Сечение и диаметр провода таблица: Таблицы по диаметру провода и сечению проводов: расчет допустимой мощности проводников

Содержание

площадь и формула для его расчета

При строительстве зданий и сооружений наступает момент, когда требуется выполнить монтаж электропроводки. Возникают вопросы, какой марки выбрать провода или кабели, какие у них должны быть поперечное сечение и класс изоляции. Материал, из которого изготовлены проводящие ток жилы, выбирается исходя из того, на какую нагрузку будут рассчитаны проектируемые сети.

Провода и кабели, общий вид

Особенности электрических проводов

При всём многообразии кабельной продукции и огромном выборе проводов для прокладки электрических сетей существуют правила подбора. Не обязательно учить наизусть все марки кабелей и проводов, нужно уметь читать и расшифровывать их маркировку. Для начала стоит выяснить различие между проводом и кабелем.

Провод – проводник, используемый для соединения двух участков цепи. Может иметь одну или несколько токопроводящих жил. Жилы могут быть:

  • голые;
  • изолированные;
  • одножильные;
  • многожильные.

Голые линии применяются там, где прикосновение к токоведущим жилам невозможно. В большинстве случаев они используются для воздушных линий электропередач.

Изоляционное покрытие применяется однослойное или двухслойное. Провода, имеющие два или три проводника в двойной изоляции, путают с кабелем. Путаница происходит из-за того, что изоляция покрывает каждую жилу, а снаружи выполнено общее полимерное или иное покрытие. Такие проводники нашли применение внутри электрических устройств, щитов или шкафов. В быту они скрыты в стене или проложены в специальных каналах.

Изолированная продукция используется повсеместно. В зависимости от степени электробезопасности помещения и места прокладки, выбирается класс изоляции.

Многожильные проводники используются там, где необходимы изгибы малого радиуса при прокладке сложных трасс, где не могут пройти одножильные аналоги. Такой тип тоководов удобно монтировать в кабельных каналах. Одножильные провода в таких условиях изгибать труднее, нужно прикладывать силу, и существует опасность повреждения жилы.

К сведению. Маркировка АППВ 3*2,5 обозначает провод с алюминиевыми жилами, поливинилхлоридной изоляцией, плоский, имеющий разделительное основание. Расшифровку маркировки уточняют в справочной литературе.

Провод АППВ 2,5 * 3 с разделительным основанием

По строению кабель – это сколько-то жил, имеющих индивидуальную изоляцию, помещённых в защитный внешний слой из диэлектрического материала. Пространство между сердечниками и оболочкой, для предотвращения слипания, заполняется бумажными лентами, пластмассовыми нитями или кабельной пряжей. Дополнительно изделие может быть усилено бронёй из лент или стальной оплёткой для защиты от механических повреждений.

Кабель трёхфазный с нулевой жилой и заземляющим проводником

Что такое поперечное сечение

Если какой-то предмет распилить под прямым углом к его продольной оси, то в результате распила получится фигура. Её форма зависит от конфигурации предмета. Сечение трубы – это фигура, образованная двумя окружностями и имеющая некоторую толщину. Если поперёк рассечь круглый металлический пруток, то его поперечным сечением является круг, а не шар.

Площадь поперечного сечения проводника

На чертежах сечение – это изображение фигуры, образованное разрезом детали плоскостью. Что такое сечение в электротехнике? Применимо к электричеству, рассматривает сечение проводника под прямым углом к его продольной стороне. Сечение жилы, через которую проходят электроны, представляет собой круг и измеряется в мм2.

Важно! Часто путают диаметр жилы с её сечением. Чтобы узнать, какое сечение у провода, нужно определить площадь полученного круга, рассчитав её по формуле.

Поперечное сечение проводника

Так как у провода сечение это круг, то расчёт площади производится по формуле:

S кр = π*R2, где:

  • S кр. – площадь круга, мм2;
  • π = 3,14;
  • R – радиус круга, мм.

Зная величину площади поперечного сечения жилы, её длину и удельное сопротивление материала, из которого она изготовлена, можно вычислить сопротивление проводника электрическому току, протекающему через него.

Информация. Учитывая, что радиус равен 1/2 диаметра, формулу можно преобразовать для удобства пользования. Она будет иметь вид Sкр = π*D2/4 = 0,8 * D2. Для расчёта площади сечения проводника чаще используют значение диаметра.

Неправильно подобранный диаметр провода вызывает его перегрев и оплавление, что, в свою очередь, может стать причиной возгорания электропроводки.

Соответствие диаметров проводов и площади их сечения

Каждый раз пользоваться формулой для вычисления площади поперечного сечения – это процесс долгий. Практичнее использовать уже готовые таблицы.

Таблица для проводников с медными жилами

d, ммSсеч,
мм2
Moщнocть (Р), для ceти 220 B, кВтТок,
А
Moщнocть (Р), для ceти 380 B, кВт
1,121,03,0145,3
1,381,53,3155,7
1,592,04,1197,2
1,782,54,6217,9
2,264,05,92710. 0
2,766,07,73412,0
З,5710,011,05019,0
4,5116,017,08030,0
6,68З5,029,013551,0

В приведённой таблице указаны следующие значения:

  • диаметр проводника;
  • сечение, соответствующее этому диаметру;
  • допустимая величина тока для этого сечения;
  • мощность нагрузки, которую можно подключать через этот проводник к сетям 220/380 В.

При выборе провода или кабеля по справочнику предварительно необходимо определиться с материалом, из которого изготовлены жилы.

Как определить сечение многожильного провода

Многожильный провод состоит из нескольких вместе взятых жил. Поэтому общее сечение можно определить в два приёма:

  • вычисляется площадь поперечного сечения одной жилы;
  • полученное значение умножается на количество жил в проводе.

Концы проводов, имеющих много жил, при подсоединении нужно обжать специальной гильзой подходящего диаметра. Для этого применяют обжимные клещи.

Поперечное сечение одножильного и многожильного проводов

Самостоятельный расчёт

Иногда приходится иметь дело с проводом без нанесённой маркировки. Это не повод отказаться от его использования. В начале выясняют, из какого материала выполнена жила. Различают по цвету: алюминий белый, медь красная, латунь жёлтая. После этого приступают к расчёту площади сечения. Для этого выясняют диаметр проводника, предварительно сняв с него изоляцию, в случае многожильного провода – выпутав одну жилу.

Диаметр можно определить несколькими способами, например:

  • при помощи штангенциркуля или микрометра;
  • карандаша и линейки.

Второй способ даёт приблизительный результат и используется только в крайнем случае.

Штангенциркуль

Измерить при помощи штангенциркуля можно провода любых размеров.

Для этого помещают провод между губок штангенциркуля и смотрят на деления шкалы. Целое число миллиметров отсчитывают по верхней шкале, десятичные доли миллиметра – по нижней.

Карандаш + линейка

Если под рукой нет измерителя, а длина оголённой части измеряемого провода позволяет накрутить его на карандаш виток к витку длиной не менее 1 см, то используют этот метод. Считают количество витков N, поместившихся на отрезке L = 1 см.  Значение диаметра получают путём деления длины отрезка на количество витков. Точность измерения зависит от плотности намотки и её длины.

Таблица

После того, как диаметр определён одним из способов, Sсеч определяют по формуле или при помощи таблиц.

Простейшая таблица для диаметров провода до 4,5 мм

Диаметр провода, ммСечение, ммДиаметр провода, ммСечение, мм
0,80,523
1,00,752,34
1,112,55
1,21,22,86
1,41,53,28
1,623,610
1,82,54,516

Более точные значения можно подобрать из таблиц, размещённых в Правилах Устройств Электроустановок (ПУЭ).

Как узнать сечение вводного провода

Провод от опоры ЛЭП к дому выбирают сечением 10 мм. Новое подключение к электросетям выполняется согласно выданным техническим условиям. Обычно мощность, отпускаемая для подключения, составляет максимум 7,5 кВт для однофазной сети напряжением 220 В. В соответствии с таблицей, минимальное сечение для вводного кабеля следует выбирать 10 мм2. С учётом максимальной пиковой нагрузки потребителей и для обеспечения запаса мощности желательно использовать провод СИП 2*16 на улице и ВВГнг-ls 2*10 – внутри помещений до приборов учёта.

Определение сечения провода розеточных линий

При определении диаметра провода для комнатной проводки считают максимальную нагрузку потребителей, которые могут быть включены одновременно. Ориентируясь на эту мощность, выбирают сечение основных линий, которые идут от счётчика и вводных автоматов к распределительным коробкам. Это те участки, которые будут нести суммарную нагрузку всех подключенных потребителей. Выбирают провод с медными жилами не менее 6 мм2.

Проводники ответвлений от распределительных коробок к розеткам выбираются индивидуально для каждой комнаты. Тут учитываются бытовые электроприборы, которые могут быть присоединены к розетке. Сечение жил подбирается с запасом на один порядок. Это на тот случай, если возникнет необходимость запитать от розетки какой-то строительный инструмент: перфоратор, сварочный инвертор.

Если суммарная мощность потребителей в комнате будет составлять 4 кВт, то проводник с медной жилой, питающий розетку, должен быть сечением 2,5 мм2.

Внимание! Сечение токопроводящей жилы должно позволять выдерживать нагрузку по току и во время работы бытовой техники не перегреваться. На практике определяют прибор самой большой мощности и выбирают подходящий диаметр провода относительно характеристик прибора.

В итоге получается, что отводящий проводник с медными жилами на каждую розетку будет иметь сечение 2,5 мм2. Основной провод для разводки берут сечением 6 мм2. При этом следует учесть, что весь контур электропроводки выполняют проводами, имеющими жилы из одного материала. Скручивать между собой жилы из меди и алюминия нельзя.

Видео

Сечение провода (кабеля) по диаметру: формула, таблица

Главная » Электрика » Как определить сечение кабеля (провода) по диаметру

По идее, диаметр проводников должен соответствовать заявленным параметрам. Например, если указано на маркировке, что кабель 3 x 2,5, значит сечение проводников должно быть именно 2,5 мм2. На деле получается, что отличаться реальный размер может на 20-30%, а иногда и больше. Чем это грозит? Перегревом или оплавлением изоляции со всеми вытекающими последствиями. Потому, перед покупкой, желательно узнать размер провода, чтобы определить его поперечное сечение. Как именно считать сечение провода по диаметру и будем выяснять дальше. 

Содержание статьи

Как и чем измерить диаметр провода (проволоки)

Для измерения диаметра провода подойдет штангенциркуль или микрометр любого типа (механический или электронный). С электронными работать проще, но они есть не у всех. Измерять надо саму жилу без изоляции, потому предварительно ее отодвиньте или снимите небольшой кусок. Это можно делать, если продавец разрешит. Если нет — купите небольшой кусок для тестирования и проводите измерения на нем. На очищенном от изоляции проводнике замеряете диаметр, после чего можно определить реальное сечение провода по найденным размерам.

Измерения диаметра провода микрометром более точные, чем механическим штангенциркулем

Какой измерительный прибор в данном случае лучше? Если говорить о механических моделях, то микрометр. У него точность измерений выше. Если говорить об электронных вариантов, то для наших целей они оба дают вполне достоверные результаты.

Если нет ни штангенциркуля, ни микрометра, захватите с собой отвертку и линейку. Придется зачищать довольно приличный кусок проводника, так что без покупки тестового образца на этот раз вряд ли обойдетесь. Итак, снимаете изоляцию с куска провода 5-10 см. Наматываете проволоку на цилиндрическую часть отвертки. Витки укладываете вплотную один к другому, без зазора. Все витки должны быть полными, то есть «хвосты» провода должны торчать в одном направлении — вверх или вниз, например.

Определение диаметра провода при помощи линейки

Количество витков не важно — около 10. Можно больше или меньше, просто на 10 делить проще. Витки считаете,  затем прикладываете полученную намотку к линейке, совместив начало первого витка с нулевой отметкой (как на фото). Измеряете длину участка, занятого проводом, потом его делите на количество витков. Получаете диаметр провода. Вот так все просто.

Например, посчитаем каков размер проволоки, изображенной на фото выше. Количество витков в данном случае — 11, занимают они 7,5 мм. Делим 7,5 на 11, получаем 0,68 мм. Это и будет диаметр данного провода. Далее можно искать сечение этого проводника.

 

Ищем сечение провода по диаметру: формула

Провода в кабеле имеют в поперечном сечении форму круга. Потому при расчетах пользуемся формулой площади круга. Ее можно найти используя радиус (половину измеренного диаметра) или диаметр (смотрите формулу).

Определяем сечение провода по диаметру: формула

Например, посчитаем площадь поперечного сечения проводника (проволоки) по размеру, рассчитанному ранее: 0,68 мм. Давайте сначала используем формулу с радиусом. Сначала находим радиус: делим диаметр на два. 0,68 мм / 2 = 0,34 мм. Далее эту цифру подставляем в формулу

S = π * R2 = 3,14 * 0,342 = 0,36 мм

Считать надо так: сначала возводим в квадрат 0,34, потом умножаем полученное значение на 3,14. Получили сечение данного провода 0,36 квадратных миллиметров. Это очень тонкий провод, который в силовых сетях не используется.

Давайте посчитаем сечение кабеля по диаметру, используя вторую часть формулы. Должно получиться точно такое же значение. Разница может быть в тысячные доли из-за разного округления.

S = π/4 * D2 = 3.14/4 * 0,682 = 0,785 * 0,4624 = 0,36 мм2

В данном случае делим число 3,14 на четыре, потом возводим диаметр в квадрат,  две полученные цифры перемножаем. Получаем аналогичное значение, как и должно быть. Теперь вы знаете, как узнать сечение кабеля по диаметру. Какая из этих формул вам удобнее, ту и используйте. Разницы нет.

Таблица соответствия диаметров проводов и их площадь сечения

Проводить расчеты в магазине или на рынке не всегда хочется или есть возможность. Чтобы не тратить время на расчеты или не ошибиться, можно воспользоваться таблицей соответствия диаметров и сечений проводов, в которой есть наиболее распространенные (нормативные) размеры. Ее можно переписать, распечатать и захватить с собой.

Диаметр проводникаСечение проводника
0,8 мм0,5 мм2
0,98 мм0,75 мм2
1,13 мм1 мм2
1,38 мм1,5 мм2
1,6 мм2,0 мм2
1,78 мм2,5 мм2
2,26 мм4,0 мм2
2,76 мм6,0 мм2
3,57 мм10,0 мм2
4,51 мм16,0 мм2
5,64 мм25,0 мм2

Как работать с этой таблицей? Как правило, на кабелях есть маркировка или бирка, на которой указаны его параметры. Там указывается маркировка кабеля, количество жил и их сечение. Например, ВВНГ 2х4. Нас интересуют параметры жилы а это цифры, которые стоят после знака «х». В данном случае заявлено, что есть два проводника, имеющих поперечное сечение 4 мм2. Вот и будем проверять, соответствует ли эта информация действительности.

Как работать с таблицей

Чтобы проверить, проводите измерение диаметра любым из описанных методов, после сверяетесь с таблицей. В ней указано, что при таком сечении в четыре квадратных миллиметра, размер провода должен быть 2,26 мм. Если измерения у вас такие же или очень близкие (погрешность измерений существует, так как приборы неидеальные), все нормально, можно данный кабель покупать.

Заявленные размеры далеко не всегда соответствуют реальным

Но намного чаще фактический диаметр проводников значительно меньше заявленного. Тогда у вас два пути: искать провод другого производителя или взять большего сечения. За него, конечно, придется переплатить, но первый вариант потребует достаточно большого промежутка времени, да и не факт, что вам удастся найти соответствующий ГОСТу кабель.

Второй вариант потребует больше денег, так как цена существенно зависит от заявленного сечения. Хотя, не факт — хороший кабель, сделанный по всем нормам, может стоит еще дороже. Это и понятно — расходы меди, а, часто, и на изоляцию, при соблюдении технологии и стандартов — значительно больше. Потому производители и хитрят, уменьшая диаметр проводов — чтобы снизить цену. Но такая экономия может обернуться бедой. Так что обязательно проводите измерения перед покупкой. Даже и проверенных поставщиков.

И еще: осмотрите и пощупайте изоляцию. Она должна быть толстой, сплошной, иметь одинаковую толщину. Если кроме изменения диаметра еще и с изоляцией проблемы — ищите кабель другого производителя. Вообще, желательно найти продукцию, отвечающую требованиям ГОСТа, а не сделанную по ТУ. В этом случае есть надежда на то, что кабель или провод буде служить долго и без проблем. Сегодня это сделать непросто, но если вы разводите проводку в доме или подключаете электричество от столба, качество очень важно. Потому, стоит, наверное, поискать.

Как определить сечение многожильного провода

Иногда проводники используются многожильные — состоящие из множества одинаковых тонких проволочек. Как посчитать сечение провода по диаметру в этом случае? Да точно также. Проводите измерения/вычисления для одной проволоки, считаете их количество в пучке, потом умножаете на это число. Вот вы и узнаете площадь поперечного сечения многожильного провода.

Сечение многожильного провода считается аналогично

 

Как определить сечение провода или жил кабеля: 7 способов

При монтаже электропроводки необходимо следить за тем, чтобы реальное сечение проводника соответствовало заложенному в проекте, так как этот параметр определяет сопротивление электрическому току, а при несоответствии возникнет перегрев и угроза возгорания. На практике встречаются такие ситуации, когда приобретенный провод вообще не маркирован или у электромонтажника возникают сомнения по поводу соответствия заявленных характеристик фактическим. В таком случае нужно знать, как определить сечение провода на месте проведения работ.

Почему возникает несоответствие?

Несмотря на то, что в условиях современной конкуренции производители всеми силами стремятся не упустить своих клиентов, некоторые из них берутся за надувательство. Для этого они экономят металл за счет уменьшения диаметра. Достаточно убрать всего лишь пару квадратных миллиметров, и на сотнях километров кабеля это  окупиться значительным снижением себестоимости.

А потом и покупателю цену снизят, и сами останутся довольными. Но вот потребитель, в конечном итоге, подводит себя под угрозу из-за того, что сопротивление проводника гораздо ниже заявленного. И в месте прокладки такого провода возникает вероятность возгорания.

Способы определения сечения провода пошагово

Существует несколько способов для измерения сечения по диаметру жилы. Если провод одножильный, то замеры будут производиться сразу на нем, а вот из бухты кабеля необходимо выпутать один проводник. После этого его очищают от изоляции, чтобы остался только металл.

Рис. 1. Удаление изоляции с провода

Чтобы вычислить площадь круга через величину радиуса, применяется расчет по формуле: S = π × R2­, где:

  • π – константа равная 3,14;
  • R – радиус окружности.

Но, в связи с тем, что с практической точки зрения гораздо проще вычислить диаметр, равный двум радиусам,  формула расчета примет такой вид: S = π × (D/2)2.

Рис. 2. Диаметр провода

В зависимости от способов замеров диаметра выделяют несколько методов вычисления сечения провода и жил кабеля. Рассмотрим их.

По диаметру с помощью штангенциркуля или микрометра

Наиболее актуальным вариантом, чтобы измерить диаметр являются такие приборы, как штангенциркуль и микрометр. Данные устройства позволяют измерить диаметр максимально точно. Для этого вам понадобится провод и микрометр

Рис. 3: Провод и микрометр

Рассмотрите пример определения сечения для одножильного провода (рисунок 4).

Рис. 4. Измерение микрометром

Для этого фиксатор Б переводится в открытое положение. Ручка микрометра откручивается на такое расстояние, чтобы провод легко поместился в пространстве между щупами А. Затем при помощи ручки Г прибор закручивается до срабатывания трещотки. После этого фиксируются показания по всем трем шкалам в точке В.

В данном примере диаметр составляет 1,4 мм, следовательно, чтобы вычислить сечение, необходимо S =  3,14 × 1,4 × 1,4 / 4 = 1,53 мм2.  Такую же процедуру определения сечения можно произвести, используя штангенциркуль.

Преимуществом такого метода является возможность измерить любой проводник круглого сечения, даже если он уже установлен и эксплуатируется для питания какого-либо электрического прибора. Основной недостаток метода – это высокая стоимость приспособлений, естественно, что приобретать их для пары замеров совершенно нецелесообразно.

По диаметру с помощью карандаша или ручки

Данный способ определения сечения основан на том факте, что по всей длине у провода одинаковый диаметр. Возьмите обычный карандаш, ручку или фломастер, на который намотайте провод по спирали.  Чтобы исключить толщину изоляции, ее необходимо срезать по всей длине. Кольца должны располагаться максимально плотно, чем больше пространство между кольцами, тем ниже точность.

Рис. 5: Определение сечения карандашом

Так как все провода имеют одинаковую толщину, то для определения диаметра медных проводов, измерьте длину всей намотки и разделите на количество витков. В данном примере D = 15 мм / 15 витков = 1 мм, соответственно, используя ту же формулу расчета, получим сечение S =  3,14 × 1 × 1 / 4 = 0,78 мм2. Заметьте, чем больше витков вы сделаете, тем более точно определите сечение.

Стоит отметить, что преимущество такого метода в том, что для определения сечения можно использовать только подручные средства. Недостаток – низкая точность и возможность намотки только тонких проводников. В примере использовался относительно тонкий провод, но расстояние между витками уже просматривается. Из-за чего точность оставляет желать лучшего, разумеется, что алюминиевую проволоку таким способом согнуть не удастся.

По диаметру с помощью линейки

Сразу оговоримся, что для измерения линейкой можно брать только относительно толстый провод, чем меньше толщина, тем ниже точность. Диаметр жилки при этом может определяться ниткой или бумагой, второй вариант является наиболее предпочтительным, так как дает большую точность.

Рис. 6: Подготовка бумаги для замера

Оторвите небольшую полоску и загните ее с одной стороны. Предпочтительнее более тонкая бумага, поэтому не нужно складывать листок в несколько раз.

Рисунок 7: Обматывание бумагой провода

Затем бумагу прикладывают к проводу и заворачивают по окружности до соприкосновения полоски. В месте соприкосновения ее загибают второй раз и прикладывают к линейке для измерения.

Рисунок 8: измерение при помощи линейки

Через полученную длину окружности L находят диаметр жилки D = L / 2 π, а расчет сечения выполняется как показывалось ранее.   Данный метод определения сечения хорошо подходит для крупных алюминиевых жил. Но точность в этом методе наиболее низкая.

По диаметру с помощью готовых таблиц

Этот метод подходит для проводов стандартного сечения. К примеру, вы уже определили диаметр по одному из вышеприведенных методов. После чего вы используете таблицу для определения сечения.

Таблица 1: определение сечения через диаметр провода

Диаметр проводникаСечение проводника
0,8 мм0,5 мм2
0,98 мм0,75 мм2
1,13 мм1 мм2
1,38 мм1,5 мм2
1,6 мм2,0 мм2
1,78 мм2,5 мм2
2,26 мм4,0 мм2
2,76 мм6,0 мм2
3,57 мм10,0 мм2
4,51 мм16,0 мм2
5,64 мм25,0 мм2
 

К примеру, если у вас диаметр получился 1,8 мм, то это значит, что сечение по таблице будет равно 2,5 мм2.

По мощности или току

Если известна проводящая способность жилы, то с ее помощью можно определить сечение. Для этого понадобится один из параметров токопроводящей жилы – ток или мощность. Тоже можно сделать, если вы сможете рассчитать нагрузку. После чего из нижеприведенных таблиц необходимо выбрать соответствующий вариант. Но при этом необходимо учитывать алюминиевыми или медными жилами выполнен провод.

Таблица 2: для выбора сечения медного провода, в зависимости от силы потребляемого тока

Максимальный расчетный ток, А1,02,03,04,05,06,010,016,020,025,032,040,050,063,0
Стандартное сечение медного провода, мм20,350,350,500,751,01,22,02,53,04,05,06,08,010,0
Диаметр провода, мм0,670,670,800,981,11,21,61,82,02,32,52,73,23,6

Таблица 3: для выбора сечения медного провода, в зависимости от потребляемой мощности

Мощность электроприбора, ватт (Вт)100300500700900100012001500180020002500300035004000
Стандартное сечение жилы медного провода, мм20,350,350,350,50,750,751,01,21,51,52,02,52,53,0

Таблица 4: для определения сечения жил из алюминиевого провода

Диаметр провода, мм1,61,82,02,32,52,73,23,64,55,66,2
Сечение провода, мм22,02,53,04,05,06,08,010,016,025,035,0
Максимальный ток
при длительной нагрузке, А
1416182124263238556575
Максимальная мощность нагрузки,
киловатт (кВт)
3,03,54,04,65,35,76,88,412,114,316,5

К примеру, если  при монтаже электропроводки из алюминия вам известно, что максимальный ток, который провод может пропускать при длительной нагрузке, составляет 21 А, то чтобы выбрать сечение необходимо посмотреть строку выше —  4 мм2.

Расчет сечения многожильного провода

Если используется многожильный провод, в котором все проводники одинаковые, общее сечение определяется путем  сложения площади всех. К примеру, измеряют размер для одной жилы любым из вышеприведенных методов. После чего фактическое сечение определяется по формуле So = n ×  Si, где

  • So – это общее сечение всего проводника;
  • n – число проводников одинакового диаметра;
  • Si – сечение одного провода.

Расчет сечения кабеля с помощью онлайн калькуляторов

Советы от электрика

Если вы подбираете провод или кабель ВВГНГ для того, чтобы запитать электрическую сеть, обратите внимание на следующие моменты:

  • Посмотрите на цвет медного и алюминиевого провода, так как изготовитель мог сэкономить и использовать сплав, что значительно увеличивает электрическое сопротивление и не позволяет использовать допустимые нагрузки по сечению.
  • Насколько бы тонкой изоляцией не обладал гибкий кабель, для расчета сечения вам все равно необходимо измерять только жилу. Так как лишние миллиметры позволят использовать провод меньшим сечением для запитки чрезмерной нагрузки, а это чревато повреждениями.
  • Если на каком-то этапе вы засомневались в достаточности сечения или поняли, что применять приборы меньшей мощности не получится, лучше смонтировать проводку более толстым проводом.

Как определить соответствие параметров?

Как правило, избежать подобных казусов во время покупки позволяет предельная внимательность с вашей стороны:

  • На нормальном проводе обязательно присутствует его маркировка, которая предоставляет покупателю всю информацию о модели, особенностях эксплуатации, параметрах. В случае столкновения с сомнительной продукцией, можно обнаружить, что данные об изделии представлены не в полном объеме или вовсе отсутствуют.
  • Если проводник действительно хорош, на него обязательно должны предоставить сертификаты качества. Техническая документация свидетельствует о том, что такой он не только изготовлен в соответствии с  НД, но и прошел соответствующие испытания.
  • Хороший провод не может стоить копейки – так как цена материалов достаточно высока, дешевизна должна заставить задуматься о том, не кроется ли в этом какой-то подвох. При желании вы можете прийти в магазин с микрометром или штангенциркулем и выполнить проверку, чтобы развеять сомнения.

Видео версия

Сечение провода и диаметр: таблица

Одной из основных характеристик как бытовой, так и промышленной электропроводки является площадь поперечного сечения проводника, которая непосредственно связана с диаметром токопроводящих жил. От этого показателя зависит передаваемая проводником полезная мощность, степень нагрева проводника и общая безопасность системы электроснабжения. При недостаточной площади поперечного сечения существенно повышается пожароопасность электрической системы вследствие перегрева токопроводящих жил.

Сечение провода и диаметр таблица, отражающая взаимосвязь между этими параметрами будет приведена ниже, формируют основные параметры любых линий электропередач. Использование правильно подобранных проводов существенно увеличивает срок службы линий электропередач и повышает надежность работы.

Для правильного определения площади поперечного сечения проводника существует несколько распространенных методов. Прежде всего, необходимо с достаточной степенью точности измерить диаметр провода.

Как измерить диаметр проводов по сечению

В настоящее время заявленные в технических условиях параметры проводов далеко не всегда соответствуют действительности. Такой важный параметр как диаметр токопроводящей жилы может быть занижен, что приводит к резкому увеличению плотности тока и, как следствие, к перегреву и выходу из строя изоляции, а иногда и к возникновению пожара.

Для того чтобы избежать подобных неприятных ситуаций, не лишним будет прежде чем приобрести провод самостоятельно измерить диаметр жилы и удостовериться в соответствии заявленных характеристик действительным.

Использование микрометра является наиболее точным методом измерения диаметра, однако в бытовых условиях такой инструмент используется редко, поэтому заменить его с достаточной степенью точности можно штангенциркулем.

В случае отсутствия этих измерительных приборов, с достаточной степенью точности можно измерить диаметр провода при помощи обыкновенной линейки. Для этого необходимо снять изоляционный материал на расстоянии порядка 10—15см. После чего нужно плотно прижимая витки друг к другу, намотать на стержень 10 витков проволоки и измерить линейный размер полученной навивки. Полученный размер делится на число витков и таким образом вычисляется диаметр токопроводящей жилы.

Само по себе определение диаметра провода является принципиальным моментом и служит для определения такого важного параметра, как площадь поперечного сечения проводника, однако не стоит недооценивать важность этого замера.

Определение сечения проводов по диаметру

Для определения поперечного сечения проводника при известном диаметре используется формула известная со школьного курса геометрии:

S =π * R2, или S = π/4 * D2

В этой формуле:

S – искомая площадь, мм2;

D – измеренный диаметр токопроводящей жилы, мм;

R – радиус, мм; R=D/2;

В случае использования многожильных кабелей площадь определяется как сумма площадей отдельных токопроводящих жил.

После вычисления таким образом поперечного сечения провода, можно с достаточной степенью точности провести расчеты нагрузочных и эксплуатационных параметров электропроводки.

Диаметр и сечение проводов в таблице

При покупке электрических проводов не всегда удобно производить вычисление поперечного сечения проводов, хотя определить диаметр токопроводящей жилы не сложно. Для этого случая разработаны специальные таблицы, отражающие взаимосвязь между диаметром проводника и площадью его поперечного сечения. Использование таких таблиц чрезвычайно удобно для определения параметров незнакомого провода.

На первый взгляд, использование таких таблиц не целесообразно, поскольку на бирке проводника указаны его основные параметры, однако и здесь не обошлось без определенных тонкостей. Дело в том, что заявленные производителем параметры далеко не всегда соответствуют действительности, а вот параметры, приведенные в таблице абсолютно объективны.

Если при замере диаметра результат, приведенный в таблице, не существенно отличается от заявленного, значит, вы имеете дело с качественным проводом, но бывают случаи, когда площадь поперечного сечения не соответствует измеренному диаметру провода, в этом случае использование таблицы позволит избежать покупки некачественного кабеля.

Как узнать сечение многожильного провода

Монтируя электрическую проводку, необходимо следить за соответствием реального проводникового сечения заложенному проектом, поскольку от этого параметра зависит электрическое сопротивления тока. Если сечение будет не соответствовать мощности сети, проводник будет перегреваться и в любой момент может вспыхнуть. На практике бывают такие ситуации, когда купленный провод не имеет маркировки и даже опытный электромонтажник начинает сомневаться по поводу соответствия заявленным характеристикам проводника реальным. Тогда необходимо узнать сечение многожильного провода до начала работ. Как это сделать рассказано ниже.

Способы определения сечения многожильного провода

Есть несколько способов того, как измерить сечение проводника, отталкиваясь от диаметра его жилы. При наличии многожильного провода, замеры следует производить сразу, убрать одну жилу из него. После этого ее нужно очистить от изоляции, оставив металл. Для вычисления площади ее круга через радиус, необходимо использовать формулу произведения двойного значения радиуса на константу 3,14. Однако с практической стороны проще рассчитать диаметр. Он равен двум радиусам. В зависимости от способа замера диаметра, следует использовать одну из представленных ниже форм вычисления проводникового сечения и кабельной жилы.


По диаметру через штангенциркуль или микрометр

Самым лучшим способом измерения диаметра будет использование штангенциркуля и микрометра для работы. По этим приборам можно сделать максимально точное измерение диаметра. Для этого необходимо взять провод с микрометром. Потом вставить в измерительное отверстие провод, ручкой и фиксатором зафиксировать проводник. Устройство покажет диаметр жилы. Останется все известные данные подставить в формулу и найти проводниковое сечение. Тоже самое можно сделать штангенциркулем. Плюс такого метода состоит в возможности измерения любого проводника с круглым сечением, даже при установке и эксплуатации устройства для питания электроприбора. Главным недостатком метода является повышенная стоимость устройств. Поэтому для нескольких замеров покупать их не стоит.

По диаметру карандашом или ручкой

Для этого способа нужно взять любой пишущий инструмент и намотать на него провод по спирали. Для исключения изоляционной толщины следует ее убрать по всей длине, оставив жилу. Кольца нужно располагать максимально вплотную. Поскольку все провода в толщину одинаковые, то чтобы определить диаметр провода, нужно измерить длину намотки и разделить ее на количество витков. Далее останется внести полученные значение в формулу измерения площади сечения. Преимуществом такого метода является возможность использования для такого способа подручные средства.


Обратите внимание! Метод определения сечения жилы таким способом обладает низкой точностью. Такой способ подходит только для тонких кабелей.

По мощности и току

Если известно количество тока, которую проводит жила, можно определить ее сечение. Для этого нужно руководствоваться одним параметром — током или мощностью. Зная параметр, можно по нему через таблицу узнать стандартное проводниковое сечение и диаметр провода в миллиметрах. Стоит указать, что для медного и алюминиевого проводника показатели будут разными. Например, известно, что проводник сделан из алюминия и проводит 16 ампер тока и 3,5 киловатт мощности. Значит, его сечение равно 2,5 квадратных миллиметров, а в диаметр провод достигает 18 миллиметров.

Расчет сечения многожильного провода

Выше представлены способы для исследования сечения одножильного проводника. Чтобы найти сечение многожильного проводника, необходимо сложить все площади сечения вместе. После этого общее сечение можно отыскать через умножение числа проводов на сечение одного кабеля. Также узнать искомые данные можно через специальные онлайн калькуляторы.

Советы электрика

В заключение стоит указать, что на любом проводе от проверенного производителя будет указана маркировка. Она дает покупателю информацию о параметрах с эксплуатационными особенностями и модели. При ее отсутствии следует отказаться от покупки. При хорошем качестве проводника, на него будут у поставщика специальные сертификаты качества. Они говорят о том, что провод прошел все испытания и готов к работе дома, в условиях промышленности.

<Назад Поделиться

фото, видео, формулы для расчета диаметра провода и площади поперечного сечения

Автор Aluarius На чтение 6 мин. Просмотров 328 Опубликовано

Когда появляется необходимость провести электрическую проводку в новом доме или сделать замену старой, то чаще всего неопытные электрики сталкиваются с проблемой подбора самого кабеля. То есть, какой он должен быть, из какого материала и какого сечения. Для этого существует таблица сечения проводов, которую можно найти в интернете. Но что делать если доступа к мировой паутине нет, то есть, вы за городом, возводите свой собственный дом, а в поселке с интернетом проблемы. Выход один – самостоятельно подобрать сечение провода, сделав несколько математических выкладок, даже в уме.

Итак, начать надо с пояснения, что электрический ток, проходящий по электрическому кабелю с определенной мощностью, выделяет некоторое количество тепла. И если мощность будет достаточно большой, то изоляция провода может не выдержать тепловой энергии. Она просто расплавится, а это стопроцентное короткое замыкание между двумя жилами, расположенными в одном кабеле. И хорошо, если сработает автоматический выключатель в распределительном щите, который предотвратит возгорание.

То есть, протекающий по проводам ток зависит от нагрузки в сети. Поэтому формула тока такова:

I=P/U, где

  • I – сила тока;
  • P – потребляемая мощность;
  • U – напряжение.

Но сам ток также зависит от сопротивления кабеля. И чем оно больше, тем труднее току проходить по жилам провода (объяснения по-простому). Поэтому данный показатель необходимо обязательно учитывать, определяя сечение провода. Сопротивление зависит от сечения кабеля, от его длины и материала, из которого изготовлен. Если говорить о частном домостроении, то длину кабеля можно в расчет и не брать, слишком небольшие участки в схеме разводки дома. А вот материал и сечение играют важную роль.

Расчет сечения

Если перед вами лежит кабель, сечение которого вы не знаете (нет маркировки), то этот показатель можно самостоятельно рассчитать, используя формулу площади круга:

S=πd²/4=0,8d².

То есть, замеряете своими руками при помощи штангенциркуля диаметр жилы и вставляете данный показатель в формулу. Если маркировка на проводе осталась, к примеру, ВВГ 3х1,5, то это значит, что перед вами трехжильный провод с сечением 1,5 мм².

Внимание! Чем больше сечение провода, тем большую токовую нагрузку он может нести.

Но необходимо учитывать и тот факт, что провода бывают разные в плане материала, из которого они изготавливаются. В основе всех электрических кабелей лежит или медь, или алюминий. Так вот медные кабели выдерживают большую токовую нагрузку, чем алюминиевые. К тому же они практически не окисляются, поэтому, когда перед вами стоит выбор, то предпочтение лучше всего отдать медному варианту.

Есть еще один момент, который необходимо учитывать. Этот способ проводки схемы электроснабжения. То есть, электрический кабель уложен в штробы и заштукатурен, или проводка была проведена в гофрированном шланге, или была сделана открытая электропроводка. В чем разница?

Все дело в том, что внутренняя проводка (скрытая) создает условия, при которых провод оказывается в замкнутом пространстве. То есть, нагреваясь, он не отдает тепло воздуху, который его окружает. А, значит, перегревается быстрее и больше. А это, в свою очередь, снижает ресурс эксплуатации и создает условия быстрого выхода из строя. То есть, в такой проводке необходимо использовать провода сечением чуть больше, чем по номиналу.

Плотность тока

Постепенно, разбираясь в электрических проводах, а точнее, в выборе сечения кабеля, мы подошли к еще одному не менее важному показателю – плотности тока. Что это такое? По сути, это все та же сила тока, измеряемая в амперах, которая проходит через стандартную величину сечения электрического провода, равную одному миллиметру в квадрате.

Скажем так, что это относительная величина, поэтому ее можно использовать в формуле, определяющей диаметр провода:

d=1,1*√I/Ip, где Ip – плотность тока.

Теперь можно вычислить сечение провода, подставляя значение «d» в формулу площади. В конечном итоге получаем, что S=I/Ip.

Но где тогда взять показания «Ip»? Это стандартные величины, зависящте опять-таки от материала, из которого изготавливаются провода, и вида проводки. Нижняя таблица показывает данную зависимость.

Площадь круга
МатериалМедьАлюминий
Скрытая проводка6 А/мм²4
Открытая проводка106

Как мы и говорили выше, медь в данном случае предпочтительнее.

Давайте рассмотрим один простой пример расчета. Вводные данные:

  • Провод медный.
  • Открытая проводка.
  • Нагрузка на кабель 2,2 кВт.

Сначала находим силу тока в электрической цепи: I=P/U=2200 Вт:220 В= 10 А.

Теперь находим сечение самого провода: S=I/Ip=10:10=1 мм², где второе число «10» выбираем из вышеупомянутой таблицы. Таким образом, можно самостоятельно рассчитать все сечения кабелей на каждом участке электрической сети дома. Главное – правильно рассчитать потребляемую мощность на каждом шлейфе. А это, как вы знаете, суммарная мощность все бытовых приборов и лампочек освещения. К примеру, если рассчитывается участок кухни, то придется сложить мощность всех аппаратов, а это холодильник, микроволновка, кофеварка, электрический чайник, вытяжка, блендер и так далее, плюс освещение. Данный показатель указывается на бирках приборов и стеклянном корпусе ламп.

В принципе, для себя можно такую таблицу сечения проводов собрать самостоятельно, учитывая все раскладки, о которых написано выше. То есть, если знать потребляемую мощность на всех электрических контурах, то можно по участкам разбить кабели в зависимости от их сечения.

Мощность некоторых бытовых электроприборов
  • Во-первых, это упростит проведение монтажа. То есть, вы никогда не запутаетесь, где какой кабель должен быть проложен.
  • Во-вторых, можно будет подсчитать расходы, связанные с покупкой проводки, и тем самым определить бюджет ремонта.
  • В-третьих, таблица поможет в будущем. Если потребляемая мощность не изменится с годами, то вам не надо будет опять проводить все расчеты. Достаточно достать таблицу и вспомнить, какого сечения кабель, где был уложен.

Заключение по теме

Итак, к чему мы пришли? Создавая таблицу сечения проводов в своем собственном доме, вы просто обеспечиваете себе безопасность, связанную с эксплуатацией электрической сети дома. Плюс облегчаете себе работу, когда дело дойдет до замены или ремонта.

Преобразовать площадь сечения в квадратные дюймы (дюйм², площадь сечения провода) в диаметр в дюймах (дюймы, диаметр проволоки)

Американский калибр проволоки — это стандарт, используемый в США с 1857 года для меди, алюминия, золота, серебра и т. д. Он также известен как калибр Brown & Sharpe . Чем больше номер калибра, тем меньше диаметр проволоки. Провода толще 0 калибра обозначаются как 00 (или 2/0 ), 000 (или 3/0 ) и т. Д.

Washburn & Moen Калибр для стальной проволоки используется в США для обработки стали. Он также известен как US Steel Wire или Roebling Gauge .

Британский стандартный калибр для проволоки больше не пользуется популярностью, но все еще используется для измерения струн гитары. Он также известен как Imperial Wire Gauge или British Standard Gauge . SVG определяет только датчики от 7/0 до 50 .

Birmingham Wire Gauge теперь является устаревшим.Его размеры не являются ни геометрически, ни арифметически прогрессивными и, следовательно, не имеют определенного отношения друг к другу. B.W.G определяет размеры от 5/0 до 36 .

IEC 60228 — это международный стандарт, который, помимо прочего, определяет набор стандартных проводов. Размеры проводов в этом стандарте обозначаются по их площади поперечного сечения, выраженной в мм². ГОСТ 22483-2012 — это немного измененная версия IEC 60228 , которая используется в России, Беларуси, Кыргызстане и Узбекистане.Он добавляет несколько меньших размеров проводов к международному стандарту.

Если площадь сечения или диаметр провода не соответствует калибру, используется ближайший из них, а разница в площади отображается в процентах.

Единицы: Американский калибр проводов, AWG / Washburn & Moen Gauge для стальной проволоки, W&M / Британский стандартный калибр проводов, SWG / Калибр для железной проволоки Бирмингема или Стабса, B.W.G. / Калибр стальной проволоки заглушек / IEC 60228: 2004 Стандартное поперечное сечение провода (мм²) / Сечение провода стандартное ГОСТ 22483-2012. (мм²)

% PDF-1.6 % 907 0 объект > endobj 923 0 объект > / Шрифт >>> / Поля 928 0 R >> endobj 924 0 объект > поток 2001-02-28T09: 17: 59Z2012-05-26T09: 47: 24-07: 002012-05-26T09: 47: 24-07: 00 Acrobat Distiller Command 3. 0 для Solaris 2.3 и более поздних версий (SPARC) приложение / pdfuuid: f6a60c38- 687c-b749-bb94-9fce28cdb903uuid: 114e727c-1105-7345-839e-fb59f40 конечный поток endobj 895 0 объект > endobj 885 0 объект > endobj 929 0 объект > endobj 897 0 объект > endobj 896 0 объект > endobj 898 0 объект > endobj 899 0 объект > endobj 900 0 объект > endobj 901 0 объект > endobj 902 0 объект > endobj 903 0 объект > endobj 904 0 объект > endobj 508 0 объект > endobj 511 0 объект > endobj 514 0 объект > endobj 517 0 объект > endobj 520 0 объект > endobj 523 0 объект > endobj 525 0 объект > поток ярд `P \ 9 Bl T6 @ ! 9Ng9T ( — QHgG (DadT $ IRq) bl $ R $% BIHU (C% ҡ (O! $ ** j1 # «(M˱C * iQl6Aj3 M ~ sE0Ph5 #VG F1pon9; KpsSƃ! ‘[O_x_6Xxaf! Ö. А` \ 3 4PA ~ QLZEEѳ5KFLdF4ќ7Hpd4 = Aĥ * D% (KQ # IѴ1? ܠ = ҫo + Tl / * |:

J! $ LaPE.Lj% * 7: #

Глава 2, Справочник по детектору трафика: третье издание — том I

Этот отчет является заархивированной публикацией и может содержать техническую, контактную и ссылочную информацию с датой

Номер публикации: FHWA-HRT-06-108
Дата: май 2006 г.

ГЛАВА 2.СЕНСОРНАЯ ТЕХНОЛОГИЯ

В этой главе описывается работа датчиков проезжей части и проезжей части. Представленные технологии включают в себя индуктивные петлевые детекторы, магнитометры, процессоры видеоизображений, микроволновые радарные датчики (обнаружение присутствия и доплеровские), лазерные радарные датчики, пассивные инфракрасные датчики, ультразвуковые датчики, пассивные акустические датчики и устройства, в которых используется комбинация технологий. Информация предназначена для того, чтобы дать практикующему инженеру по дорожному движению и инженеру-электрику знания, необходимые для выбора подходящей сенсорной технологии для конкретных приложений.

ДЕТЕКТОРЫ ИНДУКТИВНОЙ ПЕТЛИ

С момента своего появления в начале 1960-х годов датчик с индукционной петлей стал наиболее часто используемым датчиком в системе управления дорожным движением. Основные компоненты системы детекторов с индуктивным контуром включают:

  • Один или несколько витков изолированного контурного провода, намотанного в неглубокой прорези, пропиленной в мостовой.
  • Подводящий кабель от тягового ящика к бордюру к шкафу управления перекрестком.
  • Блок электроники, расположенный в соседнем шкафу контроллера.

На рис. 2-1 показана условная схема системы обнаружения с индукционной петлей, а также транспортных средств и элементов стальной арматуры на проезжей части, с которыми она реагирует.

Рисунок 2-1. Индуктивно-петлевой детектор (условный).

Электронный блок передает энергию в проволочные петли на частотах от 10 кГц до 200 кГц, в зависимости от модели. Система с индуктивным контуром ведет себя как настроенная электрическая цепь, в которой контурный провод и подводящий кабель являются индуктивными элементами.Когда транспортное средство проезжает по петле или останавливается внутри петли, транспортное средство наводит вихревые токи в проводных петлях, что снижает их индуктивность. Пониженная индуктивность приводит в действие выходное реле электронного блока или твердотельный оптически изолированный выход, который посылает на контроллер импульс, указывающий на проезд или присутствие транспортного средства.

Транспортные средства, проезжающие или останавливающиеся в зоне обнаружения индуктивного детектора, уменьшают индуктивность контура.Блок электроники воспринимает это событие как уменьшение частоты и отправляет на контроллер импульс, указывающий на проезжание или присутствие транспортного средства.

В следующих разделах описывается теория индуктивной системы, характеристики контура и электронный блок.

ТЕОРИЯ РАБОТЫ

Принципы работы детекторной системы с индуктивным контуром, обсуждаемые ниже, являются общими для всех конструкций систем с индуктивным контуром, описанных в главе 4.Контурный провод и подводящий кабель содержат комбинацию сопротивления, индуктивности и емкости (как межпроводную, так и межпроводную связь с землей).

СОПРОТИВЛЕНИЕ ПЕТЛИ И КАБЕЛЯ

Для проводов с индуктивным контуром, подводящих проводов и вводных кабелей обычно используется провод № 12, № 14 или № 16 американского калибра проводов (AWG) с сопротивлением низкой частоты или постоянному току, измеряемым в единицах Ом (). Сопротивление проволоки обратно пропорционально квадрату диаметра проволоки и увеличивается с уменьшением диаметра проволоки.Вольт-омметр (ВОМ) измеряет сопротивление постоянному току. Сопротивление провода переменному току увеличивается с увеличением частоты, потому что проводящая площадь провода уменьшается из-за неоднородного потока внутри провода. Сопротивление на высоких частотах нельзя измерить с помощью VOM, но его можно получить путем измерения добротности, как это определено далее в этой главе.

Петля в проезжей части также содержит наведенное сопротивление (называемое сопротивлением заземления), вызванное трансформаторной связью между петлей и индуцированными токами, протекающими в дорожном покрытии и материалах земляного полотна.В Приложении А приведен подробный вывод сопротивления заземления. Таблица 2-1 содержит значения сопротивления постоянному току или низкочастотного сопротивления для имеющихся в продаже контурных проводов и подводящих кабелей.

Таблица 2-1. Сопротивление кабелей, которые обычно встречаются в детекторных системах с индуктивным контуром.
Тип провода или кабеля производителя Функция Калибр провода (AWG) Сопротивление постоянному току (/ фут)
9438 Контурный провод 14 0.0025
8718 Вводной кабель 12 0,0019
8720 Вводной кабель 14 0,0029
8719 Вводной кабель 16 0,0045
ИНДУКТИВНОСТЬ КОНТУРА

Все проводники, по которым проходит электрический ток, образуют линии магнитного потока, которые окружают формирующий их ток.Магнитный поток вызывает электрическое свойство, называемое индуктивностью, которое измеряется в генри (Гн). Индуктивность провода называется самоиндукцией. Если поток тока, протекающего по одному проводу, переходит в другие провода, результирующая индуктивность называется взаимной индуктивностью.

На рис. 2-2 показан поток вокруг однооборотной проволочной петли. Плоскость, содержащая поток, перпендикулярна току в проводе, где направление потока определяется по правилу правой руки. Это правило применяется следующим образом: поместите правую руку под провод с пальцами, загнутыми в направлении силовых линий.Большой палец указывает в направлении тока. Внутри контура все силовые линии имеют одинаковое направление.

На Рис. 2-3 показаны линии магнитного потока для соленоида или катушки, длина которых больше диаметра. Магнитный поток внутри катушки однороден, за исключением концов. Магнитное поле для этой геометрии катушки определяется как

(2-1)

, где

H = Магнитное поле, ампер-витков на метр, не путать с единицами индуктивности в генри
Н = Число витков
I = Ток катушки, амперы
л = Длина катушки, метры.


Рисунок 2-2. Магнитный поток вокруг петли. Черные стрелки представляют ток, протекающий в проводе, а белые стрелки — индуцированный поток, определяемый правилом правой руки.


Рисунок 2-3. Магнитный поток для соленоида (катушки). Черные стрелки представляют поток тока, в то время как круги с черным центром и центром «X» представляют индуцированный поток потока из и в плоскость рисунка, соответственно.

Поскольку магнитный поток внутри катушки однороден, он определяется как

(2-1)
, где

= магнитный поток, сетка
B = плотность магнитного потока, сетка на м 2
A = площадь поперечного сечения катушки, м 2 .

Плотность магнитного потока выражается как

(2-3)
, где

r = относительная проницаемость материала (1 для воздуха)

0 = 4 x 10 -7 генри на метр.

Индуктивность катушки определяется как

(2-4)
, где

L = индуктивность, генри
N = количество витков
I = ток катушки, амперы.

Индуктивность катушки, длина которой намного превышает площадь катушки для обеспечения равномерного магнитного потока внутри катушки, определяется как

(2-5)

Индуктивный контур проезжей части имеет неоднородное магнитное поле, которое создает значение индуктивности, заданное уравнением 2-6.

Это уравнение показывает, что индуктивность катушки прямо пропорциональна квадрату витков и площади катушки и обратно пропорциональна длине катушки.Хотя формула индуктивности в том виде, в каком она написана, не применима напрямую к индуктивной петле дороги, формула может быть изменена с коэффициентом F ‘для учета неоднородного потока в индуктивной петле дороги. Таким образом,

(2-6)

Уравнение 2-6 применяется к вычислению индуктивности контура в Приложении B. В этом случае l упоминается как «длина токового слоя». Уравнение 2-6 показывает, что железо с относительной проницаемостью больше единицы увеличивает индуктивность контура.Хотя наибольшее увеличение индуктивности происходит, когда стальной сердечник проходит непосредственно через контур, железная масса двигателя транспортного средства, трансмиссии или дифференциала немного увеличивает индуктивность контура. Это состояние называется «ферромагнитным эффектом».

ФЕРРОМАГНИТНЫЙ ЭФФЕКТ И ОБНАРУЖЕНИЕ ТРАНСПОРТНОГО СРЕДСТВА

Однако ферромагнитный эффект, создаваемый железной массой двигателя, трансмиссии или дифференциала, не создает индикацию присутствия или прохождения контроллером.Когда тяжелый двигатель из черных металлов входит в зону обнаружения индуктивного контура, он увеличивает индуктивность проволочного контура. Этот эффект возникает из-за того, что введение любого железного сердечника в поле любого индуктора снижает сопротивление (то есть член, который соответствует сопротивлению магнитной цепи) пути потока и, следовательно, увеличивает полезную индуктивность. Однако периферийный металл транспортного средства оказывает противоположное влияние на индуктивность из-за возникающих вихревых токов. Уменьшение индуктивности из-за вихревых токов более чем компенсирует увеличение массы железа в двигателе, и в итоге получается общее снижение индуктивности проволочной петли.

Ферромагнитный эффект увеличивает индуктивность контура. Однако вихревые токи, вызванные транспортным средством, еще больше уменьшают индуктивность контура. Следовательно, результирующим эффектом является уменьшение индуктивности контура, когда транспортное средство проходит через зону обнаружения индуктивного контура.

ХАРАКТЕРИСТИКИ ПЕТЛИ

Детектор с индуктивной петлей предоставляет инженерам по дорожному движению широкий спектр геометрических форм для удовлетворения разнообразных приложений управления дорожными сигналами, как описано в главе 4.Размер и количество витков петли или комбинации петель вместе с длиной подводящего кабеля должны давать значение индуктивности, совместимое с диапазоном настройки электронного блока и другими требованиями, установленными транспортным потоком. инженер. Стандарты NEMA для индуктивных детекторов (см. Приложение J) определяют, что блок электроники должен обеспечивать удовлетворительную работу в диапазоне индуктивности от 50 до 700 микрогенри (мкГн). Некоторые блоки допускают гораздо большие значения индуктивности, например, от нескольких последовательно соединенных контуров.Хотя более высокие значения индуктивности технически возможны, NEMA установило консервативный верхний предел для продвижения методов, совместимых со всеми существующими блоки электроники.

ЕМКОСТЬ ПЕТЛИ

На рис. 2-4 показаны основные явления емкостной связи, которые существуют между (1) самими проводами контура и (2) проводами контура и боковыми стенками паза. Емкость, относящаяся к пазу пилы, прямо пропорциональна диэлектрической проницаемости материала уплотнения паза.На рис. 2-5 представлена ​​эквивалентная электрическая схема, представляющая сопротивление провода индуктивной петли R s , индуктивность L s и емкость C p , которые образуются при установке петли на дорожное покрытие.


Рисунок 2-4. Емкостная связь между самими проводами контура и боковинами паза пропила.


Рисунок 2-5. Эквивалентная электрическая схема для индуктивного контура с емкостной связью с боковыми стенками паза.

Данные измерений на Рисунке 2-6 показывают влияние емкости C p на увеличение индуктивности на выводах контура по мере увеличения рабочей частоты. (1) Если материал уплотнения паза гигроскопичен (т.е. легко поглощает и удерживает воду) или неполный (т. е. не заполняет прорезь или не герметизирует провода, позволяя воде проникать в прорезь и проникать между витками проводов контура), изменение емкости и, следовательно, индуктивности будет большим из-за большой диэлектрической проницаемости воды .


Рисунок 2-6. Средние значения индуктивности контура в зависимости от частоты измерения для последовательного, параллельного и последовательно-параллельного соединения индуктивных контуров 6 x 6 футов (1,8 x 1,8 м). Графики представляют кривые, соответствующие измеренным данным.

Емкость системы контура должна быть минимизирована для правильной работы на частотах 10 килогерц (кГц) и выше.

Таким образом, изменение емкости из-за воды может привести к нестабильной работе детектора с индуктивным контуром.На частотах 1 килогерц (кГц) влияние емкости незначительно. На частотах 10 кГц и выше важен емкостной эффект. Когда индуктивность контура измеряется на частоте 20 кГц или выше, частота измерения должна быть указана, поскольку измеренная индуктивность зависит от частоты. Большое количество витков на контурах большой площади дополнительно увеличивает емкость контура и снижает частоту собственного резонанса контура (т. Е. Индуктивность контура не измеряется на выводах контура, когда контур саморезонансный).

На рисунке 2-6 также показано, как различные последовательные, параллельные и последовательно-параллельные конфигурации проводных контуров влияют на результирующую индуктивность контура и скорость ее изменения с частотой. Влияние способа подключения на индуктивность системы обсуждается далее в разделе «Расчеты индуктивности системы контура» далее в этой главе.

КОЭФФИЦИЕНТ КАЧЕСТВА ПЕТЛИ Q

Резонансный КПД контура выражается через безразмерную добротность Q .Если потери индуктора велики, Q мал. Идеальный индуктор не имеет потерь; следовательно, в катушке индуктивности нет рассеяния энергии, и Q бесконечен.

Коэффициент качества контура Q является мерой потерь в системе детектора с индуктивным контуром.

Суммарные потери энергии в катушке индуктивности с потерями рассчитываются путем моделирования катушки индуктивности как эквивалентной катушки индуктивности без потерь, соединенной последовательно с резистором.Добротность равна отношению индуктивного реактивного сопротивления к резистивным потерям катушки индуктивности. Поскольку индуктивное реактивное сопротивление зависит от частоты, частота должна быть указана при измерении добротности. Формула для Q записывается как
(2-7)

, где

Q = коэффициент качества
= 3,14159 (постоянная)
f = частота возбуждения системы индуктивного контура, Гц
L S = индуктивность последовательного контура, henrys
R S = Сопротивление шлейфа, Ом
= Радианная частота = 2 f .

Резонансная частота 0 эквивалентной индуктивной петле электрической цепи, представленной на Рисунке 2-5, равна
(2-8)

Из уравнения 2-7,

(2-9)

Следовательно, уравнение для коэффициента качества контура Q 0 резонансного контура принимает вид

(2-10)

Электронный блок добавляет сопротивление нагрузки R L параллельно конденсатору C P , показанному в эквивалентной индуктивной петле электрической цепи на Рисунке 2-5.Эффект R L заключается в снижении добротности. Результирующий коэффициент качества равен
(2-11)

или

(2-12)

, где R ‘ P — это преобразованное последовательное сопротивление параллельно с R L .

Фактор качества под нагрузкой Q L схемы на Рисунке 2-5 с сопротивлением нагрузки R L параллельно с конденсатором C P составляет

(2-13)

При установке индуктивных детекторов рекомендуются коэффициенты качества 5 и выше, поскольку генераторы в большинстве электронных блоков не будут работать с низким значением Q .Влага в дорожном покрытии и земляном полотне может увеличить сопротивление заземления контура, так что Q системы индуктивного контура упадет ниже 5, тем самым уменьшив чувствительность большинства электронных блоков индуктивного контура. Емкость контура также уменьшит Q .

Фактор качества под нагрузкой Q L , заданный уравнением 2-13, применяется к приложениям с низкими потерями, где коэффициент качества большой и f , L S и R S могут быть легко измерить.С другой стороны, индуктивные петлевые детекторы, используемые на дорогах, не так хорошо адаптируются к вышеупомянутому анализу, поскольку индуктивность распределена по петле и подводящему кабелю и ее трудно измерить. Расчет добротности для дорожных петель еще больше усложняется из-за большего фактического сопротивления петлевого провода и подводящего кабеля по сравнению с последовательным значением, измеренным с помощью омметра. Дополнительные потери возникают из-за высокочастотного возбуждения и токов заземления в дорожном покрытии, связанных с конфигурацией петли и дорожной обстановкой вблизи провода.В результате, Q с идентичной конфигурацией проводов будет варьироваться от места к месту.

Потери, вызванные возбуждением высокочастотной петли и токами заземления в мостовой около провода, дополнительно снижают добротность. В результате, Q с идентичной конфигурацией проводов будет варьироваться от места к месту.

Рисунок 2-7 иллюстрирует расчет коэффициента качества системы индуктивного контура с использованием Q 0 и Q P .В таблицах с 2-2 по 2-4 перечислены рассчитанные коэффициенты качества для прямоугольных, квадрупольных и круглых индуктивных контуров, соответственно, на 1, 2, 3, 4 и 5 витков. В этих таблицах петли возбуждаются на частоте 20 кГц с поперечным расстоянием между проводниками и / или квадруполями 200 мил. Все индуктивность и добротность являются кажущимися значениями (т. Е. Включаются емкость и сопротивление контура).

Рисунок 2-7. Расчет выборки коэффициента качества замкнутой системы.

Таблица 2-2. Индуктивность прямоугольного контура и параметры добротности при f = 20 кГц.*

* Петля 6 x 6 футов (1,8 x 1,8 м). ** С вводным кабелем.

Петля диаметром 7 футов (2,1 м).

ПРОВОД ВХОДНОЙ ПЕТЛИ

Таблица 2-5 содержит значения индуктивности, емкости и сопротивления подводящего провода коробки типа «петля-тяга» для двух распространенных типов проводов. Два подводящих провода от начала и конца витков петли должны быть скручены вместе, чтобы образовалась симметрично скрученная пара от петли к вытяжной коробке. Скручивание снижает перекрестные помехи и шум на подводящем проводе.Большинство производителей рекомендуют не менее пяти витков на фут (16,5 витков на метр). Скрутки проволоки образуют небольшие петли вдоль проволоки, чередующиеся по направлению намотки. Внешнее магнитное поле из-за шума или перекрестных помех индуцирует напряжения в небольших контурах, которые почти устраняются, тем самым уменьшая помехи. Важность скручивания подводящего провода обсуждается далее в главе 5.

Таблица 2-5. Характеристики подводящего провода витой петли.
Изготовитель и тип провода Тип изоляции провода Номер AWG Диаметр оболочки (мил) Число витков на фут Индуктивность (H / фут) Емкость (пФ / фут) Сопротивление (/ футов)
XHHW Сшитый полимер 14 нитей 130 от 3 до 4 0.24 10 0,006
Belden 9438 Полиэтилен высокой плотности 14-витой 139 5,5 0,22 10 0,00252
ВВОДНЫЙ КАБЕЛЬ

Экранированные скрученные пары проводов используются для подводящего кабеля (кабеля домашней прокладки), который проходит от вытяжной коробки до клемм электронного блока в шкафу контроллера. Проводящий экран снижает помехи от внешних электрических полей.Значения индуктивности, емкости и сопротивления подводящего кабеля для нескольких типов кабеля приведены в таблице 2-6.

Таблица 2-6. Технические характеристики вводного кабеля для коммерческого использования.
Производитель и тип кабеля Тип изоляции провода Номер AWG Диаметр изоляции (мил) Тип изоляции кабеля Индуктивность (H / фут) Емкость (пФ / фут) Сопротивление (/ фут)
Belden 8718 Полиэтилен 12 37 Винил 0.2 25 0,0019
8720 Полиэтилен 14 32 Винил 0,2 24 0,0029
8719 Полиэтилен 16 32 Винил 0,2 23 0,0045
Клиффорд IMSA Полиэтилен 12 30 Полиэтилен 0.2 25 0,0016
Спецификация Полиэтилен 14 30 Полиэтилен 0,2 24 0,0025
50-2-1984 Полиэтилен 16 30 Полиэтилен 0,2 23 0.0040

Измерения коэффициента качества петлевой системы (при 100 футах (30 м) экранированного подводящего кабеля, подключенного к петле) в Приложении D показывают, что от использования проводов большего диаметра в экранированных выводах мало пользы. в кабеле. Например, коэффициент качества, связанный с экранированным вводным кабелем № 14 AWG, существенно не снижается при замене кабеля № 12. Основные потери связаны с типом экранирования, а не с диаметром проводника. В таблице 2-7 показано, как тип и длина подводящего кабеля влияют на коэффициент качества.

РАСЧЕТ ИНДУКТИВНОСТИ

Существует несколько упрощенных формул для расчета приблизительной индуктивности детектора с индукционной петлей. Более точные значения индуктивности получаются с помощью метода взаимной связи, описанного в Приложении A.

Упрощенные формулы обеспечивают приемлемую точность самоиндукции многооборотных, прямоугольных, квадрупольных и кольцевых контуров, площадь которых превышает расстояние между проводниками. Приближенные значения выгодно отличаются от диапазона измеренных значений индуктивности индуктивного контура.

Приложение C содержит расчетные значения индуктивности контура для контуров различных размеров и форм (прямоугольных, квадрупольных и круглых). Индуктивность и добротность для нескольких витков провода были рассчитаны с использованием формулы взаимной связи, обсуждаемой далее в этой главе.

Размер контура 6 x 6 футов (1,8 x 1,8 м). Частота возбуждения 20 кГц.
* Измеренное последовательное сопротивление петли на высоте 3 фута (0,9 м) над полом лаборатории.
** Расчетное значение сопротивления 8719.
† Длина подводящего кабеля составляет 100 футов.

РАСЧЕТ ИНДУКТИВНОСТИ КОНТУРНОЙ СИСТЕМЫ

Индуктивность вводного кабеля добавляется к индуктивности контура провода из расчета 21 Гн на 100 футов (30 м) вводного кабеля # 14 AWG. Например, прямоугольная петля размером 6 x 6 футов (1,8 x 1,8 м) должна иметь три витка в соответствии с Приложением C и индуктивность 74 Н. Если длина подводящего кабеля составляет 200 футов (61 м). по длине общая индуктивность

(2-14)

Индуктивность L двух или более контуров, соединенных последовательно, является аддитивной, так что L = L 1 + L 2 ± 2M , где L 1 и L 2 представляют собой индуктивность каждого из отдельных последовательно соединенных контуров, M — взаимную индуктивность между двумя контурами, а знак M является положительным, если поток увеличивается током, текущим в том же направлении в ближайший к нему шлейф.

Взаимная индуктивность незначительна, если контуры разделены большим расстоянием. В этом случае L = L 1 + L 2 , т. Е. Контуры соединены последовательно, обеспечивая максимальную индуктивность контура.

Если контуры соединены параллельно, то общая индуктивность рассчитывается как 1/ L = 1/ L 1 + 1/ L 2 . Например, объединенная индуктивность двух 6х6 футов (1.8- x 1,8-м) петли из трех витков, каждый из которых соединен параллельно, определяется как

(2-15)

Таким образом, 2L = 74 H и L = 37 H.

Таким образом, параллельное соединение шлейфов снижает индуктивность. Хорошая практика проектирования требует, чтобы индуктивность комбинированного контура была больше нижнего предела в 50 Н. Следовательно, описанное выше параллельное соединение не подходит в качестве датчика транспортного средства.

В некоторых случаях желательно как последовательное, так и параллельное соединение индуктивных контуров.Рассмотрим, например, четыре трехвитковых контура 6 x 6 футов (1,8 x 1,8 м), установленных на расстоянии 9 футов (2,7 м) друг от друга, чтобы обеспечить обнаружение на полосе левого поворота. На рисунке 2-8 показаны три возможных типа подключений. Последовательное соединение дает индуктивность 4 x 74 = 296 Гн. Параллельное соединение дает только 18,5 Гн ( 4L = 74 Гн, L = 18,5 мкГн). Последовательно-параллельная конфигурация, в которой две верхние петли соединены последовательно, а две нижние петли соединены последовательно, образует две пары петель, которые затем соединяются параллельно, чтобы получить общую индуктивность 74 Гн.


Рисунок 2-8. Четыре трехвитковых контура размером 6 x 6 футов (1,8 x 1,8 м), соединенные последовательно, параллельно и последовательно-параллельно.

НЕОБХОДИМОЕ ЧИСЛО ХОДОВ

Проволочные петли должны иметь достаточное количество витков, чтобы обеспечить номинальную минимальную индуктивность 100 Гн на петлю, чтобы гарантировать стабильную работу системы индуктивной петли. Эмпирическое правило для количества витков, необходимых для получения значения индуктивности в требуемом диапазоне:

  • Если периметр петли меньше 9 м (30 футов), используйте три витка провода.
  • Если периметр петли превышает 9 м (30 футов), используйте два витка провода.
ЧУВСТВИТЕЛЬНОСТЬ КОНТУРА К ЭЛЕКТРОПРОВОДЯЩЕМУ ОБЪЕКТУ

Ток, протекающий через контурный провод, создает магнитное поле вокруг провода, как указано уравнениями 2-1, 2.1 и 2-3. Если транспортное средство (или любой другой электропроводящий объект) входит в это магнитное поле, и магнитное поле или составляющая магнитного поля перпендикулярны области объекта, в проводящем объекте индуцируются вихревые токи.Вихревые токи создают другое магнитное поле, которое противодействует магнитному полю петли, вызывая уменьшение общего магнитного поля вокруг петли. Поскольку индуктивность контура пропорциональна магнитному потоку, индуктивность контура уменьшается.

Вихревые токи индуцируются в электропроводящем объекте, таком как металлическое транспортное средство, магнитным полем, создаваемым током, протекающим через проволочную петлю. Затем вихревые токи создают магнитное поле, которое противостоит исходному магнитному полю, создаваемому индуктивной петлей.В результате уменьшается индуктивность контура.

Чувствительность контура к проводящему объекту можно проверить с помощью провода длиной 12 дюймов (30 см), сформированного в круг диаметром примерно 4 дюйма (10 см). Круговая петля образует разомкнутую электрическую цепь, когда концы проводов удерживаются так, чтобы они не касались друг друга. Не должно происходить срабатывания, когда разомкнутый круговой контур быстро перемещается горизонтально по индуктивному контуру проезжей части. Когда концы круговой петли соприкасаются, образуя замкнутый контур, прежде чем они будут проталкиваться через дорожную петлю, произойдет срабатывание из-за протекания вихревых токов.Это демонстрирует, что для срабатывания важен именно закороченный виток, а не масса провода или транспортного средства.

МОДЕЛИ ОБНАРУЖЕНИЯ ВЕЛОСИПЕДОВ И МОТОРИЗОВАННЫХ АВТОМОБИЛЕЙ

На рис. 2-9 показано обнаружение велосипеда или мотоцикла с помощью индуктивной петли. Эти средства передвижения могут быть смоделированы как вертикальный проводящий объект относительно плоскости петли. Когда цикл проходит по контурному проводу, в проводящих ободах колес и раме индуцируются вихревые токи. Когда цикл проходит непосредственно над проводом контура, связь между индуктивным контуром и циклом максимальна.


Рисунок 2-9. Обнаружение велосипеда, показывающее индуцированные вихревые токи. Черные стрелки представляют ток в контурном проводе, а белые стрелки — индуцированный поток.

Ходовая часть транспортного средства, напротив, является горизонтальной мишенью. Как показано на рисунке 2-10, ходовая часть моделируется как проводящая прямоугольная пластина, ширина которой равна ширине транспортного средства, а длина равна длине транспортного средства при некоторой средней высоте шасси.

Проводящая сетка может использоваться для аппроксимации электрических характеристик сплошной пластины. Когда сетка симметрично расположена над индуктивной петлей для обеспечения максимальной чувствительности, все наведенные внутренние токи сетки нейтрализуются. Это приводит к протеканию одиночного индуцированного тока по периметру сетки, что эквивалентно однооборотной прямоугольной проволочной петле или короткому витку. Трансформатор с воздушным сердечником справа на Рисунке 2-10 моделирует соединение между ходовой частью транспортного средства, представленное закороченным витком провода, и проводом индукционной петли.

Максимальная чувствительность обнаружения транспортного средства достигается за счет короткого замыкания на минимальном расстоянии от проводов контура. Следовательно, идеальный детектор с индукционной петлей имеет форму, которая приближается к периферии транспортного средства. Таким образом, квадратная петля размером 6 x 6 футов (1,8 x 1,8 м) будет предпочтительнее петли размером с двигатель транспортного средства.

Из-за высоты ходовой части грузовые автомобили с высокой платформой трудно обнаружить. Обнаружение этих транспортных средств максимально, когда ширина петли равна ширине грузовика, если позволяет ширина полосы движения.Длина петли не должна быть меньше ее ширины, чтобы избежать потери чувствительности.


Рисунок 2-10. Модель ходовой части автомобиля. В верхней части рисунка изображены электрические модели ходовой части автомобиля, а в нижней — провод индукционной петли.

ВЗАИМНАЯ ИНДУКТИВНОСТЬ

Самоиндукция индуктивного контура определяется с помощью магнитного потока контура. Когда магнитный поток петли соединяется с транспортным средством, связанный поток используется для определения взаимной индуктивности.

На рис. 2-10 показана магнитная связь между контуром и закороченным витком, которая ведет себя как трансформатор с воздушным сердечником. Взаимная индуктивность между первичной цепью (т. Е. Индуктивным контуром) и вторичной цепью (т. Е. Закороченным витком) определяется как

(2–16)

, где

M 21 = взаимная индуктивность между контуром 1 (контур) и контуром 2 (закороченный виток), henrys
N 2 = количество витков (равно 1 для закороченного витка)
21 = Магнитный поток перпендикулярно области закороченного витка, перемычки
I 1 = Ток, протекающий в контуре, амперы.

ЧУВСТВИТЕЛЬНОСТЬ ПЕТЛИ

Чувствительность контура SL индуктивного детектора определяется как

(2-17)

Чувствительность контура равна изменению индуктивности системы контура, вызванному токопроводящим металлическим предметом, деленному на исходную индуктивность системы контура.

, где

L NV = индуктивность в отсутствие транспортного средства, henrys
L V = индуктивность при наличии транспортного средства, henrys.
Чувствительность S L для трансформатора с воздушным сердечником, показанного на рисунке 2-10, при условии, что коэффициент качества Q больше 10, определяется как

процентов (2-18)

, где

K = Коэффициент связи
M 21 = Взаимная связь между петлей и закороченным витком, Генри
L 11 = Самоиндуктивность петли, Генри
L 22 Самоиндукция закороченного витка, Генрис.
Упрощенные выражения для самоиндукции и взаимной связи могут быть получены, если предположить, что влияние железа транспортного средства незначительно. Тогда r = 1 и собственная индуктивность дорожной петли длиной l 1 находится из уравнения 2-6 как

(2-19)

Индуктивность закороченного витка длиной l 2 равна

(2-20)

Взаимная индуктивность между закороченной витой петлей и дорожной петлей определяется соотношением

(2-21)

, где

A V = Площадь ходовой части автомобиля, (метры) 2
d 21 = Расстояние между петлей и коротким витком, метры.
Чувствительность тогда выражается как

(2-22)
, где A V A .

Уравнение 2-22 показывает, что чувствительность уменьшается для участков петель, превышающих площадь ходовой части транспортного средства. Чувствительность уменьшается по мере удаления шасси от петли в квадрате. Чувствительность не зависит от количества витков контура; однако разведение поворотов немного увеличивает чувствительность за счет увеличения l 1 за счет более глубокой прорези в проезжей части.

Приложение E содержит более сложные формулы для расчета S L для двухвитковых и других многооборотных индуктивных контуров. В этом приложении также доступны сравнения измеренной и рассчитанной чувствительности.

На рисунке 2-11 показано изменение чувствительности контура в зависимости от высоты ходовой части для 6 x 2 фута (1,8 x 0,6 м), 6 x 4 футов (1,8 x 1,2 м) и 6 x Трехвитковые индукционные петли длиной 6 футов (1,8 x 1,8 м). Чувствительность 6 х 2 фута (1,8 х 0.6-м) петля небольшая из-за малой длины л 1 .


Рисунок 2-11. Расчетная чувствительность трехвитковых индуктивных контуров в зависимости от высоты шасси автомобиля.

На рис. 2-12 показано снижение чувствительности контура, которое происходит при добавлении вводного кабеля длиной 200 футов (60 м) к контурам, указанным на рис. 2-11. Петля 6 x 2 фута (1,8 x 0,6 м), вероятно, будет вдвое больше для грузовика с высокой платформой в этих условиях.

На рис. 2-13 показано уменьшение чувствительности контура для транспортного средства с двухвитковой индукционной петлей по сравнению с чувствительностью трехвитковой петли.Чувствительность контура еще больше уменьшается при добавлении вводного кабеля.

ВЛИЯНИЕ АРМАТИВНОЙ СТАЛИ

На рис. 2-14 показано снижение чувствительности контура, которое происходит при установке индуктивного детектора на стальную арматурную сетку. Эффект от армирующей стали моделируется как закороченный виток на удвоенном расстоянии между ячейками от петли. Армирующая сталь снижает магнитное поле вокруг проводников петли, что вызывает уменьшение индуктивности петли и чувствительности петли.В Таблице 2-8 показано влияние на индуктивность контура при добавлении арматурной стали в основание дорожного покрытия. Значения консервативны, поскольку предполагается, что сетка является идеальным проводником. Современные электронные блоки индуктивного детектора способны обнаруживать транспортные средства, даже если контурный провод проложен на арматуре перед заливкой бетона.

Рисунок 2-12. Расчетная чувствительность трехвитковых индуктивных контуров с подводящим кабелем длиной 200 футов (60 м) в зависимости от высоты шасси автомобиля.


1 фут = 0,3 м

Рисунок 2-13. Расчетная чувствительность двухвитковых длинных индуктивных контуров в зависимости от высоты ходовой части.


1 фут = 0,3 м

Рисунок 2-14. Расчетная чувствительность индукционной петли размером 6 x 6 футов (1,8 x 1,8 м) к арматурной стали.

Индуктивные петли не функционируют как автомобильные датчики при установке над стальной арматурой, части которой соединены таким образом, что ток течет через арматуру.Этот индуцированный ток полностью или частично нейтрализует индуцированный транспортным средством ток в индуктивном контуре. Если расстояние между арматурными стержнями достаточно велико, токи могут не подавляться. И наоборот, если арматурный стержень не закорочен вместе при установке, он не будет поддерживать поток противотоков, которые ухудшают работу индуктивного контура.

Таблица 2-8. Влияние арматурной стали на индуктивность контура (H).
Число витков Без армирующей стали Сталь диаметром 1 дюйм Сталь диаметром 2 дюйма Сталь диаметром 4 дюйма
1 11 9 10 10
2 35 28 31 33
3 73 56 63 68
4 121 89 103 112
5 179 127 151 166
6 248 167 206 228
7 325 206 266298

1 дюйм = 2.5 см

Эпоксидные покрытия, обычно наносимые на арматуру, по своей природе являются изоляционными. Однако характер процесса нанесения покрытия обычно оставляет в покрытии пустоты, по которым могут течь токи. Количество допустимых пустот может быть указано в строительной документации. Противоток может увеличиваться в зимние месяцы в холодном климате, когда соли попадают на проезжую часть или настил моста.

ЧУВСТВИТЕЛЬНОСТЬ КОНТУРНОЙ СИСТЕМЫ

Чувствительность системы контура определяется как наименьшее изменение индуктивности на клеммах электронного блока, которое вызывает срабатывание контроллера.Эта чувствительность должна быть равна или превышать порог для электронного блока. Во многих штатах указано, что электронный блок должен реагировать на изменение индуктивности на 0,02 процента. Стандарты NEMA (см. Раздел 15.3.2 Приложения J), признавая различия в конструкции блока электроники ( L / L или L ), определяют порог чувствительности для трех классификаций тестовых автомобилей, когда они сосредоточены в одном 6 — x 6 футов (1,8 x 1,8 м) трехвитковая петля с длиной 100 футов (30.5 м) подводящего кабеля. Классы автомобилей:

Индуктивность, включенная последовательно или параллельно с индуктивно-петлевым детектором, снизит чувствительность петлевой системы на входных клеммах электронного блока.

Исследование, проведенное для проекта SCANDI в Детройте, показало, что на продолжительность вызова влияет высота поля магнитного потока, которая, в свою очередь, зависит от наличия и глубины арматурной стали и других факторов, специфичных для местоположения. (2) Исследование показало, что регулируемые ромбовидные петли компенсируют такие факторы в каждом месте, обеспечивая одинаковую продолжительность от петли к петле для данного транспортного средства на заданной скорости.

ЧУВСТВИТЕЛЬНОСТЬ ИНДУКТОРОВ ДВУХ СЕРИЙ

На рис. 2-15 показано вычисление общей индуктивности для комбинации двух отдельных индуктивных контуров, соединенных последовательно как один эквивалентный контур. (Рисунок 2-19 иллюстрирует соединение двух контуров таким образом.) Эквивалентная общая последовательная индуктивность L TS составляет

(2-23)
, где L A и L B — индивидуальные значения индуктивности контуров.

Рисунок 2-15. Эквивалентная общая индуктивность от двух последовательно включенных индуктивных контуров.

Эквивалентная общая последовательная чувствительность STS составляет

(2-24)

где Чувствительность контура при вхождении транспортного средства в контур A.

ЧУВСТВИТЕЛЬНОСТЬ ДВУХ ПАРАЛЛЕЛЬНЫХ ИНДУКТОРОВ

Рисунок 2-16 иллюстрирует расчет чувствительности для двух отдельных индуктивных контуров, соединенных параллельно как эквивалентный одиночный контур. (Рисунок 2-21 иллюстрирует соединение двух контуров таким образом.) Эквивалентная полная параллельная индуктивность L TP составляет

(2-25)

Эквивалентная общая параллельная чувствительность S TP составляет

(2-26)


Рисунок 2-16. Эквивалентная общая индуктивность от двух параллельных индуктивных контуров.

ПРИМЕР ОДНОГО КОНТУРА

1. Какова чувствительность контура на тяговом ящике для транспортного средства с высокой платформой (4 фута (1.2-м) ходовая) проходит по петле? Рисунок 2-17 иллюстрирует этот случай и показывает длину подводящих проводов. Эквивалентная электрическая схема показана на рисунке 2-18.

Рисунок 2-17. Один индуктивный контур, подключенный к вытяжной коробке и электронному блоку.

Рисунок 2-18. Эквивалентная одноконтурная электрическая цепь.

Чувствительность S L для ходовой части 4 фута (1,2 м) и трехвитковой ходовой части 6 x 6 футов (1.Петля 8 x 1,8 м) провода # 14 AWG составляет 0,1 процента от рисунка 2-11. Скрученные петли образуют подводящий провод длиной примерно 24 фута (7,3 м) к вытяжной коробке. Индуктивность на фут для контурного провода № 14 AWG с 5 витками на фут составляет 0,22 Гн / фут (0,7 Гн / м). Подводящая индуктивность L S составляет

(2-27)

Собственная индуктивность L L трехвитковой петли длиной 1,8–1,8 м (6 x 6 футов) из провода # 14 AWG на частоте 20 кГц из Приложения C составляет 74 Гн.Следовательно, чувствительность S P (в процентах) на вытяжной коробке составляет

(2-28)

2. Какова чувствительность системы индуктивного контура на входных клеммах электронного блока с экранированным подводящим кабелем типа 8720 длиной 200 футов (61 м) между вытяжной коробкой и электронным блоком?

Из таблицы 2-6 индуктивность кабеля типа 8720 составляет 0,22 Гн / фут. Общая последовательная индуктивность между контуром и входными клеммами электронного блока составляет

(2-29a)

(2-29b)

Тогда чувствительность S D на входных клеммах блока электроники будет

(2-30)

3.Какова чувствительность системы индуктивной петли на входных клеммах электронного блока с экранированным вводным кабелем типа 8720 длиной 200 футов (61 м) между вытяжной коробкой и электронным блоком, если четырехвитковый, 6 — x Используется петля # 14 AWG длиной 6 футов (1,8 x 1,8 м)?

Чувствительность S L для шасси высотой 4 фута (1,2 м) и четырехвитковой петли 6 x 6 футов (1,8 x 1,8 м) составляет 0,1 процента. Согласно Приложению C, собственная индуктивность контура составляет 125 Гн при 20 кГц. Последовательная индуктивность такая же, как в предыдущем примере.

Следовательно,

(2-31)

ДВЕ ПЕТЛИ ПОСЛЕДОВАТЕЛЬНО ПРИМЕР

1. Какова чувствительность системы индуктивного контура на входных клеммах электронного блока, когда второй идентичный контур включен последовательно с контуром, определяющим транспортное средство? На Рис. 2-19 показана конфигурация контура и показаны длины подводящих проводов. Последовательное соединение осуществляется в вытяжной коробке.

Рисунок 2-19. Две индуктивные петли, подключенные последовательно к вытяжной коробке и электронному блоку.

На рисунке 2-20 показана эквивалентная электрическая схема. Чувствительная петля представляет собой трехвитковую петлю размером 6 x 6 футов (1,8 x 1,8 м) из провода № 14 AWG. Собственная индуктивность второго контура (т. Е. Последовательного контура B) составляет 74 Н. Индуктивность подводящего провода контура B составляет

(2-32)

Общая последовательная индуктивность контура B и подводящего провода к вытяжной коробке составляет

(2-33)

, а общая последовательная индуктивность между двумя контурами и входными клеммами электронного блока составляет

(2-34a)

(2-34b)

Рисунок 2-20.Эквивалентная электрическая схема для двух контуров, подключенных последовательно к вытяжной коробке и электронному блоку.

Затем

(2-35)

ДВА ПЕТЛИ В ПАРАЛЛЕЛЬНОМ ПРИМЕРЕ

1. Какова чувствительность системы шлейфов на клеммах блока электроники при двух идентичных шлейфах, соединенных параллельно? На Рис. 2-21 показана конфигурация контура и показаны длины подводящих проводов. Эквивалентная электрическая схема показана на Рисунке 2-22. Все параметры такие же, как в предыдущем примере цикла.Суммарная индуктивность и чувствительность на входе в блок электроники рассчитываются как

(2-36)
и

(2-37)

Рисунок 2-21. Две индуктивные петли, подключенные параллельно к вытяжной коробке и электронному блоку.

Рисунок 2-22. Эквивалентная электрическая схема для двух контуров, подключенных параллельно к вытяжной коробке и блоку электроники.

Пусть

(2-38)

и (2-39)

Затем

(2-40)

(2-41)

и

(2-42)
(2-43)

Следовательно

(2-44 )

РЕЗОНАНСНАЯ ЦЕПЬ

Многие самонастраивающиеся электронные блоки с индуктивным контуром используют сдвиг частоты или изменение периода генератора, чтобы указать прохождение или присутствие транспортного средства.Частота генератора регулируется параллельным резонансным контуром, иногда называемым резервуарным контуром, состоящим из эквивалентной индуктивности системы контура и настраиваемой емкости, обнаруженной в электронном блоке. Эквивалентная емкость системы контура также включает в себя емкостные эффекты из-за размещения проводов контура в пропиле. Соответствующий эквивалентный коэффициент качества учитывает влияние потерь сопротивления системы. Если эквивалентная индуктивность системы контура слишком мала, генератор не будет колебаться.Производитель блока электроники указывает допустимый диапазон индуктивности петлевой системы и минимальный коэффициент качества петлевой системы.

Частота генератора рассчитывается как

(2-45)

, где L D , C D , Q D — индуктивность, емкость и добротность соответственно. , резервуарного контура.

Уравнение 2-45 показывает, что уменьшение индуктивности увеличивает резонансную частоту.Кроме того, коэффициент качества более пяти будет иметь незначительное влияние на характеристики резонансного контура.

ВРЕМЕННЫЕ ПЕТЛИ

Несколько производителей и государственных агентств стремились разработать надежную и экономичную временную петлю, которая удовлетворяет потребности в программах контроля скорости, подсчета транспортных средств, классификации транспортных средств и портативных программ взвешивания в движении (WIM). Ниже описаны два типа временных и переносных петлевых систем.

МАТОВЫЕ ПЕТЛИ

Временная петля типа мата состоит из прочного резинового мата, в который заделано несколько витков проволоки.Маты обычно меньше по ширине, чем типичная индуктивная петля длиной 6 футов (1,8 м). Стандартные размеры варьируются от 4 x 6 футов (1,2 x 1,8 м) до 3 x 6 футов (0,9 x 1,8 м). Коврики располагаются в центре полосы движения, причем более длинный размер параллелен потоку движения, так что большинство транспортных средств преодолевают коврик, тем самым продлевая срок службы коврика. Типичная установка показана на Рисунке 2-23. Гвозди и шайбы обычно используются для прикрепления мата к поверхности дороги. Широкий 3-дюймовый (7.6 см) наклеивается прочная клейкая лента для предотвращения подъема краев мата. Подводящие провода от коврика к оборудованию для сбора данных на обочине дороги заключены между двумя слоями ленты.

Рисунок 2-23. Типовая установка временного индуктивного петлевого детектора матового типа.

Некоторые агентства изготовили этот тип датчика в собственном магазине. Однако изготовление этих матов вручную было слишком трудоемким, чтобы быть рентабельным. Коврики были надежными, но при интенсивном движении грузовиков некоторые из них прослужили не более нескольких часов.

КОНФИГУРАЦИЯ ОТКРЫТОГО КОНТУРА

Один производитель производит предварительно отформованную временную переносную петлю размером 4 x 6 футов (1,2 x 1,8 м). Петля состоит из пяти слоев, как показано на рисунке 2-24. Нижний слой представляет собой антиадгезионный бумажный лист шириной 4 дюйма (101,6 мм), который защищает полосу клейкой битумной резиновой смеси шириной 2 дюйма (50,8 мм). Его верхняя поверхность отделана полиэтиленовой пленкой высокой плотности. Эта набивочная полоса является основой для трех витков контурного провода №22 AWG.Аналогичная 2-дюймовая (50,8 мм) прокладка закрывает провода контура. Верхний слой представляет собой полосу клеевого битумного компаунда шириной 4 дюйма (101,6 мм), армированную тканой полипропиленовой сеткой.

Предварительно сформированная конфигурация разомкнутого контура может быть доставлена ​​в выбранное место и установлена ​​одним человеком за несколько минут. Установка состоит из снятия нижней подкладки, размещения петли на проезжей части и приложения давления, достаточного для обеспечения сцепления. Стандартно — пять футов защищенного подводящего провода.Доступны другие размеры петли и длины защищенных подводящих проводов.

Другой подход к конфигурации разомкнутого контура был разработан Отделом специальных исследований Министерства транспорта штата Невада (DOT). (3) DOT Невады ранее использовала переносную петлю размером 6 x 6 футов (1,8 x 1,8 м), состоящую из трех витков многожильного медного провода № 14 AWG, обмотанного черной изолентой. По мере увеличения использования переносных петель возрастали трудоемкие проблемы, связанные с прочностью и обслуживанием.Это привело к испытаниям различных лент, резиновых трубок и резинового мата в качестве замены клейкой ленты, покрывающей оригинальные петли.

Рисунок 2-24. Пятиуровневая временная конфигурация детектора разомкнутого контура.

Битумная лента производства Polyguard Products была в конечном итоге выбрана для ограждения проволочных петель. Это армированный тканью резиноподобный материал с одной клейкой стороной. Окончательная конфигурация состоит из четырех витков медного провода # 14 AWG, намотанных в цеху и скрепленных вместе для удобства использования.Петли заключены в две обертки из материала Polyguard и установлены, как показано на Рисунке 2-25.


1 фут = 0,3 м
1 дюйм = 2,5 см

Рисунок 2-25. Портативная установка с открытым контуром в Неваде.

Был проведен ряд испытаний для измерения прочности и точности петель по сравнению с обычными петлями, установленными в пазах для пиления. В других тестах сравнивали конфигурацию 4 x 6 футов (1,2 x 1,8 м) с конфигурацией 6 x 6 футов (1,8 x 1,8 м).Испытательные контуры были установлены на сельской двухполосной проезжей части ФАП с высоким процентом грузовиков, состоящих из нескольких единиц. В обеих сериях испытаний использовался один и тот же самописец счетчика / классификатора.

После почти 5000 срабатываний разница между количеством транспортных средств, подсчитываемых с помощью переносной петли этого типа и петли, установленной пропилом, составила менее 1 процента. Также было обнаружено, что размер петли 4 x 6 футов (1,2 x 1,8 м) работал практически так же, как размер петли 6 x 6 футов (1,8 x 1,8 м), независимо от того, была ли петля в пиле. в разрезе или в переносном виде.

Переносные петли все еще работали после более чем годичного испытания продукта на долговечность, состоящего из более миллиона активаций. Эта оценка, проведенная на шоссе US 395 между Рино и Карсон-Сити, штат Невада, показала, что петли являются чрезвычайно прочными и способны выдерживать широкий диапазон погодных условий. Дорога была покрыта асфальтом, и через несколько месяцев петли вросли в тротуар, что, возможно, способствовало их долговечности. Ожидается, что на бетонной поверхности эти петли прослужат более полумиллиона срабатываний.Петли также использовались с накладками и были способны выдерживать высокую температуру, связанную с этим процессом.

Испытания в полупостоянном месте увеличили долговечность петли, поскольку петли не подвергались повторному удалению и повторной установке. Однако другие петли того же типа неоднократно устанавливались без признаков чрезмерного износа. В результате этих испытаний и опыта работы с этими петлями, Nevada DOT теперь использует петлю Polyguard во всех своих переносных установках петли.

БЛОКИ ЭЛЕКТРОНИКИ

Блок электроники, который генерирует частоту возбуждения индуктивного контура и контролирует работу системы индуктивного контура, значительно изменился с 1970-х годов. Ранние версии электронных блоков с индуктивным контуром работали на фиксированной резонансной частоте, используя кристалл для стабилизации частоты. Было много проблем с блоками кристаллической электроники, особенно при использовании с длинными подводящими кабелями.

Одним из них был дрейф резонансной частоты из-за изменений температуры и влажности окружающей среды.Эти устройства были сняты с эксплуатации в 1970-х годах и первоначально были заменены конструкциями, в которых использовались аналоговые фазовращатели, способные компенсировать (или отслеживать) дрейф, вызванный изменениями окружающей среды. Современные электронные блоки стабилизируют частоту колебаний и обнаруживают транспортные средства с конфигурациями, которые включают цифровой сдвиг частоты, цифровой пропорциональный сдвиг частоты, цифровой сдвиг периода и цифровой пропорциональный сдвиг периода. Теория работы этих устройств описана ниже.Блоки аналоговой электроники с фазовым сдвигом все еще используются ограниченно для классификации транспортных средств.

АНАЛОГОВЫЙ БЛОК ЭЛЕКТРОНИКИ С ПЕРЕМЕЩЕНИЕМ ФАЗЫ

Это устройство было разработано для удовлетворения требований европейского рынка, где велосипеды должны обнаруживаться. Как и модель с кварцевым резонатором, он работает как датчик фазового сдвига, но использует два генератора с переменной частотой, а не один генератор с кварцевым управлением. Генератор контура работает на частоте от 25 до 170 кГц, что определяется контуром и подводящим проводом.Генератор контура соединен со вторым внутренним генератором, так что процедура начальной ручной настройки приводит два генератора в синхронизацию по частоте и фазе.

Ручка настройки перемещает ферритовый сердечник взад и вперед внутри индуктора, заставляя подключенный к нему генератор изменять свою частоту (и фазу) в соответствии с частотой генератора контура. Прибытие транспортного средства в контур снижает индуктивность контура, и генератор контура пытается выйти из синхронизации со своим сопутствующим генератором.Он не может изменять частоту из-за резистора перекрестной связи, но развивается фазовый сдвиг, который является основой для обнаружения транспортного средства.

Благодаря этой концепции конструкции электронный блок способен компенсировать (или отслеживать) дрейф окружающей среды. Когда температура внутри шкафа контроллера изменяется, два генератора смещаются одинаково. Выход двух генераторов подается на схему сравнения фаз, которая вырабатывает постоянное напряжение, пропорциональное величине сдвига; Таким образом, термин аналоговый, потому что он использует переменные напряжения, а не цифровые подсчеты для обозначения проезда или присутствия транспортного средства.

Когда в зоне обнаружения нет транспортных средств, постоянное напряжение сохраняется и запоминается конденсатором памяти. Когда автомобиль вызывает изменение на выходе фазового компаратора, разница между ним и конденсатором памяти заставляет реле изменять состояние. За очень медленными изменениями постоянного напряжения следует конденсатор памяти, который позволяет схеме компенсировать дрейф из-за изменений окружающей среды. Схема памяти в конечном итоге забудет о транспортном средстве, припаркованном над петлей, и сбросит этот вызов.Подробная информация о компенсации дрейфа окружающей среды будет включена позже в разделе «Электронный блок цифрового сдвига частоты».

ОБЗОР ЦИФРОВОЙ ЭЛЕКТРОНИКИ

Стабильность и дополнительные функции, обеспечиваемые электронной цифровой обработкой, побудили большинство производителей электронных устройств с индуктивными детекторами производить цифровые устройства. Цифровые методы позволяют более надежные, точные и точные измерения, чем аналоговые методы.

При использовании блоков цифровой электроники необходимо учитывать взаимосвязь между повышенной чувствительностью и, как следствие, увеличением времени отклика.Большое время отклика может привести к значительной ошибке в измерениях скорости транспортного средства, когда в конфигурации устройства ограничения скорости используются два контура (т. Е. Разделенные известным и измеренным расстоянием). Время отклика зависит от производителя электронного блока.

Цифровые электронные блоки распознают изменение частоты или периода формы сигнала. Сдвиг частоты или периода генератора вызван уменьшением индуктивности контура, создаваемым, когда транспортное средство находится в зоне обнаружения контура.Частота генератора для коэффициента качества Q , равного 5 или выше, равна

(2-46)

, где

f D = частота осциллятора, Гц
L D = общая индуктивность (т. Е. Контур плюс вводный кабель) на входных клеммах электронного блока, henrys
C D = Общая емкость на входных клеммах электронного блока, Генри.

Нормализованное изменение частоты генератора из-за нормализованного изменения индуктивности на входных клеммах электронного блока, когда добротность составляет 5 или больше, определяется как

(2-47)

, где

f D = Изменение частоты генератора электронного блока, Гц
L D = Изменение индуктивности на входных клеммах электронного блока, henrys
S D = Чувствительность блока электроники к изменению индуктивности.

Обнаружение транспортного средства системой детектора с индукционной петлей в первую очередь индуцируется приближением транспортного средства к скрытой индуктивной проволочной петле, что вызывает изменение индуктивности петли в цепи генератора индуктивности-емкости ( LC ), образованной петлей, вывод в кабеле, а входной конденсатор находится в блоке электроники. Некоторые производители обнаруживают автомобили по процентному изменению индуктивности контура L L / L L , в то время как другие просто используют изменение индуктивности контура L L .Ни одна из этих величин не может быть измерена непосредственно на входных клеммах электронного блока. Однако для определения чувствительности некоторые производители предоставляют частотомеры для измерения резонансной частоты и величины изменения частоты.

Опыт показывает, что процентное изменение индуктивности ( L L / L L ) от незанятого контура к занятому контуру чрезвычайно воспроизводимо для данного размера и геометрии контура, данного размера и геометрии транспортного средства, а также заданное расположение автомобиля относительно петли.Поскольку такие параметры, как фактическая индуктивность контура и рабочая частота контура, не влияют на L L / L L , но влияют на L L , следующие обсуждения и вычисления относятся к L L / L L концепт. Термин «чувствительность электронного блока» в контексте этого обсуждения определяется как значение L L / L L , которое приводит в действие электронный блок с меньшими значениями, которые интерпретируются как обозначающие большую чувствительность.

Для коротких вводов кабеля с незначительной индуктивностью последовательного кабеля

(2-48)

, где

L L = Изменение индуктивности контура при обнаружении транспортного средства, Генри
L L = Индуктивность контура, Генри
S L = Чувствительность контура к транспортному средству в зоне обнаружения.

Период генератора T D определяется как инверсия частоты f D .Для Q из 5 или больше T D задается как

(2-49)

Нормализованное изменение периода генератора, вызванное нормализованным изменением индуктивности на входном выводе электронного блока, когда Q равно 5 или больше, примерно равно

(2-50)

Отрицательный знак указывает на то, что изменение периода противоположно изменению индуктивности.

С появлением сложных цифровых микропроцессоров и доступностью информации о резонансной частоте контурной сети на входных клеммах электронного блока, можно относительно легко получить точные измерения следующих параметров:

  • Сдвиг частоты ( f D ).
  • Относительный сдвиг частоты ( f D / f D ).
  • Сдвиг периода ( T D ).
  • Относительный сдвиг периода ( T D / T D ).

Четыре типа блоков цифровой электроники, каждый из которых использует один из этих методов измерения, представлены ниже. Подробный анализ и блок-схемы каждого устройства представлены в Приложениях с F по I.

БЛОК ЦИФРОВОГО ПЕРЕМЕНА ЧАСТОТЫ

Агрегаты данного типа не производятся. Тем не менее, теория и рабочие характеристики, связанные с этой концепцией, включены, чтобы можно было лучше понять работу электронного блока цифрового пропорционального сдвига частоты.

Цифровой процессор в электронном блоке цифрового переключения передач будет сравнивать отсчеты, пропорциональные частоте генератора, когда транспортное средство присутствует, с контрольным отсчетом, производимым периодически, когда транспортных средств нет.Счетчик ссылок сохраняется в памяти. Во время обнаружения транспортного средства, когда счетчик превышает контрольный счетчик на предварительно установленный счетчик порога чувствительности, инициируется вызов автомобиля.

Чувствительность электронного блока сдвига частоты вычисляется по уравнению 2-47 как

(2-51)

Приложение F показывает, что

(2-52)

, где

N ft = Количество пороговых значений фиксированной частоты, выбираемое переключателем чувствительности
N fc = Количество циклов генератора, подсчитываемых переменной частотомер
K f = постоянная частотной чувствительности.

В методе цифрового частотного сдвига S D пропорционально квадратному корню из произведения L D C D . Поскольку большие значения S D представляют собой пониженную чувствительность, отсюда следует, что чувствительность уменьшается пропорционально квадратному корню из L D C D продукта с измерением f D . Следовательно, каждый раз, когда переключатель частоты изменяется в новое положение (например,g., чтобы избежать перекрестных помех), чувствительность изменится и, если это критично, потребуется новая установка переключателя чувствительности.

Увеличенная длина вводного кабеля увеличивает индуктивность вводного кабеля и, следовательно, вызывает некоторую потерю чувствительности. Увеличенный продукт L D C D приведет к еще большей потере чувствительности. Следовательно, этот тип измерения нецелесообразен.

БЛОК ЦИФРОВОГО ПЕРЕКЛЮЧЕНИЯ ЧАСТОТЫ

Цифровой процессор в электронном блоке цифрового пропорционального сдвига частоты сравнивает отсчеты, пропорциональные частоте генератора, когда транспортное средство присутствует, с контрольным отсчетом, производимым периодически, когда транспортное средство отсутствует.Счетчик ссылок хранится в памяти. Когда счет во время обнаружения транспортного средства превышает контрольный счет на предварительно установленный счетчик порога чувствительности, инициируется вызов транспортного средства.

Электронный блок пропорционального сдвига частоты отличается от блока сдвига частоты тем, что счетчик частоты поддерживается приблизительно постоянным (как поясняется далее в Приложении G).

Чувствительность не зависит от индуктивности L D и емкости C D на клеммах электронного блока.Чувствительность рассчитывается как

(2-53)

, где

% PDF-1.3 % 756 0 объект > endobj xref 756 105 0000000016 00000 н. 0000002452 00000 н. 0000002640 00000 н. 0000005060 00000 н. 0000005234 00000 п. 0000005301 00000 п. 0000005507 00000 н. 0000005739 00000 н. 0000005918 00000 н. 0000006064 00000 н. 0000006264 00000 н. 0000006506 00000 н. 0000006640 00000 н. 0000006786 00000 н. 0000006933 00000 п. 0000007119 00000 п. 0000007187 00000 н. 0000007348 00000 п. 0000007488 00000 н. 0000007626 00000 н. 0000007770 00000 н. 0000007909 00000 н. 0000008052 00000 н. 0000008191 00000 п. 0000008371 00000 п. 0000008515 00000 н. 0000008658 00000 п. 0000008815 00000 н. 0000008976 00000 н. 0000009044 00000 н. 0000009247 00000 н. 0000009454 00000 п. 0000009589 00000 н. 0000009723 00000 н. 0000009878 00000 н. 0000010037 00000 п. 0000010176 00000 п. 0000010326 00000 п. 0000010548 00000 п. 0000010674 00000 п. 0000010837 00000 п. 0000010974 00000 п. 0000011195 00000 п. 0000011321 00000 п. 0000011451 00000 п. 0000011594 00000 п. 0000011800 00000 п. 0000011952 00000 п. 0000012086 00000 п. 0000012216 00000 п. 0000012353 00000 п. 0000012499 00000 п. 0000012642 00000 п. 0000012825 00000 п. 0000012994 00000 п. 0000013062 00000 п. 0000013200 00000 п. 0000013382 00000 п. 0000013562 00000 п. 0000013693 00000 п. 0000013840 00000 п. 0000014005 00000 п. 0000014162 00000 п. 0000014347 00000 п. 0000014478 00000 п. 0000014634 00000 п. 0000014789 00000 п. 0000014980 00000 п. 0000015111 00000 п.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *