Синхронный генератор – Синхронный генератор переменного тока: устройство, принцип работы, применение

Содержание

О принципе работы синхронных генераторов: устройство и конструкция ротора

Электрогенератор (альтернатор) электротока переменного типа предназначается для процедуры преобразования кинетической и потенциальной энергии в электроэнергию. Ротор такой машины приводится в движение, а именно вращается, от двигателя первичного типа, в роли которого могут выступать ДВС (топливные двигатели), электродвигатели, турбины.

Внешний вид производственной синхронной генерирующей машины переменного тока модели СГС-14-100-6

Внешний вид производственной синхронной генерирующей машины переменного тока модели СГС-14-100-6

Если альтернатор переменного тока характеризуется тем, что частота вращения его ротора совпадает с частотой вращения магнитного поля, то такие машины называются синхронными. Произвести расчет частоты вращения можно по формуле:

n = 60*f/p, где:

  • f – частота тока в электросети;
  • p – количество пар статорных полюсов.

Часто многие неосведомленные в области электроустановок люди задаются вопросом о том, какой принцип работы синхронного генератора.

Принцип работы СГ

Конструкция генерирующей машины переменного тока достаточна проста. Статор и ротор – это основные компоненты синхронного генератора (СГ).

Принцип действия синхронного генератора на основе взаимодействия магнитных полей статора и ротора

Принцип действия синхронного генератора на основе взаимодействия магнитных полей статора и ротора

Синхронный альтернатор, в основном, вырабатывает электроэнергию тогда, когда ротор синхронного генератора движется по кругу вместе с магнитным полем, линии которого встречаются в неподвижной обмотке статора. Поле образуется посредством возбуждения дополнительным устройством, например:

  • вспомогательным генератором;
  • аккумулятором;
  • разнообразными энергетическими преобразователями;
  • и другими энергоисточниками.

Стоит отметить, что процесс преобразования энергий в СГ может происходить и по-другому – вращающееся части проводникового элемента могут располагаться в обездвиженном магнитном поле. В этом случае возникает трудность токосъема через щеточно-коллекторный узел электрической машины, какой соединяет ротор с цепями ее неподвижной части. Для генераторных машин невысокой мощности подобная схема может успешно применяться. Зачастую она встречается в установках передвижного типа.

В рассматриваемом генераторе продуцируется электродвижущая сила (ЭДС), расчет которой совершается по формуле:

e = 2*π*B*l*w*Dn, где:

  • π – константа;
  • B – индукция магнитного поля;
  • l – длина паза статорного элемента;
  • w – число витков в обмотке статорного компонента;
  • Dn – диаметр статора внутри.

Электроэнергетика с такими устройствами построена, в основном, на электронапряжении в диапазоне 15 000-40 000 В. Энергообмен через коллектор альтернатора затруднителен. К тому же обмоточная катушка подвижного типа подвергается ударным нагрузкам большой силы и вращательным движениям с попеременной скоростью, что формирует проблематику с изоляционной составляющей. По этой причине якорные элементы производят обездвиженными, так как именно через них пропускается основная масса энергии.

Мощность устройства-возбудителя обычно не превосходит 4-5% от совокупной производительной мощности синхронного генератора – это дает возможность пропускать электроток через динамический узел.

Для информации. В механизмах переменного тока малой мощности (до нескольких кВт) роторный элемент изготавливается с магнитными деталями постоянного типа (ферритовыми, неодимовыми, полимерными магнитопластами и другими). В них не нужно устанавливать подвижные контакты, однако из-за этого существуют трудности с регулировкой выходного напряжения.

Устройство СГ

Статор СГ имеет почти такое же устройство и принцип функционирования, как и у асинхронного варианта. Его железные компоненты компилируются из стальных пластин (сталь применяется электротехнического назначения), которые отделаются друг от друга слоями изоляции. Обмотка переменного электротока располагается в его пазах. Провода обмоток отделяются друг от друга изолирующим слоем и закрепляются надежно, так как через них вводится нагрузка. Ротор может исполняться без выпирающих полюсов либо с ярко выраженными полюсами.

На заметку. Наибольшую популярность имеет трехфазный синхронный генератор, применяемый во многих областях жизнедеятельности человека и предприятий. Однофазные варианты обычно применяется в быту.

Основные типы СГ: а – с ротором, у которого выступают полюса; б – с не явно полюсным ротором

Основные типы СГ: а – с ротором, у которого выступают полюса; б – с не явно полюсным ротором

Синхронные генераторы с явно полюсным ротором производятся для тихоходных машин, к примеру, для установок с гидротурбинами. А СГ с не явно полюсными роторами подходят для механизмов переменного тока, вращающихся с высокой скоростью.

Синхронные генерирующие устройства могут работать в двух режимах: двигательном либо генерирующем переменный электроток. Здесь важно то, какой метод охлаждения применяется, так как генерация чего-либо всегда более требовательна. В основном, на вал монтируются крыльчатки, какие охлаждают ротор с двух сторон воздухом, проходящем через фильтрующий элемент. Потоки воздуха в такой системе охлаждения вращаются одни и те же. При работе СГ в усиленном режиме подобная система нежелательна.

Важно! Эффективнее при высоких нагрузках применять в качестве охлаждающего агента водород, какой более чем в 14 раз легче воздуха.

Внутреннее устройство СГ переменного тока

Внутреннее устройство СГ переменного тока

Обмотки рассматриваемого генератора отводятся концами на его распредкоробку. Трёхфазная машина имеет иное соединение обмотки – отвод совершается звездой или треугольником.

Преимущественно все синхронные генерирующие устройства поддерживают синусоидальное переменное электронапряжение. Этого можно достичь посредством изменения формы наконечников на полюсах и особым месторасположением витков в пазах не явно полюсного ротора.

Реакция якоря

В обмотках статорного элемента при присоединении выхода с наружной нагрузкой начинает протекать электроток. Образующееся при этом силовое магнитное поле совмещается с полем, что формируется роторным элементом. Такое взаимодействие полей именуется реакцией якоря.

Реакция якоря в СГ при разнородных видах нагрузки

Реакция якоря в СГ при разнородных видах нагрузки

При активной нагрузке электроток и ЭДС имеют одни и те же фазы. Предельная сила электротока проявляется в тот момент, когда полюса роторного элемента находятся на противоположной стороне от якорных обмоток. Главный магнитный поток и второстепенный поток, который формируется во время реакции якоря, перпендикулярны друг другу, а при сопоставлении формируют увеличенный итоговый поток, что увеличивает в тот момент ЭДС.

Нагрузка индуктивного вида, имея потоки, направленные навстречу друг к другу, наоборот, приводит к значительному снижению электродвижущей силы.

Нагрузка емкостного типа вызывает совмещение потоков, движущихся в одну сторону, итог – увеличение ЭДС.

Любое повышение нагрузки увеличивает влияние реакции якоря на выходное электронапряжение, которое из-за этого изменяется в ту или иную сторону, что крайне нежелательно в электросетях. Практично такой процесс можно контролировать: просто изменять возбудитель, что снизит уровень влияния реакции якоря на главное силовое поле.

Режимы работы СГ

Нормальный режим работы СГ можно охарактеризовать любым числом рабочих периодов, какой угодно длительности, при которых главные параметры не выходят за диапазон допустимых значений. При таком режиме работы допустимы отклонения электронапряжения на выходе и частоты в пределах 4-5% и 2,5% от номинального значения, коэффициентов мощности и тому подобные. Допуски на отклонения задаются нормативными документами и определяются нагревом машин либо же гарантируются фирмой-производителем.

Бытовой топливный синхронный генератор отечественного производства, модель «Интерскол ЭБ-5500» на 5,5 кВт

Бытовой топливный синхронный генератор отечественного производства, модель «Интерскол ЭБ-5500» на 5,5 кВт

Нормальные рабочие режимы недопустимы для долгого функционирования устройства при таких обстоятельствах, как перевозбуждение или недовозбуждение, переход в режимы асинхронного типа, перегрузки. На возникновение таких обстоятельств влияют следующие отклонения в электросети:

  • неравномерность фазной загрузки;
  • короткое замыкание;
  • нагрузки попеременного действия.

Стоит отметить, что на нормальное функционирование механизма воздействует подключенная к нему электросеть, в которой любые нарушения работоспособности отдельно взятых источников потребления вызывают искажение формы и несимметрию электросигнала.

Диаграмма мощностей СГ

Диаграмма мощностей СГ

Важно! Длительная работа генерирующего энергию устройства допустима при разнице токов на фазах турбогенератора до 10% и водяных генераторов, синхронных компенсирующих машин до 15-20%.

Искривление синусоиды на СГ может случаться из-за высокомощных преобразователей, выпрямляющих устройств и прочих.

Необходимо учесть, что нормальное функционирование синхронных устройств возможно только при качественной работе охлаждающей системы. Так, при затратах охлаждающего агента в объеме более 70% от номинального значения, должна срабатывать предупреждающая сигнализация о том, что устройство нужно отключить от сети, в противном случае может произойти выход оборудования из строя. Когда расход охлаждающего агента уменьшается на 50%, то устройство должно разгрузиться порядка двух минут, после чего отключиться за максимум четыре минуты.

Характерные черты СГ

СГ обладают нижеследующими характерными чертами:

  • при нулевой нагрузке (холостом ходе), когда якорная обмотка находится в не замкнутом виде, задается зависимость электродвижущей силы от электротоков возбуждения, а также устанавливается значение уровня намагничивания сердечников генератора;
  • выходное электронапряжение зависит от нагрузочных электротоков – этот признак является внешней характеристикой СГ;
  • регулировочные характеристики синхронной машины проявляются в зависимости возбуждающих электротоков от нагрузочных аналогов при поддерживании установленных параметров на выходе в автоматическом режиме.

Синхронные генераторы нашли широкое применение в промышленности и энергообеспечении, так как имеют простую конструкцию, понятный принцип работы и могут выдерживать кратковременные перегрузки.

Для правильной эксплуатации и проведения ремонтных работ над СГ переменного тока необходимо знать их принцип работы (одинаковое по частоте вращение ротора и магнитного поля) и устройство. Эти знания пригодятся инженерам производственных предприятий и специалистам в области энергетики, а также обычным людям, которые используют подобную технику в бытовых целях.

Видео

amperof.ru

Устройство, принцип действия и конструкция синхронного генератора, режимы работы

Синхронным генератором (СГ) называют устройство, выполняющее функцию трансформации механической энергии в электрическую. Принцип работы и устройство синхронного генератора достаточно просты и надежны. Такое энергетическое оборудование востребовано для использования в мобильных авторемонтных мастерских, для ремонта и обслуживания станков-качалок, спецмашин нефтегазовой отрасли, на ГЭС, ТЭС, АЭС, в транспортных системах.

Основные конструктивные элементы

Основные части синхронного генератора: неподвижная — статор, вращающаяся — ротор, представляющая собой электромагнит, и две основные обмотки.
  1. Одна обмотка статора («обмотка возбуждения») запитывается от источника постоянного тока, функцию которого выполняет электронный регулятор напряжения. Регулятор используется в генераторах с самовозбуждением. Принцип самовозбуждения основан на том, что первоначальное возбуждение осуществляется с использованием остаточного магнетизма магнитопровода СГ. При этом энергия переменного тока поступает от обмотки статора СГ. Комплекс из понижающего трансформатора и полупроводникового выпрямителя-преобразователя трансформирует ее в энергию постоянного тока.
  2. Ток, протекающий в обмотке возбуждения статора, наводит ЭДС на обмотке возбуждения якоря генератора. Статор возбудителя, как конструкционный элемент может отсутствовать, и тогда его функции выполняют постоянные магниты.
  3. Обмотка ротора, в которой индуцируется ЭДС, называется обмоткой возбуждения якоря, или якорем возбудителя.
  4. Переменное напряжение, возникающее на обмотке якоря возбудителя, выпрямляется в блоке вращающихся диодов, которые так же называются словосочетанием «диодный мост», и превращает силовую обмотку ротора во вращающийся электромагнит, который наводит ЭДС в силовой обмотке статора СГ.
  5. Силовые обмотки и обмотки возбуждения монтируются в пазы якоря и ротора.
  6. Генераторы по типу выходного напряжения делятся на одно-, или трехфазные. Основное распространение в промышленности имеют трехфазные синхронные генераторы, а в быту — однофазные.

В конструкцию статора входит корпус, внутри которого расположен сердечник, или пакет, собираемый из листов электротехнической стали особой формы. На качество электрического тока влияют такие факторы как: цельность листов в пакете (бывают цельными или составными), качество и материал обмотки. Для обмотки применяется медный эмаль-провод, а в дешевых устройствах возможна замена меди на алюминий.

Роторы изготавливаются явнополюсными или неявнополюсными.

  • Явнополюсные роторы предназначены для синхронных генераторов, работающих с двигателями внутреннего сгорания с низкой частотой вращения — 1500 и 3000 об/мин.
  • Неявнополюсные роторы востребованы в высокоскоростных (более 3000 об/мин) механизмах переменного электрического тока высокой мощности. Обычно их размещают на одном валу с паровыми турбинами. Такие СГ называют «турбогенераторы».

Определение скорости вращения

Понятие «синхронный» означает, что число оборотов находится в прямой математической зависимости от частоты тока. Эта зависимость определяется по формуле n = 60*f/p, где:

  • n — скорость вращения, об/мин;
  • f — частота, в бытовой электрической сети она равна 50 Гц;
  • p — количество пар полюсов.

Принцип работы СГ

Принцип работы синхронного генераторы: возбуждение ЭДСРабота синхронной машины в режиме электродвигателя

Принцип действия машины в режиме синхронного генератора:

  1. При пропускании через обмотку возбуждения постоянного тока образуется стабильное во времени магнитное поле с чередующейся полярностью.
  2. При вращении магнитного поля относительно проводников обмотки якоря возбуждаются переменные ЭДС.
  3. Переменные ЭДС суммируются, образуя ЭДС фаз. Трехфазная система образуется тремя одинаковыми обмотками, размещаемыми на якоре под электрическим углом друг к другу, равным 120°.

В случаях, если централизованное электроснабжение имеет недостаточную мощность или отсутствует, как, например, на удаленных стройплощадках, нефтегазодобывающих объектах, морских и воздушных судах, СГ в составе с двигателем внутреннего сгорания функционируют в автономном режиме. При необходимости создания мощных источников питания синхронные двигатели включают на параллельную работу. Такой способ включения позволяет более полно использовать мощность каждой машины и при необходимости выводить отдельные СГ в ремонт без прекращения эффективного электроснабжения потребителей.

Второй режим работы синхронной машины — выполнение функций электродвигателя. Обычно СГ востребован в качестве двигателя в высокомощных установках более 50 кВт. Для работы в режиме электродвигателя обмотку статора подключают к электросети, а обмотку ротора — к источнику постоянного тока. Вращающий момент возникает при взаимодействии вращающегося магнитного поля СГ с постоянным током обмотки возбуждения.

www.litenergo.ru

Синхронный генератор. Устройство генератора и принцип действия :: SYL.ru

Синхронный генератор – машина (механизм) переменного тока, которая преобразовывает определенный тип энергии в электроэнергию. К таким устройствам относят электростатические машины, гальванические элементы, солнечные батареи, термобатареи и т. п. Использование каждого вида из перечисленных приборов определяется их техническими характеристиками.

синхронный генератор переменного тока

Область применения

Применяют синхронные агрегаты как источники электроэнергии переменного тока: используют на мощных тепло-, гидро- и атомных станциях, на передвижных электрических станциях, транспортных системах (машинах, самолетах, тепловозах). Синхронный агрегат способен работать автономно – генератором, который питает подключаемую к ней какую-либо нагрузку, либо параллельно с сетью - в нее подключены иные генераторы.

устройство синхронного генератора

Синхронный агрегат может включать устройства в тех местах, где нет центрального питания электрических сетей. Данные приборы можно применять в фермерских хозяйствах, которые расположены далеко от населенных пунктов.

Описание прибора

Устройство синхронного генератора обусловлено наличием таких элементов, как:

  • Ротор, или индуктор (подвижный, вращающийся), в который входит обмотка возбуждения.
  • Якорь, или статор (недвижимый), в который включается обмотка.
  • Обмотка агрегата.
  • Переключатель катушки статора.
  • Выпрямитель.
  • Несколько кабелей.
  • Структура электрического компаундирования.
  • Сварочный аппарат.
  • Катушка ротора.
  • Регулируемый поставщик постоянного электротока.

Синхронный генератор работает в качестве генераторов и моторов. Он может переходить от графика работы генератора к графику двигателя – это зависит от действия вращающей либо тормозящей силы прибора. В графике генератора в него входит механическая, а исходит электроэнергия. В графике двигателя в него входит электрическая, а исходит механическая энергия.

устройство генератора

Прибор включается в цепь переменного тока разного типа нелинейных сопротивлений. Синхронные агрегаты являются генераторами переменного тока на электростанциях, а синхронные моторы используются тогда, когда необходим двигатель, что работает с постоянной крутящейся частотой.

Принцип работы агрегата

Работа синхронного генератора осуществляется по принципу электромагнитной индукции. Во время холостого движения якорная (статорная) катушка разомкнута, поэтому магнитное поле агрегата формируется одной обмоткой ротора. Когда ротор крутится от проводного мотора, у него присутствует постоянная частота, роторное магнитное поле перемещается через проводники обмоток фаз статора и осуществляет наводку повторяющихся переменных токов – электродвижущую силу (ЭДС). ЭДС носит синусоидальный, несинусоидальный либо пульсирующий характер.

трехфазный синхронный генератор

Обмотка возбуждения предназначается для создания в генераторе первоначального магнитного поля, чтобы навести в катушку якоря электрическую движущую силу. В случае если якорь синхронного генератора приводят в движение путем вращения с определенной скоростью, затем возбуждают источником постоянных токов, то поток возбуждения переходит через проводники катушек статора, и в фазах катушки индуцируются переменные ЭДС.

Трехфазное устройство

Трехфазный синхронный генератор – устройство, имеющее трехфазную структуру переменного тока, которая имеет огромное практическое распространение. Крутящийся электромагнит способен образовывать магнитный поток (переменный), который перемещается через три фазы обмотки имеющегося статора. И результатом этого является то, что в фазах происходит переменная ЭДС однотипной частоты, сдвиг фаз осуществляется под углом, равным одной третьей периода вращения магнитных полей.

Трехфазный синхронный генератор оборудован так, что на его валу якорь является электромагнитом и питается от генератора. Когда вал вращается, к примеру, от турбины, генератор поставляет электроток, в то время как обмотка ротора питается поставляемым током. От этого якорь становится электрическим магнитом и, осуществляя обороты с тем же валом, доставляет вращающееся электромагнитное поле.

синхронный генератор

Благодаря синхронным трехфазным гидро- и турбогенераторам производится большая часть электроэнергии. Синхронные агрегаты применяются и в качестве электромоторов в таких устройствах, у которых мощность превышает 50 кВт. Во время работы синхронного агрегата в графике двигателя сам ротор соединяют с источником постоянных токов, статор же подключают к трехфазному кабелю.

Структуры возбуждения

Любые турбо-, гидро-, дизельные генераторы, синхронные компенсаторы, моторы, производимые на данный момент, оснащаются новейшими полупроводниковыми структурами, такими как возбуждение синхронных генераторов. В данных структурах применяется метод выпрямления трехфазных переменных токов возбудителей высокой или промышленной частоты либо напряжения возбуждаемого агрегата.

Устройство генератора таково, что структуры возбуждения могут обеспечить такие параметры работы агрегата, как:

  • Первая стадия возбуждения, то есть начальная.
  • Работа вхолостую.
  • Подключение к сети способом точной синхронизации либо самосинхронизации.
  • Работа в энергетической структуре с имеющимися нагрузками или перегрузками.
  • Возбуждение синхронных приборов может быть форсировано по таким критериям, как напряжение и ток, имеющими заданную кратность.
  • Электроторможение аппарата.

Конструкция генератора

На данный момент производится много видов индукционных приборов, но устройство генератора создано так, что в них присутствуют одинаковые части:

  • Электромагнит либо постоянный магнит, что производит магнитное поле.
  • Обмотка с индуцирующейся переменной ЭДС.

Чтобы получить наибольший магнитный поток, во всех генераторах используют специальную магнитную структуру, которая состоит из двух стальных сердечников.

работа синхронного генератора

Обмотки, что создают магнитное поле, установлены в пазах одного из сердечников, а обмотки, индуцируемые ЭДС – в пазах другого. Один из сердечников - внутренний - взаимодействует со своей обмоткой и крутится вокруг горизонтального либо вертикального стержня. Такой стержень называется ротором. Недвижимый сердечник с обмоткой называется якорем (статором).

Характеристики прибора

Для оценки функции синхронных генераторов применяются те же самые характеристики, какие применяются в генераторах постоянного тока. Только некоторые условия различаются и дополняются.

Главные характеристики синхронного генератора такие:

  • Холостой ход – это зависимость ЭДС прибора от токов возбуждения, одновременно является показателем намагничивания магнитных цепей машины.
  • Внешняя характеристика – это зависимость напряжения устройства от токов нагрузки. Напряжение агрегата меняется по-разному в зависимости от увеличения нагрузки при различных ее видах. Причины, что вызывают такие изменения, следующие:
  1. Падение значения напряжения на индуктивном и активном сопротивлении обмоток устройства. Увеличивается по мере того, как увеличивается нагрузка прибора, то есть его ток.
  2. Изменение ЭДС агрегата. Происходит в зависимости от реакции статора. При активных нагрузках уменьшение напряжения будет вызвано падением напряжения во всех обмотках, потому что реакция статора влечет за собой увеличение ЭДС генератора. При активно-емкостных видах нагрузки эффект намагничивания вызывает увеличение текущего значения напряжения по сравнению с номинальным показателем.
  • Регулировочные характеристики синхронного генератора – это зависимость токов возбуждения от токов нагрузки. В процессе работы синхронных агрегатов нужно поддерживать постоянное напряжение на их зажимах независимо от характера и величины нагрузок. Этого несложно достигнуть, если регулировать ЭДС генератора. Это можно сделать путем изменения токов воз­буждения автоматически в зависимости от изменений нагрузок, то есть при активно-емкостной нагрузке нужно уменьшать ток возбуждения для поддержания постоянного напряжения, а при активно-индуктивной и активной — увеличивать.
возбуждение синхронных генераторов

Мощность синхронного генератора определяется такими значениями:

  • Соответствующим напряжением в электросети.
  • Своей ЭДС.
  • Углом измерения.

Прибор переменного тока

Синхронный генератор переменного тока – это электромашина, что преобразует механическую вращательную энергию в электрическую энергию переменных токов. Мощные генераторы таких токов устанавливают:

  • гидрогенератор турбогенератор – на электростанциях;
  • приборы переменного тока сравнительно небольшой мощности - в системах автономного энергоснабжения (газотурбинная электростанция, дизельная электростанция) и в частотных преобразователях (двигатель-генератор).

В настоящее время выпускается множество типов таких приборов, но все они имеют общее устройство главных элементов:

  • якорь (статор) – неподвижный;
  • крутящийся вокруг оси ротор.

В промышленных генераторах больших размеров вращается электромагнит, являющийся ротором. Одновременно с этим обмотки с наводящимися ЭДС, уложенные в пазы статора, остаются неподвижными.

В таких устройствах, как маломощный синхронный генератор, магнитное поле создается вращающимся постоянным магнитом.

Виды синхронных агрегатов

Существуют следующие виды синхронных генераторов:

  1. Гидро – в нем ротор имеет отличие за счет присутствия явно выраженных полюсов, применяется при производстве электроэнергии, осуществляет работу на малых оборотах.
  2. Турбо – имеет отличия неявнополюсным строением генератора, производится от турбин разного вида, скорость оборотов довольно высокая, достигает порядка 6000 оборотов в минуту.
  3. Компенсатор синхронный – данный агрегат поставляет реактивную мощность, применяется для повышения качества электроэнергии, чтобы стабилизировать напряжение.
  4. Асинхронный агрегат двойного питания – устройство генератора такого типа заключается в том, что в нем подключается как роторная, так и статорная обмотки от поставщика токов с различной частотой. Создается асинхронный график работы. Также он отличается устойчивостью графика работы и тем, что преобразовывает разные токи фаз и используется для решения задач с узкой специализацией.
  5. Двухполюсный ударный агрегат – работает в графике короткого замыкания, воздействует кратковременно, в миллисекундах. Также испытывает аппараты с высоким напряжением.

Разновидности агрегатов

Синхронный генератор (мотор) подразделяется на несколько моделей, которые предназначены для разнообразных целей:

  • Шаговые (импульсные) – применяются для приводов механизмов с циклом работы старт-стоп или устройств непрерывного движения с импульсным управляющим сигналом (счетчиков, лентопротяжных устройств, приводов станков с ЧПУ и др.).
  • Безредукторные – для применения в автономных системах.
  • Бесконтактные – применяются для работы в качестве электростанций на судах морского и речного флота.
  • Гистерезисные – используются для счетчиков времени, в инерционных электроприводах, в системах автоматического управления;
  • Индукторные моторы – для снабжения электроустановок.

Разделение по виду ротора

По роду прибора ротора устройство генератора подразделяется на:

  • Явнополюсное – с выступающими либо с явно выраженными полюсами. Данные роторы применяются в генераторах с тихим ходом, у которых скорость вращения не превышает 1000 оборотов в минуту.
  • Неявнополюсное – это ротор с формами цилиндра, у которого нет выступающих полюсов. Данные якоря бывают двухполюсными и четырехполюсными.

В первом случае ротор состоит из крестовины, на которой закрепляют сердечники полюсов или обмотки возбуждения. Во-втором – быстроходные агрегаты с числом оборотов 1500 либо 3000. Ротор сделан в виде цилиндра из стали довольно высокого качества с пазами, в них устанавливают обмотку возбуждения, состоящую из отдельных обмоток различной ширины.

www.syl.ru

описание, устройство агрегата, принцип работы

Генератор синхронный трехфазныйУниверсальный синхронный трёхфазный генератор представлен в виде специфического механизма переменного тока, который призван преобразовывать определённый тип энергии в электричество. Именно этот агрегат отвечает за работоспособность солнечных батарей, электростатических машин, а также гальванических элементов. На практике использование этих устройств определяется исключительно техническими характеристиками.

Краткое описание

Каждый специалист знает, что синхронный трёхфазный генератор зарекомендовал себя как высококачественный, мощный агрегат, который отличается специфической структурой переменного тока, а это высоко ценится в различных отраслях. Вмонтированный крутящийся электромагнит способен создавать магнитный поток, перемещающийся через три фазы обмотки используемого статора. В результате можно добиться того, что в пазах будет происходить переменная ЭДС однотипной частоты. Стоит отметить, что любой сдвиг фаз осуществляется исключительно под определённым углом, который равен одной трети вращения магнитных полей.

Принцип действия синхронного трёхфазного генератораСами производители отмечают тот факт, что генератор оборудован таким образом, чтобы якорь выступал в качестве мощного электромагнита. Если вал вращается от турбины, тогда в систему поступает электроэнергия, а обмотка ротора питается именно этим током. Во время такого взаимодействия якорь становится своеобразным электрическим магнитом, который крутится вместе с валом. Именно синхронные трёхфазные турбо- и гидрогенераторы производят больше всего полезной энергии.

Помимо этого, такие агрегаты успешно используются многими специалистами в качестве электромоторов для установок, где уровень мощности превышает отметку 50 кВт. Когда синхронный аппарат работает, то в графике двигателя источник постоянного тока соединяют с ротором, а вот статор подсоединяют к трёхфазному кабелю.

Разнообразие модельного ряда

В продаже сегодня можно встретить несколько видов синхронных генераторов, все они прекрасно справляются с теми или иными задачами. Благодаря этому каждый потребитель может выбрать наиболее подходящую модель устройства, которая будет обладать необходимыми эксплуатационными характеристиками. Большим спросом сегодня пользуются следующие виды генераторов:

  • Асинхронное устройство двойного типаАсинхронное устройство двойного типа. В таком генераторе подключена как роторная, так и статорная обмотки. График работы носит асинхронный характер.
  • Турбо. Агрегат отличается неявнополюсным строением генератора, изготавливается из турбин разного вида. К основным положительным характеристикам можно отнести высокую скорость оборотов, которая варьируется в пределах 6 тыс. в минуту.
  • Синхронный компенсатор. Такой агрегат является поставщиком реактивной мощности, благодаря чему активно используется для повышения качества электроэнергии.
  • Гидро. Ротор имеет существенное отличие от всех аналогов, так как присутствуют специальные полюса. Используется для выработки электроэнергии, работает исключительно на малых оборотах.

Устройство синхронного генератора

Качественный статор имеет аналогичный принцип действия с асинхронником. Его корпус собирается из отдельных пластин электротехнической стали, все детали разделены специальными изолирующими слоями. Обмотка переменного тока располагается в специальных пазах. Многочисленные преимущества синхронных трёхфазных генераторов повлияли на то, что они активно эксплуатируются в различных отраслях. Вся проводка обмоток изолируется и фиксируется, что особенно важно для безопасной работы, ведь этот раздел отвечает за подключение нагрузки.

Для тихоходных машин с гидравлическими турбинами изготавливаются высококачественные генераторы выступающего типа. А вот для тех узлов, которые функционируют по принципу скоростного вращения с переменным током, больше всего подходят прочные неявно выраженные полюса. Чтобы агрегат служил как можно дольше, нужно использовать правильное охлаждение. Чаще всего на вал монтируются специальные крыльчатки, которые регулируют уровень температуры ротора с обеих сторон. Весь воздух обязательно подлежит предварительной фильтрации. Если система относится к замкнутому типу, то через теплообменники проходит один и тот же воздух.

Устройство синхронного генератора

Отдельно стоит учесть, что для быстрого и своевременного охлаждения системы желательно использовать водород, который в 14,5 раз легче, нежели воздух. А вот принцип его эксплуатации самый простой.

Современные технологии позволяют изготавливать различные модели индукционных приборов, но в каждом таком изделии присутствуют одинаковые части:

  • Прочная обмотка с переменной ЭДС.
  • Мощный постоянный магнит или же обычный электромагнит, который производит требуемое рабочее поле.

Для того чтобы получить наибольший магнитный поток, во всех агрегатах предусмотрено наличие специализированной структуры, которая включает в себя два стальных сердечника. Рабочие обмотки установлены в специальные пазы. Один вмонтированный сердечник — внутренний, он крутится вокруг вертикального или же горизонтального стержня, который принято называть ротором. А вот недвижимый сердечник именуется якорем (статором).

Функциональные отличия агрегата

Чтобы устройство слаженно работало в течение долгих лет, нужно заранее ознакомиться с принципом действия синхронного генератора. Для оценки функциональных возможностей агрегата используются те же характеристики, что и для аппаратов с постоянным током. Основные различия касаются только некоторых эксплуатационных условий.

К основным характеристикам синхронного агрегата относятся следующие факты:

  • Снижение показателей напряжения наблюдается на активном и индуктивном сопротивлении обмоток устройства. Этот показатель может возрастать по мере того, как возрастает нагрузка самого агрегата.
  • Функциональные отличия агрегатаХолостой ход. ЭДС прибора во многом зависит от токов возбуждения, что одновременно свидетельствует о намагничивании специальных цепей машины.
  • Регулировочные параметры трёхфазного генератора. Производители отмечают тот факт, что токи возбуждения зависят от нагрузки. В процессе активной эксплуатации синхронного генератора необходимо постоянно поддерживать оптимальное напряжение на зажимах. Соблюдать это требование достаточно просто, главное, регулировать ЭДС агрегата. Мастер может менять ток возбуждения в автоматическом режиме. При активно-емкостной нагрузке необходимо снижать ток возбуждения для непрерывного поддержания постоянного напряжения.

Комплектующие элементы

Принцип работы и устройство синхронного генератора отличаются тем, что этот агрегат может использоваться в качестве мотора и генератора. Его функциональные возможности позволяют быстро переходить от графика двигателя к графику работы генератора — это во многом зависит от действия тормозящей или вращающей силы оборудования. Такой принцип работы высоко ценится среди квалифицированных специалистов. Стоит отметить, что в графике двигателя в систему входит электрическая энергия, а выходит механическая.

Устройство синхронного генератора включает в себя следующие элементы:

  1. Комплектующие элементыВысококачественная обмотка устройства.
  2. Ротор либо индуктор (вращающегося или подвижного типа). В комплекте к этому элементу обязательно прилагается обмотка возбуждения.
  3. Несколько разновидностей мощных кабелей, способных выдержать большую нагрузку.
  4. Удобный переключатель статорной катушки.
  5. Специальный выпрямитель.
  6. Высококачественная роторная катушка.
  7. Специальный поставщик постоянного тока, работа которого может контролироваться самим пользователем.

Трёхфазный генератор входит в состав цепи переменного тока нелинейных сопротивлений.

Принцип работы

Неправильно настроенное оборудование не сможет слаженно работать в течение длительного промежутка времени, преждевременные поломки могут возникнуть на фоне появления всевозможных перегрузок, из-за некачественного возбуждения сети, а также частых переходов в асинхронные режимы. Последний фактор чаще всего возникает по причине каких-либо отклонений в сети: нагрузки переменного типа, короткие замыкания, неравномерная загрузка фаз.

Стоит отметить, что стабильная работа генератора зависит и от качества подключённой сети, где любое нарушение функционирования отдельно взятых потребителей чревато несимметричностью и искажением сигнала. В такой ситуации может перегреваться как сама конструкция агрегата, так и его обмотка. Наличие мощных преобразователей и выпрямителей чревато искажением синусоида.

Принцип работы генератораЧтобы устройство правильно функционировало, нужно обеспечить ему правильное охлаждение. Если затраты воды достигают отметки 75% от номинала, тогда срабатывает предупредительная сигнализация. Когда расход охладителя находится в пределах 50%, система разгружается за две минуты. Этот вид генератора работает по принципу электромагнитной индукции. Якорная катушка находится в разомкнутом положении только на холостом ходу, из-за чего необходимое магнитное поле формирует исключительно обмотка ротора. Когда этот элемент крутится от проводного мотора, то у него наблюдается постоянная частота.

Первоначальное магнитное поле формируется за счёт обмотки возбуждения, а в катушку якоря поступает электрическая движущая сила. Если же якорь начал двигаться только благодаря вращению с определённой скоростью, то весь поток возбуждения переходит через проводники статорных катушек. В итоге происходит индицирование переменных ЭДС.

Используемые структуры возбуждения

Все крупные производители изготавливают генераторы, моторы и синхронные компрессоры, которые оснащены инновационными полупроводниковыми структурами, такими как возбуждение трёхфазных агрегатов. В таких ситуациях используется беспроигрышный метод выпрямления переменных токов.

Используемые структуры возбуждения

Принцип устройства генератора отличается тем, что структуры возбуждения могут обеспечить следующие параметры функционирования:

  • Работа аппарата на холостом ходу.
  • Электроторможение устройства.
  • Функционирование в определённой энергетической структуре с имеющимися нагрузками либо перезагрузками.
  • Возбуждение синхронного генератора может быть немного форсировано в связи с такими критериями, как ток и напряжение, которые отвечают заданной кратности.
  • Подключение к электросети с помощью точной самосинхронизации.

Сферы применения

Многофункциональные трёхфазные двигатели используются в различной технике. Высокая популярность обусловлена тем, что такие агрегаты обладают необходимой простотой и надёжностью конструкции, а также доступной ценой. Генератор не нуждается в особом уходе, быстро приступает к работе и хорошо переносит длительные нагрузки. Качественное энергоснабжение осуществляется именно по трёхфазной системе переменного тока, так как любое использование двигателей с постоянным током требует установки дополнительных агрегатов.

Сферы применения генераторовТрёхфазные генераторы считаются незаменимыми в приводах сверлильных и токарных станков, пилорамах и циркуляционных пилах, лифтах, лебёдках и подъёмных кранах. Помимо этого, такой агрегат широко востребован и в сельскохозяйственной отрасли, где основную работу выполняют барабанные молотилки, веялки, зернопульты, погрузчики. Синхронные установки используются как основной источник электроэнергии переменного тока на крупнейших станциях, на передвижных агрегатах и транспортных машинах (тепловозы, машины, самолёты). Генератор может функционировать как автономно, так и параллельно с сетью.

Конструкторы утверждают, что без такого оборудования не могут обойтись те станции, где отсутствует центральная подача электроэнергии. Особенно это касается крупных фермерских хозяйств, которые возведены вдали от населённых пунктов.

220v.guru

Синхронный генератор Википедия

Синхронная машина — это электрическая машина переменного тока, частота вращения ротора которой равна частоте вращения магнитного поля в воздушном зазоре.

Устройство[ | ]

Синхронный главный генератор тепловоза 2ТЭ25КМ: 1 — щётка, 2 — контактное кольцо, 3 — вал ротора, 4 — полюс ротора, 5 — статор

Основными частями синхронной машины являются якорь и индуктор (обмотка возбуждения). Как правило, якорь располагается на статоре, а на отделённом от него зазором роторе находится индуктор — таким образом, по принципу действия синхронная машина представляет собой как бы «вывернутую наизнанку» машину постоянного тока, переменный ток для обмотки якоря которой не получается с помощью коллектора, а подводится извне.

Якорь представляет собой одну или несколько обмоток переменного тока. В двигателях токи, подаваемые в якорь, создают вращающееся магнитное поле, которое сцепляется с полем индуктора, и таким образом происходит преобразование энергии. Поле якоря оказывает воздействие на поле индуктора и называется поэтому также полем реакции якоря. В генераторах поле реакции якоря создаётся переменными токами, индуцируемыми в обмотке якоря от индуктора.

Индуктор состоит из полюсов — электромагнитов постоянного тока[1] или постоянных магнитов (в микромашинах). Индукторы синхронных машин имеют две различные конструкции: явнополюсную или неявнополюсную. Явнополюсная машина отличается тем, что полюса ярко выражены и имеют конструкцию, схожую с полюсами машины постоянного тока. При не явнополюсной конструкции обмотка возбуждения укладывается в пазы сердечника индуктора, весьма похоже на обмотку роторов асинхронных машин с фазным ротором, с той лишь разницей, что между полюсами оставляется место, не заполненное проводниками (так называемый большой зуб). Неявнополюсные конструкции применяются в быстроходных машинах, чтобы уменьшить механическую нагрузку на полюса.

Для уменьшения магнитного сопротивления, то есть для улучшения прохождения магнитного потока, применяются ферромагнитные сердечники ротора и статора. В основном они представляют собой шихтованную (набранную из отдельных листов) конструкцию из

ru-wiki.ru

Принцип работы и устройство синхронного генератора переменного тока

Генератор (альтернатор) переменного тока предназначен для того, чтобы преобразовывать механическую энергию в электрическую. Его ротор вращается от первичного двигателя, в качестве которого может служить турбина, ДВС, электродвигатель.

Генератор

Как выглядит синхронный генератор

К синхронным машинам относятся те, у которых ротор имеет одинаковую частоту вращения с магнитным полем:

n = 60∙f/p, где

f – частота сети;

p – количество пар полюсов статора.

Принцип работы

Статор и ротор – главные составные части синхронного генератора (СГ).

Статор

Принцип действия синхронного генератора

Как изображено на рисунке, синхронный генератор чаще всего вырабатывает энергию, когда ротор вращается вместе с магнитным полем, линии которого пересекают статорную обмотку, расположенную неподвижно. Поле создаётся от дополнительного возбудителя (дополнительного генератора, аккумулятора и др. источников).

Процесс может происходить наоборот – вращающийся проводник находится в неподвижном магнитном поле. Здесь появляется проблема токосъёма через коллекторный узел. Для генераторов переменного тока небольшой мощности эта схема вполне подходит. Обычно она применяется в передвижных установках.

В СГ вырабатывается ЭДС:

e = 2πBlwDn, где

B – магнитная индукция;

l – длина паза статора;

w – количество витков в статорной обмотке;

D – внутренний диаметр статора.

Основная электроэнергетика построена на напряжении 15-40 кВ. Передача энергии через коллектор СГ затруднительна. К тому же подвижная обмотка подвержена ударным нагрузкам и вращению с переменной скоростью, что создаёт проблемы с изоляцией. Из-за этого, обмотки якоря делают неподвижными, поскольку через них проходит основная энергия. Мощность возбудителя не превышает 5% от общей мощности СГ. Это позволяет проводить ток через подвижный узел.

В машинах переменного тока небольшой мощности (несколько киловатт) ротор изготавливают с постоянными магнитами (неодимовыми и др.). Здесь не требуется установка подвижных контактов, но тогда возникают сложности с регулированием напряжения на выходе.

Устройство генератора

Статор имеет общий принцип действия с асинхронником и мало отличается от него. Его железо собирается из пластин электротехнической стали, разделённых изолирующими слоями. В пазах размещается обмотка переменного тока. Наиболее распространён трёхфазный синхронный генератор. Провода обмоток надёжно крепятся и изолируются, поскольку через них подключается нагрузка.

Ротор выполняется с явно выраженными полюсами или без выступающих полюсов.

Полюс

Виды полюсов синхронного генератора: а) – выступающие; б – неявно выраженные

Первые делаются для тихоходных машин, например, с гидравлическими турбинами. Для вращающихся с большой скоростью генераторов переменного тока принцип действия заключается в применении более прочных неявно выраженных полюсов.

СГ может работать в режимах двигателя или генератора переменного тока. Важно, какой здесь применяется способ охлаждения. Обычно на валу устанавливаются крыльчатки, охлаждающие ротор с обеих сторон. Воздух перед вентиляцией проходит через фильтр. В замкнутой системе циркулирует один и тот же воздух, проходя через теплообменники.

Более эффективным охлаждающим агентом является водород, в 14,5 раз более лёгкий, чем воздух. Принцип охлаждения у него аналогичный.

Обмотки генератора переменного тока выводятся концами на его распределительную коробку. Для трёхфазных – соединение производится в звезду или в треугольник.

Синхронный генератор преимущественно обеспечивает поддерживание синусоидального переменного напряжения. Это достигается изменением формы полюсных наконечников, а неявнополюсный ротор имеет определённое расположение витков в его пазах.

Реакция якоря

При соединении выхода с внешней нагрузкой в обмотках статора протекает электрический ток. Образующееся магнитное поле накладывается на поле, которое создаёт ротор.

Якорь

Реакция якоря при разных видах нагрузки

При активной нагрузке ток и ЭДС совпадают по фазам (изображено на рисунке выше – а). Он становится максимальным, если полюса ротора располагаются напротив якорных обмоток. Основной магнитный поток и образующийся от реакции якоря перпендикулярны и при наложении образуют несколько больший результирующий поток, увеличивающий ЭДС.

Индуктивная нагрузка приводит к снижению ЭДС, поскольку потоки направлены встречно (изображено на рисунке выше – б).

Ёмкостная нагрузка вызывает совпадение направлений потоков, в результате чего ЭДС увеличивается.

Увеличение нагрузки приводит к большей реакции якоря, приводящей к изменению выходного напряжения, что нежелательно. На практике этот процесс управляется изменением возбуждения, что снижает степень воздействия реакции якоря на основное поле.

Режимы работы СГ

Нормальные режимы работы характеризуются сколько угодно длительными периодами времени. В их число входят отклонения коэффициентов мощности, выходного напряжения до 5% и частоты до 2,5% от номиналов и т. п. Допуски на отклонения определяются нагревом агрегатов и задаются стандартами или гарантируются производителями.

А нормальные режимы функционирования неприемлемы для продолжительной работы и связаны с появлением перегрузок, с недовозбуждением, переходами в асинхронные режимы. Этот режим работы связан с отклонениями в сети: короткими замыканиями, нагрузками переменного действия, неравномерностью загрузки фаз.

На нормально работающее устройство оказывает влияние подключённая сеть, где нарушения функционирования отдельных потребителей вызывают несимметрию и искажения формы сигнала. Из-за этого могут перегреваться обмотки или конструкция генератора.

Продолжительная работа генератора возможна при различии фазных токов на турбогенераторах до 10% и до 20% на синхронных компенсаторах и гидрогенераторах.

Искажение синусоиды на СГ происходит из-за мощных выпрямителей, преобразователей, электротранспорта и т. д.

Важно для синхронных машин, чтобы нормально работала система охлаждения. Если затраты охлаждающей воды достигают 70% от номинала, срабатывает сигнализация предупреждения. Если расход охладителя снижается наполовину, устройство должно разгружаться за 2 мин, а затем отключаться не более чем за 4 мин.

Характеристики генератора:

  1. при холостом ходе, когда обмотка якоря не замкнута, устанавливается зависимость ЭДС от токов возбуждения, а также определяется показатель намагничивания сердечников машины;
  2. внешняя характеристика – зависимость выходного напряжения от нагрузочных токов;
  3. регулировочные характеристики, проявляющиеся в зависимости токов возбуждения от нагрузочных при автоматическом поддерживании заданных выходных параметров.

Виды генераторов

Генераторы отличаются способами возбуждения. В автономных установках на транспорте, в авиации, на судах применяется самовозбуждение за счёт остаточного намагничивания. Способ отличается надёжностью и удобством применения. Распространённым вариантом здесь является отбор энергии от статорной обмотки, которая проходит через понижающий трансформатор и полупроводниковый преобразователь ПП, в результате чего на обмотку возбуждения через коллектор поступает постоянный ток (изображено на рисунке ниже – а).

Схема

Принцип самовозбуждения синхронного генератора

Другая схема реализует самовозбуждение также путём подачи переменного тока со статорной обмотки через выпрямительный трансформатор ВТ и тиристор ТП в обмотку возбуждения ОВ (изображено на рисунке выше – б). Тиристором автоматически управляет регулятор возбуждения АРВ по сигналам от входа генератора СГ через трансформаторы напряжения ТН и тока ТТ. Блок защиты БЗ не допускает образования на обмотке возбуждения повышенного напряжения и перегрузочного тока.

Другая конструкция содержит дополнительную синхронную или асинхронную машину с возбуждением от статорных обмоток. На рисунке ниже изображена такая система СГ с обмоткой возбуждения ОВ и трёхфазной обмоткой статора. При этом ротор основного генератора имеет общий вал с якорными обмотками возбуждения ОВ1 и ОВ2 дополнительного подвозбудителя ПВ. Ток возбуждения регулируется реостатами r1 и r2. Устройство не уступает по быстродействию установкам с самовозбуждением, но конструкция у него более сложная, а габариты больше.

Схема

Система возбуждения с дополнительным генератором

Применяется также бесконтактная система возбуждения, где у СГ нет подвижных контактов для передачи энергии. Щётки с коллектором имеют только подвозбудитель ПВ, который питает пост

Схема

Бесконтактная система возбуждения синхронного генератора

оянным током обмотку I возбудителя В.

 

Видео. Синхронные машины

Можно отметить следующие современные направления в развитии технологии производства синхронных машин:

  • улучшение конструкций;
  • использование новых материалов, позволяющих уменьшить толщину изоляции и повысить мощность до 10%;
  • применения микропроцессоров для контроля состояния машин;
  • совершенствование режимов воздушного охлаждения.
Оцените статью:

jelectro.ru

СИНХРОННЫЙ ГЕНЕРАТОР

Синхронный генератор — это машина, преобразующая механическую энергию вращения в электрическую энергию переменного тока, где частота генерируемого тока пропорциональна скорости вращения ротора машины.

Синхронные генераторы делятся на генераторы повышенной и высокой частоты, гидротурбинные, паротурбинные генераторы.

1.    Генератор высокой частоты способен преобразовывать механическую энергию вращения в энергию переменного электрического тока высокой частоты. Его действие основано на изменении магнитного потока, которое достигается вращением ротора относительно неподвижного статора. Генератор высокой частоты применяется для питания антенн длинноволновых радиотелеграфных станций на расстоянии до 3000 м. Попытки применять их для более коротких волн развития не получилось, так как требовалось увеличение частоты.

Высокую частоту в данных генераторах удается получить за счет увеличения числа полюсов и скорости вращения ротора. По способу действия генераторы высокой частоты делятся на индуктирующие ток в самой машине; генераторы, частота тока которых повышается с помощью статических умножителей; генераторы, частота машины которых увеличивается путем использования переменного тока, наведенного обратным полем статора в обмотке ротора; генераторы, в которых создание переменного тока происходит благодаря изменению индуктивности или емкости самой машины.

2.    Гидротурбинный генератор — это генератор переменного или постоянного тока, который приводится в движение гидравлической турбиной. Гидротурбинный генератор — это синхронный генератор, ротор которого располагается на одном валу вместе с колесом турбины. Мощность такого генератора достигает 100 ООО кВт при скорости вращения до 1500 об/мин и напряжении до 16 ООО В. Синхронные гидротурбинные генераторы по своим размерам и весу больше всех других электрических машин. Только диаметр ротора достигает 15 м. Большое влияние на мощность турбины оказывает скорость ее вращения, маховый момент ротора и длина линии электропередачи. Чаще всего у синхронного гидротурбинного генератора вертикальная ось вращения, когда в подвесном подпятнике происходит осевое давление воды на рабочее колесо турбины. При этом подпятник располагается выше ротора генератора. В зонтичном синхронном генераторе подпятник располагается под ротором генератора и один из трех направляющих подшипников находится в турбине.

Обмотка переменного тока располагается на статоре, который охватывает закрепленный на валу явно полюсный ротор. Напор циркулирующего воздуха создается вентиляторами, расположенными на роторе, и самими полюсами ротора. Воздух передает свое тепло протекающей по трубкам воздухоохладителя воде. Для предотвращения поломки подпятника применяются воздушные или масляные колодочные тормоза, которые способны уменьшить время остановки до нескольких минут.

3.    Паротурбинный генератор — это синхронный генератор переменного или постоянного тока, приводимый в движение паровой турбиной. Данные генераторы чаще всего бывают четырехполюсные и двухполюсные со скоростью вращения от 1500 до 3000 об/мин. Ротор синхронного паротурбинного генератора представляет собой массивный стальной цилиндр с прямоугольными пазами, в которых находится обмотка возбуждения. Центробежная сила обмотки воспринимается клиньями и большими бандажами кованой стали, охватывающими торцовые части обмотки. Корпус статора стальной неразъемный. В отличие от гидротурбинного синхронный паротурбинный генератор имеет диаметр до 1 м, но длину ротора до 6,5 м. Для работы паротурбинных генераторов малых мощностей применяется протяжная система вентиляции, где необходимый напор воздуха создается центробежными роторными вентиляторами.

При замкнутой системе вентиляции воздухоохладители располагаются под самим генератором. Возбудитель паротурбинного генератора соединяется с ротором посредством гибкой муфты и способен питать обмотку возбуждения через контактные кольца.

Данный генератор состоит из неподвижного якоря-статора и вращающегося индуктора-ротора. На внутренней поверхности статора в его пазах располагается обмотка переменного тока. Статор генератора выполнен из тонкой электротехнической стали, которая изолирована лаковой пленкой или бумагой. Все эти стальные листы укрепляются в станине машины. Ротор находится внутри статора и представляет собой стальной цилиндр, в пазах которого размещается обмотка возбуждения постоянного тока.

В тихоходных машинах ротор имеет форму колеса или звезды. В синхронных генераторах малой мощности иногда применяют конструкции с расположенной обмоткой переменного тока на роторе и обмоткой возбуждения на статоре. Синхронный генератор переменного тока используется обычно в качестве источника переменного тока постоянной частоты, что возможно при неизменной скорости вращения ротора. При симметричной трехфазной нагрузке синхронного генератора переменного тока по обмоткам статора протекает ток также трехфазно и симметрично. Данный ток способен создавать свое магнитное поле, ось которого вращается со скоростью, равной скорости вращения ротора. Поэтому данный генератор и получил название «синхронный генератор», так как подчеркивает синхронность вращения ротора и магнитного поля статора. Характер взаимодействия вращающегося магнитного поля статора с полем электромагнитов ротора зависит от сдвига фаз между токами нагрузки и ЭДС генератора. При этом механическая мощность преобразуется в электрическую.

В современных электрических установках синхронные генераторы зачастую работают параллельно на общую нагрузку, что возможно при строго синхронной скорости вращения генераторов. Это вполне осуществимо благодаря свойству синхронной машины автоматически поддерживать синхронизм. При параллельной работе синхронных генераторов при изменении режима одного из них начинается ответная реакция стремящегося восстановить нарушенный режим уравнительного тока. При уменьшении или увеличении тока возбуждения ток статора из-за возникновения реактивной составляющей возрастает. При нарушении синхронизма торможение одной машины и ускорение другой уменьшается. Возвращение ротора к синхронному вращению сопровождается затухающими колебаниями его угловой скорости вращения около ее значения. Иногда эти колебания нарушают спокойную работу машины, что называется качание. При правильном выборе махового момента генератора качание можно устранить с помощью медных стержней в полюсных наконечниках ротора. Опасные процессы могут возникнуть и при коротком замыкании, когда ток в обмотке статора возрастает в 15 раз, это приводит к возникновению индуктированного тока в обмотке возбуждения или может привести к механическим повреждениям синхронного генератора. Синхронные генераторы переменного тока находят применение в современных электрических установках.

СИНХРОННЫЙ ГЕНЕРАТОР

  • Предыдущее: СИНХРОННАЯ МАШИНА
  • Следующее: СИНХРОННЫЙ КОМПЕНСАТОР
Категория: Промышленность на С


enciklopediya-tehniki.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о