Схема эконом лампы: Схема энергосберегающей лампы – СамЭлектрик.ру

Содержание

Схемы энергосберегающих ламп

 

  Здесь представлены схемы популярных энергосберегающих ламп дневного света.
Даже если вы не нашли нужную лампу, ищите аналог, принцип у схем один.

------------------------------------------------------

 

 


------------------------------------------------------
 

------------------------------------------------------
 

 
------------------------------------------------------
------------------------------------------------------
 

------------------------------------------------------
 


------------------------------------------------------
 

------------------------------------------------------
 


------------------------------------------------------

-------------------------------------------------------
 

------------------------------------------------------
 

------------------------------------------------------
 
 


------------------------------------------------------

 
------------------------------------------------------
 
 


------------------------------------------------------
Адрес этой статьи: http://radio-hobby.
org/modules/news/article.php?storyid=453
Оригинал: http://www.pavouk.org/hw/lamp/en_index.html
Энергосберегающие лампы
Принцип действия

Ремонт энергосберегающих ламп

Схемы энергосберегающих ламп

Питание ламп дневного света (ЛДС)

Термисторы PTC для энергосберегающих ламп



1). Электрическое поле Земли - источник энергии.

2). Ветродвигатель для ветряка - 1

3). Ветродвигатель для ветряка - 2

4). Получение электрической энергии - 1

Ремонт энергосберегающих ламп

На сегодня применение энергосберегающих ламп очень частое явление. Это объясняется тем, что такие приборы освещения имеют достаточно высокий КПД при эксплуатации, длительный срок службы и относительно невысокую стоимость.

Ремонт лампочек

Но такие приборы освещения также имеют свойство выходить из строя, и прежде чем выкидывать старую и покупать новую лампу можно попытаться отремонтировать ее.

Для этого потребуются минимальные знания в области электроники и нехитрые инструменты, такие как:

  • тестер;
  • паяльник;
  • набор отверток.

Энергосберегающая лампа состоит из таких частей:

  1. Колба, представляющая собой трубку, в которой располагаются нити накаливания;
  2. Балласт — эта часть лампы служит для выпрямления и стабилизации напряжения в нитях, которые расположены в колбе;
  3. Цоколь. Эта часть предназначена для того чтобы лампа вкручивалась в патрон. Другими словами, это главная часть всего корпуса.
Энергосберегающие лампочки получили широкое распространение во многом благодаря постепенному снижению стоимости

Основным отличием энергосберегающих ламп является их форма трубки колбы. Она сделана специально таким образом, чтобы длина трубки была максимальной при компактных размерах самой лампы — чтобы энергосберегающая лампа могла устанавливаться в любой светильник.

Энергосберегающие лампы выпускаются также с разными типами цоколей:

Все они между собой различаются размерами. Поэтому при покупке таких ламп необходимо обращать внимание на тип цоколя.

Читайте также статью ⇒ Ремонт выключателя света.

Основные неисправности

Основные неисправности ламп и возможные способы устранения представлены в таблице.

Тип неисправностиПричина неисправностиСпособы нахожденияСпособ устранения
Механические неисправностиНадколы, ударыВизуальный осмотрПриклеивание, пайка
Повреждение деталейПерепад напряжения, перегревПрозвонка с помощью тестераПайка

Лампа со сгоревшей спиралью

Одним из наиболее распространенных видов неисправностей является перегорание нитей накаливания в колбе энергосберегающей лампы. Эту неисправность легко выявить, так как на колбе образуется затемненная точка, и освещение будет не таким ярким.

Если в лампе перегорит сразу две нити накаливания, то колба уже ремонту не подлежит.

Причина такой поломки являются периодические скачки переменного напряжения в сети. В зависимости от величины этих скачков может перегорать нити накаливания, так как они предназначены работать с постоянным напряжением. Предназначение балласта в энергосберегающей лампе — подавать прямое напряжение на нити накаливания. Но в зависимости от скачков переменного напряжения будет меняться величина постоянного напряжения при подаче на колбу.

Энергосберегающая лампа с основным видом неисправности — перегоревшей спиралью, о чем свидетельствует затемнение

Совет №1: Если в помещении установлено большое количество энергосберегающих ламп, то целесообразной будет установка контроллера напряжения в сети. Он устанавливается сразу после счетчика в щитке. Его установка избавит резких перепадов напряжения и тем самым поможет сохранить работоспособность всех ламп.

Схема ремонта

При ремонте необходимо иметь подробный план действий, по которому будет проходить вся работа. На начальном этапе проводится визуальный осмотр на предмет видимых повреждений. Если таковых не обнаружено, то необходимо приступать к разборке.

Для начала требуется разобрать энергосберегающую лампу. Это делается путем отсоединения колбы от цоколя лампы. Работу необходимо делать аккуратно, чтобы не повредить цоколь. Для соединения этих частей производители используют защелки. И путем прикладывания небольших усилий части разъединяются.

Для разборки лампы можно использовать острый нож с тонким лезвием

Далее необходимо отсоединить провода, которые соединяют колбу и балласт. При разъединении нельзя делать резких движений, так как провода очень короткие, и при резком отрыве можно их порвать, а это создаст дополнительную работу по восстановлению. Так как провода намотаны на выходы спиралей, их требуется просто отмотать, ничего отпаивать не придется.

После отсоединения проводится проверка частей энергосберегающей лампы. При обнаружении неисправности одной из частей лампы ее необходимо заменить на работоспособную.

Ремонт балласта и спирали в энергосберегающей лампе

Для того чтобы проверить на работоспособность нити накаливания необходимо применить тестер. С его помощью измеряется сопротивление. Для полностью рабочей колбы сопротивление каждой из нитей составляет 10 – 15 Ом. Если после измерения окажется, что нити не повреждены, то причина поломки кроется в балласте. Если же одна из нитей имеет разрыв, то необходимо произвести ремонт.

Проверка работоспособности нитей накаливания проводится при помощи любого доступного тестера

Для выполнения ремонта необходимо закоротить выводы перегоревшей нити накаливания. Для этого перегоревшую нить требуется зашунтировать резистором с сопротивлением 5 ОМ. Это делается в обязательном порядке. Без шунта колба с перегоревшей нитью просто не сможет запуститься и не будет гореть.

Совет №2: Конечно же, такой ремонт существенно сократит срок службы, так как работать будет только одна нить накаливания. Но, по крайней мере, если лампа уже не на гарантии, то такой ремонт даст продолжительное время работы. В противном случае проводится замена колбы на идентичную.

Если при осмотре выявилось, что колба исправна, значит необходимо провести проверку и ремонт балласта. Для этого в первую очередь необходимо провести его визуальный осмотр. Часто бывает, что при выходе из строя электронной детали она перегорает, и визуально это можно увидеть и устранить данную неисправность. Если же никаких дефектов при осмотре не обнаружено, то необходимо начинать проверку с помощью тестера.

Лампы энергосберегающие оснащаются предохранителем, защищающим прибор от скачков напряжения в сети

Первым, на что необходимо обратить внимание — это предохранитель. Деталь специально установлена для защиты от больших скачков напряжения. Его проверка заключается в простой прозвонке на замыкание цепи.

Далее проводится проверка диодного моста. Он необходим для выпрямления напряжения. Проверку этих полупроводников можно проводить на плате не выпаивая их.  Для этого проводятся измерения их сопротивления мультиметром.

Следующим элементом для проверки являются конденсатор фильтра. В схеме он служит для заглаживания импульсов. Выявить его выход из строя можно визуально без тестера. Он может быть вздутым или потекшим. Также требуется обратить внимание на конденсатор высокого напряжения. Он может служить причиной не включения энергосберегающей лампы.

Одним из важных элементов в схеме является транзистор. Для проверки его работоспособности его необходимо выпаять и произвести замеры сопротивления.

Основные конструктивные элементы энергосберегающей лампы, установленные на спрятанной внутри плате

После проведения всех выше указанных действий в 99 % случаев находится неисправность балласта. Также ремонт лампы можно проводить путем замены ее отдельных частей, но такой ремонт проводиться при условии, что в наличии есть идентичные части ламп.

Читайте также статью: → Ремонт розеток и выключателей.

Типичные ошибки

Частой ошибкой можно назвать приложение слишком большого усилия при разборке лампы. Следствием ее может стать надлом патрона, который, в принципе, также можно заменить или отремонтировать.

Не менее часто при разделении лампы на две половинки является неосторожное обращение с ними, приводящее к обрыву тонких проводков.

Еще одной ошибкой можно назвать пренебрежение проверкой полупроводников. Именно они первыми выходят из строя при возникновении коротких замыканий или при работе под значительной нагрузкой.

Лампа со сгоревшей спиралью

Вопрос №1: Что собой представляет плата электронного блока — наверное, это слишком сложное устройство?

Плата — это обычный пускорегулирующий прибор, устанавливающийся даже в старых светильниках. Только в устаревших моделях установлен дроссель, а в энергосберегающих лампах — электроника.

Вопрос №2: При перегорании резисторов и дорожек, какая причина может быть?

Перегоревшие дорожки и резисторы говорят о том, что лампа эксплуатировалась в тяжелых условиях, возможно, не по назначению.

Оцените качество статьи:

Ремонт энергосберегающей лампы Sylvania своими руками

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

В одной из своих статей я рассказывал Вам, что для внутреннего освещения распределительных устройств (РУ) подстанций в основном мы применяем трубчатые и компактные люминесцентные лампы (КЛЛ).

Про их преимущества и недостатки читайте здесь.

В этой статье я расскажу Вам, как произвести ремонт компактной люминесцентной лампы Sylvania Mini-Lynx Economy мощностью 20 (Вт) производства Китай.

Данная лампа проработала на подстанции около 1,5 лет. Если режим ее работы перевести в часы, то получится в среднем около 2000 часов, вместо 6000 часов, заявленных производителем.

Идея с ремонтом люминесцентных ламп возникла тогда, когда мне на глаза попалась очередная коробка со сгоревшими лампами, которые планировали утилизировать. Подстанций много, объем ламп большой, соответственно, и сгоревшие лампы регулярно накапливаются.

Напомню Вам, что в люминесцентных лампах содержится ртуть, поэтому выбрасывать их с бытовым мусором не допустимо.

И вот я решил, по мере свободного времени, попытаться отремонтировать вышедшие из строя лампы, а заодно и поделиться с Вами информацией по их ремонту. Данную статью Вы можете использовать в своих интересах, ведь цены на КЛЛ лампы в настоящее время все еще относительно высокие, а значит и их ремонт все еще актуален.

Для начала приведу основные характеристики ремонтируемой лампы Sylvania Mini-Lynx Economy:

  • мощность 20 (Вт)
  • цоколь Е27
  • напряжение сети 220-240 (В)
  • тип лампы — 3U
  • световой поток 1100 (Лм)

 

Ремонт энергосберегающей лампы своими руками

С помощью плоской отвертки с широким жалом нужно аккуратно отстегнуть защелки корпуса в местах соединения двух его половинок. Для этого вставляем отвертку в паз и поворачиваем ее в ту или иную сторону, чтобы отщелкнуть первую защелку.

Как только первая защелка откроется, продолжаем вскрывать остальные по периметру корпуса.

Будьте аккуратны, иначе при разборке можно сколоть корпус лампы или, не дай Бог, разбить саму колбу, тогда придется проводить димеркуризацию помещения из-за наличия в колбе паров ртути.

Компактная люминесцентная лампа состоит из трех частей:

  • 3 U-образные дуговые колбы
  • электронная плата (ЭПРА)
  • цоколь Е27

Круглая печатная плата — это и есть плата электронного пускорегулирующего устройства (ЭПРА), или другими словами электронный баласт. Рабочая частота ЭПРА составляет от 10 до 60 (кГц). В связи с этим устраняется стробоскопический эффект «моргания» (значительно уменьшается коэффициент пульсаций ламп), который присутствует у люминесцентных ламп, собранных на электромагнитных ПРА (на основе дросселя и стартера) и работающих на частоте сети 50 (Гц).

Кстати, скоро мне принесут попользоваться прибор для измерения коэффициента пульсаций. Произведем замер и сравним коэффициенты пульсаций у лампы накаливания, у люминесцентной лампы с ЭПРА и с ЭмПРА, и у светодиодной лампы.

Подписывайтесь на новости сайта, чтобы не пропустить новые статьи.

Питающие провода от цоколя очень короткие, поэтому не дергайте резко, а то можно их оторвать.

В первую очередь нужно проверить целостность нитей накаливания. В данной энергосберегающей лампе их две. Они обозначены на плате, как А1-А2 и В1-В2. Их выводы намотаны на проволочные штыри в несколько витков без применения пайки.

С помощью мультиметра проверим сопротивление каждой нити.

Кто забыл, читайте подробное руководство о том, как пользоваться мультиметром (часть 1, часть 2 и часть 3).

Нить А1-А2.

Нить накала А1-А2 имеет обрыв.

Нить В1-В2.

Вторая нить В1-В2 имеет сопротивление 9 (Ом).

В принципе, перегоревшую нить можно определить визуально по затемненным участкам стекла на колбе. Но все равно без измерения сопротивления не обойтись.

Сгоревшую нить накаливания А1-А2 можно зашунтировать резистором с номиналом, аналогичным исправной нити, т.е. порядка 9-10 (Ом). Я установлю резистор сопротивлением 10 (Ом) мощностью 1 (Вт). Этого вполне хватит.

Впаиваю резистор с обратной стороны платы на выводы А1-А2. Вот, что получилось.

Между резистором и платой нужно установить прокладку (на фото ее пока нет). Теперь нужно проверить лампу на работоспособность.

Лампа горит. Теперь можно собрать корпус и продолжать ее эксплуатировать.

При таком ремонте запуск люминесцентной лампы будет происходить с некоторым мерцанием (порядка 2-3 секунд) - подтверждение тому смотрите в видео.

 

Неисправности, встречающиеся при ремонте ламп

Если нити накаливания в лампе исправны, то можно переходить к поиску неисправностей в электронной плате (ЭПРА).  Визуально оцениваем ее состояние на наличие механических повреждений, сколов, трещин, сгоревших элементов и т.п. Также не забываем проверить качество пайки — это же китайское изделие.

В моем примере на вид плата чистая, трещин, сколов и сгоревших элементов не наблюдается.

Вот наиболее распространенная схема ЭПРА, которая используется в большинстве компактных люминесцентных лампах (КЛЛ). У каждого производителя есть свои небольшие отличия (разброс параметров элементов схемы в зависимости от мощности лампы), но общий принцип схемы остается тот же.

Выйти из строя могут следующие элементы платы:

  • ограничительный резистор
  • диодный мост
  • сглаживающий конденсатор
  • транзисторы, резисторы и диоды
  • высоковольтный конденсатор
  • динистор

А теперь поговорим о каждом элементе подробнее.

1. Ограничительный резистор

В схеме указан предохранитель FU, но зачастую он просто отсутствует, как в моем примере.

Его роль выполняет входной ограничительный резистор. При возникновении какой-либо неисправности в лампе (ток короткого или перегруз) ток в цепи растет и резистор сгорает, тем самым разрывая цепь питания. Резистор усажен в термоусадочной трубке. Один его вывод соединен с резьбовым контактом цоколя, а второй - с платой.

Я решил проверить этот резистор — он оказался целым, а значит можно сделать вывод, что короткого замыкания в цепи не было — произошел просто обрыв нити А1-А2. Сопротивление резистора составляет 6,3 (Ом).

Если у Вас резистор «не звонится», то в любом случае нужно искать причины по которым он сгорел (см. далее по тексту). При сгоревшем резисторе лампа гореть не будет.

2. Диодный мост

Диодный мост VD1-VD4 служит для выпрямления сетевого напряжения 220 (В). Выполнен он на 4 диодах марки 1N4007 HWD.

Если диоды «пробиты», то соответственно, производим их замену. При пробое диодов ограничительный резистор, как правило, тоже сгорает, а лампа перестает гореть.

3. Сглаживающий конденсатор

Электролитический конденсатор С1 сглаживает пульсации выпрямленного напряжения.  Очень часто выходит из строя (теряет емкость и вздувается), особенно в китайских лампах, поэтому не лишним будет его проверить. При его неисправности лампа плохо включается и гудит.

На фотографии он зеленого цвета. Имеет емкость 4,7 (мкФ) напряжением 400 (В).

Кстати, это тот самый конденсатор, от которого мигает лампа, подключенная через выключатель с подсветкой.

4. Транзисторы, резисторы и диоды

На двух транзисторах VT3 и VT4 собран высокочастотный генератор (импульсный преобразователь). В качестве транзисторов применяются высоковольтные кремниевые транзисторы серий MJE13003 и MJE13001. Для моей 20-Ваттной лампы установлено два транзистора серии MJE13003 ТО-126.

Чтобы проверить транзисторы, их нужно выпаивать из схемы, т.к. между их переходами подключены диоды, резисторы и низкоомные обмотки тороидального трансформатора, что ложно отразится при измерении мультиметром. Зачастую выходят из строя резисторы R3 и R4 в цепи базы транзисторов — их номинал около 20-22 (Ом).

5. Высоковольтный конденсатор

Если лампа сильно мерцает или светится в районе электродов, то скорее всего причиной тому является пробой высоковольтного конденсатора C5, подключенного между нитями накала. Этот конденсатор создает высоковольтный импульс для появления разряда в колбе. И если он пробит, то лампа не загорится, а в районе электродов будет наблюдаться свечение из-за разогрева спиралей (нитей накаливания). Кстати, это одна из распространенных неисправностей.

В моей лампе установлен конденсатор B472J 1200 (В). Если он вышел из строя, то его можно заменить на конденсатор с более высоким напряжением, например, 3,9 (нФ) 2000 (В).

6. Динистор

Динистор VS1 (по схеме DB3) выглядит как миниатюрный диод.

При достижении между анодом и катодом напряжения около 30 (В) он открывается. С помощью мультиметра проверить динистор не возможно, только лишь его целостность — он не должен «звониться» ни в одном направлении.   Из строя выходит гораздо реже, нежели предыдущие элементы. У маломощных ламп динистор обычно отсутствует.

7.  Тороидальный трансформатор

Тороидальный трансформатор Т1 имеет кольцевой магнитопровод, на котором намотаны 3 обмотки. Количество витков каждой обмотки находится в пределах от 2 до 10. Практически не выходит из строя.

Хотел бы отметить то, что лампа Sylvania имеет холодный запуск, т.к. у нее в схеме отсутствует позистор РТС (терморезистор с положительным коэффициентом).

Это значит, что при включении лампы ток подается на холодные нити накала (спирали), что отрицательно сказывается на их сроке службы, т.к. они предварительно не прогреваются и при холодном запуске перегорают от скачка тока (аналогично, как у ламп накаливания). А у нас ведь как раз сгорела одна из нитей накала (А1-А2) и это является хорошим тому подтверждением.

При установленном позисторе РТС, ток последовательно проходит через позистор РТС и нити накала, тем самым плавно их разогревая. Затем сопротивление позистора РТС увеличивается, переставая шунтировать лампу, что приводит к резонансу напряжений на конденсаторе С5 и электродах лампы. Высокое напряжение пробивает газ в колбе и лампа зажигается. Это и называется горячим запуском лампы, что положительно сказывается на сроке службы нитей накала.

Почему же выходят из строя электронные компоненты платы?

Причин на самом деле может быть несколько: использование бракованных элементов, низкое качество изготовления, неправильная эксплуатация (частые включения, пониженная или повышенная температура). Как видите, среди вышедших из строя ламп имеются, как китайские производители, так и известные брендовые, типа Osram и Philips. Тут, уж, кому как повезет.

Если у Вас сгорели сразу две нити накала, а электронная плата ЭПРА осталась исправной, то ее можно использовать для питания обычной трубчатой люминесцентной лампы, тем самым избавившись от схемы дросселя со стартером, и уменьшив ее коэффициент пульсаций.

P.S. Уважаемые читатели и гости сайта «Заметки электрика», у кого из Вас имеется опыт по ремонту энергосберегающих ламп, то буду рад, если поделитесь в комментариях своими наблюдениями. Спасибо за внимание.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Ремонт энергосберегающих ламп

Ремонт трех неисправных энергосберегающих ламп, и видео снятое на разных этапах этого ремонта.
Упор сделан на практические детали. Разборка, сборка, особенности конструкции, процесс демонтажа платы и т.п. Основная информация - в видеоролике, но в заметке есть схемы двух ламп, а так же фото.
Целью заметки является не теория, а практика и наглядная демонстрация некоторых манипуляций, непривычных для тех, кто не сталкивался ранее с таким ремонтом. Видеоролик отражает все основные детали процесса (см. далее).

В чем просто повезло:

  1. Завалялись подходящие детали
  2. Поломки были не очень сложными
  3. Кое-что удалось сделать случайно - методом тыка
Заратустра меня простил.

Столкнулся с ремонтом ламп впервые! Возможны неточности.

Впрочем, именно потому, что столкнулся с этим первый раз, и появились некоторые свежие впечатления и важные детали, которые слишком очевидны для мастеров, но часто ставят в тупик новичка.

Вообще, эти лампы уходят в прошлое, - на смену им идут светодиодные. Но если у кого завалялось несколько неисправных ламп, то имеет смысл засесть за их починку. Во-первых какое-то время они еще послужат. Во-вторых это интересно :).

Как я уже писал выше - вся основная информация находится в видеоролике, а в самой заметке я выложил только некоторые фото и схемы двух ламп (Maxus и e.next) и коротко описал поломки.


Видео ремонта

Рекомендую читать далее только после просмотра видеоролика.


Лампа 1 - Volta

20W, цоколь E27

Поломка: лампа не горит.

В ролике достаточно подробно и наглядно представлен процесс разборки и сборки корпуса лампы, демонтаж нитей и пр. механическая работа, которая может быть интересна таким же как я новичкам в ремонте любых подобных энергосберегающих ламп (это первая в жизни лампа, которую я разобрал).

Ремонт: замена вспухшего высоковольтного электролитического конденсатора и выгоревшей индуктивности в цепи питания.

Цоколевку транзисторов надо проверять тестером! У разных производителей она может отличаться!


Лампа 2 - Maxus

26W, 2700k, цоколь E27

Поломка: лампа не горит.

Здесь была нетипичная и очень интересная неисправность. В этой части ролика присутствует только те этапы ремонта, которые представляют особый интерес. Те этапы, которые сходны ремонту первой лампы, для этой лампы пропущены (разборка, отсоединение нитей колбы и т.п.). Для этой лампы пришлось рисовать схему с платы.

Ремонт: необычное повреждение, приведшее к возникновению частичного КЗ (подробности в ролике).

Цоколевку транзисторов надо проверять тестером! У разных производителей она может отличаться!


Лампа 3 - e.next

11W, 2700k, цоколь E14

Поломка: через несколько секунд после нормального включения, лампа мигает (мерцает) некоторое время, после чего работает нормально, но иногда все-таки "моргает".

Эта лампа отличается от первых двух тем, что она имеет тройную колбу, у нее меньше цоколь (Е14), и простейшая схема. Поломка у этой энергосберегающей лампы оказалась очень простой, но в этой части видеоролика есть некоторые комментарии по схеме и типичным поломкам.

Совет: . Для зарисовки схемы, удобнее всего сфотографировать плату с двух сторон и работать с фото на компьютере:

Ремонт: пропайка контактных площадок платы.


Нити

Добавлено 20.11.2014:

Ремонтировал еще одну лампу и когда вскрывал, то из за перекоса корпуса (!) лопнула колба. В результате - увидел, что внутри колбы все-таки спирали (см. фото ниже).


Перегрев старой лампы

Добавлено 07.02.2018:

"Дикий" ремонт очень старой лампы. Лампа проработала много лет, колба "истощилась" в результате стала потреблять больше ток и сильнее греться. Пластмасса из за перегрева стала хрупкой и треснула - пришлось стянуть ее проволокой. Но самое "дикое" в этом ремонте то, что из за высокой температуры перегревался электролитический конденсатор внутри и почти сразу вздувался и вытекал. Не помогли даже вентиляционные отверстия которые я сделал в корпусе. В результате пришлось вынести конденсатор за пределы лампы при помощи специальных термостойких проводов. Конечно вся эта "дикость" не должна иметь место, не советую это повторять, поскольку было сделано в качестве временного решения, скорее как забавный эксперимент. Но если у Вас экстремальные обстоятельства, нужен свет и нет иных способов выйти из ситуации то в ненадолго можно так выйти из положения.


Типичные поломки

Те поломки, с которыми я столкнулся, не являются типичными (кроме выхода из строя высоковольтного электролитического конденсатора).

Судя по информации от тех, кому приходилось часто сталкиваться с подобным ремонтом, наиболее типичными поломками энергосберегающих ламп являются:

  1. Перегорание нитей накала. Это то, что стоит проверять в первую очередь (сопротивление каждой обычно до 15 Ом).
  2. Пробой резонансного конденсатора, подключенного между нитями лампы (номинал обычно 2,2 nF 1200V).

Также типичными являются следующие поломки:

  1. Выход из строя силового конденсатора (емкость обычно 47 nF). Через него подключен один из выводов лампы.
  2. Выход из строя (вздутие и т.п.) сглаживающего электролитического конденсатора в цепи питания (номинал обычно до 10uF 400V).
  3. Выход из строя конденсатора запускающего с динистором генератор (номинал обычно 22 nF 100V).

А вообще, сгореть в балласте (плате, через которую подключены лампы) может любая деталь. В Интернет, в описаниях поломок попадались даже случаи сгорания резисторов.

Бывают и экзотические неисправности - см. видео выше.


Ссылки

Рекомендую прочитать две очень познавательные статьи (теория и примеры, принцип работы ламп доступным языком):
Энергосберегающие лампы. Изучение электроники КЛЛ (часть 1)
Энергосберегающие лампы. Изучение электроники КЛЛ (часть 2)
Большую часть я не понял, но кое-что уловил... 🙂

Также рекомендую прочесть начиная с сообщения и до конца страницы тему на одном из форумов: radiokot.ru
Там доступно на рисунках со стрелочками описан принцип работы схемы.


схема, почему моргает, разбилась, утилизация

Переход на энергосберегающие лампочки позволяет экономить электроэнергию на невиданном доселе уровне. Реклама утверждает и убеждает, что современная лампа энергосберегающая потребляет в 5, 7 и даже 10 раз меньше энергии, чем традиционная лампочка с нитью накаливания при равном световом потоке. Получается, что при правильном планировании системы освещения экономки окупаются в считанные месяцы работы. Но не все так гладко и просто, как говорится в рекламных проспектах.

Какие они, энергосберегающие лампы

Основная борьба развернулась между лампами накаливания и энергосберегающими светильниками люминесцентного типа. Галогенки и светодиодные лампочки из-за запредельно яркого света и высокой температуры излучения применяются лишь в условиях, когда прямой световой поток прямо не направлен на глаза человека. Чаще всего это неосновное освещение в доме:

  • Подсветка территории в вечернее и ночное время, при хороших энергосберегающих характеристиках плотность светового потока очень высокая, но она «размазана» по огромной территории, поэтому опасности для органов зрения практически нет;
  • Точечные светильники потолочного и вмонтированного типа, большая часть светового потока попадает в глаза в отраженном потоке.

Все, кто сталкивался с работой за мониторами компьютеров, могут подтвердить, что старые экраны, в которых матрица подсвечивалась люминесцентной лампой, выглядели более тусклыми, чем более современные, со светодиодной подсветкой. Тем не менее, за новым OLED экраном человек воспринимает изображение четче и ярче, но глаза устают намного быстрее из-за высокой температуры и насыщенности изображения.

Поэтому на сегодняшний день нишу новых энергосберегающих лампочек занимают преимущественно люминесцентные источники света. На свечение лампочки — экономки можно смотреть неограниченное время, тогда как разглядывание светодиода или галогеновой лампы необратимо ведет к появлению «зайчиков» в глазах.

Выгодно или невыгодно использование энергосберегающих ламп

Для организации наружного освещения, больших территорий и пространств, боксов и ангаров светодиодные или галогеновые лампочки еще долго останутся вне конкуренции. Мало того, что галогенки вдвое, а светодиоды в десять раз более экономичны в потреблении энергии, в сравнении с самыми современными энергосберегающими лампами накаливания.

Ресурс энергосберегающей лампочки огромен, практически не выделяющий тепла светодиод работает 10-15 тыс. часов, галогеновая лампочка с диммером в состоянии отработать 6-7 тыс. часов. Но их свет не очень подходит для зрения человека, слишком утомляет и режет глаза, поэтому большая часть бытовых энергосберегающих ламп все же изготавливается в люминесцентном формате.

Казалось бы, экономическая выгода в приобретении и установке лампочек — экономок налицо, и можно ожидать, что в ближайшем будущем колбы с нитями накаливания просто исчезнут из обихода, не выдержав конкуренции со стороны более выгодных энергосберегающих источников света.

Если просто сравнить ценовые, потребительские, технические характеристики энергосберегающих ламп и обычных лампочек, замысел рекламы становится более-менее понятным:

  • Потребление электроэнергии экономкой указывается на коробке, обычно это величина от 5 до 15 Вт, лампа с ниткой накаливания потребляет 60-100 Вт;
  • Производитель обязательно указывает цветовую температуру свечения. У люминесцентной лампочки это 3500оК для обычных моделей и 2900-3100оК для желтых адаптированных энергосберегающих вариантов;
  • Цена на классическую и энергосберегающую лампу отличается примерно в 5-7 раз, при равной яркости и цветовом фоне свечения.

Более важная характеристика – величина светового потока находится в пределах 660-1200 (Лм), хоть и указывается на коробке, но на практике она мало чем поможет в выборе.

При включении зрительно возникает ощущение, что энергосберегающая лампа выдает меньше света, чем модель с нитью накаливания. Подобный эффект проявляется в течение первых 10-15 минут непрерывной работы. После разогрева стекла, лампочки и газа экономка в яркости практически не уступает обычной лампе.

Схема энергосберегающей лампы

Устройство экономки или энергосберегающей лампы не намного сложнее галогенки. Сделать люминесцентную лампочку в домашних условиях, конечно, не получится, но ее изготовление не требует специального высокотехнологического оборудования, чем эконом вариант разительно отличается от галогенок и светодиодных ламп. Поэтому стоимость изготовления всегда будет ниже, чем у светодиодных и галогеновых лампочек, хотя технологичность изделия способствует массовой подделке оригинальной или брендовой продукции.

Конструкция энергосберегающей лампочки состоит из нескольких базовых деталей:

  • Стеклянная трубка или колба, с нанесенным на внутреннюю поверхность специальным веществом – люминофором. Внутри лампочки закачан инертный газ и небольшое количество ртути, в пределах 5-10 мг. Один миллиграмм — это примерно 1/3000 часть от количества жидкого металла, запаянного в медицинском градуснике;
  • Электроды и стартерный блок. Даже в простейших моделях энергосберегающих ламп с грушевидной колбой установлено электронное стартерное устройство, обеспечивающее разогрев и запуск источника света;
  • Цокольная часть или контактные разъемы. Чаще всего для бытовых энергосберегающих лампочек используется винтовой патрон Е27 или двухштырьковый разъем.

Принцип работы люминесцентной лампочки хорошо известен из курса школьной физики. При включении экономки стартер выдает высокое напряжение на электроды, обеспечивающее разогрев и пробой межэлектродного промежутка. Переизлучение паров ртути заставляет светиться люминофор на стенках корпуса.

К сведению! Энергосберегающая лампа выдает достаточно большое количество ультрафиолета, но плотность потока намного меньше, чем у солнечного света.

Светильник одновременно обеззараживает воздух в помещении, поэтому газоразрядные экономки могут быть использованы для подсветки комнатных и тепличных растений. Схема достаточно надежная, но стабильность работы энергосберегающей лампы в значительной степени зависит от качества изготовления корпуса, контактной и стартерной группы.

Корпуса и цоколи энергосберегающих ламп

Современные лампочки — экономки выпускаются в нескольких вариантах корпусов. Чаще всего это хорошо известные трубчатые люминесцентные светильники, используемые в потолочных конструкциях, лампы со спиралевидными и дугообразными формами стеклянной трубки.

Подавляющее большинство экономок выпускается с винтовым цоколем стандартного или уменьшенного размера. Не самый удобный вариант для лампочки газоразрядной схемы, но производителям энергосберегающих приборов еще приходится использовать патрон Е27, чтобы ускорить замену классических моделей с нитью накаливания новыми лампами.

Для настольных светильников выпускают малогабаритные низковольтные версии экономок в виде небольших трубок, «подков» и «спиралек», рассчитанных на напряжение 12-36 В. В таких моделях лампочек электрические контакты расположены рядом и разделены диэлектрической шайбой, для запуска используются специальные блоки питания.

Лампочки энергосберегающие, как выбрать

Из практики пользования энергосберегающими лампами известно, что наибольший срок службы остается за известными брендами или светильниками, сделанными по лицензии.

Галогенка выдает очень мощный поток света, поэтому простая замена лампы накаливания на галоген обернется обгоранием отражателей, патрона, иногда выходит из строя и плавится тонкая проводка. Преимуществом галогеновой лампочки является относительно простой способ регулировки яркости с помощью электронной платы.

Люминесцентные лампы, за редким исключением, не оборудуются приборами плавной регулировки яркости, но самые современные модели могут подключаться к диммерам и менять интенсивность ступенчато. Оптимальный уровень мощности экономки – 15 Вт, более мощные приборы часто выходят из строя, да яркости 5-10 Вт зачастую хватает только для освещения ванной комнаты или санузла.

Несмотря не некоторую архаичность, цоколь Е27 остается одним из наиболее востребованных. В случае если пропадает контакт, лампу всегда можно аккуратно довернуть в патроне, в ситуации, когда начинает барахлить лампочка на штырьковых контактах, устранить проблему сложнее и хлопотнее.

При желании можно выбрать энергосберегающую лампу с теплым, едва заметным желтым цветом потока. Стоит такая лампочка на 30-40% дороже обычной белой экономки, но она заметно комфортнее в восприятии человеческим глазом. Иногда проблему борьбы с белизной решают установкой кремовых плафонов и фильтров рассеянного света.

Почему моргает энергосберегающая лампочка

Многие, кто пользуется люминесцентными светильниками, обращали внимание, что энергосберегающая лампа моргает после выключения. Вещь неприятная, особенно если учесть, что количество запусков, а моргание и есть попытка стартера запустить люминесцентную лампочку, ограничено для экономки несколькими тысячами стартов. Срок эксплуатации в мигающем режиме сокращается на порядок.

Может так случиться, что экономка выйдет из строя раньше, чем несведущему человеку удастся разобраться, почему моргает энергосберегающая лампочка при выключенном выключателе.

Причин для появления эффекта может быть две:

  • Неисправный патрон или обрыв контакта на схеме внутри цоколя экономки;
  • При разомкнутом выключателе в цепи протекают слабые микротоки на уровне миллиампер.

Первый случай наиболее наглядный. Наличие непостоянного контакта в патроне приводит к тому, что лампа с треском загорается на несколько секунд и после разогрева гаснет, после чего цикл возобновляется. Чтобы исправить неисправность, нужно будет подогнуть язычок контакта в патроне или вскрыть цоколь энергосберегающей лампы и припаять отошедший провод.

Чтобы снять цокольную пробку с эконом-лампы, достаточно аккуратно отогнуть усики и стянуть металлический колпачок. Если следов вышедшего из строя балластного резистора нет, и цел дроссель, то можно смело паять контакты и ставить цоколь на место. По статистике, 85% выхода лампочек из строя связано с перегревом цоколя в патроне и расплавлением запаянного торца.

Стандартная ситуация с экономкой

Гораздо чаще эконом-лампа моргает из-за наличия в проводке микротоков, например, если в цепи установлен выключатель с подсветкой в виде неонки или светодиода. Схема такого выключателя скомпонована так, что в выключенном положении все равно микроток течет через энергосберегающую лампу и элемент подсветки. Величина тока очень небольшая, но ее достаточно, чтобы на долю секунды зарядить пусковой конденсатор стартерной схемы эконом-лампочки и зажечь ее на мгновение.

Бороться с эффектом микротоков можно тремя способами:

  • Установить в люстру или подключить к светильнику дополнительную лампочку накаливания, которая будет разряжать емкость на стартерной плате люминесцентной «свечки»;
  • Впаять в патрон энергосберегающей лампочки параллельно контактам балластное сопротивление на 50 кОм и напряжение 450 В;
  • Вместо резистора установить конденсатор на 0,22-0,5 мкф и напряжением 600 В;
  • Удалить из выключателя светодиод или неонку.

Разумеется, перечисленные способы устранения мигания лампочки работают только при условии исправной проводки и правильного подключения светильника.

Нестандартные случаи

Третий случай, почему моргает энергосберегающая лампочка при выключенном свете, касается непосредственно места, где расположен светильник. Причиной паразитных микротоков может быть неправильное подключение проводов. Например, если на выключатель заведена «нулевая» жила, а не «фаза». Для того чтобы в цепи появился микроток, достаточно отсыревания контактов светильника или излома изоляции. Лампочка загорается в ¼ накала, свечение можно увидеть только в темноте. В этом случае потребуется вмешательство и помощь квалифицированного электрика.

Дефект мигания заложен в самой конструкции энергосберегающей лампы. На электронной плате лампочки присутствуют катушка-дроссель, конденсатор и выпрямляющий диодный мост.

Если такой набор попадает в сильное магнитное поле, то катушка, как антенна, поймает достаточно энергии, чтобы преобразовать ее с помощью конденсатора и диодов в электрический заряд, достаточный для запуска экономки. Подобным магнитным полем может быть излучение от мобильного телефона, мощного блока питания и даже от проводки работающего бойлера.

Что делать, если разбилась энергосберегающая лампочка

При всех своих достоинствах энергосберегающая люминесцентная лампа обладает двумя серьезными недостатками:

  • Использование ртути;
  • Слабый корпус.

Стеклянный корпус можно легко расколоть рукой даже при осторожном закручивании лампочки в патрон. В ситуации, когда разбилась энергосберегающая лампочка, часть ртути всегда попадает в помещение комнаты. Опасна даже не сама ртуть, как вещество, а ее разогретые пары, точнее, окись ртути, обладающая высокой токсичностью.

Первое, что нужно делать, если разбилась энергосберегающая лампочка, — это убрать всех посторонних из комнаты, детей в первую очередь. Если лампочка разбилась в работающем состоянии, то нужно открыть окна, включить вентиляцию и переждать, пока большая часть токсичных паров будет удалена или осядет.

Следующим этапом необходимо нейтрализовать содержимое лампы, можно использовать водный раствор моющего средства, кальцинированной соды или мыла. Осколки убираются в пакет и утилизируются.

Утилизация лампочек энергосберегающих

Несмотря на относительно небольшое содержание ртути, энергосберегающие лампы подлежат утилизации по специальной схеме, как и все ртутьсодержащие приборы и предметы. Избавиться от лампочки можно сдачей отработанных светильников на специальные пункты приема. Любые другие формы утилизации, выбросить или закопать в грунт, означают создание потенциальной угрозы здоровья для всех, кто вступит в контакт с осколками и следами ртути.

Заключение

Энергосберегающие лампочки остаются востребованными из-за относительно невысокой цены и серьезной экономии электроэнергии, особенно, если речь идет о необходимости освещения территории в несколько сот квадратных метров. Для домашних потребностей все чаще выбирают безопасные лампочки нового поколения на основе светодиодов и редуцирующего вторичного излучения.

принцип работы и устройство > Свет и светильники

SMD светодиоды: типы, виды, маркировка, размеры, и их хаpaктеристика, основные технические параметры светодиодных смд ламп для внешнего освещения

Читайте, какие SMD светодиоды самые популярные, где и в каком виде используются. Узнайте, чем они отличаются друг от друга и как выбрать оптимальный вариант. Плюсы и минусы изделий из СМД светодиодов, сфера применения, особенности покупки через интернет....

01 06 2021 2:19:25

Галогенные лампы: что это такое, типы, срок службы, температура, мощность и чем отличается от лампочек накаливания

Читайте здесь, что такое галогеновые лампы, чем они отличаются от обычных лампочек накаливания, какое у них устройство, принцип работы, плюсы и минусы, а также какие их виды существуют для домашнего применения и каковы их главные особенности....

30 05 2021 16:15:30

Лампа ближнего света Нива Шевроле: какие стоят на Шеви

Читайте здесь, какие лампы ближнего света стоят на Ниве Шевроле, на что обратить внимание при выборе им замены, как правильно выполнить их переустановку и какие другие возможные неполадки могут стать причиной выходя из строя фар....

22 05 2021 11:53:19

КПД светодиода: эффективность светодиодной лампы и светильника

Читайте здесь, что такое КПД светодиода, как его измерить и улучшить, как с помощью домашнего колориметра провести опыт по его подсчету для любого светодиода, как соотносится яркость и мощность, почему может ухудшиться КПД и какими образом можно его повысить....

19 05 2021 11:17:36

Диммируемые светодиодные лампы: что такое диммирование, потолочные светильники и лампы с диммером, бывают ли регулируемые лампочки e14, e27, g4

Смотрите здесь, что такое диммер и каковы особенности его работы, как выбрать диммируемые светодиодные лампы. Узнайте, что такое мерцание светодиодов, уровни диммирования и какие существуют цоколи ламп. Читайте, что такое цветовая температура, световой поток и индекс цветопередачи....

08 05 2021 15:17:12

Светодиод 3 Вт: хаpaктеристика LED 3 w

Читайте, в чем состоят особенности конструкции светодиодов мощностью 3 ватта. Узнайте, его технические хаpaктеристики, специфические качества элементов и схему подключения светильников....

26 04 2021 0:53:19

Подсветка WLED: что это, отличия, лучше LED или WLED

Узнайте, что такое подсветка WLED, каковы ее преимущества и чем она отличается от альтернативных видов конструкции. Выясните, какие изменения такая технология вносит в цветопередачу, уточните остальные преимущества, возможности и особенности....

22 04 2021 1:47:52

Переделка схемы лампы экономки в бп. Блок питания из энергосберегающей лампочки своими руками

Когда нужно получить 12 Вольт для светодиодной ленты , или еще для каких то целей, есть вариант сделать такой блок питания своими руками.

Схема блока питания из лампочки


Так как основной причиной выхода из строя компактных люминесцентных ламп является перегорание одной из нитей накала колбы, то практически их все можно переделать под импульсный блок питания с нужным напряжением.

В данном конкретном случае я переделывал схему электронного балласта 15 ваттной лампочки в импульсный блок питания 12 вольт 1 ампер.


Каждый производитель ламп имеет свои собственные наборы деталей с определенными номиналами в схемах изготавливаемых электронных балластов, но все схемы типовые. Поэтому на схеме я не приводил всю схему лампы, а указал только ее типовое начало и обвязку колбы лампы. Схема электронного балласта нарисована черным и красным цветом. Красным – выделены колба и конденсатор, подсоединенный к двум нитям накала. Их следует удалить. Зеленым цветом на схеме указаны элементы которые нужно добавить. Конденсатор С1 – следует заменить большей емкости, например, 10-20u 400v.


В левой части схемы добавлен предохранитель и входной фильтр. L2 выполнен на кольце от материнской платы, имеет две обмотки по 15 витков проводом от витой пары Ø – 0.5 мм. Кольцо имеет наружный диаметр 16мм, внутренний – 8,5мм, ширину – 6,3мм. Дроссель L3 имеет 10 витков Ø – 1 мм, выполнен на кольце от трансформатора другой энергосберегающей лампы.

Следует выбирать лампу с большей пустотой окна дросселя Tr1, так как его необходимо будет переделать в трансформатор. У меня получилось намотать по 26 витков Ø – 0.5 мм на каждую из половины вторичной обмотки. Такой вид намотки требует идеально симметричных половин обмотки. Чтобы добиться этого, рекомендую мотать вторичную обмотку сразу в два провода, каждый из которых будет служить симметричной половиной друг друга.

Транзисторы оставил без радиаторов, т.к. предполагаемое потребление схемы меньше мощности, которую потребляла лампа. В качестве теста было подключено на максимальное свечение на 2 часа 5 метров RGB светодиодной ленты, потреблением 12v 1A.

Привет, друзья. В эпоху светодиодных технологий многие все еще предпочитают для освещения использовать люминесцентные лампы (они же экономки). Это разновидность газоразрядных ламп, которые многие считают, мягко скажем, не очень безопасным видом освещения.

Но, вопреки всем сомнениям, они успешно висели в наших домах не одно десятилетие, поэтому у многих сохранились нерабочие эконом-лампы.

Как мы знаем, для работы многих газоразрядных ламп требуется высокое напряжение, порой в разы выше, чем напряжение в сети и обычная экономка тоже не исключение.

В такие лампы встроены импульсные преобразователи, или балласты. Как правило, в бюджетных вариантах применяется полумостовой автогенераторный преобразователь по очень популярной схематике. Схема такого блока питания работает довольно надежно, несмотря на полное отсутствие каких-либо защит, помимо предохранителя. Тут нет даже нормального задающего генератора. Цепь запуска построена на базе симметричного диака.

Схема та же, что и у , только вместо понижающего трансформатора оттуда использован накопительный дроссель. Я намерен быстро и понятно показать вам, как можно такие блоки питания превратить в полноценный импульсный источник питания понижающего типа, плюс обеспечить гальваническую развязку от сети для безопасной эксплуатации.

Для начала хочу сказать, что переделанный блок может быть использован в качестве основы для зарядных устройств, блоков питания для усилителей. В общем, можно внедрить там, где есть нужда в источнике питания.

Нужно лишь доработать выход диодным выпрямителем и сглаживающей емкостью.

Подойдет для переделки любая экономка любой мощностью. В моем случае -это полностью рабочая лампа на 125 Ватт. Лампу сначала нужно вскрыть, достать блок питания, а колба нам больше не нужна. Даже не вздумайте ее разбивать, поскольку там содержатся очень токсичные пары ртути, которые смертельно опасны для живых организмов.

Первым делом смотрим на схему балласта.

Они все одинаковые, но могут отличаться количеством дополнительных компонентов. На плате сразу бросается в глаза довольно массивный дроссель. Разогреваем паяльник и выпаиваем его.

На плате у нас имеется также маленькое колечко.

Это трансформатор обратной связи потоку и он состоит из трех обмоток, две из которых являются задающими,

а третья является обмоткой обратной связи потоку и содержит всего один виток.

А теперь нам нужно подключить трансформатор от компьютерного блока питания так, как показано по схеме.

То есть один из выводов сетевой обмотки подключается к обмотке обратной связи.

Второй вывод подключается к точке соединения двух конденсаторов полумоста.

Да, друзья, на этом процесс завершен. Видите, насколько все просто.

Теперь я нагружу выходную обмотку трансформатора, чтобы убедиться в наличии напряжения.

Не забываем, начальный запуск балласта делается страховочной лампочкой. Если блок питания нужен на малую мощность, можно обойтись вообще без всякого трансформатора, и вторичную обмотку обмотать на непосредственно сам дроссель.

Не помешало бы установить силовые транзисторы на радиаторы. В ходе работы под нагрузкой их нагрев – это естественное явление.

Вторичную обмотку трансформатора можно сделать на любое напряжение.

Для этого нужно его перемотать, но если блок нужен, например, для зарядного устройства автомобильного аккумулятора, то можно обойтись без всяких перемоток. Для выпрямителя стоит использовать импульсные диоды, опять же, оптимальное решение – это наше КД213 с любой буквой.

В конце хочу сказать, что это только один из вариантов переделки таких блоков. Естественно, существует множество иных способов. На этом, друзья, все. Ну а с вами, как всегда, был KASYAN AKA. До новых встреч. Пока!

Травление печатных плат Самодельный миниатюрный низковольтный паяльник Часы на газоразрядных индикаторах – травление плат

Автор статьи наглядно показал, как разобрать и что можно добыть для повторного использования из старой энергосберегающей лампы. Таким образом можно «вернуть» часть денег заплаченных за эту лампу в свое время. Если же удастся сохранить корпус с цоколем, то его можно использовать для изготовления других ламп. Сейчас модно делать своими руками светодиодные лампы из подручных средств.

Перегоревшая энергосберегающая лампа

Привет всем,

сегодня я хочу показать вам, как вы можете сделать большую часть из этих денег вы вложили в энергосберегающие лампы путем извлечения его полезных деталей после он сгорел.

Цель:

Цель этой Instructable, чтобы показать вам источник свободной части можно использовать для следующих проектов и снижения потерь электроэнергии.

Вы можете получить эти детали из энергосберегающих ламп:

  • Конденсаторы
  • Диоды
  • Транзисторы
  • Катушки

Необходимые инструменты:

  • плоскую отвертку или пилу/режущий инструмент
  • оловоотсос
  • паяльник

Пожалуйста, прочитайте следующий текст для вашей же безопасности. Я не хочу, чтобы люди пострадали так что читайте и, пожалуйста, будьте осторожны.

Файл readme:

  • Перед началом убедитесь, что стеклянные тела энергосберегающая Лампа разбита! Если он сломан, нужно запечатать его в сумку или какой-то контейнер, чтобы избежать попадания воздействию ртути внутри лампы.
  • Будьте очень осторожны, чтобы не повредить стекло и корпус светильника! Не пытайтесь открыть лампу, повернув стекло кузова или пытается порвать или как-то так.
  • Не пытайтесь открыть лампу сразу после этого сгорел. Он содержит высоковольтный конденсатор, который должен выполнять первым! Не прикасайтесь к печатной плате, если Вы не знаете, если конденсатор остается заряженным или вы можете получить удар током!
  • Я думаю, что лучший совет, чтобы распоряжаться сгорел или разбитые энергосберегающие лампы, чтобы положить их в емкость (например, ведро с крышкой или как-то так) и хранить контейнер в безопасном месте, пока вы не найдете место, чтобы переработать их.
  • Пожалуйста, не выбрасывайте энергосберегающие лампы в мусорное ведро! Энергосберегающие лампы являются экологически опасными и могут нанести вред людям!

Шаг 2: Откройте корпус лампы


Разборка старой энергосберегающей лампы

Ок. Начнем. Сначала посмотрим на дела. Большинстве случаев либо приклеены или закрепить вместе. (Мой был обрезан вместе, как и большинство других ламп у меня до сих пор открыт.)

Вы должны быть в состоянии открыть дело, открыв его с помощью отвертки или разрезая его открыть с помощью пилы.

В обоих случаях вы должны быть осторожны, чтобы не повредить стеклянное тело! Будьте очень осторожны.

После того как вы открыли дело, нужно просто обрезать провода, ведущие в стеклянном корпусе, так что вы можете положить его в безопасное место, чтобы избавиться от этой опасности.

Шаг 3: удалите печатную плату из корпуса


Иногда корпус сохранить не удается.
Плата драйвера энергосберегающей лампы готовая к распайке.

Теперь вам необходимо извлечь плату из корпуса.

Будьте очень осторожны и не прикасайтесь к печатной плате голыми руками! Там есть высоковольтный конденсатор (большой электролитический конденсатор можно увидеть на фото) на плате, которая еще могла быть! Попробуйте удалить его из схемы путем перерезания ножки и положить его в безопасное место. (Убедитесь, что не касаетесь ногами!)

Как только высоковольтный конденсатор снимается с доски ничего не останется страха. Теперь можно приступить к отпаяйте все полезные элементы.

Шаг 4: Отпаяйте все полезные части


Детали, которые удалось отпаять



Теперь возьмите паяльник и оловоотсос свой и запчастей.

Как вы можете видеть на картинке есть много полезных деталей на печатной плате, так что вы должны быть в состоянии собрать большое количество полезных элементов для вашего проекта:)

Ну, вот и все. Надеюсь, я смог предоставить вам несколько полезных советов, и я надеюсь, вам понравился мой Instructable:)

  • Что можно сделать из старых шприцов. (0)
    Встречайте. Подставка под микрофон, пистолет и продуктивная овощерезка. Все из старых шприцов. Вроде ничего особенного, но может приукрасить […]
  • Еще одна полезная вещь из алюминиевой банки. Попкорн заказывали? (0)
    Что еще можно сделать из алюминиевой банки. Или еще один способ как сделать попкорн своими руками. Имея две банки и нижеприведенную инструкцию […]

Приобрел себе на пробу светодиоды 10 Вт 900лм теплого белого света на AliExpress. Цена в ноябре 2015года составляла 23 рубля за штуку. Заказ пришел в стандартном пакетике, проверил все исправные.


Для питания светодиодов в осветительных устройствах применяются специальные блоки - электронные драйверы, представляющие собой преобразователи стабилизирующие ток, а не напряжение на своём выходе. Но так как драйверы для них(заказывал тоже на AliExpreess) были еще в пути решил запитать от балласта от энергосберегающих ламп. У меня было несколько таких неисправных ламп. у которых сгорела нить накала в колбе. Как правило, у таких ламп преобразователь напряжения исправен, и его можно использовать в качестве импульсного блока питания или драйвера светодиода.
Разбираем люминисцентную лампу.

Для переделки я взял 20 Вт лампу, дроссель которой с лёгкостью может отдать в нагрузку 20 Вт. Для 10 Вт светодиода больше никаких переделок не требуется. Если планируется запитать более мощный светодиод, требуется взять преобразователь от более мощной лампы, либо установить дроссель с большим сердечником.
Установил перемычки в цепи розжига лампы.

На дроссель намотал 18 витков эмальпровода, подпаиваем выводы намотанной обмотки к диодному мосту, подаём на лампу сетевое напряжение и замеряем выходное напряжение. В моём случае блок выдал 9,7В. Подключил светодиод через амперметр, который показал проходящий через светодиод ток в 0,83А. У моего светодиода рабочий ток равен 900мА, но я уменьшил ток чтобы увеличить ресурс. Собрал диодный мост на плате навесным способом.

Схема переделки.

Светодиод установил на термопасту на металлический абажур старой настольной лампы.

Плату питания и диодный мост установил в корпус настольной лампы.

При работе около часа температура светодиода 40 градусов.

На глаз освещенность как от 100 ваттной лампы накаливания.

Планирую купить +128 Добавить в избранное Обзор понравился +121 +262

РЕМОНТ И ПЕРЕДЕЛКА ЭНЕРГОСБЕРЕГАЮЩИХ ЛАМП

ЭНЕРГОСБЕРЕГАЮЩАЯ ЛАМПА ОТ 12В

Мотал на глаз и на память интерпритируя размер сердечников, по схеме непрерывной обмотки. Первой намотал коллекторную обмотку 10 витков проводом 0.4мм, второй базовою 6 витков проводом 0.2мм, проложил слой изоляции намотал внахлест нагрузочную обмотку проводом 0.1 получилось около 330-340 витков. В нагрузку подключил лампу от сканера 7w, устройство сразу заработало, чему свидетельствовал исходящий от лампы свет. Рядом лежала 13-ваттная энергосберегающая лампа со сгоревшей спиралью, решил попробовать осилит это детище подобную нагрузку, был приятно удивлен, при токе в пол ампера при напряжении 12 вольт лампа светит достаточно ярко.

Так же работает от двух литий-ионных аккумуляторов, правда потребляя на 150 ма больше. Во едино спаял навесным монтажом (4 деталюги) и все это чудесным образом разместилось в оригинальном корпусе из под балласта на 220.

Транзистор не особо греется, через пять минут работы на нем можно держать палец. Теперь эта конструкция поедет прямиком на дачу, где как обычно постоянно перебои с электричеством, можно будет чай попить или постель разложить при дневном свете.

Что можно сделать, если у Вас сгорела компактная люминесцентная лампа

Хотя на эконом лампы, в зависимости от производителя, существует гарантия и даже до 3-х лет. Но потребители могут столкнуться с тем что лампочка перегорела, а у вас не сохранилась упаковка, чек покупки, магазин переехал в другое место т.е по каким-то независящим от вас причинам вы не можете обменять поломанную вещь. Мы решили предложить Вам воспользоваться оригинальным решением по использованию, перегоревших эконом ламп которое мы нашли на просторах огромного Интернет-ресурса и предлагаем его Вам.

Помните, вы подвергаете жизнь опасности, попав под напряжение 220В!

Проще всего её выбросить в мусор, ну а можно из неё сделать … другую, а если ламп сгоревших накопилось несколько, то можно заняться и …. ремонтом.
Если вы хотя бы раз держали паяльник в руках, то эта статья для Вас.
Вы сделать самостоятельно электронный баласт для ламп дневного света и включить лампу до 30 Ватт, без стартёра и дросселя, с помощью маленькой платки снятой с нашей эконом лампы. При этом она будет зажигаться мгновенно, при понижении напряжения не будет ‘Моргать’.

Данная лампа перегорает двумя способами:
1) горит электронная схема

2) перегорает спираль накала

Для начала выясняем, что же произошло. Разбираем лампу (очень часто собраны на защелках, более дешовые варианты склены).

Отключаем колбу, откусываем провода питания:

Прозваниваем накалы колбы (для принятия решения выбросить колбу или нет)

Мне не повезло, перегорели обе спирали накала (первый раз в моей немалой практике, обычно одна, а когда сгорает схема то и ни одной). В общем если хотя бы одна сгорела колбу выбрасываем, если нет, то она рабочая, а сгорела схема.
Рабочую колбу отлаживаем на хранение (до следующей сгоревшей экономки) и потом к рабочей схеме цепляем колбу. Так из нескольких делаем 1, а может и больше (как повезёт).
А вот вариант изготовления лампы дневного света. Можно подключить, как и 6 Ваттную лампу с «китайского» фонаря (например, я обмотал её пластиком с зелёной бутылки, а схему спрятал в сгоревшее зарядное устройство, от мобильного телефона и получилась классная подсветка для аквариума) так и 30 Ваттную лампу дневного света:

Можно ли отремонтировать электронный балласт?

Люминесцентные лампы с электронным балластом сегодня можно встретить повсеместно. Очень популярны настольные лампы с прямоугольными плафонами и двухколенным держателем. Во всех магазинах электротоваров уже продаются лампы, вворачиваемые в обычные патроны с круглой резьбой вместо классических ламп накаливания. В частности, петербургский метрополитен в последнее время напрочь избавился от ламп накаливания, заменив их люминесцентными. Преимущество таких ламп очевидно - продолжительный срок службы, низкое потребление электроэнергии при высокой светоотдаче (достаточно сказать, что 11-Ваттная люминесцентная лампа заменяет 75-Вт лампу накаливания), мягкий свет со спектром, близким к естественному солнечному свету.
Ведущими производителями люминесцентных ламп являются фирмы Philips, Osram и некоторые другие. К сожалению, на отечественном рынке имеется достаточно китайских ламп низкого качества, которые выходят из стоя гораздо чаще, чем их фирменные собратья. Подробный рассказ об электронных балластах, о принципах работы, преимуществах, схемотехнических решениях есть в книге "Силовая электроника для профессионалов и любителей". Раздел книги называется "Балласт, с которым не утонешь. Новые методы управления люминесцентными осветительными лампами". Поэтому читатели, которым необходимо получить первоначальные
сведения об электронных балластах, могут обратиться к книге, ну а здесь рассматривается достаточно частный вопрос ремонта вышедших из стоя ламп.
История появления этой статьи связана с приобретением автором лампы неизвестной фирмы (фото 1). Данная лампа безотказно работала в люстре несколько месяцев, однако по истечении этого времени она просто перестала зажигаться. Ничего не оставалось сделать, как разобрать лампу, аккуратно (с боков) поддев тонкой отверткой корпус (он состоит из двух половинок, скрепляющихся между собой тремя выступами-защелками).

Разобранная лампа показана на фото 2. Она состоит из круглого цоколя, схемы управления (собственно электронного балласта) и пластмассового кружка, в который вклеена трубка, которая дает свет. При разборке лампы следует соблюдать осторожность, чтобы, во-первых, не разбить баллон и не повредить себе руки, глаза и прочие части тела, а во-вторых, чтобы не повредить электронную схему (не оторвать "дорожки") и корпус (пластмассовый).

Исследования, проведенные с помощью мультиметра, показали, что в баллоне лампы перегорела одна спираль. На фото 3, которое получено уже после вскрытия баллона, видно, что спираль перегорела, затемнив люминофор в окрестностях. Было сделано предположение, что с электронным балластом ничего не случилось (это позже подтвердилось). С большой долей уверенности можно утверждать, что нить лампы - самое слабое место, и в подавляющем большинстве вышедших из стоя ламп будет наблюдаться скорее перегорание нити, нежели выгорание электронной части схемы.
Кстати, об электронной схеме электронного баласта. Она показана на фото 4. Схема перерисована с печатной платы. Кроме того, на ней не показаны некоторые элементы, не затрагивающие основ работы балласта, а также не приведены номиналы. Балласт лампы представляет собой двухтактный автогенератор полумостового типа с насыщающимся трансформатором. Такой автогенератор хорошо описан в книгах и дополнительных пояснений не требует. На входе установлен диодный мост VD1-VD4 с фильтром С1, С2, L1. Конденсатор C1 препятствует проникновению высокочастотных помех в питающую сеть, конденсатор C2 служит фильтром сетевых пульсаций, дроссель L1 ограничивает пусковой ток и фильтрует ВЧ помехи. Дроссель L2 и конденсатор C3 являются элементами резонансного контура, напряжение в котором "зажигает" лампу. Конденсатор C4 - пусковой. Понятно, что при обрыве одной из нитей лампа уже не загорится.

Очень важный элемент схемы - предохранитель F1. Если в схеме электронного балласта что-то случится (например, "выгорят" транзисторы полумоста, создав "сквозной" ток, или пробьется конденсатор C1, С2, или пробьется диодный мост), предохранитель защитит сеть от короткого замыкания и возможного пожара. На фото 5 этот предохранитель показан.

Он представляет собой колбочку без классического держателя с длинными выводами, один из которых припаян к цоколю, а другой, к печатной плате балласта. Так что если предохранитель перегорел, скорее всего, что-то случилось в схеме балласта, и нужно проверять его элементы. А если нет, балласт наверняка цел.
Самое интересное, что такую энергосберегающую лампу можно отремонтировать, и обойдется это дешевле, чем приобрести новую лампу. Она будет выглядеть, конечно, не так красиво, как промышленная, но вполне прилично (если все делать аккуратно). Итак, нужно приобрести сменный элемент для настольной лампы, например, такой, как показан на фото 6. Производителем этой лампы является итальянская фирма Osram, мощность лампы - 11 Вт, что соответствует 75 Вт лампы накаливания.

На коробочке лампы есть интересная информация о потребляемой мощности других ламп, а также по надежности. Данная лампа мощностью 9 Вт заменит 60-Ваттную лампу накаливания, 9 Вт - 40- Ваттную, а 5 Вт - 25-Ваттную. Гарантированное время наработки на отказ - 10000 часов, что соответствует 10 лампам накаливания. Это - примерно 13 месяцев непрерывной работы. Цоколь дампы должен содержать четыре вывода, то есть две спирали (фото 7). У данной лампы правые два вывода относятся к одной спирали, левые два - к другой спирали. Если расположение спиралей неочевидно, всегда можно разыскать нужные выводы с помощью мультиметра - спирали имеют низкое сопротивление порядка нескольким Ом.

Выводы лампы необходимо осторожно, не допуская перегрева, облудить припоем.

Теперь займемся подготовкой основания, к которому будем крепить лампу. Кружок, похожий на имеющийся, залитый белой массой (фото 8), нужно изготовить новый и напильником подготовить площадку, к которой будет приклеена лампа (фото 9). Колбу лампы разбивать категорически не рекомендуется.

Дальше лучше проверить, как зажигается лампа. Подпаиваем выводы лампы к балласту (фото 11) и включаем балласт в сеть. Для приработки стоит его потренировать, включая-отключая несколько раз и выдержав во включенном состоянии несколько часов. Лампа светится достаточно ярким светом, и при этом греется, поэтому ее лучше положить на дощечку и накрыть несгораемым листом. Когда тренировка проведена, разбираем эту конструкцию и начинаем монтаж лампы.

Берем тюбик суперклея "Момент" и наносим на сопрягаемые поверхности несколько капель. Потом вставляем выводы в отверстия и плотно прижимаем детали друг другу, выдерживая полчаса в таком виде. Клей надежно "схватит" детали (фото 10). Лучше использовать этот клей, или дихлорэтан, поскольку для надежного крепления пластмасса в сопрягаемом месте должна немного расплавиться.

Осталось собрать лампу. Впаиваем балласт в цоколь, не забыв о предохранителе. Заранее (до впайки) нужно припаять четыре провода, которыми лампа будет связана с балластом. Подойдет любой провод, ну лучше, чтобы это был провод типа МГТФ во фторопластовой термостойкой изоляции (фото 12). Собирается лампа тоже просто - достаточно уложить провода внутри цоколя, или скрутить их жгутиком, и затем защелкнуть фиксаторы. Отверстия от прошлого баллона в целях электробезопасности лучше заклеить кружочками, ввырезанными из упаковки от молочных продуктов.

Отремонтированная лампа готова (фото 13). Ее можно ввернуть в патрон.
В заключение отмечу, что можно достаточно просторно фантазировать на тему электронных балластов. К примеру, вставить лампу в красивый светильник и подвесить его к потолку, используя части от сгоревшей лампы.

3. Как работают люминесцентные лампы?

3.4. Физические характеристики ламп

Принципы работы

Люминесцентная лампа генерирует свет от столкновений с горячим газ («плазма») свободного ускоренного электроны с атомами– обычно ртуть - в какие электроны поднимаются на более высокие уровни энергии, а затем отступать, излучая на двух линиях УФ-излучения (254 нм и 185 нм).Таким образом созданное УФ-излучение затем преобразуется в видимый свет УФ возбуждение флуоресцентного покрытия на стеклянной оболочке фонарь. Химический состав этого покрытия подобран таким образом, чтобы излучать в желаемом спектре.

Строительство

Трубка люминесцентной лампы заполнена газом с низким содержанием пар ртути под давлением и благородные газы в целом давление около 0.3% от атмосферное давление. В самая обычная конструкция, пара эмиттеров накала, один на каждом конце трубки, нагревается током и используется для испускать электроны, которые возбуждают благородные газы и газообразную ртуть путем ударной ионизации. Ионизация может происходить только в исправных лампочках.Следовательно, вредное воздействие на здоровье от этого процесса ионизации невозможно. Кроме того, лампы часто оснащаются двумя конверты, что значительно снижает количество УФ-излучения испускается.

Электрические аспекты эксплуатации

Для запуска лампы и поддерживать ток на достаточном уровне для постоянного света эмиссия.В частности, схема подает высокое напряжение на запускают лампу и регулируют ток через трубку. Возможны различные конструкции. в в простейшем случае используется только резистор, что относительно энергоэффективность. Для работы от переменный ток (AC) напряжения сети, использование индуктивного балласта является обычным явлением и было известен отказ до конца срока службы лампы, вызывающий мерцание лампы.Различные схемы, разработанные для начать и запустить люминесцентные лампы выставляют различные свойства, то есть излучение акустического шума (гула), срок службы (лампы и балласта), энергоэффективность и мерцание интенсивности света. Сегодня в основном улучшенная схемотехника используется, особенно с компактными люминесцентными лампами, где Схема не может быть заменена перед люминесцентными лампами.Это уменьшило количество технических сбоев, вызывающих эффекты, как перечисленные выше.

EMF

Часть электромагнитный спектр который включает статические поля, а поля до 300 ГГц - вот что здесь упоминается как электромагнитные поля (ЭДС).Литература о том, какие виды и сильные стороны ЭМП. которые излучаются из КЛЛ редко. Однако есть несколько видов ЭДС, обнаруженных в близость этих ламп. Как и другие устройства, которые зависят на электричество для выполнения своих функций они излучают электрические и магнитные поля в низкочастотный диапазон ( частота распространения 50 Гц и, возможно, также гармоники из них, e.грамм. 150 Гц, 250 Гц и т. Д. В Европе). Кроме того, КЛЛ, в отличие от лампы накаливания, также излучают в высокочастотном диапазоне ЭДС (30-60 кГц). Эти частоты различаются между разными типами ламп.

Мерцание

Все лампы будут различать интенсивность света при удвоении мощности от сети. (линейная) частота, так как мощность, подаваемая на лампу, достигает пика дважды за цикл при 100 Гц или 120 Гц.Для лампы накаливания это мерцание уменьшается по сравнению с люминесцентными лампами за счет тепла емкость нити. Если модуляция света интенсивности достаточно для восприятия человеческим глазом, тогда это определяется как мерцание. Модуляции на 120 Гц не видно, в большинстве случаев даже не при 50 Гц (Seitz et al.2006 г.). Флюоресцентные лампы включая КЛЛ, которые используют поэтому высокочастотные (кГц) электронные балласты называются «без мерцания».

Однако как лампы накаливания (Chau-Shing and Devaney, 2004), так и "немерцающие" люминесцентные источники света (Хазова и О'Хаган 2008) производят еле заметное остаточное мерцание.Дефектный лампы или схемы могут в некоторых случаях привести к мерцанию при более низкой частот, либо только в часть лампы или во время цикла запуска в несколько минут.

Световое излучение, УФ-излучение и синий свет

Имеются характерные различия между излучаемыми спектрами. люминесцентными лампами и лампы накаливания, потому что различных принципов работы.Лампы накаливания настраиваются по своей цветовой температуре за счет специальных покрытий из стекло и часто продаются с атрибутом «теплый» или «Холодный» или, более конкретно, по их цветовой температуре для профессиональные светотехнические приложения (фотостудии, магазины одежды и т. д.). В случае люминесцентных ламп спектральное излучение зависит от покрытия люминофора. Таким образом, люминесцентные лампы могут быть обогащены синим светом (длины волн 400-500 нм), чтобы лучше имитируют дневной свет по сравнению с лампами накаливания. Как и люминесцентные лампы, КЛЛ излучают больше синего цвета. светлее, чем лампы накаливания.Есть на международном уровне признанные пределы воздействия излучения (200-3000 нм) испускается лампами и осветительными приборами, настроенными на защиту от фотобиологические опасности (Международная электротехническая Комиссия 2006 г.). Эти ограничения также включают излучение от КЛЛ.

УФ-содержание излучаемого спектра зависит как от люминофор и стеклянная колба люминесцентной лампы.УФ выброс лампы накаливания есть ограничивается температурой нити накала и поглощение стекла. Некоторый КЛЛ с одной оболочкой излучают УФ-В и следы УФ-С излучения на длине волны 254 нм, что не так для ламп накаливания (Khazova and O´Hagan 2008).Экспериментальный данные показывают, что КЛЛ производят больше УФ-излучение, чем вольфрамовая лампа. Кроме того, количество УФ-В излучение производится из КЛЛ с одной оболочкой, с того же расстояния 20 см, составляли примерно в десять раз выше, чем облучается вольфрамовой лампой (Мозли и Фергюсон, 2008 г.).

Компактная схема люминесцентной лампы (CFL) - Spactronics

CFL также известен как компактный люминесцентный свет, энергосберегающий свет и компактная люминесцентная лампа. На рис. 1 показана лампа КЛЛ.

Почему КЛЛ?

CFL - компактная и энергоэффективная лампа. Он требует меньшего количества энергии, т.е. от 13 до 14 Вт, чем лампа накаливания, поэтому широко используется для экономии энергии. Срок службы ламп КЛЛ составляет от 7 до 9 лет.

Работа КЛЛ:

На рис. 2 показана схема цепи лампы КЛЛ и части КЛЛ.

Основные три части лампы CFL - это цоколь, цепь и лампа. Мы применяем реальный источник питания переменного тока к базе.

В CFL используется вакуумная трубка, аналогичная ламповой лампе. Трубка имеет два электрода на обоих концах, и они обработаны барием.

Катод имеет температуру 900 0 C.Когда мы подаем переменный ток на катод, он генерирует пучок электрода. Луч дополнительно ускоряется разностью потенциалов между электродами.

Из рис. 3 видно, что ускоренные электроны ударяются о ртуть и атомы органов, и в результате образуется низкотемпературная плазма. Этот процесс инициирует излучение ртути в ультрафиолетовой форме.

Внутри трубки находится «Люминофор», который используется для преобразования ультрафиолетового света в видимый свет.

CFL также состоит из импульсного преобразователя и работает на очень высокой частоте. Это замена балласта (дросселя) и стартера в сборе.

Описание схемы CFL:
  • Когда в схему подается переменный ток, он сначала преобразует его в постоянный ток с помощью выпрямителя.

  • Затем преобразуйте постоянный ток в высокочастотный переменный ток с помощью транзисторов. Результирующая высокая частота подается на ламповую трубку.

Ключевой компонент печатной платы CFL:

  1. Мостовой выпрямитель на диоде 1N-4007

  2. Глушитель

  3. Конденсатор фильтра

  4. Предохранитель

  5. Точка поставки

Неисправности КЛЛ:

  • Конденсатор вздувается из-за перегрева.

  • Сбой термоусадки вокруг змеевика.

  • Иногда диод не работает должным образом, либо яркость становится меньше, либо лампа постоянно мигает.

  • Если у лампы больше времени на включение, значит проблема с конденсатором фильтра.

  • Если есть проблемы с переключением, нам нужно заменить транзисторы.

Простая схема светодиодной лампы из лома. Использует 5 светодиодов и потребляет только 50 мА

Энергосберегающая светодиодная лампа из вашего мусорного бака.

Эта схема разработана г-ном Ситараманом Субраманианом, и мы очень рады опубликовать ее здесь. В этой статье он показывает метод преобразования сломанной / неработающей КЛЛ в энергосберегающую светодиодную лампу.

Это просто схема светодиодной лампы, которая может работать от сетевого напряжения. Цепочка из пяти светодиодов управляется емкостным источником питания без трансформатора. В цепи 0,47 мкФ / 400 В полиэфирный конденсатор С1 снижает сетевое напряжение. R1 - это спускной резистор, который выводит накопленный заряд из C1, когда вход переменного тока выключен.Резисторы R2 и R3 ограничивают бросок тока при включении цепи. Диоды D1 – D4 образуют мостовой выпрямитель, который выпрямляет пониженное напряжение переменного тока, а C2 действует как конденсатор фильтра. Наконец, стабилитрон D1 обеспечивает регулировку, а светодиоды возбуждаются.

Фото.

Принципиальная схема.

Слова Ситхарамана о схеме : Я посылаю вам настольную лампу, сделанную из неработающей энергосберегающей лампы с разбитыми трубками.КЛЛ переделали в светодиодную лампу. Большинство компонентов будет доступно в одной коробке для лома. Также можно использовать несколько компонентов, имеющихся в печатной плате CFL.

Процедура

1. Осторожно снимите разбитые очки

2. Осторожно откройте сборку

3. Снять и утилизировать электронику

4. Соберите схему в матричном ПК или на листе ламината толщиной 1 мм.

5.Вырежьте круглый лист ламината (ножницами)

6. Отметьте положение 6 круглых отверстий на листе

7. Просверлите отверстия, соответствующие светодиодам, до шести отверстий

8. Используйте немного клея, чтобы удерживать светодиодный узел в положении

9. Закройте сборку

10. Убедитесь, что внутренние провода не касаются друг друга.

11. Теперь проверьте на 230 В переменного тока

Ваша красивая компактная настольная лампа / комнатная лампа для пуджи / проходная лампа готова к использованию.

Причин частого выхода из строя лампочки

Если ваш дом часто выходит из строя в одном или нескольких местах, вероятно, причина преждевременного выгорания есть. Не думайте, что это нормально, поскольку лампа накаливания имеет средний срок службы около 1000 часов, а компактная флуоресцентная (CFL) или светодиодная (светодиодная) лампа может прослужить несколько тысяч часов. Таким образом, даже стандартной лампы накаливания, которая работает от четырех до пяти часов каждый день, должно хватить примерно на шесть месяцев.Если вы перегораете лампочки намного быстрее, чем это, стоит исследовать, чтобы определить причины.

Пять причин, по которым лампочки быстро перегорают

Никакая лампочка не длится вечно - даже высококлассные светодиодные лампы, которые иногда рекламируют как «десятилетние». Но если ваши лампочки перегорают подозрительно быстро, ищите одно из этих условий как вероятную причину.

Плохое гнездо для лампочки

Проблемы с розеткой могут сократить время обслуживания лампочек.У осветительного прибора или лампы может быть неплотное электрическое соединение, ослабленные контакты или поврежденный контакт в самом основании розетки. Эти проблемы часто приводят к тому, что лампочка нагревается сильнее, что может привести к расплавлению паяных соединений или ожогам контактов. Если одна конкретная лампа или осветительный прибор является конкретным виновником перегоревших ламп, это явный признак того, что проблема связана с одной конкретной розеткой.

Розетки для лампочек, особенно на комнатных лампах, заменить довольно просто.Это может быть немного сложнее, хотя и возможно, с постоянными осветительными приборами. Здесь люди часто выбирают замену светильника, поскольку это также дает вам возможность изменить стиль.

Мощность лампы не соответствует параметрам прибора

Хотя многие люди этого не осознают, светильники рассчитаны на работу с максимальной мощностью лампочек. Превышение этого рейтинга может привести к перегреву прибора, что может привести к отказу лампочки или еще более серьезным проблемам.Например, размещение лампочек мощностью 75 или 100 Вт в осветительной арматуре с розетками на 60 Вт вполне может привести к преждевременной смерти лампочек. В том случае, если вам повезет - такое неправильное обращение тоже может привести к пожару.

Вибрация

Вибрация - еще один фактор, способствующий выходу из строя лампочки. Вы можете увидеть это в шатких потолочных вентиляторах или в местах, где часто бывает вибрация стен или зданий. Например, в домах, расположенных в непосредственной близости от железнодорожных путей, вибрации, вызываемые проезжающими поездами, могут сотрясать нити лампочек, ослаблять связи и вызывать выход из строя ламп задолго до их нормального срока службы.

Если такие ситуации неизбежны, попробуйте лампочку для суровых условий эксплуатации. Эти лампы имеют пластиковое покрытие на поверхности, которое предотвращает разрушение лампы в случае взрыва лампы, но они также неплохо выдерживают удары вибраций.

Чрезмерное напряжение в сети

Чрезмерное сетевое напряжение также может быть причиной выхода из строя лампочки. Хотя стандартные бытовые схемы рассчитаны на 120 вольт, на самом деле напряжение, проходящее по проводам, может колебаться от 110 до 125 вольт.Это совершенно нормально, и большинство лампочек, рассчитанных на 120 вольт, легко справятся с этим нормальным диапазоном напряжения. Однако возможно, что уровень обслуживания в вашем доме превышает нормальный диапазон, и одним из симптомов этого является то, что лампочки перегорают быстрее, чем ожидалось. Существуют лампы, предназначенные для коммерческого или промышленного использования, которые могут выдерживать более высокое напряжение, но если вы подозреваете, что это постоянная проблема в вашем доме, стоит проверить напряжение с помощью мультиметра или обратиться к профессиональному электрику. Это.

Предупреждение

Если ваше напряжение обычно составляет от 130 до 135 вольт или выше, позвоните в свою энергетическую компанию, чтобы проверить отвод напряжения и входящее линейное напряжение. Это более высокое напряжение может повредить электронику и бытовую технику в вашем доме.

Лампы плохого качества

Наиболее частая причина преждевременного выхода лампы из строя - это чисто вопрос качества продукции: дешевые лампы очень часто бывают плохими. Если вы обнаружите, что ваши лампочки перегорают слишком быстро, попробуйте сменить название на бренд и посмотрите, сохраняется ли проблема.По всей вероятности, если вы потратите немного больше средств на более качественные лампы, это решит проблему - и сэкономит вам деньги в долгосрочной перспективе, поскольку вы будете менять их реже.

Подсказка

Иногда заметна разница в качестве между лампочками эконом-класса и лампами известных марок. Проверьте паяное соединение в нижней части самой лампочки. Если эта точка паяного соединения крошечная и не имеет полумесяца, как должно быть, возможно, лампа плохо соединяется с центральным контактным контактом патрона лампы.Даже слегка нарушенное соединение создаст большее сопротивление и вызовет нагрев точки соединения. Это верный путь к неприятностям, поскольку чрезмерное тепло - самое худшее для лампочки.

Когда выключать свет

Экономическая эффективность того, когда выключать свет, зависит от типа лампы и стоимости электроэнергии. Тип используемой лампочки важен по нескольким причинам. Все лампочки имеют номинальный или номинальный срок службы, на который влияет то, сколько раз они включаются и выключаются.Чем чаще они включаются и выключаются, тем меньше срок их службы.

Лампы накаливания

Лампы накаливания следует выключать всякий раз, когда они не нужны, поскольку они являются наименее эффективным типом освещения. 90% энергии, которую они используют, выделяется в виде тепла, и только около 10% дает свет. Выключив свет, вы сохраните прохладу в комнате, что станет дополнительным преимуществом летом.

Галогенное освещение

Хотя галогенные лампы более эффективны, чем традиционные лампы накаливания, они используют ту же технологию и намного менее эффективны, чем КЛЛ и светодиоды.Поэтому лучше выключать эти огни, когда они не нужны.

Освещение КЛЛ

Поскольку они уже очень эффективны, рентабельность отключения КЛЛ для экономии энергии немного сложнее. Общее практическое правило таково:

  • Если вы не выходите из комнаты на 15 минут или меньше, оставьте его включенным.
  • Если вы будете вне комнаты более 15 минут, выключите его.

На срок службы КЛЛ больше влияет количество включений и выключений.Как правило, вы можете продлить срок службы лампы CFL, включая и выключая ее реже, чем если вы просто используете ее меньше.

Широко распространено мнение, что КЛЛ потребляют много энергии, чтобы начать работу, и лучше не выключать их на короткое время. Количество энергии варьируется между производителями и моделями, однако лампы, соответствующие стандарту ENERGY STAR ©, должны выдерживать быструю смену циклов в течение пятиминутных интервалов, чтобы гарантировать, что они могут выдерживать частое переключение.

В любом случае относительно более высокий требуемый «пусковой» ток длится половину цикла, или 1/120 секунды.Количество электроэнергии, потребляемой для подачи пускового тока, равно нескольким секундам или меньше при нормальной работе освещения. Выключение люминесцентных ламп более чем на 5 секунд сэкономит больше энергии, чем будет затрачено на их повторное включение. Следовательно, реальная проблема заключается в стоимости электроэнергии, сэкономленной за счет выключения света, по сравнению со стоимостью замены лампочки. Это, в свою очередь, определяет кратчайший рентабельный период выключения люминесцентного света.

Стоимость энергии, сэкономленной при отключении КЛЛ, зависит от нескольких факторов:

  • Цена, которую коммунальное предприятие взимает со своих потребителей, зависит от «классов» потребителей, которые обычно бывают жилыми, коммерческими и промышленными.В каждом классе могут быть разные тарифные планы.
  • Некоторые коммунальные службы могут взимать разные тарифы за электроэнергию в разное время дня. Как правило, коммунальным предприятиям дороже вырабатывать электроэнергию в определенные периоды высокого спроса или потребления, называемые пиками.
  • Некоторые коммунальные предприятия могут взимать с коммерческих и промышленных потребителей больше за киловатт-час (кВтч) в периоды пиковой нагрузки, чем за потребление в непиковый период.
  • Некоторые коммунальные предприятия могут также взимать базовую ставку за определенный уровень потребления и более высокие ставки за увеличивающиеся блоки потребления.
  • Часто коммунальное предприятие добавляет различные платы за обслуживание, базовую плату и / или налоги за расчетный период, которые можно усреднить на потребленный кВтч, если они еще не учтены в ставке.

Светодиодное освещение

На срок службы светодиода (LED) не влияет его включение и выключение. Хотя срок службы люминесцентных ламп сокращается, чем чаще они включаются и выключаются, это не оказывает отрицательного влияния на срок службы светодиодов. Эта характеристика дает светодиодам несколько явных преимуществ, когда дело доходит до работы.Например, светодиоды имеют преимущество при использовании вместе с датчиками присутствия или датчиками дневного света, которые работают в режиме включения-выключения. Также, в отличие от традиционных технологий, светодиоды включаются на полную яркость практически мгновенно, без задержки. Светодиоды также в значительной степени не подвержены вибрации, потому что у них нет нитей или стеклянных корпусов.

Расчет экономии энергии

Чтобы рассчитать точную величину экономии энергии за счет выключения лампочки, вам необходимо сначала определить, сколько энергии потребляет лампа во включенном состоянии.На каждой лампочке напечатано значение мощности в ваттах. Например, если номинальная мощность составляет 40 Вт, и лампа горит в течение одного часа, она будет потреблять 0,04 кВтч, а если она выключена в течение одного часа, вы сэкономите 0,04 кВтч. (Обратите внимание, что многие люминесцентные светильники имеют две или более ламп. Кроме того, один переключатель может управлять несколькими приборами - «массивом». Добавьте экономию для каждого прибора, чтобы определить общую экономию энергии.)

Затем вам нужно выяснить, что вы платят за электроэнергию за кВтч (в целом и в пиковые периоды).Вам нужно будет просмотреть свои счета за электроэнергию и узнать, сколько коммунальные услуги взимают за киловатт-час. Умножьте тариф за кВтч на количество сэкономленной электроэнергии, и вы получите величину экономии. Продолжая приведенный выше пример, предположим, что ваш тариф на электроэнергию составляет 10 центов за кВтч. В этом случае стоимость экономии энергии составит 0,4 цента (0,004 доллара США). Величина экономии будет увеличиваться, чем выше номинальная мощность лампы в ваттах, чем больше количество лампочек регулируется одним переключателем, и тем выше показатель за кВтч.

Наиболее рентабельный период времени, в течение которого свет (или комплект осветительных приборов) может быть выключен до того, как величина экономии превысит затраты на замену ламп (из-за их сокращенного срока службы), будет зависеть от типа и модель лампочки и балласта. Стоимость замены лампочки (или балласта) зависит от стоимости лампочки и затрат труда на ее выполнение.

Производители освещения должны иметь возможность предоставлять информацию о рабочем цикле своей продукции. В целом, чем более энергоэффективна лампочка, тем дольше вы можете оставить ее включенной, прежде чем будет экономически выгодно ее выключить.

Помимо выключения света вручную, вы можете рассмотреть возможность использования датчиков, таймеров и других средств автоматического управления освещением.

Освещение как услуга, обеспечивающая циркулярную экономику (ЖУРНАЛ)

Если продавцы сохранят право собственности на светильники, у них появится стимул заботиться о долговечности. Также помогут модульные сменные компоненты. Но будет ли отрасль развиваться достаточно быстро для норм ЕС?
MARK HALPER отчетов.

Когда аэропорт Схипхол в Амстердаме три года назад решил установить новое освещение от Philips, не покупая светильники (http: // bit.ly / 2Hoi84j), она была в авангарде не только бизнес-модели «освещение как услуга» (LaaS), но и чего-то для нашего времени с ограниченными ресурсами: экономики замкнутого цикла (рис. 1).

FIG 1. Контракты на предоставление освещения как услуги, такие как установка Philips LaaS в Терминале 2 аэропорта Схипхол, могут сыграть большую роль в содействии развитию экономики замкнутого цикла в отрасли освещения. Фотография предоставлена ​​Philips Lighting.

Если вы не слышали, круговая экономика стремится минимизировать отходы во всех отраслях, обеспечивая повторное использование товаров и их материалов после того, как срок годности товара истек в определенном месте.Круговые принципы минимизируют отходы, но они также превращают их в ценность. Они контрастируют с линейной экономикой, когда сырье и продукты попадают в кучу отходов.

«Циркуляр» - это концепция, предназначенная для защиты Земли и окружающей среды, в то же время в принципе обеспечивая устойчивую экономическую жизнеспособность (http://bit.ly/2qBYGaJ). В области освещения поставщики говорят, что они все за это. Многочисленные круговые возможности включают продление срока службы светильников за счет перехода к модульной конструкции, которая позволяет легко заменять детали и компоненты, такие как светодиодные источники света и модули; использование большего количества переработанных материалов в продукции; восстановление металлического или пластикового корпуса для повторного использования; и так далее.

Но все это стоит денег, поэтому вопрос в том, что является стимулом для продавцов? Зеленый альтруизм зайдет так далеко, что, вероятно, совсем не так далеко. Тогда есть регулирование. В Европе Европейский союз разрабатывает пакет мер по замкнутой экономике, который к 2020 г. будет налагать множество различных юридических требований для различных методов замкнутого цикла, то есть через год или два до того, как многие люди подумают, что осветительные компании будут к этому готовы (рис. 2) ).

Таким образом, пока отрасль лоббирует против введения нормативных требований в 2020 году, она ищет окончательный мотиватор, который помог бы полностью перейти на замкнутую практику.И это, конечно же, связано с материальной выгодой. Если светотехнические фирмы не могут получить прибыль от круговых практик, у них будет гораздо меньше мотивации придерживаться их. Все это кажется достаточно очевидным, но если нет, то ключ кроется в названии: это круговая экономика, а экономика, по определению, предназначена для продуктивного использования материалов, ресурсов, товаров и услуг.

Как заметил Антон Браммельхейс, руководитель отдела устойчивых инноваций Philips Lighting: «Это важная экономическая система, потому что, в конце концов, предприятия и люди должны зарабатывать на ней деньги.«Нельзя сказать, что он игнорирует ее цели. Браммельхейс, как и все остальные, твердо верит в экономику замкнутого цикла, превознося ее достоинства. «Это максимизирует возможность повторного использования продуктов», - отметил он. «Вместо того, чтобы идти на свалку, мы должны убедиться, что продукты и сырье возвращаются в экономику. И мы делаем это, сохраняя ценность. Мы должны свести к минимуму разрушение стоимости ».

Но после более чем столетия линейной экономии освещения перейти на круговое освещение будет нелегко.«Нет одного быстрого решения», - сказал он. «Вам нужны систематические изменения. Это трансформация. Мы ожидаем, что это займет много лет, может быть, более десяти лет ».

Ценность по всей цепочке

Действительно, единого быстрого решения не существует. Но есть пара фундаментальных изменений, которые могут помочь открыть новую геометрию. Возможно, ведущей из них является попытка поставщиков освещения перейти на бизнес-модель LaaS - например, ту, что используется в Терминале 2 Схипхола, - в которой поставщики сохраняют право собственности на светильники и светильники, взимая ежемесячную плату за обеспечение уровней освещения по контракту, техническое обслуживание и т. Д. и техническое обслуживание, включая переработку и другие процедуры по окончании срока службы (рис.3).

FIG 2. Комиссар Европейской комиссии по окружающей среде, морским делам и рыболовству Кармену Велла является одним из нескольких руководителей ЕС, выступающих за меры, которые позволили бы светотехнической промышленности широко развернуть модульные светильники к сентябрю 2020 года, дате, которую отрасль утверждает, слишком рано. Фотография предоставлена ​​Flickr / Wikimedia Commons.

С точки зрения клиентов, LaaS наиболее известен тем, что помогает конечным пользователям избежать первоначальных капитальных затрат. Но кажется, что он идеально подходит для круговых принципов.Сделки LaaS, как правило, сокращают потребление энергии и счета за электроэнергию - что само по себе является частью кругового этоса, - но поставщик мотивирован на создание более долговечных и простых в повторном использовании продуктов в силу сохранения права собственности. Как только производители продолжат владеть светильниками после установки на объекте конечного пользователя, у них появится стимул следить за их долговечностью.

Круговое мышление было одной из причин, по которой Схипхол сформулировал решение о своем пятилетнем контракте LaaS, который, среди прочего, прямо позволяет Схипхолу возвращать лампы в Philips для повторного использования или переработки.

«Наш выбор нового освещения в Зале 2 показывает, что мы берем на себя ответственность за использование сырьевых ресурсов и придерживаемся нашей политики устойчивого развития», - сказал Андре ван ден Берг, исполнительный вице-президент и коммерческий директор Schiphol Group. Срок действия контракта составляет около двух лет с возможностью продления еще на пять лет. «Это освещение всегда обеспечивает максимальную экологичность и постоянно обеспечивает заданный уровень производительности».

По крайней мере, два других контракта Philips LaaS, подписанные за последние 2–3 года, также предусматривают повторное использование светильников Philips.Исследовательский парк High Tech Campus в Эйндховене, который освещает свою автостоянку на основе обслуживания, охарактеризовал расположение LaaS как способ «будущего» своей системы освещения. А Bruynzeel, голландский производитель стеллажей, шкафов и других продуктов для хранения, похвалил освещение LaaS на своем предприятии в Паннингене, Голландия, за «гарантированное повторное использование максимального количества компонентов освещения», что, в свою очередь, дало Брюнзилу возможность максимизировать переработка отходов в соответствии с бизнес-повесткой дня экономики замкнутого цикла (рис.4).

Хотя три пользователя отмечают первые примеры развертывания циклических концепций в форме контракта на обслуживание, еще не ясно, являются ли эти контракты прибыльными. В эти первые дни они подскажут, что работает, а что нет.

«Индустрия освещения рассматривает круговую экономику и круговое мышление как возможность», - сказала Урания Георгоутсаку, генеральный секретарь брюссельской торговой группы LightingEurope. «С возможностями приходят проблемы.Итак, самое важное, что нам всем нужно сделать, - это понять, что означает круговая экономика с точки зрения дизайна продукта, с точки зрения изменения стоимости, с точки зрения бизнес-моделей, с точки зрения рынков и ожиданий клиентов. Я смотрю на круговую экономику как на то, что изменит эту отрасль и то, как мы ведем бизнес. Это переходный процесс, с которым придется справиться каждому. Это имеет разные последствия для разных продуктов и разных компаний ».

Короче говоря, она подчеркнула, что круговая экономика «изменит бизнес-модели в отрасли.

К чему? "Это как раз вопрос", - ответил Георгоутсаку.

Введите модульность

Сервисные модели действительно должны играть большую роль, но это еще не все. Чтобы помочь понять сдвиг, на момент написания этой статьи LightingEurope собиралась заказать двухлетнее исследование перспектив сервисного подхода и других изменений бизнес-модели, которые помогут перейти к экономике замкнутого цикла. Двухлетнее исследование сначала будет посвящено бизнесу и рыночным возможностям, а на последнем этапе изучит последствия для материалов, продуктов и компонентов.

Ожидается, что отчет поможет укрепить костяк скелета экономики замкнутого цикла, который проходит через 10-летнюю стратегическую дорожную карту, которую компания LightingEurope впервые опубликовала два года назад, при этом циркуляры постепенно будут играть более заметную роль в последнем году карты в 2025 году.

Это будет не первая публикация LightingEurope в «циркуляре». В октябре прошлого года он выпустил официальный документ, в котором излагаются четыре ключевых компонента циркуляра: продление срока службы продукта, восстановление, сбор деталей из вышедших из употребления продуктов и переработка (http: // bit.ly / 2qBiRpb).

Один коммерческий аспект, который, как ожидается, будет играть большую роль, - это «модульность» - проектирование светильников со сменными частями, включая светодиодные модули, а также кожухи, источники питания, кабели, ПРА и другие компоненты (http://bit.ly/2HrVkAJ ). Это ключевой элемент в потенциальном продлении срока службы продукта. Модульность знаменует собой серьезный отход от того, что в отрасли называют «запечатанным на всю жизнь», что определяет сегодня многие светильники, которые, как и Apple iPhone с несменными батареями, становятся совершенно бесполезными для конечного пользователя.

«Если светодиодный светильник выходит из строя, и вам приходится его выбросить, это не очень хорошо для окружающей среды», - заметил Найджел Харви, генеральный директор Recolight, некоммерческой компании Croydon, Англия, которая курирует лампы и переработка светильников в Великобритании (http://bit.ly/2HrVLuY). «Делая продукты более модульными, вы сокращаете отходы. По окончании контракта производитель может вернуть 1000 или 2000 светильников. И производитель - это компания, которая лучше всего может их проверить, модернизировать, отремонтировать, добавить новые светодиодные модули и впоследствии сделать их доступными для дальнейшего использования.Это создает дополнительный поток доходов для производителя, когда они вернутся к концу ".

Это мнение широко разделяется в отрасли. «В наши дни слишком много одноразовой экономики», - сказал Питер Хант, главный операционный директор британской торговой группы The Lighting Industry Association (LIA), которая руководит программой утилизации ламп и светильников под названием Lumicom. «Меня беспокоит, что я выбрасываю столько продукта на свалку».

Одной из серьезных проблем является разработка стандартов, которые поддерживали бы простую замену для разных брендов, гарантируя, что, скажем, светодиодный модуль от одного поставщика будет вставлен в светильник другого поставщика.Но, как это обычно бывает с любой эволюцией стандартов, на сегодняшних ранних стадиях модульности существует конкуренция между потенциально конкурирующими стандартами. Консорциум Zhaga - это группа, которая поддерживает сменные детали в течение нескольких лет, но не единственная (http://bit.ly/2qCrgbS).

«Мы видим разнообразие на рынке», - отметил Георгоутсаку из LightingEurope. «Он существует в определенной степени для определенных компонентов, но не для других, и в определенной степени для определенных приложений, но не для других.Вам понадобится какой-то уровень гармонизации и стандартов. Когда у нас будет больше стандартизации, это будет признаком зрелости ».

Агентство LIA’s Hunt повторило эту точку зрения. «Это немного похоже на историю VHS – Betamax; все это будет разыграно на рынке », - прокомментировал он.

Рис. 3. Соглашение LaaS в Схипхоле также определяет уровни освещения. Фотография предоставлена ​​Philips Lighting.

Хотя модульность уже существует, она еще не стала общепринятой формой. «Основная часть светильников, представленных сегодня на рынке, вовсе не модульные», - сказал Стефан Химбер, специалист по связям с общественностью Osram.По оценке Химбера, так называемые «герметичные для жизни светильники» составляют от 90% до 100% всех потребительских светодиодных светильников, а также занимают значительную долю на профессиональном рынке. Он отметил, что изменение этого сочетания на более высокое модульное соотношение потребует действий по всей цепочке создания стоимости - не только со стороны таких поставщиков, как Osram, но и со стороны конечных пользователей, которые сами должны придерживаться циклических принципов и покупать товары и услуги, признающие их ценность. Также могут помочь утвержденные правительством процедуры «зеленых государственных закупок», которые появляются все чаще.

«Сегодняшнюю модульность можно рассматривать как основу, как начало», - сказал Химбер.

А как насчет гарантий?

Одно юридическое препятствие заключается в том, что гарантии и гарантии не допускают замены светильников Osram другими брендами, липкая калитка, которая описывает ситуацию для многих поставщиков. Как заметил Химбер, в случае с Osram: «Вы можете открыть светильник, вы можете заменить светодиодный модуль и источник света, вы можете изменить механизм управления, но вы можете сделать это только с внутренними компонентами Osram.«

Появление стандартного подхода к модульности могло бы побудить таких поставщиков, как Osram, разрешить замену запчастей от других поставщиков, - отметил он.

Такая политика модульности, безусловно, поможет в сегодняшней среде, где пользователи по-прежнему склонны покупать светильники, а не услуги освещения. Но они по-прежнему будут важны в бизнес-модели, ориентированной на услуги. Модульность в целом может помочь поставщику держать клиента в курсе последних достижений в области технологий источников света, в которых поставщики стремятся к новым и улучшенным итерациям каждые 9–18 месяцев или около того.

Не все продукты подходят для модульности. Например, розничные магазины, отели и рестораны, которые могут менять дизайн своих помещений каждые столько лет, могут быть склонны просто отказаться от своих существующих светильников и перейти на новые с совершенно другим внешним видом (даже там, возможно, есть место для повторного использования светодиодного модуля) .

Помимо модульности, компаниям, занимающимся осветительными приборами, следует изучить другие способы соблюдения циклических принципов, например, использование большего количества переработанных материалов в своей продукции, будь то металлы или пластмассы.

Возникает еще одна проблема: когда светодиодные лампы и светильники попадают в кучу вторичной переработки, их гораздо труднее обрабатывать, чем более традиционные осветительные приборы. По сравнению с люминесцентными продуктами светодиоды содержат больше материалов, и эти материалы, а также общие формы и размеры компонентов и конечных продуктов различаются гораздо шире, чем в традиционных изделиях.

В то время как сегодня в Великобритании восстанавливается более 90% материала люминесцентных ламп, «с помощью светодиодных ламп вам повезет получить 50%», - сказал Харви из Recolight.«Одним из преимуществ светодиодной технологии является стремительный рост количества используемых материалов, используемых дизайнов, форм, размеров и всего остального. Они позволяют вносить гораздо больше инноваций в способ изготовления продукта. Но такая неоднородность продукта обходится дорого, когда дело доходит до вторичной переработки. У тебя там еще столько материалов. Они связаны друг с другом, часто с помощью клея и пенопласта, что затрудняет их разделение с помощью механических процессов. У вас есть все типы материалов: пластик, стекло, керамика, алюминий, медь.У вас есть печатные платы [печатные платы]. Это полная смесь. У нас есть проблема, которая вернется и укусит нас », - отметил он.

Хант из LIA заметил, что отчасти ответ заключается в том, чтобы рассматривать продукты на основе светодиодов как электрическое оборудование, регулируемое европейскими законами об утилизации электрического и электронного оборудования (WEEE), а не как обычные осветительные приборы. Положительным моментом для светодиодов является то, что многие из светильников, которые собирает LIA, являются списанными обычными уличными фонарями, размещенными в стекловолокне, которое, как отметил Хант, трудно утилизировать и, следовательно, имеет низкую ценность вторичной переработки.Он отметил, что алюминий, которым обычно закрываются светодиодные уличные фонари, должен иметь гораздо более высокую ценность, когда придет время их утилизировать.

Промышленность против регулирующих органов

Переход к экономике замкнутого цикла действительно будет сложной задачей для отрасли. Трудно найти явное противодействие этому - это все равно что кампания против мамы и яблочного пирога.

Однако вызывает беспокойство временные рамки, которые Европейский Союз хочет установить. Георгоутсаку из LightingEurope отметил, что пакет мер по циркулярной экономике, который продвигает Европейская комиссия, может стать законом к сентябрю 2020 года во всех отраслях, требуя принятия мер в освещении, таких как переход к тому времени на модульную практику.

«Мы согласны с видением, мы согласны с целями, это входит в нашу стратегическую дорожную карту», ​​- сказал Георгоутсаку. «Но мы не согласны с графиком». Она приводит список причин, по которым еще слишком рано вводить модульность во всех осветительных приборах. Среди них - герметичные светильники, которые часто требуются по причинам интеллектуальной собственности или безопасности. Эти опасения требуют рассмотрения.

«Мы говорим, что такое обязательное требование [для легко заменяемых частей к 2020 году] повсеместно, без учета приложения, сценария использования, конкретных требований к производительности и безопасности этого приложения, не является хорошей идеей. .Мы очень рады работать с [ЕС] над детальной оценкой воздействия, так что, когда мы снова пересмотрим это законодательство в 2022 году, мы сможем продвинуться вперед с дополнительными требованиями, если они будут необходимы », - заявил Георгоутсаку.

FIG 4. Bruynzeel похвалил свое соглашение LaaS с Philips о «гарантированном повторном использовании максимального количества компонентов освещения». Фотография предоставлена ​​Philips Lighting.

Охота на LIA согласилась. «Нам не нравится, что в отрасли слишком рано навязывают слишком много обязательных требований», - сказал он.Одним из возможных последствий может быть то, что требования к модульности могут сдерживать инновации, такие как переход к уменьшению размеров светодиодных модулей и компонентов.

«Мы постоянно открываем для себя новые области применения, миниатюризацию источников света и светильников», - сказал Хант. «Если нас заставят заменять стандартные продукты, это может ограничить возможности производителей. Поэтому я поддерживаю циркулярную экономику до тех пор, пока она не ограничивает возможности светодиодов ».

Хотя кажется, что промышленность и правительство движутся вместе в одном направлении, они не обязательно движутся вместе по прямой.Это могло продолжаться постоянно.

Технология вторичной переработки светодиодных ламп для циркулярной экономики - LED professional

Победа светодиодной технологии над традиционными технологиями, кажется, подтверждается для многих приложений. После захвата рынка подсветки для плоских дисплеев светодиоды также вышли на рынок общего освещения и проникли во все сегменты, от частных домов и промышленных объектов до уличных фонарей. Растущее количество светодиодных ламп и особенно их интегрированная конструкция, которая часто не позволяет легко заменять компоненты, поднимает вопрос о том, как утилизировать и восстанавливать ценные материалы, входящие в эти осветительные приборы.Используя современные методы переработки электронных отходов, материалы, специфичные для светодиодов, то есть полупроводники, такие как галлий, редкоземельные металлы, такие как иттрий, лантан или европий, а также драгоценные металлы, будут рассеиваться безвозвратно.

В этой статье рассматриваются текущие тенденции рынка освещения и их влияние на переработку ламп в будущем. Будет показано, что применение технологий интеллектуального разделения является ключевым моментом для успешной утилизации ламп, открывая путь для разработки подходящих процедур извлечения ценных материалов в светодиодах.

Введение

Чтобы соответствовать сегодняшним целям климата, законодательным требованиям и методам экономии средств, текущий рынок освещения переживает технологическую революцию, которая затрагивает все сегменты. С ключевыми требованиями к эффективности осветительного оборудования, долгому сроку службы и экологичности, светодиодная технология оказалась победителем этого изменения. Обычные лампочки, галогенные лампы и энергосберегающие лампы постоянно выводятся из употребления и заменяются продуктами на основе светодиодов.Фактически, это изменение технологии - это гораздо больше, чем просто замена одного на один. Это открывает множество новых областей применения, которые раньше не могли быть реализованы с помощью традиционных технологий освещения. Сегодня функция современной светодиодной лампы не ограничивается только освещением. Благодаря функциям изменения цвета и затемнения, а также миниатюрному дизайну, светодиодные лампы и светильники все чаще используются в качестве декоративного освещения (например, лампы с изменением цвета, светодиодные полосы) или декоративных объектов (например.грамм. накаливания LED-лампы). Между тем рынок освещения предлагает множество многофункциональных ламп, которые ближе к бытовой электронике, чем к осветительному оборудованию, со встроенными динамиками или повторителями WLAN. Возможность персонализировать световые сцены и подключаться к лампе через планшет или мобильный телефон с помощью приложений соответствует текущим тенденциям в отношении сетевого и цифрового образа жизни, продвигаемого концепциями умного дома или умного жилья.

Несмотря на это развитие, еще нет временной шкалы, показывающей, когда вышеупомянутые тенденции действительно достигнут и будут доминировать в таких сегментах рынка освещения, как частные дома, общественные места, промышленность или транспорт и судоходство.Но уже нельзя отрицать тенденцию к производству светодиодных осветительных приборов. Ожидается, что в ближайшем будущем трансформация сегментов освещения на светодиодную технологию ускорится, что поднимет вопрос о том, как с этими продуктами будут поступать по окончании их использования. В частности, остается без ответа вопрос о целесообразных и экономичных процессах переработки светодиодных ламп и светильников.

Рисунок 1: Множество отработанных ламп, идущих на переработку ламп: газоразрядные лампы, модернизированные светодиодные лампы и галогенные лампы

Помимо основных материалов, таких как стекло, пластик, металлы, керамика, органические герметики или клеи и электронные компоненты, основная часть светодиодных ламп, сам светодиод, содержит небольшое количество критических элементов, включая редкоземельные металлы (например,грамм. лютеций (Lu), церий (Ce) или европий (Eu)), технологические металлы (галлий (Ga) и индий (In)) и драгоценные металлы (золото (Au) и серебро (Ag)). Несмотря на все еще часто используемую классическую конструкцию лампы типа Эдисона, внутренняя установка лампы может иметь много отличий. Подводя итог: разнообразие светодиодных ламп на рынке разнообразно, как и количество ламп, отправляемых на переработку ламп (рис. 1).

Статус-кво рынка освещения и будущие тенденции

Последствиями постановлений Европейской комиссии № 244/2009 и 245/2009 являются постепенный отказ от неэффективных ламп, таких как лампы накаливания, а также резкое изменение рынка освещения в Европе и во всем мире.На Рисунке 2 показаны доли мирового рынка осветительных технологий через три года после вступления в силу этих правил. Половина доходов пришлась на газоразрядные лампы; На лампы накаливания приходилась треть, тогда как на LED-продукцию приходилось только 8%. Прогноз на 2016 и 2020 годы предсказывал значительный рост доходов от светодиодных ламп за счет доходов от тепловых излучателей и люминесцентных ламп. Эта оценка проникновения на рынок светодиодных ламп была общепринятой [5, 12].

С учетом текущего объема продаж в Германии прогнозы подтверждаются.Согласно недавнему анализу Немецкого энергетического агентства, dena, объем продаж светодиодных ламп значительно вырос за последние пару лет: в 2009 году только 1% проданных ламп были на основе светодиодных технологий, а уже 7. % в апреле 2013 г. [3]. Тем не менее, не следует забывать, что на рынке общего освещения все еще преобладают традиционные, устоявшиеся технологии: это, например, компактные люминесцентные лампы в частных домах или ртутные лампы для уличного освещения [ii].Интересно, что эти факты больше не отображаются в текущем продуктовом портфеле производителей и дистрибьюторов, где светодиоды явно доминируют.

Рисунок 2: Прогнозируемое распределение доходов на мировом рынке освещения в зависимости от технологии источников света [i] (иллюстрация данных McKinsey [8])

Растущее признание потребителями светодиодной технологии вызвано, среди прочего, снижением цен, с одной стороны, и значительным развитием технологий, с другой.По сравнению со днями их появления на рынке, особенно значительно улучшились световая отдача и качество светодиодного освещения. Кроме того, светодиодные лампы не содержат токсичной ртути и обеспечивают свободу дизайна, которую невозможно реализовать с помощью других известных технологий освещения.

Чтобы получить представление о факторах, все еще ограничивающих существенное проникновение на рынок твердотельных осветительных приборов, Европейская комиссия инициировала опрос среди заинтересованных сторон европейского рынка освещения в 2011 году [4].По результатам 14% респондентов ответили, что два аспекта еще не учтены должным образом.

Неучтенные аспекты, которые могут ограничить проникновение на рынок:

  • Дефицит сырья, используемого в светодиодах
  • Проблемы с переработкой

Исследования Федерального агентства по окружающей среде Германии [9, 10] приходят к таким же выводам. Несмотря на небольшое количество критических материалов, используемых в светодиодах, следует, что сегодня должны быть разработаны надлежащие стратегии сбора и соответствующие методы восстановления и переработки ценных материалов.

Ценные материалы в светодиодных модернизированных лампах и ожидаемые потребности в будущем

Светодиодные лампы для частных домов доступны на рынке примерно с 2007 года. Сегодня покупатель может выбирать между различными продуктами с различной формой или типом цоколя. На рынке представлены не только лампы, заменяемые один на один, так называемые ретрофиты, но и светильники с фиксированными LED-модулями, которые нельзя обменять. Из-за такого разнообразия продуктов сложно количественно определить типичное количество материалов, используемых в светодиодном осветительном оборудовании.Однако можно констатировать, что конструкция компактных осветительных приборов на основе светодиодов, таких как модернизация, обычно требует использования охлаждающего тела для поддержания надлежащего управления температурой. Обычно он изготавливается из алюминия или теплопроводной керамики и составляет большую часть общей массы модернизации.

На рисунке 3 показаны массовые доли, полученные в результате анализа современной светодиодной модифицированной лампы. Охлаждающий корпус, соответствующий 42,3% массы лампы, изготовлен из алюминия.Корпус и соединительные элементы пластиковые, их доля составляет 21,3%. На приводную электронику (16,0%) и стеклянный шар (15,0%) приходится примерно равная масса. В данном примере светодиодный модуль состоял из 10 SMD-светодиодов, установленных на алюминиевой панели. Масса всех светодиодов составляет всего 275 мг или 0,32% от общей массы модифицированной лампы.

Рисунок 3: Массовые доли компонентов типичной современной светодиодной модифицированной лампы (E27, 806 лм, 9,5 Вт, 85,5 г) из недавнего ассортимента продукции

Рисунок 4: Типичный белый светодиод: фотография (слева) и наложение основных элементов, отображаемых с помощью микрорентгеновской флуоресцентной спектроскопии (справа)

Материалы, используемые в электронике драйвера, не сильно отличаются от материалов, содержащихся в типичном балласте для компактных люминесцентных ламп.Несмотря на это, разнообразие материалов в модернизированных лампах больше за счет самих светодиодных устройств. В общем, функциональность белых светодиодов основана на частичном преобразовании света синего светодиода люминесцентным материалом, так называемым люминофором [iii]. Он состоит из неорганической матрицы, легированной небольшим количеством редкоземельных металлов, таких как Eu или Ce. Достаточно нескольких мкг, например 3 мкг Ce или Eu на 1 мм2 светодиодного чипа [2], чтобы обеспечить желаемое преобразование света. Другие редкоземельные металлы могут быть основными составляющими неорганической матрицы (ок.90-200 мкг на 1 мм. размер микросхемы [2]). Примерами являются алюминатные гранаты, такие как YAG (иттрий-алюминиевый гранат), LuAG (лютеций-алюминиевый гранат) или GdAG (гадолиний-алюминиевый гранат). Синий светодиод основан на GaN или InGaN и обычно содержит 17-25 мкг Ga и 28 нг In [7]. Диод часто контактирует с помощью соединительных проводов, сделанных из золота (Au), из расчета около 200 мг на диод [10]. Кроме того, светодиодный корпус также содержит серебро (Ag), олово (Sn), никель (Ni), титан (Ti), кремний (Si) или германий (Ge), и это лишь некоторые из них.Сложная установка репрезентативного белого светодиода показана на рисунке 4 в виде микрофотографии и наложенного изображения основных распределений элементов, нанесенных на карту с помощью микрорентгеновской флуоресцентной спектроскопии.

Принимая во внимание вышеупомянутые тенденции рынка освещения и типичные составляющие модифицированных светодиодных ламп, какое количество отработанных ламп можно ожидать в Германии или Европе? Количество светодиодных ламп для замены ламп классической технологии в домашних хозяйствах оценивалось в соответствии с подходом Spengler et al.[10] и производил 277 миллионов светодиодных ламп в год для Германии и 1729 миллионов для Европы [iv]. Принимая во внимание текущую долю рынка, составляющую 7%, и предполагая, что на каждую лампу приходится 10 светодиодов, необходимо 193,7 миллиона светодиодов для Германии и 1,2 миллиарда для Европы исключительно для замены обычных ламп в домашних условиях. Если распространить эти соображения на другие сегменты освещения (улицы, промышленность, офисы, розничная торговля и т. Д.), Количество замененных ламп в ЕС в 2010 г. составило 3,29 миллиарда [10], то есть 2.3 миллиарда светодиодов при указанных выше условиях. Продолжающееся проникновение на рынок светодиодной продукции и возможные эффекты отскока вызывают еще большее количество светодиодов, которые потребуются. Таким образом, коэффициент в 10 или более кажется реалистичным для будущего.

Благодаря техническому прогрессу срок службы светодиодных ламп увеличивается, что снижает потребность в замене ламп в год. Тем не менее, следует иметь в виду, что реальный срок службы светодиодных ламп в значительной степени зависит от хорошего качества продукции, а также от правильного использования потребителем.Из-за значительного снижения цен качество продукции может иногда ухудшаться на сильно фрагментированном рынке, таком как индустрия освещения, где много конкурентов и небольшие компании. Это относится, например, к сложной конструкции лампы, обеспечивающей хорошую теплопередачу, достаточному тепловому контакту светодиодного модуля с охлаждающим корпусом, а также к качеству электрических компонентов в электронном драйвере.

В настоящее время светодиоды доминируют не только в лампах, но и на рынке дисплеев.60-80 миллионов светодиодов используются в год для подсветки дисплеев [12]. Прогнозы предсказывают стагнацию этого сегмента рынка до 2020 года, но предполагают, что рост рынка общего освещения стабилизируется на уровне 130 миллиардов светодиодов в год [12].

Исходя из обсуждаемого количества светодиодов и их типичного элементного состава, была оценена потребность в сырье для белых диодов на основе InGaN: 1 миллиард светодиодов содержат 17-25 кг галлия и только 18 г индия. Следовательно, замена 100% всех обычных бытовых ламп в Германии (или в ЕС) на светодиодные дает потребность в сырье [v], равную 2.3-13,0 т (или 11,5-26,5 т) галлия и 1,7-15,3 т (1,7-5,4 т) индия [7, 10]. Сравнивая этот спрос с годовым мировым производством обоих металлов в 2010 году (106 т галлия и 574 т индия [10]) становится очевидным, что 10% произведенного галлия идет на светодиоды. Прогнозируемый рост рынков общего освещения и внедрение светодиодных технологий в новых продуктах увеличит спрос, а также потребление сырья. Геополитические аспекты могут снова сыграть роль в будущем: Китай не только является крупнейшим производителем различных редкоземельных металлов и соединений редкоземельных металлов, но и обеспечивает 70% мирового производства галлия.

Что такое переработка ламп и что это может быть

Отработанные лампы подпадают под действие директивы WEEE и внесены в категорию 5: из-за использования ртутных газоразрядных ламп являются опасными отходами и должны собираться отдельно (группа сбора 4). Светодиодные модифицированные лампы недавно были классифицированы как Категория 5b. Поскольку они не содержат токсичных соединений, производители оплачивают лишь около 10% затрат на утилизацию отходов по сравнению с платой за ртутьсодержащие газоразрядные лампы.Тем не менее, модернизированные светодиодные лампы и люминесцентные лампы собираются совместно, а разделение обоих потоков отходов передается переработчику. Прочее осветительное оборудование собрано с прочей малогабаритной техникой в ​​пятую группу сбора. С одной стороны, полезен совместный сбор газоразрядных и светодиодных ламп. Из-за большого сходства внешнего вида покупателю может быть непросто решить перед утилизацией, какая технология используется в соответствующей лампе? Это особенно сложно для ламп с непрозрачным стеклом или пластиковой колбой.С другой стороны, совместный сбор несет риск перекрестного загрязнения всех ламп ртутью, если одна или несколько газоразрядных ламп сломаются во время сбора и / или транспортировки. В результате со всеми лампами следует обращаться как с опасными отходами, даже если в этом нет необходимости для светодиодных продуктов и без учета несоответствующих затрат на удаление отходов. Отсюда следует стремление к отдельной коллекции светодиодных ламп.

Рисунок 5: Газоразрядные лампы имеют общую массу около 40-170 г (иллюстрация данных светового цикла [6])

Сегодня для переработки ламп используются четыре установленных процесса для извлечения основных фракций материала из наиболее распространенных типов ламп.Как уже говорилось, бизнес по переработке ламп сосредоточен на газоразрядных лампах, состав которых показан на рисунке 5. Основным материалом является стекло, восстановление которого является причиной высокой степени переработки ламп, превышающей 90% [6]. В некоторой степени этому способствует также восстановление металлов и пластмасс. В процессе переработки мелкие фракции материалов, содержащие критические (например, люминофоры, содержащие редкоземельные металлы) или токсичные элементы (ртуть), рассматриваются как примеси, портящие основные фракции.Следовательно, принимаются меры по очистке последнего и по извлечению ртути. Несмотря на то, что часть отработанных люминофоров перерабатывается с использованием сложных мокрых химических методов, большая часть сбрасывается в подземные хранилища.

Разнообразие конструкций светодиодных ламп уже сегодня велико, но, вероятно, еще не достигло своего апогея из-за свободы дизайна, предлагаемой светодиодной технологией. Кроме того, тенденция указывает на светильники со встроенными светодиодными модулями, которые покупатель больше не может обменивать.Ссылаясь на довольно высокий срок службы продукта, составляющий несколько десятилетий, это имеет смысл. Однако можно подозревать, что клиенты будут все больше отказываться от все еще работающих ламп или светильников, которые уже не по стилю и не им нравятся, что приведет к появлению новых потоков отходов. Эта гипотеза подтверждается нашими собственными исследованиями модифицированных отработанных светодиодных ламп (предоставленных переработчиком ламп), которые показали, что многие из них действительно все еще работают.

Перспективные процедуры утилизации отработанных светодиодных ламп должны учитывать различную геометрию ламп.Это может быть реализовано с помощью сложных сортировочных устройств, которые можно модульно интегрировать в технологическую цепочку. В будущей системе переработки светодиодов компоненты, содержащие критические элементы (например, галлий, индий, редкоземельные металлы, такие как иттрий, лантан или европий, и драгоценные металлы) - сами светодиоды - могут рассматриваться как примеси для основных фракций материала. Чтобы последние оставались незагрязненными, следует проводить отделение светодиодных корпусов от остальных по аналогии с отделением люминофоров ламп от стекла, которое известно при переработке газоразрядных ламп.Положительный побочный эффект этого действия - концентрация компонентов, содержащих критически важные элементы светодиодов для будущих решений по переработке. В любом случае уровень повторного использования и рециклинга компонентов, материалов и веществ не будет снижен и, предположительно, по-прежнему будет превышать 90% [vi].

В общем, степень рециклинга зависит от доступных процессов и их экономической целесообразности. Последнее также связано с геологической и геополитической доступностью первичного сырья и текущими рыночными ценами.Если надежные поставки сырья больше не могут быть поддержаны, связь рециклинга с рыночными ценами будет смягчена. Восстановление мелкой фракции материала станет вопросом технологической осуществимости. Принимая во внимание эти соображения, концентрация критических материалов в одной единственной фракции и ее хранение являются важными шагами в разработке стратегий утилизации светодиодов. Без сомнения, необходимость в особых процедурах утилизации светодиодных ламп в настоящее время не является актуальной проблемой из-за длительного срока службы ламп и, как следствие, низкого уровня возврата отработанных светодиодных ламп (1% для Германии в 2016 году [11]).Однако поглощение и расширение всего рынка освещения за счет светодиодных технологий ясно указывает на перспективу того, что надлежащая обработка потоков светодиодных отходов вскоре станет актуальной. Разработка подходящих технологий рециркуляции светодиодного осветительного оборудования сегодня и исследование соответствующих процедур разделения и извлечения специфических для светодиодов ценных элементов позволяет действовать в упреждающем, а не в реактивном режиме. Кроме того, в связи с низкими затратами на утилизацию отходов, которые платятся за светодиодное осветительное оборудование, рекомендуется установить отдельную систему сбора и переработки светодиодных ламп и газоразрядных ламп.

Рисунок 6: Схематическое изображение процесса переработки светодиодных ламп

Подход к экономичной переработке светодиодов

На рис. 6 схематически показаны этапы процесса, необходимые для разделения фракций материала и компонентов в типичных модернизированных светодиодных лампах. Решающий шаг - довольно грубое дробление. После этого полученная смесь материалов и компонентов должна быть отсортирована и классифицирована с использованием адаптированных процедур: металлические сепараторы будут использоваться, например, для сортировки металлов, которые могут быть намагничены.Методы флотации полезны для разделения материалов с сильно различающейся плотностью, таких как пластмассы и керамика. Просеивание можно использовать для разделения зерен разной крупности. Собранные электронные компоненты будут переданы переработчикам электронных отходов, которые продолжат переработку с целью извлечения меди из электромагнитных катушек. В первом подходе корпуса светодиодов рассматриваются как примеси для основных фракций (см. Выше) и могут быть легко обнаружены из-за их интенсивной флуоресценции при облучении УФ-светом.Пока не существует готовых к использованию методов восстановления критических элементов из светодиодов, их можно собирать и хранить, используя обычную процедуру для отработанных люминофоров из люминесцентных ламп. Необходимое пространство для этого очень мало благодаря миниатюрной конструкции устройства.

Рисунки 7a-c: (a) Смесь отработанных светодиодных ламп до КВЧ. (b) Смесь компонентов и материалов, полученная после КВЧ отработанных ламп, показанных на а. Здесь очень грубая фрагментация была направлена ​​на (c) фракции, полученные после КВЧ одной модифицированной лампы и последующей ручной сортировки

Конкретные стратегии переработки кажутся лучшим решением, в частности, технологии интеллектуального разделения для разделения светодиодных ламп на составляющие материалы или компоненты с получением четко разделенных фракций после классификации и сортировки, как будет показано ниже.При использовании обычных процессов, таких как дробление, резка или измельчение, измельчение определяется размером куска. Однако интенсивное измельчение с образованием множества мелких деталей - не лучшее решение для измельчения композитных материалов или продуктов, состоящих из сложной смеси материалов, таких как лампы. Вместо этого для селективного разделения материалов используется метод электрогидравлической фрагментации (EHF), который ослабляет границы раздела фаз ударными волнами. Этот метод оказался очень эффективным для фрагментации электронных отходов, таких как жесткие диски или мобильные телефоны, солнечные элементы, а также светодиодные лампы для модернизации.Ударные волны генерируются в жидкой среде (например, воде) импульсными разрядами высокого напряжения (ВН). Они распространяются в среде до тех пор, пока не попадают в отработанные лампы, помещенные внутри емкости (рис. 7 а). Кратковременное, но интенсивное механическое воздействие предпочтительно воздействует на слабые места, такие как стыки, дефекты и границы фаз или зерен. Таким образом, фрагментация инициируется как на макроскопическом, так и на микроскопическом уровне.

Электрогидравлическое дробление может быть выполнено в несколько последовательных этапов: во-первых, высвобождение отдельных компонентов может быть достигнуто с использованием всего нескольких импульсов высокого напряжения.Затем на этапе предварительной сортировки можно отделить крупные фрагменты металлических деталей, керамических деталей, печатных плат, светодиодных модулей или пластмассовых деталей, которые впоследствии можно снова обработать КВЧ для получения более мелких фрагментов. Одним из преимуществ EHF является то, что блоки светодиодов могут быть разделены на блоки и практически не разрушаются при соответствующем выборе параметров процесса. Это очень помогает при сортировке.

На рисунке 7 показан пример комбинации различных светодиодных модифицированных ламп до (а) и после (b) обработки КВЧ.После декантации и сортировки материалов и компонентов оценка полученных фракций дала потерю всего 0,5%. Следовательно, 99,5% всей исходной массы можно измельчить и извлечь.

На рисунке 7c показаны фракции, полученные после электрогидравлического дробления одной модифицированной лампы. В зависимости от параметров процесса и уровня материала в емкости получаются довольно крупные или более мелкие фракции. Их можно отсортировать с помощью обычных методов сортировки, таких как просеивание, сепарация металлов или флотация.

Поскольку газоразрядные лампы и светодиодные лампы собираются совместно, нельзя исключить риск загрязнения лампы ртутью.По этой причине технологическая вода была проанализирована после КВЧ с помощью анализатора ртути. Ртутного загрязнения обнаружить не удалось. Используя оптическую эмиссионную спектроскопию с индуктивно связанной плазмой (ICP-OES), технологическая вода была дополнительно проанализирована для отслеживания возможных металлических загрязнений из-за фракций лампы, в частности электронных компонентов или корпусов светодиодов. Было обнаружено, что вода содержала лишь небольшие количества (<70 мг / л) различных металлов, в основном щелочных, щелочноземельных и переходных металлов.Концентрации были почти идентичны концентрациям, обнаруженным в холостом тесте (пресная вода), что исключало растворение дополнительных элементов из ламп в технологической воде. Кроме того, результат не зависел от степени измельчения, то есть от количества импульсов высокого напряжения, используемых для экспериментов. Таким образом, технологическая вода не была загрязнена электрогидравлической фрагментацией отработанных модифицированных светодиодных ламп. Его можно использовать повторно или безопасно утилизировать после удаления взвешенных веществ фильтрацией.

Таким образом, электрогидравлическое дробление является эффективным, некритичным и экологически безопасным методом измельчения отработанных модифицированных светодиодных ламп. Одним из его преимуществ является то, что корпуса светодиодов могут быть легко отсоединены от светодиодной панели и практически не разрушены (рис. 7c). Этой мерой был сделан важный шаг на пути к успешной переработке светодиодных ламп, который также открывает путь к следующему шагу - разработке подходящих процедур извлечения ценных материалов в самих светодиодах - галлия, индия, золота и редких металлов. элементы земли.

Прежде чем приступить к решению этой проблемы в отношении редкоземельных элементов, используемых в светодиодных люминофорах, последние необходимо сначала отделить от связующего материала, обычно кремнийорганической смолы. В ходе проекта cycLED [1] был разработан так называемый процесс CreaSolv®. Помимо работы над технологиями интеллектуального разделения светодиодных ламп, Project Group также проводит постоянные исследования физических, химических и биологических методов извлечения и восстановления редкоземельных металлов, технологических металлов или драгоценных металлов из светодиодов для решения этого последнего важного шага.

Заключение

Сегодня многие согласны с тем, что светодиоды станут источником света будущего. С момента изобретения синих светодиодов в начале 1990-х годов и их использования в белых светодиодах с люминофором был достигнут большой прогресс в отношении световой отдачи и потока, цвета и качества цвета, срока службы и интеграции функций, превышающих задачу освещения. Несмотря на очень долгий срок службы, значительно превышающий 10 лет, все светодиодное осветительное оборудование рано или поздно пополнит кучу электронных отходов, которая постоянно растет в нашем обществе, особенно с учетом того, что количество светодиодной осветительной продукции на рынке растет. постоянно.

Отрасль по переработке ламп в настоящее время ориентирована на переработку газоразрядных ламп, уделяя особое внимание рекуперации таких массовых фракций материалов, как стекло, металлы и пластмассы. Люминофоры для ламп, содержащие редкоземельные элементы, в основном вывозятся на свалки под землей.

Однако разработка адаптированных технологий переработки светодиодных ламп является важной задачей для восстановления основных материалов и предотвращения безвозвратного рассеивания ценных элементов в светодиодах (редкоземельных элементов, полупроводников и драгоценных металлов).В конечном итоге это может стать важным шагом к обеспечению независимости Европы от поставок иностранного сырья.

Используя метод электрогидравлического дробления, были сделаны важные первые шаги, то есть измельчение отработанных модернизированных ламп различной геометрии эффективным, достаточно избирательным и экологически безопасным способом. Степень измельчения можно регулировать параметрами процесса. Сортировку полученной смеси материалов можно осуществить с использованием общеизвестных технологий, таких как просеивание, магнитная сепарация или флотация.Освобождение практически неразрушенных светодиодных корпусов от светодиодной панели во время КВЧ светодиодных ламп является дополнительным преимуществом, открывающим путь для будущего восстановления ценных материалов самих светодиодов - галлия, индия, золота и редкоземельных элементов.

Для решения этого второго шага проводятся интенсивные исследования химических и биологических методов.

Примечания:
[i] Светодиодный светодиод, компактная люминесцентная лампа КЛЛ; LFL линейная люминесцентная лампа; Галогенная лампа HAL; Газоразрядные лампы высокой интенсивности HID

[ii] 60% уличных фонарей в Европе - это ртутные лампы.С апреля 2015 года их размещение на рынке запрещено, требуя замены соответствующих ламп (около 21 миллиона в ЕС) в среднесрочной и долгосрочной перспективе

[iii] По этой причине белые светодиоды часто называют ПК-светодиодами или светодиодами с преобразованием люминофора.

[iv] Предположение было основано на количестве домашних хозяйств в 2014 г. в ЕС (28 стран ЕС), странах-кандидатах, включая Норвегию и Швейцарию (250 миллионов)

[v] Примечание: Независимо от элементного состава светодиода реальная потребность в сырье для производства устройства примерно в 10-20 раз выше для галлия и даже в 1000-3000 раз выше для индия

.

[vi] В соответствии с европейскими правилами Закон Германии об электрическом и электронном оборудовании («El-ektrogesetz» / ElektroG) предписывает уровень переработки отработанных ламп не менее 80 процентов по весу.

Ссылки:
[1] Подробная информация о проекте cycLED доступна в Интернете по адресу http: // www.cyc-led.eu

[2] О. Дойбзер, Р. Джордан, М. Марведе, П. Чансел, Категоризация светодиодной продукции, Отчет по проекту cycLED, май 2012 г.

[3] Geman Energy Agency dena, Analyze der Energieeffizienz und Marktentwicklung von «Allgemeiner Beleuchtung», декабрь 2013 г.

[4] ЗЕЛЕНАЯ БУМАГА Освещение будущего: ускорение развития инновационных технологий освещения, COM (2011) 889, 15.12.2011 и результаты общественных консультаций, 06.06.2012

[5] Frost & Sullivan, Мировые рынки светодиодного освещения, сентябрь 2012 г.

[6] http: // www.lightcycle.de/dossier-rueckholung-recycling-und-ressourcenschonung/led-und-energiesparlampen-reduzieren-den-muellberg. html (последний доступ 17.05.2016)

[7] Дж. Тема, В. Иррек, Umwelt- und Ressourcenaspekte einer verstärkten Nutzung von Leuchtdioden, Отчет к рабочему пакету 14.4 проекта МаРесс, декабрь 2010 г.

[8] McKinsey & Company Inc., Освещая путь: перспективы мирового рынка освещения, второе издание, август 2012 г.

[9] К. Сандер, С. Шиллинг, Дж.Вагнер, М. Гюнтер, Maßnahmen zur Optimierung der Entsorgung von quecksilberhaltigen Gasentladungslampen und anderen Lampenarten, Исследование от имени Федерального агентства по окружающей среде Германии, сентябрь 2015 г.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *