Составление электрических схем устройств электрических сетей: Составление электрических схем устройств электрических сетей

Содержание

Составление электрических схем устройств электрических сетей

Десять правил составления электрических принципиальных схем

Назначение электрических принципиальных схем

Принципиальная схема — это схема электрических соединений, выполненная в развернутом виде. Она является основной схемой проекта электрооборудования производственного механизма и дает общее представление об электрооборудовании данного механизма, отражает работу системы автоматического управления механизмом, служит источником для составления схем соединений и подключений, разработки конструктивных узлов и оформления перечня элементов.

По принципиальной схеме осуществляется проверка правильности электрических соединений при монтаже и наладке электрооборудования. От качества разработки принципиальной схемы зависит четкость работы производственного механизма, его производительность и надежность в эксплуатации.

Десять правил составления электрических принципиальных схем

1. Составление принципиальной электросхемы производственного механизма проводится на основании требований технического задания . В процессе составления принципиальной схемы уточняются также типы, исполнения и технические данные электродвигателей, электромагнитов, конечных выключателей, контакторов, реле и т. п.

Напомним, что на принципиальной схеме все элементы каждого электрического устройства, аппарата или прибора показываются отдельно и размещаются для удобства чтения схемы в различных местах ее в зависимости от выполняемых функций. Все элементы одного и того же устройства, машины, аппарата и т. п. снабжаются одинаковым буквенно-цифровым обозначением, на пример: KM1 — контактор линейный первый, KT — реле времени и т. п.

2. На электрической принципиальной схеме показываются все электрические связи между входящими в нее элементами электрооборудования производственного механизма. На принципиальных схемах силовые цепи обычно размещают слева и изображают их толстыми линиями, а цепи управления помещают справа и чертят тонкими линиями.

Принципиальная схема проектируется с использованием существующих типовых узлов и схем автоматического управления электропроводами(например, схем магнитных контроллеров и защитных панелей — для кранов, схем узлов перехода от наладочного режима к автоматическому при помощи раздельных кнопок управления или переключателя режимов — для металлорежущих станков и т.

д.).

3. Релейно-контактные схемы необходимо составлять с учетом минимальной загрузки контактов реле, контакторов, путевых выключателей и т. д., применяя для снижения коммутируемой ими мощности усилительные устройства: электромагнитные, полупроводниковые усилители и др.

4. Для повышения надежности работы схемы нужно выбрать наиболее простой вариант, имеющий наименьшее количество органов управления, аппаратов и контактов. Для этой цели следует, например, применять общие аппараты защиты для электродвигателей, не работающих одновременно, а также осуществлять управление вспомогательными приводами от аппаратов главного привода, если они работают одновременно.

5. Цепи управления в сложных схемах следует присоединять к сети через трансформатор, понижающий напряжение до 110 В. Это исключает электрическую связь силовых цепей с цепями управления и устраняет возможность ложных срабатываний релейно-контактных аппаратов при замыканиях, на землю в цепях их катушек. Относительно простые схемы электрического управления допускается присоединять непосредственно к питающей сети.

6. Подача напряжения на силовые цепи и цепи управления должна производиться посредством вводного пакетного выключателя или автоматического выключателя. При применении на металлорежущих станках или других машинах только двигателей постоянного тока в схеме управления следует использовать также аппаратуру постоянного тока.

7. Различные контакты одного и того же электромагнитного аппарата (контактора, реле, командоконтроллера, путевого выключателя и др. рекомендуется по возможности подключать к одному полюсу или фазе сети. Это позволяет осуществить более надежную работу аппаратов (отсутствует вероятность пробоя и замыкания по поверхности изоляции между контактами). Из этого правила следует, что один вывод катушки всех электрических аппаратов по возможности нужно подключать к одному полюсу цепи управления.

8. Для обеспечения надежной работы электрооборудования должны быть предусмотрены средства электрической защиты и блокировки. Электрические машины и аппараты защищаются от возможных коротких замыканий.

и недопустимых перегрузок. В схемах управления электроприводами станков, молотов, прессов, мостовых кранов обязательна нулевая защита для устранения возможности самозапуска электродвигателей при снятии и последующей подаче напряжения питания.

Электрическая схема должна быть построена так, чтобы при перегорании предохранителей, обрыве цепей катушек, приваривании контактов не возникало аварийных режимов работы электропривода. Кроме того, схемы управления должны иметь блокировочные связи для предотвращения аварийных режимов при ошибочных действиях оператора, а также для обеспечения заданной последовательности операций.

9. В сложных схемах управления необходимо предусмотреть сигнализацию и электроизмерительные приборы, позволяющие оператору (станочнику, крановщику) наблюдать за режимом работы электроприводов. Сигнальные лампы обычно включаются на пониженное напряжение: 6, 12, 24 или 48 В.

10. Для удобства эксплуатации и правильного монтажа электрооборудования зажимы всех элементов электроаппаратов, электрических машин (главные контакты, вспомогательные контакты, катушки, обмотки и др.

) и провода на схемах маркируются.

Участки (зажимы элементов схемы и соединяющие их провода) цепей постоянного тока положительной полярности маркируются нечетными числами, а отрицательной полярности — четными числами. Цепи управления переменного тока маркируются аналогично, т. е. все зажимы и провода, присоединяемые к одной фазе, маркируются нечетными числами, а к другой фазе — четными.

Общие точки соединений нескольких элементов на схеме имеют один и тот же номер. После прохождения цепи через катушку, контакт, сигнальную лампу, резистор и т. п. номер изменяется. Для выделения отдельных видов цепей индексация производится так, чтобы цепи управления имели номера от 1 до 99, цепи сигнализации — от 101 до 191 и т. д.

Как научиться читать электрические схемы часть 1

Вступив на очень увлекательный и тернистый путь изучения электроники, все радиолюбители сталкиваются с такой проблемой как чтение электрических схем. Этому процессу посвящено множество научных статей и еще больше книг, но зачастую в них информация подается путано и непонятно.

Начиная с этой статьи, я хочу вместе с вами пройти обучение правильному чтению схем от самых простейших и заканчивая сложными и объемными.

Условное обозначение элементов

Но прежде чем изучать даже самую простую схему нужно познакомиться с основными элементами и их условными обозначениями.

Как обозначаются источники питания

Любая схема, насколько бы она ни была сложна или наоборот проста не будет работать без электропитания. Принципиально различают два вида источника питания:

1. Постоянный ток;

2. Переменный ток.

На данном этапе мы будем рассматривать с вами исключительно источники постоянного тока, к которым относятся: батарейки, аккумуляторы, разнообразные блоки питания и т. д.

Несмотря на все разнообразие существующих элементов на схемах они имеют практически идентичное обозначение (есть некоторые различия).

Батарейка (единичный гальванический элемент)

Итак, батарейка. Причем не имеет значения какого она будет типа (АА, ААА и т.

д.) обозначается двумя черточками разной длины. Причем линия большей длины обозначает «+», а меньшей «-».

Батарейка имеет стандартное буквенное обозначение “ G

Но многие радиолюбители вместо «G» используют обозначение «Е». Это указывает на то, что данный элемент является источником ЭДС (электродвижущей силы).

Если используется гальваническая группа элементов, то источник питания обозначается так:

И уже батарея будет иметь следующее буквенное обозначение: « GB ».

Обозначение проводов и их соединения на схеме

Электрические провода выполняют самую главную функцию: соединяют все элементы в единую сеть и по факту заставляют работать всю нашу схему.

У проводов есть множество характеристик: сечение, материал, изоляция, и т. д.

Но в схемах чаще всего используются монтажные гибкие провода.

На печатных платах роль проводов выполняют токопроводящие дорожки. При этом на чертежах, что дорожки, что провода обозначаются одинаково – прямыми линиями .

Давайте рассмотрим простейший пример. Для того, чтобы зажечь самую простую лампу накаливания на 12 Вольт,

необходимо при помощи соединительных проводов, напряжение от аккумулятора подать на лампочку. И тогда по замкнутой цепи от плюса к минусу потечет ток и, проходя через лампу, спровоцирует нагрев спирали, и лампа загорится.

В сложных и многоэлементных цепях проводники довольно часто пересекаются. При этом если в месте пересечения не образуется электрическая связь, то на схеме точка не ставится.

А если в месте пересечения образуется электрическая связь, то тогда на чертеже ставится точка и это соединение теперь является электрическим узлом .

В таком узле вполне могут пересекаться сразу несколько проводников.

Как обозначается общий провод

В достаточно сложных схемах, чтобы улучшить читаемость и не перегружать чертеж, очень часто проводники, соединяемые с общим «минусом» не обозначают. А в место них используют специальные знаки.

Так же в иностранных схемах с таким знаком встречается надпись GND или GRAUND , что переводится как «земля».

Но учтите следующий момент, что не во всех схемах общий провод «минус». Если вы будете читать старые советские схемы, то там часто общим проводом является «плюс».

Давайте рассмотрим следующую схему

Когда речь заходит о том, что потенциал в точке «1» равен, например, 10 Вольтам, это значит, что напряжение нужно измерять между данной точкой и «землей»(минусом элемента питания). Метод указывания всего одной точки удобен с практической стороны.

Как обозначаются радиодетали на схемах

Радиодетали — это фундамент любого устройства и к ним относятся: резисторы, транзисторы, светодиоды, конденсаторы, диодные мосты и т. д.

Для того, чтобы читать схемы, вы просто обязаны знать условное графическое обозначение базовых радиодеталей:

Давайте теперь попробуем прочесть следующую простую схему питания светодиода:

В этой схеме для нас есть два новых элемента: это резистор и светодиод. Главным параметром резистора является его сопротивление, которое указывается прямо на схеме рядом с условным обозначением сопротивления. Так же зачастую указывается и мощность рассеивания.

Параметры светодиода на схеме не указываются, а записываются в спецификации к схеме.

Итак, наша схема замкнута, а это значит по ней протекает электрический ток. Причем все элементы соединены последовательно. Это свидетельствует тому, что сила тока везде будет одинакова.

Принято считать, что ток «I» протекает от положительной обкладки источника питания, через резистор «R» , светодиод «VD» к отрицательной обкладке.

Принцип работы схемы предельно прост: протекающий ток заставляет светиться светодиод, а для того, чтобы он (светодиод) не сгорел, сопротивление выполняет функцию ограничителя тока.

При этом если мы с вами измерим напряжение на резисторе и светодиоде, то согласно второму закону Кирхгофа оно будет различно.

И если сложить полученные напряжения, то их сумма будет равна напряжению источника питания.

Как читать простейшие электрические схемы с минимумом деталей мы вроде с Вами разобрались. Учиться читать более сложные схемы (на примерах) будем в следующих статьях, поэтому чтобы не пропустить подписываемся.

И если данная статья вам понравилась, то ставим палец вверх! Спасибо за внимание!

БЛОГ ЭЛЕКТРОМЕХАНИКА

Студенческий блог для электромеханика. Обучение и практика, новости науки и техники. В помощь студентам и специалистам

20.01.2011

Правила построения электрических схем

Электрическая схема — это графическое изображение связей между электрическими элементами установки, позволяющее понять принцип действия электротехнического устройства. Условным графическим изображением показывают электрические элементы схемы устройства, на которых происходит получение, преобразование и управление электроэнергией. Элементами схемы являются: обмотки электрических машин, катушки контакторов и реле, контакты электрических аппаратов, резисторы и др. Электрические связи на схемах показывают провода и кабели электротехнической установки.

В зависимости от назначения схемы подразделяются на структурные, функциональные, принципиальные (полные), схемы соединений (монтажные). В упрощенных однолинейных схемах провода или связи изображают одной линией. При помощи отрезков, пересекающих эти линии под углом 45°, указывают число проводов или число токопроводящих жил кабеля.

Структурные схемы позволяют иметь упрощенное изображение основных элементов в виде прямоугольников и линии связи между элементами. Внутри прямоугольников вписывают наименование элементов, а также основные параметры (мощность, напряжение), позволяющие создать общее представление об установке.

Функциональные схемы являются дальнейшим развитием структурных схем и служат для более углубленного ознакомления с электроустановками. При помощи условных графических обозначений изображены все элементы каждого прямоугольника. Связи между отдельными элементами конкретизируются и расшифровываются. Функциональные схемы имеют подробную характеристику всех элементов.

Принципиальные схемы изображают все электрические элементы и связи между ними для пояснения принципов работы электрифицированной установки. Все элементы вычерчивают в отключенном положении. Каждый элемент, входящий в схему, должен иметь буквенно-цифровое обозначение по государственному стандарту.

Все элементы электрических схем разделены на виды, каждому из которых присвоен буквенный код в виде заглавной латинской буквы, являющийся обязательным в обозначении. Для уточнения вида элемента к первой букве кода может добавляться вторая буква, образуя двухбуквенный код. После одно- или двухбуквенного кода ставится номер элемента в виде одной или нескольких цифр. Вид и номер элемента являются обязательной частью обозначения.

Цифры порядковых номеров, которые указывают на нумерацию одинаковых элементов, должны быть выполнены одним размером шрифта с буквенными обозначениями элемента. Например, на схеме имеется два контактора с двумя и тремя контактами. Электромагнитные катушки контакторов обозначаются К1, К2, их контакты К 1.1, К 1.2 и К2.1, К2.2, К2.3.

В принципиальных схемах условные графические обозначения элементов устройств выполняют совмещенным или разнесенным способом. При совмещенном способе электрические элементы устройства размещают на схеме с учетом их конструкционных связей (например, втягивающие катушки контактора рядом с графическим изображением его контактов). При разнесенном способе условные графические изображения электрических элементов устройства располагают в разных местах схемы, не принимая во внимание конструктивного исполнения этого устройства. Элементы на схеме располагают с учетом прохождения по ним тока. Цепи токов в разнесенной схеме размещают параллельно одна под другой, образуя строчный способ выполнения схемы. Для облегчения чтения схемы при строчном способе рекомендуется параллельные цепи (строки) нумеровать. В зависимости от назначения цепей на принципиальных схемах выделяют: силовую цепь, цепи управления, сигнализации, возбуждения, электрических измерений.

Силовой цепью называется электрическая цепь с устройствами, вырабатывающими, передающими и распределяющими электрическую энергию, а также преобразующими ее в энергию другого вида или в электрическую энергию с другими параметрами. Силовая цепь содержит элементы, по которым протекают токи якоря машины постоянного тока, статора и ротора асинхронной машины и т.д.

Цепью управления называется электрическая цепь с устройствами, назначение которых состоит в приведении в действие электрооборудования и отдельных электротехнических устройств или в изменении значений их параметров.

Цепью сигнализации называется электрическая цепь с устройствами, приводящими в действие сигнальные устройства.

Цепь возбуждения — электрическая цепь, содержащая обычно параллельную обмотку возбуждения.

Цепь электрических измерений — электрическая цепь с электроизмерительными приборами.

Электрические схемы раскрывают способы управления электродвигателем, которые слагаются из следующих этапов: пуска, изменения частоты вращения, реверса, торможения и выключения. Пуск двигателя, например, может быть прямым, т. е. непосредственным включением его в сеть, или происходить по заданному режиму.

В береговых установках, где мощность питающей сети во много раз превышает мощность включаемого электродвигателя, можно непосредственно включать электродвигатели больших мощностей, нежели в судовых условиях, где мощности электростанций ограничены.

Способы управления зависят от многих факторов (типа двигателя, мощности, требований к эксплуатации). Поэтому в судовом электроприводе применяется большое число разнообразных систем управления. Основными из них являются контроллерная, реостатная, контакторная, Г — Д, с использованием управляемых магнитных усилителей и др.

В зависимости от условий эксплуатации используют ручную, дистанционную и автоматическую системы управления двигателем.

При ручной системе все этапы управления могут значительно отличаться от расчетных, особенно при переходных режимах электродвигателя. Для ручных операций по управлению двигателями всегда требуется больше времени, чем при наличии автоматизации, и производительность выполняемых работ всегда меньше. Ручные системы на современных судах встречаются редко.

При дистанционной системе управление двигателем может осуществляться автоматически, с помощью релейно-контактной аппаратуры, однако сигнал для включения элементов автоматического управления подается вручную с помощью кнопочных командоаппаратов или командоконтроллеров.

Схемы прямого пуска двигателей постоянного и переменного тока с контакторным управлением показаны на рис. 3.1. Цепь управления для обоих электродвигателей строится одинаково и включается к выводам X1 и Х2. Отличие состоит в том, что для управления электродвигателем постоянного тока (рис. 3.1, а) применяется контактор постоянного тока с двумя замыкающими главными контактами, а для управления асинхронным двигателем (рис. 3.1, б) — трехполюсный контактор переменного тока.

Включение электродвигателей осуществляется нажатием на кнопочный выключатель «Пуск» S2 (рис. 3.1, в). Катушка контактора К1 получает питание, и контактор, сработав, подключает своими замыкающими контактами электродвигатель к сети. Если кнопочный выключатель S2 отпустить, то его замыкающий контакт разомкнётся. Однако двигатель остается включенным, так как питание катушки контактора сохраняется через вспомогательный контакт К1.3, шунтирующий контакт S2. Для отключения электродвигателя необходимо нажать кнопочный выключатель «Стоп» S1. Катушка контактора теряет питание, и он отключает электродвигатель от сети.

При выключении питающего напряжения вследствие значительной индуктивности параллельной обмотки возбуждения в ней возникают значительные э. д. с. самоиндукции и перенапряжения, которые могут привести к повреждению изоляции обмотки. Для уменьшения перенапряжений параллельно этой обмотке подключают разрядный (гасящий) резистор R. Во избежание лишних потерь энергии в разрядном резисторе последовательно с ним иногда включают полупроводниковый вентиль V. При выключении цепи возбуждения создается замкнутый контур, замедляющий уменьшение тока в обмотке возбуждения, способствующий снижению э. д. с. самоиндукции и перенапряжения в ней.

На рис. 3.2 приведены принципиальные схемы управления электродвигателями постоянного и переменного тока, которые обеспечивают изменение направления их вращения (реверс).

В зависимости от того, какая будет нажата кнопка, сработает контактор К1 или К2, и двигатель начнет вращаться в ту или иную сторону.

Реверсирование двигателя постоянного тока (рис. 3.2, а) осуществляется изменением направления тока в обмотке якоря, а асинхронного двигателя (3.2, б) — переключением двух фаз.

Весьма важным в реверсивных электроприводах является исключение возможности одновременного включения контакторов К1 и К2, так как это приводит к короткому замыканию силовой сети главными контактами. Такое явление может возникнуть вследствие, например, одновременного нажатия на кнопочный выключатель «Пуск вперед» и «Пуск назад» (S2 и S3) или нажатия на кнопочный выключатель S2 (S3) в то время, когда главные контакты контакторов приварились. Для устранения этого явления в цепях управления предусматривают специальные блокировки. В схеме на рис. 3.2, в блокирование осуществляется применением кнопок с замыкающими и размыкающими контактами. При одновременном нажатии на обе кнопки цепи катушек обоих контакторов оказываются разомкнутыми и ни один контактор сработать не сможет. При сваривании контактов силовой цепи у одного из контакторов предпочтительным является блокирование с помощью размыкающих вспомогательных контактов К1. 3 и К2.3 (рис. 3.2, г). В ответственных электроприводах, помимо электрического блокирования, применяют механическое, которое исключает возможность втягивания якоря одного контактора, если втянут якорь другого.

Управление электродвигателем в электроприводах грузовых механизмов осуществляется при помощи контроллеров.

Контроллерная система позволяет иметь все виды управления электродвигателями: пуск, регулирование частоты вращения, реверс, торможение, остановку и, кроме того, защиту двигателей от перегрузки и понижения или исчезновения напряжения в питающей сети. Защита осуществляется с помощью релейно-контактной аппаратуры.

В двигателях постоянного тока частоту вращения регулируют с помощью резисторов, установленных в цепи якоря. Для получения малой частоты вращения дополнительно включается еще один резистор параллельно цепи якоря.

Реверсирование достигается переключением тока в цепи якоря двигателя. Электрическое торможение осуществляется всеми тремя способами: рекуперативным, электродинамическим и противотоком.

Наряду с силовыми контроллерами применяются командоконтроллеры в контакторных схемах управления грузоподъемных механизмов (лебедки, краны). Все разновидности систем контроллерного управления, как правило, характеризуются ступенчатым регулированием режимов работы электродвигателя.

Электрическая схема с применением командоконтроллера для управления электродвигателями трехфазного асинхронного и постоянного тока приведена на рис. 3.3.

Рукоятка командоконтроллера имеет семь положений: нулевое и по три положения «Вперед» и «Назад». Точками на соответствующих положениях помечают, какие контакты командоконтроллера замкнуты. Так, например, если рукоятка командоконтроллера установлена на первое положение «Вперед», то замкнется контакт 1-2 и включится катушка контактора К1. Якорь (ротор) двигателя начнет вращаться «Вперед» с малой частотой вращения, так как в цепь включены ступени реостатов R1 и R2.

Перемещение рукоятки командоконтроллера в том же направлении на следующие положения (второе и третье) приведет к последовательному замыканию контактов 5-6 и 7-8 и срабатыванию контакторов К3 и К4, к выключению ступеней реостатов и Я2 и последовательному увеличению угловой скорости двигателя.

При перемещении рукоятки командоконтроллера «Назад» от нулевого положения вместо контакта 1-2 замкнется контакт 3-4, сработает контактор К2 и включит двигатель на обратное направление вращения. Второе и третье положения командоконтроллера дадут ту же угловую скорость, что и в направлении «Вперед». Установка рукоятки командоконтроллера в нулевое положение приводит к отключению всех контакторов и двигателя от сети.

Размыкающими контактами К 1.2 и К2.2 осуществляется блокирование, устраняющее включение обоих контакторов при сваривании их контактов или контактов командоконтроллера.

Схемы соединений (монтажные) изображают расположение составных частей электрифицированного устройства в деталях с указанием метода прокладки проводов и кабелей. Схемы соединений входят в состав технической документации судна и являются документом, по которому выполняют монтаж установки, а также эксплуатацию и ремонт. Схемы учитывают технологию монтажа электрических аппаратов и приборов, а также возможность прокладки кабельных трасс по судну с учетом требований регистра. Чертежи панелей с размещенными на них аппаратами и приборами изображают в масштабе. Монтажная схема содержит схемы внутренних соединений, на которых указаны все соединения внутри отдельных сборочных единиц, и схемы внешних соединений, на которых показывают прокладку кабельных трасс по судну между отдельными сборочными единицами. Для возможности контроля схемы все электрические выводы аппаратов и концы токопроводящих жил проводов должны иметь маркировку (цифру или букву).

Методические указания по чтению электрических схем заключаются в рекомендациях по принятому порядку последовательности изучения электрифицированной установки. Чтение электрической схемы следует начинать с ее типа и вида по названию из углового штампа. Затем следует ознакомиться со схемой силовой цепи, начиная с источника тока. Схемы управления надо изучать поэлементно.

При наличии цепей с элементами электроники необходимо изучить работу отдельных электронных элементов, обратив внимание на прохождение электрических зарядов через полупроводниковые элементы. Следует помнить, что питание основных цепей в электронных устройствах принято однопроводное, поэтому окончание электрических цепей показано присоединением к корпусу аппарата.

В судовой документации на каждый электропривод имеются принципиальная схема со спецификацией и пояснительной запиской и схемы электрических соединений (монтажные).

Главные схемы электрических соединений подстанций | Справка

В современных условиях для обеспечения надежности и экономичности электроснабжения потребителей необходима совместная работа большого числа электростанций, подстанций и связывающих их электрических сетей разных напряжений. Однако при этом электрические схемы станций и подстанций должны обеспечивать соединение их отдельных элементов достаточно просто, надежно и удобно. В условиях эксплуатации подстанций возникает необходимость изменения схемы при выводе оборудования в ремонт, ликвидации аварий. Чтобы можно было производить эти изменения электрических схем, их элементы — трансформаторы, шины распределительных устройств (РУ), воздушные и кабельные линии — соединяют друг с другом посредством коммутационных аппаратов.
Главной схемой электрических соединений или схемой первичной коммутации называется схема электрических соединений основного электрооборудования, к которому относятся трансформаторы силовые и измерительные, реакторы, коммутационные аппараты и соединяющие их проводники. Для главных схем подстанций определяющими факторами являются местоположение подстанции в энергосистеме и ее назначение, мощность, перерабатываемая на подстанции и проходящая через нее транзитом, количество и мощность трансформаторов и отходящих линий, уровни их напряжений, категории потребителей, которые питаются по этим линиям.
По способу начертания главные схемы подстанций подразделяются на многолинейные, на которых показываются все фазы электроустановки и нулевой провод, и однолинейные, на которых изображается только одна фаза, остальные ввиду их аналогичности не показываются. Графическое изображение однолинейных схем значительно проще, повышается наглядность и запоминаемость таких схем. Однолинейные схемы составляют для всей электроустановки, те участки, схемы, где по фазам есть отличия имеют многолинейное изображение.
Выбранная схема при выполнении электроустановки должна обеспечивать ряд условий:
обеспечивать надежность электроснабжения потребителей;
осуществлять эксплуатацию с минимальными затратами средств и расходом материалов;
обеспечивать безопасность и удобство обслуживания;
исключать возможность ошибочных операций персоналом в процессе срочных переключений.
Выполнение последнего условия затрудняется при очень сложной схеме электроустановки, однако значительное упрощение схемы может вызвать трудности для выполнения первого условия в отношении надежности электроснабжения. Железнодорожные потребители в основном относятся к первой и второй категориям, и для их питания используют чаще трансформаторные подстанции с двумя трансформаторами, один из которых может быть резервным. Для электроснабжения потребителей третьей категории применяют схемы однотрансформаторных подстанций.

Рис. 1. Схема однотрансформаторной подстанции с первичным напряжением 10 кВ
Однолинейная схема однотрансформаторной подстанции с первичным напряжением 10 кВ и вторичным напряжением 0,4 кВ. Подстанция (рис. 1) получает питание по воздушной линии 10 кВ. На вводе подстанции W установлен разъединитель QS и предохранитель FUX, который защищает трансформатор Т от токов КЗ, длительных перегрузок, опасных для трансформатора. От атмосферных перенапряжений, набегающих на подстанцию по воздушной линии, она защищается разрядником FV. РУ-0,4 кВ имеет одинарную систему сборных шин, на которую напряжение подается от трансформатора Т по вводу. На вводе установлен рубильник S{, предохранитель FU2 и трансформатор тока ТА. Так как трансформаторы тока могут устанавливаться не на всех фазах, то эта часть схемы показана в трехфазном изображении во избежание неясностей. Нулевой провод от нейтрали трансформатора до нейтральной шины N показывается отдельно. От сборных шин 0,4 кВ отходят линии потребителей, на которых установлены рубильники (пакетные выключатели) S2-S5 и предохранители FU1-FU6. Конструкция такой подстанции показана на рис. Как видно на рис. 1, схема подстанции очень проста, ее элементы не резервируются, и в случае отказа или повреждения любого из них часть потребителей или все (при повреждении трансформатора) остаются без электроэнергии. Такой недостаток в значительной степени устраняется при использовании подстанций с двумя трансформаторами.
Однолинейная схема двухтрансформаторной подстанции с первичным напряжением 10 кВ и вторичным напряжением 0,4 кВ представлена на рис. 2. В РУ-10 кВ подстанции принята одинарная секционированная на две секции двумя разъединителями QS1 и QS4 система сборных шин. Это позволяет работать на одной секции без отключения другой. Вводы подстанции W2 и IVр которые снабжают электроэнергией потребители второй и третьей категорий, для удешевления и упрощения обслуживания могут выполняться на выключателях нагрузки QW1 и QW4 с заземляющими ножами. На отходящих линиях Wt и W4 и присоединениях понижающих трансформаторов устанавливают выключатели нагрузки QWV Q W2, Q W5, QWb в комплекте с предохранителями FU2, FUV FU4, FUy При этом предохранители целесообразно устанавливать перед выключателями нагрузки, считая по направлению передачи электроэнергии. На вводах применяются выключатели нагрузки ВНЗ- 16 с заземляющими ножами, на отходящих линиях и трансформаторах — ВНПЗ-17. Для учета электроэнергии, отпускаемой потребителям по линиях W] и W4, предусмотрены счетчики, подключаемые к трансформаторам тока ТА{ и ТА , и к трансформаторам напряжения TV] и TV2, которые подключаются к шинам через разъединители QS2 и QSs с заземляющими ножами типа РВЗ-10. Пунктиром показана блокировочная связь разъединителей и их заземляющих ножей, которая не позволяет включать разъединитель при включенном заземляющем ноже и включать заземляющий нож при включенном разъединителе. Защищаются от токов КЗ 7У, и TV2 предохранителями FUl и FU6. Заземление каждой секции сборных шин предусматривается заземляющими разъединителями QSX и QSb типа РВ-10.

Рис. 2. Схема двухтрансформаторной подстанции с первичным напряжением 10 кВ


Рис. 3. Схема двухтрансформаторной подстанции с первичным напряжением 35 кВ

Рис. 3. Схема двухтрансформаторной подстанции с первичным напряжением 35 кВ

Пой наличии воздушных линий 10 кВ должна быть предусмотрена установка разрядников РВО-10, подключаемых к секциям шин через разъединители QS2 и QSy распределительное устройство 0,4 кВ выполняется из щитов серии Щ0-70, которые в зависимости от назначения комплектуются различными аппаратами, рассчитанными на широкий диапазон токов. В РУ-0,4 кВ принята одинарная секционированная автоматическим выключателем SF2 и рубильниками S4 и S5 на две секции система сборных шин. Питание каждой секции осуществляется от своего трансформатора Г, и Т2, подключенного к шинам через автоматические выключатели 5F, и SF3 и рубильники S2 и Sr К трансформаторам тока ТА4 и Т А1 подключаются амперметры и счетчики активной и реактивной энергии. При раздельной работе секций шин предусмотрено автоматическое включение резерва [ABP)., которое осуществляется включением межсекционного автоматического выключателя SF2 (нормально он отключен) при отключении трансформатора Г, или Т2. При отсутствии АВР секционирование выполняют рубильниками. Разрядники F Vx и F V2 типа РВН-0,5 для защиты изоляции трансформаторов и оборудования РУ-0,4 кВ от перенапряжения устанавливают только при наличии воздушных линий 0,4 кВ. В цепи каждого присоединения линий устанавливаются рубильники Sv Sy Sb, Sg и предохранители F U1 -FU]0 (возможно применение автоматических выключателей). К трансформаторам тока ТАЪ, TAS, ТА6, ТАН подключаются амперметры и, при необходимости, счетчики электроэнергии. Питание собственных нужд СН подстанции выполняется от специальной шины, на которую электроэнергия поступает по вводам 0,4 кВ от трансформаторов 7, и Т2.

Однолинейная схема двухтрансформаторной подстанции с первичным напряжением 35 кВ представлена на рис. 3. Электроэнергия подается на подстанцию под двум вводам W2 и W3 от районной или тяговой подстанции и поступает на одинарную, секционированную выключателем Qs систему сборных шин РУ-35 кВ. На каждом вводе установлены многообъемные масляные выключатели q2 и q1 типа С-35М-630 со встроенными трансформаторами тока ТА4н ТА6типа ТВ-35. Для подключения счетчиков денежного расчета применяются трансформаторы тока ТА3 и ТА5 (комплект из Двух трансформаторов имеет один номер) типа ТФЗМ-35А. К линиям W2 и W" /> выключатели Q2 и Q" /> подключаются линейными разъединителями с двумя заземляющими ножами QS2 и QS3 типа РНДЗ-2-35 (РДЭ-2-35), а к секциям шин — шинными разъединителями QS6 и QS1 типа РНДЭ-1-35 (РДЗ-1-35). Секционный выключатель Q5 подключается к секциям шин с помощью секционных разъединителей QS9 и QS[Q типа РНДЗ-1-35 (РДЗ-1-35). Разъединители с двух сторон выключателя ввода или секционного позволяют обеспечить безопасность производства ремонтных работ на выключателях и трансформаторах тока.
В отдельных случаях от РУ-35 кВ получают питание смежные подстанции по линиям Wх и W4. Электроэнергия поступает на шины по вводам Wг и Wъ и часть ее транзитом без переработки передается другим подстанциям. На линиях W, и W4 установлено такое же оборудование как и на W 2 и Wъ.
К каждой секции РУ-35 кВ подключается понижающий трансформатор Г, и Т2 через выключатель Q6 и Q1 со встроенными трансформаторами тока ГЛ|0 и ТАи и разъединитель QSn и QSi3 с одним заземляющим ножом, позволяющим отделить выключатель от секции при ремонте.
Трансформаторы напряжения TVlnTV2 типа 3HOM-35 и разрядники FVl и FV2 типа РВС-35 присоединяются к секциям шин через разъединители QS[, и QSW которые имеют заземляющие ножи для заземления TV и FV при ремонте и ножи для заземления секций шин. Понижающие трансформаторы Г, и Т2 могут работать параллельно на шины РУ-10 кВ, раздельно (отключен секционный выключатель Ql2) или поочередно (один в работе, второй в резерве) с возможностью автоматического включения резервного (АВР) трансформатора.
Схема РУ-10 кВ предусматривает использование одинарной секционированной выключателем системы сборных шин. Размещают оборудование РУ в закрытых помещениях или шкафах наружной установки. В обоих случаях используют комплектные устройства, состоящие из шкафов или камер, в которых размещаются выключатели и трансформаторы тока. На рис. 3 приведена схема РУ-10 кВ с выключателями Qs - Qw установленными на выкатных тележках, что позволяет обходиться без разъединителей. На каждом присоединении РУ используются стационарные заземляющие ножи, обеспечивающие безопасность ведения работ внутри шкафов. От шин 10 кВ отходят четыре линии, питающие потребителей. Потребители первой категории для надежного электроснабжения получают питание по двум линиям, отходящим от разных секций шин. и Q[(>. Трансформаторы тока ТАХ2 и ТАп используются для подключения релейных защит. Учет энергии, расходуемой на собственные нужды подстанции, ведется со стороны вторичного напряжения ТСН.
К секциям шин РУ-10 кВ присоединяются трансформаторы напряжения Т V3 и Т К4типа НТМИ-10, защищаемые предохранителями FUxhF U2 типа ПКТ-10, и разрядники FV3hFVa типа РВП-10, защищающие изоляцию РУ-10 кВ от перенапряжений. Трансформатор напряжения и разрядник одной секции размещаются на общей выкатной тележке. Секционирование шин выполняется с помощью двух шкафов: в одном установлен секционный выключатель Ql2 с трансформаторами тока ТАХ6; во втором — выдвижной элемент  Т, выполняющий роль разъединителя. При использовании понижающих трансформаторов мощностью до 4000 кВ-А и сравнительно небольшой мощности КЗ при напряжении 35 кВ и реже 110 кВ находят применение схемы с выхлопными предохранителями типа ПВТ.
Однолинейная схема комплектной однотрансформаторной подстанции с первичным напряжением 110 кВ представлена на рис. 4, а ее конструктивное выполнение -— на рис. 27. От линии электропередачи по вводу Wх электроэнергия напряжением 110 (35) кВ поступает на трансформатор Г, типа ТМН-2500/110, который защищается от токов КЗ предохранителем F £/, типа ПВТ-110 и разрядником F Vx типа РВС-110 от перенапряжений. Разъединитель QS типа РНДЗ-1-110/630 служит для отключения трансформатора Тх на холостом ходу при отключенном выключателе ввода РУ-10 кВ Qx и создания видимого разрыва цепи при ремонте и замене предохранителя FUr На одной фазе ввода W х установлена аппаратура высокочастотной связи, состоящая из заградительного реактора L R, не пропускающего высокочастотные токи связи за пределы линии, и конденсатора С, через который токи связи попадают на приемо-передающую аппаратуру.

Рис. 4. Схема комплектной однотрансформаторной подстанции с первичным напряжением 110 кВ
Нейтраль первичной обмотки трансформатора обычно заземляется разъединителем QS2 типа РНД-35 или заземлитель нейтрали ЗОН-110, при работе системы напряжением 110 кВ с изолированной нейтралью заземление осуществляется через разрядник F V2, состоящий из последовательно соединенных разрядников типа РВС-35 и РВС-15.
РУ-10 кВ имеет одинарную несекционированную систему сборных шин, от которой потребители получают электроэнергию по четырем линиям W2, Wy WA и Ws, на которых установлены выключатели, Qv Q4 и Qs типа ВМП-10 или ВКЭ-10. Для подключения релейных защит, счетчиков электрической энергии и других измерительных приборов на каждой линии и на вводе установлены трансформаторы тока TA1 - ТА3. Питание обмоток напряжения измерительных приборов и реле осуществляется от трансформатора напряжения Т V, подключаемого к сборным шинам через высоковольтный контакт пальцевого типа. Разрядник F V3, защищающий изоляцию оборудования РУ-10 кВ от перенапряжений располагается на одной с трансформатором напряжения TV выкатной тележке. Шины заземляются в процессе ремонтных работ на них стационарным заземляющим ножом QSG, расположенном в высоковольтном шкафу трансформатора напряжения.
Такие подстанции используются для питания потребителей второй и третьей категории. Питание потребителей первой категории может осуществляться от данной подстанции при наличии резервного питания от другого источника. При необходимости питания потребителей первой категории от одной подстанции, на ней необходимо устанавливать не менее двух трансформаторов, подключаемых к питающим линиям напряжением 35-220 кВ с помощью отделителей и короткозамыкателей. В районах с интенсивным гололедообразованием, где работа отделителей и короткозамыкателей недостаточно надежна, они заменяются выключателем.
Однолинейная схема РУ-110 (220) кВ концевой и ответвительной подстанций представлена на рис. 5. Питание на трансформаторы Г, и Т2 поступает от линии электропередачи по вводам Ж, и Wг, на которых установлены разъединители QS1 и QS2 типа РНДЗ-2-110 с дистанционными приводами типа ПДН-1. Между вводами выполняется перемычка с двумя разъединителями QS3 и QS4> QS3 имеет привод ПДН-1, QS4 с ручным приводом ПР-90. На первичной стороне трансформаторов Г, и Т2 установлены разъединители QS5 и QS6 такие же как на вводах, быстродействующие отделители QR\ и QR2, дополненные короткозамыкателями QNS и QNr. Встроенные трансформаторы тока ТА{ и ТАг необходимы для подключения амперметра и релейных защит. Наличие перемычки с разъединителем, имеющим дистанционное управление, позволяет обеспечить питание любого трансформатора по любому вводу или двух трансформаторов по одному вводу. Второй разъединитель перемычки QS4 с ручным приводом используется при ремонте QS3 для создания видимого разрыва цепи, Трансформатор Т2 остается в работе, получая электроэнергию по вводу W2. Разрядники FV1 и FF2 THna РВС-110 защищают изоляцию РУ-110 кВ от перенапряжений.

Рис. 5. Схема РУ-110 кВ концевой и ответвительной подстанций
Однолинейная схема РУ-110 (220) кВ проходной подстанции, включаемой в рассечку линии 110 (220) кВ, показана на рис. 6. РУ-110 кВ имеет ремонтную и рабочую перемычки между вводами. Рабочая перемычка с выключателем Q типа МКП-1 10М со встроенными трансформаторами тока Т А2 типа ТВ-110 и разъединителями QSs и QS6 типа РНДЗ-1-110, необходимыми для ремонта выключателя перемычки, используется для транзита электроэнергии энергосистемы. Разъединители QSi и QS2 ремонтной перемычки нормально отключены, включаются для обеспечения транзита электроэнергии при ремонте рабочей перемычки. К трансформаторам тока Т АХ типа ТФЗМ-110 (220) подключаются приборы и реле, нормально получающие питание от ТА2, при переводе транзита энергии через ремонтную перемычку. Трансформаторы напряжения ТУ, и TV2типа НКФ-110 (220) используются для питания обмоток напряжения измерительных приборов и реле. Схема РУ между рабочей перемычкой и трансформаторами такая же как у рассмотренной выше ответвительной или концевой подстанции.


Рис. 6. Схема РУ-110 кВ проходной подстанции

Главные схемы электростанций и подстанций | Навчання

Страница 1 из 3


1. Виды схем и их назначение

Главная схема электрических соединений электростанции (подстанции) — это совокупность основного электрооборудования (генераторы, трансформаторы, линии), сборных шин, коммутационной и другой первичной аппаратуры со всеми выполненными между ними в натуре соединениями.
Выбор главной схемы является определяющим при проектировании электрической части электростанции (подстанции), так как он определяет полный состав элементов и связей между ними. Выбранная главная схема является исходной при составлении принципиальных схем электрических соединений, схем собственных нужд, схем вторичных соединений, монтажных схем и т. д.
На чертеже главные схемы изображаются в однолинейном исполнении при отключенном положении всех элементов установки. В некоторых случаях допускается изображать отдельные элементы схемы в рабочем положении.

Рис. 1. Виды схем (на примере подстанции 110/10 кВ)

Все элементы схемы и связи между ними изображаются в соответствии со стандартами единой системы конструкторской документации (ЕСКД).
В условиях эксплуатации, наряду с принципиальной, главной схемой, применяются упрощенные оперативные схемы, в которых указывается только основное оборудование. Дежурный персонал каждой смены заполняет оперативную схему и вносит в нее необходимые изменения в части положения выключателей и разъединителей, происходящие во время дежурства.
При проектировании электроустановки до разработки главной схемы составляется структурная схема выдачи электроэнергии (мощности), на которой показываются основные функциональные части электроустановки (распределительные устройства, трансформаторы, генераторы) и связи между ними. Структурные схемы служат для дальнейшей разработки более подробных и полных принципиальных схем, а также для общего ознакомления с работой электроустановки.
На чертежах этих схем функциональные части изображаются в виде треугольников или условных графических изображений (рис. 1, а). Никакой аппаратуры (выключателей, разъединителей, трансформаторов тока и т.д.) на схеме не показывают.
На рис. 1,б показана главная схема этой же подстанции без некоторых аппаратов - трансформаторов тока, напряжения, разрядников. Такая схема является упрощенной принципиальной схемой электрических соединений. На полной принципиальной схеме (рис.1, в) указывают все аппараты первичной цепи, заземляющие ножи разъединителей и отделителей, указывают также типы применяемых аппаратов. В оперативной схеме (рис. 1, г) условно показаны разъединители и заземляющие ножи. Действительное положение этих аппаратов (включено, отключено) показывается на схеме дежурным персоналом каждой смены.
Согласно ГОСТ 2.710-81, буквенно-цифровое обозначение в электрических схемах состоит из трех частей: 1-я указывает вид элемента, 2-я - его порядковый номер, 3-я — его функцию. Вид и номер являются обязательной частью условного буквенно-цифрового обозначения и должны присваиваться всем элементам и устройствам объекта. Указание функции элемента (3-я часть обозначения) необязательно.
В 1-й части записывают одну или несколько букв латинского алфавита (буквенные коды для элементов электрических схем приведены в таблице приложения к лекции 1), во 2-й части — одну или несколько арабских цифр, характеризующих порядковый номер элемента. Например, QS1 - разъединитель №1, Q2 выключатель № 2; QB секционный выключатель. В ведущих проектных организациях используются более сложные обозначения проектных функциональных групп.

2. Основные требования к главным схемам электроустановок

 При выборе схем электроустановок должны учитываться следующие  факторы:
1) значение и роль электростанции или подстанции для энергосистемы.
Электростанции, работающие параллельно в энергосистеме, существенно различаются по своему назначению. Одни из них, базисные, несут основную нагрузку, другие, пиковые, работают неполные сутки во время  максимальных нагрузок, третьи несут электрическую нагрузку, определяемую их тепловыми потребителями (ТЭЦ). Разное назначение электростанций определяет целесообразность применения разных схем электрических соединений даже в том случае, когда количество присоединений одно и то же.
Подстанции могут предназначаться для питания отдельных потребителей или крупного района, для связи частей энергосистемы или различных энергосистем. Роль подстанций определяет ее схему;
2) положение электростанции или подстанции в энергосистеме, схемы  и напряжения прилегающих сетей. Шины высшего напряжения электростанций и подстанций могут быть узловыми точками энергосистемы, осуществляя объединение на параллельную работу нескольких электростанций. В этом случае через шины происходит переток мощности из одной части энергосистемы в другую - транзит мощности. При выборе схем таких электроустановок в первую очередь учитывается необходимость сохранения транзита мощности.
Подстанции могут быть тупиковыми, проходными, отпаечными; схемы таких подстанций будут различными даже при одном и том же числе трансформаторов одинаковой мощности.
Схемы распредустройств 6—10 кВ зависят от схем электроснабжения потребителей: питание по одиночным или параллельным линиям, наличие резервных вводов у потребителей и т. п.;
3) категория потребителей по степени надежности электроснабжения. Все потребители с точки зрения надежности электроснабжения разделяю на три категории.
Электроприемники I категории - электроприемники, перерыв электроснабжения которых может повлечь за собой опасность для жизни людей, значительный ущерб народному хозяйству, повреждение дорогостоящего основного оборудования, массовый брак продукции, расстройство сложного технологического процесса, нарушение функционирования особо важных элементов коммунального хозяйства.
Из состава электроприемников I категории выделяется особая группа электроприемников, бесперебойная работа которых необходима для безаварийного останова производства с целью предотвращения угрозы жизни людей, взрывов, пожаров и повреждения дорогостоящего оборудования.
Электроприемники I категории должны обеспечиваться питанием от двух независимых источников питания, перерыв допускается лишь на время автоматического восстановления питания.
Для электроснабжения особой группы электроприемников I категории предусматривается дополнительное питание от третьего независимого источника питания. Независимыми источниками питания могут быть местные электростанции, электростанции энергосистем, специальные агрегаты бесперебойного питания, аккумуляторные батареи и т. п.
Электроприемники  II категории - электроприемники, перерыв электроснабжения которых приводит к массовому недоотпуску продукции, массовым простоям рабочих, механизмов и промышленного транспорта, нарушению нормальной деятельности значительного количества городских и сельских жителей. Эти электроприемники рекомендуется обеспечивать питанием от двух независимых источников, взаимно резервирующих друг друга, для них допустимы перерывы на время, необходимое для включения резервного питания действиями дежурного персонала или выездной оперативной бригады.
Допускается питание электроприемников II категории по одной воздушной линии, если обеспечена возможность проведения аварийного ремонта этой линии за время не более 1 суток. Допускается питание по одной кабельной линии, состоящей не менее чем из двух кабелей, присоединенных к одному общему аппарату. При наличии централизованного резерва трансформаторов и возможности замены повредившегося трансформатора за время не более 1 суток допускается питание от одного трансформатора.
Электроприемники III категории - все остальные электроприемники, не подходящие под определения I и II категорий. Для этих электроприемников электроснабжение может выполняться от одного источника питания при условии, что перерывы электроснабжения, необходимые для ремонта и замены поврежденного элемента системы электроснабжения, не превышают 1 суток.
4) перспектива расширения и промежуточные этапы развития электростанции, подстанции и прилегающего участка сети. Схема и компоновка распределительного устройства должны выбираться с учетом возможного увеличения количества присоединений при развитии энергосистемы. Поскольку строительство крупных электростанций ведется очередями, то при выборе схемы электроустановки учитывается количество агрегатов и линий вводимых в первую, вторую, третью очереди и при окончательном развитии ее.
Для выбора схемы подстанции важно учесть количество линий высшего и среднего напряжения, степень их ответственности, а поэтому на различных этапах развития энергосистемы схема подстанции может быть разной.
Поэтапное развитие схемы распределительного устройства электростанции или подстанции не должно сопровождаться коренными переделками. Это возможно лишь в том случае, когда при выборе схемы учитываются перспективы ее развития.
При выборе схем электроустановок учитывается допустимый уровень токов КЗ. При необходимости решаются вопросы секционирования сетей, деления электроустановки на независимо работающие части, установки специальных токоограничивающих устройств.  Из сложного комплекса предъявляемых условий, влияющих на выбор главной схемы электроустановки, можно выделить основные требования к схемам:
1) надежность электроснабжения потребителей;
2) приспособленность к проведению ремонтных работ;
3) оперативная гибкость электрической схемы;
4) экономическая целесообразность.
Надежность — свойство электроустановки, участка электрической сети или энергосистемы в целом обеспечить бесперебойное электроснабжение потребителей электроэнергией нормированного качества. Повреждение электрооборудования в любой части схемы по возможности не должно нарушать электроснабжение, выдачу электроэнергии в энергосистему, транзит мощности через шины. Надежность схемы должна соответствовать характеру (категории) потребителей, получающих питание от данной электроустановки.
Надежность можно оценить частотой и продолжительностью нарушения электроснабжения потребителей и относительным аварийным резервом, который необходим для обеспечения заданного уровня безаварийной работы энергосистемы и ее отдельных узлов.
Приспособленность электроустановки к проведению ремонтов определяется возможностью проведения ремонтов без нарушения или ограничения электроснабжения потребителей. Есть схемы, в которых для ремонта выключателя надо отключать данное присоединение на все время ремонта, в других схемах требуется лишь временное отключение отдельных присоединений для создания специальной ремонтной схемы; в-третьих, ремонт выключателя производится без нарушения электроснабжения даже на короткий срок. Таким образом, приспособленность для проведения ремонтов рассматриваемой схемы можно оценить количественно частотой и средней продолжительностью отключений потребителей и источников питания для ремонтов оборудования.
Оперативная гибкость электрической схемы определяется ее приспособленностью для создания необходимых эксплуатационных режимов и проведения оперативных переключений.
Наибольшая оперативная гибкость схемы обеспечивается, если оперативные переключения в ней производятся выключателями или другими коммутационными аппаратами с дистанционным приводом. Если все операции осуществляются дистанционно, а еще лучше средствами автоматики, то ликвидация аварийного состояния значительно ускоряется.
Оперативная гибкость оценивается количеством, сложностью и продолжительностью оперативных переключений.
Экономическая целесообразность схемы оценивается приведенными затратами, включающими в себя затраты на сооружение установки ~ капиталовложения, ее эксплуатацию и возможный ущерб от нарушения электроснабжения. Подробно методика подсчета приведенных затрат изложена ниже.

3. Структурные схемы электростанций и подстанций

Структурная электрическая схема зависит от состава оборудования (числа генераторов, трансформаторов), распределения генераторов и нагрузки между распределительными устройствами (РУ) разного напряжения и связи между этими РУ.
На рис. 2 показаны структурные схемы ТЭЦ. Если ТЭЦ сооружается вблизи потребителей электроэнергии U = 6 — 10 кВ, то необходимо иметь распределительное устройство генераторного напряжения (ГРУ). Количество генераторов, присоединяемых к ГРУ, зависит от нагрузки 6—10 кВ. На рис. (2, а) два генератора присоединены к ГРУ, а один, как правило, более мощный,—к распределительному устройству высокого напряжения (РУ ВН). Линии 110—220 кВ, присоединенные к этому РУ, осуществляют связь с энергосистемой.
Если вблизи ТЭЦ предусматривается сооружение энергоемких производств, то питание их может осуществляться по ВЛ 35—110 кВ. В этом случае на ТЭЦ предусматривается распределительное устройство среднего напряжения (РУ СН) (рис. 2, б). Связь между РУ разного напряжения осуществляется с помощью трехобмоточных трансформаторов или автотрансформаторов.
При незначительной нагрузке (6 —10 кВ) целесообразно блочное соединение генераторов с повышающими трансформаторами без поперечной связи на генераторном напряжении, что уменьшает токи КЗ и позволяет вместо дорогостоящего ГРУ применить комплектное РУ для присоединения потребителей 6—10 кВ (рис. 2, б). Мощные энергоблоки 100—250 МВт присоединяются к РУ ВН без отпайки для питания потребителей. Современные мощные ТЭЦ обычно имеют блочную схему.
На рис. 3 показаны структурные схемы электростанций с преимущественным распределением электроэнергии на повышенном напряжении (КЭС, ГЭС, АЭС). Отсутствие потребителей вблизи таких электростанций позволяет отказаться от ГРУ. Все генераторы соединяются в блоки с повышающими трансформаторами. Параллельная работа блоков осуществляется на высоком напряжении, где предусматривается распределительное устройство (рис. 3, а).

Рис. 2. Структурные схемы ТЭЦ

Рис. 3. Структурные схемы КЭС, ГЭС, АЭС

Рис. 4. Структурные схемы подстанций

Если электроэнергия выдается на высшем и среднем напряжении, то связь между РУ осуществляется автотрансформатором связи (рис. 3,6)

Виды схем и их назначение

ВИДЫ СХЕМ И ИХ НАЗНАЧЕНИЕ

 

Главная схема электрических соединений электростанции (под­станции) это совокупность основного электрооборудования (гене­раторы, трансформаторы, линии), сборных шин, коммутационной и другой первичной аппаратуры со всеми выполненными между ними в натуре соединениями.

Выбор главной схемы является определяющим при проектиро­вании электрической части электростанции (подстанции), так как он определяет полный состав элементов и связей между ними. Выбранная главная схема является исходной при составлении принципиальных схем электрических соединений, схем собствен­ных нужд, схем вторичных соединений, монтажных схем и т.д.

На чертеже главные схемы изображаются в однолинейном ис­полнении при отключенном положении всех элементов установ­ки. В некоторых случаях допускается изображать отдельные эле­менты схемы в рабочем положении.

Все элементы схемы и связи между ними изображаются в соот­ветствии со стандартами единой системы конструкторской доку­ментации (ЕСКД).

В условиях эксплуатации наряду с принципиальной, главной схемой, применяются упрощенные оперативные схемы, в которых указывается только основное оборудование. Дежурный персонал каждой смены заполняет оперативную схему и вносит в нее необходимые изменения в части положения выключателей и разъединителей, происходящие во время дежурства.

При проектировании электроустановки до разработки главной схемы составляется структурная схема выдачи электроэнер­гии (мощности), на которой показываются основные функцио­нальные части электроустановки (распределительные устройства, трансформаторы, генераторы) и связи между ними. Структурные схемы служат для дальнейшей разработки более подробных и пол­ных принципиальных схем, а также для общего ознакомления с ра­ботой электроустановки.

На чертежах лих схем функциональные части изображаются в виде прямоугольников или условных графических изображении (рис. 1, а). Никакой аппаратуры (выключателей, разъедините­лей, транс форматоров тока и т.д.) на схеме не показывают.


Рис. 1. Виды схем на примере подстанции 110/10 кВ: а – структурная; б – упрощенная принципиальная; в – полная принципиальная; г – оперативная.

 

На рис. 1, б показана главная схема этой же подстанции без некоторых аппаратов — трансформаторов тока, напряжения, раз­рядников. Такая схема является упрошенной принципиальной схемой электрических соединений. На полной принципиальной схеме (рис. 1, в) указывают все аппараты пер­вичной цепи, заземляющие ножи разъединителей и отделителей, указывают также типы применяемых аппаратов. В оперативной схеме (рис. 1, г) условно показаны разъединители и заземляющие ножи. Действительное положение этих аппаратов (включено, отклю­чено) показывается на схеме дежурным персоналом каждой смены.

Согласно ГОСТ 2.710—81 буквенно-цифровое обозначение в электрических схемах состоит из трех частей: 1-я указывает вид элемента, 2-я — его порядковый номер, 3-я — его функцию. Вид и номер являются обязательной частью условного буквенно-циф­рового обозначения и должны присваиваться всем элементам и устройствам объекта. Указание функции элемента (3-я часть обо­значения) необязательно.

В 1-й части записывают одну или несколько букв латинского алфавита, во 2-й части — одну или несколько арабских цифр, характеризующих порядковый номер элемента. Например, QS1 — разъединитель № 1; Q2— выключатель № 2; QKсекционный выключатель.

3. Схемы электрических сетей

17.Какие потери имеют место в трансформаторах?

18.Что такое коэффициент выгодности автотрансформатора?

19.Что такое типовая мощность автотрансформатора?

20.Привести схемы замещения синхронных машин. В каких режимах эти машины могут работать?

21.Перечислить способы представления генератора при расчетах электрических сетей?

22.Что такое приемник и потребитель электроэнергии?

23.Что такое нагрузка и узел нагрузки?

24.Перечислите способы представления нагрузок в расчетных схемах.

25.Что такое статические характеристики нагрузки?

3.1.Схемы местных электрических сетей

Вместных распределительных сетях электроэнергия к потребителям распределяется от центров питания (ЦП), под которыми понимаются шины распределительных устройств вторичного напряжения (6…35 кВ) понижающих подстанций ЭЭС или шины распределительных устройств такого же напряжения электростанций.

Схемы местных распределительных сетей, обеспечивающих электроснабжение городских коммунально-бытовых потребителей и мелких промышленных предприятий, строятся, как правило, на напряжении 10 кВ с последующей трансформацией 10/0,4 кВ; сети промышленных предприятий – на напряжении 6-10/0,4 кВ. Напряжение 6 кВ используется при наличии на предприятиях электроприемников такого напряжения.

Местные распределительные сети сельскохозяйственных потребителей характеризуются большей протяженностью линий электропередачи, чем промышленные и городские электрические сети, и, как правило, отсутствием электроприемников напряжением 6 кВ. Поэтому здесь используют напряжения 35/10/0,4 кВ.

Рассматриваемые электрические сети выполняются разомкнутыми, т.е. не содержащими замкнутых контуров. В этих сетях предусматривается питание ответственных потребителей от разных секций шин ЦП (секционирование). Наибольшее распространение для местных распределительных сетей получили радиальные, магистральные, смешанные (радиально-магистральные) и петлевые схемы.

Радиальная схема распределения электроэнергии показана на рис.

3.1.В этой схеме линии электропередачи W, как радиусы,

непосредственно связывают ЦП с каждым потребителем S1, S2, …

Две секции шин (1 и 2) ЦП соединены секционным выключателем QВ, который в нормальном режиме работы сети находится в отключенном состоянии. При исчезновении напряжения, например, на 1-й секции шин этот выключатель включается автоматикой ввода резервного питания

Десять правил составления электрических принципиальных схем

Назначение электрических принципиальных схем

Принципиальная схема — это схема электрических соединений, выполненная в развернутом виде. Она является основной схемой проекта электрооборудования производственного механизма и дает общее представление об электрооборудовании данного механизма, отражает работу системы автоматического управления механизмом, служит источником для составления схем соединений и подключений, разработки конструктивных узлов и оформления перечня элементов.

По принципиальной схеме осуществляется проверка правильности электрических соединений при монтаже и наладке электрооборудования. От качества разработки принципиальной схемы зависит четкость работы производственного механизма, его производительность и надежность в эксплуатации.

Десять правил составления электрических принципиальных схем

1. Составление принципиальной электросхемы производственного механизма проводится на основании требований технического задания. В процессе составления принципиальной схемы уточняются также типы, исполнения и технические данные электродвигателей, электромагнитов, конечных выключателей, контакторов, реле и т. п.

Напомним, что на принципиальной схеме все элементы каждого электрического устройства, аппарата или прибора показываются отдельно и размещаются для удобства чтения схемы в различных местах ее в зависимости от выполняемых функций. Все элементы одного и того же устройства, машины, аппарата и т. п. снабжаются одинаковым буквенно-цифровым обозначением, на пример: KM1 — контактор линейный первый, KT — реле времени и т. п.

2. На электрической принципиальной схеме показываются все электрические связи между входящими в нее элементами электрооборудования производственного механизма. На принципиальных схемах силовые цепи обычно размещают слева и изображают их толстыми линиями, а цепи управления помещают справа и чертят тонкими линиями.

Принципиальная схема проектируется с использованием существующих типовых узлов и схем автоматического управления электропроводами(например, схем магнитных контроллеров и защитных панелей - для кранов, схем узлов перехода от наладочного режима к автоматическому при помощи раздельных кнопок управления или переключателя режимов — для металлорежущих станков и т. д.).

3. Релейно-контактные схемы необходимо составлять с учетом минимальной загрузки контактов реле, контакторов, путевых выключателей и т. д., применяя для снижения коммутируемой ими мощности усилительные устройства: электромагнитные, полупроводниковые усилители и др.

 

4. Для повышения надежности работы схемы нужно выбрать наиболее простой вариант, имеющий наименьшее количество органов управления, аппаратов и контактов. Для этой цели следует, например, применять общие аппараты защиты для электродвигателей, не работающих одновременно, а также осуществлять управление вспомогательными приводами от аппаратов главного привода, если они работают одновременно. 

5. Цепи управления в сложных схемах следует присоединять к сети через трансформатор, понижающий напряжение до 110 В. Это исключает электрическую связь силовых цепей с цепями управления и устраняет возможность ложных срабатываний релейно-контактных аппаратов при замыканиях, на землю в цепях их катушек. Относительно простые схемы электрического управления допускается присоединять непосредственно к питающей сети.

6. Подача напряжения на силовые цепи и цепи управления должна производиться посредством вводного пакетного выключателя или автоматического выключателя. При применении на металлорежущих станках или других машинах только двигателей постоянного тока в схеме управления следует использовать также аппаратуру постоянного тока.

7. Различные контакты одного и того же электромагнитного аппарата (контактора, реле, командоконтроллера, путевого выключателя и др. рекомендуется по возможности подключать к одному полюсу или фазе сети. Это позволяет осуществить более надежную работу аппаратов (отсутствует вероятность пробоя и замыкания по поверхности изоляции между контактами). Из этого правила следует, что один вывод катушки всех электрических аппаратов по возможности нужно подключать к одному полюсу цепи управления.

8. Для обеспечения надежной работы электрооборудования должны быть предусмотрены средства электрической защиты и блокировки. Электрические машины и аппараты защищаются от возможных коротких замыканий. и недопустимых перегрузок. В схемах управления электроприводами станков, молотов, прессов, мостовых кранов обязательна нулевая защита для устранения возможности самозапуска электродвигателей при снятии и последующей подаче напряжения питания.

Электрическая схема должна быть построена так, чтобы при перегорании предохранителей, обрыве цепей катушек, приваривании контактов не возникало аварийных режимов работы электропривода. Кроме того, схемы управления должны иметь блокировочные связи для предотвращения аварийных режимов при ошибочных действиях оператора, а также для обеспечения заданной последовательности операций.

9. В сложных схемах управления необходимо предусмотреть сигнализацию и электроизмерительные приборы, позволяющие оператору (станочнику, крановщику) наблюдать за режимом работы электроприводов. Сигнальные лампы обычно включаются на пониженное напряжение: 6, 12, 24 или 48 В.

10. Для удобства эксплуатации и правильного монтажа электрооборудования зажимы всех элементов электроаппаратов, электрических машин (главные контакты, вспомогательные контакты, катушки, обмотки и др.) и провода на схемах маркируются.

Участки (зажимы элементов схемы и соединяющие их провода) цепей постоянного тока положительной полярности маркируются нечетными числами, а отрицательной полярности — четными числами. Цепи управления переменного тока маркируются аналогично, т. е. все зажимы и провода, присоединяемые к одной фазе, маркируются нечетными числами, а к другой фазе - четными.

 

Общие точки соединений нескольких элементов на схеме имеют один и тот же номер. После прохождения цепи через катушку, контакт, сигнальную лампу, резистор и т. п. номер изменяется. Для выделения отдельных видов цепей индексация производится так, чтобы цепи управления имели номера от 1 до 99, цепи сигнализации — от 101 до 191 и т. д.

УП. 01. Техническое обслуживание оборудования электрических подстанций и сетей МДК Устройство и техническое обслуживание электрических

Профессиональный модуль

Профессиональный модуль ПМ.01. Техническое обслуживание оборудования электрических подстанций и сетей 1. Область применения программы Рабочая программа профессионального модуля является частью основной

Подробнее

18540 Слесарь по ремонту подвижного состава.

1. ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ ПРОФЕССИОНАЛЬНОГО МОДУЛЯ УЧАСТИЕ В КОНСТРУКТОРСКО-ТЕХНОЛОГИЧЕСКОЙ ДЕЯТЕЛЬНОСТИ (ЭЛЕКТРОПОДВИЖНОЙ СОСТАВ) 1.1. Область применения программы Рабочая программа профессионального

Подробнее

Техническая механика

Техническая механика 1.1. Область применения рабочей программы Рабочая программа учебной дисциплины является частью программы подготовки специалистов среднего звена в соответствии с ФГОС по специальности

Подробнее

КАФЕДРА ШАХТНОГО СТРОИТЕЛЬСТВА

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ГОРНЫЙ УНИВЕРСИТЕТ»

Подробнее

Рабочая программа учебной практики

Приложение 5.4.1.1 к ППССЗ по специальности 13.02.11 Техническая эксплуатация и обслуживание и электромеханического оборудования (по отраслям) Государственное бюджетное профессиональное образовательное

Подробнее

Специальность

Специальность 13.02.07 Электроснабжение (по отраслям) Квалификация техник Срок обучения 3г.10м. Основные виды профессиональной деятельности техника: техническое обслуживание оборудования электрических

Подробнее

ОСНОВНАЯ ОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА

1 ОСНОВНАЯ ОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ по специальности 130405 Подземная разработка месторождений полезных ископаемых I. ОБЛАСТЬ ПРИМЕНЕНИЯ Основной задачей настоящей

Подробнее

ПРОГРАММА ПРОФЕССИОНАЛЬНОГО МОДУЛЯ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БАШКОРТОСТАН ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ОКТЯБРЬСКИЙ НЕФТЯНОЙ КОЛЛЕДЖ ИМ. С.И. КУВЫКИНА ПРОГРАММА ПРОФЕССИОНАЛЬНОГО МОДУЛЯ

Подробнее Схема электрических соединений панели

Схемы электрических соединений панели используются для обозначения каждого устройства, а также соединения между устройствами внутри электрической панели . Поскольку электрические панели - это то, что будет содержать системы управления, технические специалисты и инженеры ПЛК обычно сталкиваются со схемами подключения панелей. Хотя электрические панели на первый взгляд могут быть не слишком сложными, для выбора подходящих устройств, определения размеров проводки и проектирования компоновки панели требуется много инженерных усилий, что отражено в схемах электрических соединений панели.

Важно отметить, что электрические схемы панели должны соответствовать местным властям, которые диктуют стандарты , которые должны соблюдаться внутри панели. В США этим органом является Национальная ассоциация противопожарной защиты (NFPA), а кодекс называется Национальным электротехническим кодексом (NEC). Кроме того, каждое государство может выбрать разные версии кода в зависимости от выпуска. Перед проектированием панели важно ознакомиться с кодом, который применяется в вашем регионе.

Электрическая панель - основные компоненты

В этом разделе мы хотели бы начать с рассмотрения стандартной электрической панели, изучения компонентов и понимания вариантов выбора, лежащих в основе определенных компонентов и решений по компоновке.

Электрическая панель - система управления на основе MicroLogix

Электрическая панель выше включает в себя ПЛК MicroLogix, защитные устройства (предохранители), соединительные устройства (неуправляемый переключатель, преобразователь EtherNet в RS232), клеммные колодки и источник питания.

Конструкция электрической панели - силовые устройства

Силовые устройства внутри электрической панели используются для подачи тока, необходимого на каждое устройство, и для защиты их от ситуаций перегрузки по току.

  • Автоматический выключатель | Обычно это точка входа внешнего тока в панель. Выключатель электрической панели аналогичен тому, что вы можете найти в домашних условиях, но с гораздо более высокими характеристиками. Это устройство используется для отключения всего питания от электрической панели и автоматически срабатывает при превышении определенного уровня тока (в зависимости от номинала выключателя).
  • Предохранители | Предохранитель - это статическое устройство, которое защитит оборудование и персонал от скачков тока.В зависимости от кода предохранитель может использоваться отдельно или в сочетании с автоматическим выключателем. При срабатывании предохранителя его необходимо заменить перед возобновлением работы.
Схема электрических соединений панели - Электропроводка частотно-регулируемого привода

На приведенной выше схеме электрических соединений показан пример автоматического выключателя, а также нескольких предохранителей, защищающих частотно-регулируемые приводы. Обратите внимание, что на чертеже автоматического выключателя есть значок, который указывает, что цепь размыкается во время скачка тока.

Конструкция электрической панели - трансформаторы и источники питания

Регулирование напряжения - важный процесс в каждой панели. Трансформаторы и блоки питания используются для преобразования одного уровня напряжения в другой. Это создает уникальную проблему для электрических чертежей: разные уровни напряжения должны управляться отдельно. Кроме того, для разных уровней напряжения потребуются отдельные клеммы, предохранители и электрические щупы. Как правило, размеры проводки указываются в начале набора чертежей.На отдельной странице напряжение будет указано в источнике, но редко на каждом проводе. Следовательно, важно отследить проводку, чтобы подтвердить местоположение и характеристики источника. Схема подключения электрической панели

- Падение напряжения на трансформаторе

На приведенной выше схеме показан трансформатор, который принимает напряжение 575 В переменного тока и преобразует его в 115 В переменного тока. 115 В переменного тока является стандартным напряжением в Северной Америке и используется для многих устройств, включая ПЛК, HMI, переключатели и многое другое.

Блок питания выполняет ту же функцию, но на чертеже обозначается другим символом.

Как упоминалось выше, преобразование напряжения приведет к созданию новой шины питания. Поэтому чрезвычайно важно следить за маркировкой и этикетками на чертежах, чтобы отслеживать уровень напряжения, о котором идет речь.

Конструкция электрической панели - Устройства управления

Устройства управления - это компоненты, которые будут управлять процессом. К ним относятся программируемые логические контроллеры, частотно-регулируемые приводы, весоизмерительные ячейки и т. Д.На панели, о которой мы упоминали выше, мы можем идентифицировать ПЛК серии MicroLogix вместе с массивом внешних модулей ввода / вывода. Давайте посмотрим на пример их представления на чертеже электрической панели. Схема подключения электрической панели

- пример трансформатора и источника питания

На приведенной выше схеме подключения электрической панели показан пример трансформатора и источника питания, используемых в системе ПЛК. Важно отметить, что источник питания может быть отдельным блоком (как обсуждалось в предыдущем разделе) или модулем в стойке ПЛК.Помимо питания ПЛК, на схеме подключения будет показан массив IO, связанный с ПЛК; давайте посмотрим на пример ниже.

Базовый провод - соединение между двумя компонентами.

На рисунке выше показана первая карта ПЛК Allen Bradley CompactLogix. Основываясь на модели карты (1769-IQ16), а также на характере устройств, привязанных к каждой точке на карте, мы можем сразу сделать вывод, что карта представляет собой 16-точечную входную карту 24 В постоянного тока. На рисунке показаны следующие устройства:

  • Вход 0: «ИЗ СТРОКИ 1219» | Устройство, нарисованное на другой странице набора чертежей.
  • Ввод 1: «PB4028» | Кнопка нормально разомкнутого типа
  • Вход 2: «PB4029» | Нормально закрытая кнопка
  • Вход 3: «PB4030» | Кнопка нормально разомкнутого типа
  • Вход 4: «PB4031» | Кнопка нормально разомкнутого типа
  • Ввод 5: «CR1503» | Реле управления
  • Вход 6: «CR1504» | Реле управления
  • Вход 7: «190-MC01» | Моторный контактор
  • Вход 8: «905-MC01» | Моторный контактор
  • Вход 9: «906-MC01» | Контактор двигателя
  • Вход 10: «030-MC02» | Моторный контактор
  • Вход 11: «030-SE01» | Трехпозиционный селекторный переключатель
  • Вход 12: «035-MC01» | Моторный контактор
  • Вход 13: «030-ZS01» | Трехпозиционный селекторный переключатель
  • Вход 14: Н / Д
  • Вход 15: «Контакт ЗАПУСК СИСТЕМЫ РАЗРЯДА»

На электрическом чертеже каждая карта будет разделена на страницу.Другими словами, внешние модули, которые мы видели на панели, будут иметь отдельную страницу, на которой показаны компоненты, подключенные к каждой точке.

Конструкция электрической панели - символы электрических устройств

Мы не рассмотрели все основные компоненты в приведенном выше разделе. Однако, поскольку мы углубились в точки ввода и вывода, привязанные к внешним устройствам, важно рассмотреть их, прежде чем мы продолжим. В этом разделе мы представим символ устройства, который вы можете найти на электрической схеме панели, и дадим краткое описание устройства, а также несколько примеров для справки.

Обозначения проводки на электрических чертежах

Провода - это то, что связывает устройства вместе. Линии используются для обозначения разводки панели. Вы увидите следующие основные линии:

Basic Wire - соединение между двумя компонентами.

Примечание: провод становится пунктирной линией, когда проводка выходит за пределы панели, описанной на чертеже.

Соединение проводов - Соединение между несколькими проводниками.

Wire Bypass - Байпас без тока двух проводов.Между горизонтальным и вертикальным проводниками нет соединения.

Обозначения кнопок и переключателей на электрических чертежах

Кнопки и переключатели играют важную роль в автоматизации производства. Они используются для получения данных, вводимых пользователем, а также состояния оборудования. Важно отметить, что переключатель не всегда приравнивается к кнопке на машине. Переключатель также включает в себя широкий набор концевых выключателей, используемых в процессе. Этикетка над устройством обычно указывает на его характер.

Переключатель - [левый] - нормально разомкнутый | [Центр] - нормально закрытый | [Справа] - однополюсный двухпозиционный переключатель (SPDT)

Электрический переключатель - это базовое устройство, которое проводит ток, когда он замкнут, и блокирует прохождение тока, когда он разомкнут. Сигнал, который передается через коммутатор, может быть прочитан полевым устройством или входом ПЛК, как мы видели выше.

В промышленном производстве используется широкий спектр переключателей. Мы написали подробное руководство о том, как работают некоторые из этих переключателей и где они используются в производстве, в следующей статье: Концевой выключатель.

Кнопка - [Левая] - Нормально открытый | [Вправо] - нормально замкнутый

Нажимная кнопка - это мгновенный электрический переключатель, который будет проводить ток, когда он замкнут, и блокировать прохождение тока, когда он разомкнут. Разница между переключателем и кнопкой заключается в том, что кнопка автоматически вернется в исходное состояние, в то время как переключатель будет поддерживать это состояние до тех пор, пока не будет переключен.

Свет - [Слева] - Красный | [Справа] - зеленый

Свет обычно используется в качестве индикатора процесса.Это может быть светодиодный индикатор на панели или индикатор на машине или технологическом оборудовании.

Контакт катушки двигателя

Контакт катушки двигателя - это вход контактора или частотно-регулируемого привода. Подавая напряжение на катушку, привод замыкает необходимые контакты и запускает двигатель. Обратите внимание, что на катушке также указаны клеммы, на которые должны быть заземлены соединения. Ориентация (+24 В постоянного тока против 0 В постоянного тока) важна и будет указана на электрическом чертеже.

Контакт двигателя или реле - [левый] - нормально разомкнутый | [Справа] - нормально замкнутый

Контакт отображает состояние определенного устройства. Когда реле находится под напряжением, контакт либо замыкается, либо размыкается в зависимости от начального состояния. Когда контакт замкнут, ток течет; когда он открыт, ток прекращается. Когда дело доходит до контактора двигателя, рекомендуется отправлять сигнал обратно на ПЛК в качестве подтверждения того, что устройство находится под напряжением. Таким образом, ПЛК получит сигнал от контакта и подтвердит его логикой.

Другие устройства на электрических чертежах

Мы рассмотрели несколько основных устройств, которые могут встретиться на электрических чертежах. Этот список ни в коем случае не является исчерпывающим. Существует ряд вариаций основных устройств, а также символов для других, с которыми вы столкнетесь. Мы рекомендуем вам обращаться к техническим примечаниям производителя, когда речь идет о соответствующих символах. В большинстве случаев они указаны в паспорте.

Конструкция электрической панели - Сетевые устройства

Сети являются важным компонентом большинства современных панелей.Они поддерживают ряд различных протоколов, таких как EtherNet, DeviceNet, ProfiBUS, ControlNet, Serial и другие. Разница между представлениями типовых схем электрических панелей для нормальной проводки и сетевых устройств заключается в том, что в них часто не используется многожильный кабель. Другими словами, стандартный кабель EtherNet, который может содержать 8 проводов, будет представлен как один провод. Давайте посмотрим на пример ниже. Схема подключения электрической панели

- сетевые устройства

На приведенной выше схеме показано соединение между неуправляемым коммутатором и рядом периферийных устройств, использующих протокол EtherNet.Как упоминалось выше, для простоты предполагается, что читатель понимает использование стандартного кабеля EtherNet RJ45 для этой цели.

Обратите внимание, что на этой странице описаны только сетевые подключения к этим устройствам. Те же устройства будут перечислены на другой странице, так как им требуются дополнительные сигналы. Пример: частотно-регулируемый привод (VFD) «030-SC01 конвейерная платформа» будет подключен к источнику питания, двигателю, ПЛК и цепям безопасности. Они будут описаны на отдельной странице схемы электрических соединений панели.

Анализ монтажной схемы электрической панели

В этом разделе мы рассмотрим серию страниц с электрическими схемами, выделим ключевые элементы, раскроем, какую информацию можно извлечь с каждой страницы, и прокомментируем, как конкретную страницу можно использовать для устранения неисправностей. система. Схема электрических соединений панели

- цепь стартера двигателя

Схема панели управления двигателем

На приведенном выше чертеже мы видим 4 ключевых элемента:

  1. Точка входа в электрическую шину указана на предыдущей странице.Если мы перейдем к первой странице наших электрических чертежей, мы сможем найти спецификацию напряжения на шине: 460 В переменного тока, 3 фазы, 60 Гц.
  2. 195-MC01 - это контактор двигателя, который включает автоматический выключатель, плавкий предохранитель и контакт. На чертеже указана установка автоматического выключателя: 5А.
  3. 195-HSS01 - выключатель двигателя. Обратите внимание, что отключение обеспечивает средство отключения высокого напряжения от двигателя, а также обратную связь с ПЛК. На чертеже указано «LOCAL: I: 4/08» в качестве входа отключения в ПЛК.
  4. 195-M01 - трехфазный двигатель мощностью 0,75 л.с.
Возможные действия по поиску и устранению неисправностей
  • Сработавший контактор двигателя | См. Устройство 192-MC01. Измерьте входящее в устройство напряжение 460 В переменного тока, 60 Гц. Убедитесь, что уставка выключателя составляет 5 А.
  • Двигатель не работает | См. Устройство 195-M01. Убедитесь, что выключатель двигателя (195-HSS01) находится в положении ВКЛ. Это можно сделать, измерив выходное напряжение и проверив сигнал ПЛК, указанный выше.Убедитесь, что контактор двигателя (195-MC01) не сработал. Убедитесь в исправности обмоток двигателя, измерив сопротивление, когда он отключен с помощью выключателя двигателя.
  • Схема электрических соединений панели
- цепь безопасности

Схема цепи безопасности панели

Схема электрических соединений, приведенная выше, содержит пример цепи безопасности, которую можно найти в промышленной среде. Здесь показаны следующие компоненты:

  1. MSR304 - это реле безопасности Allen Bradley.Он отправляет сигнал через серию предохранительных выключателей и аварийных остановов и считывает сигнал, который он получает в конце цепочки. Если все переключатели замкнуты, реле подтверждает, что цепь безопасности исправна, и подает питание на нагрузку, к которой оно привязано.
  2. 090-ZSS11 - это предохранительный выключатель, который является частью цепи безопасности устройств. Как показано на схеме, устройства безопасности подключаются одно за другим.
  3. Световой индикатор кнопки аварийной остановки - это устройство, которое указывает на нажатие кнопки аварийной остановки.Обратите внимание, что этот сигнал поступает непосредственно от кнопки через нормально разомкнутый контакт. Другими словами, этот свет загорится только при нажатии кнопки E-Stop; ни какой другой элемент в цепи цепи безопасности.
Возможные действия по поиску и устранению неисправностей
  • Неисправность цепи аварийного останова | См. Устройство «MSR304». Начните с проверки сигнала аварийной остановки. Отожмите кнопку аварийной остановки, если она нажата. Проверьте напряжение на каждом устройстве, связанном с безопасностью. Цепь должна возвращать сигнал 24 В постоянного тока на каждую линию.Если это не так, сузьте круг схемного элемента (переключателя), который вызывает проблему.
  • Цепь безопасности не сбрасывается | См. Устройство «MSR304». Необходимо будет выполнить те же действия, что и выше. Реле сбрасывается только при получении правильного сигнала от полевых устройств. В противном случае реле не сработает.

Схема электрических соединений панели - программные инструменты

В этом разделе мы опишем различные инструменты, которые инженеры и техники используют для создания схем электрических соединений панели.Некоторые из этих инструментов дороги и продаются только через дистрибьюторов. Однако большинство этих поставщиков предоставляют пробные версии, которые вы можете использовать с ограниченными возможностями, чтобы оценить, подходит ли их решение для вас.

AutoCAD Electrical от Autodesk - один из наиболее часто используемых инструментов в отрасли. AutoCAD - это полнофункциональный набор инструментов с широким набором функций для многих приложений. Это дорогая лицензия, но она поставляется с обширной библиотекой устройств, которая постоянно пополняется предложениями большинства поставщиков.

EPLAN - Этот инструмент специализируется на программном обеспечении для проектирования панелей и промышленного дизайна. Вы не найдете обширного списка функций, которые вы можете увидеть в AutoCAD, но функции, которые вы найдете, исключительно хорошо разработаны и поддерживаются командой. EPLAN приобрел популярность в последние годы и стал предпочтительным инструментом для многих инженеров и электриков.

SkyCAD - Этот «недорогой» инструмент имеет меньше наворотов, но имеет огромную скидку по сравнению с чем-либо другим на рынке.Это отличное решение для небольшого предприятия, частного пользователя или подрядчика.

Схема электрических соединений панели управления Заключение

Электрические чертежи являются обязательными в соответствии с Национальным электротехническим кодексом (NEC) в США и другими органами власти в различных регионах мира. Они предоставляют список спецификаций, по которому электрики и инженеры будут проектировать и собирать панели управления, используемые на производстве и в промышленности.

На каждой странице чертежа будет отображаться схема, которая будет содержать некоторые элементы панели вместе со ссылками на другие страницы.Используя схему, можно идентифицировать элементы на панели, проверять соединения и устранять неполадки на местах, когда они возникают.

Найдите схемы, электрические схемы и т. Д. Для повседневных электронных устройств

Введение

Если вам когда-либо приходилось разбирать различную электронику, чтобы построить что-то свое, эта инструкция для вас.

Иногда бывает полезно получить более подробную информацию о внутренней работе устройства.Было бы неплохо, если бы вы могли получить полные схемы, фотографии интерьера и другие технические детали еще до того, как возьмете в руки отвертку? Что ж, возможно, вы сможете!

Федеральная комиссия по связи США (или FCC) регулирует межгосударственную и международную связь с помощью радио и телевидения, проводов и кабелей, а также спутников. У них есть очень конкретные руководящие принципы для «авторизации оборудования», которые требуют, чтобы поставщики прошли процесс сертификации для любого устройства, которое использует радиочастотный спектр и будет продаваться или импортироваться в США.

Одним из требований является то, что эти устройства должны быть помечены уникальным идентификатором FCC, или обычно известным как FCC ID.

К счастью для нас, этот идентификационный номер Федеральной комиссии по связи является ключом к огромному количеству информации об устройстве, о существовании которого вы, вероятно, даже не подозревали (поскольку он редко появляется в результатах поисковых систем).

Начало работы

1. Возьмите устройство, о котором вы хотите узнать больше. Обратите внимание, что не вся электроника обязана иметь сертификацию FCC, но есть вероятность, что если она каким-либо образом передает, принимает или потенциально излучает RF, она будет иметь идентификатор FCC.
2. Найдите идентификатор FCC на устройстве. Иногда это хорошо видно на спине. В других случаях вам нужно снять крышку аккумуляторного отсека, чтобы найти ее. FCC требует, чтобы этикетка была легко доступна, поэтому вам никогда не придется разбирать устройство, чтобы найти идентификатор FCC.
3. Получив идентификатор FCC, посетите следующую страницу: http://www.fcc.gov/oet/ea/fccid/
. 4. Теперь введите код «Получатель гранта или заявителя», который представляет собой первые 3 буквы идентификатора FCC, за которым следует оставшаяся часть идентификатора, известного для кода продукта.Обратите внимание, что Код Грантополучателя всегда состоит из трех буквенно-цифровых символов, а Код продукта может состоять из дефисов и / или тире.
5. Нажмите "Поиск" и посмотрите, что получится!
6. Вы должны увидеть список всех приложений, отправленных в отношении этого конкретного устройства. Обратите внимание, что вы можете увидеть несколько представлений в случае, если поставщик обновил или изменил электронику, которая могла потребовать повторной сертификации.
7. Нажмите «Подробности», и вы увидите такую ​​информацию, как исходное сопроводительное письмо для устройства, внешние фотографии, внутренние фотографии, отчеты об испытаниях и т. Д.все доступны для скачивания в формате PDF.
8. Обратите внимание, что в некоторых случаях поставщик может специально потребовать, чтобы определенные документы оставались конфиденциальными и поэтому не были доступны на этом сайте. Я обнаружил, что чаще всего это не так, и обычно все доступно.
9. И это все! Теперь у вас есть много дополнительных данных и схем для вашего удовольствия от взлома оборудования!

Дополнительные сведения

Соавтор, автор, throbscottle, создал отличное руководство о том, как реконструировать схему с печатной платы.Я рекомендую вам ознакомиться с некоторыми отличными советами по обратному инжинирингу!

Посетите страницу авторизации оборудования FDA (http://www.fcc.gov/oet/ea/Welcome.html), чтобы получить дополнительную информацию и ответы на часто задаваемые вопросы о том, какие устройства должны иметь сертификацию FCC, правила, необходимые для такой сертификации, и нагрузки. другой информации о том, что требуется для получения разрешения на устройства, использующие радиочастотный спектр.

ManganLabs.com
Идет генерация идеи

Как создать принципиальную схему

НАЧАЛО РАБОТЫ

Очень немногие принципиальные схемы, особенно созданные новичками, создаются с нуля.Пока вы не научитесь создавать свои собственные принципиальные схемы, начните с существующего изображения. Это изображение может быть предоставлено вашим учителем или руководителем. Вы также можете найти его в Интернете. С помощью нашей функции импорта Visio вы также можете загрузить любые существующие файлы Visio в Lucidchart и перейти оттуда.

1. Зарегистрируйтесь для получения учетной записи Lucidchart.

2. Перейдите в Мои документы.

3. Щелкните Создать> Новый документ.

4. Изучите и начните с шаблона принципиальной схемы в разделе UML нашей библиотеки шаблонов или создайте новый документ в Lucidchart.

ДОБАВИТЬ ФОРМЫ И СИМВОЛЫ

5. Затем определите цель для вашей принципиальной схемы. Вы объединяете несколько схем в одну? Добавляете новые компоненты в существующую схему? Убедитесь, что вы понимаете масштаб вашего проекта, в том числе, сколько времени он займет.

6. Пришло время нарисовать принципиальную схему. Начните с основного обзора проводных соединений. В Lucidchart вы можете рисовать линии, представляющие соединения, нажав «L» на клавиатуре, а затем щелкнув и перетащив мышью.Форматирование строки можно изменить, выбрав строку и щелкнув правой кнопкой мыши или выбрав один из параметров на панели свойств в верхней части страницы.

7. При необходимости добавьте компоненты в схему. Обязательно просмотрите всю библиотеку форм принципиальной схемы, чтобы убедиться, что она содержит нужные вам элементы. Если этого не произошло, вы можете легко загрузить изображение со своего рабочего стола или выполнить поиск в редакторе дополнительных значков.

8. Когда вы поместите источник питания на схему, выберите его одним щелчком мыши.Это вызовет меню, в котором вы можете указать его метку, ориентацию и заряд. Еще раз убедитесь, что вы указываете правильное значение для каждого компонента.

9. Продолжайте добавлять элементы к своей принципиальной схеме, пока она не отобразит все соединения между устройствами, включая соединения питания и сигналов. Помните, что принципиальные схемы обычно не отражают физическое расположение компонентов.

ПРОВЕРИТЬ СВОЮ РАБОТУ

10. Ваша диаграмма почти завершена. Но прежде чем приступить к использованию, задайте себе следующие вопросы:

  • Широко ли доступны компоненты этой диаграммы?

  • Схема ведет себя должным образом?

  • Насколько легко понять диаграмму?

В качестве последнего шага отнесите свою принципиальную схему кому-нибудь, кому вы доверяете, и спросите, имеет ли она смысл.Этот человек должен иметь точку зрения со стороны, которая может внести ценный вклад в вашу работу.

Схема домашней сети - объяснение всех сетевых схем

Схема домашней сети - это схематический чертеж расположения домашней сети. Это поможет вам спланировать домашнюю сеть и выбрать для нее наилучшую схему. Но схемы домашней сети также используются как часть сетевой документации.

Большинство схем компоновки сетей представляют собой вариации нескольких распространенных схем компоновки сетей.В этой статье мы рассмотрим эти общие сетевые схемы. Мы собираемся начать с самой простой схемы домашней сети и расширить ее до полной сложной домашней сети.

Под каждой раскладкой вы найдете описание с советами, плюсами и минусами раскладки.

Базовая схема домашней сети

Это самая простая схема домашней сети, которую вы можете иметь. У нас есть роутер со встроенным модемом и точкой доступа, которые мы получили от нашего интернет-провайдера.Такие маршрутизаторы обычно позволяют подключать до четырех устройств с помощью сетевого кабеля (UTP).

Плюсы

Если вы живете в небольшом доме и у вас ограниченное количество устройств, то эта базовая схема сети может вам подойти. Для этого не нужно покупать какое-либо сетевое оборудование, поэтому его очень просто настроить.

Минусы

Если вы посмотрите на эту схему сети, вы можете подумать, что это все, что мне нужно. Я могу подключить свой компьютер (-ы) к принтеру с помощью сетевого кабеля и подключить по беспроводной сети свои мобильные телефоны и / или ноутбуки.

Но у этой компоновки есть и обратная сторона. Вам нужно будет разместить маршрутизатор рядом с точкой, где в вашем доме будет подключение к Интернету. В большинстве случаев это скрыто в подсобном помещении или гараже. Диапазон беспроводной сети ограничен, поэтому у вас, вероятно, не будет хорошего беспроводного сетевого соединения с этой настройкой.

Вы можете подключить только четыре проводных устройства. Имейте в виду, что проводное соединение - лучшее из возможных. Итак, в идеале вы хотите подключить Smart TV, игровую консоль, принтер и т. Д. С помощью проводного соединения.Тогда 4 сетевых подключения - это немного.

Еще одним недостатком является то, что у вас нет полного контроля над маршрутизатором. Поэтому с точки зрения безопасности вы можете использовать свой собственный маршрутизатор вместо маршрутизатора от интернет-провайдера.

подсказки

Если вы используете эту схему, убедитесь, что вы изменили пароли по умолчанию для маршрутизатора. Пароль по умолчанию можно легко найти в Интернете, поэтому, чтобы сохранить вашу сеть в безопасности, начните с изменения паролей.

Также измените пароль, сетевой ключ безопасности из беспроводной сети и отключите WPS, если он включен в маршрутизаторе.Прочтите больше советов по защите вашей домашней сети здесь.

Схема домашней сети с модемом и маршрутизатором

По-прежнему довольно простая схема сети, но, как вы можете видеть на схеме сети, мы добавили собственный маршрутизатор. Если у вас есть оптоволоконное соединение из примера, вы получите модем только от своего интернет-провайдера. Модем может только настроить подключение к Интернету и доставить его на одно сетевое устройство.

Итак, теоретически вы можете подключить один компьютер к модему с помощью кабеля UTP, и у вас будет Интернет.Но чтобы использовать подключение к Интернету с несколькими устройствами, вам понадобится маршрутизатор. Большинство маршрутизаторов имеют порт WAN, который можно использовать для подключения к нему модема, при этом четыре сетевых порта остаются свободными для компьютеров и принтера.

Эту настройку также можно использовать для замены модема / маршрутизатора из первой схемы на ваш собственный маршрутизатор.

Плюсы

Всегда хорошо использовать собственный роутер. Они получают более частые обновления безопасности, вы будете иметь полный контроль над тем, у кого есть доступ к ним, переадресацией портов, vLAN и т. Д.

Опять же, эта установка может работать, если у вас небольшой дом или если вы можете разместить маршрутизатор рядом с комнатой, где вы чаще всего используете беспроводные устройства.

Минусы

Как и в случае с базовой схемой сети, вы можете подключить только ограниченное количество проводных устройств, и у вас будет плохое покрытие беспроводной сети в вашем доме.

Схема сети коммутатора маршрутизатора

Если у вас более четырех проводных сетевых устройств (компьютеры, игровая консоль, телевизор и т. Д.), Вам необходимо добавить сетевой коммутатор в схему вашей сети.Как вы можете видеть на этой сетевой схеме, мы добавили переключатель под маршрутизатором.

Сетевые коммутаторы

бывают разных размеров, от 4 до 48 портов. В обычной домашней сети вы должны использовать 8-портовый сетевой коммутатор. Имейте в виду, что вам нужен один порт для подключения коммутатора к маршрутизатору, поэтому вы можете эффективно использовать только 7 портов коммутатора.

Различные варианты использования коммутатора

Использование коммутатора необходимо не только тогда, когда вы хотите подключить более 4 сетевых устройств, но также и тогда, когда вы не хотите тянуть все кабели к маршрутизатору.Например, у вас есть маршрутизатор в гараже, но большинство сетевых устройств находится на первом этаже.

Теперь вместо того, чтобы проложить несколько сетевых кабелей от первого этажа до гаража, вы также можете протянуть один кабель до гаража и установить переключатель на первом этаже.

Также возможно последовательное подключение сетевых коммутаторов. Делайте это только в том случае, если вы не можете протянуть отдельные кабели от коммутатора к маршрутизатору. Шлейфовое соединение будет иметь обратную сторону для производительности коммутатора 1, поскольку ему также придется обрабатывать трафик от коммутатора 2.Также соединение между маршрутизатором и коммутатором 1 должно будет обрабатывать больше данных.

подсказки

Если вы добавляете коммутатор в свою сеть, также выберите модальный, который также имеет один или несколько портов PoE (Power over Ethernet). Таким образом вы легко сможете подключить к нему точку доступа. Хороший 8-портовый коммутатор с портами PoE - это Unifi US-8-60W.

Схема беспроводной сети

Также возможна полноценная беспроводная сеть. На этой схеме беспроводной сети все устройства подключены к сети без проводов.В этом примере мы используем отдельную точку доступа вместо встроенной точки доступа маршрутизатора.

Точки доступа могут одновременно подключать до 20 или 30 устройств. Таким образом, к одной точке доступа можно подключать все устройства в вашем доме, пока они находятся в пределах досягаемости.

Плюсы

Благодаря полностью беспроводной сети вам не нужно протягивать сетевые кабели через дом. Это может быть непростой задачей, если вы не ремонтируете свой дом. Еще одно преимущество такой схемы сети состоит в том, что вы можете использовать и размещать каждое устройство в любом месте.

Преимущество использования отдельной / выделенной точки доступа заключается в том, что вы можете разместить ее в наиболее оптимальном месте. Это обеспечит максимальную производительность беспроводной сети.

Минусы

Беспроводные сети могут испытывать помехи от других устройств в вашем доме (например, микроволновых печей, сушилок и т. Д.). Но также стены и полы будут влиять на качество сигнала.

Наконечники

Если вы собираетесь использовать полностью беспроводную сеть, разместите точки доступа на каждом этаже.Таким образом вы добьетесь максимальной силы сигнала на каждом этаже.

Также выберите точку доступа, поддерживающую MU-MIMO (многопользовательский, многоступенчатый, многопользовательский). Это позволяет нескольким устройствам использовать одну и ту же точку доступа одновременно. Только MIMO позволяет одному устройству использовать несколько подключений к точке доступа одновременно. Таким образом можно достичь более высоких скоростей между устройством и точкой доступа.

Расширенная сетевая схема

Здесь вы видите схему расширенной домашней сети.У нас есть несколько коммутаторов и точек доступа, обеспечивающих хорошее покрытие беспроводной сети и эффективные проводные соединения. Эту схему можно использовать, например, для двухэтажного дома.

Всегда старайтесь подключать коммутаторы напрямую к маршрутизатору для достижения наилучшей производительности. В этом случае мы использовали Edge Router X SFP (один из лучших на рынке маршрутизаторов с соотношением цены и качества), который поставляется с несколькими портами PoE. Таким образом, мы можем подключать к нему точки доступа и обеспечивать питание и сетевое соединение, используя только один сетевой кабель.

Также точки доступа Unifi US-8-60W имеют порты PoE. Таким образом, мы можем легко подключить к нему IP-камеру или точку доступа.

Компоновка ячеистой сети

В ячеистой сети вы можете соединить несколько точек беспроводного доступа вместе. Не для создания одной большой беспроводной сети, а для расширения беспроводной сети (без использования кабелей). Если вы используете более 2 точек доступа в ячеистой сети, то сеть будет динамически находить наилучшее соединение.

Ячеистую сеть можно использовать дома, если вы не можете протянуть кабели через дом.Или его также можно использовать для расширения вашей сети на другое здание на вашей собственности (например, в гараж).

Плюсы

Если вы, например, снимаете дом, вы не можете просверлить отверстия, чтобы протянуть кабель до первого и / или второго этажа. С помощью ячеистой сети вы можете без проводов расширить свою сеть через весь дом. Как видно на схеме, вы можете подключить коммутатор к (принимающей) точке доступа. Это позволяет подключать несколько устройств за точкой доступа.

Минусы

Беспроводной сигнал всегда подвержен помехам. Сегодня ваша сеть может работать нормально, а на следующий день она может работать медленно и постоянно отключаться. Помехи от других устройств или соседних беспроводных сетей могут нарушить ваш сигнал.

подсказки

Если вы планируете использовать 3 или более точек доступа к сетке, всегда выбирайте бренд, поддерживающий самоформирование и заживление. При самоформировании сеть сама определит, какие связи являются лучшими.

Самовосстановление гарантирует, что в вашей сети всегда будут резервные соединения. Если точка доступа выходит из строя или выключается, сеть переключается на другую точку доступа для восходящего канала.

Unifi Amplifi - действительно отличная ячеистая сеть. Настроить очень легко и быстро.

Схема сети Powerline

Если вы хотите расширить свою сеть, но не можете протянуть дополнительные кабели Ethernet, вы можете использовать существующие электрические провода. С помощью адаптеров Powerline вы можете расширить свою сеть с помощью электрических проводов.

Адаптер Powerline вставлен в розетку и должен быть подключен к сети с помощью сетевого кабеля. Другие адаптеры могут транслировать беспроводную сеть и / или позволяют, например, подключить сетевой кабель к коммутатору или компьютеру.

Плюсы

Адаптеры

Powerline действительно просты в использовании, это простые устройства plug and play, которые не нуждаются в какой-либо настройке. Также нет ограничений на количество адаптеров Powerline, которые вы можете использовать в одной сети.Возможность комбинировать как беспроводные адаптеры, так и адаптеры Ethernet делает его еще проще в использовании.

Минусы

Имейте в виду, что линии электропередач не предназначены для передачи данных. Любое электрическое устройство, подключенное к той же линии электропередачи, может вызвать проблемы с сигналом. Проблемы будут вызывать особенно устройства с большими двигателями, такие как стиральные машины, холодильники и т. Д.

Адаптеры

Powerline работают лучше всего, когда вы используете их в одной электрической цепи. Часто они не работают через выключатели.

подсказки

Адаптеры

Powerline отлично подходят для того, чтобы исправить то место, где вы не можете получить сетевое соединение или которое находится вне зоны действия вашей беспроводной сети. Не используйте их как основную основу своей сети.

Лучше использовать ячеистую сеть, чем адаптеры Powerline. Используйте их только в том случае, если ничего не работает или у вас нет на это бюджета.

Совет по созданию схемы домашней сети

По мере роста ваших сетей рекомендуется документировать это.Запись IP-адресов сетевых устройств, их подключения и, возможно, даже именования, может помочь вам в дальнейшем устранении неполадок в сети.

Microsoft Visio или Lucidchart - отличные инструменты для создания отличных сетевых диаграмм. Схема должна дать общее представление о вашей сети. Как подключены устройства, имя и IP-адрес (в случае статического IP-адреса). Также может помочь записать марку / модель устройства.

Если у вас есть более крупная сеть, которую нужно документировать, вы можете использовать разные цвета подключения в зависимости от типа подключения.Так оранжевый может быть для оптоволоконного соединения, а синий, например, для UTP. Таким образом вы легко сможете распознать разные типы подключений.

Завершение

Как видите, общая структура домашней сети почти такая же. У вас есть подключение к Интернету, модем / маршрутизатор, а затем вы расширяете его с помощью коммутаторов и точек доступа. Я надеюсь, что эта статья дала вам пару идей о том, как построить свою собственную сеть.

Если вам нужны дополнительные советы по настройке хорошей домашней сети, обязательно прочтите эту статью с большим количеством советов по созданию вашей сети.

Иконки, используемые в схемах, сделанных Freepik с сайта www.flaticon.com

Стандарт

- Правила и рекомендации по рисованию хороших схем

Еще несколько:

Мне очень не нравится иметь дело с чужой работой, нарисованной на полусетке. Это огромная трата времени и не добавляет ценности рисунку.

  • (2) Используйте «физический» стиль для небольших устройств.

Рисование микросхем и небольших компонентов с расположением контактов по порядку помогает донести ваши намерения до макета и значительно упрощает отладку.Это удваивается для транзисторов и диодов в сот-23: я рисую их, показывая порядок выводов, и в результате мне не пришлось годами переделывать неправильно расположенный.

  • (3) Осознайте пределы (2) выше.

Невозможно нарисовать большой BGA физически или даже как один символ. Но вы можете хотя бы разделить по функциям и показать, как контакты связаны друг с другом в пространстве. Например, ПЛИС можно нарисовать и разделить, чтобы показать блоки, которые представляют логические плитки, а сами плитки размещены / упорядочены на схеме, чтобы показать, как они выходят.

Исторически сложилось так, что составные символы для таких элементов, как операционные усилители или вентили, имели смысл. Но в дизайне они становятся все реже.

  • (4) Названные внутристраничные псевдонимы - это нормально, но не толкайте их.

Именованные псевдонимы на самом деле такие же, как и вне страницы: это означает, что вам все равно придется сканировать страницу, чтобы найти другие ее экземпляры. Со схемой PDF и комбинацией клавиш Ctrl-F это не такая большая работа, как раньше (и позор вам, производителям, которые создают PDF-файлы без возможности поиска. Это просто отстой.Тем не менее, внешние страницы более строго проверяются DRC, чем псевдонимы.

  • (5) Блок-схемы и механические схемы стоят затраченных усилий

Усилия, которые вы тратите на то, чтобы выразить здесь свое мышление, сэкономят много времени на протяжении всего срока службы вашего дизайна - от макета до ремонта. Да, ваш конструктор по механике создаст «официальный» план доски, но, по крайней мере, вы можете передать, где вы ожидаете разместить материал и почему, с помощью этих двух видов диаграмм.

  • (6) При экспорте схемы в PDF сделайте ее доступной для поиска.

Неужели слишком много спрашивать?

  • (7) Достаточно информации о компонентах.

Помимо позиционного обозначения, некоторые дизайнеры хотят иметь все атрибуты детали на схеме. Но действительно ли они вам нужны? Нет, не знаешь. Иногда терпимость. Напряжение, иногда, когда у вас есть секция с более высоким напряжением. След - возможно. Обозначение производителя? Редко - обычно вы хотите использовать несколько источников. Корпоративный номер AVL / MRP? Нет, никогда.

Все остальное - это то, для чего нужна спецификация.

  • (7a) Подумайте о создании спецификации.

Тем не менее, разработка какой-то системы номеров деталей даже на ранних этапах развития позволяет создавать подробные спецификации, даже если у вас нет системы MRP. Каждый тип детали должен иметь уникальный идентификатор, который устанавливается в качестве скрытого атрибута в вашей схеме, который соответствует записи в вашем главном списке частей (списке AVL). Вы используете этот идентификатор позже, чтобы объединить расширенную информацию из вашего списка AVL для создания подробная спецификация.

Даже позже вы можете импортировать этот материал в настоящую систему MRP или PLM, такую ​​как Oracle Agile.

  • (8) Власть тоже сигнал!

Раньше вы рисовали схему со «скрытыми» выводами питания / заземления, которые автоматически назначались на VCC или GND. Это все еще вариант, когда вы, например, создаете символ в Orcad. Не скрывайте этих силовых связей! Покажи им! Особенно с учетом сегодняшних проектов с несколькими областями мощности, высокой плотностью мощности, маршрутизацией, обходом, областью петли и т. Д.

Power настолько важен, что если вы не тратите хотя бы 1/3 своего времени на проектирование питания, вам следует подумать о другом направлении работы.

  • (9) Комментарии - ваш друг.

Выделение ключевых элементов текстом может сэкономить много времени при отладке. Я обычно комментирую вещи, относящиеся к программному обеспечению (например, адреса, расположение битов) и конструкции питания (типичный / максимальный ток, напряжение).

Используйте 11x8,5 (размер A) для действительно простых вещей, 17x11 (размер B) для большинства других вещей.Делайте больше, только если вам действительно нужно.

17x11 (или его ближайший эквивалент в метрической системе) - разумный размер для просмотра на экране HD или для печати даже с 11x8,5. Это хороший размер для работы.

С другой стороны, я обнаружил, что не могу получить достаточно материала на 11x8,5. И с другой стороны, другая крайность, когда я использовал 23,5 x 15,2 (увеличенный B, а не C) для действительно сложного рисунка, который группируется вместе (например, банки DRAM): это нужно распечатать с размером 17x11 быть достаточно легко читаемым на бумажном носителе.

Сейчас я редко что-либо печатаю, поэтому большую часть времени беспокоиться о том, как будет печататься печатная копия, - больше хлопот, чем того стоит.

  • (11) Поток сигналов слева направо, поток мощности сверху вниз. По большей части.

Это общий стандарт, упрощающий понимание взаимосвязей элементов. Но иногда придание большего веса потоку архитектуры, чем это старое правило, дает более четкую схему.

  • (12) Организуйте внешние страницы / порты в вертикальные группы.

Перетаскивать порты к краям схемы необязательно или полезно. Но по крайней мере выстройте их в организованные столбцы, чтобы их было легко сканировать визуально.

Отличие однолинейной схемы от принципиальной

Однолинейные схемы и принципиальные схемы занимают свое место в процессе проектирования. Но каждый выполняет разные функции. На первый взгляд различия не обязательно интуитивно понятны. . . .

Однолинейные схемы показывают общую концептуальную схему цепи.Для простоты они обычно конденсируют трехфазные соединения до одиночных линий. На однолинейных схемах показаны такие детали верхнего уровня, как генераторы, главные трансформаторы и большие двигатели.

На схематических схемах

показаны функциональные возможности электрических цепей среднего уровня без увязания в деталях отдельных соединений (которые показаны на схемах подключения). На схемах обычно показаны такие устройства, как шина электропитания, прерыватели, предохранители, электрические нагрузки, такие как реле и прерыватели, контакты реле, переключатели и световые индикаторы.

Принципиальная схема - это символическое представление элементов управления системой, которое упрощает понимание функциональной логики электрической системы. Например, 120-вольтная релейная логика все еще широко используется на атомных станциях. На схематических диаграммах показана сеть контактов, сеть, которая может быть чрезвычайно сложной, а также реле и двигатели, которые активируются этими контактами.

Создание черновых версий однолинейных и принципиальных схем является частью процесса проработки окончательных аспектов дизайна.Отдельные линии будут отображать общую картину, а схема - функциональную картину. После того, как аспекты функциональности проработаны, можно приступить к установке других деталей.

Не всегда верно, что однолинейный и схематический дизайн будет на первом месте в процессе проектирования. Часто существуют усложняющие факторы, которые будут взаимодействовать с определенными аспектами функциональности проектирования и управлять ими, превращая простой процесс проектирования в более итеративный подход (вспомните «метод Ньютона-Рафсона»).Но в принципе приведение теоретических проектов в однолинейную и схематическую форму покажет вам, как они будут работать в существующей системе, и поможет выделить любые конструктивные соображения, которые вы, возможно, упустили.

Связанные

Как рассчитать и построить однолинейную схему для энергосистемы

Однолинейная схема

В этой технической статье объясняется, как рассчитать и нарисовать однолинейную схему трехфазной системы электроснабжения 60 Гц с генераторы, двигатели, трансформаторы и линии.

Рассчитайте и начертите однолинейную схему для энергосистемы (генераторы, двигатели, трансформаторы и линии) - фото предоставлено: merko.ee

Следующие компоненты составляют упрощенную версию энергосистемы, перечисленную в последовательном физическом порядке от места расположения генератора к нагрузке:

  1. Два парогенератора по 13,2 кВ
  2. Два повышающих трансформатора 13,2 / 66 кВ
  3. Конечная высоковольтная шина 66 кВ
  4. Одна длинная линия передачи 66 кВ
  5. Шина приемного конца 66 кВ
  6. Вторая линия передачи 66 кВ с шиной центрального ответвления
  7. Понижающий трансформатор на шине приемного конца, 66/12 кВ , питающий четыре двигателя 12 кВ параллельно и понижающий трансформатор
  8. А, 66/7.2 кВ , от центральной шины, питание двигателя 7,2 кВ

Процедура расчета

1. Определите соответствующие символы

Для электрических сетей соответствующий набор графических символов показан на рисунке 1 ( общие символы мощности, используемые в однолинейных схемах):

Рисунок 1. Общие символы мощности, используемые в однолинейных схемах

2. Нарисуйте требуемую систему

Система, описанная в проблеме, показана на рисунке 2.Масляные выключатели добавляются в соответствующих точках для надлежащей изоляции оборудования.

Рисунок 2 - Трехфазная энергосистема, представленная однолинейной схемой

Связанные расчеты

Это общая процедура использования однолинейных схем для представления трехфазных систем. Когда анализ выполняется с использованием симметричных компонентов, могут быть нарисованы различные диаграммы, которые будут представлять электрические схемы для компонентов прямой, отрицательной и нулевой последовательности.

Кроме того, часто требуется для определения заземляющего соединения или того, подключено ли устройство по схеме звезды или треугольника.

Этот тип обозначений показан на рисунке 3.

Рисунок 3 - Идентификация генератора или двигателя, соединенных звездой. (а) Полностью заземлен. (b) Заземлен через индуктивность. (c) Трансформатор идентифицируется как треугольник со звездой, причем сторона звезды надежно заземлена.

Метод решения трехфазных проблем на единицу

Для системы, показанной на рисунке 4, нарисуйте электрическую цепь или диаграмму реактивного сопротивления , со всеми реактивными сопротивлениями, отмеченными в единицах значений (pu), и найдите клемму генератора напряжение при условии, что оба двигателя работают при 12 кВ, нагрузке 3/4 и единичном коэффициенте мощности.

Генератор Трансформаторы
(каждый)
Двигатель A Двигатель B Трансмиссия
Линия
13,8 кВ 25000 кВА кВ 25000 кВА 3 фазы 13,2 / 69 кВ 13,0 кВ 13,0 кВ -
X ”= 15 процентов X L = 15 процентов X” 906 процентов 906 процентов X ”= 15 процентов X = 65 Ом
Рисунок 4 - Однолинейная схема системы электроснабжения, питающей нагрузки двигателей.Технические характеристики приведены в таблице выше. Процедура расчета

за 8 шагов

1. Установить базовое напряжение в системе

Путем наблюдения за величиной компонентов в системе выбрано базовое значение полной мощности S . Он должен быть из общей величины компонентов, и выбор является произвольным. В этой задаче 25000 кВА выбрано в качестве базы S , и одновременно на стороне генератора 13,8 кВ выбрано в качестве базового напряжения V base .

Базовое напряжение линии передачи определяется соотношением витков соединительного трансформатора:
(13,8 кВ) (69 кВ / 13,2 кВ) = 72,136 кВ

Базовое напряжение двигателей определяется аналогичным образом, но с значение 72,136 кВ, таким образом:
(72,136 кВ) (13,2 кВ / 69 кВ) = 13,8 кВ

Выбранное базовое значение S остается постоянным во всей системе, , но базовое напряжение составляет 13,8 кВ на генераторе и у моторов, а 72.136 кВ по ЛЭП .


2. Рассчитайте реактивное сопротивление генератора

Никаких расчетов для корректировки значения реактивного сопротивления генератора не требуется, поскольку оно задано как 0,15 о.е. (15 процентов) , исходя из 25000 кВА и 13,8 кВ . Если бы в этой задаче использовалось другое основание S , то потребовалась бы коррекция, как показано для линии передачи, электродвигателей и силовых трансформаторов.


3.Расчет реактивного сопротивления трансформатора

При использовании реактивного сопротивления трансформатора, указанного на паспортной табличке трансформатора, необходимо внести поправку, поскольку расчетный режим работы происходит при другом напряжении, 13,8 кВ / 72,136 кВ вместо 13,2 кВ / 69 кВ.

Используйте уравнение для корректировки: реактивное сопротивление на единицу:

(паспортная табличка реактивного сопротивления на единицу) (базовая кВА / паспортная табличка кВА) (паспортная табличка кВ / базовая кВ) 2 =
(0,11) (25,000 / 25,000) ( 13,2 / 13,8) 2 = 0,101 о.е. .

Это относится к каждому трансформатору.


4. Рассчитайте реактивное сопротивление линии передачи

Используйте уравнение:

  • X на единицу = (реактивное сопротивление Ом) (базовое кВА) / (1000) (базовое кВ) 2 =
  • X за единицу = (65) (25000) / (1000) (72,1) 2 = 0,313 о.е.

5. Расчет реактивного сопротивления двигателей

Необходимо внести поправки в паспортные данные обоих двигателей из-за различий в номинальных значениях кВА и кВ по сравнению с номинальными значениями, выбранными для расчетов в этой задаче.Используйте корректирующее уравнение из шага 3 выше.

Для двигателя A:
X ” A = (0,15 о.е.) (25000 кВА / 15000 кВА) (13,0 кВ / 13,8 кВ) 2 = 0,222 о.е.

Для двигателя B:
X ” B = (0,15 о.е.) (25000 кВА / 10000 кВА) (13,0 кВ / 13,8 кВ) 2 = 0,333 о.е.


6. Нарисуйте диаграмму реактивного сопротивления

Завершенная диаграмма реактивного сопротивления показана на Рисунке 5:

Рисунок 5 - Однолинейная схема реактивного сопротивления (реактивные сопротивления показаны на единицу)
7.Расчет рабочих условий двигателей

Если двигатели работают при 12 кВ, это составляет 12 кВ / 13,8 кВ = 0,87 на единицу напряжения . При единичном коэффициенте мощности нагрузка составляет три четверти или 0,75 о.е.

Таким образом, выраженный в единицах, комбинированный ток двигателя получается с помощью уравнения:
I на единицу = на единицу мощности / на единицу напряжения = 0,75 / 0,87 = 0,862 ∠0 ° о.е.


8. Рассчитайте напряжение на клеммах генератора

Напряжение на клеммах генератора составляет:

  • В G = В двигатель + падение напряжения через трансформаторы и линию передачи
  • В G = 0.87 0 ° + 0,862 0 ° (j0,101 + j0,313 + j0,101)
  • V G = 0,87 + j0,444 = 0,977 ∠27,03 ° о.е.

Чтобы получить фактическое напряжение, умножьте единичное напряжение на базовое напряжение на генераторе. Таким образом,

  • V G = (0,977 27,03 °) (13,8 кВ) = 13,48 ∠27,03 ° кВ

Расчеты по теме

При решении этих задач выбор базовое напряжение и полная мощность произвольны.Тем не менее, базовое напряжение в каждой секции схемы должно быть соотнесено с коэффициентом трансформации трансформатора.

Базовое сопротивление можно рассчитать по уравнению:
Z base = (базовое кВ) 2 (1000) / (базовое кВА) .

Для участка линии передачи в этой задаче Z база = (72,136) 2 (1000) / (25000) = 208,1
Таким образом, реактивное сопротивление линии передачи на единицу равно (фактическое Ом) / (база Ом) = 65/208.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *