево производить водород из природного газа, и потому что изменение климата не было проблемой, которую нужно было принимать во внимание», — говорит Веллестад. «Теперь, когда мы уделяем больше внимания возобновляемым источникам энергии. , фокус усилился.«

Возобновляемая энергия означает большее колебание цен. Объемы доступной солнечной, ветровой и волновой энергии меняются в течение года. По этой причине более важно хранить энергию, вырабатываемую в дни пикового производства, и использовать ее, когда спрос превышает производство.

Вёллестад и Страндбакке в настоящее время работают над проектом ЕС, включающим исследовательские эксперименты при совершенно разных температурах. Они используют пар вместо жидкой воды для производства водорода.

«Тепло способствует реакции, и при более высоких температурах каталитическая активность намного выше», — говорят исследователи. Это означает, что для протекания реакции требуется меньше электроэнергии, что делает производимый водород более конкурентоспособным на рынке ». Тепло намного дешевле электричества », — говорит Веллестад.

Избегайте благородных металлов

«Работа при более высоких температурах дает дополнительное преимущество», — говорит Веллестад.«Необязательно использовать благородные металлы».

Дело в том, что следующее поколение низкотемпературных электролизеров (аппаратов, в которых происходит электролиз) требует платины и других дорогих благородных металлов, чтобы сделать водное деление эффективным. «При более высоких температурах и большей каталитической активности нам больше не нужны эти дорогие материалы для завершения реакции», — говорит он.

«Изготовить такую ​​трубу, наверное, не дешевле, чем произвести батарею.Но вам понадобится всего одна труба, чтобы произвести такое же количество энергии, которое потребовало бы нескольких батарей. По сравнению с батареями, наш процесс потребляет гораздо меньшие объемы сырья по сравнению с количеством энергии, которое хранится », — говорит исследователь SINTEF Эйнар Веллестад.

Проблема заключалась в том, чтобы найти материалы, которые могут удовлетворить строгие требования, возникающие при температуре пара до 600 градусов. Здесь на сцену выходят материаловеды Веллестад и Страндбакке.Они начали со списка из 120 материалов, которые, по их мнению, могли бы подходить для различных аспектов процесса.

«Лучшие материалы для этой реакции, то есть те, которые мы считали лучшими, не выдерживают воздействия пара при таких температурах», — говорит Веллестад. «Мы использовали материал, который, как мы знали, был эффективным, но заметили, что он не выдерживает давления пара. Поэтому мы, наконец, решили выбрать этот материал и немного подправить химию », — говорит он.

Более крупный масштаб

Теперь у них есть первый электролизер, который эффективно работает с использованием сжатого пара и может быть расширен для использования в промышленных процессах. Однако недостаточно просто продемонстрировать это в небольшой лаборатории. Если исследования будут применяться на практике, должна быть возможность запускать процесс в более крупных масштабах.

«Мы изготовили трубы, которые будут использоваться, что делает систему полностью масштабируемой», — говорит Веллестад.

Последним преимуществом является то, что использование этого типа технологии и конструкции означает, что производимый водород полностью сухой. Все другие электролитические процессы производят водород, загрязненный водой или другими молекулами. Они должны быть отделены до того, как водород можно будет хранить под давлением. Это не очень сложный процесс, но дополнительная работа означает, что единицы установки должны быть больше.

Материал, который они используют, состоит из бария, лантана, гадолиния, кобальта и кислорода, и исследователи назвали его BGLC.

«Что мы сделали, так это заменили часть бария в исходном материале на большее количество лантана с простой целью сделать его более простым», — говорит Веллестад.

Дешевле батарей…

Звучит дорого, но на самом деле с экономической точки зрения все в порядке.

«Изготовить такую ​​трубу, наверное, не дешевле, чем произвести батарею. Но вам понадобится всего одна труба, чтобы произвести такое же количество энергии, которое потребовало бы нескольких батарей », — объясняет Веллестад.

Если мы рассмотрим трубу и батарею, запасающие одинаковое количество электроэнергии в течение одного часа, батарея будет дешевле. Но если вы хотите хранить такое же количество электроэнергии в течение 24 часов, вам понадобятся 24 батареи. Выбирая водород, вам по-прежнему требуется только одна труба. Вы просто продолжаете наполнять резервуар для хранения или, при необходимости, приобретаете резервуар большего размера.

«По сравнению с батареями, наш процесс потребляет гораздо меньшие объемы сырья по сравнению с количеством энергии, которое хранится», — говорит Веллестад.

Он считает водород хорошим вариантом, особенно в транспортном и промышленном секторах. В транспортном секторе водород подходит для перевозки на большие расстояния тяжелыми перевозчиками, такими как поезда, корабли и тягачи. В промышленном секторе Vøllestad выделяет производство стали, где в производственном процессе требуется большое количество тепла. Это тепло, которое можно использовать для нагрева воды для электролиза.

… в долгосрочной перспективе

Следующий шаг — перевести производственный процесс на коммерческую основу.Компания CoorsTek Membrane Sciences, которая участвует в проекте в качестве отраслевого партнера, прекрасно понимает, что это не произойдет в одночасье.

«Сроки разработки почти всех связанных с энергией технологий велики, — говорит Пер Вестре, управляющий директор CoorsTek в Норвегии. — Между изобретением литий-ионной батареи и ее нынешним применением в миллионах автомобилей прошло много лет. . «

«Наша разработка керамических мембран для электрохимических процессов — долгосрочный проект.Нет сомнений в том, что рынок существует и что паровой электролиз интересен, если нам удастся разработать технологию по разумной цене », — говорит Вестре.

Исследование следующей задачи

«Есть еще много шагов, которые необходимо оптимизировать и развивать дальше», — вставляет Воллестад. «Метод производства должен быть обновлен, и мы должны продемонстрировать стабильность с течением времени. На сегодняшний день мы провели измерения на одной трубе для более чем 700 часов, но в промышленных масштабах вы должны построить систему, состоящую из сотни, тысячи или, возможно, десяти тысяч труб.«

Работа идет полным ходом. Исследование, в результате которого был получен материал BGLC, теперь опубликовано в июньском выпуске журнала Nature Materials. Публикация в таком престижном журнале требует времени, и работа значительно продвинулась со времени подачи статьи.

«Мы уже восемнадцать месяцев работаем над новым проектом ЕС, в котором мы работаем над решением следующих проблем», — говорят Веллестад и Страндбакке.

Эта статья любезно предоставлена ​​Gemini Research News и может быть найдена в исходной форме здесь.

Мнения, выраженные в данном документе, принадлежат автору и не обязательно принадлежат The Maritime Executive.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *