Статический заряд это: Что такое статический заряд. Статическое электричество и защита от него

Содержание

откуда берется статическое электричество и как от него избавиться – Москва 24, 14.09.2015

Иллюстрация: Полина Бреева

Статическое электричество – это явление, спровоцированное появлением или исчезновением избыточного напряжения на поверхности или внутри материалов, не проводящих электрический ток (стекла, пластика и других). Их называют диэлектриками, в их молекулярной структуре почти отсутствуют свободные электроны. Как появляется этот эффект и каким образом с ним можно бороться, объяснили наши друзья из Детского центра научных открытий «ИнноПарк».

Статическое электричество появляется из-за нарушения равновесия внутри атома или молекулы. На внешних орбиталях образуется избыточное количество электронов либо их, наоборот, становится недостаточно. Наиболее распространенная причина нарушения этого равновесия – трение. Даже самая гладкая, зеркальная поверхность имеет микровыступы, неровности, шероховатости. Трение есть всегда и в любых средах: твердой, жидкой и газообразной.

Резкий перепад температур также может стать причиной электризации. Происходит изменение скорости движения и, соответственно, количества столкновений или колебаний атомов внутри кристаллической решетки или молекулы. Как следствие – спонтанное отделение электронов, которые могут скапливаться, тем самым создавая статический заряд.

В быту мы часто сталкиваемся с этим эффектом. Когда мы ходим по ковру, мы являемся носителями отрицательного заряда, а ворсинки у нас под ногами – положительного. Как только мы после такой прогулки возьмем в руки ключи, накопленное напряжение мгновенно разрядится и нас слегка тряхнет.

Особенно настойчиво статическое электричество преследует нас в холодное время года. Зимой низкая влажность, а на человеке больше одежды. Сухость плюс много диэлектриков – плодотворная среда для электризации. На шерстяном свитере и синтетической кофте хорошо скапливаются заряды. Бояться нечего, небольшие разряды статического электричества не могут нанести вреда человеку.

Если вам все же неприятно, вот несколько практических рекомендаций:

Ссылки по теме

1проложите хлопковой тканью стопки бумаги, пластика или синтетики;

2распыляйте на ковры антистатик;

3смазывайте волосы специальными средствами и выбирайте фен со встроенным ионным излучателем;

4если у вас в квартире кондиционер, дополните его увлажнителем воздуха;

5брейте ноги, это серьезно уменьшает риск скопления заряда.

Если приемы не сработали, есть способ быстро избавиться от напряжения. Одной рукой коснитесь заземленной поверхности – трубы или радиатора отопления, а в другой сожмите металлический предмет – скажем, связку ключей.

Елена Стрижакова, Детский центр научных открытий «ИнноПарк»

О «Физике города»

Каждый день, просыпаясь утром, мы погружаемся в город, полный фактур, звуков и красок. Пока мы идем на работу и гуляем в парке, нам в голову приходит миллион вопросов о том, как же все вокруг нас устроено в этом огромном мегаполисе. Почему под нами дрожит земля, когда под нами проезжает поезд метро? И может ли в Москве произойти землетрясение? Какими видят нас люди из космоса?

Мы предложили коллегам из Детского центра научных открытий «ИнноПарк» дать ответы на наши вопросы и разъяснить, сколько велосипедистов нужно для освещения столицы, какие оптические иллюзии можно увидеть в городе и как начать экономить энергию, не выходя из дома. Так появился проект «Физика города». Новые вопросы и новые ответы ищите на нашем сайте по понедельникам и четвергам.

что это такое, польза и вред статического напряжения

Понятие о статическом электричестве знакомо всем из школьного курса физики. Статическое электричество возникает в процессе появления зарядов на проводниках, поверхностях различных предметов. Появляются они в результате трения, возникающего при соприкосновении предметов.

Что это такое — статическое электричество

Все вещества состоят из атомов. В атоме находится ядро, вокруг которого расположены в одинаковом количестве электроны и протоны. Они способны перемещаться из одного атома в другой. При движении формируются отрицательные и положительные ионы. Их дисбаланс приводит к тому, что возникает статика. Статический заряд протонов и электронов в атоме одинаков, но имеет разную полярность.

Статика появляется в быту. Статический разряд может происходить при низких токах, но высоких напряжениях. Опасности для людей в этом случае нет, но разряд опасен для электроприборов. Во время разряда страдают микропроцессоры, транзисторы и другие элементы схемы.

Причины возникновения статистического электричества

Возникает статика при следующих состояниях:

  • контакте или удалении друг от друга двух разных материалов;
  • резких перепадах температуры;
  • радиации, УФ-излучении, рентгеновских лучах;
  • работе бумагорезательной машины и раскроечных станков.

Статика часто возникает во время грозы или перед ней. Грозовые облака при движении по воздуху, насыщенному влагой, образуют статическое электричество. Разряд происходит между облаком и землей, между отдельными облаками. Устройство молниеотводов помогает провести заряд в землю. Грозовые облака создают электрический потенциал на металлических предметах, вызывающих легкие удары при прикосновении к ним. Для человека удар не опасен, но мощная искра способна вызвать возгорание некоторых предметов.

Каждый житель неоднократно слышал треск, который раздается при снятии одежды, удар от прикосновения к автомобилю. Это является следствием появления статики. Электроразряд чувствуется при нарезании бумаги, расчесывании волос, при переливании бензина. Свободные заряды сопровождают человека везде. Использование различных электрических устройств увеличивает их появление. Они возникают при пересыпании и измельчении твердых продуктов, перекачивании или переливании горючих жидкостей, при перевозке их в цистернах, при сматывании бумаги, тканей и пленки.

Заряд появляется в результате электрической индукции. На металлических корпусах автомобилей в сухое время года создаются большие электрические заряды. Экран телевизора или монитор компьютера способен заряжаться от воздействия луча, создаваемого в электронно-лучевой трубке.

Вред и польза от статистического электричества

Статический заряд пытались использовать многие ученые и изобретатели. Создавались громоздкие агрегаты, польза от которых была низкой. Полезным оказалось открытие учеными коронного разряда. Он широко используется в промышленности. С помощью электростатического заряда красят сложные поверхности, очищают газы от примесей. Все это хорошо, но существуют и многочисленные проблемы. Электроудары бывают большой мощности. Они способны иногда поражать человека. Это случается и дома, и на рабочем месте.

Вред статического электричества проявляется в ударах разной мощности при снятии синтетического свитера, при выходе из автомобиля, включении и выключении кухонного комбайна и пылесоса, ноутбука и микроволновой печи. Эти удары могут оказаться вредными.

Возникает статическое электричество, которое сказывается на работе сердечно-сосудистой и нервной систем. От него следует защищаться. Сам человек тоже часто является переносчиком зарядов. При соприкосновении с поверхностями электроприборов происходит их электризация. Если это контрольно-измерительный прибор, дело может окончиться его поломкой.

Ток разряда, принесенного человеком, своим теплом разрушает соединения, разрывает дорожки микросхем, уничтожает пленку полевых транзисторов. В результате схема приходит в негодность. Чаще всего это происходит не сразу, а на любом этапе в процессе работы инструмента.

На предприятиях, обрабатывающих бумагу, пластмассу, текстиль, материалы часто ведут себя неправильно. Они склеиваются друг с другом, прилипают к различным видам оборудования, отталкиваются, собирают много пыли на себя, наматываются неправильно на катушки или бобины. Виной этого является возникновение статического электричества. Два одинаковых по полярности заряда отталкиваются друг от друга. Иные, один из которых заряжен положительно, а другой — отрицательно, притягиваются. Так же ведут себя и заряженные материалы.

На полиграфических предприятиях и в других местах, где используются в работе легковоспламеняющиеся растворители, возможно возникновение пожара. Это происходит в тех случаях, когда на операторе надета обувь с токонепроводящей подошвой, а оборудование не имеет правильного заземления. Способность возгорания зависит от следующих факторов:

  • типа разряда;
  • мощности разряда;
  • источника статического разряда;
  • энергии;
  • наличия поблизости растворителей или других горючих жидкостей.

Разряды бывают искровыми, кистевыми, скользящими кистевыми. От человека исходит искровой разряд. Кистевой возникает на заостренных частях оборудования. Энергия его настолько мала, что он практически не вызывает угрозы пожара. Кистевой разряд скользящий возникает на листовых синтетических, а также на рулонных материалах с разными зарядами на каждой стороне полотна. Опасность он представляет такую же, как искровой разряд.

Поражающая способность — главный вопрос для специалистов по технике безопасности. Если человек держится за бобину и сам находится в зоне напряжения, его тело тоже зарядится. Для снятия заряда нужно обязательно прикоснуться к заземлению или к заземленному оборудованию. Только тогда заряд уйдет в землю. Но человек при этом получит сильный или слабый электрический удар. В результате происходят рефлекторные движения, которые иногда приводят к травме.

Длительное пребывание в заряженной зоне приводит к раздражительности человека, к снижению аппетита, ухудшению сна.

Пыль из производственного помещения удаляется с помощью вентиляции. Она скапливается в трубах и может воспламениться от статистического искрового разряда.

Как снять статическое электричество с человека

Самое простейшее средство защиты от него — заземление оборудования. В условиях производства используются для этой цели экраны и иные приспособления. В жидких веществах применяются специальные растворители и присадки. Активно используются антистатические растворы. Это вещества с низкой молекулярной массой. Молекулы в антистатике легко перемещаются и вступают в реакцию с влагой, содержащейся в воздухе. За счет этой характеристики с человека снимается статика.

Если обувь оператора на токонепроводящей подошве, он должен обязательно прикоснуться к заземлению. Тогда уход статического тока в землю нельзя будет остановить, но человек получит сильный или слабый удар. Действие статического тока мы чувствуем после ходьбы по коврам и паласам. Удары током получают водители, выходящие из машины. От этой проблемы избавиться легко: достаточно прикоснуться к двери рукой, сидя на месте. Заряд стечет в землю.

Хорошо помогает проведение ионизации. Делается это с помощью антистатической планки. Она имеет много иголок из специальных сплавов. Под действием тока в 4-7кВ воздух вокруг разлагается на ионы. Используются и воздушные ножи. Они представляют собой антистатическую планку, через которую вдувается воздух и очищает поверхность. Заряды статики активно образуются при разбрызгивании жидкостей, обладающих диэлектрическими свойствами. Поэтому для снижения действия электронов нельзя допускать падающей струи.

Желательно использовать антистатический линолеум на полу и чаще проводить уборку с помощью средств бытовой химии. На предприятиях, связанных с обработкой тканей или бумаги, проблему избавления от статики решают смачиванием материалов. Повышение влажности не дает накапливаться вредному электричеству.

Чтобы снять статику, необходимо:

  • увлажнять воздух в помещении;
  • обрабатывать ковры и паласы антистатиками;
  • протирать сиденья в машине и в комнатах антистатическими салфетками;
  • чаще увлажнять кожу на себе;
  • отказаться от синтетической одежды;
  • носить обувь на кожаной подошве;
  • предотвращать появление статики на белье после стирки.

Хорошо увлажняют атмосферу комнатные цветы, кипящий чайник, специальные приспособления. Антистатические составы продаются в магазинах бытовой химии. Они распыляются над ковровой поверхностью. Можно изготовить антистатик самостоятельно. Для этого берут смягчитель ткани (1 колпачок), выливают в бутылку. Затем емкость наполняется чистой водой, которую разбрызгивают над поверхностью ковра. Салфетки, смоченные антистатиком, нейтрализуют заряды на обивке сидений.

Увлажнение кожи производится лосьоном после душа. Руки протираются несколько раз в день. Следует поменять одежду на натуральную. Если она заряжается, обработать антистатиками. Рекомендуется носить обувь с кожаной подошвой или ходить по дому босиком. Перед стиркой желательно насыпать на одежду ¼ стакана соды (пищевой). Она снимает разряды электричества и смягчает ткань. При полоскании белья можно добавить в машину уксус (¼ стакана). Сушить белье лучше на свежем воздухе.

Все перечисленные меры помогают нейтрализовать статические проблемы.

возникновение и способы защиты, сколько вольт

С проявлениями статического электричества легко столкнуться в повседневной жизни: при быстром снятии свитера, хождении по ковру в шерстяных носках, при использовании автомобиля. Образуемый в быту заряд неприятен, но не опасен для человека, а промышленности же статика может привести в пожару или взрыву.

Что это такое

Со статическим электричеством знакомы все люди. Это совокупность явлений, которые связаны с возникновением, сохранением и свободного накопления электрического заряда. Последний возникает на поверхности диэлектрика, который плохо проводит ток, или на изолированным проводнике, не имеющим доступ к постоянному току.

В Быту со статическим электричеством сталкивались все

Появление статического электричества связано с отсутствием перемещения заряда. Свободно передвигающиеся по проводнику электрические заряды являются электрический током. Если же эти заряды останавливаются в одном месте, это называется статическим электричеством.

В любом веществе положительные и отрицательные частицы атомов находятся в равновесии, их количество равно. При этом отрицательно заряженные электроны могут перемещаться между атомами, формирую положительный или отрицательный заряд. Это способствует формированию статического нестабильного электрического поля.

Статика неприятна, но не опасна

Важно! О статическом электричестве, его возникновении и способах защиты сказано в ГОСТе 17.1.018-79.

Сколько вольт в статическом напряжении

Сила разряда и характеристика статического напряжения может быть разной. Человек может ощущать разряд свыше 3 тысяч Вольт, увидеть искры можно от 5 тысяч Вольт, накапливать в теле можно до 10 тысяч.

Иногда энергия заряда достигает 1,4 джоулей, чего достаточно для поджигания горючих газов и жидкостей, но это происходит только на производстве.

Как получить

В домашних условиях получить статическое электричество несложно:

  1. Необходимо надеть сухие чистые носки из шерсти (желательно предварительно нагреть их на батарее) и пройти по нейлоновому ковру, не отрывая ног. Сильно шаркать не стоит, так как разрядка произойдет быстрее, чем нужно. Для получения заряда необходимо прикоснуться к металлическому предмету или человеку;
Проще всего пошаркать ногами в носках по ковру

Важно! При проверке не стоит касаться электроники, так как заряд может повредить чипам — статистически эта причина почти 40% поломок .

  1. Необходимо взять воздушный шарик (не из фольги) и надуть его. Затем взять шерстяной предмет и потереть шарик 10 секунд. Также можно приложить шарик к голове и потереть о волосы. Для проверки нужно поднести шарик к пустой алюминиевой банке, лежащей на боку: если она начала откатываться, заряд скопился. Для разрядки нужно потереть шарик о металл несколько секунд;
  2. Для более наглядной демонстрации и проверки заряда можно сделать специальный электроскоп. Потребуется взять стакан из вспененного полистирола, проделать в нижней части 2 отверстия и продеть через них трубочку так, чтобы оба ее конца находились снаружи. К верхнему краю нужно прикрепить при помощи скотча 4 небольших глиняных шарика на равном расстоянии друг от друга, перевернуть стакан и поставить вверх дном в центр алюминиевого противня. Далее нужно взять кусочек алюминия и скатать из него шарик, отрезать нитку (ее длина должна быть в 2-3 раза больше, чем высота от края соломинки до противня) и привязать к ней шарик. Второй конец нужно привязать к обоим концам трубочки, поправить последнюю так, чтобы алюминиевый шарик свисал почти до противня, но не прикасался к нему. Если поднести к шарику заряженный шарик, шарик потянется за ним.
Еще один способ — потереть надутый шарик о волосы

Причины возникновения

На молекулярном уровне напряжение возникает при столкновении поверхностей из разных материалов, когда ионы и электроны с поверхностей начинают перераспределяться. Чем больше площади поверхностей и прилагаемые усилия, тем выше степень электризации.

Главная причина возникновения заряда — трение

Существует несколько причин возникновения и накапливания электростатического напряжения:

  1. Контакт (трение, наматывание, разматывание) 2 различных материалов с последующим отдалением: например, трение шерстяной ткани о резиновый шарик;
  2. Резкие перепады температур;
  3. Сухой воздух: при влажности более 80% статическое электричество не образуется, так как вода хорошо проводит ток;
  4. Наличие радиации, рентгеновских лучей или УФ-излучения;
  5. Образуется заряд и при работе некоторых бумажных станков: при раскрое или резке;
  6. Статика может возникнуть перед или во время грозы. Разряд возникает между 2 облаками или между облаком и землей, при попадании молнии в громоотвод электричество уходит в почву.
Наглядный пример статического напряжения — гроза

Область применения

Применять статическую электроэнергия в быту пока что не научились — слишком сложный и опасный процесс получения. Многие приборы, работающие на силе трения, применяются только для показа опытов.

Намного чаще статика применяется на производстве: при покраске поверхностей, очищении от пыли примесей, создании ворса и т.д.

Какая опасность статического напряжения

Главная опасность заключается в неконтролируемом ударе током. В быту это практически неопасно: например, при снятии шерстяного свитера человека ударит током, но сила этого заряда будет крайне мала.

При длительном нахождении в электрическом поле повышенной напряженности у человека могут начаться проблемы со здоровьем: головные боли, нарушение сна, раздражительность, нарушение работы сердечно-сосудистой и нервной систем.

Достаточно сильный разряд может привести к пожару

Намного выше опасность статического напряжения на производстве и при перевозке легковоспламеняемых веществ: при сильном разряде они могут взорваться или загореться. Например, в вентиляции и вытяжке может скопиться пыль из диэлектрического материала, который легко вспыхивает и разгорается из-за постоянной подачи воздуха. При перевозке электричество может скапливаться при перекачке или сливе жидкостей, даже за счет плескания при езде.

Важно! В домашних условиях полезно «заземляться», например, ходить босиком.

Меры безопасности

В бытовых условиях защититься от статики можно при помощи следующих мер:

  1. Увлажнять воздух и каждый день проветривать комнаты;
  2. Регулярно проводить влажную уборку, чтобы уменьшить количество пыли, и использовать специальные антистатические щетки;
Использование щетки позволяет снять скопившееся напряжение
  1. По возможности использовать мебель из материалов, снимающих статику: специальный линолеум, дерево;
  2. Не гладить животных при слишком сухом воздухе, расчесываться деревянными или металлическими щетками — пластик сильно электризуется;
  3. Использовать для одежды антистатические спреи, шерстяные вещи снимать медленно для уменьшения трения;
  4. На днище автомобиля необходимо наклеить антистатическую полосу для снижения образования статики.

На производстве снизить электростатическое напряжение можно, уменьшив скорость работы, используя специальные материалы и заземление. Также по ГОСТу энергия накопления заряда на поверхности предметов не должна превышать 40% от наименьшей энергии загорания.

На производстве должны быть приняты меры предосторожности

Статическое электричество многие считают неопасным, хоть и не особо приятным. Однако все зависит от силы заряда: в промышленности или при перевозке большого количества горючих жидкостей накопившийся разряд может быть очень сильным и привести к пожару.

Статическое электричество и способы борьбы с ним

С детства каждый из нас сталкивался с проявлениями статического электричества – когда гладил кошку или снимал шерстяной свитер, а затем прикасался к металлическому корпусу электроприборов. Данный эффект сопровождается тихим потрескиванием, а на кончиках пальцев ощущается весьма дискомфортное покалывание. Само по себе статическое электричество не является опасным, однако если природа его возникновения происходит от бытовой электросети, есть причины для волнения. Сегодня мы поговорим об этом явлении и изучим его с самых разных сторон.

Опасность от статического электричества исходит в том случае, если оно спровоцировано предварительным воздействием сетевого напряжения на корпус какого-либо прибора, который затем было отключён от сети. В этом случае мог накопиться большой заряд, способный серьёзно поразить человека током. Последствием этого могут стать ожоги или временное онемение конечностей, контактировавших с устройством. Порой в быту подобная опасность также может исходить от розеток из-за того, что при их обычной эксплуатации электроды вилки трутся о пластик и получают некоторый статический заряд, способный многократно усилиться за счёт окружающего электромагнитного поля.

Кроме того, статическое электричество может быть опасно не само по себе, а как фактор, провоцирующий возгорание. К примеру, маленькая искра, которая рождается от трения нескольких разнородных материалов, может перекинуться на соседние объекты. Пожары, причиной которых послужила электростатика, нередко происходят на складах зерна и различных ядохимикатов, а также топлива и любых алкогольсодержащих жидкостей. Все вещества, обладающие хорошей горючестью, а также мелкодисперсные порошки потенциально могут воспламениться от, казалось бы, совершенно безопасного статического электричества.

Среди иногда встречающихся негативных эффектов данного явления следует особо упомянуть электромагнитные помехи. Если статика проявляет себя возле приборов и устройств, имеющих чувствительные к радиоволнам компоненты, она способна сбить их настройки или даже вывести из строя конденсаторы. Из-за статического электричества могут возникать искажения сигнала при прослушивании радио или сбои в работе дистанционных пультов от телевизоров, подсветки из светодиодных лент, радиоуправляемых моделей или другого подобного оборудования.

 

   

 

 

Физика явления

Следует понимать, что типичные ситуации возникновения статического электричества обусловлены исключительно обстоятельствами, создающими предпосылки для возникновения разрядов. Подобные искры могут возникнуть абсолютно везде и в любой момент, если между предметами или веществами возникло трение. Заряд накапливается и на руке, если мы потрём ткань, и на автомобиле, когда он на скорости рассекает воздух, и на дверной ручке, которой постоянно касается одежда. В какой-то момент этот заряд снимается – и именно это явление сопровождается треском с искрой.

Чтобы понять природу электростатики, необходимо вспомнить, как устроен мир на молекулярном уровне. В основе всего лежит атом, которой состоит из трёх мельчайших частиц: электронов, заряженных отрицательно, протонов, заряженных положительно, и нейтронов, не имеющих заряда. В подавляющем большинстве тел и веществ первые и вторые количественно компенсируют друг друга, что в результате обеспечивает нейтральный заряд атомов. Если же несколько тел взаимодействуют между собой, то даже простое прикосновение или трение может придать электронам, имеющим очень малую массу, достаточно энергии, чтобы они перешли с одной поверхности на другую. Нетрудно понять, что в описанном случае у первого тела остаётся больше протонов, и оно приобретает выраженный положительный заряд, а второе тело, накопившее электроны, – отрицательный. Наметившийся дисбаланс системы начинает стремиться к восстановлению, а потому при повторном контакте свободные электроны пытаются «занять пустующие места» – оказаться там, где их не хватает. Именно момент перескока мы и наблюдаем в виде статического электричества.

К счастью, описанное явление случается не со всеми телами и не постоянно, иначе человек всё время бы получал разряды, взаимодействуя с объектами материального мира. Зачастую электроны, которые имеют слабую связь со своим атомным ядром присутствует в металлах – именно поэтому последние используются в качестве электрических проводников. Человечеству очень давно было известно это их свойство, потому провода и кабели с самого начала стали делать из меди и алюминия, полностью минуя этап подбора токопроводящих материалов. Отсюда логично заключить, что у диэлектриков, которые способны выполнять функцию изоляторов, электроны, наоборот, прочно связаны с ядрами и не могут свободно переходить на иные поверхности.

Природа устроила всё очень интересно: перераспределение зарядов чаще и проще происходит при взаимодействии проводника и диэлектрика, чем при контакте двух проводников, что на первый взгляд кажется нам более логичным. Если ребёнок бегает босыми ногами по шерстяному ковру, происходит трение и электроны из его тела перемещаются на волокна. Шерсть отлично сопротивляется отделению собственных электронов, но легко накапливает «чужие». Пока ребёнок на ковре, их совокупный заряд нейтрален, но стоит сойти с полотна, и в человеческом теле уже имеется выраженный недостаток электронов. Прикасаясь к металлической дверной ручке, которая всегда готова отдать часть своих электронов, ребёнок ощущает тот самый эффект покалывания и треск, которые сопровождают переход заряда. То есть, результатом описанных событий становится замещение переданных ковру электронов свободными электронами из металла ручки.

Фактически, тот же эффект, только гораздо масштабнее, лежит в основе образования молний. Облака в небе определённым образом взаимодействуют, что приводит к дисбалансу зарядов, а затем в один момент производят обратное перераспределение огромного количества электронов. Молния, которую мы видим, и есть тот самый обратный переход, сопровождаемый светом и звуком разряда – громом. Часть «лишнего» заряда поглощается землёй и постройками, а основное количество электронов занимают пустующие места в атомах доселе положительно заряженных облаков.

 

 

 

Как защититься от статического электричества?

В сущности, всё многообразие методов защиты от электростатики сводится к выбору из двух путей: либо необходимо создать условия для того, чтобы несвязанные электроны рассеивались сами по себе, не провоцируя переход со щелчком, либо предупредить само возникновение эффекта, не давая накопиться заряду. Самым простым способом избавиться от любых возможных электроударов статикой является банальное заземление электроприборов. Предполагается, что корпуса устройств, хоть и не находятся под напряжением непосредственно, могут постепенно накапливать заряд. Если мы обеспечим сток этого заряда в землю через отдельный кабель, то прикосновения к корпусу перестанут представлять угрозу для здоровья.

В бытовых приборах заземление обычно выполняется при помощи третьей жёлто-зелёной жилы в питающем шнуре. Она соединяется с соответствующим контактом в розетке и по проводу ведёт к заземляющему контуру на улице. В автомобилях и многих передвижных механизмах заземление ещё более очевидно: к кузову или корпусу крепится полоска из токопроводящего материала или цепочка, которая при езде касается асфальта и обеспечивает сток статического заряда в землю.

Ещё один широко известный способ избавиться от лишних электронов на предметах состоит в том, чтобы увеличить электропроводимость диэлектрических материалов. Сделав это, Вы получите возможность отводить излишний заряд на другие объекты, снижая суммарный потенциал. Нужный эффект достигается с применением различных спреев и аэрозолей, наносимых на предметы. Кроме того, на крупные приборы и устройства можно наклеивать специальные плёнки, собирающие заряд на себя. Принцип действия и у тех, и у других одинаков: просто во втором случае плёнка наклеивается сразу, а в первом она становится результатом высыхания состава на поверхности объекта.

Похожий эффект даёт и банальное увлажнение воздуха: если в доме высокая влажность, предметы мебели и другие поверхности приобретают тончайшую плёнку-налёт, которая обеспечивает повышенную электрическую проводимость. Ещё лучше ионизировать воздух в помещении: ионизатор сразу генерирует необходимое количество положительно и отрицательно заряженных частиц и выбрасывает их потоком при помощи вентилятора. Благодаря хорошему распространению, каждый ион быстро «находит своё место», притягиваясь к микрочастицам противоположной полярности и нейтрализуя заряд.

В промышленности, где любая искра может представлять серьёзную опасность, применяют другие подходы. К примеру, разрабатывают новые принципы осуществления производственного процесса, которые полностью исключают или минимизируют вероятность накопления заряда на поверхности станков и агрегатов, подготавливают микроклимат соответствующим образом, используют антистатические вещества при обработке оборудования и спецодежды персонала. За счёт того, что светильники и вспомогательные средства производства находятся вне зоны возможного касания человеком, снижается вероятность контакта между разнозаряженными телами и возникновения искры. На высокоопасных производствах сотрудники проходят через так называемую клетку Фарадея – это большой бокс, стенки которого сформированы из металлической сетки с маленькими ячейками. Конструкция перенимает на себя любой разряд и отводит его в землю по отдельному кабелю.

 

 

 

Интересные факты об электростатике

Специалисты различают три вида электростатического разряда. Рассмотрим их.

  1. Искровой разряд возникает между двумя условно равнозначными объектами, сравнимыми по величине – например, человеком и электроприбором. Искра может иметь почти любую мощность, а потому при наличии в воздухе паров легковоспламеняющихся жидкостей возможен серьёзный пожар.
  2. Кистевой разряд происходит между любым объектом и острым углом заряженного тела, являющегося диэлектриком. Его энергия значительно меньше, чем искрового, а потому уровень опасности считается ниже среднего. Данный разряд очень кратковременный и больше пугает треском, чем самим ударом.
  3. Скользящий разряд может проявить себя при трении тонких листовых материалов – например, при сворачивании листа металла в рулон. Кроме того, накопление заряда возможно на этапе распыления какого-либо покрытия при условии последующего движения слоёв материала между собой. Величина разряда сопоставима с первым типом, хоть и немного меньше.

Статическое электричество нашло своё применение всего в нескольких областях человеческой жизни. В частности, его используют для демонстрации существования электричества как такового в лабораторных условиях – например, на школьных уроках физики. Использовать его для того, чтобы обеспечить работу лампочек, к сожалению, не представляется возможным.

В промышленности электростатику применяют для оптимизации процесса окрашивания различных деталей. Краску заряжают одной полярностью, а предмет – другой, и производят распыление. Благодаря взаимному притяжению качество и равномерность покраски увеличиваются, скорость обработки одной детали возрастает, а расход краски снижается минимум вдвое.

Похожий эффект применяется в лазерных принтерах с бумагой и графитовым порошком. Их заряжают разнополюсными зарядами и благодаря этому тонер чётко ложится на отведённые для этого места. Именно данный принцип в своё время позволил перейти от струйной и матричной печати к цифровой и лазерной.

Во всех остальных сферах электростатический разряд продолжает считаться нежелательным явлением, несущим дискомфорт и потенциальный вред. Не исключено, что уже в ближайшее десятилетние человек сможет найти полезное применение данному явлению и поставить его на службу цивилизации. Исследования в этом направлении ведутся уже сегодня, однако назвать день, когда мы увидим первые значимые результаты, сейчас ещё очень сложно.

gaz.wiki — gaz.wiki

Navigation

  • Main page

Languages

  • Deutsch
  • Français
  • Nederlands
  • Русский
  • Italiano
  • Español
  • Polski
  • Português
  • Norsk
  • Suomen kieli
  • Magyar
  • Čeština
  • Türkçe
  • Dansk
  • Română
  • Svenska

изучаем статическое электричество – FIZI4KA

В этой главе…

  • Оцениваем электрический заряд и электрическую силу
  • Сканируем электрическое поле
  • Изучаем электрическое поле с помощью точечных зарядов
  • Создаем простое электрическое поле между пластинами конденсатора
  • Постигаем электрические потенциалы, измеряя напряжение
  • Связываем электрический потенциал с точечными зарядами

Вокруг нас все пронизано электричеством. В каждом атоме его собственные заряды вращаются с невероятной скоростью. Иногда электрические заряды проявляются совершенно неожиданно, например, ощущаются, как острое покалывание в момент касания наэлектризованной металлической дверной ручки или дверцы автомашины. А порой, наоборот, включая электрический свет, мы внезапно узнаем, что так остро необходимые электрические заряды куда-то пропали.

В этой главе повествование курса постепенно “электризуется”: в ней описываются причины того, почему избыток заряда на нашей одежде (например, из-за скопления слишком большого количества электронов) доставляет нам столь острые ощущения в момент разряда. Это пример типичного проявления статического электричества. Кроме того, в этой и следующей главах говорится о том, как ведут себя электрические заряды и как они становятся тем, что принято называть электрическим током. В данной главе речь идет об электрических зарядах, электрическом потенциале, электрических полях, силах, действующих между зарядами, и о многом другом. А все это начинается с мельчайших носителей заряда.

Плюс и минус: заряды электрона и протона

Атомы состоят из ядра с заряженными протонами и нейтральными нейтронами, а также из легких заряженных электронов, стремительно вращающихся вокруг ядра.

У заряженных частиц, электронов и протонов одинаковая величина заряда, равная:

где Кл означает кулон — используемая в СИ единица заряда (см. главу 2). Заряды протона и электрона соответственно равны +1,6·10-19 Кл и -1,6·10-19 Кл (считать заряд электрона отрицательным — это не более чем достигнутая в свое время договоренность). Таким образом, электроны — это частицы-носители электричества: как статического — при отсутствии движения заряженных частиц, так и динамического — с учетом движения заряженных частиц (например, электрический ток, который протекает по проводам). Итак, если имеется заряд, равный целому кулону, то какому количеству электронов он соответствует? Поскольку величина заряда каждого электрона равна 1,6·10-19 Кл, то получается, что:

Итак, чтобы получить заряд в 1 Кл, надо собрать 6,25·1018 электронов. Но если собрать вместе огромное количество электронов, то произойдет интересная вещь. Электроны разлетятся в сторону, подобно родственникам, разбегающимся в конце скучного семейного мероприятия.

Тяни и толкай: электрические силы

Воздействие электрических зарядов друг на друга проявляется в виде силы. Например, чтобы удержать в одном месте 6,25·1018 электронов, придется приложить немало усилий. Все объекты вокруг нас содержат электрические заряды, но если некий объект имеет избыточное количество электронов, то он обладает суммарным отрицательным зарядом, а если, наоборот, электронов ему не хватает, то этот объект обладает суммарным положительным зарядом.

Как известно, одноименные полюсы магнитов отталкиваются, а разноименные — притягиваются. На рис. 16.1 показаны шарики, подвешенные на ниточках и имеющие электрический заряд. Так вот, как и в случае с магнитами, пары шариков с одноименными зарядами (+ и + или — и -) будут отталкиваться друг от друга, а пары с разноименными зарядами (+ и — или — и +) — наоборот, притягиваться друг к другу.

Подбираемся к закону Кулона

Недостаточно просто говорить о положительности или отрицательности заряда, надо еще указывать их числовые значения. Насколько велики силы, действующие между заряженными телами? Это зависит от того, насколько велики заряды и насколько далеко они находятся друг от друга. В главе 5 говорится о другой силе, действующей между телами, — силе всемирного тяготения:

где ​\( F \)​ — это сила, ​\( G \)​ — универсальная гравитационная постоянная, ​\( m_1 \)​ — масса первого тела, \( m_2 \) — масса второго, а ​\( r \)​ — расстояние между ними. Аналогично, в результате лабораторных измерений можно убедиться, что сила взаимодействия электрических зарядов выражается таким образом:

В данном случае \( q_1 \) и \( q_2 \) — это два взаимодействующих заряда, измеренных в кулонах, ​\( r \)​ — расстояние между ними, а ​\( k \)​ — коэффициент пропорциональности.

(В системе СГСЭ единица измерения заряда выбрана таким образом, что коэффициент ​\( k \)​ = 1, а сам символ \( k \) принято опускать в формуле закона Кулона.2 \)​ называется законом Кулона. Этот закон определяет величину силы, действующей между электрическими зарядами. Обратите внимание, что если заряды имеют одинаковый знак, то действующая между ними сила является положительной, т.е. заряды будут отталкиваться друг от друга. А если заряды имеют противоположные знаки, то действующая между ними сила является отрицательной, т.е. заряды будут притягиваться друг к другу.

Притягиваем заряды

Важным компонентом закона Кулона является расстояние между заряженными телами (см. два предыдущих раздела). Допустим, два точечных объекта разнесли на 1 м друг от друга и придали каждому из них заряд в 1 Кл: одному — отрицательный, а другому — положительный. Какую силу нужно приложить, чтобы преодолеть их притяжение друг к другу? Подставим численные значения в формулу закона Кулона:

Чтобы не дать шарикам сойтись, нужно приложить силу в 8,99·109Н. Значение неправдоподобно большое — оно равносильно весу груза с массой примерно 560000 т или весу 10 наполненных нефтяных танкеров. Забавный вывод: следует хорошо подумать, прежде чем придавать точечным объектам заряды в 1 Кл. Как видите, между такими зарядами возникает чудовищно большое электрическое взаимодействие.

Вычисляем скорость электронов

Благодаря круговой орбите электрона можно связать между собой две силы: электростатическую и центростремительную (глава 10). Известно, что каждый атом водорода состоит из одного электрона, который вращается вокруг одного протона. Размеры атома водорода слишком малы, чтобы все это увидеть, но известно, что электрон носится вокруг протона очень быстро. Тогда возникает вопрос — насколько быстро? Как известно, между протоном и электроном действует электростатическая сила притяжения. При условии, что орбита электрона круговая, эта сила обеспечивает центростремительную силу (глава 10). Таким образом, электростатическую силу по закону Кулона можно приравнять к центростремительной силе:

Масса электрона и радиус его орбиты равны соответственно 9,1·10-31 кг и 5,29·10-11 м. Итак, взяв значения, требуемые для вычисления электростатической силы (константу ​\( k \)​, а также заряды электрона и протона), получим:

Полученная сила, действующая между электроном и протоном, обеспечивает центростремительную силу, поэтому:

Вычисление дает для ​\( v \)​ значение 2,19·106 м/с или около 7,88 млн. км/ч! Попробуйте представить себе эту скорость; она равна где-то 1% от скорости света.

Изучаем силы, действующие между несколькими зарядами

Если в задаче рассматривается взаимодействие зарядов, то совсем не обязательно, что их будет только два. И если зарядов все-таки больше двух, то для вычисления результирующей силы, приложенной к любому из них, придется использовать векторы. (Подробнее о векторах можно узнать в главе 4.)

Посмотрите на рис. 16.2, где показаны три взаимодействующие заряда: один положительный и два отрицательных. Какова результирующая сила, действующая на положительный заряд?

На положительный заряд ​\( Q \)​ действуют силы, вызванные двумя отрицательными зарядами ​\( Q_1 \)​ и \( Q_2 \); на рис. 16.2 эти силы обозначены, как \( F_1 \) и \( F_2 \). Суммой \( F_1 \) и \( F_2 \) является \( F_{рез} \). Пусть \( Q_1 \) = \( Q_2 \) = -1,0·10-8 Кл, ​\( Q \)​ = 3,0·10-8 Кл, а все заряды, как показано на рисунке, расположены на осях X и Y в 1,0 см от начала координат. Чему равна\( F_{рез} \)? С помощью теоремы Пифагора (глава 2) получаем ​\( \theta \)​ = 45°. По величине ​\( F_1=F_2 \)​, поэтому:

Какова величина \( F_1 \)?

Итак, \( F_1 \) равняется 1,9·10-2 Н, и можно найти результирующую силу, действующую на положительный заряд:

Итак, величина результирующей силы, действующей на положительный заряд, получена в виде векторной суммы (глава 4) и равняется 2,7·10-2 Н.

Действие на расстояние: электрические поля

Чтобы найти силу, действующую между двумя зарядами, надо знать величину (значение) каждого из них. А когда зарядов целое множество, то не исключено, что и их значений также целое множество. Что если к имеющемуся множеству зарядов кто-то другой захочет добавить еще и пробный заряд (т.е. заряд, используемый специально для измерения действующих на него сил)? Допустим, что величина этого нового пробного заряда не известна. Может, 1 Кл? А почему бы не 1,0·10-8 Кл или 1,0·103 Кл?

Чтобы описать, как имеющееся множество зарядов будет воздействовать на чей-то другой пробный заряд, физики ввели понятие электрическое поле. Для определения силы взаимодействия поля от имеющегося множества зарядов достаточно умножить величину пробного заряда на величину напряженности поля в той точке, где он находится. Вот как определяется напряженность ​\( \mathbf{E} \)​ электрического поля:

где \( \mathbf{F} \) обозначает силу, действующую на пробный заряд со стороны имеющегося множества зарядов, a ​\( q \)​ — величина пробного заряда. Напряженность выражается в ньютонах на один кулон (Н·Кл-1). Обратите внимание, что речь идет о векторной величине, т.е. имеющей модуль и направление (глава 4).

Другими словами, напряженность электрического поля в той или иной точке — это сила, которая бы действовала в ней на пробный заряд в один кулон. Направление напряженности совпадает с направлением силы, вызываемой в данной точке каким-либо положительным зарядом.

Представим, что вы перемещаете по горизонтали заряд в 1 Кл. День солнечный, погода прекрасна, но тут нежданно-негаданно заряд оказывается в электрическом поле с напряженностью 5 Н/Кл, направленной противоположно его движению (рис. 16.3).

Что же происходит? На объект с зарядом 1 Кл внезапно действует сила, направленная противоположно его движению:

Если изменить направление движения объекта с зарядом 1 Кл, то эта сила будет направлена уже по ходу его движения. Польза понятия “электрическое поле” состоит в следующем: по напряженности поля можно определить силу, действующую на заряд в этом поле. Если заряд в точке положительный, то направление этой силы будет совпадать с направлением напряженности поля в этой точке, а если заряд отрицательный, то сила будет направлена в противоположную сторону.

Так как напряженность электрического поля в любой точке — это результирующий вектор (обладающий, как известно, величиной и направлением), то его можно вычислить путем сложения составляющих его векторов (об особенностях такого сложения говорится в главе 4). Посмотрите на рис. 16.4, где показаны (в виде векторов напряженности) два исходных электрических поля, “горизонтальное” и “вертикальное”, расположенные в одной и той же области. Образуемое ими общее электрическое поле имеет напряженность, равную векторной сумме их напряженностей.

По всем направлениям: электрические поля от точечных зарядов

Не все электрические поля выглядят так просто как те, что показаны на рис. 16.3. Как, например, выглядит электрическое поле от точечного заряда? Под точечным подразумевается заряд очень малого физического объекта. Известно, что заряд ​\( Q \)​ создает электрическое поле, но какое? Благодаря формуле напряженности электрического поля, ​\( E=F/q \)​, ответить на этот вопрос достаточно просто.2 \)​. Она является вектором (глава 4), но куда направлен этот вектор? Чтобы узнать это, вернемся к пробному заряду ​\( q \)​ и предположим, что он является положительным (помните, что напряженность электрического поля определяется как сила, действующая на положительный заряд в один кулон).

В любом месте электрического поля сила, действующая из ​\( Q \)​ на \( q \), является радиальной, т.е. направленной по прямой, которая соединяет центры двух зарядов. Если заряды \( Q \) и \( q \) положительны, то сила, действующая на \( q \), будет направлена не к \( Q \), а в противоположную сторону. Таким образом, напряженность электрического поля в любой точке будет также направлена в противоположную от \( Q \) сторону. Это можно увидеть на рис. 16.5, где электрическое поле изображено в виде так называемых линий поля, использовать которые впервые предложил Майкл Фарадей в XIX веке.

Глядя на линии поля, можно получить хорошее качественное представление электрического поля (не путать с количественным представлением, т. / чисел). И когда в точке А линии поля ближе друг к другу, чем в точке В, то это значит, что в точке А поле сильнее, чем в точке В. Кроме того, обратите внимание, что линии поля расходятся от положительных зарядов и, наоборот, сходятся к отрицательным зарядам (рис. 16.5).

Как определить величину электрического поля от нескольких зарядов? В таком случае напряженности полей в каждой точке надо складывать как векторы. Например, имея два точечных заряда, положительный и отрицательный, получим электрическое поле, показанное на рис. 16.6.

Линии поля (как те, что показаны на рис. 16.6) начинаются на положительном заряде и заканчиваются на отрицательном заряде, т.е. они не могут начинаться или заканчиваться в точке пространства без заряда.

Заряжаем конденсатор: электрические поля между плоскими пластинами

Вычисление электрического поля от множества точечных зарядов, о котором говорилось в предыдущем разделе, в общем случае представляет собой довольно сложную задачу сложения векторов (глава 4). Чтобы облегчить себе жизнь, физики используют модели простых полей. Рассмотрим модель простого поля в плоском конденсаторе. Вообще говоря, конденсатором (не обязательно плоским) называется объект, способный сохранять заряд: положительный и отрицательный заряды хранятся отдельно, чтобы они притягивались друг к другу, но не могли самостоятельно соединиться.

На рис. 16.7 показан пример конденсатора с двумя плоскими пластинами: на одной пластине равномерно распределен заряд ​\( +q \)​, а на другой — заряд ​\( -q \)​. Все компоненты напряженностей полей, созданных точечными зарядами, на этих пластинах взаимно компенсируют друг друга, за исключением тех компонент, которые направлены перпендикулярно пластинам. Другими словами, между параллельными пластинами конденсатора создаются постоянные электрические поля, работать с которыми легче, чем с полями точечных зарядов.

В результате достаточно долгих вычислений можно сделать вывод, что электрическое поле между пластинами постоянно (если пластины находятся друг от друга достаточно близко), а его напряженность равна:

где ​\( \varepsilon_0 \)​ — это электрическая постоянная, равная 8,85·10-12 Кл2·Н-1·м-2 (см. один из предыдущих разделов этой главы), ​\( q \)​ — общий заряд на каждой из пластин (на одной и на другой из них заряд соответственно равен \( +q \) и \( -q \)), \( A \) — это площадь каждой пластины. Формулу еще можно записать с помощью плотности заряда ​\( \sigma \)​ на каждой пластине, где ​\( \sigma=q/A \)​ (заряд, приходящийся на единицу площади). Тогда формула будет выглядеть таким образом:

Модель плоского конденсатора значительно облегчает жизнь физика потому, что напряженность электрического поля постоянна и имеет постоянное направление (с положительной пластины на отрицательную), поэтому для вычисления напряженности поля не важно, в каком месте между пластинами измеряется напряженность поля.

Повышаем напряжение: электрический потенциал

Электрические поля (см. предыдущий раздел) — это еще не все, что относится к электричеству. Для изучения электричества придется использовать и другие понятия. Например, для работы с электрическими силами удобно использовать понятие потенциальной энергии, или энергии, “запасенной” в теле или в системе тел. В механике вполне естественно связывают работу силы и потенциальную энергию: например, подъем груза в поле силы тяжести связывается с увеличением потенциальной энергии ​\( \Delta W \)​, т.е. энергии, накапливаемой в теле благодаря его новому положению:

где ​\( m \)​ означает массу, ​\( g \)​ — ускорение свободного падения в поле силы тяжести, ​\( h_1 \)​ и \( h_2 \) — соответственно конечную и начальную высоту. Так как в электрическом поле на заряды действует сила, то можно говорить о потенциальной энергии и в электрических полях. Такой энергией является потенциальная энергия электрического поля, а ее изменение создает новую величину, которая называется напряжением и является движущей силой электрического тока.

Вычисляем потенциальную энергию электрического поля

Потенциальная энергия электрического поля — это потенциальная энергия, “запасенная” в электрическом поле. При знакомстве с понятием энергии в главе 8 мы также познакомились с понятием работы. Предположим, что положительный заряд перемещается по направлению к положительно заряженной пластине, как показано на рис. 16.8. Как они будут взаимодействовать друг с другом? Линии поля идут от положительных зарядов к отрицательным, а показанный на рисунке одиночный положительный заряд взаимодействует с положительно заряженной пластиной. Поскольку этот заряд имеет положительный знак, то действующая на него сила будет отталкивать его от положительно заряженной пластины, то есть вправо в плоскости рисунка. Кроме того, одиночный заряд будет притягиваться отрицательно заряженной пластиной справа от него.

Итак, каким будет изменение потенциальной энергии положительного заряда при перемещении его между пластинами справа налево против силы, направленной в обратную сторону? Работа ​\( A \)​ по перемещению заряда должна равняться увеличению его потенциальной энергии. Формула такой работы имеет следующий вид:

где ​\( F \)​ и ​\( s \)​ означают соответственно силу и перемещение. Сила, приложенная к положительному заряду, равна ​\( qE \)​, где ​\( q \)​ — это величина заряда, а ​\( E \)​ — напряженность электрического поля, в котором он находится. В результате получаем для формулы работы следующее выражение:

Эта величина работы равна увеличению потенциальной энергии заряда ​\( \Delta W \)​. Если электрическое поле постоянно по направлению к модулю напряженности, то можно сказать, что изменение потенциальной энергии:

Для характеристики электрического поля физики придумали понятие напряженность электрического поля, которая определяется, как сила, действующая со стороны поля на точечный объект с зарядом 1 Кл (см. один из предыдущих разделов этой главы о действии на расстоянии с помощью электрического поля). Аналогично, для характеристики изменения потенциальной энергии электрического поля между точками А и Б физики ввели понятие электрическое напряжение.

Потенциалы и напряжение

На языке физики напряжение — это разность электрических потенциалов (т.е. потенциальной энергии электрического поля, приходящейся на единицу заряда), или просто разность потенциалов. Эта величина определяется как отношение работы электрического поля при переносе пробного заряда из точки А в точку Б к величине пробного заряда. Единицей измерения напряжения в системе СИ является вольт (В), 1 В = 1 Дж/1 Кл. Напряжение обозначается символом ​\( U \)​.

Электрический потенциал ​\( U \)​ в определенной точке представляет собой электрическую потенциальную энергию ​\( W \)​ пробного заряда, деленную на величину этого заряда ​\( q \)​:

Таким образом, напряжение — это изменение потенциальной энергии заряда в один кулон. Работа ​\( A \)​ по перемещению в плоском конденсаторе положительного заряда ​\( q \)​ с отрицательной пластины на расстояние ​\( s \)​ по направлению к положительной пластине (см. выше) равна:

Эта работа равна изменению потенциальной энергии заряда при перемещении на расстояние ​\( s \)​ от отрицательной пластины, поэтому потенциал в месте нахождения заряда вычисляется по следующей формуле:

Предположим, что ваше внимание привлекла машина, стоящая на обочине дороги с открытым капотом. На вопрос: “В чем дело?” водитель отвечает: “Машина не едет”.

Желая помочь бедняге, вы достаете свой вольтметр и пытаетесь протестировать аккумулятор машины. Вольтметр показывает 12 В и, похоже, проблема совсем не в этом, но поскольку вы увлечены самим процессом изучения электричества, то вас уже не остановить.

Если 12 В — это изменение потенциальной энергии при перемещении заряда в один кулон от одной клеммы аккумулятора к другой, то какую работу нужно выполнить для перемещения между этими клеммами одного электрона? Как известно:

поэтому

Попавший в затруднение водитель с интересом наблюдает за этими манипуляциями. Поскольку величина заряда электрона равна 1,6·10-19 Кл (см. выше первый раздел в этой главе о заряде электрона и протона), то, подставляя в эту формулу численные значения, получим:

Спустя несколько мгновений вы гордо заявляете: “На перемещение одного электрона между клеммами аккумулятора требуется 1,92·10-18 джоулей”.

У водителя пропадает всякая надежда, и не удивительно, что после ваших слов он смотрит на вас со странным выражением лица…

Оказывается, энергия сохраняется даже в электрическом поле

Как известно, при переходе системы объектов из состояния 1 с полной энергией ​\( E_1 \)​ в состояние 2 с полной энергией \( E_2 \) (где полная энергия является суммой кинетической ​\( K \)​ и потенциальной ​\( W \)​ энергии, см. главу 8) полная энергия сохраняется:

Оказывается, что полная энергия системы объектов сохраняется и в электрическом поле. Допустим, что пылинка с массой 1,0·10-5 кг столкнулась с отрицательно заряженной пластиной плоского конденсатора и получила заряд —1,0·10-5 Кл. Очевидно, что отрицательно заряженная пылинка будет притягиваться положительной пластиной и начнет движение к ней.

Разность потенциалов между пластинами составляет 30 В. Какова будет скорость пылинки, когда она столкнется с положительной пластиной (если не учитывать сопротивление воздуха)? Так как полная энергия сохраняется, то потенциальная энергия пылинки на отрицательной пластине к моменту ее столкновения с положительной пластиной уменьшится на величину возрастания кинетической энергии (​\( \Delta K={}^1\!/\!_2mv^2 \)​). Величину уменьшения потенциальной энергии пылинки можно найти с помощью формулы:

Подставляя в нее численные значения, получим:

Это уменьшение потенциальной энергии превращается в увеличение кинетической энергии:

Подставляя численные значения, получим:

В результате несложных вычислений получим:

Иными словами, пылинка столкнется с положительной пластинкой на скорости, примерно равной 7,75 м/с, или 27,9 км/ч.

Электрический потенциал точечных зарядов

Разность потенциалов, или напряжение ​\( U \)​ (см. предыдущий раздел), между пластинами конденсатора зависит от расстояния ​\( s \)​ между положительно и отрицательно заряженными пластинами (подробнее о конденсаторах рассказывается выше в этой главе):

Сложнее определить потенциал точечного объекта с зарядом ​\( Q \)​, ведь его электрическое поле совсем не такое постоянное, как между пластинами конденсатора. Как вычислить потенциал на произвольном расстоянии от точечного заряда? Сила, действующая на пробный заряд ​\( q \)​, вычисляется по формуле:

где ​\( k \)​ означает константу, равную 8,99·109 Н·м2/Кл2, а ​\( r \)​ — расстояние между точечным объектом с зарядом ​\( Q \)​ и пробным зарядом ​\( q \)​.

Напомним, что напряженность ​\( E \)​ в любой точке вокруг точечного заряда ​\( Q \)​ выражается формулой:

Итак, чему равен электрический потенциал точечного заряда? На бесконечности он равен нулю.

Если перенести пробный заряд на более близкое расстояние ​\( r \)​ от точечного заряда, то изменение его потенциала ​\( U \)​ будет равно выполненной работе ​\( A \)​, деленной на величину пробного заряда ​\( q \)​:

Это потенциал в вольтах, полученный для любой точки на расстоянии ​\( r \)​ от точечного заряда ​\( Q \)​ и равный нулю на расстоянии ​\( r=\infty \)​. Сказанное имеет смысл, если не забывать, что потенциал — это работа по переносу пробного заряда в определенное место, деленная на величину пробного заряда. Возьмем, например, протон ​\( Q \)​ = +1,6·10-19 Кл, расположенный в центре атома водорода. На расстоянии 5,29·10-11 м от протона по свой обычной орбите движется электрон. Какой потенциал будет на таком расстоянии от протона? Вам известно, что:

Подставив в формулу числа, получаем:

Итак, электрический потенциал на указанном расстоянии от протона равен 27,2 В. А это немало для столь крошечного (почти точечного) заряда.

Как и электрические поля, электрический потенциал можно представить графически (только не в виде линий поля, а в виде эквипотенциальных поверхностей). Эквипотенциальными называются поверхности с одинаковым потенциалом. Так как, например, потенциал точечного заряда зависит от расстояния (или радиуса сферы), то эквипотенциальными поверхностями точечного заряда являются сферы, расположенные вокруг этого заряда (рис. 16.9).

А как насчет эквипотенциальных поверхностей между пластинами плоского конденсатора? Как вам известно, при перемещении положительного заряда с отрицательно заряженной пластины на расстояние ​\( s \)​ по направлению к положительно заряженной пластине разность потенциалов имеет вид:

Иначе говоря, потенциал на эквипотенциальной поверхности зависит только от расстояния до пластин. Например, на рис. 16.10 две эквипотенциальные поверхности показаны между пластинами конденсатора.

Сохраняем заряд с помощью емкости

Конденсатор способен хранить противоположные электрические заряды. Они удерживаются отдельно так, чтобы они притягивались друг к другу, но не могли самостоятельно соединиться, например перейти с одной пластины на другую в плоском конденсаторе.

Каков заряд конденсатора? Он зависит от емкости ​\( C \)​ конденсатора. Заряды на обеих пластинах конденсатора равны друг другу (только противоположны по знаку) и связаны с напряжением ​\( U \)​ между пластинами и емкостью \( C \) конденсатора следующей формулой:

где \( q \) и \( C \) — это соответственно заряд и емкость. В плоском конденсаторе напряженность \( E \) электрического поля определяется следующей формулой:

где ​\( \varepsilon_0 \)​ — электрическая постоянная, а ​\( A \)​ — площадь пластины. Для связи напряжения ​\( U \)​ между пластинами, расположенными на расстоянии ​\( s \)​ друг от друга, и напряженности ​\( E \)​ электрического поля используется следующая формула:

Поэтому:

Так как ​\( q = CU \)​, то из предыдущей формулы получим:

В системе СИ единицей измерения емкости является фарада (Ф), 1 Ф = 1 Кл/1 В.

Неплохо, но это еще не все. В большинстве конденсаторов между пластинами находится не воздух, а специальный наполнитель — диэлектрик. Диэлектрик — это материал, который плохо проводит электрический ток и увеличивает емкость конденсатора пропорционально своей диэлектрической проницаемости \( \varepsilon \). Итак, если пространство между пластинами плоского конденсатора заполнено диэлектриком с диэлектрической проницаемостью \( \varepsilon_0 \), то емкость увеличивается в соответствии с формулой:

Например, диэлектрическая проницаемость слюды (минерала, широко используемого в конденсаторах) примерно равна 5,4, таким образом делая емкость конденсатора примерно в 5,4 раза большей, чем у того же конденсатора с вакуумом между пластинами, потому что диэлектрическая константа вакуума равна 1.

Конденсатор содержит заряды, расположенные отдельно друг от друга, но способные соединиться, и потому обладает связанной с этим потенциальной энергией. Ведь, чтобы разделить эти заряды, нужно затратить определенную работу.2 \)​ можно вычислять энергию, хранящуюся в плоском конденсаторе, и выражать ее в джоулях (Дж).

Глава 16. Электризуемся: изучаем статическое электричество

Оценка

Устранение электростатического заряда путем увлажнения воздуха и контроля влажности

Увлажнение воздуха является эффективным способом устранения сэлектростатического разряда на производстве. При поддержании относительной влажности на уровне 55% влага, соедржащаяся в воздухе, является естественным проводником, который заземляет потенциальный статический заряд.

Накопление электростатического заряда на производственном оборудовании часто приводит к снижению производительности, ухудшению качества продукции, создает проблемы с безопасностью из-за неконтролируемого искрения и наносит физический ущерб оборудованию, особенно электронике и печатным платам.

Проблемы, вызванные статическим электричеством, характерны для упаковочной, типографской, целлюлозно-бумажной промышленности, производства пластмасс, текстильных изделий, электроники, автомобилестроения и фармацевтической промышленности.

Для образования электростатического заряда в процессе трения относительная влажность воздуха должна быть ниже 45%. При относительной влажности воздуха 45-55% электростатический заряд все еще накапливается, но в меньшей степени, так как он отводится в землю через содержащуюся в воздухе влагу. Поддержание относительной влажности воздуха выше 55% гарантированно предотвращает образование электростатического заряда.

Для больших помещений, таких как полиграфические и производственные цеха, эффективным и экономичным решением представляется прямое увлажнение воздуха в помещении. В припотолочной зоне устанавливают форсунки, которые распыляют влагу и поднимают влажность воздуха до требуемого уровня.

Однако, промышленное оборудование выделяет тепло и понижает относительную влажность воздуха в помещениях, что приводит к накоплению электростатического заряда. Нагрев осушает воздух, и в комнате с общей относительной влажностью воздуха 60% при 18 °C могут образоваться локальные воздушные зоны с влажностью ниже 45%. Если такое оборудование вдобавок создает трение, ведущее к накоплению статического электричества, возникает опасность электростатического разряда.

Там, где это требуется, можно установить местные распылительные системы для локального повышения влажности. Установив отдельные форсунки непосредственно над технологическим оборудованием, можно устранить накопление электростатического заряда за счет поддержания необходимой относительной влажности воздуха при увеличении температуры.

Static Charge — обзор

17.8 Контроль статического заряда в текстильных волокнах

Контроль статического заряда во время обработки материала часто является важным фактором для широкого спектра продуктов. Даже в тех приложениях, которые связаны со статическим зарядом (флокированные волокна, электростатическая окраска, ксерография и т. Д.), Требуется контролируемый знак и уровень заряда для обеспечения контролируемого процесса. В этих приложениях, а также в тех приложениях, где статический заряд должен быть минимизирован, обычно используются обработки поверхности для управления знаком и уровнем заряда, который генерируется во время процесса, и управления ими.

На ранних этапах обработки текстиля, когда волокна были в основном натуральными и гидрофильными, а обработка проводилась на относительно низкой скорости, статический заряд обычно был незначительной проблемой. По мере того, как обработка волокон и текстиля перемещалась на фабрики и скорость увеличивалась, начали возникать проблемы со статическим зарядом, и они часто были сезонными, увеличиваясь в течение сухого зимнего сезона, когда внутренняя влажность была низкой. В этих случаях решением статических проблем было либо увлажнение окружающей среды для обеспечения антистатической функциональности за счет поддержания определенного уровня влажности на поверхности волокна, либо нанесение на волокно раствора гигроскопичной соли слабой кислоты (например, как ацетат натрия), который помогал удерживать влагу на поверхности волокна и обеспечивать уровень проводимости, способствующий рассеиванию статического электричества по мере его возникновения.

В 1950-х годах, когда синтетические волокна стали массовым продуктом, а скорость обработки, связанная с производством волокон и тканей, продолжала расти, спрос на материалы и химикаты для отделки, которые могли бы снизить и / или контролировать образование статического заряда, неуклонно рос. К 1970-м годам контроль статического электричества при обработке волокон и тканей быстро стал хорошо развитой технологией. В 1990-х и начале 2000-х исследования в этой области продолжались, но в основном они были сосредоточены на улучшении и оптимизации различных классов антистатических материалов и отделок, которые были разработаны в 1950-х и 1960-х годах.

В 1960-х годах появились попытки контролировать статический заряд во время использования продукта. Это было особенно серьезной проблемой, связанной с увеличением использования нейлона в тканях и коврах, а также с белковыми волокнами шерсти и шелка. Именно в это время возник интерес к долговечным антистатическим покрытиям, и начались разработки.

17.8.1 Теория статического заряда в волокнах

Генерация статического заряда, по-видимому, происходит с помощью двух различных механизмов:

1.

Контактная зарядка, возникающая при контакте двух «разных» поверхностей

2.

Трибозарядка, которая возникает, когда две контактирующие поверхности перемещаются друг напротив друга.

Взаимосвязь между этими двумя процессами никогда не была четко определена. При контактной зарядке заряд генерируется простым поверхностным контактом, но трибозаряд является результатом сочетания контакта и относительного движения поверхностей.Некоторые считают, что на самом деле существует только контактная зарядка и что трибозарядка — это просто агрессивная форма контактной зарядки. Однако изучение волокон и текстиля в различных формах и текстильных процессов показало, что наблюдаемый уровень заряда значительно увеличивается со скоростью, и нет очевидного объяснения этого явления в контексте контактной зарядки. Кроме того, другие исследования, связанные с генерацией и диссипацией, убедительно свидетельствуют о том, что на трибозарядной поверхности присутствуют различные типы зарядов.

Как правило, технологи волоконно-оптических кабелей не интересуются характером процесса зарядки, а скорее сосредотачиваются на стратегиях управления и снижения уровня генерируемого статического заряда, а также для облегчения рассеивания заряда, который генерируется во время высокоскоростной обработки. Их цель — поддерживать поверхностный заряд в таком диапазоне, чтобы он не оказывал существенного влияния на процесс / продукт и не создавал проблем с безопасностью для тех, кто работает в этой зоне. Ранние используемые методы включали повышение влажности в производственной среде.Более поздние технологии включали подходы к нейтрализации заряда, такие как «статические столбики» и гамма-излучение, но наиболее распространенный подход заключается в добавлении материалов и химикатов в отделочные материалы обработки, которые помогают контролировать уровень статического заряда, который накапливается во время обработки. Такие продукты обычно называют «антистатическими отделочными средствами» или «антистатическими отделочными материалами».

17.8.2 Природа антистатических отделочных агентов

Процесс управления статическим зарядом на любой непроводящей поверхности включает два четко дифференцированных процесса:

1.

Контроль степени статического электричества при контакте материала с дифференцированными поверхностями

2.

Контроль поверхностной проводимости, чтобы генерируемый заряд мог быстро передаваться на землю.

Материалы, которые обычно называют «антистатическими отделочными агентами», представляют собой добавки, которые вводятся в отделочные покрытия для повышения поверхностной проводимости волокна или ткани и действуют, прежде всего, обеспечивая эффективный путь для передачи статического заряда на землю. .Такие материалы являются антистатическими в том смысле, что они обеспечивают механизм снижения за счет рассеяния проводимости уровня заряда, который накапливается на поверхности волокна во время определенного процесса или серии процессов. Правильнее было бы назвать такие материалы «агентами рассеивания заряда».

Контроль генерации статического электричества в процессе должен быть приемлемым подходом в том смысле, что если генерируется небольшой статический заряд или он не генерируется вовсе, требования к поверхностной проводимости должны быть минимальными.Материалы, которые контролируют статический заряд за счет минимизации процесса генерации, можно с полным основанием назвать «антистатиками». Сложность состоит в том, что часть процесса статической генерации все еще плохо изучена и в большинстве случаев не может быть надежно определена количественно путем прямого тестирования в процессе разработки. Хотя такие подходы были косвенно включены в искусство управления статическим зарядом, они часто не признаются и просто становятся частью общего прагматического технологического репертуара «контроля статического заряда».

Нет никаких сомнений в том, что материалы, нанесенные на поверхность волокон, могут иметь большое влияние на их способность генерировать заряд во время обработки. В одном случае крупный производитель волокна попытался заменить антиоксидант в отделке из промышленных нейлоновых нитей (1% антиоксиданта в отделке, которая была нанесена на волокно в количестве 1%). Они определили новый антиоксидант, который оказался очень эффективным, но также обнаружили, что новая отделка генерирует такой большой статический заряд, что от изменения отделки отказались.Такие явления не совсем понятны, но они указывают на процесс генерации статического электричества, который сильно зависит от поверхности и, следовательно, потенциально очень чувствителен к наличию низких уровней материалов, которые модифицируют поверхность полимера.

Как отмечалось выше, когда дело доходит до разработки функциональных материалов для управления накоплением статического заряда во время высокоскоростной обработки волокна, основным используемым показателем является поверхностная проводимость обрабатываемого волокна. Преимущество этого показателя заключается в том, что он легко измеряется и действительно обеспечивает «защиту» в том смысле, что он обеспечивает путь для рассеивания заряда, генерируемого во время процесса.Разработчики рецептур обычно придерживаются подхода, согласно которому способ контроля статического электричества в процессе заключается в достижении целевого уровня поверхностной проводимости волокна, а затем, если испытания показывают, что накопление статического электричества все еще является проблемой, общая стратегия состоит в том, чтобы включить его в отделку. материалы, которые дополнительно улучшают поверхностную проводимость. Снижение накопления статического заряда за счет управления процессом генерации никогда не считалось жизнеспособным подходом, поскольку его трудно оценить количественно и, как полагают, он зависит от технологических и поверхностных переменных, над которыми разработчик окончательного состава не имеет большого контроля.Хотя подход управления статической генерацией может косвенно влиять на процесс формулирования, он никогда не считался основным подходом к проблеме.

17.8.3 Создание поверхностной проводимости

Обработка волокон во время процесса экструзии является обязательной для контроля трения, обеспечения сцепления пучков, уменьшения абразивного повреждения и контроля проблем, связанных со статическим зарядом во время процесса экструзии. последующие процессы, такие как вытягивание, текстурирование и скручивание волокон, прядение штапельного волокна (кардочесание, вытяжка и т. д.), ткачество и подготовка к ткачеству, а также процессы вязания. Обработка применяется ко всему спектру синтетических и натуральных волокон и часто дополняется вторичной отделкой по мере того, как волокно проходит через несколько этапов обработки, необходимых для создания конечного продукта на основе волокон.

Как отмечалось ранее, стандартом для защиты от статического электричества является поверхностная проводимость. Процесс создания значительной поверхностной проводимости в непроводящих полимерных системах требует нанесения жидкого продукта (отделочного покрытия), который содержит в качестве одного компонента один или несколько ионных частиц, которые обеспечивают проводимость за счет подвижности ионов в поверхностном слое жидкости.Такие составы обычно содержат неионные поверхностно-активные вещества в сочетании с ионными компонентами, и эти гидрофильные материалы создают гигроскопичную структурированную жидкость, которая увеличивает подвижность ионов, удерживая воду в поверхностном слое жидкости. Способность нанесенного продукта отводить генерируемый статический заряд обычно измеряется путем измерения сопротивления фиксированного образца волокна или ткани, на которые была нанесена обработка. Хотя такие измерения обычно количественно оцениваются в соответствии со стандартами, чтобы устранить различия в зависимости от конфигурации теста и типа волокна / ткани, существуют общие рекомендации, которые связывают сопротивление образца с сопротивлением, необходимым для эффективного рассеивания статического заряда в разумные сроки: 10 12 Ом — умеренное рассеяние статического электричества за короткий промежуток времени

10 10 Ом — эффективное статическое рассеяние за короткий промежуток времени

10 8 Ом — высокоэффективное рассеивание статического электричества на короткие сроки.

Таким образом, контроль статического электричества определяется способностью материалов, наносимых местно, поддерживать рассеивание генерируемого статического заряда. Существуют методы исследования процесса генерации статического электричества, такие как измерения поля заряда во время испытаний на трение между волокном и металлом, но фактический процесс генерации сильно зависит от природы и относительной скорости поверхностей, которые контактируют с поверхностью волокна или ткани, поэтому тесты которые точно имитируют процесс динамической генерации, сложно структурировать, если не будет доступна экспериментальная линия процесса.Общий подход заключается в разработке отделки, обеспечивающей уровень поверхностной проводимости волокна, отвечающий предполагаемым требованиям конкретного выполняемого процесса на основе волокна. Эффективность чистовой обработки в фактическом контроле заряда, генерируемого процессом, затем отслеживается во время испытаний процесса. Если во время процесса отмечается чрезмерное статическое электричество, продукты изменяются для увеличения проводимости (улучшенные антистатические агенты или увлажнители для удержания дополнительного количества воды на поверхности волокна), для снижения уровня трения (предположительно связанного с генерацией статического электричества) или для модификации производственная среда (т.е. улучшенным контролем влажности). Только в высокоуровневой работе по составлению финишного покрытия изучается процесс генерации и учитывается потенциальное влияние конкретных компонентов финишного покрытия на процессы динамического статического заряда.

Статическое электричество — Energy Education

Рис. 1. Видно, что ребенок на игровой площадке испытал статическое электричество из-за контакта с горкой. [1]

Статическое электричество — это дисбаланс электрического заряда на поверхности материала.Статическое средство фиксированное или неподвижное , поэтому оно используется в отличие от динамического (движущегося) электричества, которое имеет форму электрических токов.

Обычно атомы нейтральны, что означает, что у них одинаковое количество электронов и протонов. Однако атомы становятся заряженными, когда возникает дисбаланс в количестве этих частиц, что может довольно легко произойти с некоторыми материалами. Способность материала удерживать электроны определяет его место в «трибоэлектрическом ряду». [2] Чем дальше в этой серии расположены два материала, тем заметнее разделение зарядов при их контакте. Например, стекло и шелк относительно далеки друг от друга в этой серии, поэтому, когда стекло натирается шелком, оно теряет много электронов на шелк, и может наблюдаться статическое электричество. [2]

Зарядка

Рис. 2. Разделение, вызванное зарядом. [3]

Разделение зарядов двух объектов можно вызвать несколькими способами.

  • Разделение, вызванное контактом, достигается путем трения двух предметов друг о друга, поскольку соприкасающиеся предметы образуют химическую связь, известную как адгезия. Адгезия — это тенденция различных поверхностей прилипать друг к другу. Часто предполагается, что причиной этого статического заряда является трение, но на самом деле трение вызвано адгезией и не оказывает никакого влияния на разделение зарядов. [4]
  • Разделение под действием тепла и давления происходит, когда определенные типы кристаллов или керамики подвергаются действию напряжения или нагреваются.
  • Разделение, вызванное зарядом, происходит, когда заряженный объект приближается к нейтральному. Заряды внутри нейтрального объекта той же полярности , что и заряженный объект, будут отталкиваться, в то время как заряды противоположной полярности будут притягиваться к нему. Это приводит к дисбалансу заряда некогда нейтрального объекта. Это можно увидеть на Рисунке 2.

Выгрузка

Рис. 3. Молния — это разряд статического электричества в грозовых облаках. [5]

Как только объект накопит дисбаланс заряда, он, естественно, снова захочет стать нейтральным. Это происходит из-за того, что называется разряжением , которое обычно можно почувствовать при шоке, когда это происходит с человеком. Контактно-индуцированная зарядка — это наиболее часто встречающаяся форма накопления статического электричества, которую можно осуществить, потерев ногой о ковер. Как только накопится достаточный заряд, необходимо достаточно высокое напряжение, чтобы заряд перескочил от человека к ближайшей дверной ручке, оставив человека разряженным и, если он не был к этому готов, сильно потрясенным.

Этот же процесс накопления и разряда заряда происходит в облаках, создавая молнию, и его можно исследовать в Hyperphysics.

Моделирование PhET

Университет Колорадо любезно разрешил нам использовать следующее моделирование PhET. Это моделирование показывает, как заряды разделяются (но не создаются и не уничтожаются), когда воздушный шар трется о свитер человека.

Для дальнейшего чтения

Для получения дополнительной информации см. Соответствующие страницы ниже:

Список литературы

Произошла ошибка: SQLSTATE [42S22]: столбец не найден: 1054 Неизвестный столбец «rev_user» в «списке полей»

Статический заряд

Статический заряд

Статический заряд

Элизабет Хейл

22 февраля 2000 г.

Краткое описание урока: Учащиеся поймут, что статический электричество состоит из электрического заряда на поверхности объекта путем прогнозирования и испытание эффекта трения двух воздушных шаров шерстяной тканью и пластиком и воздушные шары вместе.

Стандарты уровня оценок и содержания обучения: Четвертый класс

Студенты будут:

Связанное трение с предметами, заряженными статическим электричеством (AL 4.34)

Использовать методы, необходимые для научных исследований

— Распознавать несоответствия

-Демонстрация критического мышления

— Запись наблюдений

-Прогнозирование возможных результатов (AL 4.1)

Показывать привычки, необходимые для ответственного научного исследования.

-Любопытство

-Внимание к детали

-Объективность (AL 4.2)

Эффективное распространение научного содержания (AL 4.3)

Создавать ментальные, вербальные или физические представления идей, объектов и событий

(AL 4.4).

Признать влияние факторов, которыми управляют и которыми управляют, на исход событий (AL 4.5).

Общая информация для учителя: Вся материя состоит из крошечных частиц. Некоторые из этих частиц несут кусочки электричества, называемые электрическими зарядами. Электрические заряды несут ответственность за все электрические явления. Каждое вещество состоит из крошечных частиц называется атомами. Атомы состоят из протонов, электронов и нейтронов. Привлечение между протонами и электронами удерживает частицы вместе. Электрический заряд может быть либо положительный или отрицательный.Положительный электрический заряд называется протоном. Отрицательный электрический заряд — электрон. У нейтрона нет заряда. Отрицательные заряды могут свободно перемещаться от один объект к другому. Протоны и нейтроны никогда не переходят от объекта к объекту. В энергия, исходящая от этих заряженных частиц, называется электрической энергией.

Когда отрицательные заряды движутся к нейтральному объекту, электрический заряд накапливается. на обоих объектах. Первый объект имеет общий положительный заряд, а второй — общий отрицательный заряд.Когда объект получает электроны, он имеет избыток электронов и считается, что имеет отрицательный заряд. Когда объект теряет электроны, ему не хватает электронов, он имеет нехватку электронов и, как говорят, имеет положительный заряд. Наращивание электрических зарядов называется статическим электричеством.

Если объект заряжен статическим электричеством, на нем накапливаются электрические заряды. поверхность. Если объекты накапливаются из одинаковых зарядов, они отталкиваются.Если у объектов есть сборка Имея разнородные заряды, они будут притягиваться или притягиваться друг к другу. Сборы, которые накапливаются таким образом не оставайтесь на заряженном объекте. Рано или поздно обвинения снимутся. Говорят, что когда статические заряды движутся от объекта, возникает электрический разряд.

Концепции, рассматриваемые на уроке:

Статическое электричество — это накопление электрических зарядов на объекте.

Как заряды отталкивают.

В отличие от обвинений привлекают.

Объекты имеют положительные и отрицательные частицы.

Электрон заряжен отрицательно.

Протон заряжен положительно.

У нейтрона нет заряда.

Положительно заряженный объект имеет больше протонов, чем электронов.

У отрицательно заряженного объекта больше электронов, чем протонов.

У нейтрального объекта такое же количество протонов, как и электронов.

Электроны или отрицательные заряды могут свободно перемещаться от объекта к объекту.

Материалы и оборудование: воздушных шаров (достаточно для каждой группы детей, чтобы иметь 2), веревка, шерстяная ткань, полиэтиленовая пленка, таблица данных, классная доска, мел

Процедуры:

Введение. Спросите студентов: «Вы когда-нибудь втирали воздушный шарик в волосы? Что? случилось? »Надеюсь, они ответят, что встал.Спросите: «Знаете, что заставляет его встать? Что ж, сегодня мы узнаем о статическом электричестве ».

1. Попросите учащихся поработать с партнером. И раздайте каждой группе все материалы (2 воздушные шары, 2 нити, шерстяная ткань, кусок полиэтиленовой пленки и дайте каждому ребенку данные Диаграмма). Возможно, вы захотите, чтобы они уже отключились, чтобы сэкономить время.

2. Дайте инструкцию. Скажите детям, что они будут следовать таблице данных (это подскажите, чем натирать воздушные шары).Скажите им, чтобы они держали воздушные шары около 10 в дюймах друг от друга, чтобы увидеть, как они реагируют друг на друга после того, как их натерли либо шерстяная, либо полиэтиленовая пленка.

3. Пусть студенты приступят к исследованию. Постарайтесь не давать им слишком много указаний, пусть диаграмма данных будет их руководством. Позвольте им открыть для себя столько, сколько они могут. Обязательно попросите их записать свои наблюдения на диаграмме данных. Разрешать их около 20-25 минут на изучение.

4. Теперь переведите студентов от их столов к кругу на полу, чтобы коллоквиум. Это не позволит им отвлекаться на материалы. Пусть студенты расскажу, что они обнаружили. Обратите внимание на их открытия на доске. После они закончили рассказывать вам о том, что они обнаружили, спросите их, могут ли они прийти в какой-нибудь выводы о статическом электричестве.

5. При необходимости введите термины. Сделайте творческую драму, чтобы объяснить, как воздушные шары с одинаковые и непохожие заряды реагируют друг на друга.Пусть дети будут воздушными шарами. Есть они либо отталкивают, либо привлекают. Также вы можете продемонстрировать, как отрицательные электроны могут свободно перетекают от объекта к объекту и создают положительный или отрицательный заряд в объект. Пусть мальчики будут электронами, а девочки — протонами. Придут 4 мальчика и 4 девочки и повесьте по две штуки на листе плаката (каждый плакат представляет собой объект). Затем спросите, что могут сделать электроны, чтобы сделать один из объектов положительным. Потом отрицательный.

6. Теперь завершите коллоквиум, задав вопросы для оценки студентов. понимание концепций. Также проведите еще одну демонстрацию, чтобы увидеть, могут ли они сказать вы почему и событие произошло. (См. Оценку).

Оценка: Чтобы оценить студентов, я спрошу их на коллоквиуме, чтобы узнать, понять основные концепции статического электричества. Я смогу оценить их понимание по их ответам.Также я собираюсь провести демонстрацию с помощью воздушного шара. натереть шерстью и крошечными кусочками бумаги. Если они понимают концепции, они должны быть в состоянии сказать мне, как воздушный шар и листы бумаги будут реагировать друг на друга. Они также должен быть в состоянии сказать, почему воздушный шар притягивает клочки бумаги. Листы наблюдений что студенты, заполненные во время расследования, также будут использоваться как способ оценка. Я также буду оценивать через наблюдение.

Полезные Интернет-ресурсы:

Технологические навыки:

Прогноз

Интерпретировать данные

Вывод

Наблюдение

Общение

Критика:

Сегодня я провел урок статического электричества.Я чувствовал, что все прошло довольно гладко. я в дополнительном классе, а мой учитель не преподает естественные науки или математику, поэтому понятия не имел, что уровень, на котором они были, и чего я мог от них ожидать. Если честно, мне было страшно смерть. Мне казалось, что я их не знаю, и они меня тоже не знали. Это реально напугал меня контролировать класс и даже не знать имен детей. Это был Первый урок я провел в двух классах. Я провел урок в трех классах.Посредством В третий раз, когда я проводил урок, я чувствовал себя довольно уверенно и решил все нюансы, так что урок прошел более гладко. Моя главная цель на уроке заключалась в том, чтобы студенты развлечься, получая понимание статического электричества. Я думаю, что по большей части эти цели были достигнуты. Студенты определенно повеселились, и я думаю, что большинство студенты поняли концепцию статического электричества. Некоторые были немного сбиты с толку.

Я мало рассказывал студентам о статическом электричестве до того, как они начали изучение.Я хотел, чтобы они открыли для себя как можно больше. я был неуверенный в том, сколько я должен рассказывать детям о статическом электричестве, прежде чем я начну урок. Единственное введение, которое я закончил, — это задать детям несколько вопросов. о статическом электричестве. (Например. Вы когда-нибудь расчесывали волосы расческой и он встал дыбом? Чем это вызвано?) Я бы так и представил урок опять таки. Я не давал им много инструкций, так как хотел, чтобы они открыли для себя самих себя.Я намеревался использовать лист наблюдений в качестве их руководства. У них действительно было не знаю, что делать. Некоторые не выполнили свое расследование правильно, и поэтому не получали правильных наблюдений. В следующий раз я бы поступил иначе. Давая более подробные инструкции не помешали бы им обнаружить сами концепции. Если бы мне пришлось повторить этот урок еще раз, я бы немного направил их через расследование, но позвольте им делать наблюдения и записывать их самостоятельно.Классы расширения сгруппированы по способностям. Первый класс, которому я преподала урок, был самый низкий уровень способностей. Им нужно было много наставлений. Группа верхнего уровня сделала очень хорошо с небольшими указаниями, которые им дали.

Сам эксперимент прошел неплохо. У меня уже были все материалы вместе и разложил по столам. В первый раз, когда я проводил урок, я заставлял детей взорвать свои воздушные шары и привяжите к ним шнурок.Многие дети нуждались в помощи и Мне потребовалось время, чтобы помочь им всем. Пока я помогал одним детям, другие продвигаются вперед и проводят свое расследование. Из-за этого все заканчивали по-разному. раз. Когда они закончили, они поиграли со своими воздушными шарами и стали довольно громкими. Вещи вышли из-под контроля. В следующий раз я бы уже взорвал воздушные шары и связать, и хранить их в мешке для мусора, чтобы их можно было быстро потерять.Тогда все смогут вместе начать расследование. Студентам очень понравилось тестирование материалов. Они записали свои наблюдения в лист данных, который был подробный и полный. Уровень шума во время расследования был довольно высоким. Этот сначала добрались до меня, потому что вы не думаете о классе как о шумном месте. Но потом Я понял, что они просто обсуждают свои наблюдения. Когда они закончили В ходе расследования я попросил их положить воздушные шары на стол и терпеливо ждать.Это вообще не сработало. В итоге мне пришлось просто взять их воздушные шары и разместить их в задней части комнаты. Когда дети закончили, я попросил их сесть на пол в кружке для коллоквиума.

Коллоквиум прошел намного лучше, чем я ожидал. Я попросил группу делятся своими открытиями. Я их никак не подсказывал. У них было много вещей, чтобы поделитесь, так что у нас была действительно хорошая дискуссия. В одном классе один очень умный мальчик обнаружил много или он много знал об электричестве.Он взял на себя большую часть коллоквиума. я должен дали возможность другим детям поделиться своими открытиями. Я был просто таким шокирован тем, что он говорил, думаю, я просто хотел увидеть все, что он знал. Они обнаружил то, что я не собирался для них открывать. Один ребенок сказал: «Это (воздушный шар)» прилипает к моей рубашке «. На коллоквиуме я хотел, чтобы они могли высказаться, когда они хотели поделиться, но все пытались поговорить одновременно. Так что в итоге я заставил их поднять их руки.В следующий раз я обязательно начну коллоквиум с того, что расскажу детям как будет работать коллоквиум, и привести примеры. Нужно было немного больше структурирован, чтобы предотвратить хаос.

В первом классе я не занимался творческой драмой. Дети немного запутались о том, как отрицательные заряды могут свободно течь от объекта к объекту и заставлять объект становятся положительно или отрицательно заряженными. В творческой драме наверняка бы прояснил их замешательство.На следующем уроке я попросил их разыграть творческую драму. Сначала я пусть студенты попробуют понять, что им делать. Они были еще немного запутались, поэтому я им помогал. После драмы они так хорошо поняли концепции. я Остался очень доволен результатами и результативностью творческой драмы.

В целом, самой большой проблемой, с которой я столкнулся во время этого урока, был класс. управление. Мне нужно было найти способ, который узнают дети, чтобы привлечь их внимание.Поскольку в комнате было довольно шумно, мне пришлось крикнуть, чтобы привлечь их внимание. Мой голос мягкий и я были проблемы с привлечением их внимания. И как я уже сказал ранее, у меня были бы все свои материалы готовы, чтобы дети могли вместе начать свои исследования и, надеюсь, закончить примерно в то же время. Это предотвратило бы много хаоса.

К концу урока я почувствовал, что ученики достаточно хорошо изучили понимание статического электричества.Я провел с ними групповое занятие, чтобы прояснить любые недопонимания и оценить их. Они объяснили мне, что, по их мнению, было происходит и почему. При необходимости я мог их исправить. Я думал, что это было очень эффективное завершение урока. Я обязательно проведу этот урок таким же образом снова с небольшими изменениями. Студентам было очень весело проводить этот урок. После того как мы Когда закончили, они спросили меня, можем ли мы провести еще эксперименты.

Наука о статике: насколько хорошо разные материалы создают статическое электричество?

Bring Science Home

Упражнение с электрическим зарядом от Science Buddies

Реклама

Ключевые концепции
Электричество
Материалы
Электропроводность
Электроны

Введение
Вы когда-нибудь замечали, что некоторые типы одежды более подвержены статическому электричеству, чем другие? Например, шерстяной свитер может сильно прилипать к статическому электричеству, но одежда из хлопка прилипает не так сильно.Насколько хорошо другие материалы в доме производят статическое электричество? В этом научном упражнении вы исследуете это, сделав простой самодельный электроскоп (прибор, обнаруживающий электрические заряды) и проверив его. Результаты могут вас шокировать!

Фон
Статическое электричество — это накопление электрического заряда на объекте. Этот заряд может внезапно разрядиться (например, когда в небе сверкает молния) или он может привести к притяжению двух объектов друг к другу.Сцепляющиеся друг с другом носки, только что вынутые из сушилки, являются хорошим примером этого притяжения в действии. В частности, статическое прилипание — это притяжение между двумя объектами с противоположными электрическими зарядами, одним положительным и одним отрицательным.

Статическое электричество может быть создано путем трения одного предмета о другой предмет. Это связано с тем, что трение высвобождает отрицательные заряды, называемые электронами, которые могут накапливаться на одном объекте, создавая статический заряд. Например, когда вы шаркаете ногами по ковру, электроны могут переходить на вас, создавая статический заряд на вашей коже.Вы можете внезапно разрядить статический заряд в виде электрического разряда, когда прикоснетесь к другу или каким-либо предметам.

В то время как объекты с противоположным зарядом притягиваются друг к другу (например, липкие, свежевысушенные носки), объекты с одинаковым зарядом отталкиваются. Этот принцип используется при создании электроскопа — научного прибора, обнаруживающего электрические заряды.

Материалы

  • Стакан из пенополистирола
  • Острый карандаш или шпажка
  • Пластиковая трубочка для питья
  • Алюминиевый противень
  • Лента
  • Глина (по желанию)
  • Ножницы
  • Резьба
  • Алюминиевая фольга
  • Пластина из пенополистирола (В качестве альтернативы подойдет и крышка из пенополистирола от контейнера для еды на вынос.)
  • Воздушный шар
  • Стол или стол из неметалла (Подойдет, например, деревянный, пластиковый или стеклянный стол или стол).
  • По крайней мере, один материал для тестирования (он должен быть не больше пластины или его можно сложить, чтобы он мог лежать ровно. Некоторые из различных материалов, которые вы можете проверить, включают полиэстер, нейлон, хлопок, шерсть, шелк, алюминий, полиэтиленовая пленка, медь, дерево и папиросная бумага.)

Препарат
  • Чтобы сделать самодельный электроскоп, сначала проделайте два отверстия возле дна чашки из пенополистирола (на противоположных сторонах чашки), например, протолкнув чашку острым карандашом или шпажкой.(Всегда проявляйте осторожность и помощь взрослых при манипуляциях с острыми предметами.) Протолкните пластиковую соломинку через оба отверстия.
  • Затем используйте скотч или четыре маленьких глиняных шарика, чтобы прикрепить отверстие чашки к алюминиевой сковороде (перевернув чашку вверх дном). Если вы используете глину, приклейте четыре маленьких глиняных шарика (каждый примерно полдюйма в диаметре) к краю чашки, затем переверните чашку вверх дном и прикрепите ее к алюминиевой сковороде. Отрегулируйте положение соломинки так, чтобы один конец соломинки находился прямо над краем поддона.
  • Отрежьте кусок нити длиной примерно в два или три раза больше, чем расстояние между соломкой и краем сковороды. Завяжите на одном конце нити несколько узлов.
  • Вырежьте квадрат толщиной один дюйм из алюминиевой фольги. Используйте его, чтобы сделать клубок вокруг узлов на нити. Мяч должен быть размером с шарик или меньше и быть достаточно плотным, чтобы он не упал с нити.
  • Прикрепите нить к кончику соломинки так, чтобы клубок фольги свешивался прямо с соломки, едва касаясь края кастрюли. Как вы думаете, почему важно, чтобы мяч касался сковороды? При необходимости отрегулируйте положение соломинки. (Если конец нити без шарика свисает вниз и касается сковороды, обрежьте его так, чтобы он не касался сковороды.)
  • Ваш самодельный электроскоп готов к тестированию! При работе с электричеством соблюдайте меры предосторожности и остерегайтесь поражения электрическим током.

Процедура
  • Чтобы проверить электроскоп, создайте статическое электричество, потерев надутый шар о пластину из пенополистирола.Несколько раз протрите пластину из пенополистирола воздушным шариком. Как вы думаете, как это создает статическое электричество?
  • Быстро поместите электрически заряженную пластину на стол или стол (не металлический). Затем поместите сделанный вами электроскоп на пластину. Держите электроскоп только за чашку из пенополистирола, а не за алюминиевый поддон, иначе он не сработает! Как вы думаете, почему?
  • Вы должны увидеть, как шарик из алюминиевой фольги отодвигается от края сковороды. Как вы думаете, почему мяч так движется? Вы можете объяснить, что происходит?
  • Теперь коснитесь мяча пальцем. Что происходит?
  • Теперь, когда вы знаете, что ваш электроскоп работает, вы можете использовать его для проверки статического электричества, присутствующего в других материалах. Для этого сначала разрядите электроскоп, коснувшись сковороды пальцем. Затем несколько раз протрите баллончиком материал, который вы хотите протестировать, чтобы зарядить материал. Затем быстро поднимите электроскоп (удерживая его за чашку из пенополистирола) и поместите тестируемый материал на пластину из пенополистирола так, чтобы материал лежал на пластине.Убедитесь, что материал не касается стола. Затем поместите электроскоп на объект. Что происходит с шариком из алюминиевой фольги? Как вы думаете, почему это так?
  • Снова коснитесь мяча пальцем. Что происходит на этот раз?
  • Основываясь на ваших наблюдениях, мог ли исследуемый вами материал удерживать статический электрический заряд?
  • Extra: Используйте самодельный электроскоп, чтобы проверить еще больше материалов. Какие из них могут удерживать статический заряд, а какие нет?
  • Extra: Вы также можете использовать свой электроскоп, чтобы исследовать, какие материалы проводят больше всего статического электричества. Это связано с тем, что чем дальше алюминиевый шар отодвигается от алюминиевого поддона, тем больше заряд исследуемого материала. Какие обычные бытовые материалы могут накапливать наибольший электрический заряд; какие из них меньше всего?
  • Дополнительно: Некоторые объекты заряжаются отрицательно, а другие — положительно заряжаются статическим электричеством.Попробуйте найти способ исследовать это. Обнаруживает ли этот вид электроскопа оба типа? Как определить разницу между ними?
  • Extra: Статическое электричество плохо, когда оно попадает в вашу одежду! Попробуйте поэкспериментировать, потерев предмет мягкой тканью для сушки (например, Bounce) после того, как натерете предмет о воздушный шар. Как работают сушильные листы? Что происходит с показаниями электроскопа после трения заряженным предметом о лист сушилки? Как можно сравнить разные листовые сушильные изделия?


Наблюдения и результаты
Отодвинулся ли алюминиевый шарик электроскопа от посуды, когда вы поместили электроскоп на заряженную пластину из пенополистирола? Другой материал, который вы тестировали, вел себя аналогичным образом или вообще не двигал мячом?

Когда объект, такой как пластина из пенополистирола, становится электрически заряженным, он может быть как положительным, так и отрицательным.(Если у объекта много электронов, он заряжен отрицательно; если у него мало электронов, у него положительный заряд. Будет ли объект приобретать или терять электроны, зависит от типа материала, из которого он сделан.) Когда заряженный объект (например, заряженная пластина из пенополистирола) касается алюминиевого поддона электроскопа, заряд (или электроны) легко перемещается через металлический поддон. Поскольку алюминиевый шар касается сковороды, шар приобретает тот же заряд, что и сковорода — они либо положительные, либо отрицательные.Поскольку объекты с одинаковым зарядом отталкиваются друг от друга, мяч отталкивается от посуды. Материалы, которые имеют тенденцию приобретать или терять электроны, включают шерсть, человеческие волосы, сухую кожу, шелк, нейлон, папиросную бумагу, полиэтиленовую пленку и полиэстер — и при тестировании этих материалов вы должны были обнаружить, что они перемещали алюминиевый шар так же, как пластина из пенополистирола. сделал.

Больше для изучения
Что такое статическое электричество ?, из Science Made Simple
Влияние материалов на статическое электричество, из Школы чемпионов Рона Куртуса,
Электроскоп, из PBS Kids
Как разные материалы реагируют на статическое электричество?, Из Science Друзья

ОБ АВТОРЕ (-АХ)

Последние статьи от Science Buddies

Прочтите следующее

Информационный бюллетень

Станьте умнее.Подпишитесь на нашу новостную е-мэйл рассылку.

Поддержите научную журналистику

Откройте для себя науку, меняющую мир. Изучите наш цифровой архив 1845 года, в который входят статьи более 150 лауреатов Нобелевской премии.

Подпишитесь сейчас!

Произошла ошибка при настройке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно.Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки вашего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом.Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу.Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта.Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Шокирующая наука о статическом электричестве зимой

На днях я делал покупки в продуктовом магазине. Когда я потянулся за мешком с картошкой, меня быстро встретил разряд статического электричества. Это случилось снова, когда я пошел продюсировать.В зоотоварах это случилось в третий раз.

Я знаю, что многие из вас, вероятно, тоже испытывали это ощущение. Дело в том, что наши погодные условия в зимние месяцы во многом зависят от того, как часто это происходит.


Что нужно знать
  • Электроны, протоны и нейтроны и их структура создают статический разряд

  • Трение тела о одежду делает нас более заряженными

  • Водяной пар отводит заряд от вас

  • Установка увлажнителя в вашем доме может помочь уменьшить накопление статического электричества, которое приводит к статическому разряду

Наука

Чтобы понять почему, нам нужно вспомнить химию и физику в средней школе.

Атомы состоят из электронов, протонов и нейтронов. Электроны имеют отрицательный заряд. Протоны имеют положительный заряд. Нейтроны нейтральны. В течение дня наши тела трутся о одежду, и мы начинаем терять электроны. Когда это происходит, мы заряжаемся положительно.

Такие предметы, как дверная ручка, заряжаются по-разному. Большинство металлов имеют более отрицательно заряженный состав. Итак, когда вы тянетесь к дверной ручке, вы выпускаете статический разряд. Это происходит, когда электроны перемещаются от дверной ручки к вашей руке, и это вызывает у вас шок.

Почему зимой хуже?

По той же причине, по которой мы получаем сухие и потрескавшиеся губы и руки, содержание влаги тесно связано со статическим разрядом.

Холодный воздух не удерживает столько влаги, как теплый воздух. По мере того, как зимой становится холоднее, в воздухе становится меньше влаги, поэтому он становится намного суше. Мы называем влагу в воздухе водяным паром.

Водяной пар отводит заряд от вас. Меньше водяного пара означает, что ваше тело может удерживать этот более высокий заряд.

Чем выше заряд, тем больше разряд. Таким образом, было бы разумно, что в зимние месяцы статические разряды станут более частыми и могут даже немного уколоть, когда вы касаетесь дверной ручки, своей собаки или, в моем случае, картофеля.

Могу я что-нибудь предотвратить?

Да, можно! Добавляя в дом увлажнитель или миски с водой, вы увеличиваете количество водяного пара и повышаете относительную влажность.Чем больше водяного пара присутствует, тем выше ваши шансы, что заряд уйдет от вас.

Защита от статического электричества — накопление статического заряда

Каждый раз, когда любые две поверхности соприкасаются, а затем разделяются, возникает статический электрический заряд. В промышленности статическое электричество генерируется во многих обычных технологических операциях, например, когда жидкость протекает через установку или когда частицы порошка контактируют с поверхностями технологического и транспортировочного оборудования. Так, например, такие процессы, как измельчение порошка, смешивание и пневматическая транспортировка, часто создают большой статический заряд, как и быстрый турбулентный поток жидкости, например, при разгрузке или фильтрации цистерны.

Основная проблема, вызываемая статическим электричеством в промышленных условиях, — это риск возгорания и взрыва из-за возгорания воспламеняющейся атмосферы от электростатических разрядов. Воспламеняющиеся газы, пары, порошки и аэрозоли являются обычным явлением в технологических процессах, и необходимы меры предосторожности для предотвращения их непреднамеренного возгорания. Меры предосторожности против возгорания и взрыва многочисленны и разнообразны, но подход, который следует включить, заключается в исключении или устранении потенциальных источников электростатического воспламенения в местах, где можно разумно ожидать наличия воспламеняющейся атмосферы.

Существует множество мер предосторожности, которые можно предпринять для контроля статического электричества, но прежде чем выбрать наиболее эффективный способ контроля статического электричества на вашем предприятии, разумно сначала понять, как статический заряд генерируется, накапливается и производит эти опасные « искры », которые мы хотим избежать. Итак, вернемся к основам….

Существует несколько различных механизмов, объясняющих возникновение электростатического заряда. К ним относятся контактная электризация, двухслойная зарядка, индукционная зарядка и коронный разряд.Но на практике наиболее распространенным способом электростатического заряда материалов является «контактная электризация», также известная как трибоэлектрификация. Контактная зарядка происходит, когда любые два материала соприкасаются, а затем разделяются.

Образование электростатического заряда не должно быть опасным. Однако если допустить накопление статического заряда на таких объектах, как установки, оборудование, контейнеры, люди, порошки или жидкости, это может привести к опасным электростатическим разрядам.

Электростатические разряды возникают между двумя объектами или поверхностями, которые находятся под разными электростатическими потенциалами (напряжениями).Эффективная энергия электростатического разряда во многом зависит от количества накопленного заряда и электрических свойств заряжаемых поверхностей / объектов.

Наконец, риск воспламенения воспламеняющейся атмосферы разрядом статического электричества зависит не только от эффективной энергии электростатического разряда, но и от чувствительности воспламеняющейся атмосферы к воспламенению, обычно называемой минимальной энергией воспламенения или MIE. Минимальная энергия воспламенения — это (измеримое) свойство воспламеняющейся атмосферы.

Что обеспечивает безопасность процесса Stonehouse для консультационных услуг по электростатическим опасностям?

Наши специализированные консультационные услуги по электростатике призваны помочь нашим клиентам понять, оценить и контролировать опасности возгорания и взрыва, а также любые технологические проблемы, которые могут возникнуть в результате генерации и накопления электростатического заряда в их процессах. Вот краткий обзор наших услуг:

  • Консультации специалистов и электростатические измерения на месте
  • Лабораторные испытания, включая натурные испытания FIBC
  • Расследование инцидента
  • Свидетель-эксперт
  • Контракт на НИОКР

Пожалуйста, обращайтесь к нам за индивидуальным практическим решением.

Применение электростатики | Наш подход

Статическое электричество можно использовать для множества полезных целей в широком спектре процессов. На самом деле потенциал для коммерческого развития огромен. Stonehouse Process Safety имеет обширный опыт оказания помощи нашим клиентам в проектировании полномасштабного технологического оборудования, проведении программ исследований и разработок и т. Д. Мы участвовали в различных проектах, в том числе:

  • Тонкие покрытия
  • Распыление жидкости
  • Удаление пыли
  • Манипуляции с порошком
  • Разделение материалов
  • Порошковое осаждение

Консультационные услуги по электростатике | Обслуживаемые отрасли

Наши инженеры и ученые обслуживают самых разных клиентов как в США, так и во всем мире.Некоторые из отраслей, в которых требуются наши консультационные услуги по электростатическому разряду, включают:

  • Автомобилестроение и авиация
  • Химические вещества (например, мелкие, сыпучие и т. Д.)
  • Уголь / Добыча
  • Электроника
  • Энергия и мощность
  • Инженерное дело
  • Оборудование для производства
  • Вкус и аромат
  • Еда и напитки
  • Государственные учреждения
  • Металлы и обработка
  • Фармацевтические препараты
  • Целлюлоза и бумага
  • Дерево
  • … и многое другое!

Выберите Stonehouse Process Safety для консультационных услуг по электростатической опасности сегодня

Команда Stonehouse Process Safety имеет большой опыт выявления, оценки и контроля электростатических опасностей в широком спектре промышленных процессов и ситуаций, включая обработку / обработку жидкостей и порошков, жесткие и гибкие контейнеры для жидкостей и порошков (включая гибкие промежуточные насыпи). контейнеры (FIBC)), пластиковые листы и вкладыши, разделение и переработка материалов, агломерация порошка и многое другое.Свяжитесь с Stonehouse Process Safety сегодня, чтобы узнать больше о нашем опыте в области электростатических опасностей, проблем обработки и приложений!

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *