Сервоприводный стабилизатор напряжения схема – Электромеханический (сервоприводный) стабилизатор напряжения

Содержание

Типы стабилизаторов напряжения

 

Стабилизаторы со ступенчатым регулированием

Принцип работы

Основные детали стабилизаторов этого типа - автотрансформатор состоящий из нескольких обмоток и устройство коммутации, которое переключает эти обмотки. 

На входе устройства находится электронная плата, которая анализирует сетевое напряжение и управляет переключателями, которые подают напряжение на выход от соответствующего вывода обмотки автотрансформатора.

Количество обмоток и , соответственно, ступеней может варьироваться от 4 до 9. Чем больше ступеней, тем точнее регулируется напряжение.

Быстродействие ступенчатых СН достигает 5-7 мсек. 

Переключателями могут служить:

  • электромеханические реле
  • тиристоры, симисторы

 Преимущество реле - отсутствие искажения формы напряжения, недостаток - ограниченная долговечность

Преимущества электронных  переключателей - долговечность, недостатки - искажение формы напряжения, чувствительность к помехам в сети.

Недостатки 

Так как СН этого типа регулируют напряжение ступенями, то на его выходе напряжение колеблется в определённых пределах, например, для стабилизатора с напряжение 220 В+/- 8% на выходе получим 203-237 В.

Это хорошо видно на графике:

 

Это основной недостаток ступенчатых ступенчатых преобразователей.

Основные преимущества:

  • небольшой размер
  • невысокая стоимость
  • возможность работы с перегрузкой
  • широкий диапазон входного напряжения 
  • практически бесшумная работа

Все эти достоинства оценили потребители, и сейчас большинство пользуется именно этими ПН.

Схема ступенчатого стабилизатора

Схема релейного стабилизатора:

Схема тиристорного (симисторного) стабилизатора

 

Для увеличения точности регулирования напряжения применяют двухкаскадные схемы - первая грубая регулировка и второй каскад - для увеличения точности.

 Вот как выглядит такой стабилизатор внутри:

Электромеханические стабилизаторы напряжения (сервоприводные)

Принцип работы

Главные детали в данных стабилизаторах - автотрансформатор и электромеханический переключатель, сервопривод.

Сервопривод представляет из себя бегунок, который движется по по виткам трансформатора и снимает с них нужное напряжение.

Недостатки

  • низкая надёжность
  • небольшой срок службы
  • низкая скорость реакции на изменение напряжения
  • шум при переключении

В качестве съёмного бегунка используют угольные щётки, поэтому срок службы и надёжность оставляют желать лучшего.

Во время работы слышен характерны звук искрения в щёточном механизме.

Скорость реакции примерно, 1 с на 10% изменения напряжения от номинала, поэтому при больших и резких скачках, например, работе сварочного аппарата, данный тип СН не сможет корректно стабилизировать напряжение.

Основные неисправности механических СН - залипание сервоприводного механизма и истирание бегунка-щётки.

Преимущества

  • низкая стоимость
  • точность регулирования
  • не вносит искажений на выходе

Сервоприводный двигатель отрабатывает колебания напряжения, с точностью 2-3%.

А стоимость из-за простоты конструкции невысокая, и такие стабилизаторы доступны по цене.

Стоит отметить, что сейчас появились роликовые механические СН, в которых вместо угольной щётки используется подвижный ролик - долговечность и надёжность таких стабилизаторов на порядок выше.

Схема электромеханического стабилизатора

 

Схема бегункового механизма:

Фото сервопривода в электромеханическом СН:

 

Инверторные стабилизаторы.

Ещё их называют стабилизаторы с двойным преобразованием или "онлайн стабилизаторы"

Принцип работы

СН этого типа преобразуют переменное напряжение сети в постоянное, после чего из постоянного формируют переменное со стабильными параметрами частоты, уровня и формы.

Таким образом параметры выходного напряжения не зависят от параметров входного.

Схема инверторного стабилизатора

ВФ - входные фильтры

ККМ - корректор коэффициента мощности

ИНВ - преобразователь постоянного напряжения в переменное

ВИП - вторичный источник питания

МК - микроконтроллер, управляющий работой всей схемы

Преимущества инверторных стабилизаторов

  • широкий диапазон входного напряжения
  • стабильные параметры выходного напряжения
  • бесшумность
  • небольшие габариты и вес
  • фильтрация помех и высокочастотных выбросов из сети
  • высокий КПД
  • защита по превышению тока в нагрузке

Инверторы способны работать от 100 В! При этом имеется снижение отдаваемой мощности (до 50%). Но это всё равно отличный показатель по сравнению с другими типами СН. Верхний предел доходит до 300 В.

При этом форма выходного сигнала - чистая синусоида, со стабильной частотой 50 Гц и напряжением 220 В. Эти параметры не зависят от параметров входного сигнала, а задаются внутренним генератором. Стабильность держится в пределах +/- 05-1%. 

Преобразователи способны работать с небольшой перегрузкой - до 120%. При увеличении мощности нагрузки стабилизатор плавно ограничивает ток, не давая выходить мощности за опасные пределы. Также есть защиты от скачков напряжения и перегрева самого прибора.

Современный уровень развития электроники позволяет разместить довольно мощные стабилизаторы в небольшом корпусе, сравнительно маленького веса.

КПД, благодаря современной элементной базе и наличию встроенного корректора коэффициента мощности переваливает за 90 %.

Очень часто такие преобразователи совмещают с аккумуляторными батареями, получая ИБП - источник бесперебойного питания или UPS. Это позволяет питать потребителей электроэнергии даже при полном отключении электричества.

Недостатки инверторного стабилизатора

Недостатком таких СН является  цена. Но всё равно их используют всё чаще. А стоимость данных приборов будет снижаться по мере развития электроники и элементной базы для неё.

masterxoloda.ru

релейный или сервоприводный — VINUR

Стабилизатор напряжения следует отнести к той категории устройств, незаметная работа которых способна избавить нас от порчи техники и незапланированных затрат. Чтобы правильно выбрать стабилизатор напряжения, прежде всего необходимо учесть специфику электроснабжения дома, в котором будет осуществляться стабилизация.

Качество подаваемой электроэнергии в Украине не отличается высокими стандартами, однако если в городах отклонения от регламентированных параметров можно назвать сносными, то в селах и ПГТ падения, как и скачки, — регулярны, а процент отклонения может просто зашкаливать. К стабилизаторам, наиболее распространенным в бытовом секторе, следует отнести два типа устройств: релейные, купить которые можно по наиболее низкой стоимости, и сервоприводные, параметры стабилизации которых несколько выше релейных.

Релейный стабилизатор

Релейный стабилизатор напряжения

Низкая цена данного вида обусловлена простотой его устройства. Выполнение функций осуществляется тремя основными элементами:

  1. Трансформатор. Имеет несколько обмоток, стандартно — 4, на некоторых моделях их количество достигает 9.
  2. Реле. Осуществляет переключение между обмотками.
  3. Управляющая плата. Осуществляет замер входного тока, вычисляет разницу напряжения, которую необходимо добавить на выходе.

Важной особенностью работы такой схемы является ступенчатое изменение выходного тока. Фиксированное количество обмоток обеспечивает нормализацию выходного тока лишь на определенные величины. Так, стабилизаторы, оснащенные трансформаторами с 4 обмотками, обеспечивают добавление со стандартным шагом 20 — 25 V. При большем количестве обмоток возможна более точная стабилизация, однако скорость срабатывания устройства при искажении сигнала снижается.

При снижении сигнала ниже уровня, который стабилизатор способен выровнять, питание отключается. Когда на вход подается сигнал допустимой величины, устройство возобновляет работу. При подобном запуске могут возникать вредные переходные процессы.

Преимущества:

  • Широкий диапазон допустимых для полноценной работы значений входного сигнала
  • Низкая чувствительность к искажениям входного сигнала, включая изменение номинальной частоты
  • Низкая чувствительность к перегрузкам, способность работать длительное время при таких условиях
  • Широкий диапазон рабочей температуры, нижний порог которой достигает -40°C, а верхний — +40°C
  • Компактные размеры
  • Цена

При соблюдении требуемых производителем условий использования, а также регулярном техническом обслуживании, стабилизатор релейного типа способен проработать свыше 10 лет.

Недостатки:

  • Ступенчатая стабилизация
  • Низкая скорость реакции
  • Шумная работа, особенно при частых скачках напряжения
  • Чувствительность реле к загрязнениям любого типа

Выбор релейного типа стабилизации не оправдан для защиты высокоточной техники, чувствительной к качеству подаваемого напряжения. Многие выбирают релейный стабилизатор из-за низкой стоимости. Для стабилизации обычной бытовой техники этот прибор неплохо справляется со своими задачами.

Сервоприводный стабилизатор

Сервоприводный стабилизатор напряжения

Стабилизация входного напряжения в электромеханическом приборе обеспечивается следующими основными составляющими:

  1. Электродвигатель
  2. Управляющая плата

При изменении входного напряжения токоснимающие элементы перемещаются по обмоткам трансформатора, тем самым обеспечивая коррекцию значений выходного напряжения до необходимого.

Достоинства:

  • Плавная стабилизация
  • Высокая точность
  • Доступная цена

Недостатки:

  • Скорость реакции
  • Низкая износоустойчивость механизма
  • Необходимость в замене токоснимающих графитовых щеток
  • Шумность
  • Большие размеры

Стабилизатор напряжения сервоприводного типа обладает высокой точностью стабилизации, однако нуждается в регулярном техническом обслуживании. Конструкция, включающая движущиеся части, подразумевает шумность работы, поэтому его установка более приемлема в техническом помещении, где шумность не будет играть значения. Токоснимающие щетки во время работы генерируют поток искр, поэтому электромеханический стабилизатор не может устанавливаться в помещениях, эксплуатация которых связана с использованием газа.

Сравнение основных параметров релейных и сервоприводных устройств

Релейные

Сервоприводные

Регулировка

Ступенчатая

Плавная

Точность

До 7-8%

До 3%

Быстродействие

40 мс

От 8 мс

КПД

99,2%

97-98%

Надежность

Высокая

Необходимо регулярное ТО

Шумность

Низкая

Средняя либо высокая

Габариты

Небольшие

Большие

Стоимость

Самая низкая

Низкая — средняя

vinur.com.ua

Ремонт стабилизаторов напряжения своими руками

Сегодня рассмотрим перечень базовых неисправностей стабилизаторов напряжения различных типов с описанием причин возникновения и методов их ремонта.

Сегодня рассмотрим перечень базовых неисправностей стабилизаторов напряжения различных типов с описанием причин возникновения и методов их ремонта. Ведь не каждая поломка стабилизатора напряжения требует сервисного ремонта, особенно по истечении гарантийного срока.

О внутреннем устройстве и типах стабилизаторов

Из всех разновидностей стабилизаторов напряжения можно выделить три наиболее распространённых топологии с довольно специфичными принципами преобразования. Среди них нельзя однозначно выделить самую надёжную, слишком многое зависит от характера питания и типа нагрузки, а также от добротности исполнения прибора. В нашем обзоре мы рассмотрим сервоприводные, релейные и полупроводниковые преобразователи, особенности их работы и типовые неисправности.

Ремонт стабилизаторов напряжения своими руками

В сервоприводном стабилизаторе основным функциональным органом служит линейный трансформатор со множеством выводов средних точек вторичной, а иногда и первичной обмотки — от 10 до 40 в зависимости от класса точности. Концы выводов собраны в коллекторную гребёнку, по которой перемещается токосъёмная каретка. В зависимости от действующего напряжения по линии питания, стабилизатор поправляет положение каретки, регулируя тем самым число задействованных витков и, соответственно, коэффициент трансформации. На выходе схемы может осуществляться более тонкая подстройка напряжения, например с помощью интегральных полупроводниковых стабилизаторов.

Ремонт стабилизаторов напряжения своими руками


Релейные трансформаторы устроены похожим образом. Число выводов трансформатора у них меньше, вместо плавного регулирования тонкость подстройки достигается рекомбинацией включенных в работу обмоток. За оперативное переключение отвечают силовые реле со сложной конфигурацией релейной группы. Как и в предыдущем случае, на выходе могут стоять дополнительные фильтры, стабилизаторы и устройства защиты, тем не менее, основную работу выполняют трансформатор и релейная сборка под аналоговым управлением.

В основе электронных стабилизаторов напряжения может лежать два принципа преобразования. Первый — переключение обмоток трансформатора, но уже с помощью симметричных тиристоров, а не реле. Второй принцип — преобразование тока в постоянный, его накопление в буферных ёмкостях (конденсаторах), а затем обратное преобразование в «переменку» с чистой синусоидой посредством встроенного генератора. Схема на первый взгляд кажется достаточно сложной, но зато так обеспечивается беспрецедентно высокая точность стабилизации и качественная защита линии.

Конечно, есть и другие схемы стабилизаторов, в том числе и гибридные, но по причине узкоспециализированного применения или архаичности их мы рассматривать не будем. Каждое из трёх наиболее распространённых семейств обладает так называемыми детскими болезнями или врождёнными недостатками техники. И поэтому важнейшая задача перед отправкой прибора в сервисный центр — установить, не является ли поломка причиной несоблюдения норм ухода или заурядной для этого вида стабилизатора неисправностью.

Типовые неисправности релейных приборов

Релейные стабилизаторы характеризуются оптимальным соотношением стоимости и надёжности. Основному износу подвергается релейная группа, а при частой или постоянной работе в режиме повышенной нагрузки — также и диэлектрическая изоляция трансформаторных обмоток.

Диагностировать реле как причину неисправности достаточно просто. Первым делом производится демонтаж компонентов с печатной платы, отличить их можно по компактному прямоугольному корпусу, иногда из прозрачного пластика, с числом выводов не менее шести. Чтобы определить назначение выводов и схему переключения можно обратиться к принципиальной электрической схеме или технической спецификации на конкретный тип реле согласно указанной на корпусе маркировки.

Можно произвести пробное включение реле, для чего на контакты катушки подается рабочее напряжение, как правило, его указывают на корпусе изделия. Отсутствие щелчка при подключении — явный признак сгоревшей катушки или залипших контактов. Если щелчок слышен, но при прозвонке группы основных контактов не соблюдается схема их переключения, проблема, скорее всего, в механизме отброса и прижатия, либо в обугленных контактных площадках.

Ремонт стабилизаторов напряжения своими руками

Значительная часть радиоэлектронных реле имеет разборный корпус и может подвергаться обслуживанию: восстановлению работы механизма, очистке контактных подушечек от нагара ластиком, иногда даже замене неисправной катушки. Однако лучшим решением будет всё же приобретение новых реле на замену вышедшим из строя согласно артикулу или расположению выводов.

Ремонт стабилизаторов напряжения своими руками

Потеря диэлектрической прочности трансформатора вследствие перегрева сопровождается междувитковыми замыканиями и внешне наблюдается как потемнение или разрушение изоляции обмоток. Основной признак — существенное снижение сопротивления ниже паспортных норм.

Поскольку большинство бюджетных стабилизаторов имеют одну цельную первичную обмотку и многовыводную вторичную, перемотка не вызывает особых сложностей. В каждом звене число витков небольшое, их можно аккуратно уложить даже без веретена или прочих намоточных приспособлений. Самое важное — точно соблюдать количество витков и направление укладки, а также верно определить исходное удельное сопротивление проводников, а не просто приобретать обмоточный провод по диаметру.

Ремонт стабилизаторов напряжения своими руками

Другая разновидность неисправностей трансформатора — срабатывание полупроводникового термопредохранителя, который обычно включен в разрыв одной из обмоток. Для замены полупроводникового элемента достаточно уточнить его серию или основные параметры, чтобы подобрать аналог. Обычно термопредохранитель подключён последовательно с первым звеном вторичной обмотки, поэтому для доступа к нему придётся снять все наружные витки. Диагностируется проблема просто: между началом обмотки и первым отводом цепь не прозванивается, зато все остальные витки в полном порядке.

Поломки сервоприводных стабилизаторов

Основная причина поломок сервоприводных устройств очевидна: износ токосъёмного узла. Именно этот недостаток и входит в разряд детских болезней, которые не удается устранить в большинстве моделей бюджетной техники.

Ремонт стабилизаторов напряжения своими руками

Существует два вида токосъёмных механизмов. При малых нагрузках с задачей переключения обмоток прекрасно справляются обычные подпружиненные щётки. Устройство полностью повторяет принцип работы коллекторных двигателей электроинструмента, разве что сам коллектор развёрнут из цилиндрического положения в плоскость. Второй тип токосъёмников имеет щёточный узел в виде ролика, за счёт чего снижается трение при движении, а значит, не происходит интенсивного износа ламелей. При этом скорость износа плиточных и роликовых щёток примерно сопоставима.

Ремонт стабилизаторов напряжения своими руками

Недостаток роликового токосъёмника проистекает из его геометрии. Контактное пятно очень малое — только лишь линия касания цилиндрического ролика к плоскости. Правда, в наиболее технически совершенных моделях ламели имеют радиусные канавки, хотя такое решение не совсем оправдано: по мере износа графитового ролика площадь контакта неизбежно снижается. В зависимости от интенсивности эксплуатации, замена щёток требуется с периодичностью от 3 до 7 лет. Ситуация может усугубляться при наличии большого количества пыли и нагара — вплоть до замыкания нескольких обмоток или полной потери контакта.

Хотя сервоприводные стабилизаторы также подвержены работе в режиме перегрузки, их трансформатор изнашивается меньше. В отличие от релейных приборов, в которых при переключении регулярно происходят броски напряжения и тока, коллекторный узел проводит регулировку более плавно, из-за чего механическое действие тока выражено минимально. Лаковая изоляция обмоток по-прежнему иссыхает и становится хрупкой, но при этом не осыпается.

Ремонт стабилизаторов напряжения своими руками

В основном же принцип работы сервоприводного стабилизатора предельно прозрачен. Если при включении присутствует индикация входного напряжения, но прибор не реагирует, неисправность кроется либо в самом приводе, либо в контрольно-измерительной цепи. В последнем случае неисправный элемент схемы легко обнаружить чисто визуально или прозвонкой. Если на выходе нет напряжения — неисправен трансформатор, если же не обеспечивается должная точность стабилизации — на лицо наличие междувиткового замыкания во вторичной обмотке, загрязнение коллектора, износ токосъёмных щеток или самих ламелей.

Характерные проблемы электронных устройств

Инверторные стабилизаторы считаются наименее ремонтопригодными в домашних условиях. Причин тому несколько, но первоочередная — необходимость специальных познаний в схемотехнике и, в частности, принципах работы импульсных источников питания. Не получится обойтись и без соответствующей материальной базы: паяльного оборудования с регулировкой температуры, а также измерительных приборов. Комплект средств диагностики выходит далеко за пределы обычного мультиметра, потребуется прибор с расширенным набором функций для измерения ёмкости, частоты и индуктивности, также желательно иметь в распоряжении простейший осциллограф.

Наиболее частой причиной сбоев в работе инверторных стабилизаторов можно назвать нарушение в работе тактового генератора. Необходимо, исходя из номинальной мощности прибора и параметров трансформатора, определить оптимальную рабочую частоту импульсного преобразователя, после чего сравнить её с реальными параметрами. Обычно сбой частоты служит следствием неисправности в опорном колебательном контуре, подключённым к соответствующим выводам ИС тактового генератора.

Ремонт стабилизаторов напряжения своими руками

Полный отказ прибора возможен по ряду причин. Если встроенной системы диагностики не имеется или по её показаниям невозможно определить поломку, скорее всего причиной неисправности стал выход из строя полевых или IGBT ключей, что достаточно просто определить по внешнему виду корпуса. Другая характерная причина неисправностей — поломка встроенного источника питания цепей управления, эта часть схемы в наибольшей степени уязвима к колебаниям напряжения, особенно импульсным.

Не будет лишним сделать прозвонку всех цепей, их проводимость должна соответствовать принципиальной и электрической схемам прибора. Из наиболее уязвимых элементов можно назвать входной и выходной выпрямители, снабберные цепочки трансформатора (для подавления импульсных перенапряжений), а также корректор коэффициента мощности при наличии такового.

Общие рекомендации

Радиоэлектронные компоненты встречаются не только в инверторных стабилизаторах, они могут применяться в контрольно-измерительных цепях или устройствах индикации и самодиагностики. В основном это касается пассивных элементов и микросхем с низкой степенью интеграции: операционных усилителей, логических элементов, совмещённых транзисторов, стабилизаторов тока и напряжения.

Выход из строя этих элементов наиболее часто можно определить чисто по внешним признакам: сгоревшие транзисторы и диоды имеют треснувший корпус, резисторы — следы подгара лакового покрытия, конденсаторы попросту раздувает. Поэтому пристальный внешний осмотр печатной платы — первый этап определения неисправности.

Если визуально причины поломки определить не удаётся, должна производиться последовательность контрольных замеров. Сначала проверяется проводимость и качество диэлектрической изоляции схемы в отключенном состоянии. После этого при подаче питания измеряются напряжения в ключевых точках: на клеммах подключения, после предохранителя, на фильтрах и стабилизаторах, обмотках трансформатора, основных узлах схемы управления.

Если описанные методы диагностики не дают результата, лучше обратиться в сервисный центр, ведь даже простая поломка может быть весьма специфичной, при том, что любительских познаний в электротехнике и домашних условий для её устранения оказывается недостаточно. опубликовано econet.ru  

Если у вас возникли вопросы по этой теме, задайте их специалистам и читателям нашего проекта здесь.

P.S. И помните, всего лишь изменяя свое потребление - мы вместе изменяем мир! © econet

econet.ru

особенности, преимущества и недостатки, профессиональные рекомендации

Автор: Александр Старченко

В списке стабилизаторов напряжения эта конструкция занимает особое место. По сути это обычный автотрансформатор, только регулировка напряжения осуществляется не вращением ручки, а с помощью электродвигателя. Электромеханический стабилизатор напряжения обеспечивает очень высокую точность установки напряжения, но его применение ограничивается низкой скоростью выравнивания.

Конструкция электромеханического стабилизатора

Электромеханический, или сервоприводный, стабилизатор напряжения может считаться самым простым по конструкции. В его основе лежит обычный автотрансформатор лабораторного типа, в котором, поворачивая рукоятку можно было изменять величину напряжения от нуля до 240 вольт.

В современном стабилизаторе этот принцип сохранился, только ручка автотрансформатора поворачивается не рукой, а электрическим серводвигателем. Трансформатор имеет тороидальную конструкцию. Его обмотка выполнена из медного провода, и верхняя её часть очищена от изолирующего покрытия.

По обмотке трансформатора перемещается ползунковый контакт-щётка или ролик, который закреплен на оси электродвигателя. Двигатель оборудован сервоприводом. Это значит, что его ротор не вращается, а по импульсным сигналам, поступающим из блока управления, может поворачиваться на определённый угол. Щётка может быть изготовлена из графита или иметь роликовую конструкцию.

Электромеханический стабилизатор состоит из следующих узлов:

  • Входной сетевой фильтр;
  • Силовой автотрансформатор;
  • Блок контроля и управления;
  • Электродвигатель;
  • Контактный узел;
  • Блок индикации.

Сетевой фильтр обеспечивает подавление высокочастотных и импульсных электрических помех. Пассивный фильтр собран по  индуктивно-ёмкостной схеме. После фильтра напряжение подаётся на схему контроля, которая фиксирует отклонения напряжения сети от номинала и вырабатывает сигналы для управления электродвигателем.

Жёстко закреплённый на роторе контактный узел с графитовым контактом перемещается по обмотке трансформатора. В зависимости от девиаций сети, серводвигатель получает сигналы управления для увеличения или уменьшения напряжения на выходе. Для надёжности контактный узел может иметь две щётки, или более стабильный в работе роликовый узел.

Блок индикации, располагающийся на передней панели устройства, состоит из светодиодных индикаторов режимов работы и, у отдельных моделей, цифрового универсального дисплея. Цифровой дисплей может показывать напряжение на входе и выходе устройства, ток и частоту сети.

Достоинства и применение сервоприводного стабилизатора

Стабилизатор напряжения, работающий по принципу плавного регулирования сетевого напряжения с применением серводвигателя, обладает определёнными положительными параметрами, которые определяют сферу его использования.

Основными достоинствами сервоприводного стабилизатора, являются следующие характеристики:

  • Высокая точность установки напряжения на выходе устройства;
  • Возможность работы с большими нагрузками;
  • Большой допустимый разброс напряжения на входе устройства;
  • Способность выдерживать большие перегрузки;
  • Чистая синусоида на выходе прибора.

Поскольку графитовая щётка или роликовый узел плавно перемещаются по обмотке трансформатора, то на выходных контактах стабилизатора напряжения не будет никаких перерывов в энергоснабжении потребителя. Поэтому сервоприводный стабилизатор можно использовать для электропитания практически любых электрических приборов.

Так как мощность нагрузки определяется только обмоткой трансформатора, то электромеханические стабилизаторы это единственный тип устройств, которые могут использоваться при нагрузках свыше 50 кВт, поэтому они часто применяются в качестве промышленных стабилизаторов.

В схеме сервоприводного стабилизатора отсутствуют нелинейные элементы, которые могут внести искажения синусоидальной формы выходного напряжения. Гладкая синусоида, которую обеспечивает электродинамический стабилизатор на выходе, позволяет использовать его для работы в системах с применением электродвигателей.

Асинхронные электродвигатели, применяемые для работы циркуляционных насосов, корректно работают только при синусоидальной форме питающего напряжения, которую может обеспечить электромеханический стабилизатор. Схема устройства, основанная на применении мощного силового трансформатора, позволяет обеспечивать большие токи на нагрузке.

Недостатки электромеханического стабилизатора

Несмотря на серьёзные достоинства, данное устройство обладает не менее серьёзными недостатками:

  • Низкая скорость стабилизации;
  • Невозможность эксплуатации при низких температурах;
  • Низкая надёжность;
  • Сложность ремонта;
  • Определённый шум при работе.

Сервоприводной механизм,  который перемещает щётки по обмотке тороидального трансформатора, не может мгновенно переместиться на требуемый участок. Поэтому между определением необходимости изменения напряжения и его реальной установкой проходит определённое время. Обычно в паспортах на электромеханические стабилизаторы указывается температурный режим его эксплуатации, нарушение которого обязательно приведёт к отказу сервоприводного механизма.

Невысокая надёжность устройства обусловлена наличием подвижного узла, который имеет определённый срок наработки. Кроме того, графитовые контактные щётки подгорают при работе и требуют замены примерно через 2-4 года эксплуатации. Замена их достаточно продолжительный и трудоёмкий процесс. Изношенные щетки могут искрить при работе, поэтому сервоприводные стабилизаторы не рекомендуется использовать с газовым оборудованием.

Однофазный стабилизатор от компании «Энергия»

Одной из интересных моделей на рынке, является однофазный электромеханический стабилизатор напряжения «Энергия HYBRID СНВТ 10 000». Стабилизатор напряжения высокой точности представляет собой удачное техническое решение, где в одном устройстве, объединены электромеханический стабилизатор и дополнительный релейный узел. Это позволяет прибору работать при большом разбросе напряжения сети. Он обеспечивает выдачу напряжения 220В ± 3% при входных величинах от 105 до 280В.

Стабилизатор имеет систему «Байпас» и защиту от перегрузки и превышения напряжения на входе выше критической. Однофазный стабилизатор «Энергия HYBRID СНВТ 10 000» может использоваться как в быту, так и на производственных объектах. При подключении прибора к системам освещения отсутствует эффект мерцания ламп, так как не происходит разрыва фазы.

Выбирая электромеханический стабилизатор напряжения, следует обращать внимание на технические характеристики устройства, на качество электричества в месте эксплуатации и температурный режим.

С этим читают:

Понравилась статья? Поделись с друзьями в соц сетях!

nabludaykin.ru

характерные поломки, как восстановить реле своими руками

Неисправности стабилизатора напряжения Ресанта 10000Стабилизаторы Ресанта — это универсальная надежная техника, которая используется в промышленности и в быту. В процессе эксплуатации, как и любое другое электрооборудование, выпрямители могут выходить из строя, требуя квалифицированного обслуживания. Ремонт стабилизаторов напряжения Ресанта должны выполнять профессионалы с использованием высококачественных запасных частей.

Принцип работы выпрямителей

Принцип работы устройств отличается в зависимости от их типа, мощности и ряда других характеристик. Конструкция выпрямителей Ресанта включает следующие элементы:

  • Электронный блок.
  • Трансформаторы автоматического типа.
  • Органы управления.
  • Вольтметр.

Как отремонтировать стабилизатор РесантаПринципиальная схема стабилизатора Ресанта 5000вт включает электронный блок, который отвечает за управление работой силовой части агрегата. В основной модуль от вольтметра поступают данные о мощности входного напряжения, после чего автоматика сверяет полученные цифры с установленными оптимальными значениями, внося соответствующие корректировки. На выходе получается качественный электроток с выровненной амплитудой. Полностью исключены скачки напряжения, которые могут вывести из строя работающее оборудование и бытовые приборы.

Изменение показателей напряжения в выпрямителях Ресанта осуществляется за счёт отключения и подключения обмоток на трансформаторах. Автоматика посылает сигналы исполнительному реле, что позволяет оперативно вносить изменения в показатели напряжения.

В зависимости от типа трансформатора, метода их отключения и запуска принято выделять две разновидности стабилизаторов:

  • Релейные.
  • Электромеханические.

Ремонт стабилизатора РесантаНаибольшей популярностью сегодня пользуются стабилизаторы электромеханического типа, в конструкции которых имеется сервопривод, отвечающий за отключение и запуск обмотки в устройстве. Привод включает маломощный двигатель, на котором располагается щётка контакта. К преимуществам стабилизаторов электромеханического типа относят их точность работы, а также широкий диапазон регулировки напряжения. Единственный недостаток — это сложность конструкции, что отрицательно сказывается на надежности техники.

В релейных стабилизаторах встроенная автоматика выполняет отключение и подключение витков коммутатора работы, до тех пор, пока не будет получено оптимальное напряжение на выходе. Для ускорения работы аппарата все витки трансформатора поделены на подгруппы, что позволяет улучшить амплитуду напряжения, упрощая при этом работу аппарата. Стабилизаторы этого типа отличаются надежностью, что объясняется простотой конструкции. К минусам можно отнести небольшую скорость выпрямления напряжения, поэтому с чувствительными приборами использовать их не рекомендуется.

Основные неисправности

Ремонт реле стабилизаторов напряжения РесантаСтабилизаторы напряжения от латвийской компании Ресанта зарекомендовали себя как достаточно надежные и высокотехнологичные. Однако и они могут ломаться. В силу особенностей конструкции релейных и электромеханических устройств бывают характерные поломки, которые требуют замены поврежденных элементов и восстановления работоспособности оборудования.

У электромеханических стабилизаторов может сломаться привод, на который в процессе эксплуатации устройства приходится повышенная нагрузка. В электросетях, где отмечаются частые скачки напряжения, электродвигатель может сломаться уже через год после начала использования оборудования.

В трансформаторных установках слабым местом является реле, которое может перегореть, что приводит к проблемам с контактом подвижной щётки. Ремонт будет заключаться в замене повреждённых обмоток и реле, а также восстановлении трансформатора.

Причины поломок

Частые поломки стабилизатора напряжения РесантаОсновной причиной неисправности стабилизатора напряжения Ресанта 10000ВТ является неправильная эксплуатация оборудования. Достаточно часто отмечается перегрев выпрямителей при использовании техники в пыльном помещении. Внутри корпуса оседает грязь, что ухудшает охлаждение устройства, возникают проблемы с перенапряжением силовой части и исполнительных плат.

Также причиной поломки электрических выпрямителей может стать эксплуатация в условиях повышенной влажности. Контакты и платы начинают окисляться, ухудшается соединение, что в конечном счете приводит к серьезным поломкам стабилизаторов — восстановить их можно заменой сервопривода или силовых элементов.

В инструкции по эксплуатации стабилизатора можно найти все рекомендации по использованию техники, что позволит предупредить появление характерных поломок и необходимость дорогостоящего и сложного ремонта оборудования.

В линейке Ресанта можно найти как простые и недорогие бытовые модели, которые предназначены для эксплуатации внутри помещений, так и специализированные промышленные установки, которые могут использоваться в условиях повышенной влажности и пыльных загрязненных цехах. Правильно подобрав стабилизатор, можно гарантировать беспроблемность работы и отсутствие поломок даже при повышенной нагрузке.

Ремонт оборудования

Отсутствие проблем при эксплуатации стабилизаторов напряжения будет зависеть и от качества их ремонта. Самостоятельно проводить такую работу или доверять ее сомительным мастерам не стоит. Экономить на ремонте не следует — это позволит гарантировать в дальнейшем отсутствие проблем со стабилизаторами Ресанта.

Как самим отремонтировать стабилизатор напряжения

В мастерских для диагностики поломок и ремонта техники используется специальный прибор ЛАТР — лабораторный автотрансформатор регулируемого тока. К тестеру подключается вышедший из строя стабилизатор, на выпрямитель подают напряжение, что позволяет определить поломки оборудования.

Сервопривод аппарата

У сверхчувствительных электромеханических стабилизаторов чаще всего из строя выходит сервопривод, отвечающий за перемещение контактной щетки. Существует два вида решения этой проблемы:

  • Установка нового электродвигателя.
  • Ремонт повреждённых элементов.

Стоимость сервоприводов на стабилизаторы Ресанта чрезвычайно высока, поэтому к полной замене мотора прибегают лишь при серьезных повреждениях, когда отремонтировать его невозможно.

Ремонт стабилизатора напряжения своими руками выполняется по следующему алгоритму:

  • Вскрывается корпус стабилизатора, отключается двигатель с сервоприводом.
  • Мотор подключается к источнику питания с необходимой мощностью.
  • На выход двигателя подается электроток (5 Вт и не меньше 90 мА).

Работа сервопривода должна восстановится, после чего мотор устанавливают на место.

Причины неисправности стабилизатора РесантаПри наличии механических повреждений необходимо вскрыть вышедший из строя мотор и поменять сгоревшие элементы привода. Такие поломки часто отмечаются при перенапряжении сервопривода, когда стабилизаторы используются в электросети с нестабильными показателями напряжения.

Проблемы с двигателем могут появиться по причине выхода из строя электронной платы, по которой к мотору от биполярных транзисторов подаётся электричество. Вышедшие из строя транзисторы следует менять парой, так как используется двухполярная схема питания. В цепи также могут выгорать 10-омные резисторы, которые могут заменяться на аналогичные или имеющие мощность больше на 3−5 Вт. В последнем случае повышается надежность сервопривода и решаются проблемы в работе оборудования при пиковых нагрузках.

Повреждения реле

У транзисторных модификаций Ресанта часто ломается реле, что ограничивает функционал устройства или полностью выводит его из строя. Ремонт реле будет напрямую зависеть от характера поломки. В большинстве случаев требуется определить вышедшие из строя транзисторы и заменить их на новые.

Стабилизатор напряжения Ресанта 5000вт неисправности

Ремонт стабилизатора напряжения Ресанта своими руками выполняется следующим образом:

  • Как можно отремонтировать стабилизаторСнимают крышку реле, демонтируют подвижный контакт и освобождают фиксирующие пружины.
  • С помощью мелкой наждаки аккуратно зачищают верхний и нижний контакт.
  • Соединения и контакты аккуратно смазываются бензином.
  • Конструкция реле собирается в обратной последовательности.

Такой ремонт возможен в тех случаях, когда отмечается окисление контактов реле. Всю работу можно выполнить самостоятельно, без использования вольтметров и другого профессионального оборудования.

Другие неисправности

Характерным для релейных моделей Ресанта является выход из строя резонатора ХТА1. О его поломке свидетельствуют проблемы в работе реле и потухший дисплей. У резонатора бывает некорректная пайка, что приводит к затруднениям в работе стабилизатора.

Ремонт выполняется следующим образом:

  • Паяльником с тонким жалом выпаивают резонатор.
  • Наждачной бумагой зачищают выводы.
  • Смачивают их бензином и запаивают резонатор обратно.

Как правильно ремонтировать стабилизатор напряжения При наличии на резонаторе выраженных признаков перегорания его требуется заменить. Использовать следует только подходящие резонаторы, что позволит гарантировать полное восстановление работоспособности техники.

Ремонт стабилизаторов Ресанта может выполняться как в домашних условиях, так и в специализированной мастерской. Но работу должен проводить человек, имеющий представление об устройстве и принципах функционирования техники. Зная характерные неисправности стабилизатора напряжения Ресанта 10000, можно с легкостью восстановить работоспособность выпрямителя, сократив расходы на ремонт оборудования.

rusenergetics.ru

Принципиальные схемы стабилизаторов напряжения | Полезные статьи TEPLOCOM

21-05-2015

Основные типы стабилизаторов напряжения

В настоящее время большее распространение получили следующие типы стабилизаторов напряжения:

  • релейные стабилизаторы;
  • электронные стабилизаторы;
  • электромеханические стабилизаторы.

Выбор типа стабилизатора напряжения определяется спецификой задачи, которую нужно решить. Различные схемы построения стабилизатора напряжения определяют основные параметры приборов. Среди важных параметров стабилизаторов следует выделить следующие:

  • точность стабилизации;
  • скорость стабилизации;
  • надёжность работы;
  • защита от электрических помех;
  • срок эксплуатации;
  • стоимость стабилизатора.

Рассмотрим принципы работы основных типов стабилизаторов напряжения и их принципиальные электрические схемы.

Схема работы релейного стабилизатора

Схема работы релейного стабилизатора напряжения основана на ступенчатом регулировании напряжения путем автоматической коммутации секций вторичной обмотки трансформатора. Коммутация секций обмоток происходит с помощью силовых реле, работой которых управляет электронная плата. Специальный процессор ведет контроль входного и выходного напряжения, вычисляет необходимое число трансформации и осуществляет коммутацию нужного числа силовых реле. Такая схема стабилизатора позволяет быстро и эффективно стабилизировать напряжение в нужном диапазоне.

Принципиальная электрическая схема релейного стабилизатора напряжения

Схема работы электронного стабилизатора

Схема работы электронного стабилизатора напряжения основана на ступенчатом регулировании напряжения путем автоматической коммутации секций вторичной обмотки трансформатора. Коммутация секций обмоток происходит с помощью силовых тиристоров, работой которых управляет электронный блок управления. Напряжение на выходе стабилизатора в случае применения схемы вольтодобавочного типа определяется суммированием основного и добавочного напряжения. Такая схема стабилизатора позволяет быстро и эффективно стабилизировать напряжение в нужном диапазоне, обеспечивая высокую надёжность и бесшумность работы.

Принципиальная электрическая схема релейного стабилизатора напряжения

Схема работы электромеханического стабилизатора

Схема работы электромеханического стабилизатора напряжения основана на плавном регулировании напряжения путём автоматической коммутации дополнительного числа витков вторичной обмотки трансформатора. Коммутация дополнительных витков трансформатора происходит с помощью подвижного контакта, приводимого в движение сервоприводом. Положением подвижного контакта управляет электронный или аналоговый блок управления. Как только напряжение на входе становиться большим или меньшим установленного, блок управления дает команду на перемещение подвижного контакта до момента установления правильного напряжения на выходе. Эта схема работы стабилизатора позволяет вести плавное и точное изменение напряжения. Однако время стабилизации напряжения в такой схеме стабилизатора достаточно велико. Большим минусом стабилизаторов, построенных по этой схеме, является физический износ подвижного контакта.

Принципиальная электрическая схема электромеханического стабилизатора напряжения

Читайте также по теме:


Тех. поддержка

Бастион в соц. сетях

Канал Бастион на YouTube

teplo.bast.ru

Электромеханический стабилизатор напряжения. Особенности конструкции

В линейке стабилизирующих устройств этой модели определено свое особое место. Это простой автотрансформатор, с той разницей, что регулирование напряжения питания выполняется не вращением ручки, а при помощи электрического двигателя. Электромеханический стабилизатор напряжения способен выдать на выходе устройства высокую точность параметра напряжения, однако его использование ограничено малым быстродействием.

Конструктивные особенности электромеханической модели

Такой стабилизатор еще называют сервоприводным. Он считается наиболее простой моделью по своему устройству. В основе конструкции простой лабораторный автотрансформатор, в котором при повороте регулировочной ручки можно менять значение напряжения вплоть до 240 В.

В новых моделях таких устройств принцип работы остался прежним, только рукоятка трансформатора вращается не рукой, а при помощи серводвигателя. Внешний вид трансформатора обладает тороидальной формой устройства. Обмотка трансформатора намотана медным проводником, а поверхность обмотки в верхней ее части очищена от изоляции для лучшего контакта с ползунком.

По обмотке передвигается контакт ползунка в виде щетки или ролика. Он зафиксирован на оси двигателя, который оснащен сервоприводом. Ротор двигателя не вращается, по мере поступления сигналов в виде импульсов, приходящих из управляющего блока, способен вращаться на некоторый угол. Щетка может быть сделана из графита, либо в виде ролика.

Электромеханический стабилизатор напряжения включает в себя следующие элементы:

  • Блок индикации.
  • Узел контактов.
  • Электрический двигатель.
  • Блок управления и контроля.
  • Силовой трансформатор.
  • Сетевой фильтр на входе.

Фильтр способен подавить электрические помехи в виде импульсов и высокочастотных гармоник. Пассивная модель фильтра выполнена по емкостно-индуктивной схеме. После фильтра питание поступает на контрольную схему, фиксирующую отклонения питания от номинальных величин и создает управляющие сигналы электрическим двигателем.

Контактный узел жестко зафиксирован на роторе вместе с графитным контактом, передвигается по обмотке автотрансформатора. На серводвигатель поступают управляющие сигналы для изменения напряжения на выходе стабилизатора, в зависимости от качества напряжения, поступающего на прибор. Для обеспечения лучшей надежности узел контактов может оснащаться двумя щетками, либо роликовым механизмом.

Индикаторный блок, находящийся на передней части панели стабилизатора, состоит из индикаторов в виде светодиодов, который показывают режимы работы. Некоторые модели оснащены цифровым дисплеем, который способен выдавать информацию о напряжении на выходе и входе стабилизатора, а также частоту и ток сети питания.

Перед аналогичными устройствами ставятся разные задачи. Одни подключаются к системе отопления, а другие работают с оргтехникой и т. д. Выбор часто зависит от бюджета и потребностей. Стоимость электромеханического стабилизатора напряжения невысокая.

Преимущества

  • Малая цена.
  • Повышенная точность выравнивания.
  • Плавность регулирования.

Малая цена

Она возможна только для старых конструкций. Современные новые стабилизаторы оснащены серводвигателями и высокотехнологичными устройствами, которые повышают его цену. Однако он все равно дешевле электронной модели.

В отличие от релейной модели в электромеханическом стабилизаторе напряжения применяются подвижные элементы, которые с течением времени становятся непригодными, и их надо заменять. Это, например, угольные щетки. Если для этого вызывать специалиста, то придется потратить на это деньги.

Точность

Показатель в 3% является хорошими данными при выборе устройства, если необходимо защищать точное лабораторное оборудование. В этом случае электромеханическим стабилизаторам напряжения нет качественной альтернативы.

Плавность регулирования

Этот параметр необходим, если подключаются точные датчики, либо измерительные приборы. Устройства бытового назначения не нуждаются в особой точности.

Недостатки

  • Подвижные элементы.
  • Шумность.
  • Малый КПД.
  • Низкое быстродействие.

Подвижные элементы

Из-за их наличия придется раз в год проводить техническое обслуживание, так как в механизм попадает пыль, контакты начинают искрить, возникают помехи в цепи.

Шумность

Повышенный шум обусловлен конструкцией стабилизаторов, и доставляет дискомфорт человеку в ночное время. Но современные приборы не имеют такого недостатка, так как применяются современные материалы, которые изолируют корпус с помощью звукоизоляции.

Малый КПД

Незначительный параметр КПД является результатом механической конструкции. В этом плане выигрывает релейная модель прибора.

Низкое быстродействие

У такой модели стабилизатора наиболее низкая скорость работы. Это его основной недостаток. Его быстродействие равно приблизительно 10 В в секунду. Точность, плавность и малая цена не совсем уж привлекательны, так как стабилизатор придется раз в год отдавать на техобслуживание, и за это платить.

ostabilizatore.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *