для начинающих, сборка своими руками
Любой радиолюбитель в своей жизни не раз собирал блок питания для своих электронных устройств. Поэтому его устройство и принцип работы должен знать каждый, кто занимается электроникой.
Ведь собрав даже самый простой блок питания своими руками, начинающие радиолюбители получают такой восторг, потому что простой блок питания не требует никакой настройки и никакой регулировки, он сразу начинает работать.
Блоки питания бывают нескольких типов: трансформаторные, бестрансформаторные, импульсные.
Принципиальная схема БП
Трансформаторные блоки питания — самые простые и надежные блоки питания. Также из простых блоков питания они являются самыми безопасными по электробезопасности .
Простой трансформаторный блок питания состоит из: трансформатора, выпрямителя и фильтра. Если требуется более качественное стабилизированное питание, то устанавливается стабилизатор. Блоки питания будем рассматривать блоками. Внизу представлена принципиальная схема.
Трансформатор
Мы возьмем трансформатор на выходе вторичной обмотки которой будет выходить 12 вольт.
Можно уже и таким блоком питания пользоваться, но только если для подключения лампы накаливания на 12 Вольт, ведь на выходе у нас переменное напряжение.
Диодный мост
Мы продолжим собирать простой блок питания своими руками. И для получения постоянного напряжения нам понадобится диодный мост, или по-другому его еще называют — диодный выпрямитель. Диодный мост служит для преобразования переменного напряжения вторичной обмотки в постоянное, так как для питания устройств в основном используется постоянное напряжение.
Диодный мост собран на четырех диодах VD1 — VD4. Рассмотрим работу диодного моста за один период. В первом полупериоде ток протекает через обмотку трансформатора, VD3 и VD4 заперты, и ток проходит через диод VD1 и выходит с диода +12В на нагрузку На схеме нагрузкой служит светодиод VD5 подключенный через токоограничивающий резистор R1.
С диода VD1 ток проходит через токоограничивающий резистор R1, через светодиод VD5, проходит через диод VD2, и уходит на вторичную обмотку трансформатора. На этом первый полупериод завершен.
Второй полупериод проходит также через обмотку трансформатора, но в обратном направлении. С обмотки трансформатора ток протекает теперь через диод VD3. VD1 и VD2 заперты, и далее ток через токоограничивающий резистор R1 на светодиод VD5, далее ток протекает через диод VD4 и уходит на трансформатор.
Вот мы рассмотрели и второй полупериод работы диодного моста.После диода выходное напряжение выходит пульсирующим, можно посмотреть на рисунке ниже.
Таким пульсирующим напряжением уже можно подключать некоторые устройства, которые не бояться пульсаций, например для зарядки автомобильного или другого аккумулятора. Но для питания приемника, усилителя, светодиодной ленты, и тд., такой блок питания не пойдет, к нему на выход диодов надо подключить фильтр, сглаживающий пульсации.
Фильтрующий конденсатор
Без этого фильтра устройство, которое будет питаться от этого блока питания может работать нестабильно, или вообще не работать. Фильтром служат электролитические конденсаторы. У конденсаторов два вывода, плюсовой вывод длиннее минусового. Также возле минусового вывода на корпусе наносится знак «-«
Ниже на рисунке показана схема, и уровень пульсаций в каждой точке
В устройствах, где требуется ещё и стабильное напряжение без скачков, например в электронике с применением микроконтроллеров, добавляют в схему еще и стабилизатор напряжения.
Стабилизатор
Продолжаем улучшать наш простой блок питания своими руками. Для получения качественного и стабильного напряжения без малейших пульсаций, скачков, и просадки напряжения используют стабилизатор напряжения.
В качестве стабилизатора используют стабилитрон, или интегральный стабилизатор напряжения. Мы собрали схему блока питания для устройства, которое нуждается в стабилизированном источнике питания. Это устройство собрано на контроллере, и без стабильного напряжения оно работать не будет. При небольшом повышении напряжении контроллер сгорит. А при понижении напряжении устройство откажется работать. Вот для таких устройств и предназначен стабилизатор.
Вывод 1 интегрального стабилизатора — входное напряжение. Вывод 2 — общий (земля). Вывод 3 — выходит стабилизированное напряжение.
Максимум, что может выдать L7805 — ток в 1,5 А, поэтому надо рассчитывать остальные детали на ток более 1,5 А. Выход трансформатора выбираем на ток более 1,5 ампера и напряжением выше стабилизированного значения больше на два вольта. Например, для LM7812 с выхода трансформатора должно выходить 14 — 15 В, для LM7805 7 – 8 В. Но не забывайте, что эти стабилизаторы греются из-за внутреннего сопротивления. Чем больше перепад между входом и выходом, тем больше нагрев. Ведь лишнее напряжение эти стабилизаторы гасят на себе.
Интегральные стабилизаторы бывают с общим минусом LM78**, или с общим плюсом LM79**. На месте звездочек находятся цифры указывающие напряжение стабилизации. Например LM7905 — общий плюс, напряжение стабилизации -5 В. Еще один пример LM7812 — общий минус, напряжение стабилизации 12 В. А теперь посмотрим распиновку, или назначение выводов интегрального стабилизатора.
Стабилизированный блок питания на LM7805
На рисунке ниже представлена схема простого блока питания со стабилизатором.
На первичную обмотку трансформатора TV1 поступает сетевое напряжение 220 В. Со вторичной обмотки трансформатора выходит пониженное переменное напряжение от 7 до 8 вольт. Далее ток проходит через диодный мост, и на выходе моста получается выпрямленное напряжение. На конденсаторах С1 и С2 выпрямленное напряжение сглаживается.
На выходе стабилизатора LM7805 выходит стабилизированное напряжение 5 вольт. Далее на конденсатор сглаживающий импульсы. И вот уже выпрямленное и стабильное напряжение поступает на светодиод VD5 с токоограничивающим резистором. Светодиод служит индикатором напряжения.
Если требуется источник питания малой мощности, то можно рассмотреть как вариант- бестрансформаторный блок питания. Но это уже другая история.
Вам тоже будет интересно почитать
Простые импульсные блоки питания » Журнал практической электроники Датагор (Datagor Practical Electronics Magazine)
Несколько раз меня выручали блоки питания, схемы которых стали уже класическими, оставаясь простыми для любого, кто хоть раз уже что-то электронное в своей жизни паял.Аналогичные схемы разрабатывались многими радиолюбителями для разных целей, но каждый конструктор вкладывал в схему что-то свое, менял расчеты, отдельные компоненты схемы, частоту преобразования, мощность, подстраивая под какие-то, известные только самому автору, нужды…
Мне же часто приходилось использовать подобные схемы вместо их громоздких трансформаторных аналогов, облегчая вес и объем своих конструкций, которые необходимо было запитать от сети. Как пример: стерео-усилитель на микросхеме, собранный в дюралевом корпусе от старого модема.
Содержание / Contents
Описание работы схемы, коль она классическая, приводить особого смысла нет. Замечу лишь, что я отказался от использования в качестве схемы запуска от транзистора, работающего в режиме лавинного пробоя, т.к. однопереходные транзисторы типа КТ117 работают в узле запуска гораздо надежнее. Запуск на динисторе мне тоже нравится.На рисунке представлены: а) цоколёвка старых транзисторов КТ117 (без язычка), б) современная цоколёвка КТ117, в) расположение выводов на схеме, г) аналог однопереходного транзистора на двух обычных (подойдут любые транзисторы верной структуры — структуры p-n-p (VT1) типа КТ208, КТ209, КТ213, КТ361, КТ501, КТ502, КТ3107; структуры n-p-n (VT2) типа КТ315, КТ340, КТ342, КТ503, КТ3102)
Ошибка. Диод VD1 включить наоборот!Схема на полевых транзисторах несколько сложнее, что вызвано необходимостью защиты их затворов от перенапряжения.
Ошибка. Диод VD1 включить наоборот!
Все намоточные данные трансформаторов приведены на рисунках. Максимальная мощность нагрузки, которую может запитать блок питания с трансформатором, выполненном на ферритовом кольце марки 3000НМ 32×16Х8, около 70Вт, на К40×25Х11 той же марки, — 150Вт.
Диод VD1 в обеих схемах запирает схему запуска подачей отрицательного напряжения на эмиттер однопереходного транзистора после запуска преобразователя.
Из особенностей — выключение блоков питания производится замыканием обмотки II коммутирующего трансформатора. При этом нижний по схеме транзистор запирается и происходит срыв генерации. Но, кстати, срыв генерации происходит именно по причине «закорачивания» обмотки.
Запирание транзистора в данном случае, хоть и явно происходит по причине замыкания контактом выключателя эмиттерного перехода, — вторично. Однопереходной транзистор в данном случае не сможет запустить преобразователь, который может находиться в таком состоянии (оба ключа заперты по постоянному току через нулевое практически сопротивление обмоток трансформатора) сколь угодно долго.
Правильно расчитанная и аккуратно собранная конструкция блока питания, как правило, легко запускается под требуемой нагрузкой и в работе ведет себя стабильно.
Константин (riswel)
Россия, г. Калининград
C детства — музыка и электро/радио-техника. Перепаял множество схем самых различных по разным поводам и просто, — для интереса, — и своих, и чужих.За 18 лет работы в Северо-Западном Телекоме изготовил много различных стендов для проверки различного ремонтируемого оборудования.
Сконструировал несколько, различных по функционалу и элементной базе, цифровых измерителей длительности импульсов.
Более 30-ти рацпредложений по модернизации узлов различного профильного оборудования, в т.ч. — электропитающего. С давних пор все больше занимаюсь силовой автоматикой и электроникой.
Почему я здесь? Да потому, что здесь все — такие же, как я. Здесь много для меня интересного, поскольку я не силен в аудио-технике, а хотелось бы иметь больший опыт именно в этом направлении.
Блок питания с регулировкой напряжения и тока
Приветствую всех, особенно начинающих радиолюбителей, поскольку именно они очень часто сталкиваются с проблемой поиска источников питания для своих самоделок и поэтому в ходе этой статьи будет рассмотрен вариант постройки простейшего лабораторного блока питания с возможностью ограничения тока.
Наш блок питания может обеспечивать на выходе стабилизированное напряжения от ноля до пятнадцати вольт и ток до 1.5 Ампер, эти параметры можно изменять и походу поясню, как это сделать.В проекте специально использованы наиболее доступные компоненты, чтобы ни у кого не возникло трудности с их поиском, а теперь давайте рассмотрим схему и поймём принцип её работы.
Схема состоит из трех основных частейСетевой понижающий трансформатор (красным обозначен), он обеспечивает нужные для наших целей выходные параметры, а также гальваническую развязку. В моем варианте был использован трансформатор от блока питания старого кассетного магнитофона, подойдет и любой другой, основные параметры блока питания будут зависеть в первую очередь от трансформатора, притом нужно учитывать один момент — максимальное выходное напряжение лабораторного блока питания будет на несколько вольт меньше, чем напряжение на выпрямителе. Трансформатор подбирается с нужным током, в моем случае имеются две обмотки по 20 вольт, ток каждой из них составляет около 0,7 Ампер, обмотки подключены параллельно, то есть общий ток около полутора ампер.
Вторая часть из себя представляет выпрямитель, для выпрямления переменного напряжения в постоянку и конденсатор, для сглаживания напряжения после выпрямителя и фильтрации помех.
И наконец третий узел — это плата самого стабилизатора, давайте её рассмотрим поподробнее…
Уже постоянное напряжение поступает на плату стабилизатора, где стабилизируется до некоторого уровня. Режим стабилизации будет зависеть от стабилитрона, в нашем случае он на 15 Вольт, именно он задает максимальное выходное напряжение блока питания.
Беда в том, что ток у таких стабилитронов не велик, поэтому его нужно усилить с помощью простого каскада усиления по току, построенного на транзисторах VТ 1 и VТ 2, транзисторы подключены таким образом, чтобы обеспечить максимально большое усиление, то есть по сути это аналог составного транзистора.
Регулятор напряжения в лице переменного резистора R1, выполняет функцию простого делителя напряжения и может быть рассмотрен, как 2 последовательно соединенных резистора с отводом от места их соединения.Изменяя сопротивление каждого из них, мы можем регулировать напряжение. Это напряжение усиливается ранее указанным каскадом.
Второй переменный резистор позволит ограничивать выходной ток. Если такая функция не нужна, то схема будет выглядеть следующим образом.
Теперь подробнее о компонентах, большую их часть, а если точнее все компоненты можно найти в старой аппаратуре, например в телевизорах, усилителях, приемниках, магнитолах и прочей технике.
Также возможно использовать импортные аналоги, которые имеют одинаковое расположение выводов. В архиве сможете найти некоторые варианты замены транзисторов, как на советские, так и на импортные.
Можно использовать готовые мосты, которые можно найти в компьютерных блоках питания или же собрать мост из любых четырех аналогичных диодов с током от двух ампер.
Для увеличения выходного напряжения блока питания сначала нужно найти соответствующий трансформатор, затем заменить стабилитроны на более высоковольтные, скажем на 18 или 24 вольта, будет зависеть от нужного вам выходного напряжения.
Резистор ограничивает ток через стабилитрон, расчет производится исходя из напряжения выпрямителя. Рассчитываю так, чтобы ток через стабилитрон не превышал значение 20-25 миллиампер, в случае стабилитрона на пол ватта и 40-45 миллиампер в случае если стабилитрон одноваттный.
Если под рукой не оказалось нужного стабилитрона, то можно использовать несколько последовательно соединенных с меньшим напряжением, в итоге сумма их напряжения будет равняться конечному напряжению стабилизации.
Схема стабилизатора работает в линейном режиме, поэтому силовой транзистор VT 2 нуждается в радиаторе.
А теперь давайте проверим конструкцию в работе
и как видим напряжения плавно регулируется от нуля до пятнадцати вольт
Теперь проверим функцию ограничения тока, обратите внимание без выходной нагрузки вращая регулятор тока, напряжение у нас не будет меняться, что свидетельствует о корректной работе функции ограничения.
Выходной ток также регулируется достаточно плавно, минимальная граница 180 миллиампер.
Максимальный выходной ток в моём случае, составляет около полутора ампер, этого вполне достаточно для средних нужд большинства радиолюбителей.Несмотря на простоту конструкции, при токах около одного Ампера, наблюдаем просадку выходного напряжения меньше 200 милливольт, это очень хороший показатель для стабилизаторов такого класса.
Введите электронную почту и получайте письма с новыми поделками.
Блок питания может переносить короткие замыкания с продолжительностью не более 5 секунд, в этом режиме ток ограничивается в районе одного — семи Ампер.
Монтаж при желании можно сделать навесным,но более красиво смотрится конструкция на печатной плате, тем более, что я ее для вас нарисовал,а файл платы также можете скачать с общим архивом проекта.
В качестве индикаторов советую использовать стрелочные приборы, чтобы не путаться с подключением, хотя можно и цифровые.
По мне, это довольно годный вариант в качестве первого блока питания, так что смело собирайте.
Архив к статье: скачать…
Автор; АКА КАСЬЯН
принцип работы, выбор лучшего, создание своими руками, типы БП
В нашем сегодняшнем материале мы подробно рассмотрим все, что так или иначе связано с блоками питания. В целом, блок питания это сердце любого электронного прибора, начиная от пульта телевизора и заканчивая огромными серверными. Конечно, подобно автомобилям, эти блоки очень сильно отличаются по назначению и характеристикам.
Если коротко, блок питания это электронное устройство, которое питает агрегаты основного устройства, преобразовывая поступающей сигнал из сети, либо аккумулятора.
Обычно, на каждом блоке питания имеется маркировка, указывающая на его основные характеристики. Рассмотрим на примере: на нашем блоке питания указана маркировка 1502 — первая пара цифр указывает на максимальное напряжение, которое может выдать данный аппарат — 15 Вольт. А последние две цифры — это максимальная сила тока — 2 Ампера. Но, спешим вас заверить, что это лишь беглый осмотр и обо всех этих вещах сегодня мы поговорим более основательно.
Блок питания в широком смысле — это электротехническое устройство, преобразующее электроэнергию сети переменного тока в электроэнергию с необходимыми параметрами (ток, напряжение, частота, форма напряжения), для питания других устройств, требующих эти параметры. То есть блок питания — это преобразователь.
Устройство
В простейшем классическом варианте блок питания — это трансформатор, понижающий или повышающий переменное напряжение за счет электромагнитной индукции. Если требуется преобразование формы напряжения из переменного (AC) в постоянное (DC) — блок питания AC-DC, то используется выпрямитель напряжения. Также, в классическом блоке питания AC-DC присутствует фильтр пульсаций, создаваемых выпрямителем.
Классический вариант во многом оправдан благодаря своей простоте, надежности, доступности компонентов и отсутствию создаваемых радиопомех. Но из-за большого веса и габаритов, увеличивающихся пропорционально мощности, металлоемкости, а также низкого КПД при стабильном выходном напряжении, классические трансформаторные блоки питания уходят в прошлое. На смену им приходят импульсные блоки питания, о которых подробно и пойдет речь.
Импульсные блоки питания представляют собой инверторную систему, в которой входящее электричество сначала выпрямляется, после преобразуется в ток высокой частоты и определенной скважности с амплитудой прямоугольных импульсов, а потом происходит преобразование трансформатором и пропускание через фильтр низкой частоты. За счет повышения эффективности работы трансформатора с ростом частоты, снижаются требования к габаритам и металлоемкости по сравнению с классическими блоками питания.
Импульсные блоки питания получили широкое распространение благодаря ряду достоинств: значительно меньшие габариты и вес при сравнимой мощности; намного более высокий КПД (до 98%), благодаря устойчивости состояния ключевых элементов — потери возникают только при включении или выключении; меньшая стоимость — это стало возможным из-за повсеместного выпуска необходимых конструктивных элементов и разработке транзисторов повышенной мощности; сравнительная надежность; больший диапазон входных частот и напряжений — импульсный блок питания одинаково стабильно работает в диапазоне от 110 до 250 вольт и при частоте 50-60 Гц, что делает возможным использование техники с импульсными блоками питания повсеместно; безопасность при коротком замыкании.
Справедливости ради стоит сказать, что импульсные блоки питания не лишены минусов — сложность или невозможность ремонта, наличие высокочастотных радиопомех. Благодаря современным технологиям, эти минусы преодолимы, о чем свидетельствует широкое распространение, популярность и востребованность таких блоков на рынке.
Но, благодаря широкому распространению и большому разнообразию импульсных блоков питания в продаже, отличающихся функционально и характеристиками, иногда очень сложно подобрать необходимый. Попробуем разобраться в основных отличиях импульсных блоков, в их характеристиках и особенностях, а также ответим на вопрос: на что нужно обратить внимание, если вы хотите купить блок питания.
Особенности характеристик импульсных блоков питания
В первую очередь, блоки питания делятся по функциональности преобразования. Одни блоки питания преобразуют электроэнергию таким образом, что на выходе получается стабилизированное напряжение при необходимой мощности — это AC-DC блоки питания. Другие преобразуют электроэнергию так, что на выходе получается стабилизированный ток постоянного значения в заданных диапазонах напряжения — это, так называемые, драйверы.
Импульсных блоков питания
И те и другие блоки питания имеют определенную максимальную выходную мощность. Но, если в первом случае постоянным остается напряжение при возрастании тока в зависимости от мощности потребителей электроэнергии, то во втором случае постоянной остается сила тока, а в зависимости от мощности потребителей меняется напряжение на выходе. Диапазон изменения в драйверах ограничен, поэтому они распространены менее широко. Используются, в основном, в светотехнике, где заранее известны необходимые параметры тока.
Проще говоря, если вам нужен блок питания с необходимым током, например 700мА, при определенной мощности, то вам нужно выбирать драйвер. Если же вам нужен источник питания заданного напряжения и мощности, то нужен AC-DC блок питания.
При подборе блока питания важно учитывать его основные характеристики. С драйверами проще: все, что нужно о них знать, как правило, известно в рамках спецификации потребителя энергии. Встречаются драйверы в основном в составе готовых электротехнических изделий.
Чуть сложнее с AC-DC блоками питания. Современные блоки питания могут иметь различные характеристики выходного напряжения. Как правило, это: 5 вольт, 12 вольт, 24 вольта. Встречаются блоки питания и с другими выходными характеристиками: 3,3 вольта, 18 вольт, 32 вольта и прочие, но они менее распространены в отличие от первых, которые популярны в наружной и интерьерной рекламе и в декоративном освещении. Блоки питания необходимы, в большинстве случаев, для подключения светодиодных модулей, лент, линеек, для питания другой декоративной светотехники.
Виды блоков питания
В зависимости от количества потребляемой электроэнергии и мощности подключаемых потребителей выбирается мощность блока питания. Тут необходимо учитывать, что при включении и выключении характеристики блока нестабильны, а также то, что в процессе работы в ту или иную сторону могут меняться характеристики входного электричества, поэтому блок подбирается с запасом по мощности, который составляет 1,2 — 1,3 от мощности подключаемых потребителей. Перегрузка блока по мощности может вывести его из строя или приведет к неправильному функционированию.
Другим важным критерием выбора, когда вы собираетесь купить блок питания, является область его использования. Это также актуально для драйверов. Блок может использоваться внутри помещения или на улице. Во втором случае он может быть размещен на стене или на горизонтальной плоскости, в тени или на солнце, может подвергаться, атмосферному воздействию в виде осадков снега и прочего, либо может быть размещен под крышей или козырьком. Все это влияет на то, с какой степенью защиты IP и в каком корпусе выбрать блок питания.
Для внутреннего использования, а также для размещения в закрытых щитках лучшим выбором будут блоки питания с защитой IP20, то есть не влагозащищенные, в защитном кожухе в виде сетки, исключающей прямой контакт с опасными элементами.
При выборе таких блоков питания следует обратить внимание на наличие EMI фильтра — это позволит избежать или свести к минимуму радиочастотные помехи, возникающие при работе блока питания. Иногда производители этим грешат в погоне за конкурентной ценой, поэтому покупая сравнительно недорогой блок питания, стоит уделить внимание этому вопросу.
Интересный материал: Что такое подстроечный резистор: описание устройства и область его применения
Также может быть полезным наличие регулировки выходных параметров тока (в случае с драйверами) или напряжения, то есть наличие подстроечного резистора.
Иногда на выбор влияет размер блока питания. В настоящее время можно встретить блоки питания с одинаковыми характеристиками, но с большой разницей в габаритах. Меньшие по габаритам блоки, как правило, имеют в названии определения компакт (compact), слим (slim), экстра-слим (extra-slim). Меньшие габариты достигаются за счет развития технологий — более плотной компоновки и более совершенной элементной базы.
Часто блоки питания с защитой IP20 имеют активное охлаждение в виде вентилятора, работающего постоянно, либо срабатывающего при превышении определенной температуры. Удобством практически всех блоков в корпусах-сетках является достаточное количество винтовых контактов для подключения потребителей.
IP20
Для наружного использования нужны влагозащищенные блоки питания. Степень их защиты начинается с IP53. Это так называемые блоки rain proof или блоки с защитой от дождя. Представляют собой компромисс между влагозащищенными блоками и “сетками”, поскольку имеют неизолированные контакты, закрытые лишь крышкой, и должны располагаться только на стене в вертикальном положении. В местах, подверженных осадкам, их размещать не стоит.
Следующие по защищенности блоки питания выполнены в пластиковом или алюминиевом корпусе и могут иметь степень защиты IP66-67. Их можно размещать где угодно, но стоит учитывать, что пластик более подвержен деформации, поэтому в местах с прямым попаданием солнечных лучей блоки в алюминиевом корпусе предпочтительнее. Также блоки в пластиковых корпусах имеют ограничения по мощности: как правило, это максимум 150Вт. Как в варианте с пластиком, так и в варианте с алюминием, блок питания заполнен специальным составом, обеспечивающим герметичность и рассеивающим тепло. Открытых контактов у влагозащищенных блоков нет, вместо этого используются выводы в виде кабеля. Их может быть несколько для обеспечения необходимого суммарного сечения и удобства монтажа. Выводы подключены к одной силовой шине. Поэтому, при необходимости, они могут быть объединены.
Блоки питания в алюминиевых корпусах также, как и “сетки” могут быть выполнены в размерах compact, slim или extra-slim. Хотя, в зависимости от производителя, название может быть другим. Смысл в том, что это блок меньшего размера.
Блоки питания в алюминиевых
Покупая блок питания также нужно обращать внимание и на другие особенности. Производители блоков могут предлагать различные варианты защиты, от этого может зависеть цена на блок питания, но тот или иной вариант может быть полезным. У всех современных блоков существует защита от короткого замыкания. Полезной может быть защита от перегрузок, например Mean Well предлагает такую защиту, как Hiccup mode — при возникновении перегрузок блок питания, чтобы избежать перегрева переходит в режим редкой пульсации, пока характеристики перегрузок не придут в норму. В некоторых случаях критичен цвет блока питания — он может быть не обязательно белым или металлическим. Встречаются блоки питания черного цвета — это подойдет для тех мест, где светлый цвет блока бросается в глаза.
Особенностей и характеристик немало, но в них не так сложно разобраться, как кажется на первый взгляд. Зная эти особенности и руководствуясь нужными характеристиками, вы сможете без проблем подобрать и купить блок питания, наилучшим образом подходящий для ваших целей и задач.
Собираем регулируемый блок питания
Те новички, которые только начинают изучение электроники спешат соорудить нечто сверхъестественное, вроде микрожучков для прослушки, лазерный резак из DVD-привода и так далее… и тому подобное… А что насчёт того, чтобы собрать блок питания с регулируемым выходным напряжением? Такой блок питания – это крайне необходимая вещь в мастерской каждого любителя электроники.
С чего же начать сборку блока питания?
Во-первых, необходимо определиться с требуемыми характеристиками, которым будет удовлетворять будущий блок питания. Основные параметры блока питания – это максимальный ток (Imax), который он может отдать нагрузке (питаемому устройству) и выходное напряжение (Uout), которое будет на выходе блока питания. Также стоит определиться с тем, какой блок питания нам нужен: регулируемый или нерегулируемый.
Регулируемый блок питания – это блок питания, выходное напряжение которого можно менять, например, в пределах от 3 до 12 вольт. Если нам надо 5 вольт – повернули ручку регулятора – получили 5 вольт на выходе, надо 3 вольта – опять повернул – получил на выходе 3 вольта.
Регулируемый блок питания
Нерегулируемый блок питания – это блок питания с фиксированным выходным напряжением – его менять нельзя. Так, например, многим известный и широко распространённый блок питания «Электроника» Д2-27 является нерегулируемым и имеет на выходе 12 вольт напряжения. Также нерегулируемыми блоками питания являются всевозможные зарядники для сотовых телефонов, адаптеры модемов и роутеров. Все они, как правило, рассчитаны на какое-то одно выходное напряжение: 5, 9, 10 или 12 вольт.
Понятно, что для начинающего радиолюбителя наибольший интерес представляет именно регулируемый блок питания. Им можно запитать огромное количество как самодельных, так и промышленных устройств, рассчитанных на разное напряжение питания.
Далее нужно определиться со схемой блока питания. Схема должна быть простая, легка для повторения начинающими радиолюбителями. Тут лучше остановиться на схеме с обычным силовым трансформатором. Почему? Потому что найти подходящий трансформатор достаточно легко как на радиорынках, так и в старой бытовой электронике. Делать импульсный блок питания сложнее. Для импульсного блока питания необходимо изготавливать достаточно много моточных деталей, таких как высокочастотный трансформатор, дроссели фильтров и пр. Также импульсные блоки питания содержат больше радиоэлектронных компонентов, чем обычные блоки питания с силовым трансформатором.
Итак, предлагаемая к повторению схема регулируемого блока питания приведена на картинке (нажмите для увеличения).
Параметры блока питания:
- Выходное напряжение (Uout) – от 3,3…9 В;
- Максимальный ток нагрузки (Imax) – 0,5 A;
- Максимальная амплитуда пульсаций выходного напряжения – 30 мВ.;
- Защита от перегрузки по току;
- Защита от появления на выходе повышенного напряжения;
- Высокий КПД.
Возможна доработка блока питания с целью увеличения выходного напряжения.
Принципиальная схема блока питания состоит из трёх частей: трансформатора, выпрямителя и стабилизатора.
Трансформатор. Трансформатор Т1 понижает переменное сетевое напряжение (220-250 вольт), которое поступает на первичную обмотку трансформатора (I), до напряжения 12-20 вольт, которое снимается со вторичной обмотки трансформатора (II). Также, по «совместительству», трансформатор служит гальванической развязкой между электросетью и питаемым устройством. Это очень важная функция. Если вдруг трансформатор выйдет из строя по какой-либо причине (скачок напряжения и пр.), то напряжение сети не сможет попасть на вторичную обмотку и, следовательно, на питаемое устройство. Как известно, первичная и вторичная обмотки трансформатора надёжно изолированы друг от друга. Это обстоятельство снижает риск поражения электрическим током.
Выпрямитель. Со вторичной обмотки силового трансформатора Т1 пониженное переменное напряжение 12-20 вольт поступает на выпрямитель. Это уже классика. Выпрямитель состоит из диодного моста VD1, который выпрямляет переменное напряжение с вторичной обмотки трансформатора (II). Для сглаживания пульсаций напряжения после выпрямительного моста стоит электролитический конденсатор C3 ёмкостью 2200 микрофарад.
Регулируемый импульсный стабилизатор
Схема импульсного стабилизатора собрана на достаточно известной и доступной микросхеме DC/DC преобразователя – MC34063.
Чтобы было понятно. Микросхема MC34063 является специализированным ШИМ-контроллером, разработанным для импульсных DC/DC преобразователей. Эта микросхема является ядром регулируемого импульсного стабилизатора, который используется в данном блоке питания.
Микросхема MC34063 снабжена узлом защиты от перегрузки и короткого замыкания в цепи нагрузки. Выходной транзистор, встроенный в микросхему, способен отдать в нагрузку до 1,5 ампер тока. На базе специализированной микросхемы MC34063 можно собрать как повышающие (Step-Up), так и понижающие (Step-Down) DC/DC преобразователи. Так же возможно построение регулируемых импульсных стабилизаторов.
Особенности импульсных стабилизаторов
К слову сказать, импульсные стабилизаторы обладают более высоким КПД по сравнению со стабилизаторами на микросхемах серии КР142ЕН (КРЕНки), LM78xx, LM317 и др. И хотя блоки питания на базе этих микросхем очень просты для сборки, но они менее экономичны и требуют установки охлаждающего радиатора.
КПД
Микросхема MC34063 не нуждается в охлаждающем радиаторе. Стоит заметить, что данную микросхему можно довольно часто встретить в устройствах, которые работают автономно или же используют резервное питание. Использование импульсного стабилизатора увеличивает КПД устройства, а, следовательно, уменьшает энергопотребление от аккумулятора или батареи питания. За счёт этого увеличивается автономное время работы устройства от резервного источника питания.
Думаю, теперь понятно, чем хорош импульсный стабилизатор.
Детали и электронные компоненты
Теперь немного о деталях, которые потребуются для сборки блока питания.
Трансформатор. В качестве трансформатора подойдёт любой сетевой понижающий трансформатор мощностью 8-10 ватт. Его первичная обмотка (I) должна быть рассчитана на переменное напряжение 220-250 вольт, а вторичная (II) на 12-20 вольт.
Где найти такой трансформатор?
Найти подходящий трансформатор можно в старой, неисправной и морально устаревшей аппаратуре: кассетных магнитофонах, стационарных CD-проигрывателях, игровых приставках и пр. Например, подойдут трансформаторы от старых лампово-полупроводниковых телевизоров советского производства ТВК-110ЛМ, ТВК-110Л2 и ТВК-70. Можно приобрести трансформатор серии ТП114, например ТП114-163М. При подборе силового трансформатора не лишним будет иметь представление о том, как узнать мощность трансформатора.
Также подойдёт трансформатор ТС-10-3М1 с выходным напряжением около 15 вольт. В магазинах радиодеталей и на радиорынках можно найти подходящий трансформатор, главное, чтобы он соответствовал указанным параметрам.
Микросхема MC34063. Микросхема MC34063 выпускается в корпусах DIP-8 (PDIP-8) для обычного монтажа в отверстия и в корпусе SO-8 (SOIC-8) для поверхностного монтажа. Естественно, в корпусе SOIC-8 микросхема обладает меньшими размерами, а расстояние между выводами составляет около 1,27 мм. Поэтому изготовить печатную плату для микросхемы в корпусе SOIC-8 сложнее, особенно тем, кто только недавно начал осваивать технологию изготовления печатных плат. Следовательно, лучше взять микросхему MC34063 в DIP-корпусе, которая больше по размерам, а расстояние между выводами у такого корпуса – 2,5 мм. Сделать печатную плату под корпус DIP-8 будет легче.
Диодный мост. Диодный мост для блока питания можно изготовить из 4 отдельных диодов 1N4001-1N4007. Также вместо диодов 1N4001-1N4007 можно применить диоды 1N5819. При этом экономичность блока питания повыситься, поскольку диоды серии 1N58xx – это диоды Шоттки и у них меньшее падение напряжения на p-n переходе, чем у обычных диодов серии 1N400x.
Также в блок питания можно установить диодную сборку выпрямительного моста. Сборка занимает на печатной плате меньше места. Для установки в схему подойдут сборки на ток 1 ампер и выше. Для надёжности можно воткнуть в плату сборку и на 2 ампера – хуже не будет.
Где найти сборку диодного моста? В бэушных платах от любой электроники, которая питается от сети 220 вольт. Даже в компактных люминесцентных лампах – КЛЛ – есть диодный мост. Можно выковырять оттуда. Правда что попадётся, 4 отдельных диода или сборка диодного моста можно только гадать – тут как повезёт.
Если быть более конкретным, то подойдут диодные мосты (сборки): DB101-107, RB151-157, D3SBA10, 2W10M, DB207, RS207 и другие аналогичные и более мощные. Можно с лёгкостью применить диодный мост из неисправного компьютерного блока питания. Они мощные и здоровые, рассчитаны на довольно большой ток – хватить за глаза. Не забудьте проверить его на исправность!
Конденсаторы C1, C2, C4, C5 служат для подавления импульсных помех, которые поступают из электросети. Кроме этого они блокируют импульсные помехи, которые могут поступить в электросеть от самого импульсного стабилизатора.
Элементы защиты. В схеме применено два предохранителя. Предохранитель FU2 представляет собой обычный плавкий предохранитель на ток срабатывания 0,16 А (160 мА). Он включен последовательно с первичной обмоткой (I) трансформатора T1. FU1 – самовосстанавливающийся предохранитель. Когда ток через него становиться больше 0,5 ампер, то его сопротивление резко увеличивается, а ток в цепи выпрямителя и стабилизатора резко падает.
Так реализована защита в случае неисправности преобразователя. Стабилитрон VD3 также служит защитным и работает в паре с самовосстанавливающимся предохранителем FU1. Основная его цель – защитить нагрузку (питаемое устройство) от повреждения высоким напряжением. Напряжение стабилизации стабилитрона составляет 11 вольт. В случае неисправности преобразователя и появления на выходе напряжения более 11 вольт, ток через стабилитрон резко возрастает. Возросший ток в цепи приводит к срабатыванию предохранителя FU1, который ограничивает ток. Поэтому защитный стабилитрон VD3 необходимо установить в схему обязательно. В случае если не удастся найти подходящий самовосстанавливающийся предохранитель, то его можно заменить обычным плавким на ток срабатывания 0,5 ампер.
Список деталей, которые потребуются для сборки блока питания.
Название | Обозначение | Номинал/Параметры | Марка или тип элемента |
Микросхема | DA1 | MC34063 | |
Диодный мост | VDS1 (VD1-VD4) | 1-2 ампер, 600 вольт | D3SBA10, RS207, DB107 и аналоги |
Электролитические конденсаторы | C8, C9, C12 | 330 мкФ * 16 вольт | К50-35 или аналоги |
C3 | 2200 мкФ * 35 вольт | ||
Конденсаторы | C1, C2, C4, C5, C10, C11, C13 | 0,22 мкФ | КМ-5, К10-17 и аналогичные |
C6 | 0,1 мкФ | ||
C7 | 470 пФ | ||
Резисторы | R1 | 0,2 Ом (1 Вт) | МЛТ, МОН, С1-4, С2-23, С1-14 и аналогичные |
R3 | 560 Ом (0,125 Вт) | ||
R4 | 3,6 кОм (0,125 Вт) | ||
R5 | 8,2 кОм (0,125 Вт) | ||
Резистор переменный | R2 | 1,5 кОм | СП3-9, СП4-1, ППБ-1А и аналогичные |
Диод Шоттки | VD2 | 1N5819 | |
Стабилитрон | VD3 | 11 вольт | 1N5348 |
Дроссель | L1, L2 | 300 мкГн | |
Дроссель | L3 | самодельный | |
Предохранитель плавкий | FU2 | 0,16 ампер | |
Самовосстанавливающийся предохранитель | FU1 | 0,5 ампер (на напряжение >30-40 вольт) | MF-R050; LP60-050; FRX050-60F; FRX050-90F |
Светодиод индикаторный | HL1 | любой 3 вольтовый |
Дроссели. Дроссели L1 и L2 можно изготовить самостоятельно. Для этого потребуется два кольцевых магнитопровода из феррита 2000HM типоразмера К17,5 х 8,2 х 5 мм. Типоразмер расшифровывается так: 17,5 мм. – внешний диаметр кольца; 8,2 мм. – внутренний диаметр; а 5 мм. – высота кольцевого магнитопровода. Для намотки дросселя понадобиться провод ПЭВ-2 сечением 0,56 мм. На каждое кольцо необходимо намотать 40 витков такого провода. Витки провода следует распределять по ферритовому кольцу равномерно.
Дроссели L1 и L2
Перед намоткой, ферритовые кольца нужно обмотать лакотканью. Если лакоткани нет под рукой, то обмотать кольцо можно скотчем в три слоя. Стоит помнить, что ферритовые кольца могут быть уже покрашены – покрыты слоем краски. В таком случае обматывать кольца лакотканью не надо.
Кроме самодельных дросселей можно применить и готовые. В этом случае процесс сборки блока питания ускориться. Например, в качестве дросселей L1, L2 можно применить вот такие индуктивности для поверхностного монтажа (SMD – дроссель).
Как видим, на верхней части их корпуса указано значение индуктивности – 331, что расшифровывается как 330 микрогенри (330 мкГн). Также в качестве L1, L2 подойдут готовые дроссели с радиальными выводами для обычного монтажа в отверстия. Выглядят они вот так.
Величина индуктивности на них маркируется либо цветовым кодом, либо числовым. Для блока питания подойдут индуктивности с маркировкой 331 (т.е. 330 мкГн). С учётом допуска ±20%, который разрешён для элементов бытовой электроаппаратуры, также подойдут дроссели с индуктивностью 264 – 396 мкГн. Любой дроссель или катушка индуктивности рассчитана на определённый постоянный ток. Как правило, его максимальное значение (IDC max) указывается в даташите на сам дроссель. Но на самом корпусе это значение не указывается. В таком случае можно ориентировочно определить значение максимально допустимого тока через дроссель по сечению провода, которым он намотан. Как уже говорилось, для самостоятельного изготовления дросселей L1, L2 необходим провод сечением 0,56 мм.
Дроссель L3 самодельный. Для его изготовления необходим магнитопровод из феррита 400HH или 600HH диаметром 10 мм. Найти такой можно в старинных радиоприёмниках. Там он используется в качестве магнитной антенны. От магнитопровода нужно отломать кусок длиной 11 мм. Сделать это достаточно легко, феррит легко ломается. Можно просто плотно зажать необходимый отрезок пассатижами и отломить излишки магнитопровода. Также можно зажать магнитопровод в тисках, а потом резко ударить по магнитопроводу. Если с первого раза аккуратно разломить магнитопровод не получиться, то можно повторить операцию.
Затем получившийся кусок магнитопровода нужно обмотать слоем бумажного скотча или лакоткани. Далее наматываем на магнитопровод 6 витков сложенного вдвое провода ПЭВ-2 сечением 0,56 мм. Для того чтобы провод не размотался, обматываем его сверху скотчем. Те выводы проводов, с которых начиналась намотка дросселя, в последующем впаиваем в схему в том месте, где показаны точки на изображении L3. Эти точки указывают на начало намотки катушек проводом.
Дополнения
В зависимости от нужд можно внести в конструкцию те или иные изменения.
Например, вместо стабилитрона VD3 типа 1N5348 (напряжение стабилизации – 11 вольт) в схему можно установить защитный диод – супрессор 1,5KE10CA.
Супрессор – это мощный защитный диод, по своим функциям схож со стабилитроном, однако, основная его роль в электронных схемах – защитная. Назначение супрессора – это подавление высоковольтных импульсных помех. Супрессор обладает высоким быстродействием и способен гасить мощные импульсы.
В отличие от стабилитрона 1N5348, супрессор 1.5KE10CA обладает высокой скоростью срабатывания, что, несомненно, скажется на быстродействии защиты.
В технической литературе и в среде общения радиолюбителей супрессор могут называть по-разному: защитный диод, ограничительный стабилитрон, TVS-диод, ограничитель напряжения, ограничительный диод. Супрессоры можно частенько встретить в импульсных блоках питания – там они служат защитой от перенапряжения питаемой схемы при неисправностях импульсного блока питания.
О назначении и параметрах защитных диодов можно узнать из статьи про супрессор.
Супрессор 1,5KE10CA имеет букву С в названии и является двунаправленным – полярность установки его в схему не имеет значения.
Если есть необходимость в блоке питания с фиксированным выходным напряжением, то переменный резистор R2 не устанавливают, а заменяют его проволочной перемычкой. Нужное выходное напряжение подбирают с помощью постоянного резистора R3. Его сопротивление рассчитывают по формуле:
Uвых = 1,25 * (1+R4/R3)
После преобразований получается формула, более удобная для расчётов:
R3 = (1,25 * R4)/(Uвых – 1,25)
Если использовать данную формулу, то для Uвых = 12 вольт потребуется резистор R3 с сопротивлением около 0,42 кОм (420 Ом). При расчётах, значение R4 берётся в килоомах (3,6 кОм). Результат для резистора R3 также получаем в килоомах.
Для более точной установки выходного напряжения Uвых вместо R2 можно установить подстроечный резистор и выставить по вольтметру требуемое напряжение более точно.
При этом следует учесть, что стабилитрон или супрессор стоит устанавливать с напряжением стабилизации на 1…2 вольта больше, чем расчётное напряжение на выходе (Uвых) блока питания. Так, для блока питания с максимальным выходным напряжением равным, например, 5 вольт следует установить супрессор 1,5KE6V8CA или аналогичный ему.
Изготовление печатной платы
Печатную плату для блока питания можно сделать разными способами. О двух методах изготовления печатных плат в домашних условиях уже рассказывалось на страницах сайта.
- Наиболее быстрый и комфортный способ – это изготовление печатной платы с помощью маркера для печатных плат. Применялся маркер Edding 792. Показал он себя с лучшей стороны. Кстати, печатка для данного блока питания сделана как раз этим маркером.
- Второй метод подходит для тех, у кого в запасе есть много терпения и твёрдая рука. Это технология изготовления печатной платы корректирующим карандашом. Это, довольно простая и доступная технология пригодиться тем, кто не смог найти маркер для печатных плат, а делать платы ЛУТом не умеет или не имеет подходящего принтера.
- Третий метод похож на второй, только в нём используется цапонлак – Как сделать печатную плату с помощью цапонлака?
В общем, выбрать есть из чего.
Налаживание и проверка блока питания
Чтобы проверить работоспособность блока питания его для начала нужно, конечно же, включить. Если искр, дыма и хлопков нет (такое вполне реально), то скорее БП работает. Первое время держитесь от него на некотором расстоянии. Если ошиблись при монтаже электролитических конденсаторов или поставили их на меньшее рабочее напряжение, то они могут «хлопнуть» – взорваться. Это сопровождается разбрызгиванием электролита во все стороны через защитный клапан на корпусе. Поэтому не торопитесь. Подробнее об электролитических конденсаторах можно почитать здесь. Не ленитесь это прочитать – пригодиться не раз.
Внимание! Во время работы силовой трансформатор находиться под высоким напряжением! Пальцы к нему не совать! Не забывайте о правилах техники безопасности. Если надо что-то изменить в схеме, то сначала полностью отключаем блок питания от электросети, а потом делаем. По-другому никак – будьте внимательны!
P.S.
Под занавес всего этого повествования хочу показать готовый блок питания, который был сделан своими руками.
Скачайте в PDF интересную публикацию “Диагностика и ремонт блоков”
Да, у него ещё нет корпуса, вольтметра и прочих «плюшек», которые облегчают работу с таким прибором. Но, несмотря на это, он работает и уже успел спалить офигенный трёхцветный мигающий светодиод из-за своего бестолкового хозяина, который любит безбашенно крутить регулятор напряжения . Желаю и вам, начинающие радиолюбители, собрать что-нибудь похожее!
https://go-radio.ru/blok-pitaniya-svoimi-rukami.html
https://diodkmv.ru/info/1512484550_bloky/
https://elektrovesti.net/tekhnologii/383_vse-o-kompyuternom-bloke-pitaniya
https://beginpc.ru/hardware/blok-pitaniya-computera
http://electrik.info/main/praktika/643-bloki-pitaniya-elektronnyh-ustroystv.html
http://www.thg.ru/howto/obzor_blokov_pitaniya/onepage.html
ПредыдущаяСхемыДелаем лабораторный блок питания своими руками
Блок питания своими руками.
Собираем регулируемый блок питания
Те новички, которые только начинают изучение электроники спешат соорудить нечто сверхъестественное, вроде микрожучков для прослушки, лазерный резак из DVD-привода и так далее… и тому подобное… А что насчёт того, чтобы собрать блок питания с регулируемым выходным напряжением? Такой блок питания – это крайне необходимая вещь в мастерской каждого любителя электроники.
С чего же начать сборку блока питания?
Во-первых, необходимо определиться с требуемыми характеристиками, которым будет удовлетворять будущий блок питания. Основные параметры блока питания – это максимальный ток (Imax), который он может отдать нагрузке (питаемому устройству) и выходное напряжение (Uout), которое будет на выходе блока питания. Также стоит определиться с тем, какой блок питания нам нужен: регулируемый или нерегулируемый.
Регулируемый блок питания – это блок питания, выходное напряжение которого можно менять, например, в пределах от 3 до 12 вольт. Если нам надо 5 вольт — повернули ручку регулятора – получили 5 вольт на выходе, надо 3 вольта – опять повернул – получил на выходе 3 вольта.
Нерегулируемый блок питания – это блок питания с фиксированным выходным напряжением – его менять нельзя. Так, например, многим известный и широко распространённый блок питания «Электроника» Д2-27 является нерегулируемым и имеет на выходе 12 вольт напряжения. Также нерегулируемыми блоками питания являются всевозможные зарядники для сотовых телефонов, адаптеры модемов и роутеров. Все они, как правило, рассчитаны на какое-то одно выходное напряжение: 5, 9, 10 или 12 вольт.
Понятно, что для начинающего радиолюбителя наибольший интерес представляет именно регулируемый блок питания. Им можно запитать огромное количество как самодельных, так и промышленных устройств, рассчитанных на разное напряжение питания.
Далее нужно определиться со схемой блока питания. Схема должна быть простая, легка для повторения начинающими радиолюбителями. Тут лучше остановиться на схеме с обычным силовым трансформатором. Почему? Потому что найти подходящий трансформатор достаточно легко как на радиорынках, так и в старой бытовой электронике. Делать импульсный блок питания сложнее. Для импульсного блока питания необходимо изготавливать достаточно много моточных деталей, таких как высокочастотный трансформатор, дроссели фильтров и пр. Также импульсные блоки питания содержат больше радиоэлектронных компонентов, чем обычные блоки питания с силовым трансформатором.
Итак, предлагаемая к повторению схема регулируемого блока питания приведена на картинке (нажмите для увеличения).
Параметры блока питания:
Выходное напряжение (Uout) – от 3,3…9 В;
Максимальный ток нагрузки (Imax) – 0,5 A;
Максимальная амплитуда пульсаций выходного напряжения – 30 мВ.;
Защита от перегрузки по току;
Защита от появления на выходе повышенного напряжения;
Высокий КПД.
Возможна доработка блока питания с целью увеличения выходного напряжения.
Принципиальная схема блока питания состоит из трёх частей: трансформатора, выпрямителя и стабилизатора.
Трансформатор. Трансформатор Т1 понижает переменное сетевое напряжение (220-250 вольт), которое поступает на первичную обмотку трансформатора (I), до напряжения 12-20 вольт, которое снимается со вторичной обмотки трансформатора (II). Также, по «совместительству», трансформатор служит гальванической развязкой между электросетью и питаемым устройством. Это очень важная функция. Если вдруг трансформатор выйдет из строя по какой-либо причине (скачок напряжения и пр.), то напряжение сети не сможет попасть на вторичную обмотку и, следовательно, на питаемое устройство. Как известно, первичная и вторичная обмотки трансформатора надёжно изолированы друг от друга. Это обстоятельство снижает риск поражения электрическим током.
Выпрямитель. Со вторичной обмотки силового трансформатора Т1 пониженное переменное напряжение 12-20 вольт поступает на выпрямитель. Это уже классика. Выпрямитель состоит из диодного моста VD1, который выпрямляет переменное напряжение с вторичной обмотки трансформатора (II). Для сглаживания пульсаций напряжения после выпрямительного моста стоит электролитический конденсатор C3 ёмкостью 2200 микрофарад.
Регулируемый импульсный стабилизатор.
Схема импульсного стабилизатора собрана на достаточно известной и доступной микросхеме DC/DC преобразователя – MC34063.
Чтобы было понятно. Микросхема MC34063 является специализированным ШИМ-контроллером, разработанным для импульсных DC/DC преобразователей. Эта микросхема является ядром регулируемого импульсного стабилизатора, который используется в данном блоке питания.
Микросхема MC34063 снабжена узлом защиты от перегрузки и короткого замыкания в цепи нагрузки. Выходной транзистор, встроенный в микросхему, способен отдать в нагрузку до 1,5 ампер тока. На базе специализированной микросхемы MC34063 можно собрать как повышающие (Step-Up), так и понижающие (Step-Down) DC/DC преобразователи. Так же возможно построение регулируемых импульсных стабилизаторов.
Особенности импульсных стабилизаторов.
К слову сказать, импульсные стабилизаторы обладают более высоким КПД по сравнению со стабилизаторами на микросхемах серии КР142ЕН (КРЕНки), LM78xx, LM317 и др. И хотя блоки питания на базе этих микросхем очень просты для сборки, но они менее экономичны и требуют установки охлаждающего радиатора.
Микросхема MC34063 не нуждается в охлаждающем радиаторе. Стоит заметить, что данную микросхему можно довольно часто встретить в устройствах, которые работают автономно или же используют резервное питание. Использование импульсного стабилизатора увеличивает КПД устройства, а, следовательно, уменьшает энергопотребление от аккумулятора или батареи питания. За счёт этого увеличивается автономное время работы устройства от резервного источника питания.
Думаю, теперь понятно, чем хорош импульсный стабилизатор.
Детали и электронные компоненты.
Теперь немного о деталях, которые потребуются для сборки блока питания.
Трансформатор. В качестве трансформатора подойдёт любой сетевой понижающий трансформатор мощностью 8-10 ватт. Его первичная обмотка (I) должна быть рассчитана на переменное напряжение 220-250 вольт, а вторичная (II) на 12-20 вольт.
Где найти такой трансформатор?
Найти подходящий трансформатор можно в старой, неисправной и морально устаревшей аппаратуре: кассетных магнитофонах, стационарных CD-проигрывателях, игровых приставках и пр. Например, подойдут трансформаторы от старых лампово-полупроводниковых телевизоров советского производства ТВК-110ЛМ, ТВК-110Л2 и ТВК-70. Можно приобрести трансформатор серии ТП114, например ТП114-163М. При подборе силового трансформатора не лишним будет иметь представление о том, как узнать мощность трансформатора.
Силовые трансформаторы ТС-10-3М1 и ТП114-163М
Также подойдёт трансформатор ТС-10-3М1 с выходным напряжением около 15 вольт. В магазинах радиодеталей и на радиорынках можно найти подходящий трансформатор, главное, чтобы он соответствовал указанным параметрам.
Микросхема MC34063. Микросхема MC34063 выпускается в корпусах DIP-8 (PDIP-8) для обычного монтажа в отверстия и в корпусе SO-8 (SOIC-8) для поверхностного монтажа. Естественно, в корпусе SOIC-8 микросхема обладает меньшими размерами, а расстояние между выводами составляет около 1,27 мм. Поэтому изготовить печатную плату для микросхемы в корпусе SOIC-8 сложнее, особенно тем, кто только недавно начал осваивать технологию изготовления печатных плат. Следовательно, лучше взять микросхему MC34063 в DIP-корпусе, которая больше по размерам, а расстояние между выводами у такого корпуса – 2,5 мм. Сделать печатную плату под корпус DIP-8 будет легче.
Диодный мост. Диодный мост для блока питания можно изготовить из 4 отдельных диодов 1N4001-1N4007. Также вместо диодов 1N4001-1N4007 можно применить диоды 1N5819. При этом экономичность блока питания повыситься, поскольку диоды серии 1N58xx – это диоды Шоттки и у них меньшее падение напряжения на p-n переходе, чем у обычных диодов серии 1N400x.
Также в блок питания можно установить диодную сборку выпрямительного моста. Сборка занимает на печатной плате меньше места. Для установки в схему подойдут сборки на ток 1 ампер и выше. Для надёжности можно воткнуть в плату сборку и на 2 ампера – хуже не будет.
Где найти сборку диодного моста? В бэушных платах от любой электроники, которая питается от сети 220 вольт. Даже в компактных люминесцентных лампах – КЛЛ – есть диодный мост. Можно выковырять оттуда. Правда что попадётся, 4 отдельных диода или сборка диодного моста можно только гадать – тут как повезёт.
Если быть более конкретным, то подойдут диодные мосты (сборки): DB101-107, RB151-157, D3SBA10, 2W10M, DB207, RS207 и другие аналогичные и более мощные. Можно с лёгкостью применить диодный мост из неисправного компьютерного блока питания. Они мощные и здоровые, рассчитаны на довольно большой ток – хватить за глаза. Не забудьте проверить его на исправность!
Конденсаторы C1, C2, C4, C5 служат для подавления импульсных помех, которые поступают из электросети. Кроме этого они блокируют импульсные помехи, которые могут поступить в электросеть от самого импульсного стабилизатора.
Элементы защиты. В схеме применено два предохранителя. Предохранитель FU2 представляет собой обычный плавкий предохранитель на ток срабатывания 0,16 А (160 мА). Он включен последовательно с первичной обмоткой (I) трансформатора T1. FU1 – самовосстанавливающийся предохранитель. Когда ток через него становиться больше 0,5 ампер, то его сопротивление резко увеличивается, а ток в цепи выпрямителя и стабилизатора резко падает.
Самовосстанавливающийся предохранитель FRX050-90F
Так реализована защита в случае неисправности преобразователя. Стабилитрон VD3 также служит защитным и работает в паре с самовосстанавливающимся предохранителем FU1. Основная его цель – защитить нагрузку (питаемое устройство) от повреждения высоким напряжением. Напряжение стабилизации стабилитрона составляет 11 вольт. В случае неисправности преобразователя и появления на выходе напряжения более 11 вольт, ток через стабилитрон резко возрастает. Возросший ток в цепи приводит к срабатыванию предохранителя FU1, который ограничивает ток. Поэтому защитный стабилитрон VD3 необходимо установить в схему обязательно. В случае если не удастся найти подходящий самовосстанавливающийся предохранитель, то его можно заменить обычным плавким на ток срабатывания 0,5 ампер.
Список деталей, которые потребуются для сборки блока питания.
Название | Обозначение | Номинал/Параметры | Марка или тип элемента |
Микросхема | DA1 | MC34063 | |
Диодный мост | VDS1 (VD1-VD4) | 1-2 ампер, 600 вольт | D3SBA10, RS207, DB107 и аналоги |
Электролитические конденсаторы | C8, C9, C12 | 330 мкФ * 16 вольт | К50-35 или аналоги |
C3 | 2200 мкФ * 35 вольт | ||
Конденсаторы | C1, C2, C4, C5, C10, C11, C13 | 0,22 мкФ | КМ-5, К10-17 и аналогичные |
C6 | 0,1 мкФ | ||
C7 | 470 пФ | ||
Резисторы | R1 | 0,2 Ом (1 Вт) | МЛТ, МОН, С1-4, С2-23, С1-14 и аналогичные |
R3 | 560 Ом (0,125 Вт) | ||
R4 | 3,6 кОм (0,125 Вт) | ||
R5 | 8,2 кОм (0,125 Вт) | ||
Резистор переменный | R2 | 1,5 кОм | СП3-9, СП4-1, ППБ-1А и аналогичные |
Диод Шоттки | VD2 | 1N5819 | |
Стабилитрон | VD3 | 11 вольт | 1N5348 |
Дроссель | L1, L2 | 300 мкГн | |
Дроссель | L3 | самодельный | |
Предохранитель плавкий | FU2 | 0,16 ампер | |
Самовосстанавливающийся предохранитель | FU1 | 0,5 ампер (на напряжение >30-40 вольт) | MF-R050; LP60-050; FRX050-60F; FRX050-90F |
Светодиод индикаторный | HL1 | любой 3 вольтовый |
Дроссели. Дроссели L1 и L2 можно изготовить самостоятельно. Для этого потребуется два кольцевых магнитопровода из феррита 2000HM типоразмера К17,5 х 8,2 х 5 мм. Типоразмер расшифровывается так: 17,5 мм. – внешний диаметр кольца; 8,2 мм. — внутренний диаметр; а 5 мм. – высота кольцевого магнитопровода. Для намотки дросселя понадобиться провод ПЭВ-2 сечением 0,56 мм. На каждое кольцо необходимо намотать 40 витков такого провода. Витки провода следует распределять по ферритовому кольцу равномерно. Перед намоткой, ферритовые кольца нужно обмотать лакотканью. Если лакоткани нет под рукой, то обмотать кольцо можно скотчем в три слоя. Стоит помнить, что ферритовые кольца могут быть уже покрашены – покрыты слоем краски. В таком случае обматывать кольца лакотканью не надо.
Кроме самодельных дросселей можно применить и готовые. В этом случае процесс сборки блока питания ускориться. Например, в качестве дросселей L1, L2 можно применить вот такие индуктивности для поверхностного монтажа (SMD — дроссель).
SMD-дроссель
Как видим, на верхней части их корпуса указано значение индуктивности – 331, что расшифровывается как 330 микрогенри (330 мкГн). Также в качестве L1, L2 подойдут готовые дроссели с радиальными выводами для обычного монтажа в отверстия. Выглядят они вот так.
Дроссель с радиальными выводами
Величина индуктивности на них маркируется либо цветовым кодом, либо числовым. Для блока питания подойдут индуктивности с маркировкой 331 (т.е. 330 мкГн). С учётом допуска ±20%, который разрешён для элементов бытовой электроаппаратуры, также подойдут дроссели с индуктивностью 264 — 396 мкГн. Любой дроссель или катушка индуктивности рассчитана на определённый постоянный ток. Как правило, его максимальное значение (IDC max) указывается в даташите на сам дроссель. Но на самом корпусе это значение не указывается. В таком случае можно ориентировочно определить значение максимально допустимого тока через дроссель по сечению провода, которым он намотан. Как уже говорилось, для самостоятельного изготовления дросселей L1, L2 необходим провод сечением 0,56 мм.
Дроссель L3 самодельный. Для его изготовления необходим магнитопровод из феррита 400HH или 600HH диаметром 10 мм. Найти такой можно в старинных радиоприёмниках. Там он используется в качестве магнитной антенны. От магнитопровода нужно отломать кусок длиной 11 мм. Сделать это достаточно легко, феррит легко ломается. Можно просто плотно зажать необходимый отрезок пассатижами и отломить излишки магнитопровода. Также можно зажать магнитопровод в тисках, а потом резко ударить по магнитопроводу. Если с первого раза аккуратно разломить магнитопровод не получиться, то можно повторить операцию.
Затем получившийся кусок магнитопровода нужно обмотать слоем бумажного скотча или лакоткани. Далее наматываем на магнитопровод 6 витков сложенного вдвое провода ПЭВ-2 сечением 0,56 мм. Для того чтобы провод не размотался, обматываем его сверху скотчем. Те выводы проводов, с которых начиналась намотка дросселя, в последующем впаиваем в схему в том месте, где показаны точки на изображении L3. Эти точки указывают на начало намотки катушек проводом.
Дополнения.
В зависимости от нужд можно внести в конструкцию те или иные изменения.
Например, вместо стабилитрона VD3 типа 1N5348 (напряжение стабилизации – 11 вольт) в схему можно установить защитный диод – супрессор 1,5KE10CA.
Супрессор – это мощный защитный диод, по своим функциям схож со стабилитроном, однако, основная его роль в электронных схемах – защитная. Назначение супрессора – это подавление высоковольтных импульсных помех. Супрессор обладает высоким быстродействием и способен гасить мощные импульсы.
В отличие от стабилитрона 1N5348, супрессор 1.5KE10CA обладает высокой скоростью срабатывания, что, несомненно, скажется на быстродействии защиты.
В технической литературе и в среде общения радиолюбителей супрессор могут называть по-разному: защитный диод, ограничительный стабилитрон, TVS-диод, ограничитель напряжения, ограничительный диод. Супрессоры можно частенько встретить в импульсных блоках питания – там они служат защитой от перенапряжения питаемой схемы при неисправностях импульсного блока питания.
О назначении и параметрах защитных диодов можно узнать из статьи про супрессор.
Супрессор 1,5KE10CA имеет букву С в названии и является двунаправленным – полярность установки его в схему не имеет значения.
Если есть необходимость в блоке питания с фиксированным выходным напряжением, то переменный резистор R2 не устанавливают, а заменяют его проволочной перемычкой. Нужное выходное напряжение подбирают с помощью постоянного резистора R3. Его сопротивление рассчитывают по формуле:
Uвых = 1,25 * (1+R4/R3)
После преобразований получается формула, более удобная для расчётов:
R3 = (1,25 * R4)/(Uвых – 1,25)
Если использовать данную формулу, то для Uвых = 12 вольт потребуется резистор R3 с сопротивлением около 0,42 кОм (420 Ом). При расчётах, значение R4 берётся в килоомах (3,6 кОм). Результат для резистора R3 также получаем в килоомах.
Для более точной установки выходного напряжения Uвых вместо R2 можно установить подстроечный резистор и выставить по вольтметру требуемое напряжение более точно.
При этом следует учесть, что стабилитрон или супрессор стоит устанавливать с напряжением стабилизации на 1…2 вольта больше, чем расчётное напряжение на выходе (Uвых) блока питания. Так, для блока питания с максимальным выходным напряжением равным, например, 5 вольт следует установить супрессор 1,5KE6V8CA или аналогичный ему.
Изготовление печатной платы.
Печатную плату для блока питания можно сделать разными способами. О двух методах изготовления печатных плат в домашних условиях уже рассказывалось на страницах сайта.
В общем, выбрать есть из чего.
Налаживание и проверка блока питания.
Чтобы проверить работоспособность блока питания его для начала нужно, конечно же, включить. Если искр, дыма и хлопков нет (такое вполне реально), то скорее БП работает. Первое время держитесь от него на некотором расстоянии. Если ошиблись при монтаже электролитических конденсаторов или поставили их на меньшее рабочее напряжение, то они могут «хлопнуть» — взорваться. Это сопровождается разбрызгиванием электролита во все стороны через защитный клапан на корпусе. Поэтому не торопитесь. Подробнее об электролитических конденсаторах можно почитать здесь. Не ленитесь это прочитать – пригодиться не раз.
Внимание! Во время работы силовой трансформатор находиться под высоким напряжением! Пальцы к нему не совать! Не забывайте о правилах техники безопасности. Если надо что-то изменить в схеме, то сначала полностью отключаем блок питания от электросети, а потом делаем. По-другому никак – будьте внимательны!
P.S.
Под занавес всего этого повествования хочу показать готовый блок питания, который был сделан своими руками.
Да, у него ещё нет корпуса, вольтметра и прочих «плюшек», которые облегчают работу с таким прибором. Но, несмотря на это, он работает и уже успел спалить офигенный трёхцветный мигающий светодиод из-за своего бестолкового хозяина, который любит безбашенно крутить регулятор напряжения . Желаю и вам, начинающие радиолюбители, собрать что-нибудь похожее!
Главная » Радиоэлектроника для начинающих » Текущая страница
Также Вам будет интересно узнать:
Схема источника питания,блока питания,импульсного, и зарядные устройства
- Подробности
У многих дома лежит старый принтер с поломанной печатающей головкой, или по каким то иным причинам. Кто то просто выкидывает, не подразумевая что в нем есть хорошие детали, из которых можно что нибудь смастерить.
В данной статье мы рассмотрим то, как сделать своими руками регулируемый блок питания из БП от принтера.
Подробнее…
- Подробности
Если понадобился блок питания, нет навыков в радиотехнике. Нашлось решение в том, как сделать своими руками блок питания из энергосберегающей лампочки.
Подробнее…
- Подробности
Это лабороторный блок питания от 0 до 30вольт на выходе. Регулируется это все подстроечным резистором. Для простоты, индикатор тока и напряжения, был приобретен на всем известном китайском сайте.
Подробнее…
- Подробности
зарядное устройство из компьютерного блока питания своими руками
В различных ситуациях требуются разные по напряжению и мощности ИП. Поэтому многие покупают или делают такой, чтоб хватило на все случаи.
И проще всего взять за основу компьютерный. Данный лабораторный блок питания с характеристиками 0-22 В 20 А переделан с небольшой доработкой из компьютерного АТХ на ШИМ 2003. Для переделки использовал JNC mod. LC-B250ATX. Идея не нова и в интернете множество подобных решений, некоторые были изучены, но окончательное получилось свое. Результатом очень доволен. Сейчас ожидаю посылку из Китая с совмещенными индикаторами напряжения и тока, и, соответственно, заменю. Тогда можно будет назвать мою разработку ЛБП — зарядное для автомобильных АКБ.
Подробнее…
- Подробности
Блок питания своими руками
Многие устройства требуют 2-х канального, или как его ещё называют двухполярного питания. В простеёшем варианте можно обойтись предлагаемой схемой блока питания своими руками, которая обеспечивает стабильную регулировку и поддержание при разных токах двухполярного напряжения в диапазоне от ±1.5 В до ±17 В. Она основана на линейных регуляторах напряжения LM317/LM337, которые имеют защиту от короткого замыкания.
Подробнее…
- Подробности
Блок питания 0-30 Вольт своими руками
Сколько всяких интересных радиоустройств собирают радиолюбители, но основа, без которой не будет работать практически ни одна схема — блок питания. .Часто до сборки приличного блока питания просто не доходят руки. Конечно промышленность выпускает достаточно качественных и мощных стабилизаторов напряжения и тока, однако не везде они продаются и не у всех есть возможность их купить. Проще спаять своими руками.
Подробнее…
- Подробности
Схема импульсного блока питания на 600Вт для УНЧ
При сборке мощных усилителей, кто собирал, знает что нужен для питания мощный блок питания, а как известно габариты трансформаторов в них очень дорогие, и при этом добавляют значительный вес.
Блок питания в этой статье обладает мощностью подходящей для многих УНЧ, так как его мощность 600Вт, но можно использовать и в других целях его, можно сделать запросто своими руками.
Подробнее…
- Подробности
Регулируемый блок питания на транзисторах
Каждый радиолюбитель, особенно когда начинает заниматься радиотехникой, хочет собрать своими руками блок питания где можно было бы регулировать напряжение на выходе.
Так как все предворительно собранные схемы, нужно на чем то проверять,и плавно подовать напряжение и просто что бы неприходилось собирать каждый раз блок питания на определенное напряжение.
Подробнее…
- Подробности
Импульсный блок питания на IR2151-IR2153
Плюс любого импульсного блока питания состоит в том что не требуется намотки или покупки громоздкого трансформатора.А требуется всего лишь трансформатор с несколькими витками.Данный блок питания сделать самому несложно и требует немного деталей. И основа,это то что блок питания на микросхеме IR2151
Подробнее…
9 Простые схемы зарядного устройства для солнечных батарей
Простые солнечные зарядные устройства — это небольшие устройства, которые позволяют быстро и дешево заряжать аккумулятор с помощью солнечной энергии.
Простое солнечное зарядное устройство должно иметь 3 встроенных базовых функции:
- Оно должно быть недорогим.
- Удобство для неспециалистов и простота сборки.
- Должен быть достаточно эффективным, чтобы удовлетворить основные потребности зарядки аккумулятора.
В сообщении всесторонне объясняется девять лучших, но простых схем зарядного устройства для солнечных батарей с использованием IC LM338, транзисторов, MOSFET, понижающего преобразователя и т. Д., Которые могут быть построены и установлены даже неспециалистом для зарядки всех типов батарей и работы с другим сопутствующим оборудованием
Обзор
Солнечные панели для нас не новость, и сегодня они широко используются во всех секторах.Основное свойство этого устройства — преобразование солнечной энергии в электрическую, сделало его очень популярным, и теперь оно серьезно рассматривается как будущее решение всех кризисов или дефицитов электроэнергии.
Солнечная энергия может использоваться непосредственно для питания электрического оборудования или просто храниться в соответствующем накопителе для дальнейшего использования.
Обычно есть только один эффективный способ хранения электроэнергии — использование аккумуляторных батарей.
Перезаряжаемые батареи, вероятно, являются лучшим и наиболее эффективным способом сбора или хранения электроэнергии для дальнейшего использования.
Энергия от солнечного элемента или солнечной панели также может эффективно храниться, чтобы ее можно было использовать по своему усмотрению, обычно после захода солнца или когда стемнело, и когда накопленная мощность становится очень необходимой для работы огни.
Хотя это может показаться довольно простым, зарядка аккумулятора от солнечной панели никогда не бывает легкой по двум причинам:
Напряжение от солнечной панели может сильно варьироваться в зависимости от падающих солнечных лучей и
Ток также варьируется по тем же причинам, указанным выше.
Две вышеуказанные причины могут сделать параметры зарядки типичной аккумуляторной батареи очень непредсказуемыми и опасными.
ОБНОВЛЕНИЕ:
Прежде чем углубляться в следующие концепции, вы, вероятно, можете попробовать это очень простое зарядное устройство для солнечных батарей, которое обеспечит безопасную и гарантированную зарядку небольшой батареи 12 В 7 Ач через небольшую солнечную панель:
Требуемые детали
- Солнечная панель — 20 В, 1 ампер
- IC 7812 — 1no
- 1N4007 Диоды — 3nos
- 2k2 Резистор 1/4 Вт — 1no
Выглядит круто, не правда ли.Фактически, ИС и диоды могут уже лежать в вашем электронном мусорном ящике, поэтому их необходимо покупать. Теперь давайте посмотрим, как их можно настроить для окончательного результата.
Расчетное время, необходимое для зарядки аккумулятора с 11 В до 14 В, составляет около 8 часов.Как мы знаем, IC 7812 выдает фиксированное напряжение 12 В на выходе, которое нельзя использовать для зарядки аккумулятора 12 В. 3 диода, подключенные к его клеммам заземления (GND), введены специально для решения этой проблемы и для увеличения выхода IC примерно до 12 + 0.7 + 0,7 + 0,7 В = 14,1 В, что как раз и требуется для полной зарядки аккумулятора 12 В.
Падение на 0,7 В на каждом диоде увеличивает порог заземления ИС на установленный уровень, заставляя ИС регулировать выход на уровне 14,1 В вместо 12 В. Резистор 2k2 используется для активации или смещения диодов, чтобы он мог провести и обеспечить запланированное полное падение на 2,1 В.
Делаем это еще проще
Если вы ищете еще более простое солнечное зарядное устройство, то, вероятно, нет ничего проще, чем подключить солнечную панель соответствующего номинала напрямую к соответствующей батарее через блокирующий диод, как показано ниже:
Хотя вышеуказанная конструкция не включает в себя регулятор, она все равно будет работать, поскольку токовый выход панели является номинальным, и это значение будет показывать только ухудшение, когда солнце меняет свое положение.
Однако для аккумулятора, который не полностью разряжен, описанная выше простая настройка может нанести некоторый вред аккумулятору, поскольку аккумулятор будет быстро заряжаться и будет продолжать заряжаться до небезопасного уровня и в течение более длительных периодов времени. время.
1) Использование LM338 в качестве контроллера солнечной энергии
Но благодаря современным универсальным микросхемам, таким как LM 338 и LM 317, которые могут очень эффективно справляться с вышеуказанными ситуациями, делая процесс зарядки всех аккумуляторных батарей через солнечную панель очень безопасным и желательно.
Схема простого зарядного устройства для солнечных батарей LM338 показана ниже с использованием IC LM338:
На принципиальной схеме показана простая установка с использованием IC LM 338, настроенного для работы в стандартном режиме регулируемого источника питания.
Использование функции контроля тока
Особенностью конструкции является то, что она также включает функцию контроля тока.
Это означает, что, если ток имеет тенденцию к увеличению на входе, что обычно может иметь место, когда интенсивность солнечных лучей увеличивается пропорционально, напряжение зарядного устройства пропорционально падает, снижая ток обратно до указанного номинального значения.
Как мы видим на схеме, коллектор / эмиттер транзистора BC547 подключен через ADJ и землю, он становится ответственным за инициирование действий управления током.
По мере увеличения входного тока батарея начинает потреблять больше тока, при этом на резисторе R3 возникает напряжение, которое преобразуется в соответствующее базовое возбуждение транзистора.
Транзистор проводит и корректирует напряжение через C LM338, так что скорость тока регулируется в соответствии с безопасными требованиями к батарее.
Формула предела тока:
R3 можно рассчитать по следующей формуле
R3 = 0,7 / Максимальный предел тока
PCB Конструкция для описанной выше простой схемы зарядного устройства солнечной батареи приведена ниже:
Измеритель и входной диод не входят в состав печатной платы.
2) Схема зарядного устройства солнечной батареи за 1 доллар
Вторая конструкция объясняет дешевую, но эффективную, менее чем за 1 доллар дешевую, но эффективную схему солнечного зарядного устройства, которая может быть построена даже неспециалистом для использования эффективной зарядки солнечной батареи.
Вам понадобится только панель солнечных батарей, селекторный переключатель и несколько диодов для создания достаточно эффективного солнечного зарядного устройства.
Что такое слежение за солнечной точкой максимальной мощности?
Для непрофессионала это было бы чем-то слишком сложным и изощренным, чтобы понять, и системой, включающей экстремальную электронику.
В некотором смысле это может быть правдой, и, конечно же, MPPT — это сложные высокопроизводительные устройства, которые предназначены для оптимизации зарядки аккумулятора без изменения кривой V / I солнечной панели.
Проще говоря, MPPT отслеживает мгновенное максимальное доступное напряжение от солнечной панели и регулирует скорость зарядки аккумулятора таким образом, чтобы напряжение на панели оставалось неизменным или вдали от нагрузки.
Проще говоря, солнечная панель будет работать наиболее эффективно, если ее максимальное мгновенное напряжение не снижается близко к напряжению подключенной батареи, которая заряжается.
Например, если напряжение холостого хода вашей солнечной панели составляет 20 В, а заряжаемая батарея рассчитана на 12 В, и если вы подключите их напрямую, напряжение на панели упадет до напряжения батареи, что приведет к слишком неэффективно.
И наоборот, если бы вы могли сохранить напряжение панели неизменным, но извлечь из него наилучший вариант зарядки, система бы работала по принципу MPPT.
Таким образом, все дело в оптимальной зарядке аккумулятора без снижения напряжения на панели.
Существует один простой и нулевой метод реализации вышеуказанных условий.
Выберите солнечную панель, напряжение холостого хода которой соответствует напряжению зарядки аккумулятора. То есть для батареи 12 В вы можете выбрать панель с напряжением 15 В, что обеспечит максимальную оптимизацию обоих параметров.
Однако практически вышеуказанных условий может быть трудно достичь, потому что солнечные панели никогда не производят постоянную мощность и имеют тенденцию генерировать ухудшающиеся уровни мощности в ответ на изменение положения солнечных лучей.
Вот почему всегда рекомендуется использовать солнечную панель с гораздо более высоким номиналом, чтобы даже в худших дневных условиях она продолжала заряжаться.
Сказав, что нет необходимости переходить на дорогие системы MPPT, вы можете получить аналогичные результаты, потратив на это несколько долларов.Следующее обсуждение прояснит процедуры.
Как работает схема
Как обсуждалось выше, для того, чтобы избежать ненужной нагрузки на панель, нам необходимо создать условия, идеально соответствующие напряжению фотоэлектрической батареи и напряжению батареи.
Это можно сделать, используя несколько диодов, дешевый вольтметр или имеющийся у вас мультиметр и поворотный переключатель. Конечно, при цене около 1 доллара вы не можете ожидать, что он будет автоматическим, вам, возможно, придется работать с переключателем довольно много раз в день.
Мы знаем, что прямое падение напряжения на выпрямительном диоде составляет около 0,6 В, поэтому, добавив несколько диодов последовательно, можно изолировать панель от перетаскивания на подключенное напряжение батареи.
Ссылаясь на схему, приведенную ниже, можно организовать маленькое классное зарядное устройство MPPT с использованием показанных дешевых компонентов.
Предположим, что на схеме напряжение холостого хода панели составляет 20 В, а батарея рассчитана на 12 В.
Их прямое подключение приведет к увеличению напряжения панели до уровня заряда батареи, что сделает работу неприемлемой.
Последовательно добавляя 9 диодов, мы эффективно изолируем панель от нагрузки и перетаскивания к напряжению батареи, но при этом извлекаем из нее максимальный зарядный ток.
Общее прямое падение объединенных диодов будет около 5 В, плюс напряжение зарядки аккумулятора 14,4 В дает около 20 В, что означает, что после последовательного соединения всех диодов во время пикового солнечного света напряжение на панели незначительно упадет до примерно 19 В. эффективная зарядка аккумулятора.
Теперь предположим, что солнце начинает опускаться, вызывая падение напряжения на панели ниже номинального. Это можно контролировать с помощью подключенного вольтметра и пропускать несколько диодов до тех пор, пока аккумулятор не будет восстановлен с получением оптимальной мощности.
Символ стрелки, показанный при подключении к плюсу напряжения панели, можно заменить поворотным переключателем для рекомендуемого выбора диодов, включенных последовательно.
Реализовав описанную выше ситуацию, можно эффективно моделировать четкие условия зарядки MPPT без использования дорогостоящих устройств.Вы можете сделать это для всех типов панелей и батарей, просто подключив большее количество диодов.
3) Схема солнечного зарядного устройства и драйвера для белого светодиода SMD высокой мощности 10 Вт / 20 Вт / 30 Вт / 50 Вт
Третья идея учит нас, как построить простой светодиод на солнечной батарее со схемой зарядного устройства для освещения светодиодов высокой мощности (SMD) в порядка 10 ватт на 50 ватт. Светодиоды SMD полностью защищены термически и от перегрузки по току с помощью недорогого каскада ограничения тока LM 338. Идею запросил г-н.Сарфраз Ахмад.
Технические характеристики
В основном я дипломированный инженер-механик из Германии 35 лет назад, много лет работал за границей и уехал много лет назад из-за личных проблем дома.
Извините, что беспокою вас, но я знаю о ваших способностях и опыте в области электроники и искренности, чтобы помочь и направить таких начинающих, как я. Я видел эту схему где-то для 12 В постоянного тока.Я подключил к SMD, 12 В 10 Вт, конденсатор 1000 мкФ, 16 В и мостовой выпрямитель, вы можете увидеть номер детали на нем.Когда я включаю свет, выпрямитель начинает нагреваться, как и оба SMD-модуля. Боюсь, если оставить эти лампы включенными в течение длительного времени, это может повредить SMD и выпрямитель. Не знаю, в чем проблема. Вы можете мне помочь.
У меня на крыльце есть свет, который включается на диске и выключается на рассвете. К сожалению, из-за отключения нагрузки, когда нет электричества, этот свет не горит, пока электричество не вернется.
Я хочу установить как минимум два SMD (12 В) с LDR, чтобы, как только свет погас, загорелся свет SMD.Я хочу добавить еще два аналогичных светильника в другом месте на крыльце автомобиля, чтобы все они были освещены. Я думаю, что если я подключу все эти четыре SMD-светильника к источнику питания 12 В, который будет получать питание от цепи ИБП.
Конечно, это приведет к дополнительной нагрузке на батарею ИБП, которая вряд ли полностью заряжена из-за частого отключения нагрузки. Другое лучшее решение — установить 12-вольтовую солнечную панель и прикрепить к ней все четыре лампы SMD. Он зарядит аккумулятор и включит / выключит свет.
Эта солнечная панель должна поддерживать эти огни всю ночь и отключаться на рассвете. Пожалуйста, также помогите мне и расскажите подробнее об этой схеме / проекте.
Вы можете найти время, чтобы выяснить, как это сделать. Я пишу вам, так как, к сожалению, ни один продавец электроники или солнечной энергии на нашем местном рынке не готов мне помочь. Никто из них, похоже, не имеет технической квалификации и они просто хотят продать свои запчасти.
Sarfraz Ahmad
Равалпинди, Пакистан
Конструкция
На показанной выше солнечной светодиодной схеме SMD мощностью от 10 до 50 Вт с автоматическим зарядным устройством мы видим следующие этапы:
- Солнечная панель
- Пара схем регулятора LM338 с регулируемым током
- Реле переключения
- Перезаряжаемая батарея
- и 40-ваттный светодиодный SMD-модуль
Вышеупомянутые ступени объединены следующим образом:
Два Ступени LM 338 сконфигурированы в стандартных режимах регулятора тока с использованием соответствующих сопротивлений измерения тока для обеспечения выхода с регулируемым током для соответствующей подключенной нагрузки.
Нагрузкой для левого LM338 является аккумулятор, который заряжается от этой ступени LM338 и входной источник солнечной панели. Резистор Rx рассчитывается таким образом, чтобы батарея получала установленный ток и не перезаряжалась.
Правая сторона LM 338 загружена светодиодным модулем, и здесь Ry проверяет, что модуль получает правильную заданную величину тока, чтобы защитить устройства от теплового разгона.
Напряжение на солнечной панели может быть от 18 до 24 В.
Реле вводится в схему и соединяется со светодиодным модулем таким образом, что оно включается только ночью или когда темно ниже порогового значения для солнечной панели для выработки необходимой любой мощности.
Пока доступно солнечное напряжение, реле остается под напряжением, изолируя светодиодный модуль от батареи и гарантируя, что светодиодный модуль мощностью 40 Вт остается выключенным в дневное время и во время зарядки аккумулятора.
После сумерек, когда солнечное напряжение становится достаточно низким, реле больше не может удерживать свое положение Н / Н и переключается в положение Н / З, соединяя батарею со светодиодным модулем и освещая массив через доступный полностью заряженный аккумулятор.
Видно, что светодиодный модуль прикреплен к радиатору, который должен быть достаточно большим для достижения оптимального результата работы модуля и обеспечения более длительного срока службы и яркости устройства.
Расчет номиналов резисторов
Указанные ограничивающие резисторы можно рассчитать по приведенным формулам:
Rx = 1,25 / ток зарядки аккумулятора
Ry = 1,25 / номинальный ток светодиода.
Предполагая, что это свинцово-кислотная батарея на 40 Ач, предпочтительный зарядный ток должен составлять 4 ампера.
, следовательно, Rx = 1,25 / 4 = 0,31 Ом
мощность = 1,25 x 4 = 5 Вт
Ток светодиода можно найти, разделив его общую мощность на номинальное напряжение, то есть 40/12 = 3,3 ампера
следовательно Ry = 1,25 / 3 = 0,4 Ом
мощность = 1,25 x 3 = 3,75 Вт или 4 Вт.
Ограничительные резисторы не используются для светодиодов мощностью 10 Вт, поскольку входное напряжение от батареи соответствует установленному пределу 12 В для светодиодного модуля и, следовательно, не может превышать безопасные пределы.
Приведенное выше объяснение показывает, как микросхему LM338 можно просто использовать для создания полезной схемы солнечного светодиодного освещения с автоматическим зарядным устройством.
4) Автоматическая цепь солнечного освещения с использованием реле
В нашей 4-й автоматической цепи солнечного освещения мы включаем одно реле в качестве переключателя для зарядки аккумулятора в дневное время или пока солнечная панель вырабатывает электричество, а также для освещения подключенный светодиод, пока панель не активна.
Обновление до реле переключения
В одной из моих предыдущих статей, в которой объяснялась простая схема солнечного садового освещения, мы использовали один транзистор для операции переключения.
Одним из недостатков более ранней схемы является то, что она не обеспечивает регулируемую зарядку батареи, хотя это не может быть строго обязательным, поскольку батарея никогда не заряжается до полного потенциала, этот аспект может потребовать улучшения.
Еще одним связанным недостатком более ранней схемы является ее низкая мощность, которая не позволяет использовать батареи высокой мощности и светодиоды.
Следующая схема эффективно решает обе вышеупомянутые проблемы с помощью реле и транзисторного каскада эмиттерного повторителя.
Принципиальная схема
Как это работает
Во время оптимального солнечного света реле получает достаточную мощность от панели и остается включенным с активированными замыкающими контактами.
Это позволяет аккумулятору получать зарядное напряжение через стабилизатор напряжения на транзисторном эмиттерном повторителе.
Конструкция эмиттерного повторителя состоит из TIP122, резистора и стабилитрона. Резистор обеспечивает необходимое смещение для проводимости транзистора, в то время как значение стабилитрона ограничивает напряжение эмиттера, которое контролируется на уровне чуть ниже значения напряжения стабилитрона.
Таким образом, стабилитрон выбирается соответствующим образом, чтобы соответствовать зарядному напряжению подключенной батареи.
Для батареи 6 В напряжение стабилитрона может быть выбрано как 7,5 В, для батареи 12 В напряжение стабилитрона может составлять около 15 В и так далее.
Эмиттерный повторитель также следит за тем, чтобы аккумулятор никогда не перезарядился сверх установленного предела зарядки.
В вечернее время, когда обнаруживается значительное падение солнечного света, реле блокируется от требуемого минимального напряжения удержания, заставляя его переключаться с замыкающего контакта на замыкающий.
Вышеупомянутое переключение реле мгновенно переводит аккумулятор из режима зарядки в режим светодиода, освещая светодиод через напряжение аккумулятора.
Список деталей для автоматической цепи солнечного освещения 6 В / 4 Ач с переключением реле
- Панель солнечных батарей = 9 В, 1 ампер
- Реле = 6 В / 200 мА
- Rx = 10 Ом / 2 Вт
- стабилитрон = 7,5 В, 1/2 Вт
5) Схема транзисторного контроллера солнечного зарядного устройства
Пятая идея, представленная ниже, описывает простую схему солнечного зарядного устройства с автоматическим отключением только с использованием транзисторов.Идея была предложена г-ном Мубараком Идрисом.
Цели и требования схемы
- Пожалуйста, сэр, не могли бы вы сделать мне литий-ионный аккумулятор 12 В, 28,8 Ач, автоматический контроллер заряда с использованием солнечной панели в качестве источника питания, который составляет 17 В при 4,5 А при максимальном солнечном свете.
- Контроллер заряда должен иметь возможность иметь защиту от перезарядки и отключение низкого заряда батареи, а схема должна быть простой для новичка без микросхемы или микроконтроллера.
- Схема должна использовать реле или BJT транзисторов в качестве выключателя и стабилитронов для опорного напряжения, благодаря сэру надежды услышать от вас скоро!
Конструкция
Конструкция печатной платы (сторона компонентов)
Ссылаясь на приведенную выше простую схему солнечного зарядного устройства с использованием транзисторов, автоматическое отключение для полного уровня заряда и нижнего уровня выполняется через пару BJT, сконфигурированных как компараторы .
Вспомните более раннюю схему индикатора низкого заряда батареи, использующую транзисторы, где низкий уровень заряда батареи указывался с помощью всего двух транзисторов и нескольких других пассивных компонентов.
Здесь мы используем идентичную конструкцию для определения уровня заряда батареи и для обеспечения необходимого переключения батареи через солнечную панель и подключенную нагрузку.
Давайте предположим, что изначально у нас есть частично разряженная батарея, из-за которой первый BC547 слева перестает проводить (это устанавливается путем настройки базовой предустановки на этот пороговый предел) и позволяет проводить следующее BC547.
Когда этот BC547 проводит, он позволяет TIP127 включиться, что, в свою очередь, позволяет напряжению солнечной панели достигать батареи и начинать ее зарядку.
Приведенная выше ситуация, наоборот, удерживает TIP122 выключенным, так что нагрузка не может работать.
По мере того, как батарея начинает заряжаться, напряжение на шинах питания также начинает расти до точки, когда левая сторона BC547 просто может проводить ток, в результате чего правая сторона BC547 перестает проводить дальше.
Как только это происходит, TIP127 блокируется от отрицательных базовых сигналов, и он постепенно перестает проводить, так что батарея постепенно отключается от напряжения солнечной панели.
Однако вышеупомянутая ситуация позволяет TIP122 медленно получать триггер смещения базы, и он начинает проводить … что гарантирует, что теперь нагрузка может получить необходимое питание для своих операций.
Вышеупомянутая схема солнечного зарядного устройства с использованием транзисторов и с автоматическим отключением может использоваться для любых небольших приложений солнечного контроллера, таких как безопасная зарядка аккумуляторов сотовых телефонов или других форм литий-ионных аккумуляторов.
Для , получившего регулируемое зарядное устройство
Следующая конструкция показывает, как преобразовать или модернизировать приведенную выше принципиальную схему в регулируемое зарядное устройство, чтобы аккумулятор поставлялся с фиксированным и стабилизированным выходом независимо от повышения напряжения от солнечной панели.
6) Схема карманного светодиодного освещения на солнечной батарее
Шестой пример здесь объясняет простую недорогую схему карманного светодиодного освещения на солнечной батарее, которая может использоваться нуждающимися и малоимущими слоями общества для недорогого освещения своих домов в ночное время.
Идея была предложена г-ном Р.К. Rao
Цели и требования схемы
- Я хочу сделать карманный светодиодный светильник SOLAR из прозрачного пластикового бокса 9 см x 5 см x 3 см [доступный на рынке за 3 рупий / -] с использованием светодиода мощностью 1 Вт / 20 мА Светодиоды с питанием от герметичной свинцово-кислотной аккумуляторной батареи 4 В, 1 А [SUNCA / VICTARI], а также с возможностью зарядки с помощью зарядного устройства для сотового телефона [при наличии сетевого тока].
- Батарею следует заменять, если она разряжена после использования в течение 2/3 лет / предписанного срока службы сельским / племенным пользователем.
- Предназначен для использования детьми из племен / деревень, чтобы зажечь книгу; На рынке есть лучшие светодиодные фонари по цене около 500 рупий [d.light] за 200 рупий [Thrive].
- Эти фонари хороши, за исключением того, что у них есть мини-солнечная панель и яркий светодиод со сроком службы десять лет, если не больше, но с перезаряжаемой батареей без возможности ее замены, если она разрядится после двух или трех лет использования. это пустая трата ресурсов и неэтична.
- Я планирую проект, в котором аккумулятор может быть заменен и доступен на месте по низкой цене.Цена на свет не должна превышать 100/150 рупий.
- Он будет продаваться на некоммерческой основе через НПО в районах проживания племен и, в конечном итоге, будет поставлять комплекты для молодежи из племен / сельских районов, чтобы они могли изготавливать их в деревне.
- Я вместе с коллегой сделал несколько светильников с батареями большой мощности 7V EW и 2x20mA pirahna Led и протестировал их — они длились более 30 часов непрерывного освещения, достаточного для освещения книги с полуметрового расстояния; и еще один с солнечной батареей 4 В и светодиодом мощностью 350 А мощностью 1 Вт, обеспечивающим достаточно света для приготовления пищи в хижине.
- Можете ли вы предложить схему с одной перезаряжаемой батареей AA / AAA, мини-солнечной панелью размером 9×5 см для установки на крышку коробки, усилителем DC-DC и светодиодами 20 мА. Если вы хотите, чтобы я пришел к вам для обсуждения, я могу.
- Вы можете увидеть огни, которые мы сделали, на фотографиях Google по адресу https://goo.gl/photos/QyYU1v5Kaag8T1WWA Спасибо,
Дизайн
По запросу должны быть установлены карманные солнечные светодиодные схемы. компактный, работает с одним 1.Элемент 5AAA, использующий преобразователь постоянного тока в постоянный и оснащенный саморегулирующейся схемой солнечного зарядного устройства.
Схема, показанная ниже, вероятно, удовлетворяет всем вышеперечисленным спецификациям, но все же остается в пределах доступной стоимости.
Принципиальная схема
Конструкция представляет собой базовую схему «похититель джоулей», в которой используется один элемент фонарика, BJT и индуктор для питания любого стандартного светодиода 3,3 В.
На схеме показан светодиод мощностью 1 Вт, хотя можно использовать светодиод меньшей яркости 30 мА.
Схема солнечного светодиода способна выдавить последнюю каплю «джоуля» или заряда из элемента, отсюда и название «вор джоулей», что также подразумевает, что светодиод будет продолжать светиться до тех пор, пока внутри элемента практически ничего не останется. Однако аккумулятор здесь не рекомендуется разряжать ниже 1 В.
Зарядное устройство на 1,5 В в конструкции построено с использованием другого маломощного BJT, сконфигурированного в его конфигурации эмиттерного повторителя, что позволяет ему выдавать выходное напряжение эмиттера, которое точно равно потенциалу в его базе, установленному предустановкой 1K.Это должно быть точно установлено так, чтобы эмиттер выдавал не более 1,8 В при входном постоянном токе более 3 В.
Источником входного постоянного тока является солнечная панель, которая может выдавать напряжение более 3 В при оптимальном солнечном свете и позволяет зарядному устройству заряжать аккумулятор с максимальным выходным напряжением 1,8 В.
При достижении этого уровня эмиттерный повторитель просто запрещает дальнейшую зарядку элемента, таким образом предотвращая любую возможность избыточного заряда.
Индуктор для схемы карманного солнечного светодиода состоит из небольшого трансформатора с ферритовым кольцом, имеющего 20:20 витков, которые можно соответствующим образом изменить и оптимизировать для обеспечения наиболее благоприятного напряжения для подключенного светодиода, которое может работать даже до тех пор, пока напряжение не упадет ниже 1.2В.
7) Простое солнечное зарядное устройство для уличных фонарей
Седьмое солнечное зарядное устройство, обсуждаемое здесь, лучше всего подходит, поскольку солнечная светодиодная система уличного освещения специально разработана для начинающих любителей, которые могут построить их, просто обратившись к представленной здесь графической схеме.
Благодаря простой и относительно дешевой конструкции система может быть подходящим образом использована для уличного освещения в деревнях или в других подобных отдаленных районах, тем не менее, это никоим образом не ограничивает ее использование и в городах.
Основные характеристики этой системы:
1) Зарядка с управлением по напряжению
2) Работа светодиодов с контролем тока
3) Реле не используются, все твердотельные конструкции
4) Отключение нагрузки при низком критическом напряжении
5) Индикаторы низкого и критического напряжения
6) Отключение полной зарядки не включено для простоты и потому, что зарядка ограничена контролируемым уровнем, который никогда не позволит аккумулятору перезарядиться.
7) Использование популярных микросхем, таких как LM338, и транзисторов, таких как BC547, обеспечивает беспроблемную закупку.
8) Ступень срабатывания «день-ночь», обеспечивающий автоматическое отключение в сумерках и включение на рассвете.
Вся принципиальная схема предлагаемой простой светодиодной системы уличного освещения проиллюстрирована ниже:
Принципиальная схема
Цепной каскад, состоящий из T1, T2 и P1, сконфигурирован в простой датчик низкого заряда батареи, индикаторную схему
Точно идентичный Этап также можно увидеть чуть ниже, используя T3, T4 и связанные с ними детали, которые образуют еще один каскад детектора низкого напряжения.
Ступень T1, T2 обнаруживает напряжение батареи, когда оно падает до 13 В, путем включения подключенного светодиода на коллекторе T2, в то время как ступень T3, T4 обнаруживает напряжение аккумулятора, когда оно падает ниже 11 В, и указывает ситуацию, загораясь Светодиод связан с коллектором Т4.
P1 используется для регулировки ступени T1 / T2 таким образом, чтобы светодиод T2 загорался только при напряжении 12 В, аналогично P2 настраивается, чтобы светодиод T4 начинал светиться при напряжении ниже 11 В.
IC1 LM338 сконфигурирован как простой источник питания с регулируемым напряжением для точного регулирования напряжения солнечной панели до 14 В, это делается путем соответствующей настройки предустановки P3.
Этот выход IC1 используется для зарядки батареи уличного фонаря в дневное время и при ярком солнечном свете.
IC2 — это еще одна микросхема LM338, подключенная в режиме регулятора тока, ее входной контакт соединен с плюсом батареи, а выход соединен со светодиодным модулем.
IC2 ограничивает уровень тока от батареи и подает правильное количество тока на светодиодный модуль, чтобы он мог безопасно работать в ночном режиме резервного копирования.
T5 — это силовой транзистор, который действует как переключатель и срабатывает на стадии критического разряда батареи, когда напряжение батареи стремится достичь критического уровня.
Каждый раз, когда это происходит, база T5 немедленно заземляется с помощью T4, мгновенно отключая его. Когда Т5 отключен, светодиодный модуль может светиться и, следовательно, также отключен.
Это состояние предотвращает и предохраняет аккумулятор от чрезмерной разрядки и повреждения. В таких ситуациях аккумулятору может потребоваться внешняя зарядка от сети с использованием источника питания 24 В, подключенного к линиям питания солнечной панели, через катод D1 и землю.
Ток от этого источника питания можно указать на уровне около 20% от емкости аккумулятора, и аккумулятор можно заряжать до тех пор, пока оба светодиода не перестанут светиться.
Транзистор T6 вместе с его базовыми резисторами расположен так, чтобы обнаруживать питание от солнечной панели и гарантировать, что светодиодный модуль остается отключенным до тех пор, пока разумный объем питания доступен от панели, или, другими словами, T6 сохраняет светодиод модуль отключается до тех пор, пока не становится достаточно темно для светодиодного модуля, а затем включается.Обратное происходит на рассвете, когда светодиодный модуль автоматически выключается. R12, R13 должны быть тщательно отрегулированы или выбраны для определения желаемых пороговых значений для циклов включения / выключения светодиодного модуля.
Как собрать
Для успешного завершения этой простой системы уличного освещения описанные этапы должны быть построены отдельно и проверены отдельно перед интеграцией их вместе.
Сначала соберите каскад T1, T2 вместе с R1, R2, R3, R4, P1 и светодиодом.
Затем, используя переменный источник питания, подайте точные 13 В на этот каскад T1, T2 и отрегулируйте P1 так, чтобы светодиод просто загорелся, немного увеличьте напряжение до 13.5V и светодиод должен погаснуть. Этот тест подтвердит правильную работу этой ступени индикатора низкого напряжения.
Сделайте то же самое, что и ступень T3 / T4, и установите P2 аналогичным образом, чтобы светодиод светился при напряжении 11 В, что становится критической установкой уровня для ступени.
После этого вы можете перейти к этапу IC1 и отрегулировать напряжение на его «корпусе» и земле до 14 В, отрегулировав P3 до нужной степени. Это нужно снова сделать, подав напряжение 20 В или 24 В на его входной контакт и линию заземления.
Каскад IC2 может быть сконструирован, как показано, и не потребует какой-либо процедуры настройки, кроме выбора R11, который может быть выполнен с использованием формулы, выраженной в этой статье об универсальном ограничителе тока
Список деталей
- R1, R2, R3 R4, R5, R6, R7 R8, R9, R12 = 10k, 1/4 WATT
- P1, P2, P3 = 10K PRESETS
- R10 = 240 OHMS 1/4 WATT
- R13 = 22K
- D1, D3 = 6A4 ДИОД
- D2, D4 = 1N4007
- T1, T2, T3, T4 = BC547
- T5 = TIP142
- R11 = СМОТРЕТЬ ТЕКСТ
- IC1, IC2 = 24 LM338 IC TO3, соединительный блок 9000 Сделано с помощью соединительного блока 9000 Светодиоды мощностью 1 Вт при последовательном и параллельном подключении
- Батарея = 12 В SMF, 40 Ач
- Солнечная панель = 20/24 В, 7 А
Создание светодиодного модуля на 24 Вт
Светодиодный модуль на 24 Вт для вышеупомянутой простой солнечной улицы световую систему можно построить, просто соединив 24 светодиода мощностью 1 Вт, как показано на следующем рисунке:
8) Схема понижающего преобразователя солнечной панели с защитой от перегрузки
В восьмой концепции солнечной батареи, обсуждаемой ниже, говорится о простой схеме понижающего преобразователя солнечной панели, которую можно использовать для получения любого желаемого низкого пониженного напряжения на входах от 40 до 60 В.Схема обеспечивает очень эффективное преобразование напряжения. Идея была предложена господином Дипаком.
Технические характеристики
Я ищу понижающий преобразователь постоянного тока со следующими характеристиками.
1. Входное напряжение = от 40 до 60 В постоянного тока
2. Выходное напряжение = регулируемое 12, 18 и 24 В постоянного тока (несколько выходов из одной и той же цепи не требуются. Отдельная цепь для каждого выходного напряжения также штраф)
3.Максимальный выходной ток = 5-10A
4. Защита на выходе = перегрузка по току, короткое замыкание и т. Д.
5. Небольшой светодиодный индикатор работы устройства будет преимуществом.
Был бы признателен, если бы вы помогли мне разработать схему.
С уважением,
Deepak
Конструкция
Предлагаемая схема понижающего преобразователя с 60 В на 12 В, 24 В показана на рисунке ниже, детали можно понять, как описано ниже: конфигурацию можно разделить на этапы, а именно.каскад нестабильного мультивибратора и понижающий преобразователь, управляемый МОП-транзистором.
BJT T1, T2 вместе со связанными с ним частями образуют стандартную схему AMV, подключенную к генерации частоты с частотой примерно от 20 до 50 кГц.
Mosfet Q1 вместе с L1 и D1 формирует стандартную топологию понижающего преобразователя для реализации необходимого понижающего напряжения на C4.
AMV управляется входом 40 В, и генерируемая частота подается на затвор подключенного МОП-транзистора, который мгновенно начинает колебаться при доступном токе от входа, управляющего сетью L1, D1.
Вышеупомянутое действие генерирует необходимое пониженное напряжение на C4,
D2 гарантирует, что это напряжение никогда не превышает номинальную отметку, которая может быть фиксированной 30 В.
Это макс. Предельное пониженное напряжение 30 В далее подается на регулятор напряжения LM396, который может быть настроен на получение конечного желаемого напряжения на выходе с максимальной скоростью 10 ампер.
Выход можно использовать для зарядки предполагаемого аккумулятора.
Принципиальная схема
Список деталей для вышеуказанного понижающего преобразователя на 60 В, 12 В, 24 В на выходе для солнечных панелей.
- R1 — R5 = 10K
- R6 = 240 OHMS
- R7 = 10K POT
- C1, C2 = 2nF
- C3 = 100uF / 100V
- C4 = 100uF / 50V
- Q1, = ANY МОП-транзистор с P-каналом 20 А
- T1, T2 = BC546
- D1 = ЛЮБОЙ ДИОД БЫСТРОГО ВОССТАНОВЛЕНИЯ 10 А
- D2 = ЗЕНЕР 30 В 1 Вт
- D3 = 1N4007
- L1 = 30 витков 21 провода с суперэмалированной медью SWG Ферритовый стержень диаметром 10 мм.
9) Домашняя солнечная установка электричества для жизни вне сети
Девятая уникальная конструкция, описанная здесь, иллюстрирует простую расчетную конфигурацию, которая может использоваться для реализации электричества от солнечных панелей любого желаемого размера для удаленных домов или для обеспечения автономной системы электроснабжения от солнечных батарей.
Технические характеристики
Я очень уверен, что у вас должна быть наготове такая принципиальная схема. Просматривая ваш блог, я заблудился и не мог выбрать ни одного, наиболее подходящего для моих требований.
Я просто пытаюсь изложить здесь свое требование и убедиться, что я правильно его понял.
(Это пилотный проект для меня, чтобы отважиться в этой области. Вы можете считать меня большим нулем в электрических знаниях.)
Моя основная цель — максимально использовать солнечную энергию и свести к минимуму мой счет за электричество. (🙁 Я остаюсь в Thane. Итак, вы можете представить счета за электричество.) Итак, вы можете считать, что я полностью делаю систему освещения на солнечной энергии для своего дома.
1. Когда достаточно солнечного света, мне не нужен искусственный свет. Как только интенсивность солнечного света падает ниже допустимой нормы, я хочу, чтобы мой свет включался автоматически.
Я бы хотел их выключить перед сном.3. Моя текущая система освещения (которую я хочу осветить) состоит из двух обычных ламп яркого света (36 Вт / 880 8000K) и четырех КЛЛ мощностью 8 Вт.
Хотел бы воспроизвести всю установку со светодиодным освещением на солнечной энергии.
Как я уже сказал, я большой ноль в области электричества. Итак, пожалуйста, помогите мне также с ожидаемой стоимостью установки.
Модель
36 Вт x 2 плюс 8 Вт дает в сумме около 80 Вт, что является общим требуемым уровнем потребления.
Теперь, поскольку лампы предназначены для работы при уровнях сетевого напряжения, которое в Индии составляет 220 В, становится необходим инвертор для преобразования напряжения солнечной панели в требуемые характеристики для освещения.
Также, поскольку инвертору для работы требуется аккумулятор, который можно предположить как аккумулятор на 12 В, все параметры, необходимые для настройки, могут быть рассчитаны следующим образом:
Общее предполагаемое потребление = 80 Вт.
Указанная выше мощность может потребляться с 6 утра до 6 вечера, что становится максимальным периодом, который можно оценить, и это примерно 12 часов.
Умножение 80 на 12 дает = 960 ватт-час.
Это означает, что солнечная панель должна будет производить столько ватт-часов в течение желаемого периода в 12 часов в течение всего дня.
Однако, поскольку мы не ожидаем получения оптимального солнечного света в течение года, мы можем предположить, что средний период оптимального дневного света составляет около 8 часов.
Разделив 960 на 8, мы получим 120 Вт, что означает, что необходимая солнечная панель должна быть не менее 120 Вт.
Если выбрано напряжение панели около 18 В, текущие характеристики будут 120/18 = 6.66 ампер или просто 7 ампер.
Теперь давайте посчитаем размер батареи, которая может использоваться для инвертора и которая может потребоваться для зарядки от указанной выше солнечной панели.
Опять же, поскольку общее количество ватт-часов за весь день рассчитано примерно на 960 Вт, разделив это на напряжение батареи (которое предполагается равным 12 В), мы получим 960/12 = 80, это около 80 или просто 100 Ач. , поэтому необходимая батарея должна быть рассчитана на 12 В, 100 Ач, чтобы обеспечить оптимальную работу в течение дня (период 12 часов).
Нам также понадобится контроллер заряда от солнечной батареи для зарядки аккумулятора, а поскольку аккумулятор будет заряжаться в течение примерно 8 часов, скорость зарядки должна быть около 8% от номинальной АЧ, что составляет 80 x 8% = 6,4 ампера, поэтому контроллер заряда должен быть определен так, чтобы комфортно обрабатывать минимум 7 ампер для требуемой безопасной зарядки аккумулятора.
На этом завершаются все расчеты солнечных панелей, аккумуляторов и инверторов, которые могут быть успешно реализованы для любого подобного типа установки, предназначенного для проживания вне сети в сельской местности или другом отдаленном районе.
Для других спецификаций V, I цифры могут быть изменены в приведенных выше расчетах для достижения соответствующих результатов.
В случае, если батарея кажется ненужной, и солнечная панель также может быть напрямую использована для управления инвертором.
Простую схему регулятора напряжения солнечной панели можно увидеть на следующей диаграмме. Данный переключатель может использоваться для выбора варианта зарядки аккумулятора или прямого управления инвертором через панель.
В приведенном выше случае регулятор должен вырабатывать от 7 до 10 ампер тока, поэтому в ступени зарядного устройства необходимо использовать LM396 или LM196.
Вышеупомянутый регулятор солнечной панели может быть сконфигурирован со следующей простой схемой инвертора, которая будет вполне достаточной для питания запрошенных ламп через подключенную солнечную панель или аккумулятор.
Список деталей для вышеуказанной схемы инвертора: R1, R2 = 100 Ом, 10 Вт
R3, R4 = 15 Ом 10 Вт
T1, T2 = TIP35 на радиаторах
Последняя строка в запросе предлагает вариант светодиодной подсветки будет разработан для замены и модернизации существующих люминесцентных ламп CFL.То же самое можно реализовать, просто исключив аккумулятор и инвертор и интегрировав светодиоды с выходом солнечного регулятора, как показано ниже:
Минус адаптера должен быть подключен и объединен с минусом солнечной панели
Последние мысли
Итак, друзья, это были 9 основных конструкций зарядных устройств для солнечных батарей, которые были вручную выбраны с этого сайта.
В блоге вы найдете много других таких усовершенствованных солнечных батарей для дальнейшего чтения.И да, если у вас есть какие-либо дополнительные идеи, вы можете обязательно представить их мне, я обязательно представлю их здесь, чтобы наши зрители получили удовольствие от чтения.
Отзыв одного из читателей.
Привет, Swagatam,
Я наткнулся на ваш сайт и считаю вашу работу очень вдохновляющей. В настоящее время я работаю по программе естественных наук, технологий, инженерии и математики (STEM) для студентов 4-5 курсов в Австралии. Проект направлен на повышение интереса детей к науке и ее связи с реальными приложениями.
Программа также привносит сочувствие в процесс инженерного проектирования, когда молодые учащиеся знакомятся с реальным проектом (контекстом) и взаимодействуют со своими одноклассниками для решения мирской проблемы. В течение следующих трех лет мы сосредоточены на ознакомлении детей с наукой об электричестве и практическим применением электротехники. Введение в то, как инженеры решают проблемы реального мира на благо общества.
В настоящее время я работаю над онлайн-контентом для программы, которая будет ориентирована на молодых учащихся (4-6 классы), изучающих основы электричества, в частности, возобновляемых источников энергии, т.е.е. солнечный в данном случае. В рамках программы самостоятельного обучения дети узнают и исследуют электричество и энергию по мере того, как они знакомятся с реальным проектом, т.е. с освещением детей, проживающих в лагерях беженцев по всему миру. По завершении пятинедельной программы дети объединяются в группы, чтобы построить солнечные светильники, которые затем отправляют детям из неблагополучных семей по всему миру.
Как некоммерческий образовательный фонд, мы ищем вашу помощь в разработке простой принципиальной схемы, которую можно было бы использовать для создания солнечного светильника мощностью 1 Вт в качестве практического занятия в классе.Мы также закупили у производителя 800 комплектов солнечного света, которые дети собирают, однако нам нужен кто-то, чтобы упростить принципиальную схему этих комплектов освещения, которые будут использоваться для простых уроков по электричеству, схемам и расчету мощности. вольт, ток и преобразование солнечной энергии в электрическую.
Я с нетерпением жду вашего ответа и продолжаю вашу вдохновляющую работу.
Решение запроса
Я ценю ваш интерес и ваши искренние усилия по просвещению нового поколения в области солнечной энергии.
Я приложил самую простую, но эффективную схему драйвера светодиода, которую можно использовать для безопасного освещения 1-ваттного светодиода от солнечной панели с минимальным количеством деталей.
Обязательно прикрепите к светодиоду радиатор, иначе он может быстро сгореть из-за перегрева.
Схема управляется напряжением и током для обеспечения оптимальной безопасности светодиода.
Дайте мне знать, если у вас возникнут дополнительные сомнения.
О Swagatam
Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель.Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть какие-либо вопросы, связанные со схемой, вы можете взаимодействовать с ними через комментарии, я буду очень рад помочь!
Сколько типов источников питания: работа, функции и применение
Под регулируемыми источниками питания обычно понимается источник питания, способный подавать различные выходные напряжения, полезные для стендовых испытаний электронных схем, возможно, с непрерывным изменением выходного напряжения, или просто несколько предустановленных напряжений.Практически все электронные устройства, используемые в электронных схемах, для работы нуждаются в источнике питания постоянного тока. Стабилизированный источник питания по существу состоит из обычного источника питания и устройства регулирования напряжения. Выход из обычного источника питания подается на устройство регулирования напряжения, которое обеспечивает конечный выход. Выходное напряжение остается постоянным независимо от изменений входного переменного напряжения или изменений выходного тока (или тока нагрузки), но его амплитуда изменяется в соответствии с требованиями нагрузки.
Некоторые из этих типов источников питания описаны ниже.
SMPS
Стремление отрасли к созданию более миниатюрных, легких и более производительных электронных систем привело к развитию SMPS, не что иное, как импульсный источник питания. Для реализации SMPS обычно используются некоторые топологии. Импульсный источник питания — это электронный источник питания, который включает в себя импульсный регулятор для эффективного преобразования электроэнергии.При этом за счет использования высоких частот переключения размеры силового трансформатора и связанных с ним фильтрующих компонентов в SMPS значительно уменьшаются по сравнению с линейным. Преобразователи постоянного тока в постоянный и преобразователи постоянного тока в переменный относятся к категории ИИП.
В схеме линейного регулятора избыточное напряжение от нерегулируемого входного источника постоянного тока падает на последовательном элементе, и, следовательно, потери мощности пропорциональны этому падению напряжения, тогда как в схеме с переключаемым режимом нерегулируемая часть напряжения удаляется путем модуляции коэффициент заполнения переключателя.Коммутационные потери в современных переключателях (например, полевых МОП-транзисторах) намного меньше по сравнению с потерями в линейном элементе.
Большинство электронных нагрузок постоянного тока питаются от стандартных источников питания. К сожалению, стандартные напряжения источника могут не соответствовать уровням, требуемым микропроцессорами, двигателями, светодиодами или другими нагрузками, особенно когда напряжение источника не регулируется, как источники батарей и другие источники постоянного и переменного тока.
Блок-схема SMPS:
Основная идея импульсного источника питания (SMPS) может быть легко понята из концепции концептуального объяснения преобразователя постоянного тока в постоянный.Если вход системы переменного тока, то первая ступень должна преобразовать в постоянный ток. Это называется исправлением. ИИП с входом постоянного тока не требует стадии выпрямления. Многие новые SMPS будут использовать специальную схему коррекции коэффициента мощности (PFC). Следуя синусоидальной волне на входе переменного тока, мы можем сделать входной ток. Выпрямленный сигнал фильтруется входным накопительным конденсатором для создания нерегулируемого входного источника постоянного тока. Нерегулируемый источник постоянного тока подается на высокочастотный переключатель. Для более высоких частот требуются компоненты с более высоким уровнем емкости и индуктивности.В этом случае полевые МОП-транзисторы могут использоваться в качестве синхронных выпрямителей, они имеют еще более низкие падения напряжения на проводящей стадии. Высокая частота переключения переключает входное напряжение на первичную обмотку силового трансформатора. Импульсы возбуждения обычно имеют фиксированную частоту и переменный рабочий цикл. Выход вторичного трансформатора выпрямляется и фильтруется. Затем он отправляется на выход блока питания. Регулировка выхода для обеспечения стабилизированного питания постоянного тока осуществляется блоком управления или обратной связи.
Большинство SMPS. Системы работают на основе фиксированной частоты широтно-импульсной модуляции, где продолжительность включения привода на выключатель питания изменяется от цикла к циклу. Сигнал ширины импульса, подаваемый на переключатель, обратно пропорционален выходному напряжению на выходе. Генератор управляется обратной связью по напряжению от регулятора с обратной связью. Обычно это достигается с помощью небольшого импульсного трансформатора или оптоизолятора, что увеличивает количество компонентов.В SMPS выходной ток зависит от входного сигнала мощности, используемых элементов памяти и топологии схемы, а также от схемы, используемой для управления переключающими элементами. Используя LC-фильтры, выходные сигналы фильтруются.
Преимущества SMPS:
- Более высокий КПД, поскольку коммутирующий транзистор рассеивает мало энергии
- Меньшее тепловыделение за счет более высокого КПД
- Меньший размер
- Легкий вес
- Пониженная гармоническая обратная связь в питающую сеть
Применение SMPS:
- Персональные компьютеры
- Станкостроение
- Системы безопасности
Наряду с SMPS, ниже обсуждается другая схема для регулируемого питания и резервного копирования.
Линейные блоки питания
Блок питания рабочего стола с резервным
Блок питания рабочего стола — это блок питания постоянного тока, который может обеспечивать различные регулируемые напряжения постоянного тока, которые используются в целях тестирования или поиска неисправностей. Разработана простая схема регулируемого источника питания с резервным аккумулятором, которая может использоваться как источник питания рабочего стола. Он выдает 12, 9 и 5 вольт регулируемого постоянного тока для питания прототипов во время тестирования или устранения неисправностей. Он также имеет резервную батарею, чтобы продолжить работу в случае сбоя питания.Индикация низкого заряда батареи также предусмотрена для подтверждения состояния батареи.
Он состоит из трех основных секций:
Блок выпрямителя и фильтра, который преобразует сигнал переменного тока в регулируемый сигнал постоянного тока с использованием комбинации трансформатора, диодов и конденсаторов.
Батарея, используемая в качестве альтернативы, которую можно перезаряжать во время основного источника питания и использовать в качестве источника питания в случае отсутствия основного источника питания.
Индикатор заряда аккумулятора, показывающий уровень заряда и разряда аккумулятора.
Трансформатор 14-0-14, 500 мА, выпрямительные диоды D1, D2 и сглаживающий конденсатор С1 образуют блок питания. При наличии сетевого питания D3 смещает в прямом направлении и подает на IC1 постоянный ток более 14 вольт, который затем выдает регулируемые 12 вольт, которые могут быть сняты с его выхода. В то же время IC2 выдает регулируемые 9 вольт, а IC3 регулируемые 5 вольт со своих выходов.
В качестве резервного используется аккумуляторная батарея 12 В 7,5 Ач. При наличии сетевого питания он заряжается через D3 и R1.R1 ограничивает ток для зарядки. Чтобы предотвратить перезарядку, если источник питания включен в течение длительного времени, а аккумулятор не используется, режим непрерывной зарядки безопасен. Зарядный ток составит порядка 100-150 мА. При пропадании сетевого питания происходит обратное смещение D3 и прямое смещение D4, и аккумулятор принимает нагрузку. Батарея ИБП — идеальный выбор.
Стабилитрон ZD и транзистор PNP T1 образуют индикатор разряда батареи. Такое расположение используется в инверторах для индикации низкого уровня заряда батареи.Когда напряжение батареи выше 11 вольт, стабилитрон проводит и поддерживает базу T1 на высоком уровне, так что он остается выключенным. Когда напряжение батареи падает ниже 11 вольт, стабилитрон выключается и T1 смещается в прямом направлении. (Стабилитрон работает только тогда, когда напряжение на нем выше 1 В или выше его номинального напряжения. Таким образом, здесь стабилитрон на 10 В работает, только если напряжение выше 11 В.) Затем загорается светодиод, указывая на необходимость зарядки аккумулятора. VR1 устанавливает правильную точку отключения стабилитрона. Полностью зарядите аккумулятор и измерьте напряжение на его клеммах.Если оно выше 12 вольт, установите стеклоочиститель предварительно установленного VR1 в среднее положение и слегка поверните его, пока светодиод не погаснет. Не доводите пресет до крайности. Батарея всегда должна иметь достаточное напряжение выше 12 вольт (полностью заряженная батарея показывает около 13,8 вольт), тогда только IC1 получает достаточное входное напряжение.
Самопереключающаяся электрическая схема источника питания
На этой принципиальной схеме дана схема регулируемого источника питания, которая, несмотря на то, что стабилизатор постоянного напряжения U1-LM7805 не только обеспечивает возможность переменного, но и автоматического отключения.Это достигается с помощью потенциометра, который подключен между общей клеммой IC регулятора и землей. На каждые 100 Ом приращения внутрисхемного значения сопротивления потенциометра RV1 выходное напряжение увеличивается на 1 вольт. Таким образом, выходная мощность варьируется от 3,7 В до 8,7 В (с учетом падения 1,3 В на диодах D7 и D8).
Если к его выходным клеммам не подключена нагрузка, то питание отключается. Это достигается с помощью транзисторов Q1 и Q2, диодов D7 и D8 и конденсатора C2.Когда к выходу подключена нагрузка, падения потенциала на диодах D7 и D8 (примерно 1,3 В) достаточно для того, чтобы транзисторы Q2 и Q1 проводили проводимость. В результате реле активируется и остается в этом состоянии, пока нагрузка остается подключенной. В то же время конденсатор C2 заряжается примерно до 7-8 вольт через транзистор Q2. Но когда нагрузка (лампа здесь последовательно с S2) отключается, транзистор Q2 отключается. Однако конденсатор C2 все еще заряжен и начинает разряжаться через базу транзистора Q1.Через некоторое время (которое в основном определяется значением C2) реле RL1 обесточивается, что отключает вход сети в первичную обмотку трансформатора TR1. Чтобы снова возобновить подачу питания, необходимо на мгновение нажать кнопку S1. Задержка выключения источника питания напрямую зависит от емкости конденсатора.
Был использован трансформатор с вторичным напряжением 12 В-0 В, 250 мА, тем не менее, он может быть изменен в соответствии с требованиями пользователя (максимум до 30 В и номинальный ток 1 ампер).Для потребления тока более 300 мА микросхема регулятора должна быть оснащена небольшим радиатором над слюдяным изолятором. Когда вторичное напряжение трансформатора превышает 12 В (среднеквадратичное значение), необходимо изменить размеры потенциометра RV1. Кроме того, следует заранее определить номинальное напряжение реле.
Источник переменного тока с использованием LM338
Источник постоянного тока часто требуется для питания электронных устройств. В то время как для некоторых требуется стабилизированный источник питания, во многих случаях выходное напряжение необходимо изменять.Источник переменного тока — это источник питания, в котором мы можем регулировать выходное напряжение в соответствии с требованиями. Переменный источник питания может использоваться во многих приложениях, таких как подача переменного напряжения на двигатели постоянного тока, подача переменного напряжения на высоковольтные преобразователи постоянного тока в постоянный для регулировки усиления и т. Д. Он в основном используется при тестировании электронных проектов.
Основным компонентом источника переменного тока является любой регулятор, выход которого можно регулировать с помощью любых средств, например, переменного резистора. ИС регулятора, такие как LM317, обеспечивают регулируемое напряжение от 1.От 25 до 30 В. Другой способ — использовать LM33 IC.
Здесь используется простая схема переменного источника питания с использованием LM33, который представляет собой высоковольтный стабилизатор напряжения.
LM 338 — это высоковольтный стабилизатор напряжения, который может подавать на нагрузку ток, превышающий 5 ампер. Выходное напряжение регулятора можно регулировать от 1,2 вольт до 30 вольт. Для установки выходного напряжения требуется всего два внешних резистора. LM 338 принадлежит к семейству LM 138, которое доступно в 3-х клеммной упаковке. Его можно использовать в таких приложениях, как регулируемый источник питания, регулятор постоянного тока, зарядные устройства и т. Д.Сильноточный регулируемый источник питания необходим для проверки цепей усилителя большой мощности во время поиска неисправностей или обслуживания. Это позволяет использовать источник питания с высокими переходными нагрузками и ускорять запуск в условиях полной нагрузки. Защита от перегрузки остается работоспособной даже в случае случайного отключения регулировочного штифта.
Описание схемы
Базовая схема состоит из следующих частей:
- A понижающий трансформатор, вызывающий падение переменного напряжения на 230 В.
- Выпрямительный модуль для исправления сигнала переменного тока.
- Сглаживающий электролитный конденсатор для фильтрации сигнала постоянного тока и удаления пульсаций переменного тока.
- LM338
- Переменный резистор
Работа схемы
Переменный источник питания с использованием регулятора положительного напряжения LM338 показан ниже. Питание поступает от понижающего трансформатора 0-30 В на 5 ампер. Модуль выпрямителя на 10 ампер выпрямляет низковольтный переменный ток в постоянный, который устраняет пульсации сглаживающим конденсатором C1.Конденсаторы C2 и C3 улучшают переходные характеристики. Выходное напряжение можно отрегулировать с помощью Pot VR1 до желаемого напряжения от 1,2 до 28 В. D1 защищает от C4, а D2 защищает от C3 в выключенном состоянии. Регулятору требуется радиатор.
Vout = 1,2 В (1+ VR1 / R1) + I AdjVR1.
Упрощенная последовательность источников питания | Analog Devices
Проблемы при проектировании нескольких источников питания возрастают с каждой дополнительной шиной питания. Разработчик должен учитывать динамическую среду скоординированной последовательности и синхронизации источников питания, генерирования сброса при включении питания, отслеживания отказов и надлежащего реагирования для защиты системы.Опытный дизайнер понимает, что гибкость является ключом к успешному преодолению приливов и отливов при переходе проекта от прототипа к производству. Идеальное решение сводит к минимуму количество изменений оборудования и программного обеспечения во время разработки.
Идеальный инструмент для проектирования с несколькими источниками питания — это одна ИС, которая находится в проекте от начала до конца и не требует изменения проводки на протяжении всего жизненного цикла продукта. Он автономно контролирует и упорядочивает несколько шин питания, взаимодействуя с другими ИС, чтобы беспрепятственно контролировать многие регуляторы мощности в системе, а также обеспечивает управление сбоями и сбросом.Разработчик может использовать мощное программное обеспечение для ПК для настройки, визуализации и отладки поведения системы в режиме реального времени при подключении к шине I 2 C.
LTC2937 отвечает этим требованиям. Это 6-канальный секвенсор напряжения и высокоточный супервизор с EEPROM. Каждый из шести каналов имеет два выделенных компаратора для точного отслеживания условий повышенного и пониженного напряжения с точностью до ± 0,75%. Пороги компаратора индивидуально программируются в диапазоне от 0,2 В до 6 В с разрешением 8 бит.Компараторы быстрые, с уменьшенной задержкой распространения 10 мкс. Каждый канал секвенсора имеет разрешающий выход, который может управлять внешним регулятором или затвором проходного полевого транзистора. Все аспекты напряжения супервизора и синхронизации секвенсора настраиваются индивидуально, включая порядок следования вверх и вниз, параметры синхронизации последовательности и реакцию на сбой. Встроенная EEPROM делает деталь полностью автономной и способной включаться в правильном состоянии для управления системой. Кроме того, несколько LTC2937 могут взаимодействовать для автономного управления до 300 источников питания в системе, используя однопроводную коммуникационную шину.
Рис. 1. LTC2937, упорядочивающий шесть источников питания.
LTC2933 | LTC2936 | LTC2937 | |
Секвенсор | № | № | Есть |
Выходы компаратора | № | Есть | № |
Пороговый диапазон | 1В до 13.9 В (1 ×) от 0,2 В до 5,8 В (5 ×) | от 0,2 В до 5,8 В (6 ×) | от 0,2 В до 6 В (6 ×) |
Точность порога | ± 1% | ± 1% | ± 0,75% |
Блок питания | от 3,4 В до 13,9 В | от 3,13 до 13,9 В | от 2,9 В до 16,5 В |
Упаковка (мм × мм) | 5 × 4 ДФН-16, ССОП-16 | 4 × 5 QFN-24, SSOP-24 | 5 × 6 QFN-28 |
Неисправности источника питания контролируются, видимы и управляются с помощью автономного поведения реакции на сбой LTC2937 и с помощью регистров отладки.LTC2937 автоматически обнаруживает неисправные состояния и может скоординированно выключить систему. Он может оставаться выключенным или пытаться изменить последовательность подачи питания после сбоя. В системе с микроконтроллером и шиной I 2 C / SMBus LTC2937 предоставляет подробную информацию о типе и причине неисправности, а также о состоянии системы. Микроконтроллер может принимать решения о том, как реагировать, или позволяет LTC2937 отвечать самостоятельно.
Три этапа управления источником питания
Цикл источника питания состоит из трех рабочих этапов: повышение последовательности, мониторинг и снижение последовательности.На рисунке 2 показаны эти фазы для типичной системы. Во время повышения последовательности каждый блок питания должен дождаться своей очереди, а затем подать питание до нужного напряжения в течение определенного периода времени. Во время фазы контроля каждый источник питания должен оставаться в установленных пределах повышенного и пониженного напряжения. Во время понижающей последовательности каждый источник питания должен дождаться своей очереди (часто в порядке, отличном от повышающего), а затем отключиться в течение заданного времени. В любой момент что-то может пойти не так, что приведет к сбою в системе.Задача проектирования — создать систему, в которой все эти шаги и все переменные легко настраиваются, но тщательно контролируются.
Рис. 2. Формы сигналов последовательности источника питания.
Последовательность действий начинается, когда вход ON переходит в активное состояние. LTC2937 продвигается по восходящей последовательности, включая каждое питание по очереди и отслеживая, чтобы напряжение питания поднималось выше настроенного порога до заданного времени. Любой источник питания, который не соответствует назначенному времени, вызывает ошибку последовательности.
Уникальным преимуществом LTC2937 является его тактовая частота последовательности. Каждому каналу назначается позиция в последовательности (1–1023), и он получает сигнал включения, когда LTC2937 считает до заданного числа в последовательности. Канал с позицией последовательности 1 всегда включается перед каналом с позицией последовательности 2. Если спецификация системы изменяется, требуя, чтобы эти два канала упорядочивали в другом порядке, тогда позиции последовательности могут быть поменяны местами, включая второй канал в позиции последовательности 1. , а первый в позиции 2.Несколько LTC2937 могут совместно использовать информацию о позиции последовательности, так что позиция последовательности N происходит одновременно для всех чипов LTC2937, а каналы, управляемые разными чипами, могут участвовать в одной и той же последовательности (см. Рисунок 3).
Рисунок 3. Типичные соединения между несколькими LTC2937.
Фаза контроля начинается, когда последний канал последовательно переходит в пороговое значение пониженного напряжения. Во время мониторинга LTC2937 использует свои высокоточные компараторы для непрерывного контроля напряжения на каждом входе в соответствии с пороговыми значениями повышенного и пониженного напряжения.Он игнорирует незначительные сбои на входах, срабатывая только в том случае, если напряжение превышает пороговое значение с достаточной величиной в течение достаточного времени. Когда LTC2937 обнаруживает сбой, он немедленно реагирует в соответствии с настроенным ответом на сбой супервизора. В типичном сценарии он отключает все источники питания одновременно, запрашивая RESETB для системы, а затем пытается изменить последовательность в соответствии с нормальной последовательностью запуска. Это препятствует тому, чтобы блоки питания запитывали части системы, в то время как другие отключены, или выполняли нескоординированное восстановление после неисправности.Несколько LTC2937 в системе могут совместно использовать состояние отказа и реагировать на отказы друг друга, поддерживая полную согласованность между взаимодействующими каналами во время восстановления после сбоя. LTC2937 предлагает множество программируемых режимов реакции на сбой для удовлетворения различных конфигураций системы.
Фаза понижения последовательности начинается, когда вход ON переходит в низкий уровень. Часы позиции последовательности снова начинают свой отсчет, чтобы отключить источники питания, но все параметры снижения последовательности не зависят от параметров повышения последовательности.Каналы могут быть упорядочены в любом порядке, а несколько микросхем LTC2937 координируют последовательность всех контролируемых источников. Во время понижающей последовательности каждый источник питания должен упасть ниже своего порогового значения разряда в течение заданного времени или вызвать ошибку последовательности. LTC2937 может отключать питание с помощью дополнительного источника тока для активной разрядки медленно движущихся источников.
Часы позиции последовательности обеспечивают выполнение последовательности на основе событий, при этом каждое событие ожидает предшествующих событий, прежде чем оно сможет продолжиться.LTC2937 также обеспечивает упорядочение по времени и может участвовать в системах, которые позволяют использовать рельсы питания в заранее определенные моменты времени. Реконфигурируемые регистры работают как в режиме времени, так и в режиме событий.
LTpowerPlay упрощает работу
Обширный набор регистров LTC2937 мощный, но освоить его просто. Графический интерфейс пользователя (GUI) LTpowerPlay ® отображает всю информацию о состоянии и регистре отладки в одном удобном интерфейсе. Графический интерфейс пользователя взаимодействует с любой ИС управления системой питания Linear Technology (включая LTC2937) на шине I 2 C / SMBus.Настроить один или несколько LTC2937 так же просто, как несколько щелчков мыши.
Рис. 4. Графический интерфейс пользователя (GUI) LTpowerPlay отображает всю информацию о состоянии и регистре отладки в одном удобном интерфейсе. Настроить один или несколько LTC2937 так же просто, как несколько щелчков мыши. LTpowerPlay сохраняет настройки на ПК и может записывать их в EEPROM LTC2937.
LTpowerPlay сохраняет настройки на ПК и может записывать их в EEPROM LTC2937. В графическом интерфейсе также отображается вся отладочная информация о сбоях в работе системы.LTpowerPlay может показать, когда какой-либо источник питания находится под повышенным или пониженным напряжением, или если источник питания отказал во времени последовательности. После сбоя графический интерфейс позволяет полностью контролировать перезапуск системы. На каждом этапе проектирования — при запуске, настройке, отладке и эксплуатации — LTpowerPlay является незаменимым окном для оценки производительности системы.
Заключение
LTC2937 упрощает последовательность действий и контроль энергосистемы. Для полной системы требуется очень мало места на плате. Он гибкий и реконфигурируемый, но автономный благодаря своей памяти EEPROM.Он может работать самостоятельно или совместно с другими микросхемами в большой системе, беспрепятственно управляя работой до 300 источников питания.
Лучшая цена, сила простого — Великие сделки, сила простого, от глобальной силы простых продавцов
Отличные новости !!! Вы находитесь в нужном месте для power of simple. К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress.У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.
Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.
AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы найдете новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку эта верхняя сила простоты в кратчайшие сроки станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что у вас есть все на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.
Если вы все еще не уверены в силе простого и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов. Мы поможем вам решить, стоит ли доплачивать за высококлассную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.А если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.
А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести power of simple по самой выгодной цене.
У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.
Программное обеспечение ViewPower Management | |||||||
ViewPowerHTML 1.04-20271 — это расширенное программное обеспечение для управления ИБП.Он позволяет удаленно контролировать и управлять от одного до нескольких ИБП в сетевой среде, будь то LAN или INTERNET. Он может не только предотвратить потерю данных из-за отключения электроэнергии и безопасного отключения систем, но также сохранить программные данные и запланированное отключение ИБП. | |||||||
Обзор функций: • Позволяет контролировать и контролировать несколько ИБП через LAN и ИНТЕРНЕТ • Поддерживает автоматическое и ручное онлайн-обновление • Удобный график анализа мощности: статистика событий, экспорт диаграммы исторических данных • В реальном времени динамические графики данных ИБП (напряжение, частота, уровень нагрузки, уровень заряда батареи) • Безопасное отключение ОС и защита от потери данных при сбое питания • Предупреждающие уведомления посредством звукового сигнала, широковещательной рассылки, мобильного мессенджера и электронной почты • ИБП по расписанию включение / выключение, проверка батареи, программируемое управление розетками и управление звуковой сигнализацией • Защита паролем и управление удаленным доступом • Поддерживает несколько языков: английский, китайский, французский, немецкий, испанский, русский, португальский, украинский, итальянский, польский, Чешская, Турецкая | |||||||
Загрузите программное обеспечение в соответствии с вашей запрошенной операционной системой в вашей компьютерной системе.Поддерживаемые версии браузеров включают браузер IE (не поддерживает версии старше IE10), Google, Chrome, Firefox ,. Все браузеры должны поддерживать html5. | |||||||
| |||||||
Фуко: власть везде | Понимание силы социальных изменений | powercube.нетто
Мишель Фуко, французский постмодернист, оказал огромное влияние на формирование понимания власти, уведя его от анализа акторов, использующих власть как инструмент принуждения, и даже от скрытых структур, в которых действуют эти акторы, к идее что «власть повсюду», распространена и воплощена в дискурсе, знании и «режимах истины» (Foucault 1991; Rabinow 1991). Власть для Фуко — вот что делает нас такими, какие мы есть, действуя на совершенно ином уровне, чем другие теории:
‘Его работа знаменует собой радикальный отход от предыдущих способов зачатия власти и не может быть легко интегрирована с предыдущими идеями, поскольку власть является скорее диффузной, чем концентрированной, воплощенной и разыгрываемой, а не одержимой, дискурсивной, а не чисто принудительной, и представляет собой агентов, а не является развернуты ими »(Гавента 2003: 1)
Фуко оспаривает идею о том, что власть принадлежит людям или группам посредством «эпизодических» или «суверенных» актов господства или принуждения, вместо этого рассматривая ее как рассредоточенную и всеобъемлющую.«Власть повсюду» и «исходит отовсюду», поэтому в этом смысле не является ни агентством, ни структурой (Foucault 1998: 63). Напротив, это своего рода «метасила» или «режим истины», который пронизывает общество и который постоянно меняется и обсуждается. Фуко использует термин «сила / знание» для обозначения того, что власть формируется через общепринятые формы знания, научного понимания и «истины»:
«Истина — вещь от мира сего: она создается только в силу множества форм принуждения.И это вызывает регулярные эффекты силы. У каждого общества есть свой режим истины, своя «общая политика» истины: то есть типы дискурса, которые оно принимает и заставляет функционировать как истинные; механизмы и примеры, которые позволяют различать истинные и ложные утверждения, средства, с помощью которых каждое наказывается; методы и процедуры, которым придается значение для обретения истины; статус тех, кому поручено говорить то, что считается правдой »(Foucault, in Rabinow, 1991).
Эти «общая политика» и «режимы истины» являются результатом научного дискурса и институтов и постоянно укрепляются (и переопределяются) через систему образования, средства массовой информации и поток политических и экономических идеологий.В этом смысле «битва за истину» — это не какая-то абсолютная истина, которую можно открыть и принять, а битва за «правила, в соответствии с которыми истинное и ложное отделяются, а конкретные эффекты силы связаны с истинным». «… Битва за« статус истины и экономическую и политическую роль, которую она играет »(Foucault, in Rabinow, 1991). Это вдохновляет Хейворда на то, что он сосредоточил внимание на силе как на границах, которые позволяют и ограничивают возможности для действий, а также на относительной способности людей знать и формировать эти границы (Hayward 1998).
Фуко — один из немногих авторов о власти, которые признают, что власть — это не только негативная, принудительная или репрессивная вещь, которая заставляет нас действовать против наших желаний, но также может быть необходимой, производительной и позитивной силой в обществе (Gaventa 2003 : 2):
«Мы должны прекратить раз и навсегда описывать эффекты власти в отрицательных терминах: она« исключает »,« подавляет »,« цензурирует »,« абстрагирует »,« маскирует »,« скрывает ». Фактически сила производит; он производит реальность; он производит области объектов и ритуалов истины.Человек и знания, которые могут быть о нем получены, принадлежат этой постановке »(Foucault 1991: 194).
Власть также является важным источником социальной дисциплины и соответствия. Отводя внимание от «суверенного» и «эпизодического» использования власти, традиционно сосредоточенного в феодальных государствах с целью принуждения своих подданных, Фуко указал на новый вид «дисциплинарной власти», который можно было наблюдать в административных системах и социальных службах. были созданы в Европе 18 века, такие как тюрьмы, школы и психиатрические больницы.Их системы наблюдения и оценки больше не требовали силы или насилия, поскольку люди научились дисциплинировать себя и вести себя ожидаемым образом.
Фуко был очарован механизмами тюремного надзора, школьной дисциплиной, системами управления и контроля над населением, а также продвижением норм телесного поведения, включая секс. Он изучал психологию, медицину и криминологию и их роль как совокупности знаний, определяющих нормы поведения и отклонения.Физические тела подчиняются и заставляют вести себя определенным образом, как микрокосм социального контроля над более широкими слоями населения, посредством того, что он назвал «биовластью». Дисциплинарность и биовласть создают «дискурсивную практику» или совокупность знаний и поведения, которые определяют, что является нормальным, приемлемым, отклоняющимся и т. Д. — но это дискурсивная практика, которая, тем не менее, находится в постоянном движении (Foucault 1991).
Ключевым моментом подхода Фуко к власти является то, что он выходит за рамки политики и рассматривает власть как повседневное, социализированное и воплощенное явление.Вот почему борьба за власть, ориентированная на государство, включая революции, не всегда приводит к изменению общественного строя. Для некоторых концепция власти Фуко настолько неуловима и оторвана от агентуры или структуры, что кажется мало возможностей для практических действий. Но он оказал огромное влияние, указав на способы, которыми нормы могут быть настолько встроены, что выходят за пределы нашего восприятия, заставляя нас дисциплинировать себя без какого-либо умышленного принуждения со стороны других.
Вопреки многим интерпретациям, Фуко верил в возможности действия и сопротивления.Он был активным общественным и политическим комментатором, видевшим роль «органического интеллектуала». Его идеи о действии, как и у Хейворда, касались нашей способности распознавать и подвергать сомнению общественные нормы и ограничения. Бросить вызов власти — значит не искать некой « абсолютной истины » (которая в любом случае является силой, производимой обществом), но « отделить силу истины от форм гегемонии, социальной, экономической и культурной, в которых она действует в настоящее время »(Foucault, in Rabinow 1991: 75).Дискурс может быть местом как силы, так и сопротивления, с возможностью «уклоняться, ниспровергать или оспаривать стратегии власти» (Gaventa 2003: 3):
«Дискурсы не раз и навсегда подчинены власти и не восстают против нее… Мы должны делать поправку на сложный и нестабильный процесс, в котором дискурс может быть одновременно инструментом и эффектом власти, но также и помехой, камнем преткновения. сопротивления и отправная точка для противоположной стратегии. Дискурс передает и производит силу; он усиливает его, но также подрывает и обнажает его, делает его хрупким и дает возможность помешать »(Foucault 1998: 100-1).
Powercube нелегко совместить с пониманием власти Фуко, но есть простор для критического анализа и стратегических действий на уровне оспаривания или формирования дискурса — например, принимая психологическое / культурное значение «невидимой силы» и «гегемонии» как объектив, с помощью которого можно смотреть на все. Подход Фуко широко использовался для критики мышления и парадигм развития, а также того, каким образом дискурсы развития наполняются властью (Gaventa 2003, цитируя работы Эскобара, Кастельса и других критиков «пост-развития»).
На уровне практики активисты и практики используют методы анализа дискурса, чтобы определить нормативный вспомогательный язык, который требует более тщательного изучения, и сформировать альтернативные образы. Пример очень практичного инструмента для этого включен в коллекцию IIED Power Tools, названную «Writing Tool», и на семинарах НПО мы использовали простой метод анализа дискурса для изучения формулировок миссии и целей программы.
Спасибо Джонатану Гавенте (2003) за его вклад в этот раздел.
Ссылки для дальнейшего чтения
Фуко, М. (1991). Дисциплина и наказание: рождение тюрьмы. Лондон, Пингвин.
Фуко, Мишель (1998) История сексуальности: воля к знаниям , Лондон, Penguin.
Гавента, Джон (2003) Power after Lukes: обзор литературы , Брайтон: Институт исследований развития.
Hayward, Clarissa Rile (1998) «De-Facing Power», Polity 31 (1).
Рабинов, Пол (редактор) (1991) Читатель Фулко: Введение в мысль Фулко, Лондон, Penguin.
.