Стабилизированный регулятор напряжения: Стабилизированный регулятор мощности паяльника на микроконтроллере

Содержание

Фазовый регулятор мощности: схема, для индуктивной нагрузки

Часто бывает, что требуется осуществить регулировку какого-либо прибора, но некоторые из них не имеют встроенного регулятора. Также такая необходимость может коснуться электродвигателей и элементов освещения. Для этого применяется фазовый регулятор мощности.

Что такое фазовый регулятор

Обычно фазовый генератор представляет собой небольшое устройство с поворотным механизмом, которое позволяет уменьшать или увеличивать подаваемую на приборы мощность. Работа таких устройств основана на одном небольшом полупроводниковом приборе, называемом симистором. Он позволяет изменять конфигурацию и фазность сигнала, что меняет и мощность приборов.

Что собой представляет фазовый регулятор

Обратите внимание! Такой прибор можно купить в магазине или же собрать для своей цепи самостоятельно. Применяют его для одно- и трехфазных сетей с небольшими различиями в конструкции.

Симистор

Технические характеристики

Фазовый регулятор мощности имеет несколько важных характеристик, изменение которых влечет перемены в работе всей цепи.

Разобрать данные характеристики можно на примере регуляторов марки PR, которые являются одними из самых популярных:

  • напряжение в цепи 220 В;
  • частота переменного тока 50 Гц;
  • регуляция мощности в пределах от 0 до 97 % исходного значения;
  • максимально допустимый уровень нагрузки составляет 1500 Вт;
  • сила тока на аноде от 7 А при рабочей температуре 80 °С до 2 А при 100 °С;
  • пределы рабочей температуры (на корпусе) от −10 °С до 100 °С;
  • амплитуда колебания напряжения 1,75 В;
  • масса до 15 г.
Модель PR

Для разных целей и цепей требуются регуляторы с различными характеристиками. В зависимости от цепи может понадобиться другая мощность регулятора, номинальное напряжение или частота тока.

Важно! У любого устройства регуляции мощности нужно обращать внимание на температурные пределы, особенно на верхнюю границу. Устройство при работе само выделяет большое количество тепла, а высокая окружающая температура может вызвать порчу схемы и даже возгорание.

Как работает фазовый регулятор

Главную роль в работе фазового регулятора играет симистор. Он представляет собой нелинейный ключ на основе полупроводника. Данный элемент был получен благодаря усовершенствованию тиристора. Главное отличие состоит в том, что этот полупроводниковый ключ в открытом состоянии пропускает ток не в одном, а в двух направлениях. Это свойство дает симисторам возможность применения в цепях с переменным током, так как на них никак не влияет полярность напряжения, которая постоянно меняется в данных цепях.

Наличие нового свойства не означает отсутствие старого, характерного и для симисторов, и для тиристоров. Даже когда электрод управления отключен, проводимость всего элемента активна. Момент, когда элемент закрыт, наступает только тогда, когда переменный ток находится в положении ноль (то есть разность потенциалов на двух других контактах будет также равна нулю).

Обратите внимание! Еще одно полезное свойство применения симистора в качестве основного элемента — подавление помех на фазе при закрытии элемента.

Это намного проще транзисторного регулятора, который также умеет уменьшать шумы входного сигнала.

Изменения сигнала

Все эти характеристики позволяют конструкции на основе симисторов осуществлять фазное изменение в сигнале. Каждый полупериод проводимость отключается, а время между закрытием и открытием прибора срезает часть периода. Сигнал из-за этого становится пилообразной формы. Путем изменения формы сигнала и происходит фазовое управление мощностью тока.

Важно! Симистор никак не влияет на амплитуду напряжения, поэтому название «регулятор напряжения» неправильно.

Назначение

Регулятор мощности пригодится в цепях, содержащих следующие электрические приборы:

Регулятор с двигателем
  • электродвигатели;
  • устройства, которые используют в своей работе компрессоры;
  • бытовые приборы: стиральные машины, вентиляторы, пылесосы;
  • электрические инструменты различного рода;
  • различные приборы освещения.
Простой пример использования регулятора при освещении

Важно! Не рекомендуется использовать фазовый регулятор в цепях, в которые включены холодильники, компьютеры, телевизоры и прочие потребители с тонкой настройкой, изменения характера работы которых может повлечь порчу устройства или другие непредсказуемые последствия.

Как правильно использовать

Безопасность и успешность работы регулятора зависят от соблюдения нескольких правил:

  • соблюдение температурного режима. Прибор может сильно нагреваться, особенно если окружающая среда тоже имеет высокую температуру. В этом случае стоит позаботиться о наличии охлаждения;
  • подбирать регулятор нужно с учетом всех параметров сети;
  • сила тока в цепи не должна равняться максимально допустимой для регулятора;
  • при самостоятельной сборке необходимо обеспечить прибору защиту от поражений током, заключив его в корпус.

Схема фазового регулятора

Ниже приведена одна из самых простых схем фазового регулятора. Два транзистора как раз тут заменены симистором, что значительно упрощает устройство. Также в схеме указаны кнопка для включения и отключения работы модуля, предохранитель и резистор R3, который и управляет работой симистора. При прохождении через него ток принимает некоторое значение и через диод, который выпрямляет его, подается на управляющий электрод, изменяя работу полупроводника.

К сведению! Конденсаторы выполняют роль фильтров, которые удаляют из сигнала шумы и пульсации.

Простая схема регулятора мощности на симисторе для индуктивной нагрузки

Следующая схема устроена несколько сложнее.

Схема с пятью кнопками

Модуль имеет четыре установленных временных задержки, которые зависят от конденсаторов и сопротивления R1. В схеме присутствует выключатель с пятью кнопками, с помощью которого устройство включается/выключается, а также происходит выбор времени задержки.

Собрать фазовый регулятор можно самостоятельно или купить готовый в магазине. При использовании необходимо соблюдение его рабочих параметров. Особое внимание нужно уделить температурному режиму.

Стабилизированный регулятор мощности для изменяющейся нагрузки

Стабилизированный регулятор мощности для изменяющейся нагрузки

категория

Схемы источников питания

материалы в категории

А. ЕВСЕЕВ, г. Тула
Радио, 2002 год, № 4

Иногда бывают ситуации, когда необходимо стабилизировать мощность в нагрузке, сопротивление которой меняется с течением времени в широких пределах. В таких случаях поможет предлагаемый регулятор мощности, который одновременно выполняет функции стабилизатора.

Большинство описанных в радиолюбительской литературе регуляторов мощности работают или с чисто активной (лампа накаливания, электроплита, электропечь), или с активно-индуктивной нагрузкой (электродвигатели). Однако эта нагрузка либо постоянная (электропечь), либо изменяется в течение относительно короткого переходного процесса и затем стремится к установившемуся значению (лампа накаливания, электродвигатель). В обоих случаях регулируют мощность таких нагрузок изменением протекающего среднего тока. Поскольку мощность нагрузки Рн, ток через нее Iн и ее сопротивление Rн связаны зависимостью Pн=Iн

2·Rн. при неизменном сопротивлении регулирование мощности однозначно достигается регулированием тока.

Встречаются и такие виды нагрузок, сопротивление которых зависит от различных факторов и, следовательно, изменяется во времени по неизвестному заранее закону. Пример подобной нагрузки — электродный водонагревательный котел, в котором рабочей средой и электропроводящим телом является вода. Сопротивление воды зависит от вида и количества содержащихся в ней солей, температуры, скорости протекания через котел и других факторов. Сопротивление такой нагрузки может изменяться в десятки раз. В этом случае управление током через нагрузку не решает задачу регулирования мощности, поскольку ее сопротивление является переменной величиной. Здесь ток через нагрузку зависит не только от напряжения на ней, но и от ее сопротивления. Это не позволяет управлять мощностью обычным способом (установлением определенного значения тока). Даже стабилизация тока не будет выходом из положения.

Поскольку при напряжении на нагрузке Uн ее мощность Pн=Uн·Iн для стабилизации мощности в нагрузке следует стабилизировать произведение Uн·Iн, т. е. обеспечить его постоянство. Регулируемым параметром (независимой переменной) может быть напряжение, поскольку от его значения зависят и ток, и мощность нагрузки.

Следовательно, нужно так регулировать напряжение на нагрузке, чтобы при изменении сопротивления обеспечивалась постоянная средняя мощность в нагрузке. При этом для определения мгновенной мощности необходимо перемножать мгновенные значения напряжения и тока в нагрузке. Это вытекает из классического определения мощности в электротехнике.

Структурная схема устройства, реализующего описанный выше алгоритм управления, представлена на рис. 1.

На входы умножителя подаются электрические сигналы, пропорциональные мгновенным значениям напряжения и тока в нагрузке. С выхода умножителя сигнал, пропорциональный их произведению (т. е. мощности), после его усреднения во времени поступает на первый вход дифференциального усилителя, на второй вход которого подано задающее напряжение. В дифференциальном усилителе происходит сравнение напряжений и усиление разностного сигнала (сигнала ошибки), который затем поступает на компаратор.

На второй вход компаратора подаются импульсы пилообразной формы, следующие с удвоенной частотой сети. На выходе компаратора формируются прямоугольные импульсы, скважность которых определяет напряжение с выхода дифференциального усилителя. Импульсы с выхода компаратора управляют симисторным коммутатором, а тот, в свою очередь, нагрузкой. При отклонении мощности в нагрузке от значения, заданного напряжением Uзад, сигнал ошибки с выхода дифференциального усилителя будет воздействовать на компаратор так, что изменение скважности импульсов приведет к стабилизации мощности.

Схема самого источника питания показана на рисунке 2, а его временные диаграммы на рисунке 3

Для увеличения кликните по изображению (откроется в новом окне)

На входы X и Y микросхемы DA3 (интегральный перемножитель сигналов) поступают сигналы, пропорциональные, соответственно, мгновенным значениям напряжения на нагрузке и тока через нее. Сигнал, пропорциональный мгновенному значению напряжения, снимают с движка подстроечного резистора R4. Резистор R1 — датчик тока нагрузки. Напряжение с этого резистора поступает на первичную обмотку повышающего трансформатора Т2 (коэффициент трансформации — около 40). Необходимость применения трансформатора обусловлена двумя факторами. Во-первых, он повышает напряжение, подаваемое на вход перемножителя, а во-вторых, обеспечивает гальваническую развязку. Сигналы, пропорциональные току и напряжению, — переменные, однако в их выпрямлении нет необходимости, поскольку микросхема К525ПС2 (DA3) допускает подачу на входы X и Y переменного напряжения амплитудой до 10,5 В.

Заметим, что сигналы напряжения и тока, подаваемые на перемножитель, должны быть синфазными, что достигается соответствующим подключением обмоток трансформатора Т2.

Интегральный перемножитель напряжения К525ПС2 разработан для реализации ряда типовых функциональных зависимостей (умножения, деления, возведения в квадрат, извлечения квадратного корня). Для выполнения указанных функций с аналоговыми сигналами используют экспоненциальную зависимость тока коллектора транзистора от его напряжения база—эмиттер. Погрешность умножения — не более 1%. Более подробные сведения о структуре и применении интегральных перемножителей можно найти в [1].

При включении интегрального перемножителя в соответствии с показанной на рис. 2 схемой на его выходе Z действует напряжение Uz≈0,15UxUy, где Ux, Uy — напряжения, приложенные к входам X и Y микросхемы DA3, соответственно.

Импульсы управления симистором VS1 поступают с выхода компаратора напряжения DA4. Интегральный компаратор К554САЗ, используемый в регуляторе мощности, имеет открытый коллекторный выход, рассчитанный на ток нагрузки до 50 мА. Выходной транзистор открыт (т. е. на выходе при подключенной нагрузке напряжение низкого уровня), если напряжение на инвертирующем входе (вывод 4) микросхемы DA4 больше, чем на неинвертирующем (вывод 3). При противоположном соотношении напряжений на выходе компаратора будет напряжение высокого уровня.

На компараторе DA4 происходит сравнение пилообразного напряжения (рис. 3, диаграмма 3) и напряжения, снимаемого с выхода ОУ DA5 (диаграмма 4).

Генератор пилообразного напряжения выполнен на транзисторах VT1, VT2. Он формирует импульсы частотой 100 Гц, синхронизированные напряжением сети. Напряжение с выпрямительного моста VD2 (рис. 3, диаграмма 1) поступает на базу транзистора VT1. Большую часть времени транзистор открыт, а в моменты, когда выпрямленное напряжение приближается к нулю, он закрывается. На его коллекторе формируются короткие прямоугольные импульсы (рис. 3, диаграмма 2), которые подаются на базу транзистора VT2. Пока напряжение на базе равно нулю, на коллекторе транзистора формируется нарастающее напряжение (конденсатор С6 заряжается через резистор R13). В момент появления положительного импульса на базе транзистор VT2 открывается и напряжение на его коллекторе уменьшается практически до нуля (рис. 3, диаграмма 3).

На выходе компаратора формируются прямоугольные импульсы (рис. 3, диаграмма 5). Нагрузка компаратора — резистор R16 и светодиод оптопары U1. При протекании тока через светодиод оптопары ее симистор открывается, обеспечивая открывание симистора VS1 — ток начинает протекать через нагрузку, подключенную к гнездам разъема XS1. Изменение скважности импульсов на выходе компаратора приводит к изменению напряжения и, следовательно, мощности в нагрузке. Из временных диаграмм несложно определить, что увеличение напряжения на выходе ОУ DA5 приводит к уменьшению мощности в нагрузке.

Теперь — о назначении и работе микросхемы DA5, выполняющей функции дифференциального усилителя или усилителя сигнала ошибки (см. рис. 1). Задающее напряжение Uзад снимают с движка переменного резистора R18 и подают на инвертирующий вход ОУ, на неинвертирующий вход которого поступает усредненное выходное напряжение перемножителя DA3. Усреднение выходного сигнала перемножителя обеспечивает интегрирующая цепь R20C8.

ОУ DA5 усиливает поданные на ее входы сигналы, обеспечивая равенство значений напряжения на них. Это значит, что уменьшение задающего напряжения Uзад приведет к уменьшению напряжения на выходе ОУ. Очевидно, что нижнему по схеме положению движка переменного резистора R18 будет соответствовать нулевое значение мощности в нагрузке. Конденсатор С7 обеспечивает стабильную работу ОУ при воздействии помех.

Источник питания элементов регулятора мощности выполнен на двух интегральных стабилизаторах напряжения DA1 и DA2. Использование двух разнотипных микросхем обусловлено желанием обойтись сетевым трансформатором с одной вторичной обмоткой (хотя и с отводом от середины) и одним выпрямительным мостом.

Диод VD1 исключает влияние фильтрующего конденсатора С1 на форму выпрямленного напряжения, подаваемого на вход генератора пилообразного напряжения.

Регулятор мощности собран на печатной плате из двусторонне фольгированного стеклотекстолита. Чертеж печатной платы показан на рис. 4 и 5

В отверстия квадратных контактных площадок необходимо вставить отрезки луженого провода и пропаять их с обеих сторон платы. Микросхемы DA1, DA2 установлены на небольших дюралевых теплоотводах площадью по 20...30 см² каждый; симистор VS1 установлен на стандартном охладителе (литом теплоотводе из алюминиевого сплава) марки 0231. Резистор R1 выполнен из нихромового провода диаметром 3 мм.

На месте компаратора DA4, помимо указанного на схеме, можно также использовать К521САЗ, К521СА5, К521СА6 (последняя микросхема содержит два компаратора в одном корпусе), однако при этом придется скорректировать чертеж печатной платы. ОУ КР140УД708 заменим микросхемами К140УД7, К140УД8, К153УД2 и любыми аналогичными. Аналоговый перемножитель напряжений К525ПС2 допустимо заменить на К525ПСЗ с любым буквенным индексом, но также с коррекцией печатной платы. Транзисторы VT1, VT2 — любые из серий КТ315, КТ342, КТ503, КТ630, KT3I02 или КТ3117А. Оптопару импортного производства МОС3052 можно заменить отечественной АОУ160А—АОУ160В с коррекцией печатной платы. Симистор VS1 можно применить из серий ТС112, ТС122, ТС132, ТС142 с допустимым импульсным напряжением в закрытом состоянии не менее 400 В и током в открытом состоянии, соответствующим максимальному току нагрузки. Диод КД106А (VD1) заменим любым из серий КД105, КД221, КД226. Выпрямительный мост (VD2) — любой из серий КЦ402, КЦ405, с коррекцией печатной платы. Оксидные конденсаторы С1 — СЗ, С8 могут быть К50-16, К50-35, К50-24, К50-29; С4, С5, С7 — КМ-6, К10-17, К73-17; С6 — К73-17, К73-24, К76-П2 (этот конденсатор должен иметь небольшой ТКЕ). Подстроечные резисторы R4, R5, R8—R10 — СП5-2, СПЗ-19, СПЗ-38, переменный резистор R18 — СП-0,4, СПЗ-4М, СПЗ-16, СПЗ-30, остальные — МЛТ, С2-23. Трансформатор Т1 — ТПП232. Его можно заменить на любой другой, у которого вторичная обмотка с отводом от середины обеспечивает напряжение 33...40 В и рассчитана на ток не менее 150 мА. Трансформатор Т2 может быть любым другим с коэффициентом трансформации 30...50. Выключатель питания SA1 — автоматический выключатель A3161, АЕ2050 или АП50. Кроме того, он выполняет функцию предохранителя.

Налаживание регулятора мощности начинают с проверки выходного напряжения микросхемы DA1 ( + 15 В) и установки выходного напряжения микросхемы DA2 (-15 В) резистором R6. После этого производят регулировку перемножителя напряжения DA3. Для этого входы X, Y выход Z и вывод 1 отключают от других элементов. Движки подстроечных резисторов R8—R10 устанавливают в среднее положение. На вход X подают напряжение +5 В, а на вход Y— О В. Резистором R9 устанавливают выходное напряжение перемножителя О В. Затем на вход X подают напряжение О В, а на вход Y— +5 В. Резистором R8 устанавливают выходное напряжение О В. Затем на оба входа перемножителя подают напряжение + 5 В и измеряют выходное напряжение. Затем на одном из входов изменяют полярность входного сигнала (т. е. подают -5 В) и опять измеряют выходное напряжение. С помощью резистора R10 добиваются, чтобы два последних значения выходного напряжения были равны по абсолютному значению (по знаку они должны быть противоположны). При необходимости регулировку повторяют. После этого подключают входы и выход перемножителя напряжения к элементам регулятора. Движки подстроенных резисторов R4 и R5 устанавливают в среднее, а переменного резистора R18 — в нижнее по схеме положение.

К разъему XS1 подключают нагрузку и подают питание на регулятор мощности. Плавно вращая ось переменного резистора R18, убеждаются в увеличении напряжения на нагрузке. Если напряжение на нагрузке максимально при любом положении движка переменного резистора R18, причиной этого может быть неправильная фазировка обмоток трансформатора Т2, приводящая к подаче противофазных напряжений на входы X и Y микросхемы DA3 и отрицательному напряжению на ее выходе Z. В этом случае следует поменять местами выводы любой из обмоток трансформатора Т2.

Подстроечными резисторами R4 и R5 добиваются, чтобы максимальные (амплитудные) значения напряжения на входах перемножителя не превышали 10 В. Это удобно контролировать с помощью осциллографа. В крайнем случае можно воспользоваться вольтметром переменного тока. При синусоидальной форме напряжения на нагрузке (это имеет место, если симистор VS1 открывается в начале каждого полупериода, а напряжение на нагрузке при этом практически равно сетевому) эффективное напряжение на входах перемножителя не должно превышать 7 В. Регулирование мощности должно плавно осуществляться во всем интервале поворота оси переменного резистора R18. Если в верхнем по схеме положении движка переменного резистора R18 при максимальной подключенной нагрузке напряжение на ней не достигает значения сетевого, следует уменьшить сопротивление резистора R17 не более чем до 2,2 кОм или уменьшить коэффициенты передачи тока и напряжения, переместив вниз по схеме движки подстроечных резисторов R4 и R5.

Для проверки функции стабилизации мощности необходимо иметь нагрузку с изменяющимся сопротивлением (удобно использовать двухсекционный бытовой нагреватель) и лабораторный автотрансформатор соответствующей мощности. Нагрузка должна быть обязательно активной (т. е. не иметь индуктивной или емкостной составляющей).

Регулятор мощности подключают к сети через автотрансформатор и подключают к выходу регулятора одну секцию бытового нагревателя. Автотрансформатором устанавливают напряжение 220 В. Подключив параллельно нагрузке вольтметр переменного тока, измеряющий эффективные значения (квадратичный вольтметр), переменным резистором R18 устанавливают на нагрузке напряжение 150. ..200 В. Затем подключают еще одну секцию и вновь измеряют напряжение на разъеме XS1. Оно должно уменьшиться в 1,4 раза [2]. При другом законе изменения сопротивления нагрузки в любом случае будет выполняться равенство Uн²/Rн = const. Если же сопротивление нагрузки увеличится настолько, что для поддержания установленной мощности напряжение должно превысить свое максимальное значение, регулятор выйдет из режима стабилизации мощности.

Регулятор мощности обладает стабилизирующими свойствами не только в условиях изменения сопротивления нагрузки, но и по отношению к колебаниям сетевого напряжения. В этом можно убедиться, изменяя питающее напряжение регулятора с помощью автотрансформатора в интервале от 190 до 240 В (разумеется, при подключенной нагрузке). Напряжение на нагрузке при таком изменении питающего должно быть стабильным. Варьироваться будет лишь угол открывания симистора VS1, в чем можно убедиться с помощью осциллографа. Сигнал можно снимать либо с нагрузки, либо с выхода компаратора DA4.

Если в распоряжении радиолюбителя нет вольтметра, измеряющего действующее значение (например, прибора электромагнитной системы), то для измерения мощности используют индукционный счетчик электрической энергии: число оборотов диска счетчика должно быть постоянным при изменении сопротивления нагрузки и неизменном положении движка переменного резистора R18. Пользоваться вольтметром средневыпрямленного значения напряжения для этих целей нельзя.

ЛИТЕРАТУРА
1. Путников В. С. Интегральная электроника в измерительных устройствах. — 2-е изд., перераб. и доп. — Л.: Энергоатомиздат. Ленингр. отд-ние, 1988.
2. Бирюков С. Амплитудное, среднее, эффективное. — Радио, 1999, № 6, с. 58, 59.

От редакции. Для повышения надежности рекомендуем последовательно с оптосимистором включить резистор сопротивлением около 150 Ом.

Стабилизированный регулятор мощности РМ-2 5 квт

Описание Стабилизированный регулятор мощности РМ-2 5 квт

Регулятор мощности РМ 2, применяется в самогоноварении, дистилляции и ректификации, для стабильного поддержания уровня нагрева электрических ТЭНов, электроплит, электрических лампочек, и других не индуктивных нагрузок, в устройствах где нужна регулировка напряжения и стабильное поддержание его на установленном уровне, соответственно и мощности нагрева, вне зависимости от колебаний напряжения в сети ~220 вольт переменного тока. Девайс предназначен для регулировки мощности на нагрузки до 5 Квт. Подключается к сети переменного тока с напряжением 220 В. Устройство управления и контроля за напряжением построено на микроконтроллере и силовом, мощным симистором BTA40 или BTA-41 на ток до 20(40) ампер и применяется для управления и слежения за мощностью электрических нагревательных, осветительных приборов, коллекторных моторов. Благодаря широкому диапазону входных и выходных напряжений, возможностью регулировки мощности, регулятор найдет широкое применение на производстве и быту. Симисторный регулятор мощности РМ-2 имеет вход для внешнего управления переключателем с фиксацией и "сухими" контактами или реле.

   

1. Прибор изготовлен на современной элементной базе и схемотехнике.

2. Светодиодная индикация напряжения на входе или на нагрузке.

3. Вход, для возможности выбора 3 режимов работы прибора: "стабилизация", "разгон"(включение на полную мощность), "пауза"(отключение).

Характеристики регулятора:

Напряжение питание от электрической сети 50 Гц- 220 вольт, 

прибор работает при широком диапазоне входного напряжении от:  50 до ~300 в.

Максимальная мощность нагрузки 5 Квт. 

Максимальный ток в цепи нагрузки регулятора мощности 25 А.

Установка напряжения поступающего на выход 40 ÷ 290 В, но не более входного.

Точность установки напряжения 1 вольт.

Стабильность поддержания заданного напряжения на выходе: ± 1-2 в.

Индикация несоответствия выходного напряжения с установленным есть, в этом режиме индикатор устройства моргает, сообщая о неисправности выходного каскада, в режиме "разгон" и "пауза" индикатор также моргает.

Режим работы в вертикальном положении: продолжительный.

Конструктивно прибор изготовлен: из модулей расположенных на дин-рейке и предназначен для самостоятельного монтажа в электро-ящик, состоит из комплекта:

Электронный регулятор мощности РМ-2: 1 шт.  

Радиатор для симистора: 2 шт.   

Симистор ВТА-40, или 41: 1 шт.  в модели РМ-2 45А симистор  ТС142-80            

установочные изделия: 8 шт.     

.

Внимательно: 

1. Прибор имеет полу-открытую конструкцию и предназначен для установки в электрический ящик, не используйте прибор не исключив прикосновения к токоведущим частям. Перед тем как положить в корзину-можно выбрать модель в корпусе.

1.Нельзя включать в регулятор: трансформаторы, микроволновые печи и их модификации: индукционные стекло керамические плиты.

2. Регулятор нельзя использовать как стабилизатор сетевого напряжения, для дома.  Он не может повышать напряжение, выше чем на входе. Если например установлено напряжение на нагрузке 130 вольт, то оно будет стабилизировано, пока входное сетевое напряжение выше 130 вольт. Если напряжение в сети опустится ниже 130 вольт, то это напряжение будет и на выходе прибора, также на индикаторе начнут моргать цифры сообщая об отклонении выходного напряжения от установленного.

Если есть необходимость и плохая сеть, то входное напряжение можно повысить при помощи установки дополнительного автотрансформатора. (Есть возможность изготовить). 
3. Полностью заменяет регулятор мощности РМЦ

4. Не пытайтесь измерить напряжение на выходе прибора без нагрузки. Для измерения напряжения на выходе понадобится точный вольтметр на частоту до 1000 Гц. Его стоимость приблизительно 50-150 долларов.

Регулятор мощности РМ, применяется в самогоноварении, дистилляции и ректификации, для стабильного поддержания уровня нагрева электрических ТЭНов, электроплит, электрических лампочек, и других не индуктивных нагрузок, в устройствах где нужна регулировка напряжения и стабильное поддержание его на установленном уровне, соответственно и мощности нагрева, вне зависимости от колебаний напряжения в сети ~220 вольт переменного тока. Девайс предназначен для регулировки мощности на нагрузки до 5 Квт. Подключается к сети переменного тока с напряжением 220 В. Устройство управления и контроля за напряжением построено на микроконтроллере и силовом, мощным симистором BTA40-600 на ток до 40 ампер и применяется для управления и слежения за мощностью электрических нагревательных, осветительных приборов, коллекторных моторов. Благодаря широкому диапазону входных и выходных напряжений, возможностью регулировки мощности, регулятор найдет широкое применение на производстве и быту. Симисторный регулятор мощности РМ-2 имеет вход для внешнего управления переключателем с фиксацией и "сухими" контактами или реле.

   

1. Прибор изготовлен на современной элементной базе и схемотехнике.

2. Светодиодная индикация напряжения на входе или на нагрузке.

3. Вход, для возможности выбора 3 режимов работы прибора: "стабилизация", "разгон"(включение на полную мощность), "пауза"(отключение).

Характеристики регулятора:

Напряжение питание от электрической сети 50 Гц- 220 вольт, 

прибор работает при широком диапазоне входного напряжении от:  50 до ~300 в.

Максимальная мощность нагрузки 5 Квт. 

Максимальный ток в цепи нагрузки регулятора мощности 25 А.

Установка напряжения поступающего на выход 40 ÷ 290 В, но не более входного.

Точность установки напряжения 1 вольт.

Стабильность поддержания заданного напряжения на выходе: ± 1-2 в.

Индикация несоответствия выходного напряжения с установленным есть, в этом режиме индикатор устройства моргает, сообщая о неисправности выходного каскада, в режиме "разгон" и "пауза" индикатор также моргает.

Режим работы в вертикальном положении: продолжительный.

Конструктивно прибор изготовлен: из модулей расположенных на дин-рейке и предназначенн для самостоятельного монтажа в электроящик, состоит из комплекта:

Электронный регулятор мощности РМ-2: 1 шт. 

Радиатор для симистора: 2 шт.   

Симистор ВТА-40 или 41: 1 шт.               

установочные изделия: 8 шт.     

.

Внимательно: 

1. Прибор имеет пулу-открытую конструкцию и предназначен для установки в электрический ящик, не используйте прибор не исключив прикосновения к токоведущим частям.

1.Нельзя включать в регулятор: трансформаторы, микроволновые печи и их модификации: индукционные стекло керамические плиты.

2. Регулятор нельзя использовать как стабилизатор сетевого напряжения, для дома.  Он не может повышать напряжение, выше чем на входе. Если например установлено напряжение на нагрузке 130 вольт, то оно будет стабилизировано, пока входное сетевое напряжение выше 130 вольт. Если напряжение в сети опустится ниже 130 вольт, то это напряжение будет и на выходе прибора, также на индикаторе начнут моргать цифры сообщая об отклонении выходного напряжения от установленного.

Если есть необходимость и плохая сеть, то входное напряжение можно повысить при помощи установки дополнительного автотрансформатора. (Есть возможность изготовить). 
3. Полностью заменяет регулятор мощности РМЦ

4. Не пытайтесь измерить напряжение на выходе прибора без нагрузки. Для измерения напряжения на выходе понадобится точный вольтметр на частоту до 1000 Гц. Его стоимость приблизительно 50-150 долларов.

Линейный регулятор напряжения [Амперка / Вики]

Для подключения модулей к платформе нужно стабильное напряжение 5 или 3,3 вольта, но в большинстве случаев напряжение оказывается выше. Для того, чтобы всё работало правильно, напряжение нужно понизить и стабилизировать.

Линейный регулятор напряжения поможет получить нужные 3,3 В для питания управляющих платформ и модулей, а лишнюю мощность рассеять в виде тепла.

Видеообзор

Общие сведения

В современной электротехнике успешно уживаются два принципа преобразования напряжения для электрических потребителей:

Они имеют принципиальные отличия в своей конструкции и работают по разным технологиям.

Линейные регуляторы напряжения

Линейный регулятор применяется, когда нужно преобразовать небольшие мощности или минимизировать помехи. Например, запитать одноплатный компьютер или 3,3-вольтовые датчики. Преимущество линейного регулятора в простоте, отсутствии помех и минимальной обвязке. Но на больших мощностях его КПД падает.

Рассмотрим принцип работы линейного преобразователя — подключим к нему микросхему LM7805.

Линейный стабилизатор работает как умный делитель напряжения. На вход делителя подаётся входное напряжение, а выходное снимается с одного из плеч делителя.

Одно из плеч постоянно корректирует сопротивление и тем самым гасит лишнее напряжение.

Импульсный DC-DC преобразователь

У импульсного стабилизатора выше КПД, поскольку регулирующий элемент работает в ключевом режиме. Но из-за чувствительного перепада тока и напряжения такие преобразователи дают импульсные помехи в выходном напряжении.

Чтобы лучше понять принцип работы импульсного преобразователя, сравним его с водопроводным краном. У преобразователя так же, как и у крана, есть три вывода. По одному вода поступает в кран, по другому — вытекает. Третий вывод — это вентиль, который управляет потоком воды. Когда вентиль открыт, вода протекает через кран, когда закрыт — вода не течёт. По такому же принципу работает преобразователь: ток течёт, когда транзистор открыт, и не течёт, когда транзистор закрыт. Такой режим работы называют ключевым.

В состав импульсного регулятора напряжения входят пять основных элементов:

  • источник питания;

  • ключевой коммутирующий элемент;

  • индуктивный накопитель энергии: катушка индуктивности или дроссель;

  • блокировочный диод;

  • фильтрующий конденсатор фильтра.

В зависимости от величины выходного напряжения по отношению ко входному различают три типа преобразователей: понижающий, повышающий и понижающе-повышающий. Самые распространённые первые два, рассмотрим их подробнее.

Понижающий преобразователя уменьшает входное напряжение.

При открытом ключе S1 диод VD1 закрыт, энергия от источника питания накапливается в индуктивном накопителе энергии L1. При закрытом ключе запасённая энергия передается в сопротивление нагрузки RH индуктивным накопителем через диод. Конденсатор С1 сглаживает пульсации напряжения.

Повышающий преобразователя увеличивает входное напряжение.

При открытом ключе S1 ток от источника питания протекает через катушку индуктивности L1, в которой запасается энергия. Цепь нагрузки отключена от источника питания, ключа и накопителя энергии.

Напряжение на сопротивлении нагрузки RH поддерживается благодаря запасённой энергии на конденсаторе фильтра C1. При размыкании ключа S1 накопленная энергия на катушке суммируется с напряжением питания и передается в нагрузку через открытый диод VD1. Полученное таким способом выходное напряжение превышает напряжение питания.

Примеры работы

Линейный регулятор преобразует входное повышенное напряжение в диапазоне от 4,3 до 20 вольт в стабильные 3,3 вольта.

Подключение миникомпьютеров

Линейный регулятор поможет запитать одноплатник внешним источником напряжения. В качестве примера подключим Onion Omega2 от импульсного источника с выходным напряжением 12 вольт.

Подключение модулей

Стабилизатор также возьмёт на свои плечи питание для 3,3 вольтовых модулей, например Wi-Fi ESP8266 или модуль беспроводной связи nRF24L01+.

На контактных колодках Arduino расположен пин 3V3. Многие ошибочно запитывают от этого пина модули с 3,3 вольтовой логикой. Этого делать категорически нельзя. На большинстве плат Arduino стоит слабенький регулятор напряжения с током всего на 50 мА. Такой силы хватит только на парочку светодиодов.

В качестве примера подключим Wi-Fi модуль ESP8266 через линейный регулятор напряжения к Arduino Uno.

Подключение к WiFi Slot

Линейный регулятор благодаря форм-фактору Troyka-модулей как родной встанет на платформу WiFi Slot и расширит диапазон питания платформы до 20 вольт.

  • Джампер объединения выходного питания с линией V установлен. В итоге выходное питание поступает на линию V платформы WiFi Slot.

  • Джампер объединения входного питания с линией V2 не установлен.

Элементы платы

Линейный регулятор напряжения

Сердце модуля линейный стабилизатор MC33269. Регулятор принимает на входное напряжение и преобразует его значение в 3,3 вольта. Остальная мощность рассеивается в виде тепла. В качестве охлаждения — выступает плата модуля.

Входное и выходное напряжение

На модуле выведен двойной клеммник для подключения входного питания и нагрузки:

  • контакт (Vin) — пин входного напряжения. Подключите к плюсовому контакту источника питания. Диапазон входного напряжения от 4,4 до 20 вольт.

  • двойной контакт (GND) — общая земля. Подключите к минусовому контакту источника питания и земле нагрузки.

  • контакт (Vout) — пин выходного напряжения со значением 3,3 вольта. Подключите к питанию нагрузки.

Джамперы выбора питания

Модуль с регулятором питания позволяет дублировать входное и выходное напряжение на Troyka-контактах путём установкой джаммеров:

  • Vin=V2 — на линии V2 будет присутствовать входное напряжение с клеммника Vin.

  • Vout=V — на линии V будет выходное напряжение регулятора с клеммника Vout.

Установка джампера будет полезна при подключении модуля через макетную плату или Troyka Slot Shield.

Troyka-контакты

На модуле выведено две пары Troyka-контактов.

Нижняя группа

  • Питание (V) — выходное напряжение с линейного регулятора напряжения. При установленном джаммпере Vout=V.

  • Земля (G) — общая земля.

Верхняя группа

Принципиальная и монтажная схемы

Характеристики

  • Чип: MC33269

  • Входное напряжение: 4,4—20 В

  • Выходное напряжение: 3,3 В

  • Максимальный выходной ток: 800 мA

  • Габариты: 25,4×25,4 мм

Ресурсы

Принцип работы стабилизатора напряжения

Стабилизатор напряжения - применение, принцип работы

Стабилизатор напряжения — это электрическое устройство, которое используется для подачи постоянного напряжения на нагрузку на своих выходных клеммах независимо от каких-либо изменений или колебаний на входе, то есть входящего питания.

Основное назначение стабилизатора напряжения заключается в защите электрических или электронных устройств (например, кондиционера, холодильника, телевизора и так далее) от возможного повреждения в результате скачков напряжения или колебаний, повышенного или пониженного напряжения.

Рис.1 — Различные типы стабилизаторов напряжения

Стабилизатор напряжения также известен как AVR (автоматический регулятор напряжения). 

Использование стабилизатора напряжения не ограничивается домашним или офисным оборудованием, которое получает электропитание извне. 

Даже места, которые имеют свои собственные внутренние источники питания в виде дизельных генераторов переменного тока, сильно зависят от этих AVR для безопасности своего оборудования.

Зачем нужны стабилизаторы напряжения и его важность

Все электрические устройства спроектированы и изготовлены для работы с максимальной эффективностью с типичным источником питания, который известен как номинальное рабочее напряжение.  В зависимости от расчетного безопасного предела эксплуатации рабочий диапазон (с оптимальной эффективностью) электрического устройства может быть ограничен до ± 5%, ± 10% или более.

Из-за многих проблем источник входного напряжения, которое мы получаем, всегда имеет тенденцию колебаться, что приводит к постоянно меняющемуся источнику входного напряжения. Это изменяющееся напряжение является основным фактором, способствующим снижению эффективности устройства, а также увеличению частоты его отказов.

Рис. 2 — Проблемы из-за колебаний напряжения

Как работает стабилизатор напряжения

Основная работа стабилизатора напряжения заключается в выполнении двух необходимых функций: функции понижения и повышения напряжения. 

Функция понижения и повышения — это не что иное, как регулирование постоянного напряжения от перенапряжения. 

Эта функция может выполняться вручную с помощью селекторных переключателей или автоматически с помощью дополнительных электронных схем.

В условиях перенапряжения функция «понижения напряжения» обеспечивает необходимое снижение интенсивности напряжения. Аналогично, в условиях пониженного напряжения функция «повышения напряжения» увеличивает интенсивность напряжения. Идея обеих функций в целом заключается в том, чтобы поддерживать одинаковое выходное напряжение.

Рис. 4 — Принципиальная схема функции понижения в стабилизаторе напряжения

На приведенном выше рисунке показано подключение трансформатора в функции «Понижения». В функции понижения полярность вторичной катушки трансформатора подключается таким образом, что приложенное напряжение к нагрузке является результатом вычитания напряжения первичной и вторичной катушек.

В стабилизаторе напряжения есть схема переключения. Всякий раз, когда обнаруживается превышение напряжения в первичном источнике питания, подключение нагрузки вручную или автоматически переключается в конфигурацию режима «Понижения» с помощью переключателей (реле).

Рис. 6 — Принципиальная схема функции повышения напряжения в стабилизаторе напряжения

На рисунке выше показано подключение трансформатора в функции «Повышения». В функции повышения полярность вторичной обмотки трансформатора подключается таким образом, что приложенное напряжение к нагрузке является результатом сложения напряжения первичной и вторичной обмоток.

Видео совет при выборе стабилизатор напряжения

//www.youtube.com/embed/RnxfLGxw9zU

Особенности сетевых стабилизаторов

Принципиальная схема стабилизатора напряжения данного типа представляет собой набор транзисторов, а также диодов. В свою очередь механизм замыкания в ней отсутствует. Регуляторы при этом имеются обычного типа. В некоторых моделях дополнительно устанавливается система индикации.

Она способна показать мощность скачков в сети. По чувствительности модели довольно сильно отличаются. Конденсаторы, как правило, в цепи имеются компенсационного типа. Система защиты у них отсутствует.

Устройства моделей с регулятором

Для холодильного оборудования востребованным является регулируемый стабилизатор напряжения. Схема его подразумевает возможность настройки прибора перед началом использования. В данном случае это помогает в устранении высокочастотных помех. В свою очередь электромагнитное поле проблем для резисторов не представляет.

Конденсаторы также включаются в регулируемый стабилизатор напряжения. Схема его не обходится без транзисторных мостов, которые соединяются между собой по коллекторной цепочке. Непосредственно регуляторы могут устанавливаться различных модификаций. Многое в данном случае зависит от предельного напряжения. Дополнительно учитывается тип трансформатора, который имеется в стабилизаторе.

Стабилизаторы "Ресанта"

Схема стабилизатора напряжения "Ресанта" представляет собой набор транзисторов, которые взаимодействуют между собой по коллектору. Для охлаждения системы имеется вентилятор. С высокочастотными перегрузками в системе справляется конденсатор компенсационного типа.

Также схема стабилизатора напряжения "Ресанта" включает в себя диодные мосты. Регуляторы во многих моделях устанавливаются обычные. Ограничения по нагрузке у стабилизаторов "Ресанта" есть. В целом помехи ими воспринимаются все. К недостаткам следует отнести высокую шумность трансформаторов.

Схема моделей с напряжением 220 В

Схема стабилизатора напряжения 220 В отличается от прочих устройств тем, что в ней имеется блок управления. Данный элемент соединяется напрямую с регулятором. Сразу за системой фильтрации имеется диодный мост. Для стабилизации колебаний дополнительно предусмотрена цепь из транзисторов. На выходе после обмотки располагается конденсатор.

С перегрузками в системе справляется трансформатор. Преобразование тока осуществляется им же. В целом диапазон мощности у данных устройств довольно высокий. Работать эти стабилизаторы способны и при минусовой температуре. По шумности они не отличаются от моделей других типов. Параметр чувствительности сильно зависит от производителя. Также на нее влияет тип установленного регулятора.

Принцип работы импульсных стабилизаторов

Схема электрическая стабилизатора напряжения данного типа схожа с моделью релейного аналога. Однако отличия в системе все же есть. Главным элементом в цепи принято считать модулятор. Занимается данное устройство тем, что считывает показатели напряжения. Далее сигнал переносится на один из трансформаторов. Там проходит полная обработка информации.

Для изменения силы тока имеется два преобразователя. Однако в некоторых моделях он установлен один. Чтобы справиться с электромагнитным полем, задействуется выпрямительный делитель. При повышении напряжения он снижает предельную частоту. Чтобы ток поступил на обмотку, диоды передают сигнал на транзисторы. На выходе стабилизированное напряжение проходит по вторичной обмотке.

Высокочастотные модели стабилизаторов

По сравнению с релейными моделями, высокочастотный стабилизатор напряжения (схема показана ниже) является более сложным, и диодов в нем задействуется больше двух. Отличительной особенность приборов данного типа принято считать высокую мощность.

Трансформаторы в цепи рассчитаны на большие помехи. В результате данные приборы способны защитить любую бытовую технику в доме. Система фильтрации в них настроена на различные скачки. За счет контроля напряжения величина тока может изменяться. Показатель предельной частоты при этом будет увеличиваться на входе, и уменьшаться на выходе. Преобразование тока в этой цепи осуществляется в два этапа.

Первоначально задействуется транзистор с фильтром на входе. На втором этапе включается диодный мост. Для того чтобы процесс преобразования тока завершился, системе требуется усилитель. Устанавливается он, как правило, между резисторами. Таким образом, температура в устройстве поддерживается на должном уровне. Дополнительно в системе учитывается источник питания. Использование блока защиты зависит от его работы.

Стабилизаторы на 15 В

Для устройств с напряжением 15 В используется сетевой стабилизатор напряжения, схема которого по своей структуре является довольно простой. Порог чувствительности у приборов находится на малом уровне. Модели с системой индикации встретить очень сложно. В фильтрах они не нуждаются, поскольку колебания в цепи незначительные.

Резисторы во многих моделях есть только на выходе. За счет этого процесс преобразования происходит довольно быстро. Входные усилители устанавливаются самые простые. Многое в данном случае зависит от производителя. Используются стабилизатор напряжения (схема показана ниже) этого типа чаще всего в лабораторных исследованиях.

Особенности моделей на 5 В

Для устройств с напряжением 5 В используют специальный сетевой стабилизатор напряжения. Схема их состоит из резисторов, как правило, не более двух. Применяют такие стабилизаторы исключительно для нормального функционирования измерительных приборов. В целом они являются довольно компактными, а работают тихо.

Модели серии SVK

Модели данной серии относятся к стабилизаторам латерного типа. Чаще всего их используют на производстве для уменьшения скачков от сети. Схема подключения стабилизатора напряжения этой модели предусматривает наличие четырех транзисторов, которые расположены попарно. За счет этого ток преодолевает меньшее сопротивление в цепи. На выходе у системы имеется обмотка для обратного эффекта. Фильтров в схеме предусмотрено два.

За счет отсутствия конденсатора процесс преобразования также происходит быстрее. К недостаткам следует отнести большую чувствительность. На электромагнитное поле прибор реагирует очень остро. Схема подключения стабилизатора напряжения серии SVK регулятор предусматривает, как и систему индикации. Напряжение максимум устройством воспринимается до 240 В, а отклонение при этом не может превышать 10 %.

Автоматические стабилизаторы "Лигао 220 В"

Для систем сигнализации является востребованным от компании "Лигао" стабилизатор напряжения 220В. Схема его построена на работе тиристоров. Использоваться данные элементы способны исключительно в полупроводниковых цепях. На сегодняшний день типов тиристоров существует довольно много. По степени защищенности они делятся на статические, а также динамические. Первый вид используется с источниками электричества различной мощности. В свою очередь динамические тиристоры имеют свой предел.

Если говорить про компании "Лигао" стабилизатор напряжения (схема показана ниже), то в нем имеется активный элемент. В большей степени он предназначен для нормального функционирования регулятора. Представляет он собой набор контактов, которые способны соединяться. Необходимо это для того чтобы увеличивать или уменьшать предельную частоту в системе. В других моделях тиристоров может иметься несколько. Устанавливаются они между собой при помощи катодов. В результате коэффициент полезного действия устройства можно значительно повысить.

Низкочастотные устройства

Для обслуживания устройств с частотой менее 30 Гц существует такой стабилизатор напряжения 220В. Схема его схожа со схемами релейных моделей за исключением транзисторов. В данном случае они имеются с эмиттером. Иногда дополнительно устанавливается специальный контроллер. Многое зависит от производителя, а также модели. Контроллер в стабилизаторе необходим для передачи сигнала на блок управления.

Для того чтобы связь была качественной, производители используют усилитель. Устанавливается он, как правило, на входе. На выходе в системе имеется обычно обмотка. Если говорить про предел напряжения в 220 В, конденсаторов можно найти два. Коэффициент передачи тока у таких устройств довольно низкий. Причиною этого принято считать малую предельную частоту, которая является следствием работы контроллера. Однако коэффициент насыщения находится на высокой отметке. Во многом это связано именно с транзисторами, которые устанавливаются с эмиттерами.

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.

Что такое стабилизатор напряжения, принцип работы и типы

Применение стабилизаторов напряжения стало необходимостью для каждого дома. Различные типы стабилизаторов напряжения доступны в настоящее время с различными функциями и работами. Последние достижения в технологии, такие как микропроцессорные чипы и силовые электронные устройства, изменили стабилизаторы напряжения. Теперь они полностью автоматические, интеллектуальные и оснащены множеством дополнительных функций. Они также имеют сверхбыструю реакцию на колебания напряжения и позволяют своим пользователям дистанционно регулировать требования к напряжению, включая функцию пуска или выключения.

Содержание

1 Что такое стабилизатор напряжения

2 Зачем нужны стабилизаторы напряжения и его важность

2.1 Эффекты повторяющегося перенапряжения в бытовой технике

3 Как работает стабилизатор напряжения, принцип работы понижения и повышения напряжения

3.1 Как работает функция понижения и повышения в стабилизаторе напряжения

3.2 Функция понижения в стабилизаторе напряжения

3. 3 Функция повышения в стабилизаторе напряжения

3.4 Как конфигурация повышения и понижения работает автоматически

4 Различные типы стабилизаторов напряжения

5 Стабилизаторы напряжения типа реле

5.1 Как работает релейный стабилизатор напряжения

5.2 Использование и преимущества релейных стабилизаторов напряжения

5.3 Недостатки релейных стабилизаторов напряжения

6 Сервоприводные стабилизаторы напряжения

6.1 Как работает сервоприводный стабилизатор напряжения?

6.2 Классификация сервоприводных стабилизаторов напряжения

6.3 Недостатки сервоприводного стабилизатора напряжения

7 Стабилизаторы статического напряжения

7.1 Как работает статический стабилизатор напряжения

7.2 Использование / Преимущества статических стабилизаторов напряжения

7. 3 Недостатки статического стабилизатора напряжения

8 В чем разница между стабилизатором напряжения и регулятором напряжения?

9 Как выбрать лучший стабилизатор напряжения для вашего дома? Руководство по покупке

9.2 Пошаговое руководство по выбору и покупке стабилизатора напряжения для вашего дома

9.3 Практический пример для лучшего понимания

10 Видео — Как правильно выбрать стабилизатор напряжения по мощности для дома. Расчёт и простые советы!

Что такое стабилизатор напряжения

Стабилизатор напряжения — это электрическое устройство, которое используется для подачи постоянного напряжения на нагрузку на своих выходных клеммах независимо от каких-либо изменений или колебаний на входе, то есть входящего питания.

Основное назначение стабилизатора напряжения заключается в защите электрических или электронных устройств (например, кондиционера, холодильника, телевизора и так далее) от возможного повреждения в результате скачков напряжения или колебаний, повышенного или пониженного напряжения.

Различные типы стабилизаторов напряжения

Стабилизатор напряжения также известен как AVR (автоматический регулятор напряжения). Использование стабилизатора напряжения не ограничивается домашним или офисным оборудованием, которое получает электропитание извне. Даже места, которые имеют свои собственные внутренние источники питания в виде дизельных генераторов переменного тока, сильно зависят от этих AVR для безопасности своего оборудования.

Мы можем увидеть различные типы стабилизаторов напряжения, доступных на рынке. Аналоговые и цифровые автоматические стабилизаторы напряжения доступны от многих производителей. Благодаря растущей конкуренции и повышению осведомленности о безопасности устройств. Эти стабилизаторы напряжения могут быть однофазными (выход 220-230 вольт) или трехфазными (выход 380/400 вольт) в зависимости от типа применения. Регулирование желаемой стабилизированной мощности осуществляется методом понижения и повышения напряжения в соответствии с его внутренней схемой.  Трехфазные стабилизаторы напряжения доступны в двух разных моделях, то есть моделях с сбалансированной нагрузкой и моделях с несбалансированной нагрузкой.

Они доступны в различных рейтингах и диапазонах
КВА. Стабилизатор напряжения нормального диапазона может обеспечить стабилизированное выходное напряжение 200-240 вольт с усилением 20-35 вольт при питании от входного напряжения в диапазоне от 180 до 270 вольт. Принимая во внимание, что широкий диапазон стабилизатора напряжения может обеспечить стабилизированное напряжение 190-240 вольт с повышающим сопротивлением 50-55 вольт при входном напряжении в диапазоне от 140 до 300 вольт.

Они также доступны для широкого спектра применений, таких как специальный стабилизатор напряжения для небольших устройств, таких как телевизор, холодильник, микроволновые печи, для одного огромного устройства для всей бытовой техники.

В дополнение к своей основной функции стабилизаторы текущего напряжения оснащены многими полезными дополнительными функциями, такими как защита от перегрузки, переключение нулевого напряжения, защита от изменения частоты, отображение отключения напряжения, средство запуска и остановки выхода, ручной или автоматический запуск, отключение напряжения и так далее.

Стабилизаторы напряжения являются очень энергоэффективными устройствами (с эффективностью 95-98%). Они потребляют очень мало энергии, которая обычно составляет от 2 до 5% от максимальной нагрузки.

Зачем нужны стабилизаторы напряжения и его важность

Все электрические устройства спроектированы и изготовлены для работы с максимальной эффективностью с типичным источником питания, который известен как номинальное рабочее напряжение. В зависимости от расчетного безопасного предела эксплуатации рабочий диапазон (с оптимальной эффективностью) электрического устройства может быть ограничен до ± 5%, ± 10% или более.

Из-за многих проблем источник входного напряжения, которое мы получаем, всегда имеет тенденцию колебаться, что приводит к постоянно меняющемуся источнику входного напряжения. Это изменяющееся напряжение является основным фактором, способствующим снижению эффективности устройства, а также увеличению частоты его отказов.

Проблемы связанные со скачками напряжения:

  • Перегрев
  • Сниженный срок службы
  • Постоянный ущерб
  • Ущерб изоляции
  • Уменьшение производительности
  • Нарушение в мощности
  • Неправильная работа устройств
  • Низкая эффективность
  • Большой ток

Помните, нет ничего более важного для электронного устройства, чем отфильтрованный, защищенный и стабильный источник питания.  Правильное и стабилизированное напряжение питания очень необходимо, чтобы устройство выполняло свои функции наиболее оптимальным образом. Это стабилизатор напряжения, который обеспечивает то, что устройство получает желаемое и стабилизированное напряжение, независимо от того, насколько сильно колебание. Таким образом, стабилизатор напряжения является очень эффективным решением для тех, кто хочет получить оптимальную производительность и защитить свои устройства от непредсказуемых колебаний напряжения, скачков напряжения и шума, присутствующих в источнике питания.

Как и источник бесперебойного питания, стабилизаторы напряжения также являются активом для защиты электронного оборудования. Колебания напряжения очень распространены независимо от того, где вы живете. Могут быть различные причины колебаний напряжения, такие как электрические неисправности, неисправная проводка, молнии, короткие замыкания и так далее. Эти колебания могут быть в форме перенапряжения или пониженного напряжения.

Эффекты повторяющегося перенапряжения в бытовой технике

  • Необратимые повреждения подключенного устройства
  • Повреждения изоляции обмотки
  • Перебои в нагрузке
  • Перегрев кабеля или устройства
  • Ухудшится срок полезного использования устройства
  • Неисправность оборудования
  • Низкая эффективность устройства
  • Устройство в некоторых случаях может занять дополнительные часы, чтобы выполнить ту же функцию
  • Ухудшить производительность устройства
  • Устройство будет потреблять больше электричества, что может привести к перегреву

Как работает стабилизатор напряжения, принцип работы понижения и повышения напряжения

Основная работа стабилизатора напряжения заключается в выполнении двух необходимых функций: функции понижения и повышения напряжения. Функция понижения и повышения — это не что иное, как регулирование постоянного напряжения от перенапряжения. Эта функция может выполняться вручную с помощью селекторных переключателей или автоматически с помощью дополнительных электронных схем

Основная функция стабилизатора напряжения

В условиях перенапряжения функция «понижения напряжения» обеспечивает необходимое снижение интенсивности напряжения.  Аналогично, в условиях пониженного напряжения функция «повышения напряжения» увеличивает интенсивность напряжения. Идея обеих функций в целом заключается в том, чтобы поддерживать одинаковое выходное напряжение.

Стабилизация напряжения включает в себя сложение или вычитание напряжения из первичного источника питания. Для выполнения этой функции стабилизаторы напряжения используют трансформатор, который подключен к переключающим реле в различных требуемых конфигурациях. Немногие из стабилизаторов напряжения используют трансформатор, имеющий различные отводы на своей обмотке, для обеспечения различных коррекций напряжения, в то время как стабилизаторы напряжения (такие как Servo стабилизатор напряжения) содержат автоматический трансформатор для обеспечения желаемого диапазона коррекции.

Как работает функция понижения и повышения в стабилизаторе напряжения

Для лучшего понимания обеих концепций мы разделим его на отдельные функции

Принципиальная схема функции понижения в стабилизаторе напряжения

На приведенном выше рисунке показано подключение трансформатора в функции «Понижения».  В функции понижения полярность вторичной катушки трансформатора подключается таким образом, что приложенное напряжение к нагрузке является результатом вычитания напряжения первичной и вторичной катушек.

В стабилизаторе напряжения есть схема переключения. Всякий раз, когда обнаруживается превышение напряжения в первичном источнике питания, подключение нагрузки вручную или автоматически переключается в конфигурацию режима «Понижения» с помощью переключателей (реле).

Принципиальная схема функции повышения напряжения в стабилизаторе напряжения

На рисунке выше показано подключение трансформатора в функции «Повышения». В функции повышения полярность вторичной обмотки трансформатора подключается таким образом, что приложенное напряжение к нагрузке является результатом сложения напряжения первичной и вторичной обмоток

Как конфигурация повышения и понижения работает автоматически

Вот пример 02 Stage Voltage Stabilizer. Этот стабилизатор напряжения использует 02 реле (реле 1 и реле 2) для обеспечения стабилизированного источника питания переменного тока для нагрузки в условиях перенапряжения и понижения напряжения.

На принципиальной схеме 02-ступенчатого стабилизатора напряжения (изображенного выше) реле 1 и реле 2 используются для обеспечения конфигурации понижения и повышения во время различных условий колебаний напряжения, то есть перенапряжения и пониженного напряжения. Например — предположим, что вход переменного тока 230 В переменного тока, а требуемый выход также постоянный 230 В переменного тока. Теперь, если у вас есть +/- 25 Вольт понижения & повышения стабилизация, это означает, что ваш стабилизатор напряжения может обеспечить вам постоянное требуемое напряжение (230 В) в диапазоне от 205 В (пониженное напряжение) до 255 В (повышенное напряжение) входного источника переменного тока.

В стабилизаторах напряжения, в которых используются трансформаторы с отводом, точки ответвления выбираются на основе требуемого количества напряжения, которое должно быть подавлено или повышено. В этом случае у нас есть разные диапазоны напряжения для выбора. Принимая во внимание, что в стабилизаторах напряжения, в которых используются автотрансформаторы, серводвигатели вместе со скользящими контактами используются для получения необходимого количества напряжения, которое необходимо стабилизировать или повысить.  Скользящий контакт необходим, поскольку автотрансформаторы имеют только одну обмотку.

Различные типы стабилизаторов напряжения

Первоначально на рынке появились ручные / селекторные переключатели напряжения. В этих типах стабилизаторов используются электромеханические реле для подбора желаемого напряжения. С развитием технологий появились дополнительные электронные схемы и стабилизаторы напряжения стали автоматическими. Затем появился Servo стабилизатор напряжения, который способен стабилизировать напряжение непрерывно, без какого-либо ручного вмешательства. Теперь также доступны стабилизаторы напряжения на базе микросхем / микроконтроллеров, которые также могут выполнять дополнительные функции.

Стабилизаторы напряжения можно разделить на три типа:

  • Стабилизаторы напряжения типа реле
  • Сервоприводные стабилизаторы напряжения
  • Стабилизаторы статического напряжения

Стабилизаторы напряжения типа реле

Разберемся в процессе функционирования стабилизатора релейного типа. Электронная система измеряет параметры входящей электроэнергии. После считывания данных прибор сравнивает эти параметры с величинами номинального режима.

Прибор автоматически производит подключение необходимой обмотки трансформатора для достижения нужных параметров сети. Работа релейного стабилизатора довольно простая. Прибор регулирует параметры сети по ступеням, в результате чего при очередной ступени напряжение изменяется на конкретную величину. Бывают ситуации, когда уровень напряжения не соответствует норме даже после корректировки. Такие ступенчатые регулировки могут также вызвать перепады напряжения.

Если подробно разобраться в принципе действия, то можно понять, что прибор быстро выбирает нужные обмотки. Такие ступенчатые скачки параметров считаются незначительными. Они станут заметнее, если на входе будут наблюдаться подобные скачки напряжения. При подключении к сети высокочувствительных устройств при сильных перепадах напряжения устройства выйдут из строя.

Недобросовестные производители могут запрограммировать стабилизатор таким образом, что на его дисплее всегда будет показывать значение 220 В.

Чаще всего релейный стабилизатор справляется с перепадами сети за 0,15 с. Такой прибор может отключить питание выходным током, когда на входе возникли значения тока наименьшего допустимого значения. После нормализации напряжения прибор снова подключится к работе. Напряжение восстанавливается за 0,6 с.

Как работает релейный стабилизатор напряжения

Рисунок выше показывает, как стабилизатор напряжения типа реле выглядит изнутри. Он имеет трансформатор с ответвлениями, реле и электронную плату. Печатная плата содержит схему выпрямителя, усилитель, микроконтроллер и другие вспомогательные компоненты.

Электронные платы выполняют сравнение выходного напряжения с источником опорного напряжения. Как только он обнаруживает любое увеличение или уменьшение входного напряжения выше эталонного значения, он переключает соответствующее реле для подключения требуемого постукивания для функции понижения и повышения.

Стабилизаторы напряжения релейного типа обычно стабилизируют входные колебания на уровне ± 15% с точностью на выходе от ± 5% до ± 10%.

Использование и преимущества релейных стабилизаторов напряжения

Этот стабилизатор в основном используется для приборов / оборудования с низким номинальным энергопотреблением в жилых / коммерческих / промышленных целях.

  • Малые габаритные размеры, так как трансформатор имеет только функцию повышения напряжения.
  • Большой интервал значений напряжения.
  • Значительный диапазон рабочих температур. Многие приборы нормально работают при температуре -40 +40 градусов.
  • Низкий уровень шума.
  • Допускается перегрузка до 110%.

Многие изготовители приборов утверждают, что их продукция способна функционировать много лет.

Недостатки релейных стабилизаторов напряжения

В работе релейных моделей стабилизаторов есть недостатки, которые обусловлены его методом работы, схемой прибора. Слабым звеном его конструкции считается реле. Если изготовитель установил некачественное реле, то оно может стать причиной неисправности прибора. Также при переключении режимов возникают щелчки и шумы.

Другим значимым недостатком является ступенчатое действие устройства выравнивания напряжения. При переключении с одной обмотки на другую напряжение может значительно изменяться, образуя некоторые скачки.

Недорогие модели имеют слабую мощность, которая не больше 30% от мощности бытовых устройств.

Правила пользования релейным стабилизатором

При вашем выборе релейного типа стабилизатора, необходимо регулярно проводить его обслуживание, в том числе ежегодно тщательно его осматривать внутри корпуса. При осмотре нужно обращать внимание на:

  • Надежность крепления соединений проводников.
  • Уровень охлаждения и циркуляции воздуха в корпусе прибора.
  • Имеются ли повреждения.
  • Точность работы указателей измерения.

При обнаружении слабых соединений, пыли, необходимо выключить из сети стабилизатор и произвести его обслуживание, очистив его и затянув все крепления контактов. Помещение, в котором находится стабилизатор напряжения, должно проветриваться и быть сухим. Влажность в помещении не должна быть более 80%. При работе в корпусе стабилизатора отверстия для вентиляции должны иметь доступ воздуха.

Сервоприводные стабилизаторы напряжения

Электромеханический стабилизатор напряжения, так же известный как сервоприводный, – это один из самых распространенных видов стабилизаторов, который, благодаря своей конструкции и характеристикам, обладает очень интересным набором возможностей и в некоторых ситуациях просто не имеет альтернативы.

Ни для кого не секрет, что бытовые сети питания сегодня не могут обеспечить стабильную эксплуатацию электрических устройств в доме. Перепады и скачки напряжения вполне можно ожидать от сети питания. Для решения этих задач как нельзя лучше подходит электромеханический вид стабилизатора напряжения, так как он стал наиболее популярным на рынке бытовых приборов защиты

Рисунок выше показывает, как серво стабилизатор напряжения выглядит изнутри. Он имеет серводвигатель, автотрансформатор, трансформатор понижения и повышения, двигатель, электронную плату и другие вспомогательные компоненты.

В стабилизаторе напряжения на основе сервопривода один конец первичной обмотки трансформатора понижения и повышения (отвод) подключен к фиксированному ответвлению автотрансформатора, а другой конец первичной обмотки соединен с подвижным рычагом, который контролируется серводвигателем. Один конец вторичной катушки трансформатора
понижения и повышения подключен к входному источнику питания, а другой конец подключен к выходу стабилизатора напряжения.

Как работает сервоприводный стабилизатор напряжения?

В системе замкнутого контура отрицательная обратная связь (также известная как ошибка подачи) гарантируется от выхода, чтобы система могла гарантировать, что был достигнут желаемый результат. Это делается путем сравнения выходных и входных сигналов. Если в случае, если желаемый выход превышает / ниже требуемого значения, то регулятором источника входного сигнала будет получен сигнал ошибки (Выходное значение — Входное значение). Затем этот регулятор снова генерирует сигнал (положительный или отрицательный в зависимости от достигнутого выходного значения) и подает его на исполнительные механизмы, чтобы привести выходное значение к точному значению.

Благодаря свойству замкнутого контура стабилизаторы напряжения на основе сервоприводов используются для приборов / оборудования, которые очень чувствительны и нуждаются в точном входном питании (± 01%) для выполнения намеченных функций.

Электронные платы выполняют сравнение выходного напряжения с источником опорного напряжения. Как только он обнаруживает любое увеличение или уменьшение входного напряжения выше контрольного значения, он начинает работать с двигателем, который еще больше перемещает рычаг на автотрансформаторе.

При перемещении рычага на автотрансформаторе входное напряжение на первичной обмотке трансформатора понижения и повышения изменится на требуемое выходное напряжение. Серводвигатель будет продолжать вращаться, пока разность между значением опорного напряжения и выход стабилизатора становится равным нулю. Этот полный процесс происходит за миллисекунды. Современные серво стабилизаторы напряжения поставляются с микроконтроллерной / микропроцессорной схемой управления для обеспечения интеллектуального управления пользователями.

Классификация сервоприводных стабилизаторов напряжения:

Однофазные сервоприводные стабилизаторы напряжения

В однофазных стабилизаторах напряжения с сервоприводом стабилизация напряжения достигается с помощью серводвигателя, подключенного к переменному трансформатору.

Трехфазные сбалансированные сервоприводные стабилизаторы напряжения

В трехфазных стабилизированных стабилизаторах напряжения с сервоуправлением стабилизация напряжения достигается с помощью серводвигателя, подключенного к 03 автотрансформаторам, и общей цепи управления. Выходные данные автотрансформаторов варьируются для достижения стабилизации.

Трехфазные несбалансированные сервоприводные стабилизаторы напряжения

В трехфазных несимметричных стабилизаторах напряжения с сервоприводом стабилизация напряжения достигается с помощью серводвигателя, подключенного к 03 автотрансформаторам и 03 независимым цепям управления (по одной на каждый автотрансформатор).

Использование и преимущества сервоприводных стабилизаторов напряжения

  • Они быстро реагируют на колебания напряжения
  • Они имеют высокую точность стабилизации напряжения
  • Они очень надежные
  • Они могут выдерживать скачки напряжения
  • Отсутствие шума

Недостатки сервоприводного стабилизатора напряжения

  • Они нуждаются в периодическом обслуживании
  • Чтобы обнулить ошибку, серводвигатель должен быть выровнен. Выравнивание сервомотора требует умелых рук.

Стабилизаторы статического напряжения

Статический выпрямитель напряжения не имеет движущихся частей, как в случае сервоприводных стабилизаторов напряжения. Для стабилизации напряжения используется силовая электронная схема преобразователя. Эти статические стабилизаторы напряжения имеют очень высокую точность, а стабилизация напряжения находится в пределах ± 1%.

Стабилизатор статического напряжения содержит трансформатор понижения и повышения, силовой преобразователь с изолированным затвором (IGBT), микроконтроллер, микропроцессор и другие необходимые компоненты.

Электронный стабилизатор напряжения - Регулятор и стабилизаторы напряжения

На главную ›Продукция› Регуляторы

Если бы электрические распределительные сети функционировали идеально, нам не нужно было бы использовать регулятор напряжения . Именно потому, что электрические линии имеют сопротивление, и чем длиннее линия, тем выше импеданс, поэтому напряжение на выходе блока потребителя сильно меняется.
Существует множество возможных причин: от длины линий и их неадекватности для удовлетворения растущего потребительского спроса до доведенных до предела трансформаторов на подстанциях и многих других.
Многие нагрузки, такие как компрессоры, используемые в холодильниках и кондиционерах, большие электромагниты, станки, погружные насосы, гидравлические блоки управления и т. Д., При включении поглощают высокий уровень тока, до 6 раз превышающий их номинальные значения, и это означает: падение напряжения на линии питания и, как следствие, понижение напряжения.

Явление часто приводит к неисправности машин, особенно электронных средств управления, которые не могут выдержать больших колебаний линейного напряжения . Чтобы избежать и предотвратить эти проблемы, одно- или трехфазный стабилизатор напряжения вставляется в линию подачи в мастерскую или домой. На рынке доступно множество типов регуляторов, и каждый тип машины имеет разные характеристики, свои преимущества и недостатки.Например, в 1950-х и 1960-х годах регуляторы «насыщенного железа» использовались для питания телевизоров. Они подходили для нагрузок малой мощности, но много весили, имели низкие выходы и, что важно, вносили искажение третьей гармоники в форму волны. Стабилизатор напряжения «железный резонанс» , аналогичный стабилизаторам напряжения с насыщенным железом, все еще выпускается с лучшей формой выходного сигнала, но заметными массой и габаритами, а также высокой стоимостью. По этим причинам они не получили широкого распространения. С появлением электроники и ростом использования персональных компьютеров был создан электронный стабилизатор напряжения.Небольшие по размеру, с высокой скоростью сброса и гораздо более низкой стоимостью, эти стабилизаторы напряжения широко продавались для питания компьютеров. Их наиболее важные недостатки - это ограниченная мощность, достижимая в недорогих моделях, их неадекватность для питания таких устройств, как осветительные приборы, поскольку они вызывают раздражающие изменения яркости, их низкая способность выдерживать пики тока, поскольку электронные переключающие элементы должны нести весь ток. нагрузки, их низкая точность стабилизации, обычно ± 3%, и, наконец, что не менее важно, внесение небольших искажений формы сигнала. Параллельно с упомянутыми типами регуляторов напряжения были также созданы устройства, называемые «электромеханическими», так называемые потому, что они используют механические части. Это, несомненно, регуляторы с лучшими электрическими характеристиками на сегодняшний день - очень прочные, обеспечивающие точное регулирование, размер и вес которых невелики по сравнению с их мощностью, просты в изготовлении и, что важно, способны достигать значительных значений мощности порядка нескольких МВА. Их принцип работы прост: трансформатор в семействе в линии используется для добавления или вычитания правильного напряжения, так что выходное напряжение остается постоянным при изменении напряжения сети.Это достигается путем пилотирования трансформатора семейства с сервоуправляемым варистором напряжения (Variag), так что он подает точное напряжение, которое нужно добавить или вычесть для поддержания постоянного выходного сигнала. В 1999 году компания VARAT s.r.l. , производящая электромеханические регуляторы с 1983 года (см. Фото), представила регулятор, сочетающий в себе все преимущества как «электромеханических», так и «электронных» регуляторов, и назвала его « Digistab ».

Регулятор насыщенного железа
Сделано RA.РО (1957)

Исходя из того же принципа, что и электромеханический регулятор, компания разработала и запатентовала машину с системой регулирования напряжения со статическими элементами, которые не работают с сетевым током, а только с процентом, необходимым для поддержания желаемого выходного напряжения. . Очень простая система, которая устраняет все механические движущиеся части, обеспечивая высокие пики тока, высокую скорость сброса и почти полностью бесшумную работу.
Одним из преимуществ статического стабилизатора напряжения является то, что высокая скорость сброса остается постоянной как для малых, так и для мощных машин, чего не могут сделать электромеханические системы, поскольку они должны снижать скорость своего вращения по мере увеличения механических масс.

Предел мощности не является узким, как в «электронных» стабилизаторах напряжения, поскольку коммутирующие элементы не влияют на ток в линии, и поэтому можно легко достичь мощности порядка нескольких МВА.Система механического регулирования, используемая «электромеханическими» регуляторами, если подвергается значительной нагрузке, как это происходит, например, когда питание или нагрузка сильно меняются, неизбежно недолговечна. Статическая система не подвержена износу, и при постоянных колебаниях подачи электричества или нагрузки она всегда работает безупречно, с одинаковой скоростью и без напряжения. VARAT s.r.l., сочетая хорошо зарекомендовавший себя принцип с электроникой высокого уровня, заложил основы действительно инновационной эволюции в создании нового поколения регуляторов напряжения и электронных стабилизаторов напряжения .Как показано на рисунке А, время отклика этих машин высокое и почти линейное, поскольку наименьший шаг составляет порядка 1%. Электромеханические регуляторы, ошибочно считающиеся линейными, на самом деле являются ступенчатыми, поскольку варистор напряжения имеет изменение с шагом примерно 1 В из-за своей конструкции. Выход статического регулятора напряжения под названием « Digistab » или « Megadigistab » очень высок, в отличие от электромеханических регуляторов, в которых элементы сопротивления (съемные щетки) увеличивают свои потери пропорционально квадрату подаваемого тока. (Pp = Rx12) переключающие элементы линейно увеличивают свои потери (Pp = Vtxl).Трансформаторы семейства, которые мы производим, имеют очень высокий выход и качество, которое отличает все продукты VARAT . Стабилизированный выход не имеет искажений и не зависит от коэффициента мощности нагрузки, и поддерживает перегрузки до 5-кратного номинального тока (5xln). Эти устройства не имеют дефекта, обнаруженного в электромеханических регуляторах, в которых выходное напряжение слишком высокое, когда устройство, которое не работает при низких напряжениях сети, снова включается, когда напряжение сети является номинальным или выше.Когда включается стабилизатор « Digistab », он представляет то же напряжение на выходе, что и на входе, проверяет правильность значения выходного напряжения и, если оно не находится в пределах правильных параметров, приводит его к точному значению в доли секунды. Электроника управления и контроля имеет простую и удобную конструкцию, а управление и мониторинг системы стабилизации управляется микропроцессором с программным обеспечением очень высокого уровня, которое анализирует как состояние, так и чистоту напряжения, отличая истинные отклонения от аномальных пиков. .Он автоматически и постоянно контролирует частоту, 50 или 60 Гц, и, как и в случаях с испытательной комнатой, если частота меняется с одной на другую, он мгновенно обнаруживает изменение и адаптирует свой цикл к новому значению. Фильтры ЭМС устанавливаются в семействе как на входе, так и на выходе, чтобы защитить устройство от любых помех со стороны источника питания и нагрузки. Трехфазные регуляторы постоянно независимо контролируют три фазы и поэтому должны иметь нейтральный вход; если нейтральный вход отсутствует, внутренне генерируется стабильная нейтраль.Если сетевой нейтраль отсутствует, но это необходимо для нагрузки, питающей однофазные нагрузки, может быть поставлена ​​выходная нейтраль, подходящая также для полной мощности. Мы можем с уверенностью утверждать, что эти регуляторы представляют лучшее, что рынок может предложить сейчас, в начале третьего тысячелетия. Их статичность и качество изготовления делают их чрезвычайно надежными и долговечными машинами, не требующими обслуживания даже в сложных условиях, бесшумными для офисных установок, технически продвинутыми и практически неограниченными с точки зрения мощности и рабочего напряжения.

Семейство регуляторов VSG / 3000, называемое Boardstab, - это регуляторы, специально разработанные для установки на направляющих DIN внутри плат управления. Когда возникают проблемы, связанные с колебаниями напряжения в сети, выходящими за пределы обычных пределов, эти регуляторы являются лучшим доступным решением, имеют небольшие размеры и чрезвычайно просты в установке. Используемая передовая технология означает, что мы смогли создать небольшое, простое и функциональное устройство, безопасное и легкое в установке, с очень широким диапазоном регулирования.Регулирование является ступенчатым, то есть микроконтроллер, который управляет регулятором, подает команду на переключение на 5%, если есть изменения в сети, приводящие к выходному напряжению, которое превышает или не достигает заданного предела. Система управления VSG имеет обратную силу, то есть считывается входное напряжение, а не выходное напряжение, и это решение означает, что состояние выходного напряжения может постоянно проверяться в зависимости от изменений нагрузки и сети, а не просто сеть. При подаче питания Boardstab представляет одинаковое выходное и входное напряжения, и за доли секунды он считывает выходное значение и, если оно не находится в заданном процентном соотношении, выполняет правильное переключение, чтобы привести его к предварительно заданному значению.Этот регулятор был разработан для решения проблем, вызванных очень низкими напряжениями питания, такими как трудности с отключением счетчиков или подачей электронного оборудования за пределы нормальных процентов. 5% отклонение выходного напряжения, гарантированное "Boardstab", более чем достаточно, чтобы гарантировать правильное функционирование любого компонента или единицы оборудования.


Однофазный электромеханический регулятор VARAT

Семейство регуляторов VSG / 3100, называемое «Midistab», представляет собой экономичные устройства с высокой надежностью, особенно полезные в местах, где напряжение сети сильно отличается от номинального значения.Применяемая сложная технология означает, что мы смогли создать простое, но функциональное устройство с минимальным использованием компонентов и максимальным диапазоном регулирования. Регулирование является ступенчатым, то есть микроконтроллер, который управляет регулятором, подает команду на переключение на 5%, если есть изменения в сети, приводящие к выходному напряжению, которое на 5% выше или ниже установленного предела.


Статический регулятор
"ДИГИСТАБ"

Это переключение выполняется «интеллектуальным» способом; например, если есть «разрыв» в сети, микроконтроллер отмечает это и поддерживает текущий статус, действуя аналогичным образом, если есть положительный пик, который выше, чем пиковое значение.Систему управления VSG можно определить как полуреактивную, решение, которое позволяет постоянно контролировать состояние выходного напряжения, а переключение сброса происходит не только в зависимости от отклонения сетевого напряжения от номинального значения, но и как функция колебаний из-за нагрузки. При подаче питания Ministab показывает одинаковое выходное и входное напряжения, считывает выходное значение и, если оно не находится в заданном процентном соотношении, выполняет правильное переключение, чтобы довести его до предварительно заданного значения.

Электронные стабилизаторы напряжения, производимые и распространяемые «Варат», предлагают как высокую производительность, так и безопасную надежность - характеристики, которые можно найти во всей продукции компании. Действительно, трехфазные и однофазные стабилизаторы - это продукты, которые сделали компанию лидером на рынке устройств для электротехнической промышленности. Фактически, выбор электрического стабилизатора Varat означает максимальное использование многочисленных преимуществ, предлагаемых с точки зрения эффективности и экономии затрат, что позволяет достичь двойной цели - повышения производительности установки и снижения затрат.


Стабилизированный источник питания 0-30 В постоянного тока с контролем тока 0,002-3 A

Авторские права на эту схему принадлежат smart kit electronics . На этой странице мы будем использовать эту схему для обсуждения улучшений и внесем некоторые изменения на основе исходной схемы.

Общее описание

Это высококачественный источник питания с плавно регулируемым стабилизированным выходом, регулируемым в пределах от 0 до 30 В постоянного тока.Схема также включает электронный ограничитель выходного тока, который эффективно регулирует выходной ток от нескольких миллиампер (2 мА) до максимального выходного сигнала в три ампера, который может выдать схема. Эта функция делает этот источник питания незаменимым в лаборатории экспериментаторов, поскольку можно ограничить ток до типичного максимума, который может потребоваться для тестируемой цепи, и затем включить его, не опасаясь, что он может быть поврежден, если что-то пойдет не так. Также имеется визуальная индикация того, что ограничитель тока работает, так что вы можете сразу увидеть, выходит ли ваша схема за установленные пределы или нет.

Технические характеристики

  • Входное напряжение: ……………. 24 В переменного тока
  • Входной ток: ……………. 3 А (макс)
  • Выходное напряжение: …………. 0-30 В регулируемый
  • Выходной ток: …………. 2 мА-3 А регулируемый
  • Пульсация выходного напряжения:…. 0,01% максимум

Характеристики

  • Уменьшенные размеры, простая конструкция, простое управление.
  • Выходное напряжение легко регулируется.
  • Ограничение выходного тока с визуальной индикацией.
  • Полная защита поставляемого устройства от перегрузок и неисправностей.

Как это работает

Для начала имеется понижающий сетевой трансформатор с вторичной обмоткой на 24 В / 3 А, который подключается через входные точки схемы к контактам 1 и 2. (качество выходного напряжения питания будет равным. прямо пропорционально качеству трансформатора). Переменное напряжение вторичной обмотки трансформатора выпрямляется мостом, образованным четырьмя диодами D1-D4.Напряжение постоянного тока на выходе моста сглаживается фильтром, образованным накопительным конденсатором C1 и резистором R1. Схема имеет некоторые уникальные особенности, которые сильно отличают ее от других источников питания этого класса. Вместо того чтобы использовать переменное устройство обратной связи для контроля выходного напряжения, наша схема использует усилитель постоянного усиления, чтобы обеспечить опорное напряжение, необходимое для ее функционирования стабильного. Опорное напряжение генерируется на выходе U1.

Схема работает следующим образом: Диод D8 представляет собой стабилитрон 5,6 В, который здесь работает при токе с нулевым температурным коэффициентом. Напряжение на выходе U1 постепенно увеличивается, пока не загорится диод D8. Когда это происходит, стабилизирует цепь и опорное напряжение стабилитрона (5.6 V) появляется через резистор R5. Ток, протекающий через неинвертирующий вход операционного усилителя, незначителен, поэтому один и тот же ток течет через R5 и R6, а поскольку два резистора имеют одинаковое значение, напряжение на двух из них, подключенных последовательно, будет ровно в два раза выше напряжение на каждом.Таким образом, настоящее напряжение на выходе операционного усилителя (вывод 6 из U1) составляет 11,2 В, в два раза стабилитроны опорного напряжения. Интегральная схема U2 имеет постоянный коэффициент усиления приблизительно 3 X, в соответствии с формулой А = (R11 + R12) / R11, и повышает опорное напряжение 11,2 В до приблизительно 33 В. триммера RV1 и резистора R10, которые используются для регулировка пределов выходного напряжения таким образом, чтобы его можно было снизить до 0 В, несмотря на любые отклонения значений других компонентов схемы.

Еще одна очень важная особенность схемы - это возможность предварительно установить максимальный выходной ток, который может быть получен из p.s.u., эффективно преобразовывая его из источника постоянного напряжения в источник постоянного тока. Чтобы сделать это возможным, схема определяет падение напряжения на резисторе (R7), который включен последовательно с нагрузкой. За эту функцию схемы отвечает микросхема U3. Инвертирующий вход U3 смещен на 0 В через R21. В то же время неинвертирующий вход той же ИС может быть настроен на любое напряжение с помощью P2.

Предположим, что для данного выхода в несколько вольт P2 установлен так, что вход IC поддерживается на уровне 1 В. Если нагрузка увеличивается, выходное напряжение будет поддерживаться постоянным с помощью секции усилителя напряжения схемы и наличие R7, включенного последовательно с выходом, будет иметь незначительный эффект из-за его низкого значения и из-за его расположения вне контура обратной связи цепи управления напряжением. Пока нагрузка остается постоянной, а выходное напряжение не изменяется, схема стабильна.Если нагрузка увеличивается так, что падение напряжения на R7 превышает 1 В, IC3 принудительно срабатывает, и схема переводится в режим постоянного тока. Выход U3 соединен с неинвертирующим входом U2 через D9. U2 отвечает за управление напряжением, и поскольку U3 подключен к его входу, последний может эффективно отменять его функцию. Что происходит, так это то, что напряжение на R7 контролируется, и ему не разрешается повышаться выше заданного значения (1 В в нашем примере) за счет уменьшения выходного напряжения схемы.

Фактически, это средство поддержания постоянного выходного тока, и оно настолько точное, что можно предварительно установить предел тока до 2 мА. Конденсатор C8 предназначен для повышения стабильности цепи. Q3 используется для включения светодиода всякий раз, когда срабатывает ограничитель тока, чтобы обеспечить визуальную индикацию работы ограничителей. Чтобы U2 мог контролировать выходное напряжение до 0 В, необходимо обеспечить отрицательную шину питания, и это делается с помощью цепи вокруг C2 и C3.Такое же отрицательное питание также используется для U3. Поскольку U1 работает в фиксированных условиях, он может питаться от нерегулируемой положительной шины питания и земли.

Отрицательная шина питания создается простой схемой накачки напряжения, которая стабилизируется с помощью R3 и D7. Чтобы избежать неконтролируемых ситуаций при отключении, вокруг Q1 построена схема защиты. Как только отрицательная шина питания выходит из строя, Q1 полностью отключает питание выходного каскада. Это фактически приводит к нулевому выходному напряжению, как только отключается переменный ток, защищающий цепь и устройства, подключенные к ее выходу.Во время нормальной работы Q1 удерживается выключенным с помощью R14, но когда отрицательная шина питания разрушается, транзистор включается и устанавливает низкий уровень на выходе U2. ИС имеет внутреннюю защиту и не может быть повреждена из-за этого эффективного короткого замыкания ее выхода. Это большое преимущество в экспериментальной работе - возможность отключить выходную мощность источника питания, не дожидаясь разрядки конденсаторов, а также есть дополнительная защита, потому что выходная мощность многих стабилизированных источников питания имеет тенденцию мгновенно повышаться при выключении. с плачевными результатами.

Строительство

Прежде всего, давайте рассмотрим несколько основ построения электронных схем на печатной плате. Плата изготовлена ​​из тонкого изоляционного материала, покрытого тонким слоем проводящей меди, форма которой позволяет формировать необходимые проводники между различными компонентами схемы. Использование правильно спроектированной печатной платы очень желательно, так как это значительно ускоряет строительство и снижает вероятность ошибок.Чтобы защитить плату от окисления во время хранения и гарантировать, что она будет доставлена ​​вам в идеальном состоянии, медь лужится во время производства и покрывается специальным лаком, который защищает ее от окисления, а также облегчает пайку.

Припаивание компонентов к плате - единственный способ построить вашу схему, и от того, как вы это сделаете, во многом зависит ваш успех или неудача. Эта работа не очень сложная, и если вы будете придерживаться нескольких правил, у вас не должно возникнуть проблем. Паяльник, который вы используете, должен быть легким, а его мощность не должна превышать 25 Вт.Наконечник должен быть в хорошем состоянии и всегда оставаться чистым. Для этого пригодятся специально изготовленные губки, которые должны оставаться влажными, и время от времени вы можете протирать их горячим наконечником, чтобы удалить все остатки, которые имеют тенденцию к скоплению на нем.

НЕ подпиливайте грязный или изношенный наконечник наждачной бумагой. Если наконечник нельзя очистить, замените его. На рынке существует множество различных типов припоя, и вы должны выбрать припой хорошего качества, который содержит необходимый флюс в своей сердцевине, чтобы каждый раз обеспечивать идеальное соединение.
НЕ используйте флюс для пайки, кроме того, который уже включен в ваш припой. Слишком большой поток может вызвать множество проблем и является одной из основных причин неисправности цепи. Если, тем не менее, вам необходимо использовать дополнительный флюс, как в случае лужения медных проводов, тщательно очистите его после завершения работы.

Для правильной пайки компонента необходимо сделать следующее:

  • Очистите выводы компонентов с помощью небольшого кусочка наждачной бумаги.
  • Согните их на правильном расстоянии от корпуса компонентов и вставьте компонент на его место на плате.
  • Иногда вы можете встретить компоненты с более толстыми выводами, чем обычно, которые слишком толстые, чтобы войти в отверстия ПК. доска. В этом случае используйте мини-дрель, чтобы немного увеличить отверстия. Не делайте отверстия слишком большими, так как впоследствии это затруднит пайку.
  • Возьмите горячий утюг и поместите его наконечник на вывод компонента, удерживая конец припоя в том месте, где вывод выходит из платы.Наконечник утюга должен касаться провода немного выше компьютера. доска.
  • Когда припой начнет плавиться и растекаться, подождите, пока он равномерно покроет область вокруг отверстия, и флюс закипит и не выйдет из-под припоя.
  • Вся операция не должна занимать более 5 секунд. Снимите утюг и дайте припою остыть естественным образом, не дуя на него и не перемещая компонент. Если все было сделано правильно, поверхность стыка должна иметь блестящую металлическую отделку, а его края должны плавно заканчиваться на выводе компонента и направляющей платы.Если припой выглядит тусклым, потрескавшимся или имеет форму капли, значит, вы сделали сухое соединение, и вам следует удалить припой (с помощью насоса или фитиля) и переделать его. Следите за тем, чтобы не перегреть гусеницы, так как их очень легко снять с доски и сломать.
  • При пайке чувствительного компонента рекомендуется удерживать вывод со стороны компонента на плате с помощью пары плоскогубцев, чтобы отвести тепло, которое может повредить компонент.
  • Убедитесь, что вы не используете больше припоя, чем необходимо, поскольку существует риск короткого замыкания соседних дорожек на плате, особенно если они расположены очень близко друг к другу.
  • Когда вы закончите работу, отрежьте лишние выводы компонентов и тщательно очистите плату подходящим растворителем, чтобы удалить все остатки флюса, которые могут остаться на ней.

Строительство (… продолжение)

Так как рекомендуется начать работу с определения компонентов и разделения их на группы. Сначала установите гнезда для микросхем и контакты для внешних подключений и припаяйте их на свои места. Продолжаем с резисторами. Не забудьте насыпать R7 на определенном расстоянии от печатной платы, так как он имеет тенденцию сильно нагреваться, особенно когда по цепи подаются большие токи, и это может привести к повреждению платы.Также рекомендуется установить R1 на определенном расстоянии от поверхности печатной платы. Продолжайте с конденсаторами, соблюдая полярность электролита, и, наконец, припаяйте диоды и транзисторы, стараясь не перегреть их и в то же время очень осторожно, чтобы правильно их выровнять.

Установите силовой транзистор на радиатор. Для этого следуйте схеме и не забудьте использовать слюдяной изолятор между корпусом транзистора и радиатором, а также специальные фибровые шайбы для изоляции винтов от радиатора.Не забудьте поместить метку для пайки на один из винтов со стороны корпуса транзистора, она будет использоваться как вывод коллектора транзистора. Используйте небольшое количество теплопередающей смеси между транзистором и радиатором, чтобы обеспечить максимальную теплопередачу между ними, и затяните винты до упора.

Прикрепите кусок изолированного провода к каждому выводу, стараясь сделать очень хорошие соединения, так как ток, протекающий в этой части цепи, довольно велик, особенно между эмиттером и коллектором транзистора.
Удобно знать, где вы собираетесь разместить все внутри корпуса, в котором будет размещаться источник питания, чтобы рассчитать длину проводов, которые будут использоваться между платой и потенциометрами, силовым транзистором и для входные и выходные подключения к схеме. (На самом деле не имеет значения, длиннее ли провода, но это делает проект более аккуратным, если провода обрезаны точно до необходимой длины).
Подключите потенциометры, светодиод и силовой транзистор и подсоедините две пары выводов для входных и выходных соединений.Удостоверьтесь, что вы очень внимательно следите за схемой этих подключений, так как всего в цепи 15 внешних подключений, и, если вы сделаете ошибку, потом будет очень трудно найти их. Рекомендуется использовать кабели разных цветов, чтобы облегчить поиск неисправностей.

Внешние соединения:

  • 1 и 2 вход переменного тока, вторичная обмотка трансформатора.
  • 3 (+) и 4 (-) выход постоянного тока.
  • 5, 10 и 12 на P1.
  • 6, 11 и 13 на P2.
  • 7 (E), 8 (B), 9 (E) к силовому транзистору Q4.
  • Светодиод также следует разместить на передней панели корпуса, где он всегда виден, но контакты, к которым он подключен, не пронумерованы.

Когда все внешние соединения выполнены, очень внимательно осмотрите плату и очистите ее от остатков паяльного флюса. Убедитесь, что нет мостов, которые могут закоротить соседние дорожки, и, если все в порядке, соедините вход цепи с вторичной обмоткой подходящего сетевого трансформатора.Подключите вольтметр к выходу схемы и первичной обмотке трансформатора к сети.

НЕ ПРИКАСАЙТЕСЬ К ЧАСТИ ЦЕПИ, КОГДА ОНА НАХОДИТСЯ НА ПИТАНИИ.

Вольтметр должен измерять напряжение от 0 до 30 В постоянного тока в зависимости от настройки P1 и должен следить за любыми изменениями этой настройки, чтобы указать, что регулятор переменного напряжения работает правильно. При повороте P2 против часовой стрелки должен загореться светодиод, указывая на то, что ограничитель тока работает.

Данные

Регулировки

Если вы хотите, чтобы выход вашего источника питания регулировался в диапазоне от 0 до 30 В, вам следует отрегулировать RV1, чтобы убедиться, что при минимальном значении P1 выход источника питания равен точно 0 В. Поскольку невозможно измерить очень небольшие значения с помощью обычного панельного измерителя, лучше использовать цифровой измеритель для этой регулировки и установить его на очень низкую шкалу, чтобы увеличить его чувствительность.

Предупреждение

При использовании электрических деталей обращайтесь с источником питания и оборудованием с большой осторожностью, соблюдая стандарты безопасности, описанные в международных спецификациях и нормах.

ВНИМАНИЕ

Эта схема работает от сети, и в некоторых ее частях присутствует 220 В переменного тока.
Напряжение выше 50 В ОПАСНО и даже может быть СМЕРТЕЛЬНО.
Во избежание несчастных случаев, которые могут привести к летальному исходу для вас или членов вашей семьи, соблюдайте следующие правила:

  • НЕ работайте, если вы устали или торопитесь, дважды проверьте все, прежде чем подключать схему к электросети, и будьте готовы
  • , чтобы отключить его, если что-то не так.
  • НЕ прикасайтесь к какой-либо части цепи, когда она находится под напряжением.
  • НЕ оставляйте оголенными кабели питания. Все силовые провода должны быть хорошо изолированы.
  • ЗАПРЕЩАЕТСЯ заменять предохранители другими предохранителями с более высоким номиналом или заменять их проволокой или алюминиевой фольгой.
  • НЕ работайте мокрыми руками.
  • Если вы носите цепочку, ожерелье или что-нибудь еще, что может свисать, и касаетесь незащищенной части цепи, БУДЬТЕ ОСТОРОЖНЫ.
  • ВСЕГДА используйте подходящий сетевой шнур с подходящей вилкой и должным образом заземляйте цепь.
  • Если корпус вашего проекта металлический, убедитесь, что он правильно заземлен.
  • Если возможно, используйте сетевой трансформатор с соотношением сторон 1: 1, чтобы изолировать вашу цепь от сети.
  • При тестировании схемы, работающей от сети, наденьте обувь с резиновой подошвой, встаньте на сухой непроводящий пол и держите одну руку в кармане или за спиной.
  • Если вы примете все вышеперечисленные меры предосторожности, вы снизите риск до минимума и тем самым защитите себя и окружающих.
  • Тщательно построенное и хорошо изолированное устройство не представляет опасности для пользователя.

ОСТОРОЖНО: ЭЛЕКТРИЧЕСТВО МОЖЕТ УБИТЬ, ЕСЛИ ВЫ НЕ ОСТОРОЖНЫ

Если не работает

Проверьте свою работу на предмет возможных сухих стыков, перемычек на соседних дорожках или остатков паяльного флюса, которые обычно вызывают проблемы.
Еще раз проверьте все внешние подключения к цепи и от цепи, чтобы увидеть, нет ли там ошибки.

  • Убедитесь, что все компоненты отсутствуют или вставлены в неправильные места.
  • Убедитесь, что все поляризованные компоненты припаяны правильно. - Убедитесь, что источник питания имеет правильное напряжение и правильно подключен к вашей цепи.
  • Проверьте свой проект на наличие неисправных или поврежденных компонентов.

Список деталей

Деталь Значение Примечание
R1 2,2 кОм 1 Вт
R2 82 Ом 1/4 Вт
R3 220 Ом 1/4 Вт
R4 4.7 кОм 1/4 Вт
R5-R6-R13-R20-R21 10 кОм 1/4 Вт
R7 0,47 Ом 5 Вт
R8-R11 27 кОм 1/4 Вт
R9-R19 2,2 кОм 1/4 Вт
R10 270 кОм 1/4 Вт
R12-R18 56 кОм 1/4 Вт
R14 1.5 кОм 1/4 Вт
R15-R16 1 кОм 1/4 Вт
R17 33 Ом 1/4 Вт
R22 3,9 кОм 1/4 Вт
RV1 100 кОм триммер
P1-P2 10 кОм понтезиометр линейный
C1 3300 мкФ / 50 В электролитический
C2-C3 47 мкФ / 50 В электролитический
C4 100 нФ полиэстер
C5 200 нФ полиэстер
C6 100 пФ керамика
C7 10 мкФ / 50 В электролитический
C8 330пФ керамика
C9 100 пФ керамика
D1-D2-D3-D4 1N5402-3-4 2А диод - RAX GI837U
D5-D6 1N4148
D7-D8 5.6В Стабилитрон
D9-D10 1N4148
D11 1N4001 диод 1А
1 квартал BC548 NPN транзистор или BC547
2 квартал 2N2219 NPN транзистор
3 квартал BC557 PNP транзистор или BC327
4 квартал 2N3055 Транзистор силовой NPN
U1-U2-U3 TL081 операционный усилитель
D12 Светодиодный диод

Обратная связь

Вы можете опубликовать свой опыт и мысли о создании этого блока питания в этой теме.

Здесь находится еще одна реализация этого блока питания - на чешском языке


вот плата, сделанная Sam Carmel и хорошо проработанная


Блок питания от Daniel - вид спереди с ЖК-вольтметром
Потензиометры для грубой и точной регулировки напряжения и регулятор тока


Блок питания Даниэля - внутренний вид. В качестве источника питания вольтметра используется зарядное устройство для мобильного телефона.

Сборка блока питания Дэниела - вид изнутри.Он собирается заменить конденсатор 2200uF на 6800uF, чтобы уменьшить пульсации при высокой нагрузке.


Блок питания Даниэля - внутренний вид. новый конденсатор (6800 мкФ x 40 В) для улучшения фильтрации пульсаций


Блок питания Даниэля - внутренний вид. Модификация для защиты LM311

06/2012 получил следующее электронное письмо от Даниэля:
Сейчас у меня проблема только с одной из самых больших бед в электронике… Поддельные компоненты. Я использую поддельный 2N2219, и он длился 100 мс (или меньше) с первой попытки.Поскольку изделие было новым, я даже не подозревал об этом. Я потратил 2 часа на поиски проблемы, и я не мог поверить, когда проверял ее… У меня было еще два, которых я боюсь вместе, у них была такая же судьба… На мое счастье, у меня была коробка со старыми компонентами (некоторые датируются 70-ми годами) ) и там я нашел настоящую Motorola 2N2219… Он работает идеально. Это была единственная трудность, с которой я столкнулся…

Получил следующее письмо от Ивана 02/2010:
Ok. Я написал ваш проект около дня назад. Смонтировал все детали на печатной плате и затем пришел к выводу, что в этой схеме есть серьезные проблемы.Во-первых, 2N3055 перегреется, поэтому вам придется подключить два из них параллельно с эмиттерными резисторами 0,1 Ом / 5 Вт. Во-вторых, максимальное напряжение между «+» и «-» TL081 составляет 36 В постоянного тока. Если вы подключите их, как показано на этой принципиальной схеме, напряжение будет около 45 В постоянного тока, поэтому они немедленно сгорят. Чтобы решить эту проблему, вам необходимо повторно подключить все контакты номер 7 U1, U2 и U3, эмиттер Q3 и «верхний» конец R19 к выходу из 7809 с стабилитроном 18 В между «общим» контактом и «-» конденсатора 3300 мкФ. , а вход 7809 соединить с '+' той же крышки.Теперь на контакте 7 и упомянутых частях у вас будет 27 В постоянного тока, а общее напряжение будет 32,6 В постоянного тока. В-третьих, вместо 3300 мкФ используйте 4700 или 6800 мкФ / 63 В постоянного тока, чтобы уменьшить пульсации при более высоких токах (2-3 А). В остальном схема идеальна. Мне это нравится, потому что это так недорого и легко сделать с теми простыми реконструкциями, о которых я упоминал.

Банкноты

Общие сведения о том, как работает регулятор напряжения

Регулятор напряжения генерирует фиксированное выходное напряжение заданной величины, которое остается постоянным независимо от изменений его входного напряжения или условий нагрузки.Есть два типа регуляторов напряжения: линейные и импульсные.

В линейном регуляторе используется устройство активного (BJT или MOSFET) прохода (последовательное или шунтирующее), управляемое дифференциальным усилителем с высоким коэффициентом усиления. Он сравнивает выходное напряжение с точным эталонным напряжением и регулирует проходное устройство для поддержания постоянного выходного напряжения.

Импульсный стабилизатор преобразует входное постоянное напряжение в коммутируемое напряжение, подаваемое на силовой MOSFET или BJT переключатель. Отфильтрованное выходное напряжение переключателя мощности возвращается в схему, которая управляет временем включения и выключения переключателя питания, так что выходное напряжение остается постоянным независимо от изменений входного напряжения или тока нагрузки.

Каковы некоторые топологии импульсного регулятора?

Существует три распространенных топологии: понижающая (понижающая), повышающая (повышающая) и понижающая-повышающая (повышающая / понижающая). Другие топологии включают обратноходовые, SEPIC, Cuk, двухтактные, прямые, полномостовые и полумостовые топологии.

Как влияет на конструкцию регулятора частоты коммутации?

Более высокие частоты переключения означают, что регулятор напряжения может использовать меньшие индуктивности и конденсаторы. Это также означает более высокие коммутационные потери и больший шум в цепи.

Какие потери происходят с импульсным регулятором?

Потери происходят из-за мощности, необходимой для включения и выключения полевого МОП-транзистора, которые связаны с драйвером затвора полевого МОП-транзистора. Кроме того, потери мощности полевого МОП-транзистора возникают из-за того, что переключение из состояния проводимости в состояние непроводимости занимает конечное время. Потери также связаны с энергией, необходимой для заряда и разряда емкости затвора MOSFET между пороговым напряжением и напряжением затвора.

Каковы обычные области применения линейных и импульсных регуляторов?

Рассеиваемая мощность линейного регулятора прямо пропорциональна его выходному току для данного входного и выходного напряжения, поэтому типичный КПД может быть 50% или даже ниже.Используя оптимальные компоненты, импульсный регулятор может достичь КПД в диапазоне 90%. Однако выходной шум линейного регулятора намного ниже, чем импульсный стабилизатор с такими же требованиями к выходному напряжению и току. Обычно импульсный регулятор может управлять более высокими токовыми нагрузками, чем линейный регулятор.

Как импульсный регулятор управляет своим выходом?

Импульсным регуляторам требуется средство для изменения выходного напряжения в ответ на изменения входного и выходного напряжения.Один из подходов - использовать ШИМ, который управляет входом в соответствующий выключатель питания, который контролирует время его включения и выключения (рабочий цикл). Во время работы отфильтрованное выходное напряжение регулятора подается обратно на ШИМ-контроллер для управления рабочим циклом. Если отфильтрованный выходной сигнал имеет тенденцию к изменению, обратная связь, подаваемая на ШИМ-контроллер, изменяет рабочий цикл, чтобы поддерживать постоянное выходное напряжение.

Какие проектные характеристики важны для ИС регулятора напряжения?

Среди основных параметров - входное напряжение, выходное напряжение и выходной ток.В зависимости от приложения могут быть важны другие параметры, такие как пульсирующее напряжение на выходе, переходная характеристика нагрузки, выходной шум и КПД. Важными параметрами для линейного регулятора являются падение напряжения, PSRR (коэффициент отклонения источника питания) и выходной шум.

Рекомендации

Загрузить средства проектирования управления питанием

Инструмент для проектирования регуляторов напряжения ADIsimPower ™

Лучшее стабилизированное напряжение питания - отличные предложения на стабилизированное напряжение питания от мировых продавцов стабилизированного напряжения

Отличные новости !!! Вы находитесь в нужном месте для стабилизации напряжения.К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, так как это максимальное стабилизированное напряжение скоро станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что получили стабилизированное напряжение питания на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в стабилизированном напряжении и думаете о выборе аналогичного товара, AliExpress - отличное место для сравнения цен и продавцов. Мы поможем вам разобраться, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.И, если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово - просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны - и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, мы думаем, вы сможете приобрести power стабилизированное напряжение по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните лучший опыт покупок прямо здесь.

Лучшее стабилизированное напряжение питания - отличные предложения по стабилизированному напряжению от мировых продавцов стабилизированного напряжения

Отличные новости !!! Вы попали в нужное место для стабилизированного питания.К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку этот источник стабилизированного напряжения должен в кратчайшие сроки стать одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что получили стабилизированный источник питания на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в стабилизированном напряжении питания и думаете о выборе аналогичного товара, AliExpress - отличное место для сравнения цен и продавцов. Мы поможем вам разобраться, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.И, если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово - просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны - и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести стабилизированный источник питания по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните лучший опыт покупок прямо здесь.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *