Схема датчика уровня воды: схемы датчиков воды

Содержание

схемы датчиков воды

Устройство управления насосом воды

Одна из возможных схем управления насосом приведена на рис.5. Цепи управления тринисторами разделены и питаются от отдельных обмоток трансформатора Т1. Датчики Е1 и Е2 включены до выпрямителей, поэтому через них протекает переменный ток (без постоянной составляющей). Резервуар исключен из электрической цепи, поэтому может быть выполнен из материала, не проводящего ток.
Введение электромагнитного реле К1 позволяет использовать устройство как для автоматической откачки воды (дренаж), так и для автоматического наполнения накопительного резервуара (водоподъем). В первом случае электронасос подключают к зажимам Х1 и Х2, во втором — к зажимам Х3 и Х4.
Датчики уровня Е1 и Е2 удобно изготовить из бритвенных лезвий с хромовым антикоррозионным покрытием. Каждый датчик состоит из 2-х лезвий. Лезвия укрепляют на внутренних сторонах жесткой пластины из изоляционного матерриала, согнутой подобно букве П.

Оптимальный зазор между лезвиями в датчике следует уточнить при налаживании устройства из-за того, что проводимость воды в разных местностях может существенно различаться.
Вообще говоря, взаимное положение лезвий в датчике и размещение его относительно поверхности воды некритично. Надо лишь экспериментально добиться наиболее четкой работы устройства в каждом конкретном случае.
Материал пластины не должен впитывать воду; годятся полиэтилен, фторопласт, органическое стекло. Соединительные проводники припаивают к лезвиям с применением нужного флюса. Крепить лезвия можно любым способом — проволочными скобами, винтами и т.п. Датчики устанавливают в резервуаре на соответствующих расстояниях ото дна.
В устройстве могут быть использованы любые диодные сборки, рассчитанные на прямой ток не менее 100мА. Тринисторы КУ202В можно заменить на КУ202Г — КУ202Е. Конденсатор С1 — К50-6. Реле К1 — РП21-003-04 (напряжение срабатывания 24В). Трансформатор Т1 — ТПП226-127/220-50 (или ТПП238-127/220-50).
Можно использовать и любой другой сетевой трансформатор номинальной мощностью не менее 3Вт с напряжением на холостом ходу (т.е. без нагрузки) вторичных обмоток, близким к указанному на схеме.
Налаживание устройства сводится к определению ширины зазора между электродами датчиков Е1 и Е2. Он должен быть таким, чтобы реле К1 четко срабатывало при погружении датчиков в воду.
Примечание: цепь управляющего электрода каждого из тринисторов можно дополнить включением в нее токоограничительного резистора — это предотвратит их от выхода из строя при случайном замыкании цепи того или иного датчика (или при работе в соленой воде). Сопротивление резистора должно быть таким, чтобы при замыкании цепи датчика ток через управляющий переход соответствующего тринистора не превышал паспортного максимально допустимого значения.

Индикатор уровня жидкости

Если ваши знания немного включают электроники и вам необходим индикатор уровня жидкости, то можно воспользоваться схемой на рис. 6. Этот прибор предназначен для контроля уровня жидкости, например воды, в различных резервуарах. Он подает непрерывный звуковой сигнал, когда уровень жидкости достигает номинального значения, и прерывистый звуковой сигнал при превышении жидкостью критической отметки.
Индикатор (рис.6) состоит из 2-х генераторов: первый собран на логических элементах DD1.1 и DD1.2, а второй — на элементах DD1.3 и DD1.4. Работой генераторов управляет датчик из сенсоров Е1-Е3, размещаемый в резервуаре на том уровне, на котором требуется контроль жидкости. Если жидкость ниже заданного уровня и, естественно не доходит до сенсоров, то через резисторы R2, R3 на входы элементов DD1.1-DD1.3 поступает уровень логической 1. Ни один из генераторов не работает. В таком режиме индикатор практически не потребляет тока от источника питания.

Когда жидкость достигнет сенсоров Е1, Е2 и «замкнет» их, то на выводе 12 элемента DD1.3 появится уровень логического нуля. Второй генератор начинает работать, и в телефоне BF1 раздается звуковой сигнал частотой около 1000Гц. Если поступление жидкости в резервуар не прекратится, ее уровень достигнет вскоре сенсора Е3. Уровень логического 0 окажется и на входах элементов DD1.1 и DD1.2. Начнет работать первый генератор и управлять включением второго генератора. Частота следования импульсов первого генератора сотавляет несколько Герц, поэтому в телефоне будут раздаваться прерывистые звуковые сигналы, извещающие о достижении жидкостью критического уровня.
В индикаторе можно применить, кроме указанной на схеме, микросхему К561ЛЕ5; конденсаторы — КЛС,КМ; резисторы — МЛТ-0,125; головной телефон — обязательно высокоомный, сопротивлением не менее 1000Ом на частоте 1000Гц; источник питания — батарея «Крона» либо две последовательно соединенные батареи 3336.
Сенсоры могут быть выполнены в виде облуженных медных планок (рис.7), прикрепленных к пластине (А) из изоляционного материала. Подойдет также отрезок фольгированного стеклотекстолита с сенсорными токопроводящими площадками.. В этом варианте площадки облуживают или покрывают антикоррозийным токопроводящим покрытием, а участок А стеклотекстолита окрашивают лаком или краской.
Если жидкость агрессивная, сенсоры нужно изготовить из материала, не вступающего в химическую реакцию с жидкостью. Сопротивление между сенсорами додлжно быть не менее 10МОм. Если обеспечить его не удастся, придется уменьшить сопротивления резисторов R2 и R3.
Детали индикатора, кроме сенсорного датчика и головного телефона, размещаются на печатной плате (рис.7) из фольгированного стеклотекстолита. Плату соедииняют с датчиком проводами в хорошей изоляции. Для защиты от помех такой провод лучше взять экранированным, соединив экран с общим проводом индикатора (минус питания).
Поскольку в дежурном режиме индикаторо почти не потребляет энергии, выключателя питания нет, но при его желании легко ввести. Какого-либо специального налаживания индикатора не требуется, но в случае необходимости тональность сигнала можно изменить подбором конденсатора С2, а периодичность его подачи — подбором конденсатора С1.

электрическиая и монтажная схемы

Простой датчик уровня воды своими руками – Поделки для авто

С помощью любимого таймера 555 можно изготовить датчик для воды, для омывайки, тосола и т. д. Стоит отметить, что подобный датчик пригодится как в Вашем автомобиле, так и в бытовых условиях. Схема довольно проста и доступна для повторения. Микросхема получила широкое распространение именно благодаря своей простоте.

Для датчика воды будет использоваться такая схема.

Работа устройства предельно проста. При погружении электродов в жидкость, С1 – конденсатор, зашунтирован. Когда электроды находятся в воздухе, то шунт исчезает, и микросхема начинает работать.

От микросхемы исходят прямоугольные импульсы. С помощью таких импульсов можно управлять при помощи более большей нагрузки. К примеру, можно подавать сигнал на лампочку через транзистор. Такая технология позволяет включить в схему сигнализацию или индикатор. С помощью последнего можно определять наличие воды в баке. Подобный датчик можно установить как в баке, так и в радиаторе. Питание датчика – 12 вольт. Это говорит о том, что с питанием не возникнет вопросов.

Как правило, датчики изготавливают из стеклотекстолита.

Но чаще всего используют обычную медь (провода). Для датчика подойдет два одинаковых отрезка провода с сечением 1 миллиметр. Важно заметить, что с проводов нужно счистить лак, который может быть на поверхности металла. Делается это с помощью огня или же наждачной бумаги. Так, длина проводом должна быть до 3,5 сантиметров.

Далее в простой пробке от напитка делается две дырки на расстоянии 3 миллиметров друг от друга диаметром 1 миллиметр. Туда вставляются провода.

Чтобы провода держались в пробке, их укрепляют силиконом. Потом провода крепятся к самой микросхеме. Провода в крышке можно соединить с микросхемой более тонкими проводниками.

Микросхема может быть навесной – без установочной платы. Когда все будет готово, другой подобной крышкой закрывают полученное устройство. Соединение крышек необходимо герметизировать клеем или другими средствами.

Таким образом, не совершая излишних затрат можно самостоятельно изготовить датчик, который поможет не только в автомобиле, но и в быту. Так, можно избавить себя от частых подъемов на душ для того, чтобы посмотреть уровень воды в баке. Самодельный датчик уровня воды решит проблему. Важно лишь выполнять все работы аккуратно и внимательно, чтобы устройство работало исправно.

Схема устройства контроля уровня воды в резервуаре » Вот схема!


Устройство предназначено для контроля за уровнем воды в резервуаре и управления электронасосом, заполняющим этот резервуар. В отличие от большинства предложенных тиристорных или транзисторных систем это, благодаря высокому входному сопротивлению микросхемы логики КМОП исключает ошибки, вызванные недостаточно высокой проводимостью воды.

Наличие трансформатора питания и электромагнитного реле обеспечивает полную развязку между водой и электросетью, снижая до минимума возможность поражения электротоком.

Датчик уровня воды состоит из трех щупов E1, Е2 и Е3. которые погружаются в емкость с водой. Щупы не должны контактировать между собой и со стенками бака. Щупы Е2 и Е3 погружаются на такую глубину, которая соответствует допустимому минимуму уровня воды, а щуп Е1 — на уровень максимума.

Пока бак полный существует электрическая связь между щупами Е1 и Е2 через воду, и на выводе 1 D1.1 высокий логический уровень. Триггер на элементах D1.1 и D1.2 устанавливается в устойчивое единичное состояние и логический нуль с выхода D1.4 закрывает ключ на VT1 и VT2, ток через реле Р1 не протекает и его контакты разомкнуты — насос выключен. В таком состоянии триггер будет находится до тех пор, пока не обнажатся щупы Е2 и Е3.

Электрический контакт через воду между ними прекратится и на выводе 8 D1.3 установится нуль, а единица с его выхода установить триггер в нулевое положение. При этом ключ на VT1 и VT2 откроется и реле Р1 включит электронасос. Это будет продолжаться до тех пор пока не будет погружен щуп Е1. Затем электронасос выключится и схема перейдет в исходное положение.

Микросхема D1 — К561ЛЕ5. Трансформатор питания готовый — ТВК110Л от развертки старого лампового телевизора. Можно использовать любой другой трансформатор, выдающий переменное напряжение 7-8В (так, чтобы на С2 было напряжение 10-15В). Если напряжение будет больше потребуется параллельно С1 включить стабилитрон типа Д814Д чтобы ограничить напряжение питания микросхемы.

Электромагнитное реле Р1 — РЭС22 на 12В, или любое другое, достаточно мощное.

Сигнализаторы уровня воды на микросхемах-таймерах

Варианты схем, которые могут служить в качестве сигнализатора воды, приведены на рисунке 1. Тут используется свойство обычной (не дистиллированной) воды за счет наличия в ней различных примесей проводить электрический ток.

При этом через цепь датчика F1 поступает напряжение на вход микросхемы. Непосредственно датчиком может служить гребенка, вырезанная на печатной плате, или две металлические пластины, имеющие нержавеющее покрытие и расположенные на расстоянии 4.. .5 мм друг от друга.

В данном включении таймер работает как двухпороговый компаратор (обладающий гистерезисом) и управляет включением реле К1. Наличие у микросхемы гистерезиса при переключении исключает дребезг контактов реле, что значительно продлевает их срок службы.

Напряжение питания схемы зависит от номинального у применяемого реле и может находиться в диапазоне 9…15 В. Цепи нагрузки будет коммутировать группа контактов К1.1.

Аналогичную схему можно использовать и в качестве сигнализатора влажности воздуха. Простейший датчик влажности легко изготовить из порошка хлорида кальция (вещество, конденсирующее в себе влагу), размещенного в зазоре между пластинами.

В этом случае нужную чувствительность к срабатыванию реле можно установить подстроечным резистором R1 (рис. 1, б). Конденсаторы С2 в схемах служат для подавления наводок на длинных проводах. Выключение реле происходит при большом сопротивлении датчика F1.

Рис. 1. Датчик воды, срабатывающий на ее наличие (а) или отсутствие (б).

Чтобы все устройство работало более экономично и надежно, для управления мощной нагрузкой лучше применять не реле, а электронный коммутатор.

Датчик уровня воды

В этом случае будет удобнее вариант схемы, показанный на рис. 2. Она является классическим генератором, который начинает работать только в случае, когда нет воды между электродами (вода закорачивает цепь конденсатора и срывает генерацию). В показанной на рисунке схеме нагрузка (электронасос, нагреватель или др.) будет включена при отсутствии воды в зоне контроля.

Рис. 2. Датчик воды на основе автогенератора.

Иногда бывает необходимо обеспечить гистерезис не только по срабатыванию исполнительного устройства, но и по уровню воды, например, при автоматическом управлении включением погружного насоса, применяемого для полива растений.

Датчик уровня воды для колодца

Насос должен начинать работать, когда уровень воды в колодце достигнет положения верхнего датчика F1 (рис. 3), а отключаться при снижении ниже положения датчика F2. Это исключит частые включения насоса, а также работу его без воды (что недопустимо).

Рис. 3. Датчик с гистерезисом переключения по уровню воды.

Величины резисторов R1-R2 подбираются экспериментально на месте (обычно можно использовать R1 = R2), так как электропроводность воды в разных местах может сильно отличаться, к тому же она зависит от времени года.

Сначала подбором резистора R2 добиваемся того, чтобы реле было включено при наличии воды между электродами датчика F1, а после этого определяем величину резистора R1, при которой реле К1 остается включенным при снижении уровня воды до положения датчика F2. При этом надо проверить, чтобы, если реле было отключено, при наличии воды в зоне датчика F2 оно не срабатывало.

Второй выход (7) микросхемы не задействован и может во Всех схемах использоваться для подключения светодиодного индикатора режима работы, как это показано на рис. 5.35, б.

Литература: Радиолюбителям: полезные схемы, Книга 5. Шелестов И.П.

Датчики уровня оптические интерфейсные

— нечувствительны к пене
— миниатюрная конструкция
— взрывозащищенное исполнение
— интерфейсный выход (RS-485)
— подключение к системам управления верхнего уровня

 

Описание

Датчики уровня оптические ДУ-О-10…13 с выходным интерфейсом RS485 предназначенs для измерения предельного уровня различных жидкостей или контроля наличия жидкости в резервуарах, транспортируемых цистернах, трубопроводах и открытых каналах.

Датчики определяют границу раздела «воздух-жидкость» в резервуарах с водой и светлыми нефтепродуктами — бензины, нафта, керосины, дизельные топлива. Принцип действия датчиков основан на измерении разницы оптической плотности жидкости и воздуха.

Датчики могут использоваться практически с любыми жидкостями, имеющими оптическую плотность, отличную от воздуха, например в качестве сигнализаторов наличия топлива, датчиков предельного уровня воды в емкостях и каналах, независимо от степени его загрязненности. При этом оптические датчики уровня не рекомендуется применять для тёмных нефтепродуктов.

Датчики соответствуют требованиям стандартов взрывозащиты и пригодны для использования в системах защиты от переполнения с установкой непосредственно во взрывоопасных зонах.

Технические характеристики

Исполнения

В семейство датчиков входят:

Область применения: нефтебазы, автозаправочные станции, котельные, предприятия использующие емкости для хранения воды и нефтепродуктов

  • контроль уровня воды или топлива в стационарных емкостях в одной точке;
  • контроль наличия воды или топлива в емкостях, каналах и трубопроводах.

Миниатюрная конструкция

Описание

ДУ-О-13 является базовой моделью. На основе модуля данного датчика выполнены другие модели семейства интерфейсных оптических датчиков уровня.

Миниатюрная конструкция датчика позволяет устанавливать его и контролировать заполнение или наличие остатков продукта в труднодоступных местах: узких трубах, патрубках, сочленениях, там, где невозможно установить вибрационные, поплавковые и датчики уровня другого типа.

Пригоден для установки в любом положении: горизонтальном, вертикальном (прямом и обратном).

Технические характеристики

Основные параметры и размеры Норма
Напряжение питания постоянного тока, В от 10 до 25
Ток потребления, мА, не более 5
Время срабатывания при перемещении из воздуха в жидкость, мс, менее 100
Время срабатывания при перемещении из жидкости в воздух, мс, менее 250
Интерфейс связи/ протокол RS-485/ModBus RTU
Испытательное давление, МПа, не менее  0,4
Защита от влаги и пыли  по ГОСТ 14254-96 IP67
Маркировка взрывозащиты  0ЕхiаIIВТ5Х
Подключение к техпроцессу М20х1-8g
Температура окружающей среды, °С — 40…+50
Устойчивость к вибрации группа N2 по ГОСТ 12997-84
Масса, без кабеля, кг, не более 0,5

Информация для заказа

Габаритные и присоединительные размеры

Схема подключения

— встроенная клеммная коробка
— кабельные вводы для последовательного подключения
— надежное крепление

Описание

Особенностью данной модели датчика является наличие двух кабельных вводов и миниатюрной клеммной коробки, что делает датчик ДУ-О-10 удобным для шлейфового подключения нескольких датчиков.

Крепление датчика осуществляется с помощью накидной гайки, что позволяет избежать вращения корпуса при монтаже и демонтаже.

Миниатюрная конструкция позволяет производить установку в труднодоступных местах, например, в узких трубах или донных клапанах авто и ж\д цистерн.

Технические характеристики

Характеристика Значение
Напряжение питания, В (DC-постоянный ток) 10…25
Ток потребления, не более, мА 8,5
Время срабатывания при переходе из воздуха в жидкость, не более, мс 1
Время срабатывания при переходе из жидкости в воздух, не более, мс 250
Интерфейс RS-485, ModBus RTU
Вязкость жидкости, не более, сСт 0,2-100
Материал корпуса  Нержавеющая сталь, алюминий, полиамид
Маркировка взрывозащиты 0ЕхiаIIАТ6Х
Температура окружающей среды, °С -40…+50
Защита от пыли и влаги IP67
Давление процесса, не более, МПа 0,6
Устойчивость к вибрации  группа N2 по ГОСТ 12997-84  
Климатическое исполнение  УХЛ

Информация для заказа

Габаритные и присоединительные размеры

Схема подключения

— удобство установки

Описание

Датчик уровня оптический ДУ-О-11 выполнен на основе модуля датчика ДУ-О-13.

Датчик имеет корпус с двумя входами под кабель и штангу с вынесенным в ней оптическим модулем.

Конструкция датчика удобна для установки на отверстия в горловинах наливных стояков. Может быть использован для мобильного применения — в качестве датчика предельного уровня, устанавливаемого в крышках автоцистерн.

Наличие двух выходов позволяет использовать датчики ДУ-О-11 в шлейфовых подключениях из нескольких датчиков.

Датчики имеют цифровой интерфейс RS485 и могут быть использованы в составе сети подобных устройств.

Технические характеристики

Наименование параметра Значение
Напряжение питания постоянного тока, В       10-25
Ток потребления, мА, не более 5
Время срабатывания при перемещении из воздуха в жидкость, мс., менее 100
Время срабатывания при перемещении из жидкости в воздух, мс. , менее 250
Интерфейс / протокол связи RS-485/ MODBUS RTU
Маркировка взрывозащиты 0ЕхiаIIBТ5Х
Давление процесса Мпа, не менее 0,4
Рабочая температура, ºС — 40…+ 50
Устойчивость к вибрации Группа N2 по ГОСТ 12997-84
Степень защиты от воды и пыли IP 67
Длина штанги, мм 115…2000
по желанию Заказчика
Масса без кабеля, не более, кг. 1,5

Информация для заказа

Габаритные и присоединительные размеры

Схема подключения

— удобство установки

Описание

Датчик уровня оптический ДУ-О-12 выполнен на основе модуля датчика ДУ-О-13.

Датчик имеет корпус с двумя входами под кабель и оснащен телескопической штангой с вынесенным в ней оптическим модулем, что позволяет настроить уровень срабатывания датчика в пределах регулировки.

Пригоден для мобильного применения — в том числе для установки на автоцистерны в качестве датчика ограничения перелива при нижнем наливе.

Технические характеристики

Наименование параметра Значение
Напряжение питания постоянного тока, В 10-24
Ток потребления, мА, не более 14
Интерфейс / протокол связи RS-485/ MODBUS RTU
Маркировка взрывозащиты 0ЕхiаIIBТ5Х
Предел регулировки штанги от нижней части корпуса, мм 135…235
Рабочая температура, ºС — 40…+ 70
Материал корпуса АК12
Степень защиты от воды и пыли IP 67
Масса, кг 2,0

Информация для заказа

Габаритные и присоединительные размеры

Схема подключения

Датчик и регулятор уровня воды в баке


Предлагаем собрать простой датчик уровня воды и его контроллер. Как правило такие датчики работают с использованием электрической проводимости воды, так как не всегда получается использовать какой-либо плавающий переключатель. Здесь насос должен начинать качать каждый раз, когда вода достигает слишком низкого уровня, и должен прекращать накачку, когда вода достигает высокого уровня. Когда вода израсходована, а ее уровень немного ниже высокого уровня, схема должна снова включить насос и выключить его, когда поверхность воды снова коснется электрода, отвечающего за сигнализацию верхнего уровня воды. Этот процесс будет повторяться до тех пор, пока питание не будет отключено. Поэтому пришлось спроектировать электронную схему, которая была бы надежна и имела длительный срок службы.

Возможности схемы

  1. Поддерживать уровень воды между «высоким» и «низким», то есть между соответствующими электродами, установленными в баке.
  2. Защита насоса, если уровень воды в баке падает ниже уровня, обеспечивающего нормальную его работу.
  3. Использована простейшая схема управления на базе CD4001.

Тут микросхема CD4001 подключена как триггер SR:

А вот как она будет управлять насосом:

Небольшой трансформатор на 220 В переменного тока, понижающий в 12 вольт с силой тока 250 мА подключается к плате источника питания через разъемы X1-1 и X1-2. Трансформатор обеспечивает низкое напряжение необходимое для питания контроллера и обеспечивает гальваническую развязку между цепью управления и сетью. Чтобы свести к минимуму количество используемых компонентов, микросхема CD4001 использовалась для создания одного блока питания для обоих компонентов, цепи управления и реле.

Кроме того, контроллер содержит два светодиода, один зеленый — чтобы указать когда насос работает, а другой красный — чтоб сигнализировать когда насос находится в защитном режиме. Зеленый светодиод загорается при каждом включении реле. Этот LED вместе с токоограничивающим резистором подключен параллельно катушки реле. Если красный светодиод включен, насос с зеленым светодиодом останется выключенным. Когда красный светодиод гаснет, насос и зеленый светодиод могут включаться при необходимости.

Цепь, состоящая из транзисторов Q1 и Q2, предназначена для включения красного светодиода (защита насоса) каждый раз, когда уровень воды находится между уровнем электрода насоса и электродом, размещенным на дне. Q1 будет закрыт, пока уровень воды остается ниже защитного уровня. Ток базы Q1 слишком мал, менее 1 мкА. Q1 и Q2 собраны по схеме Дарлингтона, поэтому Q2 может активировать красный LED при необходимости.

IC1-B — это логический элемента «И», что означает каждый раз, когда необходимо заполнить резервуар и достичь уровня защиты насоса, он откроет транзистор Q3, который запустит водяной насос.

Список деталей

Резисторы:

  • 3x — 2,2 мОм 1/4 Вт (R1, R2, R3)
  • 1x — 4,7 кОм 1/4 Вт (R4)
  • 1x — 120 кОм 1/4 Вт (R5)
  • 2x — 470 Ом 1/2 Вт (R6, R7)
  • 1x — 15 кОм 1/4 Вт (R8)

Конденсаторы:

  • 1x — 330 мкФ 63 В (С1)
  • 1x — 220 мкФ 25 В (С2)
  • 1x — 1 мкФ 63 В (С3)

Полупроводники:

  • 5x — 1N4004 (D1, D2, D3, D4, D5)
  • 1x — CD4001 (IC1)
  • 1x — 7812T (IC2)
  • 1x — Зеленый светодиод (LED1)
  • 1x — Красный светодиод (LED2)
  • 2x — 2N3904 (Q1, Q3)
  • 1x — 2N3906 (Q2)

Прочее:

  • 1x — реле 12 В (RLY1) Jameco P/N: 144186
  • 4x — 2 клеммных разъема (X1, X2, X3, X4)
  • 1x — 14-контактный разъем для микросхемы
  • 1x — 220 В / 12 В при токе 250 мА адаптер переменного тока.

При сборке сначала припаяйте пассивные компоненты, то есть резисторы и электролитические конденсаторы, обращая внимание на их полярность. Затем припаяйте компоненты блока питания, такие как диоды и стабилизаторы напряжения, также обращая внимание на цоколевку.

Установите 14-контактную панельку на печатной плате, а затем припаяйте ее. Наносите столько припоя, сколько нужно для пайки каждого провода. Слишком большое количество припоя может привести к тому, что отдельные контакты зальются.

Используйте для проверки внешний источник питания постоянного тока +15 В или две 9-вольтовые батареи, соединенные последовательно. Напряжение, измеренное между контактами 14 (Vdd) и 7 (GND), должно составлять +12 В +/- 2%. Если напряжение такое же, как указано выше, можете перейти к следующему шагу.

Установите транзисторы NPN 2N3904 в месте Q1 и Q3 следя за тем, чтобы все контакты вошли в соответствующие отверстия. Тщательно припаяйте каждый вывод. Установите транзистор Q2, то есть 2N3906 PNP, таким же образом. Установите зеленый светодиод в месте, обозначенном как LED1. Коротким концом является катод. Если светодиод установлен в обратном направлении, он не загорится. Сделайте то же самое с красным светодиодом, который должен быть установлен в месте, обозначенном как LED2.

Затем установите два двойных разъема. Установите один разъем в месте X1 и один в месте X4, а затем припаяйте их так, чтобы их выходы были обращены к краю печатной платы. Возьмите два других разъема и затем соедините их вместе, вдавив язычок одного из них в паз на другом. Такие собранные разъемы должны быть припаяны вместо X2 и X3, так же, как и прежде, обратите внимание, что их выходы направлены к краю платы.

Установите реле RLY1 и припаяйте его. После этого плата контроллера будет готова. Чтобы подготовить устройство к тестированию, поместите интегральную микросхему CD4001 в ранее припаянную панельку.

Поместите собранную печатную плату на непроводящую поверхность, чтобы предотвратить случайное закорачивание точек пайки проводящими ток предметами. Подключите пару проводов длиной около 30 сантиметров, а затем зачистите их концы. Вставьте один конец кабеля в разъем на плате контроллера с надписью «Земля», а затем поместите конец другого провода в разъем, описанный как «защита уровня насоса», оставляя другие концы свободными.

Подключите источник питания к схеме. Если блок питания правильно подключен к плате и вся печатная плата собрана без ошибок, должен загореться красный светодиод. Если соедините два провода вместе, красный светодиод должен погаснуть, а зеленый загореться. Вы также должны услышать тихий щелчок в реле. При размыкании концов кабеля выключится зеленый светодиод, красный светодиод загорится. Если все работает как описано выше, значит схема была собрана правильно.

Пластиковый контейнер наполните водой. Не отключайте питание от схемы. Красный светодиод должен гореть, а два изолированных провода не должны касаться друг друга. Поместите концы проводов в емкость с водой. Красный светодиод должен погаснуть, а зеленый загореться. Реле снова издаст тихий звук. Удалите проводники из воды, зеленый светодиод должен погаснуть, а красный загореться. Если этот тест также был успешным, значит схема работает нормально.

Тест питания

Теперь пришло время протестировать самодельный контроллер с питанием от трансформатора 220 В / 12 В. Подключите 12 В переменного тока от трансформатора к разъемам на плате контроллера, помеченным как 12 В AC. Подключите первичную обмотку трансформатора с помощью внешнего кабеля к сети. Схема должна вести себя так же, как при использовании постоянного напряжения. Если это так, можно перейти к следующему тесту.

Имитация работы насоса

Подготовьте другую пару проводов той же длины, что и те, которые уже подключены к плате контроллера, зачистите их и подключите первый провод к клемме «низкий уровень», а второй провод к клемме «высокий уровень». Когда концы защитного кабеля насоса и «Земля» погружены в емкость с водой, должен гореть зеленый светодиод. Теперь погрузите в тот же контейнер с водой, что и предыдущие кабели с кабелем «низкого уровня». Зеленый светодиод должен гореть, а затем погрузив провод «высокого уровня» в тот же контейнер с водой, зеленый светодиод должен погаснуть. Это испытание имитировало заполнение резервуара водой через насос. Чтобы смоделировать сбор воды из контейнера, можете удалить провод «высокого уровня» из контейнера для воды, схема должна вести себя одинаково все время. Теперь удалите кабель низкого уровня из воды. Зеленый светодиод должен гореть, а реле должно включать насос.

Если схема успешно прошла все тесты, то контроллер уровня воды готов к использованию — можете испытывать его на практике. Электроды которые действуют как датчики, должны располагаться вертикально сверху вниз в резервуаре для воды. Чтобы предотвратить коррозию электродов стоит сделать их из нержавеющего материала (для увеличения срока службы). Если электроды будут проходить через стенку резервуара, обязательно загерметизируйте отверстия, чтобы предотвратить утечку.

Простой вариант датчика

При необходимости схему можно ещё более упростить, исключив микросхему. Для подобных целей можно использовать и такую систему. Но тут нет защиты насоса от холостой работы, поэтому есть всего два уровня. Компоновка настолько проста, что собирается за час. Она тоже долгое время работала без проблем и в холодной, и кипящей воде. В качестве электродов использовались куски проволоки из нержавейки. Скачать файлы тут

Индикатор уровня воды в баке на микроконтроллере PIC16F628A

Индикатор(датчик) уровня воды на микроконтроллере PIC16F628А – устройство, которое позволит визуально контролировать уровень воды в непрозрачной ёмкости. Предлагаемое устройство может пригодиться всем, у кого есть загородный дом с летним душем или дача, огород, да что угодно лишь была бы емкость с водой. После некоторых модернизаций из индикатора получилось реле уровня воды.

Сам индикатор состоит из двух основных частей:

  1. Датчики уровня воды;
  2. Электроника, которая обрабатывает информацию, полученную от датчиков.

Теперь подробнее рассмотрим каждую из составных частей индикатора.

О схеме.

Схема индикатора собиралась из того, что было под рукой, и разрабатывалась вообще для микроконтроллера PIC16F84, но позже было принято решение добавить поддержку более дешевого и доступного микроконтроллера — PIC16F628A.

Принципиальная схема индикатора уровня воды (рисунок 1) проста, как пять копеек. FM приемник на RDA5807 — проще не бывает!

Рисунок 1 — Принципиальная схема индикатора уровня воды на микроконтроллере PIC16F628A

Рассмотрим основные узлы. Сердцем устройства является микроконтроллер PIC16F628A фирмы Microchip. Для стабильного питания которого, применяется выпрямитель на диодном мосте, конденсаторах и интегральном стабилизаторе L7805.

Для понижения напряжения настоятельно рекомендуется применить понижающий трансформатор, который обеспечит необходимую гальваническую развязку. Гасящие конденсаторы лучше не ставить, так как появляется риск оказаться под опасным потенциалом напряжения.

Датчики подключаются к схеме через барьерные резисторы.

Четыре светодиода отображают текущее количество воды в емкости. В зависимости от того какой датчик замыкает с общим проводом, светодиод того датчика и будет светиться. Весь перечень деталей сведён в таблицу 1.

Таблица 1 – Перечень компонентов для индикатора уровня воды на микроконтроллере PIC16F628А
Позиционное обозначение Наименование Аналог/замена
С1, С3 Конденсатор керамический – 15пФх50В
С2 Конденсатор электролитический — 470мкФх25В
С4 Конденсатор керамический – 0,1мкФмкФх50В
С5 Конденсатор электролитический — 1000мкФх10В
DA1 Интегральный стабилизатор L7805 L78L05
DD1 Микроконтроллер PIC16F628A PIC16F648A, PIC16F84
HL1-HL4 Светодиод 3мм
R1-R5, R11 Резистор 0,125Вт 5,1 Ом SMD типоразмер 0805
R6-R9 Резистор 0,125Вт 510 кОм SMD типоразмер 0805
R10 Резистор 0,125Вт 1 кОм SMD типоразмер 0805
R12-R15 Резистор 0,125Вт 180 Ом SMD типоразмер 0805
VD1 Диодный мост 1А х 1000В 2W10
XP1-XP4 Штекер платный
XT1-XT2 Клеммник на 2 контакта.
XT3 Клеммник на 3 контакта.
ZQ1 Кварц 4МГц типаразмер HC49

О датчиках.

В качестве датчиков используются тонкие хомуты из оцинкованной жести, которые, в свою очередь, располагаются на пластиковой трубе, на определенном расстоянии друг от друга. Труба крепится к тяжелому основанию(рисунок 2).

Рисунок 2 – Тяжелое основание для пластиковой трубы с датчиками.

К хомутам подводятся провода, соединяющие датчики и схему (можно использовать витую пару). Вся эта конструкция устанавливается в емкость с водой. Замыкать датчики между собой будет вода. Расстояния между датчиками выбираются произвольные. В моем случае, емкость была условно разделена на три части, и по уровню каждой части на трубе был установлен хомут. Если для емкости был предусмотрен перелив, то последний хомут должен быть установлен на уровне перелива.

Конструкция датчиков может быть и иной. Главное соблюдать требуемую последовательность.

Как работает.

Работает такая конструкция очень просто. На самом низу трубы (или на основании) крепится общий провод для работы с датчиками. Относительно этого провода будут происходить все измерения. Вода, наполняя емкость, постепенно начнет замыкать общий провод с датчиками. Первый на очереди — датчик 1. Когда общий провод с ним замкнется тогда включиться первый светодиод. Далее к первому датчику добавится второй датчик, при этом включится второй светодиод, а первый выключиться и т.д. Когда произойдет замыкание с четвертым датчиком — включиться четвертый светодиод. Который, в свою очередь, будет мерцать с частотой 2 Гц.

Подобный алгоритм работы можно легко организовать на обычной логике. Так поначалу и делалось, однако, из-за частых ошибочных состояний, было принято решение заменить схему на современное микроконтроллерное устройство. Рабочая программа для PIC-микроконтроллера была написана на языке ассемблер и отлажена в программе MPLab 8.8

Моделирование.

Работа устройства моделировалась в программе протеус см. рисунок 3. Модель сделана для микроконтроллера PIC16F84A! Внимательно выбираем прошивку.

Рисунок 3 – Модель уровня воды на микроконтроллере.

О печатной плате.

Печатная плата получилась размерами 55х50мм (рисунки 4-5 !!! не в масштабе).

Рисунок 4 – Печатная плата индикатора уровня воды в баке на микроконтроллере PIC16F628A (низ) не в масштабе.

Рисунок 5 – Печатная плата индикатора уровня воды в баке на микроконтроллере PIC16F628A (верх) не в масштабе.

Внешний вид индикатора показан на рисунке 6.

Рисунок 6 – Готовая плата индикатора уровня воды.

Корпус.

Схему готового индикатора разместил в корпусе небольшого приемника рисунки 7-8.

Рисунок 6 – Готовая плата индикатора уровня воды на микроконтроллере PIC16F628A в корпусе приемника.

Рисунок 7 – Кнопка включения питания.

Отверстия для динамика заклеил клеем, а на лицевую сторону приклеил глянцевую фотография рисунки 8-9

Индикатор, собранный из заведомо рабочих деталей, начинает работать сразу и в наладке не нуждается.

Рисунок 8 – Заклееные отверстия.

Рисунок 9 – Лицевая панель индикатора уровня воды на микроконтроллере PIC16F628A.

Видео работы устройства.

В итоге получился совсем не плохой индикатор уровня воды в баке на микроконтроллере PIC16F628A, который не содержит дефицитных деталей, прост в изготовлении и не требует наладки. Добавлена поддержка микроконтроллеров PIC16F84, PIC16F648A. Печатная плата получилась 55х50 мм. Емкость, в которой будут размещены датчики, не нужно портить лишними отверстиями. Исправных компонентов и добра всем!!! Спасибо за внимание.

Файлы к статье:

Индикатор уровня воды в баке на микроконтроллере PIC16F628A(статья в pdf)

Архив с проектом

Фотографии

Цепь указателя уровня воды — Gadgetronicx

Gadgetronicx> Электроника> Принципиальные и электрические схемы> Цепи датчиков> Индикатор уровня воды, схема