рекомендации по сборке устройства своими руками и инструкция по подключению
Даже начинающий радиолюбитель способен собрать твердотельное реле. Это устройство создано на базе полупроводниковых радиодеталей. Силовые ключи собраны на тиристорах, транзисторах либо симисторах. Для изготовления схемы твердотельного реле своими руками, стоит выяснить принцип работы и особенности подключения устройства. В результате с его помощью можно повысить надежность и безопасность электроцепи.
Преимущества и недостатки
В отличие от других типов реле, твердотельное лишено подвижных контактов. Коммутация электроцепей в этом приборе выполняется по принципу электронного ключа, выполненного на полупроводниках. Чтобы при создании твердотельного реле не возникло проблем, необходимо разобраться с принципом работы прибора и его конструкцией.
Однако начать стоит с его описания основных преимуществ:
- Возможность коммутировать мощные нагрузки.
- Переключение происходит с высокой скоростью.
- Качественная гальваническая развязка.
- Способно выдерживает серьезные перегрузки на коротком временном отрезке.
Ни одно механическое реле не обладает аналогичными параметрами. Область применения твердотельного реле (ТТР) практически неограничена. Отсутствие подвижных элементов в конструкции существенно увеличивает срок службы устройства. Однако следует помнить, что прибор имеет не только преимущества. Некоторые свойства ТТР являются недостатками. Например, во время эксплуатации мощных устройств возникает необходимость в применении дополнительного элемента для отвода тепловой энергии.
Зачастую размеры радиатора существенно превышают габариты самого реле. В такой ситуации монтаж прибора несколько затрудняется. Когда устройство закрыто, то в нем наблюдается утечка тока, что приводит к появлению нелинейной вольт-амперной характеристики. Таким образом, при использовании ТТР следует обращать внимание на характеристики переключаемых напряжений.
Некоторые виды устройств способны работать только в сетях с постоянным током. При подключении твердотельного реле к цепи нужно предусмотреть способы защиты от ложных срабатываний.Виды устройств
Твердотельные реле можно разделить на несколько групп в соответствии с определенными параметрами. Чаще всего для классификации этих прибор используется категория подключенной нагрузки, а также способ контроля и коммутации напряжения. Таким образом, можно выделить 3 вида реле:
- Приборы, работающие в цепях постоянного тока.
- Переключатели для электроцепей переменного тока.
- Универсальные реле.
К первой группе принадлежат ТТР с показателями коммутируемых напряжений 3−32 В. Они обладают небольшими габаритами, оснащены светодиодной индикацией и могут эффективно работать в температурном диапазоне от -35 до 75 градусов. Представителями второй категории являются переключатели, предназначенные для работы в электроцепях переменного тока при напряжении 24−220 В.
Если классифицировать приборы по характеру подсоединенной нагрузки, то можно выделить 2 типа приборов, работающих в сетях переменного тока, — одно- и трехфазные. С их помощью можно управлять довольно высокой нагрузкой при силе тока 10−75 А. также стоит обратить внимание на пиковые показатели электротока, которые способны достигать 500 А.
Твердотельные переключатели можно применять в различных типах цепей, например, емкостных либо резистивных. Их конструкция позволяет избавиться от шума во время работы, а также добиться плавного управления приводами, например, электромоторами или лампами. ТТР отличаются высокой надежностью, но во многом срок службы приборов зависит от производителя.
Рекомендации по изготовлению
В соответствии с особенностями конструкции, схему прибора стоит собирать не на текстолите, а с помощью навесного монтажа. Существует довольно много схемотехнических решений, а выбирать нужный следует в зависимости от различных параметров, например, коммутируемой мощности.
Электронные элементы и проверка работоспособности
В качестве примера можно рассмотреть простую схему.
Применение оптической пары МОС3083 позволяет формировать управляющий сигнал, входное напряжение которого находится в диапазоне 5−24 В. Чтобы продлить срок работы светодиода АЛ307А, в схему введена цепочка, состоящая из сопротивления и стабилитрона. Найти все электронные элементы будет несложно. Собранная схема в обязательном порядке проверяется на работоспособность.
Для этого можно не подключать к цепи напряжение 220 В, а ограничиться параллельным подсоединением тестера к линии управления симистора. На измерительном приборе предварительно следует выбрать режим «мОм» и подать питание в 5−24 В на участок генерации управляющего напряжения. Если схема была собрана правильно, то тестер покажет разницу сопротивлений в диапазоне мОм-кОм.
Конструкция корпуса
Основанием самодельного твердотельного реле будет пластина из алюминия толщиной от 3 до 5 мм. Размеры пластины принципиального значения не имеют и при выборе материала необходимо учитывать только условия качественного отвода тепла от симистора. Также следует помнить, что поверхность основания должна быть ровной и его необходимо предварительно зачистить с помощью мелкой наждачной бумаги с двух сторон.
Следующим шагом станет установка по периметру пластины бордюра из пластика либо плотного картона. В результате должен получиться короб, который затем заливается эпоксидной смолой. Внутрь корпуса устанавливается собранная с помощью навесного монтажа схема реле. При этом на пластине из алюминия должен располагаться только симистор.
Чтобы улучшить процесс отвода тепла, следует использовать термопасту, разместив ее на всей площади контакта алюминиевого основания и полупроводникового элемента. Также следует помнить, что у некоторых симисторов анод не изолирован, и они устанавливаются только через слюдяную подложку.
Заливка компаундом
Для изготовления смеси потребуется алебастр и эпоксидная смола без отвердителя. Использование алебастра позволяет решить сразу две задачи — создается смесь идеальной консистенции и получается достаточное количество раствора при минимальном расходе эпоксидной смолы. Во время приготовления компаунд тщательно перемешивается, после чего можно добавить отвердитель и снова перемешать.
После этого созданная схема аккуратно заливается компаундом до верхнего уровня, оставляя на поверхности только часть головки контрольного светодиода. При изготовлении корпуса твердотельного переключателя можно использовать любые растворы, подходящие для литья. Единственным критерием при выборе ингредиентов является отсутствие способности проводить электроток.
Самодельное ТТР станет хорошим выбором для подключения к низковольтной цепи с малой мощностью. Собирать более мощные приборы, рассчитанные на высокие напряжения нецелесообразно. Такие схемы отличаются высокой сложностью и лучше купить готовый прибор.
Самодельные твердотельные реле — схема и устройство
Старые механические реле отличаются двумя недостатками – малым быстродействием и ограниченным ресурсом по количеству допустимых переключений. Пришедшие им на смену электронные коммутаторы (другое название – твердотельное транзисторное или симисторное реле) полностью лишены этих недостатков, что привлекло к ним внимание специалистов по электронике. Отсутствие механических частей, а также простота схемы позволяют без труда собирать их в домашних условиях. Справиться с поставленной задачей поможет ознакомление с особенностями устройства и принципом работы этих элементов.
Что такое твердотельные реле и их классификация
Самодельное твердотельное релеТвердотельные реле (или ТТР) – это электронные приборы со структурой, не содержащей механических компонентов. Принцип их действия основан на особенностях работы полупроводниковых переходов, отличающихся высокой скоростью коммутаций и защищенностью от физических полей.
Переключение твердотельных реле основано на принципе срабатывания электронного ключа.
В качестве ключевых элементов в этих изделиях традиционно применяются такие распространенные электронные компоненты, как транзисторы, управляемые диоды или тиристоры. В зависимости от используемых при их изготовлении структур ТТР подразделяются на приборы, построенные на основе одного из перечисленных элементов (реле на симисторах, например).
В соответствии с режимами работы и по виду коммутируемых напряжений образцы твердотельных реле, изготавливаемых на базе полупроводников, делятся на следующие группы:
- устройства, коммутирующие постоянный ток;
- приборы, управляющие работой нагрузочных линий с переменными токовыми параметрами;
- универсальные изделия, работающие в различных цепях.
Для первых устройств характерно управление постоянными напряжениями величиной не более 32 Вольт. Представители двух оставшихся позиций способны коммутировать значительные по величине потенциалы (вплоть до десятков киловольт).
Преимущества ТТР
К преимуществам реле относят:
- возможность коммутации сравнительно мощных нагрузок;
- высокое быстродействие;
- работа в условиях гальванической развязки;
- способность выдерживать кратковременные перегрузки.
Ни один образец механических или электромеханических изделий не в состоянии конкурировать с электронными коммутаторами. Поэтому новые структуры на основе полупроводников полностью вытеснили старые механические образцы.
Уникальные эксплуатационные характеристики ТТР позволяют применять их без каких-либо ограничений с одновременным увеличением ресурса срабатываний. Все перечисленные достоинства этих приборов являются прекрасным поводом для того, чтобы попытаться собрать твердотельное реле своими руками.
Самостоятельное изготовление
Чтобы изготовить реле тока своими руками, нужно запастись рядом электронных компонентов, составляющих основу коммутирующих цепей. Также потребуются специальные материалы, из которых будет изготавливаться корпус самодельного реле.
Электронные элементы
В качестве электронных компонентов, используемых при самостоятельном изготовлении простейшего образца ТТР, обычно применяются следующие распространенные детали:
- оптронная пара МОС3083;
- симистор марки ВТ139-800;
- биполярный транзистор серии КТ209;
- комплект резисторов, а также стабилитрон и светодиод, служащий индикатором срабатывания реле.
Перечисленные электронные элементы спаиваются навесным способом согласно приводимой в источниках схеме. Наряду с другими компонентами она содержит в своем составе ключевой транзистор, подающий стабилизированные импульсы на управляющий диод оптронной пары.
Момент подачи фиксируется светодиодным элементом, использование которого в исполнительной цепи допускает визуальный контроль.
Под воздействием этих импульсов происходит мгновенное срабатывание полупроводникового симистора, включенного в коммутируемую цепочку. Применение в такой схемы включения оптронной пары позволяет управлять постоянными потенциалами от 5 до 24 Вольт.
Ограничительная цепочка из резистора со стабилитроном необходима для снижения амплитуды тока, протекающего через светодиод и управляющий элемент до минимальной величины. Такое схемное решение позволяет продлить срок службы большинства используемых при построении схемы элементов.
Конструкция корпуса (заливка компаундом)
Заливка платы компаундомДля изготовления корпуса сборного изделия в первую очередь потребуется алюминиевая пластина толщиной 3-5 мм, она будет служить основанием под электронную сборку. Размеры выбираются произвольно при условии, что они гарантируют хороший отвод тепла в окружение. Еще одно требование, предъявляемое к этой детали – хорошо обработанная, абсолютно гладкая поверхность, отполированная специальным инструментом или до блеска зачищенная шкуркой.
На следующем шаге подготовки корпуса выбранная в качестве основания пластина оборудуется окаймлением из приклеиваемой по периметру полоски картона. В итоге получится небольшой короб, предназначенный для размещения уже собранной ранее электронной схемы. На его основании из компонентов жестко крепится только симистор, все остальные элементы удерживаются в пределах корпуса за счет собственных связей.
Для подключения к нагрузке и электропитанию наружу коробки выводятся соответствующие проводники.
В дальнейшем надежный крепеж всей сборки обеспечивается заливаемым в коробку жидкого компаунда, заранее подготовленного в подходящей емкости. После его застывания получится монолитная конструкция, по защищенности от вибраций и других воздействий не уступающая лучшим промышленным образцам. Единственный ее недостаток – невозможность разборки с целью последующего ремонта схемы.
Разновидности ТТР
При сборке схем твердотельных реле своими руками следует иметь в виду, что для этих целей могут использоваться самые различные компоненты. Ничто не мешает взявшемуся за работу человеку выбрать современные полевые транзисторы, например, отличающиеся высоким быстродействием и малым энергопотреблением. Эти элементы управляются только потенциалами, обеспечивая возможность коммутации достаточно мощных потребителей. Такие полевые структуры, как MOSFET способны переключать нагрузочные цепи, мощность в которых достигает десятков кВт.
Для самостоятельного изготовления твердотельного реле допускается подбирать другие полупроводниковые структуры, способные управлять силовыми цепями: тиристоры, например, или биполярные транзисторы. Главное – чтобы они соответствовали требованиям, предъявляемым к функциональности данной схемы и рабочим параметрам ходящих в ее состав элементов. Все остальное зависит от подготовленности и внимательности исполнителя.
- Как подключить духовой шкаф к электричеству самостоятельно
- Как использовать старый линолеум: интересные идеи на фото
Управление мощной нагрузкой · Вадим Великодный
06 Jan 2017На практике часто возникает необходимость управлять при помощи цифровой схемы (например, микроконтроллера) каким-то мощным электрическим прибором. Это может быть мощный светодиод, потребляющий большой ток, или прибор, питающийся от электрической сети. Рассмотрим типовые решения этой задачи.
Будем считать, что нам нужно только включать или выключать нагрузку с низкой частотой. Части схем, решающие эту задачу, называют ключами. ШИМ-регуляторы, диммеры и прочее рассматривать не будем (почти).
Условно можно выделить 3 группы методов:
- Управление нагрузкой постоянного тока.
- Транзисторный ключ на биполярном транзисторе.
- Транзисторный ключ на МОП-транзисторе (MOSFET).
- Транзисторный ключ на IGBT.
- Управление нагрузкой переменного тока.
- Тиристорный ключ.
- Симисторный ключ.
- Универсальный метод.
Выбор способа управления зависит как от типа нагрузки, так и от вида применяемой цифровой логики. Если схема построена на ТТЛ-микросхемах, то следует помнить, что они управляются током, в отличие от КМОП, где управление осуществляется напряжением. Иногда это важно.
Простейший ключ
Простейший ключ на биполярном транзисторе проводимости n-p-n выглядит следующим образом.
Вход слева подключается к цифровой схеме. Если у нас цифровая схема построена на основе КМОП-логики с двухтактным («push-pull») выходом, то логическая «1» фактически означает подключение этого входа к питанию, а логический «0» — к земле.
Таким образом, при подаче «1» на вход нашей схемы ток от источника питания потечёт через резистор R1, базу и эмиттер на землю. При этом транзистор откроется (если, конечно, ток достаточно большой), и ток сможет идти через переход коллектор — эмиттер, а значит и через нагрузку.
Резистор R1 играет важную роль — он ограничивает ток через переход база — эмиттер. Если бы его не было, ток не был бы ничем ограничен и просто испортил бы управляющую микросхему (ведь именно она связывает линию питания с транзистором).
Максимальный ток через один выход микроконтроллера обычно ограничен значением около 25 мА (для STM32). В интернете можно встретить утверждения, что микроконтроллеры AVR выдерживают ток в 200 мА, но это относится ко всем выводам в сумме. Предельное допустимое значение тока на один вывод примерно такое же — 20-40 мА.
Это, кстати, означает, что подключать светодиоды напрямую к выводам нельзя. Без токоограничивающих резисторов, микросхема просто сгорит, а с ними светодиодам не будет хватать тока, чтобы светить ярко.
Обратите внимание, что нагрузка (LOAD) подключена к коллектору, то есть «сверху». Если подключить её «снизу», у нас возникнет несколько проблем.
Допустим, мы хотим при помощи 5 В (типичное значение для цифровых схем) управлять нагрузкой в 12 В. Это значит, что на базе мы можем получить максимум 5 В. А с учётом падения напряжения на переходе база — эмиттер, на эмиттере будет напряжение ещё меньше. Если падение напряжения на переходе равно 0,7 В,то получаем, что на нагрузку остаётся только 4,3 В, чего явно недостаточно. Если это, например, реле, оно просто не сработает. Напряжение не может быть выше, иначе тока через базу вообще не будет. Наличие падения напряжения на нагрузке также приведёт к уменьшению тока через базу.
Для расчёта сопротивления R1 нужно вспомнить соотношение для упрощённой модели транзистора:
Коэффициент — это коэффициент усиления по току. Его ещё обозначают или . У разных транзисторов он разный.
Зная мощность нагрузки и напряжение питания , можно найти ток коллектора, а из него и ток базы:
По закону Ома получаем:
Коэффициент не фиксированная величина, он может меняться даже для одного транзистора в зависи
Твердотельные реле — примеры использования и подключения
Для коммутации нагрузок в различном оборудовании обычно используются контакторы и реле. Всем известны основные минусы этих устройств – подгорание контактов и наличие подвижных частей. От этих недостатков полностью свободны Твердотельные реле (ТТР), которые всё шире и шире используются в промышленном оборудовании.
В статье рассмотрим подключение и электрическую защиту твердотельных реле, а также различные примеры применения.
Варианты использования
ТТР имеет смысл ставить там, где нет возможности контролировать работоспособность обычных электромеханических реле. Да, ТТР дороже, но основное их преимущество – «поставил и забыл». Часто их ставят для коммутации индуктивной нагрузки (электромагниты), для которой обычные реле подходят слабо – контакты подгорают быстро, нужно их чистить или менять. Либо ставить реле на заведомо больший ток работы.
Другой вариант использования ТТР – включение мощной нагрузки типа ТЭНов, когда мощные контакторы прослужат недолгое время из-за частых включений-выключений. Такое бывает в случае, когда нужно точное поддержание температуры, а для этого устанавливают небольшую ширину петли гистерезиса.
Как и в случае с контакторами и реле, ТТР легче работать, когда нагрузка чисто активная (АС1), то есть не содержит индуктивности (cosφ стремится к 1). Тогда он легко может коммутировать ток, указанный на его корпусе. В большинстве же случаев нагрузка является частично реактивной (cosφ = 0,7-0,8), поэтому ток ТТР нужно всегда выбирать с запасом.
Запас по току нужен также и для надежной работы системы защиты, но об этом расскажем чуть позже.
Коммутация ТЭНа нагревателя
В этом примере, как мы уже отмечали выше, ТТР работает в самом простом режиме – коммутация напряжения питания 220 В для ТЭНа. Реле рассчитано на ток 40 А, для однофазного напряжения 220 В это означаем максимальную мощность 8,8 кВт.
Однако, в целях повышения надежности в данном случае никто не будет подключать через ТТР ТЭНы мощностью 8 кВт. Обычно, даже в этом случае выбирают запас 50 %, не менее. В данном примере применяется ТЭН на 1,5 кВт. Защита обеспечивается автоматическим выключателем с номинальным током 10 А.
Управление твердотельными реле
Фактически ТТР – это управляемый коммутатор. В каком-то смысле, обычный транзистор является твердотельным реле – при подаче управляющего сигнала он открывается, и пропускает ток в нагрузку.
В ТТР в более чем 90% случаев в качестве управляющего сигнала нужно постоянное напряжение. Диапазон напряжений – от 3 до 35 В, и может быть разным для разных моделей и производителей..
В редких случаях (в зависимости от модели) в качестве управляющего сигнала применяют переменное напряжение (порядка 100…250 В), токовый сигнал 4…20 мА, либо для управления используют обычный потенциометр.
Схема подключения проста, и обычно приводится на корпусе ТТР:
Приведенная схема включения твердотельного реле является наиболее распространенной. На управляющий вход ТТР подается постоянное напряжение порядка 12…24 В. Подача напряжения производится от внешнего источника питания через любой подходящий коммутирующий элемент – кнопка, переключатель, транзистор, реле. На работу ТТР не оказывает влияния схема включения и принцип действия схемы на его входе. Важен лишь сам факт подачи напряжения нужного значения и полярности.
В ТТР с управляющим сигналом в виде переменного напряжения принцип работы аналогичный.
В большинстве моделей ТТР реализована светодиодная индикация подачи управляющего сигнала, что позволяет «на лету» отслеживать и анализировать работу ТТР.
Силовая часть ТТР
Эта важная часть ТТР коммутирует ток нагрузки.
Входная и выходная части твердотельного реле гальванически развязаны при помощи оптопары. Твердотельное реле не имеет отдельного источника питания. И если входная часть ТТР питается от входного источника питания, то выходная часть питается через нагрузку, получая питание при условии, что эта нагрузка подключена.
Таким образом, если нагрузка имеет высокое сопротивление, с одной стороны, это хорошо – меньше ток через реле, и оно меньше испытывает перегрузки, работая с большим запасом. Но если этот ток продолжить уменьшать, ТТР просто не сможет работать – хотя, входная индикация будет показывать, что всё нормально.
Коммутация индуктивной нагрузки
С индуктивной нагрузкой (как правило, это электромагнит), не так всё просто.
В этом случае нужно учитывать переходные процессы в моменты включения и выключения ТТР. В эти моменты возможны всплески напряжения, которые могут привести к неприятным последствиям, например – «зависание» ТТР в открытом или закрытом состоянии, которое снимается перезапуском питания. Самый неприятный вариант – ТТР может полностью выйти из строя, при этом оно может остаться в опасном включенном состоянии.
Существуют особенности при подключении индуктивной нагрузки типа электромагнитов. Производители рекомендуют выбирать пару ТТР-электромагнит таким образом, чтобы ток нагрузки был не более чем 10% от максимально допустимого тока ТТР. Это обусловлено возможной нестабильностью работы. Кроме того, при коммутации постоянного тока рекомендуется параллельно нагрузке подключать обратно включенный диод.
Защита
Большинство производителейрекомендуют в качестве защиты устанавливать быстродействующие предохранители. Это нужно для того, чтобы в случае перегрузки или короткого замыкания нагрузки не произошло поломки ТТР.
Однако, поскольку стоимость таких предохранителей сопоставима со стоимостью самого ТТР, существует вариант установки вместо предохранителей защитных автоматов. Причем, производители рекомендуют только защитные автоматы с время-токовой характеристикой типа «В».
Чтобы пояснить принцип защиты, рассмотрим известные графики время-токовых характеристик автоматических выключателей:
Из графика видно, что при превышении тока защитного автомата с характеристикой «В» более чем в 5 раз время его выключения – около 10 мс (пол периода напряжения частотой 50 Гц).
Из этого можно сделать вывод, что для того, чтобы иметь большие шансы по сохранению работоспособности ТТР в случае КЗ, нужно применять защитные автоматы с характеристикой «В». При этом нужно соответственно рассчитывать токи нагрузки и защитного автомата в зависимости от максимального тока твердотельного реле.
Пример неправильной защиты ТТР
Случаются грубые ошибки в проектировании систем на ТТР. Пример – электронагреватель приточной вентиляции мощностью 18,5 кВт, питаемый через трехфазное твердотельное реле с рабочим током 25 А. Основная проблема в том, что защищается это ТТР через автоматический выключатель с номинальным током 25 А и время-токовой характеристикой С.
Даже в случае частичного превышения рабочего тока (например, до 35 А) в первую очередь выгорит ТТР, при этом время отключения защитного автомата – около 1 часа.
Управление приборами 220В
Самый простой вариант — Реле
Электромагнитное реле — самый простой вариант управления микроконтроллером нагрузкой 220В. По сути это обычный электромагнит. При подаче постоянного тока на катушку возникает магнитное поле, сердечник втягивается и замыкает выводы. Для управления самим реле применимы те же методы, описанные в статье «Как управлять мотором постоянного тока». Важно обращать внимание на ток удержания реле и максимальный ток и коммутируемое напряжение. Как правило, ток удержания довольно высокий, около 100 мА, а напряжение 5 или 12В. Поэтому управлять напрямую от микроконтроллера не получится. Нужен будет транзистор.
Примерная
схема подключения реле с использованием
MOSFET транзистора. Как видно на схеме,
обязательно наличие диода. Дополнительно
можно ограничить потребляемый ток самим
реле, включив его последовательно через
резистор. Обычно ток удержания сильно
меньше стартового тока при включении
реле. Также можно добавить конденсатор,
чтобы он давал стартовый ток. Примерно
так можно будет выглядеть полная схема:
Основным
минусом схемы с реле является наличие
механической части в реле. Именно эта
часть ограничивает частоту переключений
реле и позволяет использовать реле с
частотой 0.5 Гц или меньше. Таким образом
управлять реле нагрузкой можно только
в режиме включил-выключил, без возможности
регулирования мощности подаваемой на
нагрузку.
Управляем нагрузкой 220В с регулировкой мощности
Хотелось бы иметь возможность регулировать мощность, подаваемую на управляемый прибор в диапазоне от 0 до 100%. Вот эту задачу и будем решать.
Как известно бытовая электросеть имеет переменное напряжение 220В с частотой 50 Гц. На осциллограмме это выглядит так:
Напряжение меняется по синусоиде, меняя полярность каждые 10 мс. Ограничить полную мощность синусоиды можно двумя методами:
В фазовом методе нагрузка отключается от сети на часть времени каждого полупериода, отключение производится обычно после перехода через 0. Напряжение подаваемое на нагрузку в этом случае выглядит так:
Во
втором методе, полных периодов или
полупериодов, нагрузка отключается на
целое количество периодов:
Например
это может выглядеть так, в случае с
полупериодами. При таком управлении
важно следить за тем, чтобы средний ток
был равен нулю.
Рассмотрим подробнее как управлять нагрузкой методом полных периодов. Он обеспечивает меньшие помехи на сеть 220В, так как ток и напряжение в нагрузке нарастают синхронно и дают меньшие выбросы в сеть.
Симистор — мощный ключ для сети 220 В
Самый простой способ управления нагрузкой 220В — использовать реле. Оно позволяет с помощью постоянного напряжения управлять мощной нагрузкой. В этой статье не будет рассматривать этот метод, он достаточно простой. Достаточно подать напряжение на магнит реле и он замкнёт контакты. К сожалению, реле не позволяет управлять нагрузкой достаточно быстро. При большом количестве включений\выключений оно быстро выходит из строя. Также, в момент переключения возникают большие импульсные помехи. Использовать реле лучше при частоте управления не больше одного раза в 2-3 секунды.
Как мы уже знаем по статье «Как управлять мотором постоянного тока» в цепях постоянного тока транзистор является электронным ключом, устройством, которое позволяет малым напряжением или током управлять более мощной нагрузкой.
Для переменного тока тоже существуют такие электронные ключи — Симисторы.
Симистор проводит ток в обоих направлениях, поэтому используется в сетях переменного тока. Для управления нагрузкой основные электроды симистора включаются в цепь последовательно с нагрузкой. В закрытом состоянии проводимость симистора отсутствует, нагрузка выключена. При подаче на управляющий электрод отпирающего сигнала между основными электродами симистора возникает проводимость, нагрузка оказывается включённой.
Для удержания симистора в открытом состоянии нет необходимости постоянно подавать сигнал на управляющий электрод (в отличие от транзистора). Он остаётся открытым, пока протекающий через основные выводы ток превышает некоторую величину, называемую током удержания. Отсюда следует, что выключение нагрузки в цепи переменного тока происходит вблизи моментов времени, когда ток через основные электроды симистора меняет направление (обычно это совпадает по времени со сменой полярности напряжения в сети переменного тока). Эта точка на синусоиде называется переходом через ноль.
Симистором можно управлять напрямую от микроконтроллера, но для этого нужен довольно большой ток — 10-20 мА. Существуют также логические симисторы. У них ток управления составляет около 5 мА. В схемах лучше использовать обычные симисторы, они более защищены от самопроизвольного открытия. Что это такое и как можно управлять обычными симисторами? Читаем дальше.
Для начала посмотрим насколько мощной нагрузкой может управлять типичный симистор. Возьмём для примера симистор BT139-800. В datasheet обычно приводят графики выделяемой мощности на симисторе при управлении нагрузкой. Вот пример такого графика.
Зная
выделяемую мощность, используем параметры
рассеивания тепла корпусом, чтобы
получить температуру нагрева симистора
и оценить его работоспособность.
Из всех этих параметров следует, что без радиатора данный симистор может рассеять около 2Вт тепла. При управлении полными полупериодами нужно брать график тока для a=180 градусам. График в этой области практически линейный, поэтому можно сказать, что средний ток будет около 2А.
То есть без радиатора этот симистор сможет управлять нагрузкой в 2А * 220В = 440 Вт. В остальных случаях нужен будет радиатор.
Теперь разберёмся как микроконтроллер может управлять мощным симистором?
Оптосимистор — удобный метод управления мощным симистором микроконтроллером
Так как симистор проводит ток в обоих направлениях, то по отношению к его основным терминалам, управляющий ток может находится в четырёх квадратах.
Можно
это также представить в виде таблицы:
В datasheet приводят, в каких квадрантах управляется конкретный симистор и какой для этого нужен ток. Например, выбранный симистор управляется во всех 4-х квадрантах. Но при этом различается управляющий ток и защитные свойства от ложных срабатываний.
Видно, что 4-ый квадрант самый невыгодный. Управляющий ток резко возрастает. Также и защитные свойства при таком управлении падают.
Отсюда
следует вывод, что при управлении
микроконтроллером лучше управлять в
1-3 квадранте.
Если управление прямое, то МК необходимо уметь менять полярность вывода, что сложно, или иметь общее с терминалом A1 плюсовое питание (управление будет во втором и третьем квадранте). Второй вариант не сложно реализовать при конденсаторном источнике питания. В этом appnote AN2986 подробно рассматривается этот случай.
Второй вариант — управлять через оптосимистор. Таких устройств довольно много и они стоят недорого. Например — MOC3041. Есть оптосимисторы со встроенной схемой контроля перехода через ноль, они могут выключаться только около нуля. Такой нам и нужен для схемы управления полными периодами. А есть без этой схемы. С их помощью можно управлять фазовым методом.
Схема управления с использование оптосимистора получается такая:
само устройство внутри выглядит так:
Управление
в этом случае получается одной полярности
с терминалом A2, то есть в первом и третьем
квадранте.
Дополнительно оптосимистор изолирует схему работы микроконтроллера от сети, что уменьшает помехи, и повышает надёжность прибора. Если нет требований к компактности прибора, то рекомендуем использовать оптосимисторы для управления другими более мощными симисторами.
Цепь защиты симистора от помех в сети
В случае слишком быстрого изменения напряжения на основных выводах симистора или тока он может самопроизвольно открыться и начать проводить ток. Это очень неприятно. В основном это может произойти при управлении индуктивной нагрузкой (индуктивность сопротивляется изменению тока). Но также это может происходить и при работе прибора с индуктивностью рядом в сети (например, когда через одну розетку работает мотор и управляемый микроконтроллером паяльный фен). В этом случае независимо от микроконтроллера управляемая нагрузка не будет отключаться от сети и ток будет продолжать идти. Например, при управлении паяльным феном эта ситуация может привести даже к пожару.
Простой защитой от этого случая является снабберная цепь (резистор плюс конденсатор):
Но
она не гарантирует работу во всех
случаях. Параметры рассчитываются под
конкретную индуктивность. Appnote AN-3004
подробно рассматривает расчет снаббера.
Второй вариант — использование симисторов работающих в 1-3 квадранте. Например, T405. Производитель указывает, что они могут использоваться для управления даже индуктивной нагрузкой без снаббера.
Фазовый метод
Для решения задачи фазового управления нагрузкой микроконтроллеру необходимо знать когда был совершён переход через ноль. Тогда можно будет рассчитать время задержки включения нагрузки.
Самый простой метод получения события перехода через ноль в сети переменного тока подробно описан в appnote AN521 от компании Microchip. Практически каждый микроконтроллер имеет высоковольтные защитные диоды на каждом цифровом входе. Это можно использовать, чтобы получить информацию о переходе через ноль. Достаточно на входе поставить высокоомный резистор, ограничивающий ток на выводе МК, до значений указанных в datasheet на МК. В этом случае вывод в обычном цифровом режиме будет принимать значение 0 в момент перехода через ноль. Временная задержка от реального состояния до реального будет минимальна и составляет около 50 мкс.
Минусом такой схемы является отсутствие гальванической развязки схемы управления от сети 220В. Если это необходимо, то можно использовать оптопару.
Ну а далее, уже можно управлять мощным симистором как было описано ранее, только если делать это через оптосимистр, то без схемы перехода через ноль.
В этой статье разобраны основные методы управления мощной нагрузкой сети переменного тока 220В с помощью симисторов. После прочтения теоретической части перейдём к практике. Паяльная станция — прибор, в котором микроконтроллер управляет мощным паяльным феном работающим от сети 220В.
Опто-симисторы и твердотельные реле
- Изучив этот раздел, вы сможете:
- Опишите типичное использование оптических симисторов:
- • Гальваническая развязка.
- • Возможность переключения.
- • Типовая конструкция.
- Опишите типичные особенности твердотельных реле:
- • Гальваническая развязка.
- • Переключение нагрузок постоянного и переменного тока.
- • Типовые параметры.
- Опишите типичные функции безопасности, используемые в твердотельных реле (SSR):
- • Защита от обратной полярности.
- • Защита от перенапряжения.
- • Подавление переходных напряжений.
- • Демпферные цепи.
- • Переход через нулевое напряжение.
- Опишите основные меры для тестирования оптопар на основе ИС.
- • Базовые тесты.
- • Меры безопасности для устройств среднего и высокого напряжения.
Опто-симисторы
Устройства, которые используются для управления высоковольтным / высокомощным оборудованием, должны иметь хорошую электрическую изоляцию между их выходом высокого напряжения и входом низкого напряжения. Использование слоя оксида кремния толщиной в несколько атомов для обеспечения необходимой изоляции в таких условиях нереально.Когда возникают неисправности (а они более вероятны в цепях большой мощности), результаты могут быть катастрофическими не только для компонентов схемы, но и для пользователей такого оборудования. Физическая изоляция (это означает, что между входом и выходом нет никакого электрического соединения ) — вот что необходимо. К счастью, есть легко доступные решения этой проблемы. Многие цепи высокой мощности сегодня управляются низковольтными, слаботочными цепями, такими как микропроцессоры, с использованием оптоэлектронных устройств, таких как опто-симисторы, опто-тиристоры и твердотельные реле, для изоляции цепей низкой и высокой мощности.
Устройство управления должно быть способно выдерживать высокие напряжения, в том числе очень высокие скачки напряжения, которые могут возникать в выходных цепях переменного или постоянного тока из-за обратной ЭДС от индуктивных нагрузок, и скачки напряжения, которые могут случайным образом присутствовать в сети (линии) поставка. Кроме того, высокие значения импульсного тока (намного превышающего нормальный рабочий ток), которые возникают, например, при включении таких нагрузок, как двигатели или лампы накаливания, могут потребовать, чтобы устройство управления было рассчитано на работу с импульсными токами до 40 или В 50 раз превышающий нормальный «рабочий» ток.Выбранное устройство управления должно также обеспечивать гальваническую развязку между входной и выходной цепями. В дополнение к этим критериям цепь вокруг устройства управления должна также обеспечивать защиту от опасных ситуаций. Например, подходящие радиаторы для используемых твердотельных устройств. Также необходимы специальные быстродействующие предохранители или автоматические выключатели, чтобы предотвратить повреждение полупроводников из-за токовых перегрузок.
Рис. 6.6.1 Opto Triac и Opto SCR
В этой группе оптопары, фототиристоры, фото-тиристоры или комбинации фотодиод / МОП-транзистор заменяют фотодиоды и фототранзисторы, описанные в модуле 5 опто-сопряженных устройств, а также доступны в интегральных схемах (I. C.) форма для переключения относительно маломощных нагрузок переменного или постоянного тока. В полупроводниковых реле высокой мощности (SSR), показанных на рис. 6.6.2, используются микросхемы, подобные тем, которые показаны на рис. 6.6.1, с дополнительной «встроенной» схемой для безопасного и надежного управления высоковольтными и сильноточными нагрузками.
Рис. 6.6.2 Типичный SSR высокой мощности
Твердотельные реле
Опто-симисторы и опто-тиристоры используются для переключения нагрузок переменного тока, но также доступны твердотельные реле, использующие силовые МОП-транзисторы, которые могут переключать переменный или постоянный ток.Твердотельные реле малой мощности, состоящие в основном из опто-симисторной схемы, такого как тип, показанный на рис. 6.6.1, могут использоваться как обычные интегральные схемы, установленные на печатной плате. В качестве альтернативы эти маломощные оптопары могут быть заключены в изолированный корпус вместе с мощными симисторами или тиристорами и дополнительными компонентами безопасности, такими как радиаторы и компоненты подавления импульсов, в более крупных твердотельных реле (SSR), монтируемых в стойку, с использованием всего четырех или пяти винтов клеммы для тяжелых условий эксплуатации, которые можно рассматривать как выключатели сетевого (линейного) питания и могут заменить многие типы электромеханических реле.
Рис. 6.6.3 Твердотельное реле MOSFET
Одной из наиболее важных особенностей SSR является то, что оптопара обеспечивает полную электрическую изоляцию между входной цепью малой мощности и выходной цепью высокой мощности. Когда выходной переключатель находится в «разомкнутом» состоянии (т. Е. Полевые МОП-транзисторы выключены), SSR имеет почти бесконечное сопротивление на своих выходных клеммах и почти нулевое сопротивление в «замкнутом» состоянии (т. Е. Полевые МОП-транзисторы имеют большую проводимость). Даже в этом случае часть мощности будет рассеиваться полупроводниковым переключателем, когда он находится в состоянии «включено» или «выключено» с переменным или постоянным током.По этой причине требуются соответствующие радиаторы для предотвращения перегрева.
Типовая схема базового MOSFET SSR показана на рисунке 6.6.3. Ток около 20 мА через светодиод достаточен для активации полевых МОП-транзисторов, которые заменяют контакты механического реле. (Инфракрасный) свет от светодиода падает на фотоэлектрический блок, состоящий из нескольких фотодиодов. Поскольку один фотодиод будет производить только очень низкое напряжение, диоды в фотоэлектрическом блоке расположены последовательно / параллельно для создания достаточного напряжения для включения полевых МОП-транзисторов.
Рис. 6.6.4 Использование микросхемы MOSFET Relay для
переключения переменного или постоянного тока
На рис. 6.6.4 представлен базовый пример MOSFET SSR, показывающий, как могут быть организованы выходы, позволяющие SSR переключать нагрузки переменного или постоянного тока. Доступен ряд аналогичных SSR для удовлетворения различных требований к выходному напряжению и току переменного и постоянного тока, типичным примером является PVT412 SSR от International Rectifier (теперь часть Infineon Technologies), выпускаемый в нескольких версиях в виде 6-контактного DIL-корпуса и способный заменить однополюсное механическое реле для переключения переменного или постоянного напряжения до 400 В (пиковое) с токами до 140 мА переменного тока или 210 мА постоянного тока. Доступны другие микросхемы, которые действуют как двухполюсные, нормально замкнутые (NC), нормально разомкнутые (NO) и переключающие реле с широким спектром дополнительных возможностей. ТТР также производятся в диапазоне выходных напряжений и номинальных значений тока, с диапазоном типов корпусов, начиная от небольших компонентов для поверхностного монтажа и заканчивая сложными многополюсными микросхемами и примерами больших сильноточных напряжений для монтажа в стойку в электрических шкафах управления. Дополнительную информацию о SSR можно найти, выполнив поиск по твердотельным реле на веб-сайтах производителей, таких как Infineon Technologies, или у поставщиков полупроводников, таких как RS Components
.Фиг.6.6.5 Функции безопасности твердотельного реле
Функции безопасности SSR
SSRсостоят в основном из оптопары, управляющей некоторыми мощными переключающими устройствами, такими как силовой симистор, полевые МОП-транзисторы или тиристоры, но, поскольку их цель состоит в переключении мощных электрических нагрузок, часто в критических для безопасности ситуациях SSR производятся с большим разнообразием функций , разработан для обеспечения безопасной и надежной работы. Некоторые из них показаны в схеме, показанной на рис. 6.6.5:
Защита от обратной полярности.Если входные клеммы подключены с неправильной полярностью, диод D1 проводит и снижает напряжение в нижней части R1 примерно до 0,7 В, тем самым спасая светодиод оптопары от повреждения. Обратите внимание, что номинальная мощность диода и токоограничивающего резистора R1 должна быть способна выдерживать ток обратной полярности при максимальном входном напряжении без повреждений, в противном случае входной предохранитель подходящего номинала может быть вставлен между входным положительным контактом и токоограничивающим резистором.
Защита от перегрузки по току.Обычно SSR могут работать в диапазоне входных напряжений постоянного тока, например от 5 до 24 В. Эти более высокие напряжения могут привести к тому, что ток через светодиод оптопары превысит требуемый максимум, в этом случае схема защиты от перегрузки по току срабатывает для поддержания подходящего уровня тока через светодиод. R2 — резистор низкого номинала для измерения тока; это значение выбрано таким образом, чтобы в нормальных условиях работы Tr1 смещен чуть ниже порога отсечки, но если ток через светодиод входа оптопары увеличивается из-за чрезмерного входного напряжения, дополнительный ток через R2 заставит Tr1 проводить, отклоняя часть тока светодиода через Tr1 снижает напряжение в нижней части R1 и ток через светодиод до безопасного уровня.
Рис. 6.6.6 Подавление переходного напряжения
Диод подавления переходных напряжений (TVS). SSR, используемые в ситуациях управления, могут быть подвержены повреждениям, вызванным внезапными и кратковременными (т. Е. Переходными) всплесками напряжения, которые могут быть вызваны внешними событиями, такими как импульсы обратной ЭДС при переключении индуктивных нагрузок; также удаленные грозовые разряды и другие электромагнитные или электростатические разряды представляют собой случаи высокого риска для полупроводниковых устройств. Такие всплески напряжения могут быть очень короткими по продолжительности, но могут достигать сотен или тысяч вольт по амплитуде, и хотя создаваемый ими ток может быть очень небольшим, напряжение, вызванное такими напряжениями, может вызвать полный отказ полупроводниковых устройств, используемых в SSR. Одним из способов уменьшить эти опасные события является использование диода-ограничителя переходного напряжения (TVS), подключенного параллельно с чувствительными устройствами, такими как оптопара, как показано на рис. 6.6.5.
Рис. 6.6.6 иллюстрирует действие TVS-диода и показывает выходную синусоидальную волну, наложенную на характеристики TVS-диода. Двунаправленный TVS-диод работает скорее как два встречных стабилитрона, где выше определенного обратного напряжения происходит пробой тока, и диод проводит сильную проводимость.Поскольку TVS-диод в этом случае является двунаправленным, пробой происходит как в прямом, так и в обратном направлении.
При использовании TVS-диод должен иметь напряжение пробоя выше, чем пиковое напряжение волны переменного тока, которое составляет 1,414 x V RMS , поэтому TVS-диод с напряжением пробоя примерно в 1,5 раза больше, чем RMS-напряжение синусоидальной волны. обычно используется. Скачок напряжения, превышающий этот предел, вызывает сильную проводимость диода, ограничивая его напряжение до напряжения пробоя диода. Заметное различие между стабилитроном и TVS-диодом состоит в том, что TVS-диод имеет более прочную область перехода, чтобы справиться с внезапным сильным выбросом тока во время всплесков. Однако после того, как всплеск закончился, диод перестает проводить (за исключением небольшого обратного тока утечки) и больше не влияет на выходную волну, пока не появятся новые всплески. TVS-диоды также доступны в однонаправленных типах, которые также могут использоваться на входной стороне оптопары в SSR с использованием входа постоянного тока, если существует высокий риск возникновения всплесков.Однако, поскольку на вход постоянного тока обычно подается сглаженный источник питания постоянного тока, обычно ожидается, что это минимизирует риск, поэтому использование TVS-диодов на входных компонентах редко считается необходимым.
Рис. 6.6.7 RC демпферные цепи
RC Snubber Circuits. Эти схемы обеспечивают способ уменьшения разрушающего воздействия скачков напряжения в сети переменного тока или очень больших и быстрых изменений напряжения, которые могут возникнуть при включении или выключении индуктивной нагрузки (коммутации). В более старых типах симисторов или тиристоров эта RC-цепь (R5 и C1) подключается через выходной симистор или тиристор, как показано на рис. 6.6.5 и рис. 6.6.7. Его эффект заключается в замедлении быстрого увеличения или уменьшения напряжения во время всплеска. Использование демпфирующей схемы также может уменьшить радиопомехи, вызванные переключением симистора или тиристора. Если выбрать подходящую постоянную времени для R5 / C1, конденсатор не успеет зарядиться при повышении пикового напряжения, прежде чем напряжение снова снизится и разрядится конденсатор.Таким образом уменьшается амплитуда любых быстрых скачков напряжения. Типичные значения R составляют от 39 до 100 Ом для R5 и от 22 до 47 нФ для C1. Конденсатор также должен быть импульсного типа с очень высоким максимальным рабочим напряжением, намного превышающим пиковое значение выходной волны, чтобы учесть дополнительное напряжение, вызываемое любыми скачками напряжения. Однако конструкция демпферных цепей более сложна, чем простой выбор типичных значений R и C, и должна учитывать ряд факторов, которые будут уникальными для цепи или компонента, который защищает демпфер, и для нагрузок, которые цепь может управлять. .
Полезное примечание по конструкции демпфера и калькулятору компонентов можно найти в сети HIQUEL (High Quality Electronics).
Генераторы переменного тока
В качестве альтернативы доступны современные симисторы, которые также можно назвать «альтернисторами» или «альтернисторными симисторами», которые гораздо менее подвержены повреждению или случайному ложному срабатыванию, вызванному быстрыми переходными напряжениями. Несколько производителей полупроводников имеют свой собственный ассортимент устройств, например, линейку «Snubberless TM » от ST Microelectronics или «Hi-Com TM » от WeEn Semiconductors, которые способны справляться как с скачками напряжения, так и с быстрым События dV / dt, возникающие при коммутации (выключении) с индуктивными нагрузками.Внутренняя конструкция этих симисторов отличается от оригинальных типов, что позволяет им лучше справляться с быстрыми изменениями высокого напряжения, которые могут произойти при отключении индуктивных нагрузок из-за разности фаз между током и напряжением в индукторах. В этом случае возможно, что когда симистор отключается, когда сетевой (линейный) ток проходит через ноль вольт, сетевое напряжение на симисторе может достигать максимального значения. В то время как такие события в оригинальных схемах симистора могли вызвать проблемы с неконтролируемым повторным запуском, в современных конструкциях это значительно уменьшено.
Рис. 6.6.8 SSR Zero Crossing Action
Переход через нулевое напряжение. Некоторые SSR включают схемы «пересечения нуля» или «синхронного переключения», которые уменьшают возможность внесения быстро меняющихся «всплесков» в сетевое (линейное) питание, гарантируя, что их выход будет включаться только тогда, когда цикл сетевого напряжения проходит через нулевое напряжение . Как показано на рис. 6.6.8, если управляющее напряжение требует включения во время цикла напряжения, когда напряжение переменного тока не проходит через 0 В, действие переключения задерживается до тех пор, пока напряжение не перейдет через 0 В в конце текущей половины. цикл.Однако схема пересечения нулевого напряжения не играет никакой роли в выключении выхода; это управляется действием симистора или тиристора, который при включении выключится только тогда, когда выходной ток нагрузки упадет ниже заданного удерживающего тока симистора или тиристора, что будет происходить при прохождении формы волны тока через ноль.
Приведенные выше описания функций безопасности предназначены для ознакомления пользователей SSR с некоторыми необходимыми ограничениями безопасности при выборе правильного SSR для любой конкретной операции.Однако этот список не предлагается в качестве исчерпывающего руководства, важность или неважность любого из этих факторов будет во многом зависеть от предполагаемого использования SSR. Поэтому рекомендуется, особенно при рассмотрении вопроса о безопасной эксплуатации цепей, получить рекомендации, относящиеся к предполагаемому проекту, многие производители или национальные и международные агентства по безопасности могут легко дать квалифицированный совет относительно пригодности SSR для конкретных целей. Вам также предлагается продолжить изучение, пройдя по некоторым из рекомендованных ссылок внизу этой страницы.
Твердотельное и механическое переключение в сравнении с
Твердотельные реле (SSR)имеют ряд преимуществ по сравнению с электромеханическими реле, некоторые из которых являются очевидными преимуществами, а некоторые будут оспариваться приверженцами (и производителями) электромеханических реле. Однако, какой тип реле лучше для конкретного приложения, зависит больше от приложения, а не от типа реле. Поэтому это следует внимательно учитывать при чтении следующих списков.
Преимущества ТТР перед электромеханическими реле.
- Поскольку твердотельные реле не имеют индуктивных катушек или подвижных контактов, они не создают электромагнитных помех.
- SSR не вызывают потенциально опасного искрения.
- SSR работают бесшумно. ТТР
- не подвержены механическому износу, поэтому потенциально могут выполнять гораздо больше операций переключения, чем электромеханические реле (однако любой тип может быть спроектирован для выполнения большего числа операций, чем требуется в течение срока службы оборудования, в котором они используются). SSR
- не страдают от дребезга контактов. У реле
- более короткое время переключения, чем у электромеханических реле.
- Для коммутации переменного тока доступны SSR с переходом через ноль, которые включаются только в тот момент или близко к тому времени, когда форма волны переменного тока проходит через нулевое напряжение, таким образом уменьшая возникновение скачков напряжения, которые возникают, если цепь включается, когда напряжение переменного тока на максимум.
- SSR могут быть физически меньше, чем электромеханические реле сопоставимых типов.
Недостатки ТТР перед электромеханическими реле.
- Когда SSR включены, между выходными клеммами имеется измеримое сопротивление, поэтому SSR выделяют некоторое количество тепла, а также вызывают падение напряжения во включенном состоянии.
- Когда SSR находятся в «выключенном» состоянии, на выходе все еще протекает небольшой обратный ток утечки. В отличие от электромеханических реле, SSR не являются ни полностью включенными, ни выключенными. Поэтому их использование может быть запрещено некоторыми правилами техники безопасности.
- Поскольку SSR могут очень быстро (за миллисекунды) включать случайные всплески помех в их входных цепях или внезапные быстрые изменения напряжения на их выходах, могут вызвать нежелательное переключение некоторых SCR или симисторов.
- Отказ SSR обычно вызывает короткое замыкание (включение), тогда как отказ электромеханического реле обычно вызывает разрыв цепи (выключение). Из-за этого использование SSR может вызвать некоторые опасения в критических для безопасности системах.
Дополнительная информация
Твердотельные реле и электромеханические реле — Примечания по применению Твердотельные реле США
Как правильно выбрать реле — National Instruments
Технические советы по реле — Crydom Inc.
Твердотельные реле переменного тока с использованием симисторов
Самое простое твердотельное реле.
Самое простое твердотельное реле (SSR) показано выше, представляющее собой источник света и симистор со светочувствительным затвором. Для получения дополнительной информации о том, как работают симисторы и тиристоры, см. Проекты и схемы базовых симисторов и тиристоров. Твердотельное реле (SSR) состоит из четырех основных частей:
- Оптоизолятор или оптрон для изоляции низковольтного управления постоянным током, часто от микрокомпьютера, от высокого напряжения переменного тока.Входной оптопара часто представляет собой светоизлучающие диоды, в то время как выход часто представляет собой фототранзистор или фотоприемник для включения симистора.
- SSR часто имеет внутреннюю схему детектора перехода через ноль для включения симистора в то время, когда синусоида немного превышает ноль или 180 градусов. Это помогает предотвратить повреждение нагрузки и ненужные скачки напряжения.
- Симистор, действующий как переключатель переменного тока. Если SSR предназначен для постоянного тока, на выходе будет силовой транзистор.
- Демпферная цепь (цепи) для предотвращения ложного срабатывания симистора из-за всплесков шума, генерируемых магнитными нагрузками.
Более практичный SSR.
См. Также Использование оптопары. Важное замечание: выход не имеет электрического соединения со входом и может обеспечивать изоляцию до нескольких тысяч вольт. Также см. Дополнительные примеры схем.
Оптоизоляторы с диафрагмами
Оптоизолятор — это твердотельное устройство, предназначенное для обеспечения гальванической развязки между входом и выходом. Вход состоит из светоизлучающего диода (LED) в корпусе с шестью или восемью выводами (IC), в зависимости от типа.Выходом может быть фототранзистор, фотодатчик и т. Д. Между входом и выходом нет электрического контакта. Когда светодиод включен, диод, транзистор и т. Д. Будут проводить свет, излучаемый диодом, таким образом, включив симистор как выключатель. Серия MOC3011 предназначена для подключения к симисторам, типы MOC301x на 110 вольт и типы MOC302x на 240 вольт. Просмотреть схему.
(вверху) MOC3042 Другие оптопары имеют встроенный детектор перехода через нуль.
Демпферы
Демпферная цепь (обычно типа RCA) часто используется между Mt1 и Mt2.Демпферные цепи используются для предотвращения преждевременного срабатывания, вызванного, например, скачками напряжения в сети переменного тока или индуктивными нагрузками, такими как двигатели. Кроме того, между затвором и Mt1 может быть подключен резистор затвора или конденсатор (или оба параллельно), чтобы дополнительно предотвратить ложное срабатывание. Это может увеличить требуемый пусковой ток и, возможно, задержку выключения при разрядке конденсатора.
В этой цепи выше «горячая» сторона линии переключается, а нагрузка подключается к холодной или заземленной стороне.Резистор на 39 Ом и конденсатор 0,01 мкФ предназначены для демпфирования симистора, а резистор на 470 Ом и конденсатор 0,05 мкФ — для демпфирования ответвителя. Эти компоненты могут быть необходимы, а могут и не потребоваться, в зависимости от конкретной нагрузки и используемой нагрузки.
Подробнее о вышеупомянутом оптроне см. Оптоизолятор серии moc30xx и MOC3042 с цепями перехода через ноль. (оба файла в формате pdf)
Моделирование твердотельного реле, объяснение
[SaltyPuglord] требовалось твердотельное реле для проекта.Мы бы только что купили один, но он решил создать свой собственный в LTSpice. По ходу дела он сделал видео ниже, которое довольно информативно и является хорошим примером нетривиального дизайна в LTSpice.
Полевые МОП-транзисторызначительно упростили подобные конструкции до такой степени, что это должно быть так же просто, как подключить пару мощных полевых транзисторов к источнику переменного тока и нагрузке. Однако у этого есть несколько ответвлений, которые [Солти] покрывает в видео.
Наибольшее беспокойство вызывает изоляция источника постоянного тока от земли.Он использовал трансформатор, который сложно смоделировать в LTSpice. Кроме того, конструкция источника питания довольно проста, и, как он упоминает в видео, вам не нужен этот комплекс регуляторов только для питания затворов полевых МОП-транзисторов.
Другая проблема заключается в том, что провода между двумя МОП-транзисторами действительно должны плавать и могут выдерживать довольно небольшой ток. Проблема в том, что LTSpice может запутаться, если для полевых транзисторов нет заземления. Таким образом, в моделируемой цепи есть земля.Фактически, решателю LTSpice по умолчанию схема все равно не нравится. В видео показано, как перейти на альтернативный решатель, который работает хорошо.
Похоже, что многое из того, о чем говорится в видео, также упоминается в связанном документе от TI. Если вы хотите попробовать облегченную версию схемы без установки LTSpice, попробуйте Falstad. Или попробуйте Micro Cap, если хотите установить что-то другое. Если вы все же придерживаетесь LTSpice и хотите узнать больше о моделировании трансформаторов, мы поможем вам.tSdB498e`rS \ X \> ZMMk-mRE> r1; EU6CP \ O [ZHBpfA = RVRn _? «TsA конечный поток endobj 144 0 объект > поток J.9Lc; #nH? +; Toj @ rVVY # WE \ 2`! /M`.L \ 3O $ mS + O! ONOqJVYN_TnIC «($ + La;, 5: s конечный поток endobj 140 0 объект > поток J.