Дроссели (ПРА) для люминесцентных ламп:устройство,принцип работы и ремонт
Что такое дроссель и для чего он нужен.
Люминесцентные лампы, которые являются представителями типа газоразрядных лам, невозможно зажечь как обычные лампы накаливания, просто подключив к ним напряжение питающей сети. Просто не произойдет ничего. Чтобы выполнить зажигание такой лампы необходима специальная схема или электронный пускорегулирующий аппарат.
В случае применения простейшей схемы для запуска тлеющего разряда в колбе газоразрядной лампы потребуется стартер и дроссель. Со стартером все понятно. Он требуется только для запуска, после чего он отключается. В работе всегда участвует дроссель. Его задача ограничивать ток, протекающий через лампы. Может показаться, что достаточно резистора. Он и меньшие размеры имеет. Теоретически, в цепи на переменном токе можно ограничивать ток резистором, конденсатором, катушкой индуктивности. Но в отличие от резистора, она обладает реактивным сопротивлением.
Благодаря реактивному сопротивлению и выполняется защита от лавинообразного нарастания тока.
Устройство дросселя (ПРА).
Внешний вид дросселя
На фотографии представлен дроссель для люминесцентных ламп дневного света. По большому счету он является катушкой индуктивности с металлическим сердечником в корпусе (кожухе) из листового металла. Более современные изготавливаются в термоустойчивом пластиковом корпусе, имеют более низкие массо-габаритные показатели. Это промышленное название (максимально близкий перевод — ограничитель). Его сопротивление по постоянному току порядка 60 Ом. При проверке мультиметром, в случае индикации бесконечного сопротивления – дроссель неисправен, в обрыве. Если сопротивление менее 55 Ом, это также означает неисправность дросселя. В этом случае он, скорее всего, имеет межвитковое замыкание.
Это случалось со старыми ПРА, когда начинает рассыпаться компаунд и происходит отслоение лака с проволоки. В простейшей схеме он выполняет функцию балласта.Дроссель в разрезе
Сердечник дросселя обычно изготавливается из трансформаторной стали, при этом пластины, входящие в его набор, электрически не контактируют между собой. Это сделано для уменьшения вихревых токов.
Принцип работы дросселя.
Основное, что делает дроссель – это производит сдвиг фазы переменного тока в момент перехода через ноль. За счет этого поддерживается тлеющий разряд в колбе газоразрядной лампы. Для ограничения тока, проходящего через электроды лампы выбран дроссель так как он имеет реактивное сопротивление. Кроме того, любая катушка индуктивности может накапливать энергию.
Для зажигания тлеющего разряда необходим импульс электрического тока, это тоже обеспечивается дросселем.
При подаче питания на схему происходит следующее:
- Ток идет по схеме через каушку, электроды лампы и стартер. Он сравнительно не велик, не более 50 мА.
- В колбе стартера происходит ионизация газа, температура растет.
- Биметаллические контакты замыкаются, сила тока возрастает до 600 мА. Дальнейший ток ограничивается дросселем
- Этого тока вполне достаточно для разогрева электродов лампы EL
- В лампе EL1 начинает протекать тлеющий разряд, образуется ультрафиолетовое излучение.
- Люминофорное покрытие под действием образовавшегося ультрафиолета начинает испускать свет с видимой длиной волны.
Важно помнить, что параметры лампы и дросселя коррелируют. Обычно самостоятельное изготовление дросселя лишено смысла. Сейчас на рынке очень много различной пуско-регулирующей аппаратуры. Дополнительно дроссель снижает помехи и сглаживает пульсации.
Классификация и разновидности дросселей.
В разных схемах дроссели могут выполнять разные функции. Допустим в схеме осветителя на люминесцентной лампе у него одни задачи, в электронике при помощи катушки можно, допустим, произвести развязку разночастотных электронных схем, или использовать в LC-фильтре. Это и определяет классификацию.
Вид дросселя зависит от его назначения в каждой конкретной схеме. Это могут быть фильтрующие, сглаживающие, сетевые, моторные, особого назначения. В любом случае, их объединяет общее свойство: высокое сопротивление по переменному току и низкое – по постоянному. Этим можно добиться снижения электромагнитных помех и наводок. В однофазных цепях катушку индуктивности можно применить в качестве ограничителя (предохранителя) от бросков напряжения. Функцию сглаживания дроссель выполняет в фильтрах выпрямителей. Обычно применяется LC-фильтр.
Схема подключения дросселя для люминесцентных ламп.
Схема подключения дросселя для люминесцентной лампы
Это простейшая схема для одного источника света. В случае использования двух ламп можно ограничится одним дросселем, но в этом случае, он должен выдерживать суммарную мощность двух ламп.
Схема подключения дросселя для двух люминесцентных ламп
В данной схеме конденсатор С1 желателен, но он не является обязательной частью схемы. Теоретически вместо стартеров можно поставить обычные кнопки без фиксации. После зажигания светильника эти кнопки необходимо отпустить.
Ремонт дросселя.
Неисправность дросселя можно установить с помощью замены стартера и/или люминесцентной лампы на заведомо исправные. Если в этом случае освещения нет, то причина в нем. Неисправность дросселя можно определить и при помощи мультиметра в режиме измерения сопротивления. Работоспособный электромагнитный дроссель имеет сопротивление около 60 Ом. Допустимое отклонение составляет около 10 процентов. Если сопротивление мало, то это указывает на межвитковое замыкание. Это случается на дросселе, который достаточно долго эксплуатируется. Причина заключается в отслоении лакокрасочной изоляции и замыкании витков. Бесконечное сопротивление указывает (либо вообще нет прозвонки) на обрыв, отсутствие контакта. Скорее всего он просто сгорел, так был скачок напряжения.
Помните что при работе с любыми электроприборами необходимо соблюдать технику безопасности!
Ремонт дросселя для люминесцентной лампы заключается в разборке: снятии кожуха при его присутствии, разборке пластин сердечника и перемотке катушки. Однако, это нецелесообразный процесс в следствие его трудоемкости и низкой цены нового. Его проще заменить на заведомо исправный. При замене необходимо соблюсти мощностные параметры.
Выводы.
Хоть схема и имеет полувековую историю, она до сих пор остается актуальной. ПРА необходим для работы люминесцентной лампы. Все компоненты производятся и стоят недорого. К достоинствам этой схемы можно отнести ее простоту и доступность компонентов. Обычно дроссель является самым долгоживущим компонентом схемы.
Из минусов отмечено, что при использовании классической схемы при включении освещения несколько секунд наблюдается мерцание. Это плохо отражается на сроке полезной эксплуатации самого источника света. Т.е. Лампа проработает меньше в такое схеме, чем при использовании электронного пускателя.
В плане экономической целесообразности, при частом включении и выключении света использовать такую элементную базу не выгодно, проще приобрести электронный пускатель, хоть его покупка и обойдется дороже, но это будут одномоментные затраты.
Содержание: Лампы газоразрядного типа уже давно используются в системах внутреннего и наружного освещения. Их конструкция обеспечивает стабильное и устойчивое свечение, а срок эксплуатации по сравнению со стандартными лампочками накаливания значительно выше. Вся работа этих устройств осуществляется с помощью специальной аппаратуры, в состав которой входит и стартер для люминесцентных ламп. Совместно с дросселем он принимает участие в запуске, защищает источник света от перенапряжения из-за высоких токов. Без стартера лампа не будет работать, поэтому нужно регулярно контролировать его состояние, осуществлять своевременный ремонт или замену. Функции стартера в лампах газоразрядного типаНезависимо от модификации ламп дневного света, основной функцией стартера является их запуск. Он входит в общую структуру пускорегулирующего устройства, питается от сетевого переменного тока с рабочей частотой 50 Гц. Активация осветительного прибора заключается в подаче на его контактные клеммы повышенного напряжения.
Снизу к подведены два электрода, которые и обеспечивают контакт с проводами лампы. Некоторые корпуса оборудуются смотровым окошком. По мнению специалистов, стартеры для люминесцентных ламп обладает повышенной чувствительностью и чаще чем другие компоненты выходит из строя. В таких случаях лампу становится невозможно запустить, и она не будет работать. В случае необходимости этот компонент легко заменить своими руками. Основными функциями стартера в системе ПРА являются следующие:
Следует помнить, что прямое включение лампы без стартера приводит к снижению срока службы и преждевременному выходу из строя. Эти компоненты бывают электромагнитными или электронными и выбираются в зависимости от конструкции источника света. Устройство стартераРазличные виды и модификации стартеров в целом имеют одни и те же конструктивные элементы. Они отличаются лишь параметрами, поскольку используются во многих типах ламп. Зная общее устройство стартера, можно легко проверить его работоспособность, выявить неисправности и принять решение о возможности дальнейшего использования. Итак, любое пусковое устройство состоит из следующих деталей и компонентов:
Надежная работа стартера обеспечивается биметаллическими электродами, нагрев которых связан с напряжением конкретной электрической сети. Если ток понизился до 80% от номинала, то стартер может не сработать и лампа не загорится. Современный электронный стартер для люминесцентной лампы, применяемый в ЭПРА, практически не подвержен перепадам напряжения и всегда находится в готовности к работе. Обратите внимание Поэтому они устанавливаются во всех современных светильниках, а старые пускатели постепенно заменяются приборами нового образца. При замене следует учесть, что каждой марке люминесцентной лампы требуется соответствующее ей пусковое устройство. Принцип действияДействие стартера неразрывно связано с работой всей люминесцентной лампы и происходит в следующем порядке:
Схема подключенияНезависимо от конструкции лампы, каждая схема подключения использует стартер. Обычно используются источники света на 36-40 Вт с соответствующим пусковым устройством. Порядок действий будет одинаковым для всех люминесцентных ламп:
Различия в подключении становятся заметными при использовании разного количества источников света, для которых используется отдельная схема. Их особенности проявляются в следующем:
Параметры и маркировкаВыбирая пусковое устройство, необходимо обратить особое внимание на его параметры и технические характеристики:
Все параметры отображаются в маркировке устройства. У отечественных приборов она выглядит следующим образом:
Таким образом, маркировка 60С-220, приведенная в качестве примера, указывает на устройство, которое является стартером для люминесцентной лампы мощностью 60 Вт, работающей от сети 220 В. Проверка технического состояния стартераВ случае каких-либо неисправностей осветительного прибора с лампами дневного света, очень часто требуется отдельно проверить работоспособность стартера. В общей конструкции он определяется как довольно простая деталь с небольшими размерами. Поломка пускателя приносит массу проблем, в первую очередь связанных с прекращением работы всей лампы. Частой причиной неисправности служит изношенная лампа тлеющего разряда или биметаллическая контактная пластина. Внешне это проявляется отказом при запуске или миганием во время работы. Устройство не запускается ни со второй попытки, ни с последующих, поскольку для пуска всей лампы недостаточно напряжения. Наиболее простым способом проверки является полная замена стартера другим устройством такого же типа. Если после этого лампа нормально включится и заработает, значит причина была именно в пускателе. В данной ситуации измерительные приборы не требуются, однако при отсутствии запасной детали придется создавать простейшую проверочную схему с последовательным соединением стартера и лампы накаливания. После этого через розетку подключить питание 220 В.
В большинстве случаев можно обойтись одной лишь заменой, и лампа вновь заработает. Однако, если стартер точно исправен, а светильник все равно не работает, необходимо последовательно проверять дроссель и другие компоненты схемы. |
для чего он нужен, схема подключения, принцип работы
СодержаниеПоказать
Все люминесцентные лампы имеют в конструкции элемент, ограничивающий силу тока — дроссель, или балласт. Он стабилизирует сеть от неконтролируемого нарастания показателей, исключая пульсации.
Внешний вид дросселя.
Классификация дросселей
В люминесцентных лампах применяются дроссели электронного или электромагнитного типа (ЭмПРА). Оба вида обладают своими особенностями.
Электромагнитный дроссель представляет собой катушку с металлическим сердечником и обмоткой из медного или алюминиевого провода. Диаметр провода влияет на функциональность светильника. Модель достаточно надежна, однако потери мощности до 50% ставят под сомнение ее эффективность.
Лампы с электромагнитными дросселями дешевые и не требуют специальной настройки перед использованием. Но они чувствительны к перепадам напряжения и даже незначительные колебания могут привести к мерцаниям или неприятному гудению.
Электромагнитные конструкции не синхронизируются с частотой сети. Это приводит к появлению вспышек непосредственно перед зажиганием лампы. Вспышки практически не мешают комфортно использовать светильник, однако негативно воздействуют на пускорегулирующий аппарат.
Разновидности электронных и электромагнитных устройств.
Несовершенство электромагнитных технологий и значительные потери мощности при их использовании приводят к тому, что на смену таким приборам приходят электронные пускорегулирующие аппараты.
Электронные дроссели конструктивно сложнее и включают в себя:
- Фильтр для устранения электромагнитных помех. Эффективно гасит все нежелательные колебания внешней среды и самой лампы.
- Устройство для изменения коэффициента мощности. Контролирует сдвиг переменного тока по фазе.
- Сглаживающий фильтр, снижающий уровень пульсаций переменного тока в системе.
- Инвертор. Преобразовывает постоянный ток в переменный.
- Балласт. Катушка индукции, которая подавляет нежелательные помехи и плавно регулирует яркость свечения.
Схема электронного стабилизатора.
Иногда в современных ЭПРА можно встретить встроенную защиту от перепадов напряжения.
Для чего он нужен
Любой дроссель выполняет функции последовательного резистора. Однако в отличие от обычного сопротивления он обеспечивает лучшую фильтрацию без пульсаций переменного тока или гудения электроприбора.
В современной технике используются две конфигурации питания: конденсаторная и дроссельная. В первом случае дроссель не обязателен для подачи напряжения, однако в качестве дополнительного фильтра ему нет равных.
Как подбирать электромагнитный дроссель
При выборе электромагнитного дросселя (балласта) обращайте внимание на мощность.
При выборе электромагнитного дросселя обращайте внимание на параметры:
- Рабочее напряжение. Для стандартных домашних сетей требуются устройства на 220 – 240 В с частотой 50 Гц.
- Мощность. Должна соответствовать мощности лампы. Если требуется подключить две или более лампы, мощность дросселя должна соответствовать сумме их мощностей.
- Ток. Допустимый показатель указывается в Амперах на корпусе.
- Коэффициент мощности. Желательно подбирать устройства с максимальными значениями параметра. Для ЭмПРА он обычно не превышает 0,5, так что потребуется дополнительный конденсатор.
- Рабочая температура. Диапазон температур окружающей среды и дросселя, при котором все элементы оставются исправными.
- Энергетическая эффективность. Определяется классом в соответствии с принятой градацией. Для ЭмПРА характерны средние классы B1 и B2.
- Параметры конденсатора. Рабочее напряжение и емкость конденсатора, который подключается параллельно к питающей сети.
Как происходит запуск и работа ламп
В момент включения осветительного прибора первым начинает работать стартер. Он нагревает электроды, вызывая короткое замыкание. Ток в цепи резко возрастает, за счет чего электроды практически мгновенно разогреваются до необходимой температуры. После этого контакты стартера размыкаются и остывают.
Визуальная схема запуска.
В момент разрыва цепи от трансформатора идет высоковольтный импульс 800 – 1000 В. Он обеспечивает нужный электрический заряд на контактах колбы в среде инертного газа и паров ртути.
Газ разогревается и возникает ультрафиолетовое излучение. Воздействуя на люминофор, излучение заставляет лампу светиться видимым белым светом. Затем ток равномерно распределяется между дросселем и лампой, поддерживая стабильные показатели сети для равномерного свечения без пульсаций. Расхода энергии со стороны пускорегулирующего аппарата на этом этапе нет.
Так как напряжение в цепи во время работы лампы невысокое, контакты стартера остаются разомкнутыми.
В некоторых случаях стартер не может с первого раза зажечь газ в колбе лампы и повторяет процедуру подачи тока около 5-6 раз. При этом наблюдается эффект моргания при включении.
Дроссель помогает избавиться от этого эффекта. Он превращает переменное низкочастотное напряжение бытовой сети в постоянное, а затем инвертирует его обратно в переменное, но уже на высокой частоте и пульсации исчезают.
Читайте также
Как переделать светильник дневного света в светодиодный
Схема подключения к лампе
Схема подключения проста: цепь с последовательно соединенным дросселем и лампой. Система подключается к сети 220 В на частоте 50 Гц. Дроссель выполняет функции корректировщика и стабилизатора напряжения.
Типовая схема представлена на рисунке.
Схема подключения к цепи.
Неполадки дросселя и их диагностика
Люминесцентные лампы иногда выходят из строя. Причины разные: от заводского брака до неправильной эксплуатации. В ряде случаев ремонт можно сделать своими силами и простыми инструментами.
Рекомендуем к просмотру: Ремонт электронного балласта люминесцентной лампы
Перед ремонтом необходимо точно идентифицировать узел поломки. Для этого лампу и всю сопутствующую аппаратуру придется разобрать.
Необходимые инструменты:
- набор отверток с полностью изолированными рукоятками;
- монтажный нож;
- кусачки;
- пассатижи;
- мультиметр;
- индикаторная отвертка;
- моток медного провода (сечением от 0,75 до 1,5 мм²).
Дополнительно может потребоваться новый стартер, исправная лампа или дроссель. Все зависит от того, какой именно узел вышел из строя.
Поиск причины неисправности устройства.
Читайте также
Как правильно проверить люминесцентную лампу
Наиболее распространенные проблемы:
- Лампа не включается и не реагирует на стартер. Причина может быть в любом из элементов, поэтому нужно поменять сначала стартер, затем лампу, попутно проверяя работоспособность схемы. Если не помогло, значит проблема в дросселе.
- Наличие в колбе небольшого разряда в виде змейки говорит о неконтролируемом возрастании тока. Причина неисправности точно в дросселе, который надо заменить. Иначе лампа быстро перегорит.
- Пульсации и мерцания во время работы. Замените последовательно сначала лампу, затем стартер. Чаще виновником оказывается дроссель, который перестает стабилизировать напряжение.
Обычно неисправность дросселя устраняется его заменой. Однако при желании можно разобрать элемент и попытаться восстановить работоспособность. Здесь нужны серьезные познания в электротехнике и много времени. Учитывая небольшую стоимость нового дросселя, это нецелесообразно.
Стартер для люминесцентных ламп – описание и принцип работы
Стартер для люминесцентных ламп является одним из основных элементов лампочек дневного света. Зачем он нужен? Замыкание и размыкание электрической цепи – вот основная его функция. Кроме него в состав лампы входит дроссель, являющийся одновременно трансформатором и стабилизатором. Он нужен для ограничения тока в светильнике и защищает оборудование от перегрева и скачков напряжения.
Принцип работы стартера
Стартер является малогабаритной газоразрядной лампой, работа которой основана на принципе тлеющего разряда. Устройство стартера представляет собой стеклянную колбу с двумя электродами, заполненную неоном или гелием. Для защиты колба помещена в корпус из металла или прочного пластика. Электроды изготавливаются из биметаллических пластин. У разных производителей их конструкция может отличаться.
Для сглаживания момента замыкания и размыкания контактов в цепи дополнительно устанавливают конденсатор. Одновременно он является дугогасительным устройством. Возникающая в момент включения дуга может привести к свариванию контактов. Это может стать причиной преждевременного выхода из строя и существенно снизить срок эксплуатации.
Зная, для чего нужен стартер, легко разобраться в принципе его работы.
В начальный момент электроды имеют разомкнутое состояние. При подключении к сети в устройстве возникает разряд, величина тока которого лежит в диапазоне от 20 до 50 мА. Он разогревает биметаллические электроды, вследствие нагрева происходит изгиб электродов стартера, после чего электрическая цепь замыкается. При перемещении электрического тока по замкнутой цепи происходит разогрев дросселя и катодов люминесцентной лампы.
При отсутствии тлеющего разряда электроды из биметалла остывают. Это ведет к их разгибанию, разрыву электрической цепи и возникновению импульса высокого напряжения. Под его воздействием дроссель зажигает лампу. С увеличением свечения лампы все напряжение сети приходится на нее, поскольку стартер подключен параллельно лампе, недостаток напряжения питания оставляет электроды в разомкнутом положении.
Виды стартеров:
- тепловые;
- тлеющего ряда (содержащие биметаллические электроды с упрощенной схемой) ;
- полупроводниковые.
Напряжение стартера необходимо выбирать выше, чем в лампах, и ниже напряжения сети.
Срок службы, ремонт и замена
Длительная эксплуатация стартера вызывает снижение напряжения внутри него, что приводит к износу. Это отражается на работоспособности, лампа начинает мигать, а затем и вовсе прекращает запускаться. Это связано с тем, что при долгом использовании лампы уменьшается тлеющий заряд. Если появились признаки неисправности в виде моргающей лампочки, необходимо заменить неисправный элемент с целью предотвращения выхода из строя всего оборудования.
Кроме моргания может произойти износ дросселя от перегрева контактов и поломка люминесцентной лампы. Чтобы часто не менять непригодные для работы устройства, нужно приобретать качественные стартеры, хорошо зарекомендовавшие себя на рынке светотехники. Установка стабилизаторов напряжения также дает положительный эффект для повышения срока службы ламп.
Замена стартера делается следующим образом:
- отключить лампу;
- снять плафон;
- выкрутить против часовой стрелки неисправную деталь;
- новый стартер вставить в паз и повернуть по часовой стрелке до упора.
Чтобы правильно подобрать стартер, необходимо знать:
- тип запуска лампочки;
- производителя;
- электрические характеристики.
Качественное оборудование выпускают фирмы Philips, Chilisin, Luxe, Osram. Дешевые модели стартеров быстро изнашиваются или приводят к такому действию, как разгерметизация колбы. В этом случае газы, которыми заполнена лампа, начинают испускать неприятный запах, все это еще и вредно для здоровья. Хороший производитель комплектует свою продукцию запасными частями и дает большой гарантийный срок, до 6 тысяч включений. В фирменных магазинах предлагают бесплатную замену. При обнаружении брака фирменные магазины бесплатно заменяют непригодную для работы деталь.
Фирма Philips считается лучшим производителем стартеров. Они изготовлены из высококачественных материалов. Например, для защиты от перегрева использован теплоустойчивый поликарбонат. Процент брака составляет 0,0001%. В моделях этой фирмы нет радиоактивных компонентов. Простой дизайн и обслуживание позволяют справиться с установкой и заменой оборудования даже неопытному человеку, нужно лишь следовать инструкции.
Пускатели этой фирмы производятся в Нидерландах. Модель S2 предназначена для низковольтных ламп с ограничением по мощности 4–22 Вт.
Более универсальной является модель S10. Ее можно применять для высоковольтных устройств без ограничения мощности.
Всем стандартам качества удовлетворяют стартеры отечественного производства фирмы Osram, имеющие огнестойкий корпус из макролона.
Прежде чем подбирать стартер того или иного производителя, необходимо обратить внимание на следующие характеристики:
- срок службы;
- температурный режим;
- тип конденсатора;
- номинальное напряжение.
Как выбрать подходящий стартер, зная рабочее напряжение? Маркировка отечественных приспособлений регламентирована ГОСТом. Первые две цифры указывают на мощность. Буква «С» – назначение устройства (стартер). Последние цифры определяют напряжение.
Пример: 90С-220. Расшифровывать данную надпись нужно следующим образом: стартер предназначен для ламп дневного света мощностью 90 ватт и рабочим напряжением 220 В.
Выбирая импортные пускатели, следует помнить, что они имеют другие стандарты маркировки. К примеру, обозначения S10, ST111 и FS-U указывают на то, что стартер можно применять в светильниках с мощностью, диапазон которой находится в пределах 4–80 Вт, напряжение сети должно составлять 220 В.
Освещение не включается: причины
Что делать, если не включается светильник:
- Напряжение питания меньше 200 В. Стартер не может работать при таких характеристиках.
- Износ стартера. Тлеющий разряд, дающий толчок для замыкания электродов, недостаточно велик в связи с амортизацией.
- Недостаточно времени для нагрева катодов.
Решить проблему можно, если сделать замену на другую лампу, имеющую больший период замыкания контактов.
Дроссель для ДРЛ — устройство и подключение лампы
Потребность общества в осветительных устройствах большой мощности свечения и одновременно экономичных в потреблении электроэнергии, а также долговечных в эксплуатации удовлетворяют производители ламп ДРЛ и других газоразрядных ламп. Их применяют для освещения большой территории, объектов хранения материалов, зданий заводов. Лампа ДРЛ может иметь разброс мощности от 50 до 2 000 ватт, а подключается к однофазной электрической сети с напряжением 220 вольт и частотой 50 герц.
Для чего нужен дроссель?
Дроссель для ДРЛ-ламп применяется для пуска, на рынке есть разные виды осветительных устройств, в которых он используется:
- Лампы люминесцентные и ультрафиолетового освещения.
Ультрафиолетовая лампа
- Разного вида дуговые ртутные осветительные приборы: ДРТ, ДРЛ, ДРИЗ, ДРШ, ДРИ.
Дуговые ртутные лампы
- Дуговые натриевые лампы: ДНаМТ, ДНаС, ДНаТ.
Дуговая натриевая лампа
Все осветительные устройства имеют отличия в принципе получения светового потока, есть и другие различия:
- в их устройстве применяются разные материалы;
- отличаются наличием химических элементов;
- внутри колб давление по собственным параметрам каждого осветительного устройства;
- они различны по мощности и яркости светового потока.
Объединяет эти виды ламп непостоянная величина пускового тока и сопротивления в процессе пуска и дальнейшей работы.
Для того чтобы ограничить величину рабочего тока, в осветительных устройствах этого вида применяют разного вида балласт: ЭПРА, ПРА и ЭмПРА, которые представляют собой катушки индуктивности (дроссели). В момент пуска каждое устройство этого типа имеет высокое значение сопротивления; когда осветительный прибор разжигается, происходит процесс электропробоя в среде инертного газа, которым наполнена лампа (ртутный или натриевый пар), и возникает дуговой разряд.
Схема подключения:
Розжиг лампы:
В процессе, когда происходит зажигание лампы, ионизированный газ теряет сопротивление от дугового разряда в несколько десятков раз, и по этой причине возрастает ток, идет выделение тепла. Если не ограничивать величину тока, он мгновенно создаст перегретую газовую среду, что приведет к поломке осветительного устройства, его повреждению изнутри. Для предотвращения этого в цепь прибора освещения включают сопротивление (дроссель).
Физические параметры и схема подключения дросселя
Последовательно включенный дроссель ДРЛ имеет реактивное сопротивление, величина которого зависит от катушки индуктивности: один генри пропускает один ампер тока, когда напряжение – один вольт.
ДроссельК параметрам катушки индуктивности относятся:
- квадрат используемой медной проволоки;
- количество витков;
- какой сердечник и величина поперечного сечения магнитопровода;
- какое электромагнитное насыщение.
Катушка индуктивности имеет активное сопротивление, которое всегда учитывается, когда проводится расчет балласта для каждого типа прибора освещения этого вида с учетом его мощности, от этого зависят габаритные размеры дросселя.
Рассмотрим простую схему включения балласта, когда в конструкции лампы ДРЛ предусмотрены электроды (дополнительные) для процесса возникновения тлеющего разряда, переходящего в электродугу.
Схема подключения лампы ДРЛВ этом случае индуктивность ограничивает величину рабочего тока в осветительном устройстве.
Балласт для люминесцентных ламп
Конструктивно люминесцентный прибор освещения для пуска использует дроссель ПРА, в новых видах этого осветительного устройства применяется ЭПРА, это электронный вид пускорегулирующего аппарата. Задачей этого устройства является сдерживание возрастающего значения тока на одном уровне, который поддерживает необходимое напряжение на электродах внутри осветительного прибора.
Рассмотрим, как работает балласт для люминесцентных светильников. Когда его подключают, в цепи между параметрами напряжения и тока происходит сдвиг фаз, отставание характеризуется коэффициентом мощности, cos φ. Когда рассчитывается активная нагрузка, эту величину надо учитывать, так как при маленьком значении этого параметра нагрузка растет, по этой причине в схему пуска включается и конденсатор, который выполняет компенсационную функцию.
Схема включенияСпециалисты по параметрам потери мощности различают несколько исполнений этих осветительных устройств:
- обычный вид исполнения, с литерой D;
- пониженный вид исполнения, с литерой B;
- низкий вид исполнения, с литерой C.
Применение балласта имеет свои положительные моменты:
- осветительное устройство работает в безопасном режиме, необходимо использовать и стартер для пуска;
- появляется способность сдерживать значение тока на установленном уровне;
- световой поток становится намного стабильнее, хотя полностью мерцание убрать нет возможности;
- стоимость такого исполнения светильника доступна для широкого потребления.
Существует способ подключения люминесцентного прибора освещения без использования балласта, но для этого необходимо в два раза повысить сетевое напряжение с выпрямленным током, а вместо балласта использовать лампу с нитью накаливания. Схема такого включения:
Подключение люминесцентного прибора без использования балластаКак самостоятельно сделать дроссель?
Благодаря своим параметрам дуговые приборы освещения мощностью 250 или 125 ватт применяются обществом для освещения следующих помещений:
- гаражные кооперативы;
- дачные участки;
- загородный дом.
Купить устройство освещения этого вида можно в магазине или на рынке, часто возникает проблема, как найти дроссель для ламп ДРЛ, стоимость дросселя может быть выше самой лампы из-за конструктивных особенностей и наличия медной проволоки.
Решить этот вопрос помогут народные идеи изготовления балласта для лампы ДРЛ 250 из других материалов: три дросселя для лампы дневного света при мощности лампы 40 ватт или же два дросселя от лампы дневного света мощностью в 80 ватт. В нашем случае для того чтобы зажечь лампу ДРЛ, используя самодельный балласт, сделанный своими руками, рекомендуется применить два дросселя мощностью 80 ватт и один балласт мощностью 40 ватт, соединение показано на фото.
Подключение лампы ДРЛ с самодельным балластомИз схемы видно, что все балласты образуют один дроссель, собрать пусковой балласт можно в общий ящик. Важно! Особенное внимание нужно уделить контактам на дросселях, они должны быть надежными, чтобы не нагревались и не искрились.
Как можно запустить ДРЛ-лампу без дросселя?
Существует возможность пуска дугового устройства освещения 250 ватт без балласта, но для этого необходимо применить другую технологию включения прибора. Специалисты рекомендуют вариант покупки специальной лампы ДРЛ 250, у которой есть способность включения без балласта (дросселя), когда в конструкцию лампы добавляется спираль, в задачу которой входит разбавлять световой поток.
Еще народными умельцами применяется способ пуска ламп этого вида с использованием набора конденсаторов, но в этом случае надо точно знать величину получаемого тока. Также применяют пуск ламп ДРЛ с использованием простой лампы, но только при условии, что она имеет одинаковую мощность с ДРЛ-лампой.
Как проверить дроссель — 5 причин неисправности балласта ламп дневного света. Проверка ПРА и ЭПРА отличия.
Лампы дневного света, несмотря на популяризацию светодиодного освещения, до сих пор остаются одним из распространенных видов осветительных приборов в домах, гаражах и производственных помещениях.
Когда такой светильник перестает гореть, первым делом грешат на саму лампочку или стартер. А если они не виноваты, как проверить другой не менее важный элемент – дроссель?
Для чего нужен дроссель
Во-первых, определимся, что же такое дроссель или как его еще называют балласт. По сути, это обыкновенная катушка индуктивности с ферромагнитным сердечником.
Вот так она выглядит в разрезе.
В схемах балласт нужен для трех функций:
- контроля тока, чтобы он не превышал номинала
- образование за счет индуктивности кратковременного импульса повышенного напряжения
- сглаживания возможных пульсаций в сети 220В
Подключается он последовательно, а параллельно ему монтируется стартер.
Стартер необходим для поджига лампы.
Как работает лампа дневного света
Напряжение, которое подводится к спиральным электродам на концах лампы, изначально недостаточно для ее розжига. И тут на помощь приходит дроссель и стартер.
После появления напряжения в стартере, внутри образуется разряд, который нагревает биметаллический электрод.
Из-за нагрева форма электрода меняется и происходит его замыкание.
В результате чего, резко возрастает ток и электроды раскаляются. Ток ограничивается только сопротивлением самого дросселя.
У стартера контакты постепенно остывают и размыкаются. При размыкании, благодаря дросселю, в лампе возникает эффект самоиндукции, с образованием высоковольтного импульса и электрического разряда напряжением до 1000В.
От этого разряда создается ультрафиолетовое свечение ртутных паров, которыми заполнена колба. Оно оказывает воздействие на люминофор, и только благодаря ему, мы и можем различать свет в привычном для нас спектре.
Если для кого-то это объяснение слишком заумно, то вот одно из самых простых и понятных видео, объясняющих на доступном всем языке, как же работает лампа ЛДС.
Получается, что сам процесс включения люминесцентной лампы дневного света довольно длителен и занимает 5 этапов:
- подача 220В из розетки и замыкание контактов стартера
- разогрев спиралей электродов
- размыкание контактов стартера
- подача высоковольтного импульса от дросселя
- образование тлеющего разряда в колбе и поддержка его внешним напряжением 220В + шунтирование стартера и исключение его из схемы
Как видно из процесса запуска, при неисправности ламп, виноватыми могут быть три элемента:
- сама лампочка
- стартер
- дроссель
При этом, чаще всего повреждаются лампочки и стартера – из-за перегоревших вольфрамовых нитей и конденсаторов.
Узнать об этом проще всего – заменив стартер или лампочку. Тем более, что стоят они копейки. А вот как быстро узнать о неисправности дросселя?
Как проверить дроссель ПРА без мультиметра
Без специальных измерительных приборов о неисправности ПРА может свидетельствовать эффект огненной змейки. Вы визуально сможете наблюдать ее внутри лампы.
О чем это говорит? А говорит это в первую очередь о том, что есть превышение максимально допустимого тока. Из-за чего заряд потерял стабильность.
Также может наблюдаться неустойчивое свечение или мерцание лампы. При поломке балласта, светильник не загорится с первого раза.
В результате, стартер будет постоянно запускаться и отключаться, запускаться и отключаться. От таких частых пусков, возле спиралей на концах лампы появляются почернения.
Еще один способ проверки без измерительных приборов и мультиметра – контрольная лампочка. Мощность ее должна быть примерно такой же, как и мощность самого дросселя.
Подключаете ее последовательно по следующей схеме с ПРА и смотрите как она светит.
- если не горит совсем – в балласте обрыв, дроссель неисправен
- горит ярко – в балласте межвитковое короткое замыкание
- моргает или светит в половину накала – дроссель исправен
Проверка балласта ПРА мультиметром
Но чтобы точно убедиться в повреждении дросселя, все таки лучше воспользоваться мультиметром и провести замеры.
Повреждение дросселя может быть пяти видов:
- замыкание разных обмоток
- замыкание витков в одной обмотке
- неисправность магнитопровода
- пробой на корпус
Какой-то из проводов, которым намотан дроссель может просто оборваться. Выявляется это легко.
Переводите мультиметр в режим измерения сопротивления и касаетесь щупами выводов дросселя. Если высвечиваются показания ”бесконечность” это и свидетельствует об обрыве.
При замерах только не касайтесь голых кончиков щупов руками. Иначе замерите сопротивление своего тела, а не дросселя.
Кстати, обрыв из всех видов поломок, выявить проще всего. Это можно сделать даже без мультиметра, с помощью обычной индикаторной отвертки.
Ничего выключать и разбирать не нужно, провода тоже не отсоединяются. Если индикатор светится во входной клемме ПРА:
а на выходе свечения нет:
то считайте что обрыв вы нашли.
Замыкание обмоток
Некоторые дросселя могут иметь не одну, а две обмотки. В нормальном режиме они должны быть изолированы между собой.
Но изоляция может высохнуть или нарушиться.
Чтобы узнать о замыкании, мультиметром проверьте выводы не одной, а разных обмоток. Если у вас высветятся непонятно малые цифры, то значит обмотки замкнуты.
Межвитковое замыкание
Если дроссель у вас постоянно грелся, то его лакированная изоляция проводов, могла высохнуть. И один или несколько близлежащих витков, просто спекутся между собой.
Найти такое повреждение очень трудно, даже при помощи мультиметра.
Нужно точно знать изначальные значения сопротивления обмотки, чтобы было с чем сравнивать. Если у вас замкнулись один или два витка, то разницу обычным тестером вы и не увидите.
Найти витковое замыкание можно при спекании достаточно большого количества проводников. Тогда разницу будет видно сразу.
Нормальный (не китайский дроссель), имеет примерно следующие сопротивления:
- мощностью на 20Вт — сопротивление от 55 до 60 Ом
- мощностью на 40Вт – сопротивление от 24 до 30 Ом
- мощностью на 80Вт – сопротивление от 15 до 20 Ом
Магнитопровод
Сердечник дросселя выполнен из ферромагнитных материалов. А они (ферриты), довольно капризны сами по себе.
При эксплуатации, на поверхности запросто могут образоваться трещинки или сколы. Если такое произошло, значит у дросселя изменятся параметры катушек индуктивности.
Еще в сердечниках из-за механических нагрузок могут измениться специальные зазоры.
Проверить индуктивность дросселя можно не всеми мультиметрами. Большинство к сожалению, такой функции лишены.
Однако опять же, чтобы понять проблему, вам нужно знать первоначальные значения данной индуктивности.
Пробой на корпус
О неисправности катушки может свидетельствовать ее нулевое сопротивление относительно корпуса. Здесь ничего сложного в проверке нет.
Один щуп мультиметра подносите к металлическим частям корпуса, а другим касаетесь к выводам катушки дросселя.
Проверять можно и в режиме прозвонки цепи. Если звукового сигнала не будет, значит пробоя нет.
Повреждение электронного дросселя
А если балласт у вас электронный, как проверить его? ЭПРА как сокращенно их называют, уже не похож на индуктивную катушку.
Все современные модели выпускаются с электронными дросселями без стартеров.
ЭПРА расшифровывается как — электронная пуско-регулирующая аппаратура.
У нее множество электронных компонентов напаяны на плату и помещены в один корпус.
Прозвонить мультиметром всего лишь два конца здесь уже не получится. Придется последовательно шаг за шагом проверять все элементы схемы.
Начинать лучше с предохранителя. Вызваниваете его целостность в режиме прозвонки.
Далее осматриваете конденсаторы. У тех, которые в виде бочонков, можно определить повреждение даже визуально, по вздутию нижней части.
Еще внимательно проглядите все места пайки. Какие-то ножки могут отвалиться и контакт пропадет.
Диоды и транзисторы также проверяются мультиметром, после переключения его в соответствующий режим измерения.
Данные сопротивлений берите из таблиц в интернете, согласно их расцветки.
И сравнивайте с теми фактическими замерами, которые у вас получились.
В общем, чтобы проверить и отремонтировать электронный дроссель, понадобятся минимальные навыки радиолюбителя.
Вот очень хорошее и подробное видео по проверке каждого элемента на плате ЭПРА, с заменой поврежденных деталей на исправные. Тем более, что повреждений здесь оказалось не одно, а несколько.
% PDF-1.5 % 1 0 obj > endobj 4 0 obj (Электрическое распределение.) endobj 5 0 obj > endobj 8 0 объект (Распределение мощности) endobj 9 0 объект > endobj 12 0 объект (Системы заземления в судовых электрических сетях.) endobj 13 0 объект > endobj 16 0 объект (Электрические неисправности) endobj 17 0 объект > endobj 20 0 объект (От замыканий на землю) endobj 21 0 объект > endobj 24 0 объект (Ошибка обрыва цепи) endobj 25 0 объект > endobj 28 0 объект (Значение замыканий на землю) endobj 29 0 объект > endobj 32 0 объект (Надежность электроэнергетической системы) endobj 33 0 объект > endobj 36 0 объект (Разделение системы распределения и обеспечение нескольких источников энергии) endobj 37 0 объект > endobj 40 0 объект (Системы аварийного электроснабжения) endobj 41 0 объект > endobj 44 0 объект (Разделение цепей) endobj 45 0 объект > endobj 48 0 объект (Избирательность) endobj 49 0 объект > endobj 52 0 объект (Избирательность по сверхтоку) endobj 53 0 объект > endobj 56 0 объект (Селективность запаздывания) endobj 57 0 объект > endobj 60 0 obj (Судовая электросистема.) endobj 61 0 объект > endobj 64 0 объект (Обзор) endobj 65 0 объект > endobj 68 0 объект (Генераторы) endobj 69 0 объект > endobj 72 0 объект (Электродвигатели) endobj 73 0 объект > endobj 76 0 объект (Пусковые устройства) endobj 77 0 объект > endobj 80 0 объект (Пускатели прямого включения) endobj 81 0 объект > endobj 84 0 объект (Пуск пониженного напряжения) endobj 85 0 объект > endobj 88 0 объект (Пуск первичного сопротивления) endobj 89 0 объект > endobj 92 0 объект (Пускатели автотрансформаторные) endobj 93 0 объект > endobj 96 0 объект (Стартеры звезда-треугольник) endobj 97 0 объект > endobj 100 0 объект (Стартер дросселя высокого напряжения) endobj 101 0 объект > endobj 104 0 объект (Электронные устройства плавного пуска) endobj 105 0 объект > endobj 108 0 объект (Вспомогательные электрические услуги.) endobj 109 0 объект > endobj 112 0 объект (Введение) endobj 113 0 объект > endobj 116 0 объект (Освещение) endobj 117 0 объект > endobj 120 0 объект (Лампы накаливания.) endobj 121 0 объект > endobj 124 0 объект (Газоразрядные лампы) endobj 125 0 объект > endobj 128 0 объект (Навигационные и сигнальные огни) endobj 129 0 объект > endobj 132 0 объект (Аварийное освещение) endobj 133 0 объект > endobj 136 0 объект (Катодная защита кораблей.) endobj 137 0 объект > endobj 140 0 объект (История.) endobj 141 0 объект > endobj 144 0 объект (Немного электрохимии) endobj 145 0 объект > endobj 148 0 объект (Что такое катодная защита.) endobj 149 0 объект > endobj 152 0 объект (Катодная защита на человеческом языке) endobj 153 0 объект > endobj 156 0 объект (Безопасность при высоком напряжении.) endobj 157 0 объект > endobj 160 0 объект (введение) endobj 161 0 объект > endobj 164 0 объект (Тренировка) endobj 165 0 объект > endobj 168 0 объект (Определения) endobj 169 0 объект > endobj 172 0 объект (Дополнительная земля) endobj 173 0 объект > endobj 176 0 объект (Утверждено) endobj 177 0 объект > endobj 180 0 объект (Уполномоченное лицо \ (AP \)) endobj 181 0 объект > endobj 184 0 объект (Предупреждение) endobj 185 0 объект > endobj 188 0 объект (Главный инженер) endobj 189 0 объект > endobj 192 0 объект (Основное заземление цепи \ (CME \)) endobj 193 0 объект > endobj 196 0 объект (Компетентный человек) endobj 197 0 объект > endobj 200 0 объект (Уведомление об опасности) endobj 201 0 объект > endobj 204 0 объект (Мертв) endobj 205 0 объект > endobj 208 0 объект (Заземленный) endobj 209 0 объект > endobj 212 0 объект (Высокое напряжение \ (HV \)) endobj 213 0 объект > endobj 216 0 объект (Аппарат высокого напряжения) endobj 217 0 объект > endobj 220 0 объект (Изолированный) endobj 221 0 объект > endobj 224 0 объект (Ключ сейф) endobj 225 0 объект > endobj 228 0 объект (Ограничение доступа \ (LoA \)) endobj 229 0 объект > endobj 232 0 объект (Прямой эфир) endobj 233 0 объект > endobj 236 0 объект (Разрешение на работу \ (PTW \)) endobj 237 0 объект > endobj 240 0 объект (Замок безопасности) endobj 241 0 объект > endobj 244 0 объект (Разрешение на тест \ (SFT \)) endobj 245 0 объект > endobj 248 0 объект (Назначенное лицо на берегу \ (DPA \)) endobj 249 0 объект > endobj 252 0 объект (Что считается высоковольтным на борту судна) endobj 253 0 объект > endobj 256 0 объект (Высоковольтное оборудование) endobj 257 0 объект > endobj 260 0 объект (Требования к изоляции ВН) endobj 261 0 объект > endobj 264 0 объект (Основные характеристики системы высокого напряжения по сравнению с системой низкого напряжения) endobj 265 0 объект > endobj 268 0 объект (Опасности при работе с высоковольтным оборудованием) endobj 269 0 объект > endobj 272 0 объект (Поражение электрическим током) endobj 273 0 объект > endobj 276 0 объект (Дуга) endobj 277 0 объект > endobj 280 0 объект (Arc Blast) endobj 281 0 объект > endobj 284 0 объект (Система разрешений на электрические работы) endobj 285 0 объект > endobj 288 0 объект (Дополнительные процедуры, которые должны быть выполнены для систем высокого напряжения) endobj 289 0 объект > endobj 292 0 объект (Тестовая система) endobj 293 0 объект > endobj 296 0 объект (Форма ограничения доступа) endobj 297 0 объект > endobj 300 0 объект (Заземление) endobj 301 0 объект > endobj 304 0 объект (Классификация и сертификация) endobj 305 0 объект > endobj 308 0 объект (классификация и сертификация оборудования) endobj 309 0 объект > endobj 312 0 объект (Механические стандарты) endobj 313 0 объект > endobj 316 0 объект (ISO) endobj 317 0 объект > endobj 320 0 объект (DIN) endobj 321 0 объект > endobj 324 0 объект (ANSI и ASME) endobj 325 0 объект > endobj 328 0 объект (Электрические стандарты) endobj 329 0 объект > endobj 332 0 объект (МЭК) endobj 333 0 объект > endobj 336 0 объект (IEEE 45) endobj 337 0 объект > endobj 340 0 объект (Другие международные электрические стандарты) endobj 341 0 объект > endobj 344 0 объект (Морские стандарты) endobj 345 0 объект > endobj 349 0 объектов> поток x ڍ QM0W (CF_ {Bod & ; C @_ ‘5H ^ Zib = o (B! 7 \ @ |? Y \ J Յ} h8h * FX3DOr1Nqz- + N ݡ b> -J] u {: ӁcMU-} gn% b $ & TО8NQll kQ9`V @ 0Q «qnn 䲏 ԭ> R! Pd1AB; hsojQqA ~> @ c ~ aZ ^ e | 1> XP конечный поток endobj 346 0 obj> endobj 347 0 объект >>> / Длина 28 >> поток q 79 0 0 41 0 0 см / lm1 Do Q конечный поток endobj 357 0 объект > endobj 358 0 объект > поток
Лампа накаливания | Типы лампочек
Какие они?
Лампа накаливания или лампа накаливания — это источник электрического света, работающий от накаливания, который представляет собой излучение света, вызванное нагреванием нити накала.Они выполнены в чрезвычайно широком диапазон размеров, мощности и напряжения.
Откуда они взялись?
Лампы накаливания являются оригинальной формой электрического освещения и используются уже более 100 лет. Хотя Томас Эдисон считается изобретателем лампы накаливания, существует ряд люди, которые изобрели компоненты и прототипы лампочки задолго до Эдисона.
Один из тех людей был британский физик Джозеф Уилсон Свон, который фактически получил первый патент на полную лампу накаливания. лампочка с углеродной нитью 1879 г.Дом Свон был первым в мире, который освещался лампочкой. Эдисон и Суон объединили свои компании и вместе они первыми разработали коммерчески жизнеспособную лампу.
Как они работают?
Лампа накаливания обычно состоит из стеклянного корпуса, содержащего вольфрамовую нить. Электрический ток проходит через нить накала, нагревая ее до температуры, при которой возникает свет.
Лампы накаливания обычно содержат стержень или стеклянную опору, прикрепленную к основанию лампы, что позволяет электрическим контактам проходить через колбу без утечек газа / воздуха.Небольшие провода, встроенные в стержень, поддерживают нить накала и / или ее выводные провода.
Стеклянный кожух содержит либо вакуум, либо инертный газ для сохранения и защиты нити от испарения.
Схема, показывающая основные части современной лампы накаливания.- Стеклянная колба
- Инертный газ
- Вольфрамовая нить
- Контактный провод (идет к ноге)
- Контактный провод (идет к базе)
- Опорные тросы
- Крепление для стекла / подставка
- Базовый контактный провод
- Резьба винтовая
- Изоляция
- Электрический ножной контакт
Где они используются?
Лампы накаливания не требуют внешнего регулирующего оборудования, имеют очень низкую стоимость производства и хорошо работают как на переменном, так и на постоянном токе.Они также совместимы с устройствами управления, такими как диммеры, таймеры и фотодатчики, и могут использоваться как в помещении, так и на открытом воздухе. В результате лампа накаливания широко используется как в домашнем, так и в коммерческом освещении, для портативного освещения, такого как настольные лампы, автомобильные фары и фонари, а также для декоративного и рекламного освещения.
Планируется, что к 2014 году производство многих ламп накаливания будет прекращено. Щелкните здесь, чтобы узнать больше о Законе об энергетической независимости и безопасности 2007 года и о том, как он может повлиять на вас.
Другие полезные ресурсы
Патент США 223898 «Всем, кого это может касаться: да будет известно, что я, Томас Алва Эдисон из Менло-Парка, штат Нью-Джерси, США. Америка изобрела усовершенствование электрических ламп и метод производство того же самого (Дело № 186), из которых Спецификация.Задачей изобретения является изготовление электрических ламп, дающих свет от накаливания, лампы должны иметь высокое сопротивление, чтобы практического подразделения электрического освещения ». Этот вводный абзац из патентной заявки Эдисона. официально представил свое изобретение лампочки правительству США и Мир. Заявка была подана 4 ноября 1879 г., а патент был быстро выдан 27 января 1880 г. An Интересный аспект приведенного выше рисунка — это свернутая в спираль нить, изображенная на цифры 1 и 3 («а» на чертеже).Не только патент Эдисона На рисунке показаны спиральные нити, но в заявке они неоднократно упоминались. Эта довольно маленькая деталь дает представление о темпах событий в Менло. Лаборатория парка. Лабораторные записные книжки Эдисона показывают, что для проведения значительных экспериментов место в октябре 1879 года с большим количеством нитевидных материалов. Как отметил Эдисон в патент: «Я карбонизировал и использовал хлопчатобумажные и льняные нити, деревянные шины, бумага, свернутая по-разному, а также ламповая сажа, свинец и углерод в различных формы, смешанные с дегтем и раскатанные в проволоку различной длины и диаметры.«Большинство этих материалов можно было свернуть в бухты перед выпечкой. добились определенного успеха с углеродом и зная, что другие изобретатели искали чтобы сделать лампу, Эдисон хотел быстро получить патентную защиту. Поэтому он поспешно подал Приложение основано на состоянии экспериментов в конце октября. Однако он отошел от этого экспериментального пути еще до того, как патент был предоставляется. В его демонстрационных лампах в конце декабря использовались нити бристоль-картона. вырезать в виде единой арки, в форме подковы.Бамбуковые нити, используемые в коммерческих лампы с 1880 по 1893 год также имели единую арку. Нити с плотным спираль не стала обычным явлением в коммерческих лампах, пока Ирвинг Ленгмюр не разработал газонаполненная вольфрамовая лампа в 1913 году. Изображение выше было улучшено в электронном виде. |
2018.11.14 | Светодиоды серии SunLike от Seoul Semiconductor, выбранные BuildingGreen в качестве «10 лучших продуктов» 2019 года в области устойчивого строительства | |
2018.11,19 | Светодиоды серии SunLike от Seoul Semiconductor выиграли награду за самые креативные светодиодные технологии в конкурсе OFweek China LED Lighting Awards 2018 | |
2018.11.26 | Светодиоды естественного спектра серии SunLike компании Seoul Semiconductor признаны мировой инновационной технологией | |
2019.02.12 | Светодиоды естественного спектра серии SunLike | Seoul Semiconductor, принятые Рофиандой Б.V. Светодиодное освещение для садоводства в |
2019.02.13 | Seoul Semiconductor поставляет светодиоды серии SunLike для голландской компании по освещению садоводства. | |
2019.02.15 | Светодиоды естественного спектра серии SunLike Seoul Semiconductor, принятые Rofianda B.V. для светодиодного освещения в садоводстве | |
2019.05.09 | Светодиоды естественного спектра серии SunLike компании Seoul Semiconductor, выбранные для освещения в парижском музее Гревен | |
2019.05.09 | Светодиоды естественного спектра серии SunLike Seoul Semiconductor, выбранные для освещения в парижском музее Гревен | |
2019.05.16 | Seoul Semiconductor Светодиоды естественного спектра серии SunLike способствуют визуальному комфорту человека, дневной бдительности, настроению и сну | |
2019.05,16 | Seoul Semiconductor Светодиоды естественного спектра серии SunLike способствуют визуальному комфорту человека, дневной бдительности, настроению и интенсивности сна , согласно недавнему научному исследованию | |
2019.05.27 | Светодиоды естественного спектра серии SunLike компании Seoul Semiconductor, которые, согласно недавнему исследованию, оказывают положительное влияние на здоровье человека | |
2019.05,27 | Светодиоды естественного спектра серии SunLike от Seoul Semiconductor, которые, как показало недавнее исследование, оказывают благотворное влияние на здоровье и благополучие человека | |
2019.05.29 | Светодиоды естественного спектра серии SunLike от Seoul Semiconductor получили награду German Innovation Award 2019 | |
2018.10.25 | 서울 반도체, 발 뮤다 신제품 에 `썬 라이크` 공급 | |
2018.11.01 | 태양 빛 에 가까운 ‘썬 라이크’ 사용… 눈 편하고 선명 해 공부할 때 피로 적어 | |
2019.02.12 | 서울 반도체, 원예 강국 네덜란드 에 LED ‘썬 라이크’ 공급 | |
2019.05.09 | 서울 반도체 자연광 LED 썬 라이크… 프랑스 밀랍 인형 박물관 `그레 뱅 파리 뮤지엄 에 탑재 | |
2019.05.16 | 서울 반도체 썬 라이크, 최근 과학 연구 결과 숙면, 주간 각성, 기분 및 시각적 편안함 에 효과적 | |
2019.11,12 | 尔 半导 杯 · OFweek 2018 最佳 LED 光源 技术 创新 奖 | |
2018.01.28 | 반도체 썬 라이크, LED 전문지 의 2017 년 톱 뉴스 에 선정 | |
2018.02.07 | [Live 중소기업] LED 시장 판 흔드는 서울 반도체 | |
2018.03.22 | 서울 반도체 썬 라이크 `올해 제품 상`… 獨 일렉트로닉 선정 | |
2018.04.11 | 서울 반도체 자연광 LED, 책상 에 쓰인다 | |
2018.07.12 | 태양 광 과 비슷한 LED 광원 ‘썬 라이크’ 전세계 서 조명 받다 | |
2018.07.12 | [경제 브리핑] 서울 반도체 LED 썬 라이크 숙면 돕고 눈 건강 에 효과 | |
2018.07.19 | 자연광 광원 ‘썬 라이크’ 美 수출 한다 | |
2018.10,19 | 태양 빛 닮은 LED 로 매출 1000 억 길 밝힌다 | |
2018.10.25 | 서울 반도체 ‘썬 라이크’, 일본 발 뮤다 ‘데스크 램프’ 에 적용 | |
2018.06.21 | Seoul Semiconductor захватывает рынок домашнего освещения с помощью инновационной светодиодной технологии SunLike | |
Seoul Semiconductor: светодиодные технологии SunLike — дом | ||
2018.07.12 | Seoul Semiconductor LED SunLike улучшает здоровье глаз и качество сна, согласно клиническому исследованию | |
Сеульские светодиоды SunLike снижают нагрузку на глаза и улучшают режим сна | ||
2018.06.19 | Seoul Semiconductor поставляет свой инновационный светодиод «SunLike» на рынок освещения США | |
2018.08,13 | Инновационные светодиоды SunLike компании Seoul Semiconductor получили признание отрасли в отчете IES о ходе работы за 2018 год | |
Инновационные светодиоды SunLike компании Seoul Semiconductor получили признание отрасли в отчете IES о ходе работы за 2018 год | ||
2018.06.21 | 半导体 创新 LED SunLike 技术 进入 家用 照明 市场 | |
2018.17.07 | 半导体 的 LED «SunLike» 产 产 显示 : 对 眼部 健康 和 具有 改善 效果 | |
半导 LED «SunLike» 结果 显示 健康 具 | ||
半导体 的 LED «SunLike» 产 产 显示 : 对 眼部 健康 和 具有 改善 效果 | ||
2018.07.25 | 半导 牌 产 900 60 | |
半导 牌 SunLike 900 | ||
半导 牌 产 900 60 | ||
半导 牌 SunLike 900 | ||
半导 牌 产 900 60 | ||
2018.08,13 | 半导体 创新 LED SunLike 入选 IES 2018 成果 | |
尔 半导体 创新 LED SunLike 入选 美国 照明 工程 协会 (IES) 2018 成果 | ||
尔 半导体 创新 LED SunLike 入选 美国 照明 工程 协会 (IES) 2018 成果 |
Лампочка Эдисона | Институт Франклина
Томас Альва Эдисон, родившийся в Огайо 11 февраля 1847 года, был одним из самых известных изобретателей всех времен.Он провел несколько первых лет в формальной школе, но большую часть своего образования он получил дома. Томас создал лабораторию в подвале дома своей семьи в Мичигане и большую часть времени проводил за экспериментами. Мать Эдисона, Нэнси, знала, что ее сын увлекается химией и электроникой, поэтому дала ему книги по этим предметам. В одной книге объяснялось, как проводить химические эксперименты дома; Томас сделал все, что написано в книге.
Биограф Эдисона однажды заметил: «Его мать достигла того, что все по-настоящему великие учителя делают для своих учеников, она привела его к стадии изучения вещей для себя, изучая то, что больше всего забавляло и интересовало его, и она поощряла его. идти по этому пути.Это было лучшее, что она могла сделать для этого необычного мальчика ».
Как выразился сам Эдисон:
« Моя мать создала меня. Она меня поняла; она позволила мне следовать за моими наклонностями ».
В 1859 году Великая Магистральная железная дорога была продлена до Порт-Гурона, штат Мичиган. Томас устроился газетчиком на однодневную поездку в Детройт и обратно. Во время часовой остановки в Детройте Эдисон попросил разрешения перенести свою лабораторию в багажный вагон поезда, чтобы он мог продолжить там свои эксперименты.Некоторое время это работало, пока поезд не накренился и не пролил несколько химикатов, что привело к пожару в лаборатории. Работая на железной дороге, Томас спас жизнь ребенка служащего станции, который упал на рельсы приближающегося поезда. В знак благодарности за спасение жизни своего ребенка отец научил Томаса пользоваться телеграфом.
Томас настолько хорошо научился пользоваться телеграфом, что получил работу телеграфистом, отправляющим сигналы между Соединенными Штатами и Канадой.Он начал экспериментировать с способами улучшения телеграфа, что привело к его изобретению автоматического телеграфа, дуплексного телеграфа и принтера сообщений. Примерно в это же время Томас посвятил свою жизнь постоянному изобретательству.
Томас Эдисон переехал в Нью-Йорк и основал небольшую лабораторию в Ньюарке, штат Нью-Джерси. Он продолжил свою работу над телеграфом, и его идеи также породили универсальный биржевой тикер. В 1875 году Эдисон хотел построить новую лабораторию в Менло-Парке, штат Нью-Джерси.Его отец Сэмюэл руководил строительством новой лаборатории; она открылась в 1876 году.
В период с 1878 по 1880 год Эдисон и его сотрудники работали по крайней мере над тремя тысячами различных теорий, чтобы разработать эффективную лампу накаливания. Лампы накаливания излучают свет, используя электричество для нагрева тонкой полоски материала (называемой нитью накала), пока она не станет достаточно горячей для свечения. Многие изобретатели пытались усовершенствовать лампы накаливания, чтобы «разделить» электрический свет или сделать его меньше и слабее, чем в существующих дуговых лампах, которые были слишком яркими для использования в небольших помещениях, таких как комнаты дома.
Лампа Эдисона будет состоять из нити накала, помещенной в стеклянную вакуумную колбу. У него был собственный сарай для выдувания стекла, в котором для его экспериментов были тщательно изготовлены хрупкие лампочки.