Симисторный регулятор мощности схема: принцип работы, варианты схем, как сделать своими руками

Содержание

4 схемы на Регулятор напряжения своими руками 0-220в

8 основных схем регуляторов своими руками. Топ-6 марок регуляторов из Китая. 2 схемы. 4 Самых задаваемых вопроса про регуляторы напряжения.+ ТЕСТ для самоконтроля

Регулятор напряжения – это специализированный электротехнический прибор, предназначенный для плавного изменения или настройки напряжения, питающего электрическое устройство.

Регулятор напряжения

Важно помнить! Приборы этого типа предназначены для изменения и настройки питающего напряжения, а не тока. Ток регулируется полезной нагрузкой!

ТЕСТ:

4 вопроса по теме регуляторов напряжения

  1. Для чего нужен регулятор:

а) Изменение напряжения на выходе из прибора.

б) Разрывание цепи электрического тока

  1. От чего зависит мощность регулятора:

а) От входного источника тока и от исполнительного органа

б) От размеров потребителя

  1. Основные детали прибора, собираемые своими руками:

а) Стабилитрон и диод

б) Симистор и тиристор

  1. Для чего нужны регуляторы 0-5 вольт:

а) Питать стабилизированным напряжением микросхемы

б) Ограничивать токопотребление электрических ламп

Ответы.

а,а,б,а.

2 Самые распространенные схемы РН 0-220 вольт своими руками

Схема №1.

Самый простой и удобный в эксплуатации регулятор напряжения — это регулятор на тиристорах, включенных встречно. Это создаст выходной сигнал синусоидального вида требуемой величины.

СНиП 3.05.06-85

Входное напряжение величиной до 220в, через предохранитель поступает на нагрузку, а по второму проводнику, через кнопку включения синусоидальная полуволна попадает на катод и анод тиристоров VS1 и VS2. А через переменный резистор R2 производится регулировка выходного сигнала. Два диода VD1 и VD2, оставляют после себя только положительную полуволну, поступающую на управляющий электрод одного из тиристоров, что приводит к его открытию.

Важно! Чем выше токовый сигнал на ключе тиристора, тем сильнее он откроется, то есть тем больший ток сможет пропустить через себя.

Для контроля входного питания предусмотрена индикаторная лампочка, а для настройки выходного – вольтметр.

Схема №2.

Отличительная особенность этой схемы — замена двух тиристоров одним симистором. Это упрощает схему, делает ее компактней и проще в изготовлении.

СНиП 3.05.06-85

В схеме, также присутствует предохранитель и кнопка включения, и регулировочный резистор R3, а управляет он базой симистора, это один из немногих полупроводниковых приборов с возможностью работать с переменным током. Ток, проходя через резистор R3, приобретает определенное значение, оно и будет управлять степенью открытия симистора. После этого оно выпрямляется на диодном мосту VD1 и через ограничивающий резистор попадает на ключевой электрод симистора VS2. Остальные элементы схемы, такие как конденсаторы С1,С2,С3 и С4 служат для гашения пульсаций входного сигнала и его фильтрации от посторонних шумов и частот нерегламентированной частоты.

Как избежать 3 частых ошибок при работе с симистором.

  1. Буква, после кодового обозначения симистора говорит о его предельном рабочем напряжении: А – 100В, Б – 200В, В – 300В, Г – 400В.
    Поэтому не стоит брать прибор с буквой А и Б для регулировки 0-220 вольт — такой симистор выйдет из строя.
  2. Симистор как и любой другой полупроводниковый прибор сильно нагревается при работе, следует рассмотреть вариант установки радиатора или активной системы охлаждения.
  3. При использовании симистора в цепях нагрузок с большим потреблением тока, необходимо четко подбирать прибор под заявленную цель. Например, люстра, в которой установлено 5 лампочек по 100 ватт каждая будет потреблять суммарно ток величиной 2 ампера. Выбирая по каталогу необходимо смотреть на максимальный рабочий ток прибора. Так симистор МАС97А6 рассчитан всего на 0,4 ампера и не выдержит такой нагрузки, а МАС228А8 способен пропустить до 8 А и подойдет для этой нагрузки.

3 Основных момента при изготовлении мощного РН и тока своими руками

Прибор управляет нагрузкой до 3000 ватт. Построен он на использовании мощного симистора, а затвором или ключом его управляет

динистор.

Динистор – это тоже, что и симистор, только без управляющего вывода. Если симистор открывается и начинает пропускать через себя ток, когда на его базе возникает управляющее напряжение и остается открытым пока оно не пропадет, то динистор откроется, если между его анодом и катодом появится разность потенциалов выше барьера открытия. Он будет оставаться незапертым, пока между электродами не упадет ток ниже уровня запирания.

СНиП 3.05.06-85

Как только на управляющий электрод попадет положительный потенциал, он откроется и пропустит переменный ток, и чем сильнее будет этот сигнал, тем выше будет напряжение между его выводами, а значит и на нагрузке. Что бы регулировать степень открытия используется цепь развязки, состоящая из динистора VS1 и резисторов R3 и R4. Эта цепь устанавливает предельный ток на ключе симистора, а конденсаторы сглаживают пульсации на входном сигнале.

2 основных принципа при изготовлении РН 0-5 вольт

  1. Для преобразования входного высокого потенциала в низкий постоянный используют специальные микросхемы серии LM.
  2. Питание микросхем производится только постоянным током.

Рассмотрим эти принципы подробнее и разберем типовую схему регулятора.

Микросхемы серии LM предназначены для понижения высокого постоянного напряжения до низких значений. Для этого в корпусе прибора имеется 3 вывода:

  • Первый вывод – входной сигнал.
  • Второй вывод – выходной сигнал.
  • Третий вывод – управляющий электрод.

Принцип работы прибора очень прост – входное высокое напряжение положительной величины, поступает на входной выход и затем преобразуется внутри микросхемы. Степень трансформации будет зависеть от силы и величины сигнала на управляющей «ножке». В соответствии с задающим импульсом на выходе будет создаваться положительное напряжение от 0 вольт до предельного для данной серии.

СНиП 3.05.06-85

Входное напряжение, величиной не выше 28 вольт и обязательно выпрямленное подается на схему. Взять его можно с вторичной обмотки силового трансформатора или с регулятора, работающего с высоким напряжением.

После этого положительный потенциал поступает на вывод микросхемы 3. Конденсатор С1 сглаживает пульсацию входного сигнала. Переменный резистор R1 величиной 5000 ом задает выходной сигнал. Чем выше ток, который он пропускает через себя, тем выше больше открывается микросхема. Выходное напряжение 0-5 вольт снимается с выхода 2 и через сглаживающий конденсатор С2 попадает на нагрузку. Чем выше емкость конденсатор, тем ровнее оно на выходе.

Регулятор напряжения 0 — 220в

Топ 4 стабилизирующие микросхемы 0-5 вольт:

  1. КР1157 – отечественная микросхема, с пределом по входному сигналу  до 25 вольт и током нагрузки не выше 0.1 ампер.
  2. 142ЕН5А – микросхема с максимальным выходным током 3 ампера, на вход подается не выше 15 вольт.
  3. TS7805CZ – прибор с допустимыми токами до 1.5 ампер и повышенным входным напряжением до 40 вольт.
  4. L4960
    – импульсная микросхема с максимальным током нагрузки до 2.5 А. Входной вольтаж не должен превышать 40 вольт.

РН на 2 транзисторах

Данный вид применяется в схемах особо мощных регуляторов. В этом случае ток на нагрузку также передается через симистор, но управление ключевым выводом происходит через каскад транзисторов. Это реализуется так: переменным резистором регулируется ток, который поступает на базу первого маломощного транзистора, а тот через коллектор-эмиторный переход управляет базой второго мощного транзистора и уже он открывает и закрывает симистор. Это реализует принцип очень плавного управления огромными токами на нагрузке.

СНиП 3.05.06-85

Ответы на 4 самых частых вопроса по регуляторам:

  1. Какое допустимое отклонение выходного напряжения? Для заводских приборов крупных фирм, отклонение не будет превышать +-5%
  2. От чего зависит мощность регулятора? Выходная мощность напрямую зависит от источника питания и от симистора, который коммутирует цепь.
  3. Для чего нужны регуляторы 0-5 вольт? Эти приборы чаще всего используют для питания микросхем и различных монтажных плат.
  4. Зачем нужен бытовой регулятор 0-220 вольт? Они применяются для плавного включения и выключения бытовых электроприборов.

4 Схемы РН своими руками и схема подключения

Коротко рассмотрим каждую из схем, особенности, преимущества.

Схема 1.

Очень простая схема для подключения и плавной регулировки паяльника. Используется, чтобы предотвратить разгорание и перегрев жала паяльника. В схеме используется мощный симистор, которым управляет цепочка тиристор-переменный резистор.

СНиП 3.05.06-85

Схема 2.

Схема основанная на использовании микросхемы фазового регулирования типа 1182ПМ1. Она управляет степенью открытия симистора, который управляет нагрузкой. Применяются для плавного регулирования степени светимости лампочек накаливания.

СНиП 3.05.06-85

Схема 3.

Простейшая схема регулирования накалом жала паяльника. Выполнена по очень компактной схеме с использованием легкодоступных компонентов. Управляет нагрузкой один тиристор, степень включения которого регулирует переменный резистор. Также присутствует диод, для защиты от обратного напряжения.

СНиП 3.05.06-85

Схема 4.

Схема, предназначенная для управления уровнем освещения в комнате. Может регулировать степень накала лампочки. Выполнена на основе одного тиристора, который управляется диммером. Поворотом ручки резистора, изменяется воздействие на ключевой вывод тиристора, что изменяет его пропускную способность по электрическому току.

СНиП 3.05.06-85

В наше время товары из Китая стали довольно популярной темой, от общей тенденции не отстают и китайские регуляторы напряжения. Рассмотрим самые популярные китайские модели и сравним их основные характеристики.

Название Мощность Напряжение стабилизации Цена Вес Стоимость одного ватта
Module ME 4000 Вт 0-220 В 6. 68$ 167 г 0.167$
SCR Регулятор 10 000 Вт 0-220 В 12.42$ 254 г 0.124$
SCR Регулятор II 5 000 Вт 0-220 В 9.76$ 187 г 0.195$
WayGat 4 4 000 Вт 0-220 В 4.68$ 122 г 0.097$
Cnikesin 6 000 Вт 0-220 В 11.07$ 155 г 0.185$
Great Wall 2 000 Вт 0-220 В 1.59$ 87 г 0.080$

Существует возможность выбрать любой регулятор именно под свои требования и необходимости. В среднем один ватт полезной мощности стоит менее 20 центов, и это очень выгодная цена. Но все же, стоит обращать внимание на качество деталей и сборки, для товаров из Китая она по-прежнему остается очень низким.

Подборка тематических выдержек из статей

СИМИСТОРНЫЙ РЕГУЛЯТОР МОЩНОСТИ

СИМИСТОРНЫЙ РЕГУЛЯТОР МОЩНОСТИ

     Ставшая уже классической схема симисторного регулятора мощности на 220 В может использоваться для таких целей: 

     Первое - продление срока службы ламп накаливания.

Хоть повсеместно идёт кампания по замене их энергосберегающими замечу, что стоят они дорого, светят неприятно и сгорают ещё быстрей, чем лампы накаливания (по собственному опыту). Да, и ещё - помню раньше говорили, что свет люминесцентных ламп вредный для глаз, а сейчас что, стал полезным?

     Установив в разрыв питания лампы этот девайс и настроив его на 70-80% мощности, а чтоб не упала яркость поставьте лампу мощней, например 150 - 200 ватт, заменим регулирующий резистор постоянным и в итоге с помощью симисторного регулятора мощности продлеваем срок службы ламп в несколько раз.

      Далее... Вам принесли на ремонт музыкальный центр или ещё что-нибудь, где сгорел трансформатор. Выкинем поставим другой? А если там была куча обмоток с разными напряжениями, где возьмёте похожий? Практически все импортные и отечественные трансформаторы имеют отвод на 120В от сетевой обмотки, то есть она состоит из двух половинок, и обе сразу никогда не сгорают! Значит подключаем оставшуюся "живую" к сети через этот симисторный регулятор мощности, предварительно выставив на нём половину напряжения. Транс получил вторую жизнь.

     Следующее, привезли из за границы утюг, тостер или ещё чего-нибудь электрическое - а оно на 110 В. Что делать? Вы уже догадались, подключаем через симисторный регулятор мощности выставленный на половину напряжения. Не забудьте заменить после настройки переменник на постоянный, чтоб случайно не покрутить и не сжечь подключенный прибор.

    У меня это устройство давно работает в классическом варианте, как симисторный регулятор мощности.

    В заключении хочу сказать, что при нагрузке до 250 Ватт, симистор на радиатор можно не ставить. Если у вас есть ещё предложения об использовании такого регулятора - пишете в ФОРУМ

Симисторный регулятор мощности сделать самому своими руками

В статье мы расскажем о том, как изготовить симисторный регулятор мощности своими руками. Что такое симистор? Это прибор, построенный на кристалле полупроводника. У него аж 5 p-n-переходов, ток может проходить как в прямом, так и в обратном направлении. Но эти элементы широкое распространение в современной промышленной аппаратуре не получили, так как у них высокая чувствительность к помехам электромагнитной природы.

Также они не могут работать при высокой частоте тока, выделяют большое количество тепла, если производят коммутацию больших нагрузок. Поэтому в промышленной аппаратуре используют IGBT-транзисторы и тиристоры. Но симисторы тоже не стоит упускать из виду – они дешевые, у них маленький размер, а самое главное – высокий ресурс. Поэтому они могут использоваться там, где перечисленные выше недостатки не играют большой роли.

Как работает симистор?

Встретить сегодня симисторный регулятор мощности можно в любой бытовой технике – в болгарках, шуруповертах, стиральных машинках и пылесосах. Другими словами, везде, где есть необходимость в плавной регулировке частоты вращения двигателя.

Регулятор работает как электронный ключ – он закрывается и открывается с определенной частотой, которая задается схемой управления. Когда прибор отпирается, полуволна напряжения проходит через него. Следовательно, к нагрузке поступает небольшая часть минимальной мощности.

Можно ли сделать самому?

Многие радиолюбители изготавливают своими руками симисторные регуляторы мощности для различных целей. С его помощью можно контролировать нагрев жала паяльника. Но, к сожалению, на рынке готовые устройства встретить можно, но довольно редко.

У них низкая стоимость, но часто приборы не отвечают требованиям, которые предъявляются потребителями. Именно поэтому намного проще, оказывается, не купить готовый регулятор, а сделать его самостоятельно. В этом случае вы сможете учесть все нюансы использования прибора.

Схема регулятора

Давайте рассмотрим простой симисторный регулятор мощности, который можно использовать с любой нагрузкой. Управление фазово-импульсное, все компоненты традиционные для таких конструкций. Нужно применять такие элементы:

  1. Непосредственно симистор, рассчитанный на напряжение 400 В и ток 10 А.
  2. Динистор с порогом открывания 32 В.
  3. Для регулировки мощности используется переменный резистор.

Ток, который протекает через переменный резистор и сопротивление, заряжает конденсатор с каждой полуволной. Как только конденсатор накопит заряд и напряжение между его пластинами будет 32 В, откроется динистор. При этом конденсатор разряжается через него и сопротивление на управляющий вход симистора. Последний при этом открывается, чтобы ток прошел к нагрузке.

Чтобы изменить длительность импульсов, нужно подобрать переменный резистор и пороговое напряжение динистора (но это постоянная величина). Поэтому придется «играть» с сопротивлением переменного резистора. В нагрузке мощность оказывается прямо пропорциональна сопротивлению переменного резистора. Диоды и постоянный резистор использовать не обязательно, цепочка предназначена для того, чтобы обеспечить точность и плавность регулировки мощности.

Как работает устройство

Ток, который протекает через динистор, ограничивается постоянным резистором. Именно с его помощью происходит корректировка длины импульса. С помощью предохранителя происходит защита цепи от КЗ. Нужно отметить тот факт, что динистор в каждой полуволне открывается на один и тот же угол.

Поэтому выпрямление протекающего тока не происходит, можно подключить даже индуктивную нагрузку к выходу. Поэтому использоваться может симисторный регулятор мощности и для трансформатора. Для того чтобы подобрать симисторы, нужно учесть, что для нагрузки в 200 Вт необходимо, чтобы ток был равен 1 А.

В схеме используются такие элементы:

  1. Динистор типа DB3.
  2. Симисторы типа ВТ136-600, ТС106-10-4 и аналогичные с номиналом по току до 12 А.
  3. Полупроводниковые диоды германиевые – 1N4007.
  4. Электролитический конденсатор на напряжение более 250 В, емкость 0,47 мкФ.
  5. Переменный резистор 100 кОм, постоянные – от 270 Ом до 1,6 кОм (подбираются опытным путем).

Особенности схемы регулятора

Такая схема является самой распространенной, но можно встретить и небольшие ее вариации. Например, иногда вместо динистора ставят диодный мостик. В некоторых схемах встречается цепочка из емкости и сопротивления для подавления помех. Существуют и более современные конструкции, в которых применяется схема управления на микроконтроллерах. При использовании такой схемы вы получаете точную регулировку тока и напряжения в нагрузке, но реализовать ее сложнее.

Подготовительные работы

Для того чтобы собрать симисторный регулятор мощности для электродвигателя, вам достаточно придерживаться такой последовательности:

  1. Сначала нужно определить характеристики прибора, который будет подключаться к регулятору. К характеристикам можно отнести: число фаз (либо 3, либо 1), необходимость в точной корректировке мощности, напряжение и ток.
  2. Теперь нужно выбрать конкретный тип устройства – цифровой или аналоговый. После этого можно осуществить выбор компонентов по мощности нагрузки. В принципе, для моделирования можно использовать специально программное обеспечение.
  3. Рассчитайте тепловыделение. Для этого умножьте два параметра – номинальный ток (в Амперах) и падение напряжения на симисторе (в Вольтах). Все эти данные можно найти среди характеристик элемента. В итоге вы получите мощность рассеяния, выраженную в Ваттах. Исходя из этого значения, нужно выбрать радиатор и кулер (при необходимости).
  4. Закупите все необходимые элементы или подготовьте их, если они у вас имеются.

Теперь можно приступить непосредственно к сборке устройства.

Сборка регулятора

Прежде чем собрать по схеме симисторный регулятор мощности, нужно выполнить ряд действий:

  1. Осуществите разводку дорожек на плате и подготовьте площадки, на которых нужно установить элементы. Заранее предусмотрите места для монтажа симистора и радиатора.
  2. Установите все элементы на плате и припаяйте их. В том случае, если у вас нет возможности сделать печатную плату, допускается использование навесного монтажа. Провода, которыми соединяются все элементы, должны быть как можно короче.
  3. Обратите внимание на то, соблюдена ли полярность при подключении симистора и диодов. Если отсутствует маркировка, прозвоните элементы мультиметром.
  4. Проверьте схему, используя мультиметр в режиме измерения сопротивления.
  5. Закрепите на радиаторе симистор, желательно использовать термопасту для лучшего контакта поверхностей.
  6. Всю схему можно установить в пластиковом корпусе.
  7. Установите в крайнее левое положение ручку переменного резистора и включите прибор.
  8. Измерьте значение напряжения на выходе устройства. Если вращать ручку резистора, напряжение должно плавно увеличиваться.

Как видите, изготовленный своими руками симисторный регулятор мощности – это полезная конструкция, которую можно использовать в быту практически без ограничений. Ремонт этого устройства копеечный, так как себестоимость довольно низкая.

Как работает симисторный регулятор мощности

Полупроводниковый прибор, имеющий 5 p-n переходов и способный пропускать ток в прямом и обратном направлениях, называется симистором. Из-за неспособности работы на высоких частотах переменного тока, высокой чувствительности к электромагнитным помехам и значительного тепловыделения при коммутации больших нагрузок, в настоящее время широкого применения в мощных промышленных установках они не имеют.

Сегодня схемы на симисторах можно найти во многих бытовых приборах от фена до пылесоса, ручном электроинструменте и электронагревательных устройствах – там, где требуется плавная регулировка мощности.

Принцип работы

Регулятор мощности на симисторе работает подобно электронному ключу, периодически открываясь и закрываясь, с частотой, заданной схемой управления. При отпирании симистор пропускает часть полуволны сетевого напряжения, а значит потребитель получает только часть номинальной мощности.

Делаем своими руками

На сегодняшний день ассортимент симисторных регуляторов в продаже не слишком велик. И, хотя цены на такие устройства невелики, зачастую они не отвечают требованиям потребителя. По этой причине рассмотрим несколько основных схем регуляторов, их назначение и используемую элементную базу.

Схема прибора

Простейший вариант схемы, рассчитанный для работы на любую нагрузку. Используются традиционные электронные компоненты, принцип управления фазово-импульсный.

Основные компоненты:

  • симистор VD4, 10 А, 400 В;
  • динистор VD3, порог открывания 32 В;
  • потенциометр R2.

Ток, протекающий через потенциометр R2 и сопротивление R3, каждой полуволной заряжает конденсатор С1. Когда на обкладках конденсатора напряжение достигнет 32 В, произойдёт открытие динистора VD3 и С1 начнёт разряжаться через R4 и VD3 на управляющий вывод симистора VD4, который откроется для прохождения тока на нагрузку.

Длительность открытия регулируется подбором порогового напряжения VD3 (величина постоянная) и сопротивлением R2. Мощность в нагрузке прямо пропорциональна величине сопротивления потенциометра R2.

Дополнительная цепь из диодов VD1 и VD2 и сопротивления R1 является необязательной и служит для обеспечения плавности и точности регулировки выходной мощности. Ограничение тока, протекающего через VD3, выполняет резистор R4. Этим достигается необходимая для открытия VD4 длительность импульса. Предохранитель Пр.1 защищает схему от токов короткого замыкания.

Подбирать симисторы следует по величине нагрузке, исходя из расчёта 1 А = 200 Вт.

Используемые элементы:

  • Динистор DB3;
  • Симистор ТС106-10-4, ВТ136-600 или другие, требуемого номинала по току 4-12А.
  • Диоды VD1, VD2 типа 1N4007;
  • Сопротивления R1100 кОм, R3 1 кОм, R4 270 Ом, R5 1,6 кОм, потенциометр R2 100 кОм;
  • Конденсатор С1 0,47 мкФ (рабочее напряжение от 250 В).

Отметим, что схема является наиболее распространённой, с небольшими вариациями. Например, динистор может быть заменён на диодный мост или может быть установлена помехоподавляющая RC цепочка параллельно симистору.

Более современной является схема с управлением симистора от микроконтроллера – PIC, AVR или другие. Такая схема обеспечивает более точную регулировку напряжения и тока в цепи нагрузки, но является и более сложной в реализации.

Схема симисторного регулятора мощности

Сборка

Сборку регулятора мощности необходимо производить в следующей последовательности:

  1. Определить параметры прибора, на который будет работать разрабатываемое устройство. К параметрам относятся: количество фаз (1 или 3), необходимость точной регулировки выходной мощности, входное напряжение в вольтах и номинальный ток в амперах.
  2. Выбрать тип устройства (аналоговый или цифровой), произвести подбор элементов по мощности нагрузки. Можно проверить своё решение в одной из программ для моделирования электрических цепей – Electronics Workbench, CircuitMaker или их онлайн аналогах EasyEDA, CircuitSims или любой другой на ваш выбор.
  3. Рассчитать тепловыделение по следующей формуле: падение напряжения на симисторе (около 2 В) умножить на номинальный ток в амперах. Точные значения падения напряжения в открытом состоянии и номинальный пропускаемый ток указаны в характеристиках симистора. Получаем рассеиваемую мощность в ваттах. Подобрать по рассчитанной мощности радиатор.
  4. Закупить необходимые электронные компоненты, радиатор и печатную плату.
  5. Произвести разводку контактных дорожек на плате и подготовить площадки для установки элементов. Предусмотреть крепление на плате для симистора и радиатора.
  6. Установить элементы на плату при помощи пайки. Если нет возможности подготовить печатную плату, то можно использовать для соединения компонентов навесной монтаж, используя короткие провода. При сборке особое внимание уделить полярности подключения диодов и симистора. Если на них нет маркировки выводов, то прозвонить их при помощи цифрового мультиметра или «аркашки».
  7. Проверить собранную схему мультиметром в режиме сопротивления. Полученное изделие должно соответствовать изначальному проекту.
  8. Надёжно закрепить симистор на радиатор. Между симистором и радиатором не забыть проложить изолирующую теплопередающую прокладку. Скрепляющий винт надёжно заизолировать.
  9. Поместить собранную схему в пластиковый корпус.
  10. Вспомнить о том, что на выводах элементов присутствует опасное напряжение.
  11. Выкрутить потенциометр на минимум и произвести пробное включение. Измерить напряжение мультиметром на выходе регулятора. Плавно поворачивая ручку потенциометра следить за изменением напряжения на выходе.
  12. Если результат устраивает, то можно подключать нагрузку к выходу регулятора. В противном случае необходимо произвести регулировки мощности.

Симисторный радиатор мощности

Регулировка мощности

За регулировку мощности отвечает потенциометр, через который заряжается конденсатор и разрядная цепь конденсатора. При неудовлетворительных параметрах выходной мощности следует подбирать номинал сопротивления в разрядной цепи и, при малом диапазоне регулировки мощности, номинал потенциометра.

Практически в любом радиоэлектронном устройстве в большинстве случаев присутствует регулировка по мощности. За примерами далеко ходить не надо: это электроплиты, кипятильники, паяльные станции, различные регуляторы вращения двигателей в устройствах.

Способов, по которым можно собрать регулятор напряжения своими руками 220 В, в Сети полно. В большинстве случаев это схемы на симисторах или тиристорах. Тиристор, в отличие от симистора, более распространённый радиоэлемент, и схемы на его основе встречаются гораздо чаще. Разберём разные варианты исполнения, основанные на обоих полупроводниковых элементах.

Регулятор мощности на симисторе

Симистор, по большому счету, – это частный случай тиристора, пропускающий ток в обе стороны, при условии, что он выше тока удержания. Один из его недостатков – это плохая работа на высоких частотах. Поэтому его часто используют в низкочастотных сетях. Для построения регулятора мощности на основе обычной сети 220 В, 50 Гц он вполне подходит.

Регулятор напряжения на симисторе используется в обычных бытовых приборах, где нужна регулировка. Схема регулятора мощности на симисторе выглядит следующим образом.

  • Пр. 1 – предохранитель (выбирается в зависимости от требуемой мощности).
  • R3 – токоограничительный резистор – служит для того чтобы при нулевом сопротивлении потенциометра остальные элементы не выгорели.
  • R2 – потенциометр, подстроечный резистор, которым и осуществляется регулировка.
  • C1 – основной конденсатор, заряд которого до определённого уровня отпирает динистор, вместе с R2 и R3 образует RC-цепь
  • VD3 – динистор, открытие которого управляет симистором.
  • VD4 – симистор – главный элемент, производящий коммутацию и, соответственно, регулировку.

Основная работа возложена на динистор и симистор. Сетевое напряжение подаётся на RC-цепочку, в которой установлен потенциометр, им в итоге и регулируется мощность. Производя регулировку сопротивления, мы меняем время зарядки конденсатора и тем самым порог включения динистора, который, в свою очередь, включает симистор. Демпферная RC-цепь, подключённая параллельно симистору, служит для сглаживания помех на выходе, а также при реактивной нагрузке (двигатель или индуктивность) предохраняет симистор от скачков высокого обратного напряжения.

Симистор включается, когда ток, проходящий через динистор, превышает ток удержания (справочный параметр). Отключается, соответственно, когда ток становится меньше тока удержания. Проводимость в обе стороны позволяет настроить более плавную регулировку, чем это возможно, например, на одном тиристоре, при этом используется минимум элементов.

Осциллограмма регулировки мощности представлена ниже. Из неё видно, что после включения симистора оставшаяся полуволна поступает на нагрузку и при достижении 0, когда ток удержания уменьшается до такой степени, что симистор отключается. Во втором «отрицательном» полупериоде происходит тот же процесс, т. к. симистор обладает проводимостью в обе стороны.

Напряжение на тиристоре

Для начала разберёмся, чем отличается тиристор от симистора. Тиристор содержит в себе 3 p-n перехода, а симистор – 5 p-n переходов. Не углубляясь в детали, если говорить простым языком, симистор обладает проводимостью в обоих направлениях, а тиристор – только в одном. Графические обозначения элементов показаны на рисунке. Из графики это хорошо видно.

Принцип работы абсолютно такой же. На чём и построена регулировка по мощности в любой схеме. Рассмотрим несколько схем регулятора на тиристорах. Первая простейшая схема, которая в основе повторяет схему на симисторе, описанную выше. Вторая и третья – с применением логики, схемы, которые более качественно гасят помехи, создаваемые в сети переключением тиристоров.

Простая схема

Простая схема фазового регулирования на тиристоре представлена ниже.

Единственное её отличие от схемы на симисторе – это то, что регулировка происходит только положительной полуволны сетевого напряжения. Времязадающая RC-цепь путём регулирования величины сопротивления потенциометра регулирует величину отпирания, тем самым задавая выходную мощность, поступающую на нагрузку. На осциллограмме это выглядит следующим образом.

Из осциллограммы видно, что регулировка мощности идёт путём ограничения напряжения поступающего на нагрузку. Образно говоря, регулировка заключается в ограничении поступления сетевого напряжения на выход. Регулируя время заряда конденсатора путём изменения переменного сопротивления (потенциометра). Чем выше сопротивление, тем дольше происходит заряд конденсатора и тем меньше мощности будет передано на нагрузку. Физика процесса подробно описана в предыдущей схеме. В этом случае она ничем особым не отличается.

С генератором на основе логики

Второй вариант более сложный. В связи с тем, что процессы коммутации на тиристорах вызывают большие помехи в сети, это плохо влияет на элементы, установленные на нагрузке. Особенно если на нагрузке находится сложный прибор с тонкими настройками и большим количеством микросхем.

Такая реализация тиристорного регулятора мощности своими руками подойдёт для активных нагрузок, например, паяльник или любые устройства нагрева. На входе стоит выпрямительный мост, поэтому обе волны сетевого напряжения будут положительными. Обратите внимание, что при такой схеме для питания микросхем понадобиться дополнительный источник постоянного напряжения +9 В. Осциллограмма из-за наличия выпрямительного моста будет выглядеть следующим образом.

Обе полуволны теперь будут положительными из-за влияния выпрямительного моста. Если для реактивных нагрузок (двигатели и другие индуктивные нагрузки) наличие разно полярных сигналов предпочтительно, то для активных – положительное значение мощности крайне важно. Отключение тиристора происходит также при приближении полуволны к нулю ток удержания подаёт до определённого значения и тиристор запирается.

На основе транзистора КТ117

Наличие дополнительного источника постоянного напряжение может вызвать затруднения, если его нет, и вовсе придётся городить дополнительную схему. Если дополнительного источника у вас нет, то можно воспользоваться следующей схемой, в ней генератор сигналов на управляющий вывод тиристора собран на обычном транзисторе. Есть схемы на основе генераторов, построенных на комплементарных парах, но они более сложные, и здесь мы их рассматривать не будем.

В данной схеме генератор построен на двухбазовом транзисторе КТ117, который при таком применении будет генерировать управляющие импульсы с периодичностью, задаваемой подстроечным резистором R6. На схеме ещё реализована система индикации на базе светодиода HL1.

  • VD1-VD4 – диодный мост, выпрямляющий обе полуволны и позволяющий выполнять более плавную регулировку мощности.
  • EL1 – лампа накаливания – представлена вроде нагрузки, но может быть любой другой прибор.
  • FU1 – предохранитель, в этом случае стоит на 10 А.
  • R3, R4 – токоограничительные резисторы – нужны, чтобы не сжечь схему управления.
  • VD5, VD6 – стабилитроны – выполняют роль стабилизации напряжения определённого уровня на эмиттере транзистора.
  • VT1 – транзистор КТ117 – установлен должен быть именно с таким расположение базы №1 и базы №2, иначе схема будет не работоспособна.
  • R6 – подстроечный резистор, определяющий момент, когда поступает импульс на управляющий вывод тиристора.
  • VS1 – тиристор – элемент, обеспечивающий коммутацию.
  • С2 – времязадающий конденсатор, определяющий период появления управляющего сигнала.

Остальные элементы играют незначительную роль и в основном служат для токоограничения и сглаживания импульсов. HL1 обеспечивает индикацию и сигнализирует только о том, что прибор подключён к сети и находится под напряжением.

Регуляторы мощности получили широкое применение в повседневной жизни. Их использование очень разнообразное: от регулирования величины яркости освещения до управления оборотами различных двигателей, с их помощью можно выставлять требуемую температуру различных нагревательных приборов. Таким образом, регулировать мощность можно для нагрузки любого вида как реактивной, так и активной.

Регулятор мощности представляет собой определённую электронную схему, с помощью которой можно контролировать значение энергии, подводимой к нагрузке.

Виды и характеристики регуляторов

Устройства, предназначенные для управления значениями мощности, разделяют по способу регулировки:

  • тиристорные;
  • симисторные;
  • фазовые (диммер).

По виду выходного сигнала:

  • стабилизированные;
  • не стабилизированные.

Регулировка осуществляется при питании как от постоянного, так и переменного напряжения. Управлять можно величиной напряжения или тока.

По своему виду расположения регуляторы могут быть портативными и стационарными, устанавливаться в любом положении: вертикальном, потолочном, горизонтальном, крепиться на специальную дин рейку или встраиваться. Конструктивно выполняются как на специализированных печатных платах, так и с помощью навесного монтажа.

Основными характеристиками, на которые следует обращать внимание, являются следующие параметры:

  • плавность регулировки;
  • рабочая и пиковая подводимая мощность;
  • диапазон входного рабочего напряжения;
  • диапазон задания напряжения, поступающего на нагрузку;
  • условия эксплуатации.

Тиристорный регулятор мощности

Схема и принцип работы такого устройства не отличается особой сложностью. Основное назначение тиристорного преобразователя — управление устройствами с малой мощностью, но в редких случаях и большой. В основе работы лежит использование задержки включения тиристорного ключа на полупериоде переменного тока. Главным компонентом такой схемы является тиристор, работающий в режиме ключа. При появлении разности потенциалов на управляющем контакте он открывается. Чем больше задержка при включении, тем меньше мощности поступает в нагрузку.

Простейшая схема, кроме тиристора, содержит два биполярных транзистора, два резистора, задающих рабочую точку, и конденсатор. Транзисторы, работая в режиме ключа, формируют управляющий сигнал. Как только разность потенциалов на конденсаторе достигает значения, равному рабочему, то транзисторы открываются, и подаётся сигнал на управляющий контакт. Конденсатор начинает разряжаться до следующего полупериода.

Преимущества этого типа регулятора в том, что он не требует настройки, а недостаток в чрезмерном нагреве. Для борьбы с перегревом используется как активная, так и пассивная система охлаждения.

Применяется тиристорный регулятор для управления мощностью бытовых (паяльники, электронагреватели, лампы накаливания ) и производственных приборов (плавный запуск мощных силовых установок). Агрегат может быть однофазным и трёхфазным.

Изготовление устройства самостоятельно

Если есть необходимость использовать тиристорный регулятор мощности, можно своими руками сделать прибор неплохого качества. Для этого нужно в специализированной точке продаж приобрести набор, содержащий подробную схему с описанием принципа сборки и работы. Или можно использовать любую схему из интернета или литературы и спаять устройство самостоятельно.

В качестве тиристоров можно использовать любой тип, например, отечественный КУ202Н или импортный bt151, в зависимости от необходимой мощности. Кроме тиристора, значение последней будет также зависеть от параметров диодного моста, применяемого в схеме. Регулировка мощности осуществляется с помощью переменного резистора. Если нет возможности или желания изготовить печатную плату, можно собрать прибор с помощью навесного монтажа. При этом необходимо тщательно заизолировать все места соединений во избежание короткого замыкания.

Симисторный регулятор мощности

Симистор является полупроводниковым элементом, предназначенным для использования в цепях переменного тока. Отличительной чертой прибора является то, что его выводы не имеют разделения на анод и катод. В отличие от тиристора, проводящего ток только в одну сторону, симистор проводит ток в обоих направлениях. Именно из-за этой способности симистор и применяется в сетях переменного тока.

Мощность регулируется в этом случае путём изменения количества полупериодов напряжения, которые действуют на нагрузку. Главное отличие от тиристорных схем в том, что здесь не используется выпрямительное устройство. Работа схемы основана на принципе фазного управления, то есть на изменении момента открытия симистора относительно перехода сетевого напряжения через ноль.

Этот прибор используется для управления нагревательными элементами, лампами накаливания, оборотами двигателя. Сигнал на выходе устройства имеет пилообразную форму с управляемой длительностью импульса.

Самостоятельное изготовление прибора даже проще, чем изготовление тиристорного регулятора. Широкую популярность получили симисторы средней мощности типа BT137−600E или MAC97A6. Схема регулятора мощности на симисторе с использованием этих элементов отличается простотой изготовления.

Фазовый регулятор

Фазовое регулирование используется для плавного запуска двигателей различного типа или управления током при заряде аккумулятора. Один из видов таких приборов является диммер.

Основа работы лежит в изменении угла открытия ключевого тиристора, в результате чего на нагрузку поступают сигналы с отрезанной начальной частью полупериода, снижается действующая величина напряжения.

Достоинство такого типа регулирования — низкая стоимость ввиду применения недорогих радиодеталей. А вот основной недостаток — значимый коэффициент пульсаций и низкий коэффициент мощности выходного сигнала.

Нередко в конструкции такого вида регуляторов используются микросхемы низкочастотного типа. Благодаря этому регулятор способен быстро изменять мощность. Фазовые регуляторы редко стабилизируют с помощью стабилитронов, обычно роль стабилизатора выполняют попарно работающие тиристоры.

Регулятор мощности для паяльника своими руками

Рассмотрим пример изготовления регулятора тока своими руками. Например, будем регулировать мощность паяльника. Регулирование в таком устройстве позволяет не перегревать место пайки и способно защищать жало паяльника от выгорания.

Такого типа устройства выпускаются достаточно давно. Одним из видов его был отечественный прибор, носящий название «Добавочное устройство для электропаяльника типа П223». Он позволял использовать низковольтный паяльник напряжением 36 вольт, питаемый от сети 220 В.

Регулятор на симисторе КУ208Г

Схема прибора довольно интересная и простая в реализации. Отличительной её особенностью является использование неоновой лампочки.

Конденсатор, величиной порядка 0,1 мкФ, предназначен для генерации пилообразного импульса и защиты схемы управления от помех. Резисторы применяются для ограничения тока, а с помощью переменного резистора ток регулируется, его величина составляет около 220 кОм. Неоновая лампочка позволяет выполнять линейное управление и одновременно является индикатором. По интенсивности её яркости можно контролировать регулировку.

Недостатком такой схемы будет слабая информированность о мощности паяльника. Для наглядного отображения значений выставленного значения, при достаточном уровне радиоподготовки, можно применить микроконтроллер, например, pic16f628a. На нем также возможно будет выполнить электронную регулировку мощности, отказавшись от переменного резистора.

Регулировка на интегральном стабилизаторе

Ещё одним способом управления мощностью является применение интегральных стабилизаторов. Используя такое устройство, очень легко изготовить диммер для 12 вольтового регулятора напряжения. Такое устройство простое в сборке и обладает встроенной защитой, может использоваться как для подключения паяльника на 12 В, так и светодиодной ленты. Обычно переменный резистор подключается к входу управляющего электрода микросхемы. Недостаток — сильный нагрев стабилизирующей микросхемы.

Переменное напряжение сети 220 В понижается через трансформатор до 16−18 вольт. Далее через диодный мост и сглаживающий конденсатор выпрямленное значение поступает на вход линейного стабилизатора. С помощью переменного резистора посредством изменения рабочей характеристики микросхемы выставляется требуемое напряжение на выходе. Такое напряжение будет стабилизированным и для нашего случая составит 12 вольт.

При самостоятельном изготовлении приборов соблюдайте осторожность и помните про технику безопасности при работе с сетью переменного тока 220 В. Как правило, верно выполненный регулятор из исправных деталей не требует настройки и сразу начинает работать.

Схемы бытовых регуляторов, самодельные устройства (Страница 2)


Управление электромотором с плавной регулировкой (К561ЛА7, IRF7309)

С помощью этой схемы можно регулировать скорость вращения вала электродвигателя, а также изменять направление его вращения. Регулировкаосуществляется переменным резистором. В одном крайнем положении которого двигатель вращается в одну сторону, в другом - в другую. На среднем положении вал ...

2 2702 0

Простой самодельный регулятор мощности для нагрузки на 220В (4001)

Схема самодельного регулятора мощности для паяльника или лампы освещения, построен на микросхеме К561ЛЕ5. Большинство регуляторов регулирует мощность на нагрузки от 90-100° и в сторону уменьшения. Отличие этого регулятора в том, что в максимальном положении лампа будет гореть ярче ...

1 1996 0

Стабильный регулятор мощности паяльника на 36В

Предлагаемая конструкция регулятора мощности обеспечивает плавное регулирование в пределах от 50 до 100% мощности низковольтного электропаяльника. В отличие от фазового регулятора К1182ПМ1 данная схема имеет гораздо более стабильные параметры и не чувствительна к наводкам, а по стоимости деталей ...

4 3534 0

Схема регулятора частоты вращения для электродрели 220В

Многие электродрели, особенно старых выпусков, не имеют регулятора частоты вращения (РЧВ), что является не только неудобством в эксплуатации электроинструмента, но и приводит к травматизму. РЧВ можно собрать по несложной схеме и снабдить им старенькую дрель. А если вышел из строя РЧВ (штатный) ...

2 5470 0

Регулятор мощности на симисторе ТС132-63 (220В)

Устройство предназначено для регулирования мощности, подводимой к активной нагрузке (лампам накаливания, нагревательным приборам) от сети переменного тока 220 В.Пределы регулирования от 0 до почти 220 В. Максимальная мощность нагрузки 5,5 кВт при использовании симистора ТС142-63-6, установленного ...

2 4466 0

Регулятор для плавного управления вентилятором отопления

Простая приставка для управления скоростью вращения шумного вентилятора, построена на микросхеме К561ЛЕ5. У автомобилей ВАЗ очень шумные печки. Даже при установке ручки скорости вентилятора отопителя в минимальное положение печка шумит как пылесос. Но если скорость еще немного уменьшить противный ...

0 2731 2

Регулятор мощности - прерыватель питания нагрузки (К176ИЕ5, К176ИЕ8, К176ЛЕ10)

Принципиальная схема самодельного регулятора мощности, процентного соотношения времени выключенного и включенного состояния. Обычный регулятор мощности либо включает нагрузку на часть синусоидыпеременного напряжения, либо регулирует мощность путем пропуска нескольких волн сетевого напряжения ...

1 4428 0

Схема фазового регулятора мощности для нагрузки 220В (КУ221Г)

Принципиальная схема фазового регулятора мощности для нагрузки с питанием от 220В, который выполнен с применением тиристоров КУ221. В цветных телевизорах УПИМЦТ отечественного производства, отрицательно знаменитых качеством узлов строчной развёртки, в модуле БР-13 применялись высоковольтные ...

1 5143 0

Малогабаритный регулятор напряжения на симисторе

Выпускаемые в настоящее время микросхемы тринисторных и симисторных фазоимпульсных регуляторов действующего значения напряжения позволяют создавать компактные и удобные устройства. Наиболее предпочтительны для этих целей симисторные микросхемы, поскольку диодный мост в тринисторных регуляторах ...

0 3398 0

Регулятор температуры для управления нагревателем и охладителем (LM393)

Принципиальная схема автоматического устройства для контроля за температурой, которое управляет нагревателем и охладителем. Обычно, термостат поддерживает температуру, управляя нагревателем. Приснижении температуры его включает, при повышении - выключает. А стабилизация температуры происходит ...

0 5539 0


Радиодетали, электронные блоки и игрушки из китая:

Симисторный регулятор мощности своими руками

Варианты монтажа

Схемы сборки регулятора мощности могут быть как простыми, так и сложными.

Понадобится:

  • Коробка под диммер;
  • Печатная плата;
  • Радиодетали для сборки схемы;
  • Паяльник;
  • Припой;
  • Флюс;
  • Пинцет.

Корпус можно изготовить из пластика, вырезав заготовки и склеив коробку или подобрать по размеру платы, используя старое зарядное устройство, тройник, одинарную или двойную внешнюю розетку и прочее.

Если диммер изготавливается под паяльник, то можно его вмонтировать в заранее приобретенную подставку для паяльника. Когда нужно регулировать мощность лампы накаливания или скорость вращения вентилятора, то его нужно разместить так, чтобы им было удобно пользоваться. Лучше установить в корпус устройства, когда внутри его есть место, или жестко прикрепить к нему.

Делаем регулятор частоты вращения

Электрическая болгарка невозможна без регулятора частоты вращения, чтобы существовала возможность понизить число оборотов.

Используя несложную электрическую схему, прибор можно легко модернизировать, добавив к нему функцию изменения частоты оборотов

Схема регулятора с точки зрения физики выглядит так:

  • Резистор – R1;
  • Подстроечный резистор – VR1;
  • Конденсатор – C10;
  • Симистор – DIAC;
  • Симистор – TRIAC.

Электронный регулятор бывает не только встроенным, но и выносным для удобства. В болгарках фирмы Bosch электроника устанавливает число оборотов от почти 3 тысяч до 11,5 тысяч. Нет нагрузки на мощности счетчика, учитываются все показатели. Снизить количество оборотов и повысить их не затруднит инструмент. Регулируемые частоты вращения просто необходимы при любой работе болгаркой.

Транзисторный регулятор мощности

Плюс использования транзисторов, это отсутствие помех, которые выдают в сеть симисторы и тиристоры. Второй существенный плюс в их работе и с индуктивной нагрузкой. То есть, их можно использовать не только с лампами накаливания и паяльниками, но и с теми же светодиодными лампами и экономками. Подключаемая нагрузка — не более 100 Вт, диапазон регулировки — от 0 В до 218 В.

Схема регулятора мощности для паяльника на транзисторе

Регулятор мощности паяльника на транзисторе собирается из следующих элементов:

  • Транзистор можно выбрать из следующих КТ812А(Б), КТ824А(Б), КТ847А(Б), КТ834А(Б), КТ828А(Б).
  • Диодные блоки можно ставить: первый диодный мост VD1-VD4 —  КЦ412В или КЦ410В , второй мост VD6-VD9 — КЦ 405 или 407 с любой буквой.
  • Диод VD5 берем из серий Д7, Д237, Д226.
  • Переменный резистор — не менее 2 Вт.
  • Конденсатор оксидный К50-6, К50-16.
  • Трансформатор — любой маломощный с напряжением на вторичной обмотке 5-8 В.
  • Предохранитель — любого типа на 1 А.

Транзистор обязательно монтировать на радиатор. Толщина 3-5 см, площадь рассеивания не менее 200 см². В схеме также есть тумблер под сетевое напряжение

Постоянные сопротивления любые, важно чтобы мощность была не менее максимальной мощности регулятора. В остальном эта часть элементной базы без особых требований

Если хотите корпус сделать поменьше выбирайте по размеру, а нет так и старые трубчатые подойдут.

Мощность нагрузки, которой может управлять этот регулятор мощности паяльника, можно увеличить, заменив транзистор более мощным. Подключать можно 150 Вт, если поставить КТ856, 250 Вт — КТ834, 250 Вт — КТ 847. Для регулировки ещё более мощной нагрузки, потребуется соединить несколько транзисторов, поставить вместо первого диодного моста более мощные диоды, с рабочим 250 В и выше. В качестве VD5 берем диод с током 1 А или более. Необходимо будет также принудительное охлаждение в виде вентилятора.

Болгарка с регулировкой оборотов и плавным пуском

При выполнении работ своими руками важно, чтобы в электроинструменте был плавный пуск. Это особенно актуально, если часто приходится работать, а сеть не выдерживает напряжения инструмента

Система мягкого пуска защитит и сеть и инструмент

Бюджетный варианты угловых шлифовальных машин – УШМ – имеют ряд недостатков:

  1. У электроинструмента отсутствует возможность плавного, мягкого пуска. Это может привести к перебоям электроэнергии, так как болгарка в первые секунды после включения потребляет большое количество электричества. Также есть огромная вероятность порчи электродвигателя и поломки инструмента после того, как осуществлен не мягкий, пуск, а резкий, рывками.
  2. У электроинструмента, особенно простого китайского, нет в наличии регулятора оборотов (регулировкой оборотов можно обеспечить долгую работу инструмента без нагрузки на него).

Поэтому при выборе инструмента очень важно обращать внимание на такие параметры, как регулировка оборотов и наличие плавного пуска. Кроме того, при выборе УШМ следует обращать внимание на мощность. Здесь основным показателем служит объём выполняемых работ

Здесь основным показателем служит объём выполняемых работ.

Для объёмной работы в промышленных масштабах следует использовать УШМ мощнее примерно в два раза. Ещё к основным показателям кроме технических характеристик, относится безопасность. Болгарка должна быть безопасной. Что это значит? Во-первых, как уже было сказано, наличие плавного пуска, предотвращающего скачки напряжения во время включения. Автоматические предохранители, необходимые для экстренной остановки мотора во время сбоя системы. Предохранители служат регулятором, когда круг клинит. Обеспечивается защита от пыли. Она необходима при частом использовании болгарки, чтобы пыль не скапливалась в инструменте.

Важна функция теплоотвода. Теплоотвод защищает от перегрева. Во время работы, особенно если работы продолжительные, корпус машины подвержен сильному нагреванию, чтобы не было перегрева и необходим отвод тепла. При перегрузке УШМ останавливается – это происходит во время нагревания, приближающемуся к 200 оС. Ну и балансировка диска служит для снижения неприятной вибрации и биения инструмента при работе, особенно этому воздействию подвержены старые изношенные диски

Обращать внимание и уделять внимание безопасности при выборе инструмента и при дальнейшей работе с ним очень важно

При выборе инструмента стоит отметить, что существуют болгарки с одной и с двумя ручками. Здесь следует полагаться исключительно на удобство. Двуручные модели скорее всего будут более удобными при держании, однако такие инструменты тяжелее по весу, одноручные модели также придётся держать двумя руками, но такие УШМ меньше по размеру и весу.

Лидерам на рынке электроинструментов является фирма Bosch. Инструменты данной фирмы обладают всеми необходимыми характеристиками от удобства до безопасности. Также плюсами инструментов фирмы Bosсh является то, что есть хорошая вентиляция.

Оцените статью:

Симисторные регуляторы мощности своими руками

Полупроводниковый прибор, имеющий 5 p-n переходов и способный пропускать ток в прямом и обратном направлениях, называется симистором. Из-за неспособности работы на высоких частотах переменного тока, высокой чувствительности к электромагнитным помехам и значительного тепловыделения при коммутации больших нагрузок, в настоящее время широкого применения в мощных промышленных установках они не имеют.

Там их с успехом заменяют схемы на тиристорах и IGBT-транзисторах. Но компактные размеры прибора и его долговечность в сочетании с невысокой стоимостью и простотой схемы управления позволили найти им применение в сферах, где указанные выше недостатки не имеют существенного значения.

Сегодня схемы на симисторах можно найти во многих бытовых приборах от фена до пылесоса, ручном электроинструменте и электронагревательных устройствах – там, где требуется плавная регулировка мощности.

Принцип работы

Регулятор мощности на симисторе работает подобно электронному ключу, периодически открываясь и закрываясь, с частотой, заданной схемой управления. При отпирании симистор пропускает часть полуволны сетевого напряжения, а значит потребитель получает только часть номинальной мощности.

Делаем своими руками

На сегодняшний день ассортимент симисторных регуляторов в продаже не слишком велик. И, хотя цены на такие устройства невелики, зачастую они не отвечают требованиям потребителя. По этой причине рассмотрим несколько основных схем регуляторов, их назначение и используемую элементную базу.

Схема прибора

Простейший вариант схемы, рассчитанный для работы на любую нагрузку. Используются традиционные электронные компоненты, принцип управления фазово-импульсный.

Основные компоненты:

  • симистор VD4, 10 А, 400 В;
  • динистор VD3, порог открывания 32 В;
  • потенциометр R2.

Ток, протекающий через потенциометр R2 и сопротивление R3, каждой полуволной заряжает конденсатор С1. Когда на обкладках конденсатора напряжение достигнет 32 В, произойдёт открытие динистора VD3 и С1 начнёт разряжаться через R4 и VD3 на управляющий вывод симистора VD4, который откроется для прохождения тока на нагрузку.

Длительность открытия регулируется подбором порогового напряжения VD3 (величина постоянная) и сопротивлением R2. Мощность в нагрузке прямо пропорциональна величине сопротивления потенциометра R2.

Дополнительная цепь из диодов VD1 и VD2 и сопротивления R1 является необязательной и служит для обеспечения плавности и точности регулировки выходной мощности. Ограничение тока, протекающего через VD3, выполняет резистор R4. Этим достигается необходимая для открытия VD4 длительность импульса. Предохранитель Пр.1 защищает схему от токов короткого замыкания.

Отличительной особенностью схемы является то, что динистор открывается на одинаковый угол в каждой полуволне сетевого напряжения. Вследствие этого не происходит выпрямление тока, и становится возможным подключение индуктивной нагрузки, например, трансформатора.

Подбирать симисторы следует по величине нагрузке, исходя из расчёта 1 А = 200 Вт.

Используемые элементы:

  • Динистор DB3;
  • Симистор ТС106-10-4, ВТ136-600 или другие, требуемого номинала по току 4-12А.
  • Диоды VD1, VD2 типа 1N4007;
  • Сопротивления R1100 кОм, R3 1 кОм, R4 270 Ом, R5 1,6 кОм, потенциометр R2 100 кОм;
  • Конденсатор С1 0,47 мкФ (рабочее напряжение от 250 В).

Отметим, что схема является наиболее распространённой, с небольшими вариациями. Например, динистор может быть заменён на диодный мост или может быть установлена помехоподавляющая RC цепочка параллельно симистору.

Более современной является схема с управлением симистора от микроконтроллера – PIC, AVR или другие. Такая схема обеспечивает более точную регулировку напряжения и тока в цепи нагрузки, но является и более сложной в реализации.

Схема симисторного регулятора мощности

Сборка

Сборку регулятора мощности необходимо производить в следующей последовательности:

  1. Определить параметры прибора, на который будет работать разрабатываемое устройство. К параметрам относятся: количество фаз (1 или 3), необходимость точной регулировки выходной мощности, входное напряжение в вольтах и номинальный ток в амперах.
  2. Выбрать тип устройства (аналоговый или цифровой), произвести подбор элементов по мощности нагрузки. Можно проверить своё решение в одной из программ для моделирования электрических цепей – Electronics Workbench, CircuitMaker или их онлайн аналогах EasyEDA, CircuitSims или любой другой на ваш выбор.
  3. Рассчитать тепловыделение по следующей формуле: падение напряжения на симисторе (около 2 В) умножить на номинальный ток в амперах. Точные значения падения напряжения в открытом состоянии и номинальный пропускаемый ток указаны в характеристиках симистора. Получаем рассеиваемую мощность в ваттах. Подобрать по рассчитанной мощности радиатор.
  4. Закупить необходимые электронные компоненты, радиатор и печатную плату.
  5. Произвести разводку контактных дорожек на плате и подготовить площадки для установки элементов. Предусмотреть крепление на плате для симистора и радиатора.
  6. Установить элементы на плату при помощи пайки. Если нет возможности подготовить печатную плату, то можно использовать для соединения компонентов навесной монтаж, используя короткие провода. При сборке особое внимание уделить полярности подключения диодов и симистора. Если на них нет маркировки выводов, то прозвонить их при помощи цифрового мультиметра или «аркашки».
  7. Проверить собранную схему мультиметром в режиме сопротивления. Полученное изделие должно соответствовать изначальному проекту.
  8. Надёжно закрепить симистор на радиатор. Между симистором и радиатором не забыть проложить изолирующую теплопередающую прокладку. Скрепляющий винт надёжно заизолировать.
  9. Поместить собранную схему в пластиковый корпус.
  10. Вспомнить о том, что на выводах элементов присутствует опасное напряжение.
  11. Выкрутить потенциометр на минимум и произвести пробное включение. Измерить напряжение мультиметром на выходе регулятора. Плавно поворачивая ручку потенциометра следить за изменением напряжения на выходе.
  12. Если результат устраивает, то можно подключать нагрузку к выходу регулятора. В противном случае необходимо произвести регулировки мощности.

Симисторный радиатор мощности

Регулировка мощности

За регулировку мощности отвечает потенциометр, через который заряжается конденсатор и разрядная цепь конденсатора. При неудовлетворительных параметрах выходной мощности следует подбирать номинал сопротивления в разрядной цепи и, при малом диапазоне регулировки мощности, номинал потенциометра.

Блиц-советы

  • продлить срок службы лампы, регулировать освещение или температуру паяльника поможет простой и недорогой регулятор на симисторах.
  • выбирайте тип схемы и параметры компонентов по планируемой нагрузке.
  • тщательно проработайте схемные решения.
  • будьте внимательны при сборке схемы, соблюдайте полярность полупроводниковых компонентов.
  • не забывайте, что электрический ток есть во всех элементах схемы и он смертельно опасен для человека.

Статья была полезна?

4,00 (оценок: 1)

Упрощенная электрическая система: регулятор скорости (TRIAC)



ТРИАК - это компонент, который эффективно основан на тиристоре. Обеспечивает переключение переменного тока для электрических систем. Как и тиристоры, триаки используются во многих электрические коммутационные приложения. Они находят особое применение в схемах в диммеры, регуляторы скорости вентилятора и т. д., где они позволяют использовать обе половины цикла переменного тока. Это делает их более эффективными с точки зрения использования доступной мощности. Хотя можно использовать два тиристора вплотную друг к другу, это не всегда рентабельно для недорогих и относительно маломощных приложений.Есть возможность просмотреть работа TRIAC в виде двух тиристоров, расположенных спина к спине. TRIAC эквивалент двух тиристоров Один из недостатков Особенностью TRIAC является то, что он не переключается симметрично. Часто бывает смещение, переключение при разных напряжениях затвора для каждой половины цикла. Этот создает дополнительные гармоники, которые плохо сказываются на характеристиках ЭМС, а также обеспечивает дисбаланс в системе Чтобы улучшить переключение формы волны тока и обеспечение большей симметрии - это используйте устройство, внешнее по отношению к TRIAC, чтобы синхронизировать импульс запуска.DIAC разместил последовательно с воротами - нормальный метод достижения этого.

DIAC и TRIAC соединены вместе

Базовая схема:

Это схема Схема простейшего диммера лампы или регулятора вентилятора. Схема построена на принцип управления мощностью с помощью симистора. Схема работает путем изменения угол стрельбы симистора. Резисторы R1, R2 и конденсатор C2 связаны с этим. Угол открытия можно изменять, изменяя значение любого из этих составные части.Здесь R1 выбран как переменный элемент. Изменяя значение R1 изменяется угол зажигания симистора (т.е. сколько времени симистор должен поведение) изменения. Это напрямую изменяет мощность нагрузки, так как нагрузка приводится в движение Симистор. Импульсы запуска подаются на затвор симистора T1 с помощью Diac D1. Самая основная волна (т.е. без учета всех потерь и гармоник) показана ниже.






Форма волны, показанная ниже, демонстрирует выходное напряжение TRIAC до и после исправления.

Альфа - небесный ангел тиристеров.

На двух рисунках, показанных ниже, мы можем увидеть форму выходного сигнала, изменив огненный ангел. На первом рисунке выходная мощность составит половину входной мощности.

На втором рисунке ангел зажигания равен нулю, поэтому выходная мощность будет такой же, как и входная.






Простая схема регулятора яркости лампы / регулятора вентилятора с использованием симистора

Схема регулятора освещенности или схема регулятора вентилятора (оба случая, схема и конструкция одинаковы, единственное различие заключается в изменении выходной нагрузки, то есть вентилятора или света) используется для управления яркостью света или скорость вентилятора по нашему желанию.Задача схемы - изменять интенсивность, яркость лампочки или скорость вращения вентилятора с помощью фиксированного источника. Для этого нет необходимости заменять лампочку на лампу с большей мощностью. Простой симистор может сделать всю работу за вас. Симисторы используются в этой схеме в качестве диммера, поскольку они просты в проектировании и управлении, а также очень экономичны из-за их высокой эффективности и низких затрат на покупку.

T his - это принципиальная схема простейшего диммера лампы или регулятора вентилятора.Схема основана на принципе управления мощностью с помощью симистора. Схема работает за счет изменения угла включения симистора. С этим связаны резисторы R1, R2 и конденсатор C2. Угол открытия можно изменять, изменяя значение любого из этих компонентов. Здесь R1 выбран как переменный элемент. Изменяя значение R1, изменяется угол открытия симистора (простыми словами, сколько времени должен проводить симистор). Это напрямую изменяет мощность нагрузки, так как нагрузка приводится в действие симистором.Импульсы запуска подаются на затвор симистора T1 с помощью Diac D1.

Симистор

Вы получите лучшее представление о схеме светорегулятора, узнав больше о симисторе.

Банкноты

Соберите схему на печатной плате хорошего качества или на обычной плате. Нагрузка, будь то лампа, вентилятор или что-либо еще, должна быть менее 200 Вт. Для подключения более высоких нагрузок замените Triac BT 136 на Triac большей мощности. Все части цепи активны, что может привести к поражению электрическим током.Так что будь осторожен.

Я советую проверить схему с источником низкого напряжения (например, 12 В или 24 В переменного тока) и небольшой нагрузкой (такая же лампочка вольт) перед подключением цепи к сети.

Список деталей

R1 1o K Резистор 1 Вт

R2 1o0 K Потенциометр (переменное сопротивление)

C1 0,1 мкФ (500 В или выше) Полиэфирный конденсатор

T1 BT 136 симистор

D1 DB2 Diac

Электрическая схема регулятора вентилятора

BT 136Triac Необходимые данные. BT 136 Технические характеристики

Схема регулятора освещенности, описанная выше, была изменена с добавлением демпфирующей схемы для улучшения характеристик симистора.

Схема стабилизатора напряжения сети, управляемая симистором

Эта, безусловно, единственная в своем роде и трудная для поиска схема стабилизатора напряжения переменного тока, управляемая симистором, была создана специально для вас. Благодаря твердотельной конструкции переходы при переключении напряжения чрезвычайно плавные с минимальным повреждением, что приводит к полезной стабилизации напряжения.Узнайте обо всей методике разработки этого превосходного твердотельного стабилизатора сетевого напряжения.
Предлагаемая схема стабилизатора переменного напряжения с симисторным управлением обеспечит превосходную 4-ступенчатую стабилизацию напряжения для любого устройства на его выходе. Благодаря отсутствию движущихся частей его эффективность еще больше повышается. Узнайте больше об этом бесшумном операторе: Power Guard.

Введение

Схема автоматического стабилизатора напряжения, упомянутая в одном из моих предыдущих материалов, хотя и полезна, в результате ее менее сложной конструкции, не имеет возможности дискретного регулирования различных уровней переменного сетевого напряжения.Предлагаемая концепция, хотя и не проверена, выглядит достаточно убедительной, и, если основные части правильно рассчитаны, они должны работать естественным образом.
Существующая схема стабилизатора переменного напряжения с симисторным управлением отличается превосходной эффективностью и в значительной степени является лучшим стабилизатором напряжения во всех отношениях. Как правило, схема по-прежнему производится исключительно мной. Он будет управлять и измерять входное напряжение сети переменного тока с помощью 4 независимых мер.
Использование симисторов гарантирует быстрое переключение (в пределах 2 мс) и отсутствие искр или переходных процессов, обычно связанных со стабилизаторами релейного типа.Кроме того, поскольку не используются движущиеся части, весь блок превращается в полностью твердое состояние и почти долгий срок службы.
Давайте перейдем к точному рассмотрению особенностей схемы.
Крайняя осторожность: каждая отдельная цель ЦЕПИ, описанная в этой статье, может быть ПОТЕНЦИАЛЬНОЙ СЕТИ переменного тока, по этой причине ЧРЕЗВЫЧАЙНО ВРЕДНО ПРИКАСАТЬСЯ К ПОЛОЖЕНИЮ ВКЛЮЧЕННОГО ПЕРЕМЕННОГО ТОКА. РЕКОМЕНДУЕТСЯ UTMOST Внимание и осторожность, рекомендуется использование ДЕРЕВЯННОЙ ДОСКИ ПОД НОГАМИ. Новичкам, ПОЖАЛУЙСТА, избегайте.
Описание схемы
Функционирование схемы можно определить по следующим точкам:
Транзисторы с T1 по T4 организованы так, чтобы определять постоянный рост входного напряжения и последовательно работать один за другим по мере повышения напряжения и наоборот.
Шлюзы с N1 по N4 от IC 4093 настроены как буферы. Выходы транзисторов подаются на входы этих вентилей.

Все вентили коррелированы друг с другом на таком расстоянии, что выход только определенного логического элемента остается эффективным в определенном временном кадре в соответствии с уровнем входного напряжения.
Таким образом, по мере увеличения входного напряжения затворы реагируют на транзисторы, и их выходы в конечном итоге оказываются один за другим логически высоким, обеспечивая отключение выхода более раннего затвора и наоборот.
Логический привет из определенного буфера используется на затворе определенного SCR, который выполняет и подключает соответствующую «горячую» линию от трансформатора к внешнему подключенному устройству.
По мере увеличения напряжения соответствующие симисторы в конечном итоге выбирают подходящие «горячие» концы трансформатора для повышения или понижения напряжения и сохранения в некоторой степени поддерживаемого выхода.

Подсказки по конструкции и советы по тестированию

Конструкция этой схемы защиты переменного тока управления симистором проста и состоит лишь из нескольких частей, требующих выбора необходимых деталей и их правильной сборки на базовой печатной плате.Совершенно очевидно, что человек, пытающийся создать эту схему, знает немного больше, чем просто основы электроники. Очки могут пойти совсем не так, если вы испытаете какую-либо ошибку в окончательной настройке.
Вы предпочитаете универсальный источник питания постоянного тока с внешней переменной (от 0 до 12 вольт) для настройки устройства следующим образом:
При условии, что выходное напряжение 12 вольт от TR1 символизирует входное питание 225 вольт, посредством расчетов мы получаем при этом он будет генерировать 9 вольт на входе 170 вольт, 13 вольт будут соответствовать 245 вольт, а 14 вольт будут сопоставимы с входом около 260 вольт.
Вначале держите точки «AB» выключенными и убедитесь, что цепь полностью отключена от сети переменного тока.
Измените внешний универсальный источник питания на 12 В и подключите его положительный полюс к точке «B», а отрицательный - к общей земле цепи.
Теперь настройте P2, пока LD2 не будет только что включен. Уменьшите напряжение до 9 и отрегулируйте P1, чтобы включить LD1.
Аналогичным образом отрегулируйте P3 и P4, чтобы соответствующие светодиоды загорелись при напряжениях 13 и 14 соответственно.
На этом процесс настройки завершен.Снимите внешний источник питания и соедините точки «AB» вместе.
Теперь все устройство можно подключить к сети переменного тока, чтобы он мог немедленно начать работу.
Вы можете подтвердить эффективность системы, подав переменный входной переменный ток с помощью автотрансформатора и просмотрев выход с помощью цифрового мультиметра.
Этот стабилизатор переменного напряжения с симисторным управлением отключается при напряжениях ниже 170 и выше 300 вольт.

Список деталей

При разработке этого стабилизатора управляющего переменного напряжения SCR вы предпочитаете следующие детали:
Все резисторы Вт, CFR 5%, если не указано иное.
R5, R6, R7, R8 = 1 МОм Вт,
Все симисторы на 400 В, номинальное значение 1 кВ,
T1, T2, T3, T4 = BC 547,
Все стабилитроны = 3 В 400 мВт,
Все диоды = 1N4007,
Все предустановки = 10K линейный,
R1, 2, 3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 = 1K ¼ ватт,
N1 до N4 = IC 4093,
C1 и C3 = 100Uf / 25 вольт,
C2 = 104, керамический, трансформатор стабилизатора питания
= «Сделано на заказ», имеющий выход 170, 225, 240, 260 вольт Отводы при входном питании 225 вольт, или отводы на 85, 115, 120, 130 вольт при входном напряжении 110 переменного тока.
TR1 = понижающий трансформатор, 0–12 В, 100 мА.

Симистор цепи регулятора напряжения - WIRGREM

Среднеквадратичное значение напряжения нагрузки можно изменять, изменяя угол срабатывания a. Соберите схему на печатной плате хорошего качества или на обычной плате.

Схема регулятора вентилятора, которая также может использоваться в качестве простой схемы диммера лампы Этот регулятор скорости вращения вентилятора или электрическая схема простой лампы Li Регуляторы электрической схемы

Ну, это набор схем регулятора напряжения, использующих LM317 IC, который является регулируемым регулятором напряжения .

Схема регулятора напряжения симистора . Принципиальная схема 52 представляет собой пример схемы для обеспечения функций управления, как описано со ссылкой на фиг. Это принципиальная схема диммера 220 В переменного тока на основе конденсатора в емкостном диммерном регуляторе без шума Резистор Один конденсатор Один диод и один симистор. Он может использоваться с напряжениями любой полярности и обычно используется вместе с симистором.

Идентификация клемм Mt1 и Mt2 должна выполняться через TRIAC.LM317 - трехконтактный регулируемый стабилизатор от National Semiconductors, входное напряжение которого может составлять до 40 вольт. Диак - это двунаправленное триггерное устройство с двумя выводами.

При разомкнутом переключателе SW1 ток не течет на затвор симистора, поэтому лампа выключена. V GT - это диапазон напряжений затвора, при которых запускается проводимость. 1, в котором напряжение постоянного тока, представляющее входное напряжение, и напряжение, представляющее выходное напряжение, подаются на компаратор, а выход напряжения компаратора используется для задержки срабатывания симистора для обеспечения a.

Когда SW1 замкнут, ток затвора подается на симистор от аккумуляторной батареи V G через резистор R, и симистор приводится в действие с полной проводимостью, действуя как замкнутый переключатель, и полная мощность потребляется лампой. Регулятор напряжения TRIAC Отменить ответ. Принципиальная схема 52 представляет собой пример схемы для обеспечения функций управления, как описано со ссылкой на фиг.

Нагрузка, будь то вентилятор лампы или что-либо еще, должна быть менее 200 Вт. Символ и вывод TRIAC показаны ниже.Выходное напряжение можно регулировать от 12 В до 37 В.

Основное действие диакритики таково, что при подключении к источнику напряжения через токоограничивающий нагрузочный резистор он действует как высокоимпеданс, пока приложенное напряжение не возрастет примерно до 35 В. 632 иллюстрирует основные характеристики симистора. В схеме регулятора вентилятора с электронным диммером переменного тока на основе симистора используются в основном три компонента.

Термин TRIAC означает TRIode для переменного тока. Это трехконтактное переключающее устройство, подобное тиристору SCR, но оно может работать в обоих направлениях, поскольку оно создается путем объединения двух SCR в антипараллельном состоянии.Ключ к успешному срабатыванию симистора состоит в том, чтобы убедиться, что затвор получает свое пусковое напряжение со стороны главной клеммы 2 схемы, основной клеммы на противоположной стороне символа симистора от клеммы затвора. Управляемый TRIAC вход переменного тока в импульсный источник питания SMPS генерирует переменный вход постоянного тока в каскад линейного регулятора, который использует LM117 U1.

Поскольку TRIAC является двунаправленным устройством, ток может течь либо от MT1 к MT2, либо от него.Для подключения более высоких нагрузок замените Triac BT 136 на Triac большей мощности. V DRM - это максимальное повторяющееся пиковое напряжение, обычно максимальное пиковое напряжение приложенной волны переменного тока, которое можно надежно выдерживать.

Все части цепи активны, что может привести к поражению электрическим током. Советую проверить схему при низком напряжении. Схема регулируемого регулятора напряжения с использованием LM317.

DIAC используется для построения различных схем, таких как регулировка нагрева диммером лампы и универсальные схемы стартера цепи управления скоростью двигателя, используемые в люминесцентных лампах.Термин TRIAC - это обобщенный товарный знак. TRIAC - полупроводниковый прибор, принадлежащий к семейству тиристоров.

РЕГУЛЯТОР ПЕРЕМЕННОГО ТОКА Однофазная двухполупериодная схема регулятора переменного напряжения с использованием двух тиристоров или одного симистора обычно используется в большинстве приложений управления переменным током. Поток мощности переменного тока к нагрузке можно контролировать в обоих полупериодах путем изменения угла срабатывания a. На рисунке 5 показан его схемный символ.

Триод TRIAC для переменного тока. Различные схемы управления фазой симистора, рассмотренные до сих пор, могут применяться для управления нагрузкой типа нагревателя, хотя контролируемая температура нагрузки может изменяться с изменениями входного переменного напряжения и окружающей температуры.Использование схемы температурной схемы FR4 толщиной 16 толщиной является разумным и используется для увеличения толщины конструкции пути сварки, даже достаточно большой, чтобы справиться с током, за счет использования более безопасного и надежного.

Симисторы

представляют собой подмножество тиристоров, аналогичных реле в том смысле, что небольшое напряжение и ток могут управлять гораздо большим напряжением. На приведенной выше схеме показана простая схема переключения мощности симистора, запускаемая постоянным током. Работа схемы электронного регулятора напряжения.

Также требуется двунаправленный триодный тиристор или двусторонний триодный тиристор. Это трехконтактный электронный компонент, который проводит ток в любом направлении при срабатывании триггера. Cf 220nF заменить 100nF Lf 220uH Pot 100K linear заменить 500K 2 x 100nF. Принципиальная схема регулятора напряжения с использованием TRIAC DIAC.

Схема, которая компенсирует такие изменяющиеся параметры, показана на рис. Схема работает примерно до 90 от полной скорости, потому что симистор не включается, пока диак не будет проводить около 30 В.Я использовал диафрагму и симистор, отличные от схемы, но доступные в местном масштабе.

В BO - это максимальное прямое или обратное напряжение, которое симистор может выдержать, прежде чем он перейдет в неконтролируемую проводимость. Как только напряжение, приложенное к выводу затвора, упадет ниже фиксированного значения, напряжение на выводе затвора станет нулевым, поэтому TRIAC будет деактивирован. 1, в котором напряжение постоянного тока, представляющее входное напряжение, и напряжение, представляющее выходное напряжение, подаются на компаратор, а выход напряжения компаратора используется для задержки срабатывания симистора для обеспечения a.

Схема симистора с наилучшим откликом и диак. Перед тем, как подать питание на эту простую схему регулятора вентилятора, установите переменный резистор или потенциометр в положение максимального сопротивления, чтобы триггер не запускался и, следовательно, триак находился в режиме отсечки. Эта схема контроллера скорости двигателя переменного тока 220 В на основе симистора предназначена для управления скоростью небольших бытовых двигателей. Цепь контроллера скорости сверления переменного тока, полученная по электронной почте - 09222009.

Схема цепи управления скоростью двигателя

Электронная схема

Цепь регулятора яркости

с использованием электрической схемы симистора Scr Цепи диммера Com Circuit Projects

Схема цепи регулятора напряжения Scr

Цепь диммера

с использованием электрической цепи симистора Scr Схема цепи Com Диммер

Цепь диммера с использованием электрической схемы симистора Scr Электрическая цепь диммера Com Dimmer Цепь электроники

DIMM Принципиальная схема диммера Тусклое освещение

Электронная схема регулятора скорости двигателя переменного тока мощностью 1000 Вт Схема скорости двигателя

Принципиальная схема управления скоростью Электроника Mini Projects Аналоговые схемы

Диммер лампы на основе симистора представляет собой простую схему A Это не требует дополнительных работ по электропитанию. Схема питания

Схема принципиальной платы твердотельного симисторного реле Конструкция электронной схемы Принципиальная схема Электронная схема

В статье обсуждается простая схема трехфазного регулятора напряжения мотоцикла, которая может быть использована для управления проектами схем регулятора напряжения Конструкция схемы

Solid State Scr Проекты схем автоматического стабилизатора напряжения с симисторным управлением Принципиальная схема

Схема управления скоростью электродвигателя вентилятора с использованием симистора Принципиальная схема электрического двигателя

Универсальный оптопар

Принципиальная электрическая схема симисторного регулятора Проекты электронных схем Электронная схема

Электрическая схема регулятора переменного напряжения Схема Grow Amis Схема источника питания регулятора напряжения

Схема простого симисторного диммера Проекты электронных схем Электрическая схема Проекты схем


Простая схема регулятора вентилятора для управления скоростью вентилятора переменного тока

Общая схема регулятора вентилятора переменного тока в основном используется для изменения скорости вентилятора.В этом проекте мы построим собственный регулятор вентилятора с минимальным количеством компонентов и с большей эффективностью. Как правило, вентилятор издает гудящий шум при использовании с различными схемами регулятора вентилятора, наша схема использует DIAC и TRIAC и издает минимальный гудящий шум или вообще не производит его и работает как шарм! Мы также разработали несколько схем управления скоростью вращения вентиляторов, а также внедрили методы IoT для управления ими, давайте взглянем на эти удивительные схемы для справки, если вам интересно.

Компоненты, необходимые для создания регулятора вентилятора переменного тока

Компоненты, необходимые для сборки цепи регулятора вентилятора TRIAC , перечислены ниже:

  1. Потенциометр 500 кОм
  2. BT 136 TRIAC
  3. DB3 DIAC
  4. Конденсатор 0,1 мкФ / 400 В
  5. резистор 10 кОм
  6. Клеммная колодка с 2 контактами

Принципиальная схема регулятора вентилятора переменного тока

Принципиальная схема регулятора вентилятора переменного тока приведена ниже.Напряжение сети 220 В переменного тока подается на вход одного вывода вентилятора (нагрузки), а другой вывод вентилятора подключается к одной ножке резистора 10 кОм. Резистор 10 кОм будет подключен к одному выводу потенциометра 500 кОм, а выходной вывод будет закорочен и подключен к одному выводу DIAC и к конденсатору 0,1 мкФ. (DIAC не имеет полярности, поэтому его можно подключать с любого конца). Другой конечный вывод DIAC подключен к клемме затвора TRIAC, которая в основном управляет состоянием включения и выключения TRIAC.Резистор 10 кОм подключен к выводу MT2 TRIAC. Подключение довольно простое и может быть выполнено поверх монтажной платы. Мы также можем спроектировать нашу собственную печатную плату, чтобы легко разместить все компоненты.

Совет:

  1. Используйте радиатор с TRIAC, так как он может нагреваться через некоторое время работы или с приборами большой мощности.
  2. Грузоподъемность <200 Вт. Если вы хотите использовать нагрузку более высокой мощности, используйте другие варианты BTA TRIAC.

Я построил эту схему на нулевой печатной плате для ее тестирования, и моя плата после пайки всех компонентов выглядит так, как показано на изображении ниже. Как видите, проект выглядит простым и легким, поэтому я также рекомендую вам получить Veroboard и начать с ним работать.

Краткое введение для TRIAC и DIAC

Два основных компонента, используемых в схеме, - это TRIAC и DIAC, что позволяет нам быстро понять основы их работы.Вы также можете ознакомиться с подробной статьей о работе TRIAC и работе DIAC, если хотите узнать больше.

TRIAC: TRIAC - это компоненты, используемые для управления сигналами переменного тока. Они используются во многих приложениях, где требуется переключение высокой мощности для сигналов переменного тока. TRIAC обычно используются в схемах диммера переменного тока и очень удобны при попытке управлять скоростью вентилятора или в качестве диммера светодиодной лампы.

DIAC: DIAC означает «Диоды для переменного тока».Это двунаправленный компонент с двумя электродами. Это еще один компонент семейства тиристоров . Он работает только тогда, когда он превышает свое напряжение переключения (VBO) и обычно используется для запуска симисторов. На графике ниже изображена работа DIAC.

Форма волны, представленная выше, отображает график зависимости тока от напряжения DIAC. Поскольку мы знаем, что в нашем проекте DIAC - это компонент, который управляет проводящей фазой TRIAC через его вывод затвора, нам нужно знать, как напряжение переключения (VBO) работает в DIAC.DIAC попадает в свою проводящую стадию только после того, как он пересекает напряжение барьера (VBO), которое составляет примерно 30 В, но отличается в зависимости от модели компонентов. Первоначально DIAC - это устройство с более высоким сопротивлением, но после постоянного увеличения уровня напряжения и в точке VBO сопротивление резко уменьшается, и оно начинает проводить, что приводит к увеличению тока. DIAC остается в проводящем состоянии до тех пор, пока потребляемый из него ток не снизится до уровня, называемого «ток удержания».Как только потребляемый ток падает ниже тока удержания, DIAC снова становится непроводящим.

Как показано на приведенном выше графике, напряжение (ось x) постепенно увеличивается до тех пор, пока не достигнет напряжения отключения (VBO), которое составляет 30-40 В, после чего наблюдается резкое снижение и достигается постоянный выходной ток (10 мА), который составляет удерживающий ток.

Разница между TRIAC и DIAC

Несмотря на то, что два устройства различаются по количеству контактов и конфигурации, как DIAC, так и TRIAC принадлежат к семейству тиристоров.TRIAC - это высокомощное устройство, тогда как DIAC считается маломощным. Напряжение пробоя (VBO) DIAC не может быть изменено, тогда как VBO TRIAC может быть изменено с помощью клеммы затвора. DIAC - это устройство, используемое для управления точкой срабатывания TRIAC. Типичный символ распиновки для TRIAC и DIAC показан ниже.

Работа цепи регулятора вентилятора переменного тока

Схема работает в основном путем управления выводом затвора TRIAC и другим выводом DIAC, помимо изменения времени разряда конденсатора.Во время положительной половины цикла обкладки конденсатора заряжаются в соответствии с полярностью, и ток также течет к клемме T1 TRIAC, но DIAC по-прежнему не запускается, поскольку мы не пересекли напряжение отключения (VBO) DIAC ( обычно около 30 В для DB3. Поскольку сопротивление изменяется и конденсатор разряжается до напряжения, превышающего напряжение переключения DIAC, DIAC начинает проводить , и выходной сигнал подается на клемму затвора TRIAC, который затем запускается, и цепь замкнута, и вентилятор вращается.

Точно так же в течение отрицательной половины цикла конденсатор заряжается, но с измененной полярностью, и как только достигается напряжение отключения (VBO), DIAC проводит и запускает TRIAC, следовательно, схема замыкается. На приведенном выше графике показаны точки срабатывания, точки проводимости и точки срабатывания, а также ток удержания (Ih) TRIAC во время двухполупериодного сигнала переменного тока.

Завершив весь процесс пайки и приобретения вентилятора, я подключил модуль к сети переменного тока 220 В и к вентилятору, скорость которого нужно регулировать.Когда я включил питание и начал вращать потенциометр, я заметил, что вентилятор вращается в зависимости от того, насколько повернут потенциометр. Переменное сопротивление потенциометра помогало регулировать скорость вращения вентилятора с помощью наших TRIAC и DIAC.

Надеюсь, вы узнали что-то новое и получили удовольствие от создания собственного регулятора вентилятора переменного тока. Если у вас есть какие-либо вопросы, оставьте их в разделе комментариев или воспользуйтесь нашим форумом по электронике.

Для объяснения и для просмотра правильной работы этого проекта, пожалуйста, посмотрите видео, приведенное ниже.

цепей. Фазорегулятор мощности на симисторе

Многие устройства в доме у человека есть возможность настроить. Этот процесс осуществляется с помощью специального регулятора. На сегодняшний день трехкомпонентный подтип выделен в отдельную категорию, но многие люди мало знают об этом элементе. По сути, особенность этой части - двустороннее действие. Возможно, это связано с анодом, а также с катодом. В результате их движения в устройстве направление тока меняется.

Некоторые считают, что симисторы можно заменить контакторами, реле и пускателями. Однако это мнение ошибочно. В первую очередь следует отметить долговечность этих регуляторов. По частоте коммутации они практически не ограничены и это не может не радовать. При этом износ деталей минимален. Кроме того, следует отметить полное отсутствие искрения в устройствах этого типа. В моменты нулевого линейного тока могут работать импульсные регуляторы.Благодаря этому значительно уменьшаются помехи в цепи.

Схема простого регулятора

Схема регулятора мощности для симистора состоит из одной микросхемы и набора тиристоров. Они могут располагаться в цепи после конденсатора или сразу на плате. Переменный резистор, как правило, есть в приборе. Он отвечает за вмешательство в работу контроллера. Резистор напряжения способен выдерживать самое разнообразное. В этом случае многое зависит от свободы действий устройства.Резистор, который расположен за конденсатором, предельное сопротивление требуется выдерживать на уровне 3 Ом. В свою очередь, выходной элемент настроен немного послабее. Кроме того, в цепи регулятора мощности симистора есть предохранитель.

Регуляторы на симисторе «КУ208г»

Этот симистор отличается тем, что способен работать с коммутируемым переменным током. При этом напряжение в системе поддерживается на уровне 5 А. Регулятор мощности на симисторе «КУ208г», как правило, компактен и может использоваться в различной технике.В качестве примера можно привести паяльник.

Регуляторы мощности для паяльника

Регулятор мощности паяльника на симисторе в микросхеме не нужен. В стандартной схеме два транзистора. Они устанавливаются в некоторых случаях биполярного типа. Первый из них должен располагаться непосредственно возле источника питания. В это время второй биполярный транзистор находится за симистором.

Отличительной особенностью таких регуляторов считается наличие маломощных стабилитронов.Чаще всего эти элементы на рынке можно встретить с маркировкой «КД2». Это указывает на то, что стабилитрон имеет максимальное напряжение 2 В. В свою очередь, переменный ток в системе может быть максимум 5 А. Конденсатор в цепи всегда установлен только на один. В некоторых случаях припаяйте его сразу после биполярного транзистора.

Этот элемент в устройстве отвечает за преобразование тока. Резисторы регулятора мощности на симисторе другого типа. Аналоговые элементы при максимальном входном сопротивлении выдерживают 2 Ом.В свою очередь, для стабилитронов устанавливаются резисторы переменного типа с повышенной частотой. Они умеют работать в обоих направлениях.

Схема моделей пылесосов

Регулятор мощности на симисторе пылесоса состоит из набора диодов, а также резисторов с одним конденсатором. Для обеспечения хорошей проводимости симистор в некоторых случаях снабжен ребристым радиатором. Это дополнительно помогает стабилизировать напряжение. Конденсаторы в системе справляются с импульсами.В транзисторах в основном используется кремний.

Они могут пройти только через себя D.C. Сопротивление на выходе в системе не должно превышать 4 Ом. В противном случае на симистор подается большое напряжение. Многое в этой ситуации также зависит от коэффициента передачи тока. На него воздействует коллектор вместе с установленным эмиттером.

Разница между фазорегуляторами

Микрочипы в таких регуляторах используются низкочастотные. Это необходимо для быстрого процесса конвертации.Стабилитроны используются довольно редко. Смена фазы в системе происходит за счет перевода конденсатора в верхнее положение. Для стабилизации напряжения фазорегулятор мощности на симисторе имеет два тиристора, и они работают по попарной цепи. Из-за высокой частоты на катоде диоды припаиваются очень редко.

Схема бесшумного контроллера

Простой бесшумный регулятор мощности ontriac, как правило, применяется на устройствах с напряжением более 200 В.В этом случае микросхемы используются двухканальные. Рядом с конденсаторами установлена ​​система диодов. Переменные транзисторы в схеме не используются. Максимальное сопротивление конденсатора требуется выдерживать до 3 Ом. Напрямую мощность устройства контролируется приемником.

При этом изменяется скважность импульса. Конденсаторы в системе пропускают через себя только постоянный ток. Частота тактового транзистора зависит от коэффициента деления счетчика.Микроконтроллеры в системе используются для подавления помех. Частота импульсов на входе зависит исключительно от регистра ограничения.

Регуляторы с симистором «TS80»

Простой регулятор мощности на симисторе «TS80» Обладает хорошей теплопроводностью. Процесс трансформации осуществляется непосредственно в трансформаторе. Предельная частота в этом случае зависит только от напряжения в сети. В целом регуляторы с симисторами такого типа более надежны, и могут работать долго.Однако и у них есть недостатки.

В первую очередь следует отметить небольшой уровень стабилизации. Это связано с большой нагрузкой на тиристор. Чтобы справиться со стабильностью тока, в некоторых случаях применяют специальные фильтры. Однако для бытовой техники это не помогает. Таким образом, лучше всего использовать регуляторы этого типа на приемниках и других низкочастотных устройствах.

Модели с симистором «TS 125»

Регулятор мощности на симисторе «TS 125» Используется для мощных источников питания.Он выдерживает максимум 4 Ом. В этом случае проводимость тепла находится на высоком уровне. Кроме того, следует отметить, что симисторы этого типа оснащены индикаторами. Эти устройства предназначены для борьбы с электромагнитными помехами.

В некоторых случаях система отображения активна. Это предполагает использование низкочастотного регулятора. Этот элемент в системе работает в паре с разделителями. Они пропускают через себя только переменный ток. В случае отрицательной полярности конденсаторы включаются.Для переключения на сетевое напряжение имеется ряд транзисторов.

Устройства дистанционного управления

Дистанционное управление мощностью на симисторе в Контроллере должен быть установлен обязательный заказ. Диоды в системе устанавливаются только аналогового типа. Микросхема для нормальной работы конденсаторов требует трех каналов. Резисторов, как правило, нужно всего три. Один из них нужен для передачи и стабилизации сигнала с трансформатора. Остальные два резистора устанавливаются напротив конденсаторов.В этом случае амплитуда помехи значительно снижается, и это следует учитывать.

Дополнительно в регуляторах есть преобразователи. Номинальную нагрузку эти элементы выдерживают в 5 А. Переменные резисторы в схеме используются довольно редко. Это связано с тем, что источники питания высоковольтные. Системы фильтрации устанавливаются исключительно перед трансформатором. В этом случае коэффициент точности будет максимальным.

Регуляторы с плавным пуском

Для плавного пуска в регулятор мощности вставьте специальный блок.Его основная задача - двойная интеграция. Это происходит путем определения предельного значения полярности. Система отображения в регуляторах встречается довольно редко. Такие устройства можно использовать при температуре от -20 до +30 градусов. Источник питания системы может быть блоком до 10 В. Чувствительность устройства зависит исключительно от типов резисторов. Если вы используете в системе аналоговые элементы, текущее преобразование выполняется намного быстрее.

Синфазное напряжение стабилизатора может поддерживаться на уровне 5 В.Конденсаторы в приборе установлены с ограничивающим сопротивлением 6 Ом. В этом случае их емкость должна быть не менее 2 пФ. Все это позволит существенно стабилизировать выходное напряжение. Диоды в регуляторе распаяны на малую мощность. Максимальную нагрузку они должны выдерживать на уровне 5 А.

Планы регуляторов для конфорок

Для таких приборов, как конфорки, резисторы требуют токоограничения. Стабилитрон в системе используется только один. Транзисторов в устройстве может быть до трех единиц.В этом случае многое зависит от типа блока питания. Если ограничивающее напряжение меньше 30 В, требуется только один транзистор в начале схемы. Сопротивление он должен выдерживать на уровне 5 Ом. Симистор в системе установлен между двумя конденсаторами. Ток поступает в первичную обмотку только после того, как пройдет через трансформатор.

Учебное пособие по схемам для проектов

Basic Triac-SCR

от Льюиса Лофлина

На этой странице обсуждаются базовые симисторы и тиристоры.Симистор - это двунаправленный трехконтактный двойной тиристорный (SCR) переключатель. Это устройство может переключать ток в любом направлении, подавая небольшой ток любой полярности между затвором и вторым главным контактом.

Симистор изготавливается путем объединения двух тиристоров в обратном параллельном соединении. Он используется в приложениях переменного тока, таких как регулирование яркости света, управление скоростью двигателя и т. Д. Симисторы также могут использоваться в микроконтроллере управления мощностью со схемой фазовой синхронизации.

Если кто-то не знаком с диодами и выпрямлением переменного тока, см. Следующее:


Включение / выключение диода

На рисунке выше изображен кремниевый управляемый выпрямитель (SCR) или тиристер. Это диод с «затвором». SCR не только проводит в одном направлении, как любой другой диод, но и затвор позволяет отключать и отключать саму проводимость. Когда переключатель ON нажат, SCR включается, и ток течет с отрицательного на положительный через SCR и нагрузку.После включения SCR будет оставаться включенным до тех пор, пока не будет нажат выключатель, нарушающий текущий путь.

Обратите внимание, что переключатель ON называется «нормально разомкнутым» (Н.О.) и при нажатии замыкает (замыкает) соединение. Выключатель OFF, называемый нормально замкнутым (N.C.), разрывает (размыкает) соединение при нажатии. Оба они кнопочные.

В цепи над нагрузкой есть лампа постоянного тока. Нажмите переключатель S1, и включатся и будут продолжать оставаться включенными, пока не будет нажат переключатель S2.

В этом примере мы разместили диод последовательно с переключателем включения / выключения затвора. Когда вы нажимаете переключатель ON, двигатель запускается, загорается свет и т. Д. Когда переключатель отпускается, питание прекращается без использования переключателя OFF. Это связано с тем, что входное напряжение переменного тока возвращается к нулю вольт на 180 и 360 градусов, отключая SCR. И как диод, SCR проводит только половину цикла.

В этом примере схемы мы разместили переменный резистор (потенциометр) последовательно с диодом затвора.(Это также было известно как ручка регулировки громкости старого типа.) «Поворачивая ручку», мы можем изменить точку срабатывания при включении SCR только части полупериода или, если сопротивление достаточно, выключить SCR.


Это иллюстрирует процесс с двухполупериодным нефильтрованным постоянным током.

В другом примечании мы можем управлять двухполупериодным пульсирующим нефильтрованным постоянным током с помощью тиристора. См. Также «Основы выпрямления и фильтрации переменного тока»

.

Подробнее см. Что такое светоактивированный кремниевый управляемый выпрямитель? (LASCR) и спецификация оптопары h21C6 SCR.(PDF файл)

Выше представлена ​​практическая схема тестирования SCR. Лампа загорится только при нажатии Sw3. Лампа будет иметь половинную яркость, потому что тиристор действует как полуволновой выпрямитель. R4 может находиться в диапазоне от 100 до 470 Ом. Лампа должна быть полностью выключена, если выключатель не нажат или устройство не неисправно. (Полностью или частично закорочено.)

Эта схема также хороша для сравнения различных тиристоров одного и того же номера детали. Например, однажды у меня была неисправная печатная плата с шестью тиристорами, но один тиристор из шести при работе включался при совершенно другом напряжении срабатывания, чем остальные пять.Лампа имела другой уровень яркости, чем остальные пять. Замена этого одного SCR устранила эту очень дорогую печатную плату.


Знакомство с симисторами

Симистор - это твердотельный переключатель переменного тока. Небольшой ток на клемме затвора может переключать очень большие токи переменного тока. Думайте о симисторе как о двух последовательно соединенных тиристорах, в которых катод одного тиристора соединен с анодом другого и наоборот. Ворота соединены между собой. Поскольку у нас есть две конфигурации типа SCR, можно переключать оба полупериода.

Примечание: я видел бумажные примеры использования двух тиристоров, расположенных один за другим, в качестве симистора, но это может не работать так же! Остерегайтесь этого.

В приведенном выше примере замыкание переключателя приведет к включению симистора. Идея состоит в том, чтобы использовать небольшой переключатель малой мощности для управления устройствами большой мощности, такими как двигатели или нагреватели. Опасность здесь заключается в том, что на самом переключателе присутствует высокое напряжение переменного тока. Это также может быть большой проблемой для твердотельных контроллеров, если они не используют небольшое реле, которое некоторые микроволновые печи делают именно так.

Выше представлена ​​практическая схема тестирования TRIAC. Нажмите любой переключатель, и лампа включится с половинной яркостью. Сожмите оба вместе на полную яркость. Это позволяет тестировать обе стороны SCR по отдельности. Яркость должна быть одинаковой для обеих сторон, иначе TRIAC неисправен. Когда ни один переключатель не нажат, лампа должна быть полностью выключена. R1 и R2 должны быть в диапазоне от 100 до 470 Ом.


Схема симистора с лучшим откликом и диак.

Ключ к успешному срабатыванию симистора состоит в том, чтобы убедиться, что затвор получает свое напряжение срабатывания от главной клеммы 2 цепи (основной клеммы на противоположной стороне символа TRIAC от клеммы затвора).Идентификация клемм Mt1 и Mt2 должна выполняться по номеру детали TRIAC со ссылкой на технический паспорт или книгу.

DIAC, или «диод переменного тока», представляет собой триггерный диод, который проводит ток только после того, как его напряжение пробоя было мгновенно превышено. Когда это происходит, сопротивление DIAC резко уменьшается, что приводит к резкому уменьшению падения напряжения на самом DIAC, что приводит к резкому увеличению тока, протекающего через затвор симистора.

Это обеспечивает быстрое и чистое резание TRIAC.DIAC остается в режиме проводимости до тех пор, пока напряжение не упадет до очень низкого значения, намного ниже напряжения срабатывания. Это называется удерживающим током. Ниже этого значения диак снова переключается в состояние высокого сопротивления (выключено). Это двунаправленное поведение, то есть обычно одинаковое как для положительного, так и для отрицательного полупериодов.

Большинство DIAC имеют напряжение пробоя около 30 В. Таким образом, их поведение в некоторой степени похоже на (но гораздо более точно контролируется и происходит при более низких напряжениях, чем) неоновая лампа.

ЦИАП

не имеют электрода затвора, в отличие от некоторых других тиристоров. Некоторые TRIAC содержат встроенный DIAC последовательно (я никогда не видел такого в полевых условиях) с терминалом «затвора» TRIAC для этой цели. ДИАП также называют симметричными триггерными диодами из-за симметрии их характеристической кривой. Поскольку DIAC являются двунаправленными устройствами, их выводы помечены не как анод и катод, а как A1 и A2 или Mt1 («Главный вывод») и Mt2. Большинство листов спецификаций не удосуживаются маркировать A1 / A2 или Mt1 / Mt2.

Также см. Как проверить DIAC


Диммер для коммерческих ламп в странах с напряжением 220 В. Br100 - диак.

Диак обеспечивает более чистое переключение симистора. Диоды - это специализированные диоды Шокли, соединенные спина к спине.


Демпферы

Между МТ1 и МТ2 часто используется демпферная цепь (обычно RC-типа). Демпферные цепи используются для предотвращения преждевременного срабатывания, вызванного, например, скачками напряжения в сети переменного тока или индуктивными нагрузками, такими как двигатели.Кроме того, резистор затвора или конденсатор (или оба параллельно) могут быть подключены между затвором и MT1 для дальнейшего предотвращения ложного срабатывания. Это может увеличить требуемый ток запуска и, возможно, задержку выключения при разрядке конденсатора.

В этой схеме выше "горячая" сторона линии переключается, а нагрузка подключается к холодной или заземленной стороне. Резистор на 100 Ом и конденсатор 0,1 мкФ предназначены для демпфирования симистора. Эти компоненты должны использоваться с индуктивными нагрузками, такими как двигатели, контакторы и т. Д.

Для получения дополнительной информации о вышеуказанном оптопаре см. Оптоизолятор серии moc30xx (файл в формате pdf)

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *