Схема люминесцентного светильника: с дросселем, стартером, без них

Содержание

Схема люминесцентной лампы

Люминесцентная лампа (ЛЛ) представляет собой стеклянную трубку, заполненную инертным газом (Ar, Ne, Kr) с добавлением небольшого количества ртути. На концах трубки имеются металлические электроды для подачи напряжения, электрическое поле которого приводит к пробою газа, возникновению тлеющего разряда и появлению электрического тока в цепи. Свечение газового разряда бледно-голубого оттенка, в видимом световом диапазоне очень слабое.

Применение низкочастотных триггеров

Триггер на электронный балласт для люминесцентных ламп устанавливается в том случае, когда отрицательное сопротивление в цепи превышает 60 Ом. Нагрузку с трансформатора он снимает очень хорошо. Предохранители при этом устанавливаются очень редко. Трансформаторы для моделей этого типа используются лишь векторные. В данном случае понижающие аналоги неспособны справляться с резкими скачками предельной тактовой частоты.

Непосредственно динисторы в моделях устанавливаются возле дросселей. По компактности электронные балласты довольно сильно отличаются. В данном случае многое зависит от используемых компонентов устройства. Если говорить про модели с регуляторами, то места они требуют очень много. Также они способны работать в электронных балластах только на два конденсатора.

Модели без регуляторов очень компактны, однако транзисторы для них могут использоваться лишь ортогонального типа. Отличаются они хорошей проводимостью. Однако следует учитывать, что данные электронные балласты на рынке покупателю обойдутся недешево.

Но в результате электрического разряда большая часть энергии переходит в невидимый, ультрафиолетовый диапазон, кванты которого, попадая в фосфорсодержащие составы (люминофорные покрытия) вызывают свечение в видимой области спектра. Меняя химический состав люминофора, получают различные цвета свечения: для ламп дневного света (ЛДС) разработаны различные оттенки белого цвета, а для освещения в декоративных целях можно выбрать лампы иного цвета. Изобретение и массовый выпуск люминесцентных ламп – это шаг вперед по сравнению с малоэффективными лампами накаливания.

Применение

Электропроводная газовая среда внутри ламп дневного света обладает отрицательным сопротивлением, проявляющимся в том, что с увеличением тока напряжение между электродами снижается.

Схема работы люминесцентной лампы

Поэтому в схему подключается ограничитель тока LL1 – балластник, как видно из рисунка. Устройство также служит для создания кратковременного повышенного напряжения зажигания ламп, которого недостаточно в действующей сети. Еще его называют дросселем.

Пускорегулирующее устройство также содержит небольшую лампу тлеющего разряда E1 – стартер. Внутри нее расположены 2 электрода, один из которых подвижный, он выполнен из биметаллической пластины.

В исходном состоянии электроды разомкнуты. При подаче на схему напряжения сети замыканием контакта SA1 в начальный момент через лампу дневного света ток не проходит, а внутри стартера между электродами образуется тлеющий разряд. От него нагреваются электроды, и биметаллическая пластина изгибается, замыкая контакт внутри стартера. В результате ток через балласт LL1 увеличивается и нагревает электроды люминесцентной лампы.

После замыкания разряд внутри стартера E1 прекращается, и электроды начинают остывать. При этом происходит их размыкание, и в результате самоиндукции дроссель создает значительный импульс напряжения, зажигающий ЛЛ. При этом через нее начинает проходить ток, равный по величине номинальному, который затем уменьшается в 2 раза из-за падения напряжения на дросселе. Этого тока недостаточно, чтобы в стартере появился тлеющий разряд, поэтому его электроды остаются разомкнутыми, пока горит лампа дневного света. Конденсаторы С1 и С2 позволяют уменьшить реактивные нагрузки и увеличить кпд.

Балластники для люминесцентных ламп подключения и принципы работы

Люминесцентная лампа (ЛЛ) – это источник света из стеклянной герметичной колбы, внутри которой создается электрический электродный разряд, протекающий в газовой среде. На ее внутренней поверхности находится фосфорсодержащий слой (люминофор). Внутри лампы находится инертный газ и 1% паров ртути. При действии на них электрического разряда они излучают невидимый визуально ультрафиолетовый свет, который заставляет светиться люминофор.

Балластники для люминесцентных ламп

Если в помещении разобьется даже одна люминесцентная лампа, пары ртути превысят допустимые показатели в 10 раз. Ее вредное влияние сохраняется в течение 1-2 месяцев.

Причины неполадок люминесцентных светильников

Стоит коротко описать взаимодействие компонентов люминесцентного светильника – сама лампа не может работать без пускорегулирующего аппарата (балласта), который бывает электромагнитным (ЭмПРА ) в виде дросселя и стартера, и электронным (ЭПРА ), в котором физические условия запуска и свечения источника света обеспечиваются радиоэлектронными составляющими.

Электронный балласт для люминесцентных светильников Osram

Соответственно, причиной неработающего светильника могут быть неполадки, как в электронной схеме пускорегулирующего аппарата, так и старение, износ и перегорание самой лампы. Правильное определение причин позволит осуществить своими руками ремонт неработающей лампы дневного света.

Мигание лампы как признак неполадок

В отличие от обычных лампочек накаливания, которая перестает работать (перегорает) мгновенно и всегда неожиданно, скорый износ лампы дневного света можно определить по тому, как она моргает (мигает) во время запуска. Данный процесс свидетельствует об изменениях в химическом составе светящегося газа (вырождение паров ртути) а также о выгорании электродов.

Мигает, как правило, лампа дневного света, у которой с торцов наблюдается почернение – данный нагар свидетельствует о выгорании спирали и об необратимых химических процессах, происходящих внутри колбы – ремонту такой источник света не подлежит, но можно продлить срок его службы.

Очень часто люминесцентный светильник моргает из-за неполадок в ЭмПРА или ЭПРА. Замена лампы на новую позволит точно определить причину мигания

Но не стоит выбрасывать старую лампу. Во первых, ее нужно утилизировать, согласно государственным законам, так как внутри колбы имеются вредные пары ртути.

Во вторых, даже если перегорели нити накаливания, можно продлить строк эксплуатации данного источника света, при помощи несложной схемы, которую можно спаять своими руками, или подключив лампу к ЭПРА с холодным запуском, замкнув контактные выводы, как показано на видео:

Иногда даже исправный люминесцентный светильник моргает при запуске из-за череды неблагоприятных стартовых обстоятельств – разрыв цепи стартера происходит в момент прохождения синусоидой нуля, из-за чего индукционный всплеск напряжения оказывается недостаточным для ионизации газа внутри колбы.

По аналогичной причине люминесцентная лампа мигает на старте из-за низкого напряжения сети. Во время работы, если скачки напряжения не превышают допустимых пределов, исправный светильник дневного света мигать не должен – пускорегулирующий аппарат поддерживает ток в газе на одном уровне.

Почернение у торцов лампы свидетельствует о потере эмиссии, что влечет мигание при запуске, нестабильную работу и ослабление свечения

Принцип работы люминесцентной лампы и область ее применения

Рабочая способность лампы дневного освещения заключается в свечении люминофоров, которые реагируют на воздействие ультрафиолетовых лучей. Светоотдача этого прибора в 5 раз превышает свойство у ламп накаливания.

Принцип работы люминесцентной лампы и область ее применения

Срок действия может быть достаточно длительным, но на это влияет ряд важных факторов, таких как, соблюдение электрического балласта, исключения скачков напряжения и коротких замыканий.

Лампа дневного освещения сегодня пользуется большим спросом и применяется в домашних условиях. Этот прибор достаточно экономичен в стоимости и в дальнейшей эксплуатации. Не исключено применение люминесцентных ламп в производстве. В этой отрасли они очень практичны и позволяют хорошо освещать помещение в любое время суток. Немного рассмотрев, как работает люминесцентная лампа, перейдем к вопросу утилизации данного приспособления.

Внимание! Хранение в домашних условиях люминесцентной лампы опасно для вашего здоровья!

Изготовить своими руками

Трубчатые ЛЛ длиной 1200 мм недорого стоят и могут освещать большие площади. Светильник можно изготовить своими руками, например, из 2 ламп по 36 Вт.

  1. Корпус – основание прямоугольной формы из негорючего материала. Можно использовать бывший в употреблении светильник, для которого ремонт уже не требуется.
  2. ЭПРА подбирается под мощность светильников.
  3. На каждую из ламп понадобится по 2 патрона G13, многожильный провод и крепеж.
  4. Патроны для ламп крепятся на корпусе после выбора расстояния между ними.
  5. ЭПРА устанавливается в зоне минимального нагрева от ламп (обычно ближе к центру) и подключается к патронам. Каждый блок выпускается со схемой подключений на корпусе.
  6. Светильник крепится на стене или потолке с подключением к сети питания на 220 В через выключатель.
  7. Для защиты ламп желательно применять прозрачный колпак.

Правила поиска неисправности лампы

Каждое дело по работе с электрическими приборами должно начинаться правилами, поэтому рассмотрим, как следует выявить неисправность люминесцентного прибора, при этом не повредив его оболочку и рабочие детали.

  1. Снимаем рассеиватель света. Для этого аккуратно отгибаем все крепежи. Если корпус прикреплен болтами, значит пользуемся фигурной отверткой.
  2. Снимаем из гнезд саму лампу дневного света, рассматриваем внимательно ее внешний вид. Встречаются случаи, когда на белом фоне видны темные пятна. Они говорят о том, что этот прибор навряд ли уже будет годен к применению.

Внимание! Не выбрасывайте дневную лампу, если на ней по краям есть почернение—проверьте ее дополнительно

  1. Теперь проводим механическую диагностику. Берем мультиметр и проверяем работоспособность нитей накала. Значения прибора, указывающие на сопротивление, подскажут, что нити, еще способны работать. Показания электроники равные единице—это знак неисправности одной из нитей.
  2. В случае, когда проверка показала рабочие результаты, но освещение так и не появилось, прибегают к ремонту электронного балласта. Возможно, из-за окислившихся контактов, лампа не способна пропускать электроды.
  3. Далее очищаются контакты, если есть необходимость. В ситуациях, когда прибор не заработал, он заменяется на новый.

Как проверить люминесцентную лампу

Разновидности и принцип функционирования

Главная функция ЭПРА заключается в преобразовании переменного тока в постоянный. По-другому электронный балласт для газоразрядных ламп называется еще и высокочастотным инвертором. Один из плюсов таких приборов – компактность и, соответственно, небольшой вес, что дополнительно упрощает работу люминесцентных источников света. А еще ЭПРА не создает шум при работе.

Балласт электронного типа после подключения к источнику питания обеспечивает выпрямление тока и подогрев электродов. Чтобы люминесцентная лампа зажглась, подается напряжение определенной величины. Настройка тока происходит в автоматическом режиме, что реализуется посредством специального регулятора.

Такая возможность исключает вероятность появления мерцания. Последний этап – происходит высоковольтный импульс. Поджиг люминесцентной лампы осуществляется за 1,7 с. Если при запуске источника света имеет место сбой, тело накала моментально выходит из строя (перегорает). Тогда можно попытаться сделать ремонт своими руками, для чего требуется вскрыть корпус. Схема электронного балласта выглядит так:

Основные элементы ЭПРА люминесцентной лампы: фильтры; непосредственно сам выпрямитель; преобразователь; дроссель. Схема обеспечивает еще и защиту от скачков напряжения питающего источника, что исключает необходимость ремонта по данной причине. А, кроме того, балласт для газоразрядных ламп реализует функцию коррекции коэффициента мощности.

По целевому назначению встречаются следующие виды ЭПРА:

  • для линейных ламп;
  • балласт, встроенный в конструкцию компактных люминесцентных источников света.

ЭПРА для люминесцентных ламп подразделяются на группы, отличные по функциональности: аналоговые; цифровые; стандартные.

Ремонт ЭПРА

В случае отсутствия возможности быстрой замены вышедшего из строя ЭПРА можно попытаться отремонтировать балластник самостоятельно. Для этого выбираем следующую последовательность действий для устранения неисправности:

  • для начала проверяется целостность предохранителя. Эта поломка часто встречается из-за перегрузки (перенапряжения) в сети 220 вольт;
  • далее производится визуальный осмотр электронных компонентов: диодов, резисторов, транзисторов, конденсаторов, трансформаторов, дросселей;
  • в случае обнаружения характерного почернения детали или платы ремонт производится с помощью замены на исправный элемент. Как проверить своими руками неисправный диод или транзистор, имея в наличии обычный мультиметр, хорошо известно любому пользователю с техническим образованием;
  • может оказаться, что стоимость деталей для замены будет выше или сопоставима со стоимостью нового ЭПРА. В таком случае лучше не тратить время на ремонт, а подобрать близкую по параметрам замену.

Инструкция по ремонту

Сейчас мы рассмотрим основные неисправности, которые можно устранить без особых вложений. Начнем с электронного балласта, ведь в его схеме достаточно много элементов, которые могут выйти из строя и к тому же трубчатые люминесцентные лампы с ЭПРА на сегодняшний день встречаются более часто.

Самая распространенная неисправность — это пробой транзисторов. Определить данную поломку можно только, выпаяв из схемы транзисторы и проверив их тестером. В целом транзисторе сопротивление перехода

400-700 Ом. Сгорая, транзистор за собой тянет резистор в цепи базы номиналом 30 Ом.

Также на плате присутствует предохранитель или низкоомный резистор 2-5 Ом, скорее всего его придется заменить, на чем ремонт и закончится. Возможно дополнительно придется поменять диодный мост или его элементы.

Редко встречается пробой пленочных конденсаторов 47n(пол микрофарада) или конденсатора резонанса в цепи накала. Бывали случаи, когда все из выше перечисленного целое и исправно, а светильник не работает, причина кроется в динисторе DB3. Если вы проверили все элементы цепи, то попробуйте заменить динистор.

Возможно решите, что дешевле будет приобрести новый ЭПРА, чем отремонтировать сломанный. Замена пусковой аппаратуры не должна вызывать сложности, ведь схема подключения нанесена на само устройство. При внимательном изучении проста для понимания, L и N это клеммы для подключения к сети 220В.

Также рекомендуем просмотреть видео, на котором наглядно показывается, как самому отремонтировать электронный балласт люминесцентной лампы:

Инструкция по ремонту ЭПРА

Обращаем ваше внимание на то, что по такой технологии можно починить и энергосберегающую лампочку КЛЛ. К примеру, если перегорел один накал, ремонт представляет собой следующий порядок действий:

Стартер + дроссель

Если у вас не зажигается лампа старого образца и вы уверены, что причина кроется именно в ней, первым делом рекомендуем проверить стартер. Проще всего выполнить проверку, имея под рукой рабочий стартер с такими же характеристиками. Однако если для замены нет подходящего устройства, тогда можно осуществить проверку работоспособности, используя лампочку накаливания с патроном. Все достаточно просто — подключаем один провод от патрона напрямую в розетку, а второй через стартер, как показано на фото ниже:

Если лампочка светится не будет, значит причина в нем. Инструкция по замене стартера люминесцентной лампы наглядно предоставлена на видео:

Как заменить стартер?

Дроссель можно проверить мультиметром, прозвонив его обмотку. Если действительно вышел из строя дроссель, то ремонт люминесцентной лампы сводится к тому, что нужно просто поменять дроссель на целый.

Вот перечислены основные неисправности, с которыми лично сталкивались и успешно устраняли. Следуя нашему алгоритму поиск неисправности займет немного времени и вернуть светильник в работу самостоятельно будет пара пустяков. Надеемся, наша инструкция по ремонту люминесцентной лампы своими руками была для вас понятной и полезной! Обязательно просмотрите видео уроки, т. к. в них подробно рассмотрены все этапы, позволяющие починить неработающую лампочку.

Будет интересно прочитать:

Инструкция по ремонту ЭПРА

Возможные неисправности люминесцентных ламп

Люминесцентные лампы относятся к газоразрядным лампам низкого давления. Они могут быть различной формы: прямые трубчатые, фигурные и компактные (КЛЛ). Люминесцентные светильники по конструкции намного сложнее, чем светильники с лампами накаливания. и у них бывает гораздо больше неисправностей. В нижеприведенной таблице приведены типовые неисправности и способы их устранения.

Схема включения люминесцентной лампы.

Трубчатые лампы имеют двухштырьковые типы цоколей, отличающиеся расстоянием между штырьками: G-13 (расстояние — 13 мм) для ламп диаметром 40 мм и 26 мм и G-5 (расстояние — 5 мм) для ламп диаметром 16 мм.

Особенность устройства компактных люминесцентных ламп в том, что трубка делается специальной формы для уменьшения длины лампы. Многие компактные люминесцентные лампы небольшой мощности (до 20 Вт) предназначены для замены ламп накаливания и сконструированы так, что могут ввертываться в резьбовой патрон непосредственно или через адаптер. Компактные люминесцентные лампы могут быть разных форм, могут быть с электронным пускорегулирующим аппаратом (ЭПРА) и разной длины.

Люминесцентные лампы требуют для работы специального устройства — пускорегулирующего аппарата (дросселя). Большинство зарубежных ламп могут работать как с обычными (с дросселем), так и с электронными пускорегулирующими аппаратами (ЭПРА). Но некоторые из них предназначены только для одного вида ПРА.

Таблица 1. Типовые неисправности светильников с люминесцентными лампами.

Светильники с ЭПРА имеют следующие преимущества: лампа не мерцает, лучше зажигается, не шумит (шум от дросселя), легче по весу, экономит электроэнергию (потери мощности в ЭПРА намного ниже, чем в ПРА).

Достоинства: по сравнению с лампами накаливания, они экономичнее и долговечнее, обладают хорошей светопередачей. Срок службы до 10000 часов у импортных ламп и до 5000-8000 часов у отечественных. Удобно использовать там, где свет горит много часов.

Недостатки: при температуре ниже 5 градусов тяжело зажигаются и могут гореть более тускло.

Меняя виды люминофора, можно изменять цветовые характеристики ламп. Буквы, входящие в наименование типов таких ламп, означают: Л — люминесцентная, Б — белой цветности, ТБ — тепло-белая, Д — дневной цветности, Ц — с улучшенной цветопередачей. Цифры 18, 20, 36, 40, 65, 80 обозначают номинальную мощность в ваттах. Например, ЛДЦ-18 — лампа люминесцентная, дневная, с улучшенной цветопередачей, мощностью 18 Вт.

Таблица 2. Типовые неисправности светильников с люминесцентными лампами.

Светильник с люминесцентными лампами работает следующим образом. Трубчатая лампа заполнена аргоном и парами ртути. Стартер необходим для пуска лампы, нужно на короткое время прогреть электроды. Ток, текущий через дроссель и стартер, значительно увеличивается, нагревает биметаллическую пластину стартера. Электроды лампы прогреваются, контакт стартера размыкается, ток в цепи уменьшается, на дросселе образуется кратковременное большое напряжение. Его накопленной энергии хватает на то, чтобы пробить газ в колбе лампы. Далее ток идет через дроссель и лампу, при этом 110 Вольт падает на дросселе, а 110 Вольт на лампе. Пары ртути с помощью люминофора создают свечение, воспринимаемое глазом человека.

Дроссель почти не потребляет энергию. Энергию, которую он берет при намагничивании, он почти полностью возвращает при размагничивании, при этом бесполезно загружаются провода. Чтобы разгрузить сеть, используется конденсатор С. Обмен энергией происходит не между сетью и дросселем, а между дросселем и конденсатором. Наличие конденсатора повышает КПД лампы, без него КПД лампы 50-60%, с конденсатором С — 95%. Конденсатор, который подключен параллельно стартеру, используется для защиты от радиопомех.

Неисправность люминесцентного светильника может заключаться в нарушении электрического контакта в схеме светильника или в выходе из строя одного из элементов светильника. Надежность контактов проверяется визуальным осмотром и проверкой тестером.

Работоспособность лампы или пускорегулирующей аппаратуры проверяется путем последовательной замены всех элементов на заведомо исправные.

Светильник с двумя люминесцентными лампами

Для начала рассмотрим схемы таких светильников с люминесцентными лампами:

Схема рис.1 содержит:

  • две люминесцентные лампы;
  • два стартера;
  • один дроссель;
  • конденсатор.

Люминесцентная лампа имеет две спирали накаливания. Лампы, стартера и дроссель в электрическую цепь включены последовательно. Конденсатор подключен параллельно.

Схема рис.2 содержит:

  • конденсатор;
  • два стартера;
  • две люминесцентных лампы;
  • два дросселя.

Подключение люминесцентных ламп рис.2 ни чем не отличаются от схемы подключения ламп рис.1. Два провода фаза, ноль имеют в этой схеме ответвление.

И наиболее простая схема светильника с одной лампой показана на рис.3, где конденсатор, лампа и стартер в схеме, — подключены параллельно. Дроссель подключен в электрической цепи — последовательно.

Подобные светильники встречаются и с тремя лампами. Сама суть дела не в этом,- не в количестве ламп.

Схема подключения, запуск

Пускорегулирующий аппарат подключается с одной стороны к источнику питания, с другой – к осветительному элементу. Нужно предусмотреть возможность установки и крепления ЭПРА. Подключение производится в соответствии с полярностью проводов. Если планируется установить две лампы через ПРА, используется вариант параллельного соединения.

Схема будет выглядеть следующим образом:

Группа газоразрядных люминесцентных ламп не может нормально работать без пускорегулирующего аппарата. Его электронный вариант конструкции обеспечивает мягкий, но одновременно с тем и практически мгновенный запуск источника света, что дополнительно продлевает срок его службы.

Поджиг и поддержание функционирования лампы осуществляется в три этапа: прогрев электродов, появление излучения в результате высоковольтного импульса, поддержание горения осуществляется посредством постоянной подачи напряжения небольшой величины.

Определение поломки и ремонтные работы

Если наблюдаются проблемы в работе газоразрядных ламп (мерцание, отсутствие свечения), можно самостоятельно сделать ремонт. Но сначала необходимо понять, в чем заключается проблема: в балласте или осветительном элементе. Чтобы проверить работоспособность ЭПРА, из светильников удаляется линейная лампочка, электроды замыкаются, и подсоединяется обычная лампа накаливания. Если она загорелась, проблема не в пускорегулирующем аппарате.

В противном же случае нужно искать причину поломки внутри балласта. Чтобы определить неисправность люминесцентных светильников, необходимо «прозвонить» все элементы по очереди. Начинать следует с предохранителя. Если один из узлов схемы вышел из строя, необходимо заменить его аналогом. Параметры можно увидеть на сгоревшем элементе. Ремонт балласта для газоразрядных ламп предполагает необходимость использования навыков владения паяльником.

Если с предохранителем все в порядке, далее следует проверить на исправность конденсатор и диоды, которые установлены в непосредственной близости к нему. Напряжение конденсатора не должно быть ниже определенного порога (для разных элементов эта величина разнится). Если все элементы ПРА в рабочем состоянии, без видимых повреждений и прозвон также ничего не дал, осталось проверить обмотку дросселя.

В некоторых случаях проще купить новую лампу. Это целесообразно сделать в случае, когда стоимость отдельных элементов выше ожидаемого предела или при отсутствии достаточных навыков в процессе пайки.

Ремонт компактных люминесцентных ламп выполняется по сходному принципу: сначала разбирается корпус; проверяются нити накала, определяется причина поломки на плате ПРА. Часто встречаются ситуации, когда балласт полностью исправен, а нити накаливания перегорели. Починку лампы в этом случае произвести сложно. Если в доме имеется еще один сломанный источник света сходной модели, но с неповрежденным телом накала, можно совместить два изделия в одно.

Таким образом, ЭПРА представляет группу усовершенствованных аппаратов, обеспечивающих эффективную работу люминесцентных ламп. Если было замечено мерцание источника света или он и вовсе не включается, проверка балласта и его последующий ремонт позволят продлить срок службы лампочки.

Схема подключения люминесцентных ламп и принцип их работы

На сегодняшний день люминесцентные лампы являются одним из самых распространенных источников искусственного освещения. Это объясняется тем, что светильники данного типа в несколько раз более экономичнее, чем привычные нам стандартные приборы накаливания и на порядок дешевле светодиодных.

Люминесцентный вид на сегодняшний день встречаются чуть ли не на каждом шагу: в офисах, больницах, школах и домах.

Как работает

Люминесцентная лампа представляет собой газоразрядный прибор, внутри которого и образуется этот разряд среди пары спиралей. Данные спирали есть не что иное, как анод и катод, расположены они с обеих сторон. Видимый свет появляется при ультрафиолетовом излучении парами ртути. Этому способствует нанесенный на внутреннюю поверхность лампы люминофор – вещество, в составе которого имеется фосфор и другие элементы.

Люминесцентные лампы работают благодаря специальному устройству –пускорегулирующему аппарату, который по-другому называется дроссель. Многие модели импортного производства функционируют как со стандартным дросселем, так и с устройством автоматической работы. Последние распространены как электронные пускорегулирующие автоматы.

Преимущества приборов, работающих на ЭПРА

Среди положительных качеств данных моделей можно выделить следующие:

  • отсутствие мерцания;
  • отсутствие шума;
  • относительно малый вес;
  • лучшее зажигание;
  • экономия электроэнергии.

Каждая люминесцентная лампа имеет ряд преимуществ перед стандартной лампой накаливания:

  • долговечность;
  • экономичность;
  • большая светопередача.

Однако у данной технологии есть и существенный недостаток – если температура в помещении не больше, чем пять градусов, зажигание такой лампы происходит медленно, а свет от нее более тусклый.

Схема подключения

Существует несколько схем подключения люминесцентных светильников.

Если используется электронная пускорегулирующая аппаратура, схема подключения выглядит следующим образом:

  • С – компенсационный конденсатор;
  • LL– дроссель;
  • EL– лампа люминесцентная;
  • SF– стартёр.

Как правило, на практике наиболее распространены светильники, в которых используются два прибора, подключенные последовательно. При этом схема их подключения имеет вид:

А – для люминесцентных моделей мощностью 20 (18) ВТ

В – для люминесцентных моделей мощностью 40 (36) ВТ

 

Когда применяются именно две лампы, появляется возможность уменьшения пульсации суммарного светового потока. Это происходит из-за того, что пульсация отдельно взятой лампы неодновременная, то есть имеется небольшой сдвиг по времени. В связи с этим никогда не станет равным нулю значение суммарного светового потока. Другое название схемы, когда применяется сразу два светильника – это схема с расщепленной фазой. Важным ее преимуществом является то, что при ней не требуется дополнительных мер с целью повышения коэффициента мощности. Еще одним преимуществом является то, что при снижении напряжения в сети, суммарный световой поток остается стабильным.

При подключении обязательно следует учитывать, что мощности дросселя и лампы должны быть идентичными. Если же мощность второй велика, то возможно стоит использовать сразу два дросселя.

Однако, несмотря на все явные достоинства, следует указать еще один существенный недостаток таких моделей. Все они содержат такое небезопасное вещество, как ртуть в жидком виде. На сегодняшний день существует проблема утилизации подобных устройств, вышедших из строя, поэтому использование люминесцентных ламп представляет угрозу окружающей среде.

Если при монтаже светильник нечаянно выскальзывает из рук и разбивается вдребезги, можно увидеть мелкие шарики ртути, которые раскатываются по земле.

Далее описана подробная схема подключения в комплекте с электромагнитным балластом.

  • Подается питающее напряжение на схему. Затем оно проходит через дроссель и нити накала, а следом – к выводам стартера;
  • стартер – есть не что иное, как неоновая лампочка, имеющая два контакта. На один из данных контактов приваривается биметаллическая пластина;
  • возникающее напряжение начинает ионизировать неон. Сквозь стартер начинает течь ток значительно силы, разогревающий газ и пластину из биметалла;
  • пластина при этом начинает изгибаться и замыкать выводы стартера;
  • электрический ток проходит по замкнутой цепи, благодаря чему нити накала разогреваются;
  • этот разогрев и дает толчок для возникновения в лампах свечения в условиях более низкого напряжения;
  • в момент, когда лампа начинает светиться, на стартере начинает падать напряжение. Падает оно до такого уровня, когда ион уже не способен ионизироваться. Стартер при этом автоматически отключается, а нити накала перестают быть под влиянием тока.

С целью обеспечить функционирование светильников, устанавливают дроссель. Данный прибор используется с целью ограничивать ток до необходимой величины, в зависимости от мощности. Благодаря самоиндукции обеспечивается надежный пуск ламп.

Плюсы и минусы ламп, имеющих электромагнитный балласт

Конструкция и схема данных светильников достаточно проста. Однако, несмотря на это их отличает высокая надежность и сравнительно небольшая стоимость, но у них имеются и недостатки.

Среди них:

  • нет гарантии запуска при пониженной температуре;
  • мерцание;
  • вероятность низкочастотного гула;
  • повышенное потребление электроэнергии;
  • достаточно большой вес и габариты.

Люминесцентные светильники компактного типа

Многие современные лампы люминесцентного типа подходят для освещения промышленных помещений. Однако для домашнего использования они неудобны вследствие больших габаритов и неподходящего дизайна. Технологии не стоят на месте и сегодня созданы такие приборы, которые имеют малогабаритный электронный балласт. Патент на компактную люминесцентную лампу был получен в 80-х годах прошлого века, однако использоваться они стали в быту не так давно. Сегодня по размеру компактные люминесцентные модели не превышают привычных стандартных. Что касается принципа работы, то он остался прежним. На концах лампы есть две нити накала. Именно между ними и появляется дуговой разряд, который производит ультрафиолетовые волны. Под воздействием данных волн происходит свечение люминофора.

Сколько служит компактная лампа

Компактная лампа по заявлениям производителя, должна служить около десяти тысяч часов. Однако из-за постоянной нестабильности напряжения в сети,срок службы устройств значительно сокращен. На уменьшение срока службы влияет и частота включения и выключения в схеме, а также функционирование в условиях повышенных либо, наоборот, слишком низких температур. По статистике самой частой причиной выхода таких устройств из строя является перегорание нитей канала.

Схема подключения люминесцентной лампы

Люминисце́нтный светильник был изобретен в 1930-е годы, как источник света, получил известность и распространение с конца 1950-х.

Его преимущества неоспоримы:

  • Долговечность.
  • Ремонтопригодност.
  • Экономичность.
  • Теплый, холодный и цветной оттенок свечения.

Длительный срок службы обеспечивает правильно спроектированное разработчиками устройство пуска и регулировки работы.

Люминисцентный светильник промышленного производства

ЛДС (ла́мпа дневного света) намного экономичнее, чем привычная лампочка накаливания, впрочем, аналогичное по мощности светодиодное устройство превосходит по этому показателю люминесцентное.

С течением времени светильник перестает запускаться, мигает, «гудит», одним словом, не выходит в нормальный режим. Нахождение и работа в помещении становятся опасными для зрения человека.

Для исправления ситуации пробуют включить заведомо исправную ЛДС.

Если простая замена не дала положительных результатов, человек, не знающий как устроен люминесце́нтный светильник, заходит в тупик: «Что делать дальше?» Какие запчасти покупать рассмотрим в статье.

Кратко об особенностях работы лампы

ЛДС относится к газоразрядным источникам света низкого внутреннего давления.

Принцип работы заключается в следующем: герметичный стеклянный корпус устройства заполнен инертным газом и парами ртути, давление которых невелико. Внутренние стенки колбы, покрыты люминофором. Под воздействием электрического разряда, возникающего между электродами, ртутный состав газа начинает светиться, генерируя невидимое глазу ультрафиолетовое излучение. Оно, оказывая действие на люминофор, вызывает свечение в видимом диапазоне. Меняя активный состав люминофора, получают холодный или теплый белый и цветной свет.

Принцип работы ЛДС

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Бактерицидные приборы устроены также как ЛДС, но внутренняя поверхность колбы, изготовленной из кварцевого песка, люминофором не покрыта. Ультрафиолет беспрепятственно излучается в окружающее пространство.

к содержанию ↑

Подключение с применением электромагнитного балласта или ЭПРА

Особенности строения  не позволяют подключить ЛДС непосредственно в сеть 220 В – работа от такого уровня напряжения невозможна. Для запуска требуется напряжение не ниже 600В.

С помощью электронных схем необходимо последовательно друг за другом обеспечить нужные режимы работы, каждый из которых требует определенного уровня напряжений.

Режимы работы:

  • розжиг;
  • свечение.

Запуск заключается в подаче импульсов высокого напряжения (до 1 кВ) на электроды, в результате чего между ними возникает разряд.

Отдельные виды пускорегулирующей аппаратуры, перед тем как произвести пуск, нагревают спираль электродов. Накаливание помогает легче запустить разряд, нить при этом меньше перегревается и дольше служит.

После того как светильник загорелся, питание производится переменным напряжением, включается энергосберегающий режим.

Подключение с применением ЭПРАсхема подключения

В устройствах, выпускаемых промышленностью, используются два вида пускорегулирующей аппаратуры (ПРА):

  • электромагнитный пускорегулирующий аппарат ЭмПРА;
  • электронный пускорегулирующий аппарат – ЭПРА.

Схемы предусматривают различное подключение, оно представлено ниже.

Схема с ЭмПРА

Подключение с применением ЭмПРА

В состав электрической схемы светильника с электромагнитной пускорегулирующей аппаратурой (ЭмПРА) входят элементы:

  • дроссель;
  • стартер;
  • компенсирующий конденсатор;
  • люминесцентная лампа.
схема включения

В момент подачи питания через цепь: дроссель – электроды ЛДС, на контактах стартера появляется напряжения.

Биметаллические контакты стартера, находящиеся в газовой среде, нагреваясь, замыкаются. Из-за этого в цепи светильника создается замкнутый контур: контакт 220 В – дроссель – электроды стартера – электроды лампы – контакт 220 В.

Нити электродов, разогреваясь, испускают электроны, которые создают тлеющий разряд. Часть тока начинает течь по цепи: 220В – дроссель – 1-й электрод – 2-й электрод – 220 В. Ток в стартере падает, биметаллические контакты размыкаются. По законам физики в этот момент возникает ЭДС самоиндукции на контактах дросселя, что приводит к возникновению высоковольтного импульса на электродах. Происходит пробой газовой среды, возникает электрическая дуга между противоположными электродами. ЛДС начинает светиться ровным светом.

В дальнейшем подсоединенный в линию дроссель обеспечивает низкий уровень силы тока, протекающего через электроды.

Дроссель, подключенный в цепь переменного тока, работает как индуктивное сопротивление, снижая до 30 % коэффициент полезного действия светильника.

Внимание! С целью уменьшения потерь энергии в схему включают компенсирующий конденсатор, без него светильник будет работать, но электропотребление увеличится.

Схема с ЭПРА

Внимание! В рознице ЭПРА часто встречаются под наименованием электронный балласт. Название драйвер продавцы применяют для обозначения блоков питания для светодиодных лент.

Внешний вид и устройство ЭПРА

Внешний вид и устройство электронного балласта, предназначенного для включения двух ламп, мощностью 36 ватт каждая.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Важно! Запрещено включать ЭПРА без нагрузки в виде люминесцентных ламп. Если устройство предназначено для подключения двух ЛДС, нельзя использовать его в схеме с одной.

В схемах с ЭПРА физические процессы остаются прежними. В некоторых моделях предусмотрено предварительное нагревание электродов, что увеличивает срок службы лампы.

Вид ЭПРА

На рисунке показан внешний вид ЭПРА для различных по мощности устройств.

Размеры позволяют разместить ЭПРА даже в цоколе Е27.

ЭПРА в цоколе энергосберегающей лампы

Компактные ЭСЛ – один из видов люминесцентных могут иметь цоколь g23.

Настольная лампа с цоколем G23

 

Функциональная схема ЭПРА

На рисунке представлена упрощенная функциональная схема ЭПРА.

к содержанию ↑

Схема для последовательного подключения двух ламп

Существуют светильники, конструктивно предусматривающие подключение двух ламп.

В случае замены деталей сборка осуществляется по схемам, различным для ЭмПРА и ЭПРА.

Внимание! Принципиальные схемы ПРА рассчитаны на работу с определенной мощностью нагрузки. Этот показатель всегда имеется в паспортах изделий. Если подсоединить лампы большего номинала, дроссель или балласт могут перегореть.

Схема включения двух ламп с одним дросселем

Если на корпусе прибора есть надпись 2Х18 – балласт предназначен для подключения двух ламп мощностью по 18 ватт каждая. 1Х36 – такой дроссель или балласт способен включать одну ЛДС мощностью 36 Вт.

В случаях, когда используется дроссель, лампы должны подключаться последовательно.

Запускать их свечение будут два стартера. Подсоединение этих деталей осуществляется параллельно с ЛДС.

к содержанию ↑

Подключение без стартера

Схема ЭПРА в своем составе стартера не имеет изначально.

Кнопка вместо стартера

Однако и в схемах с дросселем можно обойтись без него. Собрать рабочую схему поможет включенный последовательно подпружиненный выключатель – проще говоря, кнопка. Кратковременное включение и отпускание кнопки обеспечит соединение похожее по действию на стартерный пуск.

Важно! Включаться такой безстартерный вариант будет, только при целых нитях накаливания.

Бездроссельный вариант, в котором также отсутствует стартер, может быть осуществлен разными способами. Один из них показан ниже.

Схема без стартера

На схеме представлен двухполупериодный диодный умножитель напряжения.

Электроды закорачиваются, к ним подключается однопроводная линия. Напряжение будет около 600 В, чего достаточно, чтобы между ними в газовой среде протекал постоянный ток.

Собранный по таким схемам бесстартерный блок питания способен заставлять светиться даже устройства с перегоревшими спиралями электродов.

к содержанию ↑

Видео – Схема подключения люминесцентных ламп

Предыдущая

ЛюминесцентныеЧто делать если разбилась люминесцентная лампа

Следующая

ЛюминесцентныеОсобенности и отличия люминесцентных ламп от светодиодных

Схема включения люминесцентных ламп

Лампы дневного света с самых первых выпусков и частично до сих пор зажигаются с помощью электромагнитной пускорегулирующей аппаратуры – ЭмПРА. Классический вариант лампы выполнен в виде герметичной стеклянной трубки со штырьками на концах.

Как выглядят люминесцентные лампы

Внутри она заполнена инертным газом с парами ртути. Ее установка производится в патроны, через которые подается напряжение на электроды. Между ними создается электрический разряд, вызывающий ультрафиолетовое свечение, которое действует на слой люминофора, нанесенный на внутреннюю поверхность стеклянной трубки. В результате появляется яркое свечение. Схема включения люминесцентных ламп (ЛЛ) обеспечивается двумя основными элементами: электромагнитным балластом L1 и лампой тлеющего разряда SF1.

Схема включения ЛЛ с электромагнитным дросселем и стартером

Схемы зажигания с ЭмПРА

Устройство с дросселем и стартером работает по следующему принципу:

  1. Подача напряжения на электроды. Ток через газовую среду лампы сначала не проходит из-за ее большого сопротивления. Он поступает через стартер (Ст) (рис. ниже), в котором образуется тлеющий разряд. При этом через спирали электродов (2) проходит ток и начинает их подогревать.
  2. Контакты стартера разогреваются, и один из них замыкается, так как он выполнен из биметалла. Ток проходит через них, и разряд прекращается.
  3. Контакты стартера перестают разогреваться, и после остывания биметаллический контакт снова размыкается. В дросселе (Д) возникает импульс напряжения за счет самоиндукции, которого достаточно для зажигания ЛЛ.
  4. Через газовую среду лампы проходит ток, после запуска лампы он уменьшается вместе с падением напряжения на дросселе. Стартер при этом остается отключенным, так как этого тока недостаточно для его запуска.

Схема включения люминесцентной лампы

Конденсаторы (С1) и (С2) в схеме предназначены для снижения уровня помех. Емкость (С1), подключенная параллельно лампе, способствует снижению амплитуды импульса напряжения и увеличению его продолжительности. В результате увеличивается срок службы стартера и ЛЛ. Конденсатор (С2) на входе обеспечивает существенное снижение реактивной составляющей нагрузки (cos φ увеличивается с 0,6 до 0,9).

Если знать, как подключить люминесцентную лампу с перегоревшими нитями накала, ее можно использовать в схеме ЭмПРА после небольшого изменения самой схемы. Для этого спирали замыкают накоротко и последовательно к стартеру подключают конденсатор. По такой схеме источник света сможет проработать еще какое-то время.

Широко распространен способ включения с одним дросселем и двумя лампами дневного света.

Включение двух ламп дневного света с общим дросселем

2 лампы подключаются последовательно между собой и дросселем. Для каждой из них необходима установка параллельно подключенного стартера. Для этого используется по одному выводному штырьку с торцов лампы.

Для ЛЛ необходимо применять специальные выключатели, чтобы у них не залипали контакты от высокого пускового тока.

Зажигание без электромагнитного балласта

Для продления жизни сгоревших ламп дневного света можно установить одну из схем включения без дросселя и стартера. Для этого используют умножители напряжения.

Схема включения ламп дневного света без дросселя

Нити накала замыкают накоротко и подают на схему напряжение. После выпрямления оно увеличивается в 2 раза, и этого достаточно, чтобы светильник загорелся. Конденсаторы (С1), (С2) подбирают под напряжение 600 В, а (С3), (С4) – под 1000 В.

Способ подходит также для исправных ЛЛ, но они не должны работать с питанием постоянным током. Через некоторое время ртуть собирается вокруг одного из электродов, и яркость свечения падает. Чтобы ее восстановить, надо перевернуть лампу, тем самым изменив полярность.

Подключение без стартера

Применение стартера увеличивает время разогрева лампы. При этом срок его службы небольшой. Электроды можно подогревать без него, если установить для этого вторичные трансформаторные обмотки.

Схема подключения люминесцентной лампы без стартера

Там, где не используется стартер, на лампе есть обозначение быстрого старта – RS. Если установить такую лампу со стартерным запуском, у нее могут быстро перегореть спирали, так как для них предусмотрено большее время разогрева.

Электронный балласт

Электронная схема управления ЭПРА пришла на смену старым источникам дневного света для устранения присущих им недостатков. Электромагнитный балласт потребляет лишнюю энергию, часто шумит, выходит из строя и при этом портит лампу. Кроме того, светильники мерцают из-за низкой частоты напряжения питания.

ЭПРА представляет собой электронный блок, который занимает мало места. Люминесцентные светильники легко и быстро запускаются, не создавая шума и обеспечивая равномерное освещение. В схеме предусмотрено несколько способов защиты лампы, что увеличивает срок эксплуатации и делает ее работу безопасней.

ЭПРА работает следующим образом:

  1. Разогрев электродов ЛЛ. Запуск происходит быстро и мягко, что увеличивает срок службы лампы.
  2. Поджиг – генерирование импульса высокого напряжения, пробивающего газ в колбе.
  3. Горение – поддержание небольшого напряжения на электродах лампы, которого достаточно для стабильного процесса.

Схема электронного дросселя

Вначале переменное напряжение выпрямляется с помощью диодного моста и сглаживается конденсатором (С2). Следом установлен полумостовой генератор высокочастотного напряжения на двух транзисторах. Нагрузкой служит тороидальный трансформатор с обмотками (W1), (W2), (W3), две из них включены противофазно. Они поочередно открывают транзисторные ключи. Третья обмотка (W3) подает резонансное напряжение на ЛЛ.

Параллельно лампе подключен конденсатор (С4). Резонансное напряжение поступает на электроды и пробивает газовую среду. К этому времени нити накала уже разогрелись. После зажигания сопротивление лампы резко падает, вызывая снижение напряжения до достаточной величины, чтобы поддерживать горение. Процесс запуска продолжается менее 1 с.

Электронные схемы имеют следующие преимущества:

  • пуск с любой заданной задержкой времени;
  • не требуется установка стартера и массивного дросселя;
  • светильник не моргает и не гудит;
  • качественная светоотдача;
  • компактность устройства.

Использование ЭПРА дает возможность установить его в цоколь лампы, которую также уменьшили до размеров лампы накаливания. Это дало начало новым энергосберегающим лампам, которые можно вворачивать в обычный стандартный патрон.

В процессе эксплуатации лампы дневного света стареют, и для них требуется увеличение рабочего напряжения. В схеме ЭмПРА напряжение зажигания тлеющего разряда у стартера уменьшается. При этом может происходить размыкание его электродов, что вызовет срабатывание стартера и отключение ЛЛ. После она снова запускается. Подобное мигание лампы приводит к ее выходу из строя вместе с дросселем. В схеме ЭПРА подобное явление не происходит, поскольку электронный балласт автоматически подстраивается под изменение параметров лампы, подбирая для нее благоприятный режим.

Ремонт лампы. Видео

Советы по ремонту люминесцентной лампы можно получить из этого видео.

Устройства ЛЛ и схемы их включения постоянно развиваются в направлении улучшения технических характеристик. Важно уметь выбирать подходящие модели и правильно их эксплуатировать.

Оцените статью:

Схема подключения и принципы работы люминесцентных ламп.

Среди всех источников искусственного света самыми распространенными сегодня являются люминесцентные лампы. Благодаря тому что они в 5-7 раз экономичнее ламп накаливания и гораздо дешевле самых сверхэффективных на сегодня- светодиодных.

Люминесцентные лампы сегодня можно встретить на каждом шагу. Они используются преимущественно для освещения в магазинах, супермаркетах, учебных заведениях, общественных зданиях, а после появления компактных вариантов, подходящих под обычные патроны E27 и E14 домашних светильников и люстр, люминесцентные лампы стали широко применяться для освещения в многоквартирных квартирах и частных домах.

Принцип работы.

Люминесцентная лампа — это газоразрядный источник света, внутри стрелянной трубы протекает электрический разряд между двумя спиралями (катодом и анодом), расположенными  с обоих сторон. Пары ртути под воздействием электрического разряда излучают невидимое для наших глаз ультрафиолетовое излучение, которое затем преобразовывается в видимый свет при помощи нанесенного по внутренней поверхности лампы люминофора, состоящего из смеси фосфора с другими элементами.

Схема подключения с применением электромагнитный балласта или  ЭмПРА.

ЭмПРА — это сокращенная аббревиатура- Электромагнитный Пускорегулирующий Аппарат. Часто называемый, как дроссель. Его мощность должна соответствовать общей мощности подключаемым к нему лампам.
Это довольно старая (активно применяемая еще в советское время) простая стартерная схема подключения к электросети  люминесцентной лампы дневного света.

Стартер — это миниатюрная лампочка с неоновым наполнением с  двумя биметаллическими электродами внутри, которые разомкнуты в нормальном положении.

Принцип работы: при включении электропитания в стартере возникает разряд и замыкаются накоротко биметаллические электроды, после чего ток в цепи электродов и стартера ограничивается только внутренним сопротивлением дросселя, в результате чего возрастает почти в три раза больше  рабочий ток в лампе и моментально разогреваются  электроды люминесцентной лампы. Одновременно с этим остывают биметаллические контакты стартера и цепь размыкается.
В этот момент разрыва дроссель, благодаря самоиндукции создает запускающий высоковольтный импульс (до 1 кВольта), который приводит к разряду в газовой среде и зажигается лампа. После этого напряжение на ней будет равняться половине от сетевого, которого будет недостаточно  для повторного замыкания электродов стартера.

Если лампа светит стартер не будет участвовать в схеме работы и его контакты всегда будут разомкнуты.

Часто встречается последовательная схема включения  2 ламп, для работы в которой применяются стартеры на 127 Вольт,  но они не будут работать в одноламповой схеме, для которой понадобятся стартеры на 220 Вольт!

 

Недостатки  схемы ПРА:

  1. По сравнению со схемой с электронным балластом на 10-15 % больший расход электроэнергии.
  2. Долгий запуск  не менее 1 до 3  секунд (зависимость от износа лампы).
  3. Звук от гудения пластин дросселя, возрастающий со временем.
  4. Стробоскопический эффект
    мерцания лампы, что негативно влияет на зрение, при чем  детали станков, вращающихся синхронно с частотой сети-  кажутся неподвижными.
  5. Неработоспособность при низких температурах окружающей среды. Например, зимой в неотапливаемом гараже.

Схема подключения с применением электронного балласта или ЭПРА.

Электронный Пускорегулирующий Аппарат (сокращенно-  ЭПРА) в отличии от электромагнитного-  подает на лампы  напряжение не сетевой частоты, а высокочастотное от 25 до 133 кГц. А это полностью исключает возможность появления заметного для глаз мигания ламп. В ЭПРА используется автогенераторная схема, включающая трансформатор и выходной каскад на транзисторах.

Схемы подключений бывают разные, как правило они наносятся сверху на блоке и не вызывают трудности в подключении. Давайте рассмотрим пример.


Слева, L – фаза и N- ноль от электропитания. Один провод общий на контакты с левой стороны и два — раздельные.
Справа, 4 контакта. По два на каждую нить накала. Только соблюдайте схему подключения на каждую лампу с обоих сторон.

Преимущества схем с ЭПРА:

  • Увеличение срока службы люминесцентных ламп, благодаря специальному режиму работы и запуска.
  • По сравнению с ПРА до 20% экономия электроэнергии.
  • Отсутствие в процессе работы шума и мерцания.
  • Отсутствует в схеме  стартер, который часто ломается.
  • Специальные модели выпускаются с возможностью диммирования  или регулирования яркости свечения.

Как Вы уже поняли у ЭПРА  много преимуществ,  именно поэтому Мы только и рекомендуем их использовать.
Дополнительно прочитайте по этом теме нашу статью  ”Характеристики люминесцентных ламп и светильников”.

Схема подключения люминесцентных ламп, видео инструкция

Наиболее распространённым источником освещения, применяемым в офисных, производственных и общественных зданиях, являются люминесцентные светильники. В последнее время, в связи с экономией энергоресурсов, их, также, начали часто применять и в домашнем быту.

Стандартные светильники, кроме своих достоинств, таких как малое энергопотребление, простота монтажа, низкая стоимость, имеют и ряд конструктивных недостатков. Часть из них выплывает из достоинств: применяя дешёвые, устаревшие, схемы и материалы, производитель уменьшает стоимость светильника, при этом заранее ухудшает потребительские качества.

Схема подключения люминесцентных ламп

Подключение одной или двух люминесцентных ламп заводского производства, можно изучить, разобрав обычный светильник. Обычная стандартная, широко применяющаяся схема подключения люминесцентных ламп, включает в себя стартер, дроссель, соединительные провода, конденсатор, и сами лампы.

В данном случае, используется так называемая электромагнитная управляющая система.

Улучшить самостоятельно степень освещённости, убрать надоедливое гудение и моргание вполне реально. Для этого, необходимо заменить устаревшую систему управления на современную электронную — (ЭПРА).

Для начала, нужно демонтировать светильник, вынуть из него всю начинку. Приобретя новый электронный блок, исходя из параметров вашего светильника, можно будет выполнить подключение люминесцентных ламп без дросселя и стартера. Для такой работы, вам понадобятся отвёртки с разными жалами, кусачки для зачистки проводов, шуруповёрт для крепления блоков управления, изолента, отвёртка-тестер.

Подключение ЭПРА для люминесцентных ламп легко выполнить, имея минимальные познания в электрических схемах, и навыки работы с электропроводкой. Фактически, в светильнике останется сам блок, комплект проводов и лампы дневного света.

Перед началом работ, нужно выбрать в корпусе светильника достаточное место для установки электронного блока управления, руководствуясь удобством подключения к клеммам, находящимся на его корпусе. Крепим блок к корпусу при помощи саморезов обычным шуруповёртом. Соединяем аппаратуру управления с лампой и клеммой подключения.

Схема подключения 2-х люминесцентных ламп аналогична, просто они подключаются последовательно, и, исходя из этого, мощность электронного блока должна быть в два раза больше мощности ламп. Тот же принцип, при подключении трёх и более ламп, в одном корпусе.

После сборки всей конструкции, нужно убедиться в правильности подключения всех проводников, после чего можно устанавливать светильник на место. Проверив тестером отсутствие напряжения в сети, подключаем светильник к электропроводке, соединяя провода через специальный клеммник.

Последний аккорд, это включение напряжения для удостоверения правильности работы светильника. Если схема, к примеру, подключения двух люминесцентных ламп, была выполнена правильно, то сам процесс работы будет разительно отличатся от первоначального. Во-первых, лампы зажгутся моментально, без так называемого разогрева, во-вторых исчезнет низкочастотное гудение, свет перестанет пульсировать, заметно для человеческого глаза, а общая светимость увеличится.

Настоятельно рекомендуем вызвать электриков-профессионалов, если вы не уверены в своих силах! Ведь работа с электрикой опасна для здоровья и жизни!

Видео подключения люминесцентных ламп

Более подробно об устройстве люминесцентных ламп:


Электрическая схема люминесцентного светильника. Подключение и ремонт баластника для люминесцентных ламп

Экономные люминесцентные лампы способны работать только с электронными балластами. Предназначены данные устройства для выпрямления тока. Информации про электронный балласт (схема, ремонт и подключение) имеется очень много. Однако в первую очередь важно изучить устройство прибора.

Модели диодного типа

Модели диодного типа на сегодняшний день считаются бюджетными. В данном случае трансформаторы используются лишь понижающего типа. Некоторые производители транзисторы устанавливают открытого типа. За счет этого процесс понижения частоты в цепи происходит не очень резко. Для стабилизации выходного напряжения применяются два конденсатора. Если рассматривать современные модели балластов, то там имеются динисторы операционного типа. Ранее их заменяли обычными преобразователями.

Двухконтактные модели

Данного типа схема электронного балласта для отличается от прочих моделей тем, что в ней используется регулятор. Таким образом, пользователь способен настраивать параметр выходного напряжения. Трансформаторы используются в устройствах самые различные. Если рассматривать распространенные модели, то там установлены понижающие аналоги. Однако однофазовые конфигурации не уступают им по параметрам.

Всего конденсаторов в цепи у моделей предусмотрено два. Также двухконтактные схемы электронных балластов включают в себя дроссель, который устанавливается за выходными каналами. Транзисторы для моделей подходят лишь емкостные. На рынке они представлены как постоянного, так и переменного типа. Предохранители в устройствах используются редко. Однако если в цепи установлен тиристор для выпрямления тока, то без него не обойтись.


Схема балласта «Эпра» 18 Вт

Данная схема электронного балласта для люминесцентной лампы включает в себя а также две пары конденсаторов. Транзистор для модели предусмотрен лишь один. Отрицательное сопротивление он максимум способен выдерживать на уровне 33 Ом. Для устройств данного типа это считается нормальным. Также схема электронного балласта 18 Вт включает в себя дроссель, который расположен над трансформатором. Динистор для преобразования тока применяется модульного типа. Понижение тактовой частоты происходит при помощи тетрода. Находится данный элемент возле дросселя.

Балласт «Эпра» 2х18 Вт

Указанный электронный балласт 2х18 (схема показана ниже) состоит из выходных триодов, а также понижающего трансформатора. Если говорить про транзистор, то он в данном случае предусмотрен открытого типа. Всего конденсаторов в цепи имеется два. Еще у схемы электронных балластов «Эпра» 18 Вт есть дроссель, который располагается под трансформатором.

Конденсаторы при этом стандартно устанавливаются возле каналов. Процесс преобразования осуществляется через понижение тактовой частоты устройства. Стабильность напряжения в данном случае обеспечивается благодаря качественному динистору. Всего каналов у модели имеется два.


Схема балласта «Эпра» 4х18 Вт

Этот электронный балласт 4х18 (схема показана ниже) включает в себя конденсаторы инвертирующего типа. Емкость их составляет ровно 5 пФ. В данном случае параметр отрицательного сопротивления в электронных балластах доходит до 40 Ом. Также важно упомянуть о том, что дроссель в представленной конфигурации расположен под динистором. Транзистор у этой модели имеется один. Трансформатор для выпрямления тока применяется понижающего типа. Перегрузки он способен от сети выдерживать большие. Однако предохранитель в цепи все-таки установлен.


Балласт Navigator

Электронный балласт Navigator (схема показана ниже) включает в себя однопереходный транзистор. Также отличие этой модели кроется в наличии специального регулятора. С его помощью пользователь сможет настраивать параметр выходного напряжения. Если говорить про трансформатор, то он в цепи предусмотрен понижающего типа. Расположен он возле дросселя и фиксируется на пластине. Резистор для этой модели подобран емкостного типа.

В данном случае конденсаторов имеется два. Первый из них расположен возле трансформатора. Предельная емкость его равняется 5 пФ. Второй конденсатор в цепи располагается под транзистором. Емкость его равняется целых 7 пФ, а отрицательное сопротивление максимум он может выдерживать на уровне 40 Ом. Предохранитель в данных электронных балластах не используется.


Схема электронного балласта на транзисторах EN13003A

Схема электронного балласта для люминесцентной лампы с транзисторами EN13003A является на сегодняшний день довольно сильно распространенной. Выпускаются модели, как правило, без регуляторов и относятся к классу бюджетных приборов. Однако прослужить устройства способны долго, и предохранители у них имеются. Если говорить про трансформаторы, то они подходят только понижающего типа.

Устанавливается транзистор в цепи возле дросселя. Система защиты у таких моделей в основном используется стандартная. Контакты приборов защищены динисторами. Также схема электронного балласта на 13003 включает в себя конденсаторы, которые часто устанавливаются с емкостью около 5 пФ.

Использование понижающих трансформаторов

Схема электронного балласта для люминесцентной лампы с понижающими трансформаторами часто включает в себя регуляторы напряжения. В данном случае транзисторы используются, как правило, открытого типа. Многими специалистами они ценятся за высокую проводимость тока. Однако для нормальной работы устройства очень важен качественный динистор.

Для понижающих трансформаторов часто используют операционные аналоги. В первую очередь они ценятся за свою компактность, а для электронных балластов это является существенным преимуществом. Дополнительно они отличаются пониженной чувствительностью, и небольшие сбои в сети для них нестрашны.

Применение векторных транзисторов

Векторные транзисторы в электронных балластах применяются очень редко. Однако в современных моделях они все-таки встречаются. Если говорить про характеристики компонентов, то важно отметить, что отрицательное сопротивление они способы держать на уровне 40 Ом. Однако с перегрузками они справляются довольно плохо. В данном случае большую роль играет параметр выходного напряжения.

Если говорить про транзисторы, то для указанных трансформаторов они подходят больше ортогонального типа. Стоят они на рынке довольно дорого, однако расход электроэнергии у моделей крайне низок. В данном случае модели с векторными трансформаторами по компактности значительно проигрывают конкурентам с понижающими конфигурациями.


Схема с интегральным котроллером

Электронный балласт для люминесцентных ламп с интегральным контроллером довольно прост. В данном случае трансформаторы применяются понижающего типа. Непосредственно конденсаторов в системе имеется два. Для понижения предельной частоты у модели имеется динистор. Транзистор используется в электронном балласте операционного типа. Отрицательное сопротивление он способен выдерживать не менее 40 Ом. Выходные триоды в моделях данного типа практически никогда не используются. Однако предохранители устанавливаются, и при сбоях в сети они помогают сильно.

Применение низкочастотных триггеров

Триггер на электронный балласт для люминесцентных ламп устанавливается в том случае, когда отрицательное сопротивление в цепи превышает 60 Ом. Нагрузку с трансформатора он снимает очень хорошо. Предохранители при этом устанавливаются очень редко.

Трансформаторы для моделей этого типа используются лишь векторные. В данном случае понижающие аналоги неспособны справляться с резкими скачками предельной тактовой частоты.

Непосредственно динисторы в моделях устанавливаются возле дросселей. По компактности электронные балласты довольно сильно отличаются. В данном случае многое зависит от используемых компонентов устройства. Если говорить про модели с регуляторами, то места они требуют очень много. Также они способны работать в электронных балластах только на два конденсатора.

Модели без регуляторов очень компактны, однако транзисторы для них могут использоваться лишь ортогонального типа. Отличаются они хорошей проводимостью. Однако следует учитывать, что данные электронные балласты на рынке покупателю обойдутся недешево.

Занятий, с достаточным световым потоком и в тоже время экономичного, подвигло, можно даже сказать, на некоторые искания и пробу вариантов. Сначала использовал обычную небольшую лампу прищепку, поменял её на маленький настольный люминесцентный светильник, затем был 18 ваттный люминесцентный светильник «потолочно — настенного» варианта китайского производства. Последнее понравилось более всего, но крепление непосредственно самой лампы в арматуре было несколько занижено, буквально на два — три сантиметра, однако «для полного счастья» их и не хватало. Выход нашёл в том, чтобы сделать тоже самое, но по своему. Так как работа имевшегося ЭПРА нареканий не вызывала логично было схему повторить.

Схема принципиальная

Это большая часть данного ЭПРА, дроссель и конденсатор у китайцев сюда не вошли.


Собственно добросовестно срисованная с печатной платы схема. Номинал электронных компонентов, позволяющих это сделать, определялся не только «по внешнему виду», но и при помощи замеров, с предварительным выпаиванием компонентов из платы. На схеме номинал резисторов указан в соответствии с цветовой маркировкой. Только в отношении дросселя позволил себе не разматывать имеющийся для определения количества витков, а замерил сопротивление намотанного провода (1,5 Ом при диаметре 0,4 мм) — сработало.


Первая сборка на монтажной плате. Номиналы компонентов подбирал скрупулёзно, невзирая на габариты и количество, и был вознаграждён — лампочка зажглась с первого раза. Ферритовое кольцо (10 х 6 х 4,5 мм) от энергосберегающей лампочки, его магнитная проницаемость неизвестна, диаметр провода катушек на него намотанных 0,3 мм (без изоляции). Первый пуск в обязательнейшем порядке через лампочку накаливания в 25 Вт. Если она горит а люминесцентная первоначально мигает и тухнет — увеличивайте (постепенно) номинал С4, когда всё заработало и ничего подозрительного обнаружено не было, и убрал лампу накаливания, то уменьшил его номинал до первоначального значения.


В какой-то мере ориентируясь на печатную плату первоисточника, нарисовал печатку под имеющийся подходящий корпус и электронные компоненты.


Протравил платку и собрал схему. Уже предвкушал момент, когда буду доволен собой и рад бытию. Но, схема, собранная на печатной плате отказалась работать. Пришлось вникать и заниматься подбором резисторов и конденсаторов. На момент установки ЭПРА по месту эксплуатации С4 имел ёмкость 3n5, С5 — 7n5, R4 сопротивление 6 Ом, R5 — 8 Ом, R7 — 13 Ом.


Светильник «вписался» не только в дизайн, лампа, поднятая до упора вверх, дала возможность комфортно пользоваться полочкой внутри ниши секретера. Уют в «помещении» наводил Babay.

Люминесцентная лампа (ЛЛ) представляет собой стеклянную трубку, заполненную инертным газом (Ar, Ne, Kr) с добавлением небольшого количества ртути. На концах трубки имеются металлические электроды для подачи напряжения, электрическое поле которого приводит к пробою газа, возникновению тлеющего разряда и появлению электрического тока в цепи. Свечение газового разряда бледно-голубого оттенка, в видимом световом диапазоне очень слабое.

Но в результате электрического разряда большая часть энергии переходит в невидимый, ультрафиолетовый диапазон, кванты которого, попадая в фосфорсодержащие составы (люминофорные покрытия) вызывают свечение в видимой области спектра. Меняя химический состав люминофора, получают различные цвета свечения: для ламп дневного света (ЛДС) разработаны различные оттенки белого цвета, а для освещения в декоративных целях можно выбрать лампы иного цвета. Изобретение и массовый выпуск люминесцентных ламп – это шаг вперед по сравнению с малоэффективными лампами накаливания.

Для чего нужен балласт?

Ток в газовом разряде растет лавинообразно, что приводит к резкому падению сопротивления. Для того чтобы электроды люминесцентной лампы не вышли из строя от перегрева, последовательно включается дополнительная нагрузка, ограничивающая величину тока, так называемый балластник. Иногда для его обозначения употребляют термин дроссель.

Используются два вида балластников: электромагнитный и электронный. Электромагнитный балласт имеет классическую, трансформаторную комплектацию: медный провод, металлические пластины. В электронных балластниках (electronic ballast) применяются электронные компоненты: диоды, динисторы, транзисторы, микросхемы.

Для первоначального поджига (пуска) разряда в лампе в электромагнитных устройствах дополнительно используется пусковое устройство – стартер. В электронном варианте балластника эта функция реализована в рамках единой электрической схемы. Устройство получается легким, компактным и объединяется единым термином – электронный пускорегулирующий аппарат (ЭПРА). Массовое применение ЭПРА для люминесцентных ламп обусловлено следующими достоинствами:

  • эти аппараты компактны, имеют небольшой вес;
  • лампы включаются быстро, но при этом плавно;
  • отсутствие мерцания и шума от вибрации, поскольку ЭПРА работает на высокой частоте (десятки кГц) в отличие от электромагнитных, работающих от сетевого напряжения с частотой 50 Гц;
  • снижением тепловых потерь;
  • электронный балласт для люминесцентных ламп имеет значение коэффициента мощности до 0,95;
  • наличие нескольких, проверенных видов защиты, которые повышают безопасность использования и продлевают срок службы.

Схемы электронных балластов для люминесцентных ламп

ЭПРА – это электронная плата, начиненная электронными компонентами. Принципиальная схема включения (Рис. 1) и один из вариантов схемы балласта (Рис. 2) приведены на рисунках.


Люминесцентная лампа, С1 и С2 – конденсаторы


Электронные балласты могут иметь разное схемотехническое решение в зависимости от примененных комплектующих. Выпрямление напряжения производится диодами VD4–VD7 и далее фильтруется конденсатором C1. После подачи напряжения начинается зарядка конденсатора С4. При уровне 30 В пробивается динистор CD1 и открывается транзистор T2, затем включается в работу автогенератор на транзисторах T1, T2 и трансформаторе TR1. Резонансная частота последовательного контура из конденсаторов С2, С3, дросселя L1 и генератора близки по величине (45–50 кГц). Режим резонанса необходим для устойчивой работы схемы. Когда напряжение на конденсаторе С3 достигнет величины пуска, лампа зажигается. При этом снижается регулирующая частота генератора и напряжения, а дроссель ограничивает ток.



Ремонт ЭПРА


В случае отсутствия возможности быстрой замены вышедшего из строя ЭПРА можно попытаться отремонтировать балластник самостоятельно. Для этого выбираем следующую последовательность действий для устранения неисправности:

  • для начала проверяется целостность предохранителя. Эта поломка часто встречается из-за перегрузки (перенапряжения) в сети 220 вольт;
  • далее производится визуальный осмотр электронных компонентов: диодов, резисторов, транзисторов, конденсаторов, трансформаторов, дросселей;
  • в случае обнаружения характерного почернения детали или платы ремонт производится с помощью замены на исправный элемент. Как проверить своими руками неисправный диод или транзистор, имея в наличии обычный мультиметр, хорошо известно любому пользователю с техническим образованием;
  • может оказаться, что стоимость деталей для замены будет выше или сопоставима со стоимостью нового ЭПРА. В таком случае лучше не тратить время на ремонт, а подобрать близкую по параметрам замену.

ЭПРА для компактных ЛДС

Сравнительно недавно стали широко использоваться в быту люминесцентные энергосберегающие лампы, адаптированные под стандартные патроны для простых ламп накаливания – Е27, Е14, Е40. В этих устройствах электронные балласты находятся внутри патрона, поэтому ремонт этих ЭПРА теоретически возможен, но на практике проще купить новую лампу.

На фото показан пример такой лампы марки OSRAM, мощностью 21 ватт. Следует заметить, что в настоящее время позиции этой инновационной технологии постепенно занимают аналогичные лампы со светодиодными источниками. Полупроводниковая технология, непрерывно совершенствуясь, позволяет быстрыми темпами достигнуть цены на ЛДС, стоимость которых остается практически неизменной.


Люминесцентные лампы T8

Лампы T8 имеют диаметр стеклянной колбы 26 мм. Широко используемые лампы T10 и T12 имеют диаметры 31,7 и 38 мм соответственно. Для светильников обычно применяют ЛДС мощностью 18 Вт. Лампы T8 не теряют работоспособности при скачках питающего напряжения, но при понижении напряжения более чем на 10% зажигание лампы не гарантируется. Температура окружающего воздуха также влияет на надежность работы ЛДС T8. При минусовых температурах снижается световой поток, и могут происходить сбои в зажигании ламп. Лампы T8 имеют срок службы от 9 000 до 12 000 часов.

Как изготовить светильник своими руками?

Сделать простейший светильник из двух ламп можно следующим образом:

  • выбираем подходящие по цветовой температуре (оттенку белого цвета) лампы по 36 Вт;
  • изготавливаем корпус из материала, который не воспламенится. Можно задействовать корпус от старого светильника. Подбираем ЭПРА под данную мощность. На маркировке должно быть обозначение 2 х 36;
  • подбираем к лампам 4 патрона с маркировкой G13 (зазор между электродами составляет 13 мм), монтажный провод и саморезы;
  • патроны необходимо закрепить на корпусе;
  • место установки ЭПРА выбирают из соображения минимизации нагрева от работающих ламп;
  • патроны подключаются к цоколям ЛДС;
  • для предохранения ламп от механического воздействия желательно установить прозрачный или матовый защитный колпак;
  • светильник закрепляется на потолке и подключается к сети питания 220 В.


Балласт для газоразрядной лампы (люминесцентные источники света) применяется с целью обеспечения нормальных условий работы. Другое название – пускорегулирующий аппарат (ПРА). Существует два варианта: электромагнитный и электронный. Первый из них отличается рядом недостатков, например, шум, эффект мерцания люминесцентной лампы.

Второй вид балласта исключает многие минусы в работе источника света данной группы, поэтому и более популярен. Но поломки в таких приборах тоже случаются. Прежде чем выбрасывать, рекомендуется проверить элементы схемы балласта на наличие неисправностей. Вполне реально самостоятельно выполнить ремонт ЭПРА.

Разновидности и принцип функционирования

Главная функция ЭПРА заключается в преобразовании переменного тока в постоянный. По-другому электронный балласт для газоразрядных ламп называется еще и высокочастотным инвертором. Один из плюсов таких приборов – компактность и, соответственно, небольшой вес, что дополнительно упрощает работу люминесцентных источников света. А еще ЭПРА не создает шум при работе.

Балласт электронного типа после подключения к источнику питания обеспечивает выпрямление тока и подогрев электродов. Чтобы люминесцентная лампа зажглась, подается напряжение определенной величины. Настройка тока происходит в автоматическом режиме, что реализуется посредством специального регулятора.

Такая возможность исключает вероятность появления мерцания. Последний этап – происходит высоковольтный импульс. Поджиг люминесцентной лампы осуществляется за 1,7 с. Если при запуске источника света имеет место сбой, тело накала моментально выходит из строя (перегорает). Тогда можно попытаться сделать ремонт своими руками, для чего требуется вскрыть корпус. Схема электронного балласта выглядит так:


Основные элементы ЭПРА люминесцентной лампы: фильтры; непосредственно сам выпрямитель; преобразователь; дроссель. Схема обеспечивает еще и защиту от скачков напряжения питающего источника, что исключает необходимость ремонта по данной причине. А, кроме того, балласт для газоразрядных ламп реализует функцию коррекции коэффициента мощности.

По целевому назначению встречаются следующие виды ЭПРА:

  • для линейных ламп;
  • балласт, встроенный в конструкцию компактных люминесцентных источников света.

ЭПРА для люминесцентных ламп подразделяются на группы, отличные по функциональности: аналоговые; цифровые; стандартные.

Схема подключения, запуск

Пускорегулирующий аппарат подключается с одной стороны к источнику питания, с другой – к осветительному элементу. Нужно предусмотреть возможность установки и крепления ЭПРА. Подключение производится в соответствии с полярностью проводов. Если планируется установить две лампы через ПРА, используется вариант параллельного соединения.

Схема будет выглядеть следующим образом:


Группа газоразрядных люминесцентных ламп не может нормально работать без пускорегулирующего аппарата. Его электронный вариант конструкции обеспечивает мягкий, но одновременно с тем и практически мгновенный запуск источника света, что дополнительно продлевает срок его службы.

Поджиг и поддержание функционирования лампы осуществляется в три этапа: прогрев электродов, появление излучения в результате высоковольтного импульса, поддержание горения осуществляется посредством постоянной подачи напряжения небольшой величины.

Определение поломки и ремонтные работы

Если наблюдаются проблемы в работе газоразрядных ламп (мерцание, отсутствие свечения), можно самостоятельно сделать ремонт. Но сначала необходимо понять, в чем заключается проблема: в балласте или осветительном элементе. Чтобы проверить работоспособность ЭПРА, из светильников удаляется линейная лампочка, электроды замыкаются, и подсоединяется обычная лампа накаливания. Если она загорелась, проблема не в пускорегулирующем аппарате.

В противном же случае нужно искать причину поломки внутри балласта. Чтобы определить неисправность люминесцентных светильников, необходимо «прозвонить» все элементы по очереди. Начинать следует с предохранителя. Если один из узлов схемы вышел из строя, необходимо заменить его аналогом. Параметры можно увидеть на сгоревшем элементе. Ремонт балласта для газоразрядных ламп предполагает необходимость использования навыков владения паяльником.

Если с предохранителем все в порядке, далее следует проверить на исправность конденсатор и диоды, которые установлены в непосредственной близости к нему. Напряжение конденсатора не должно быть ниже определенного порога (для разных элементов эта величина разнится). Если все элементы ПРА в рабочем состоянии, без видимых повреждений и прозвон также ничего не дал, осталось проверить обмотку дросселя.

В некоторых случаях проще купить новую лампу. Это целесообразно сделать в случае, когда стоимость отдельных элементов выше ожидаемого предела или при отсутствии достаточных навыков в процессе пайки.

Ремонт компактных люминесцентных ламп выполняется по сходному принципу: сначала разбирается корпус; проверяются нити накала, определяется причина поломки на плате ПРА. Часто встречаются ситуации, когда балласт полностью исправен, а нити накаливания перегорели. Починку лампы в этом случае произвести сложно. Если в доме имеется еще один сломанный источник света сходной модели, но с неповрежденным телом накала, можно совместить два изделия в одно.

Таким образом, ЭПРА представляет группу усовершенствованных аппаратов, обеспечивающих эффективную работу люминесцентных ламп. Если было замечено мерцание источника света или он и вовсе не включается, проверка балласта и его последующий ремонт позволят продлить срок службы лампочки.

Схема люминесцентной лампы

Люминесцентная лампа (ЛЛ) представляет собой стеклянную трубку, инертным газом (Ar, Ne, Kr) с добавлением небольшого количества ртути. На концах имеются металлические электроды для подачи напряжения, электрическое поле которого приводит к пробою газа, возникает тлеющего разряда и появления электрического тока в цепи. Свечение газового разряда бледно-голубого оттенка, в видимом световом диапазоне очень слабое.

Применение низкочастотных триггеров

Триггер на электронный балласт для люминесцентных ламп устанавливается в случае, когда отрицательное сопротивление в цепи превышает 60 Ом. Нагрузку с трансформатора он снимает очень хорошо. Предохранители при этом устанавливаются очень редко. Трансформаторы для моделей этого типа используются лишь охват. В данном случае понижающие аналоги неспособны справиться с резкими скачками предельной тактовой частоты.

Непосредственно динисторы в моделях устанавливаются возле дросселей. По компактности электронные балласты довольно сильно отличаются. В данном случае многое зависит от используемых компонентов устройства.Если говорить про модели с регуляторами, то места они требуют очень много. Также они способны работать в электронных балластах только на два конденсатора.

Модели без регуляторов очень компактны, однако транзисторы для них Познакомьтесь с одной из них, штатного ортогонального типа. Отличаются они хорошей проводимостью. Следует учитывать, что данные электронные балласты на рынке покупателя обойдутся недешево.

.Меняя химический состав люминофора, получить различные цвета свечения: для ламп дневного света (ЛДС) разработаны различные оттенки белого цвета, а для освещения в декоративных целях можно выбрать лампы иного цвета. Изобретение и массовый выпуск люминесцентных ламп — это шаг вперед по сравнению с малоэффективными лампами накаливания.

Применение

Электропроводная газовая среда внутри ламп дневного света обладает отрицательным сопротивлением, проявляющимся в том, что с напряжением напряжения между электродами снижается.

Схема работы люминесцентной лампы

Поэтому в схему подключается ограничитель тока LL1 — балластник, как видно из рисунка. Устройство также служит для создания кратковременного напряжения зажигания, которого недостаточно в действующей сети. Еще его называют дросселем.

Пускорегулирующее устройство также содержит небольшую лампу тлеющего разряда E1 — стартер. Внутри нее расположены 2 электрода, один из которых подвижный, он выполнен из биметаллической пластины.

В исходном состоянии электроды разомкнуты. При подаче на схему напряжения сети замыкание контакта SA1 в начальный момент через лампу дневного света ток не проходит, а внутри стартера между электродами образуется тлеющий разряд. От него нагреваются электроды, и биметаллическая пластина изгибается, замыкая контакт внутри стартера. В результате ток через балласт LL1 увеличивает нагревает электроды люминесцентной лампы.

После замыкания разряд внутри стартера E1 прекращается, и электроды начинают остывать.При этом происходит их размыкание, и в результате самоиндукции дроссель создает значительный импульс, зажигающий ЛЛ. При этом через нее проходит ток, равный по величине номинальному, который уменьшается в 2 раза из-за падения напряжения на дросселе. Этого тока недостаточно, чтобы в стартере появился тлеющий разряд, поэтому его электроды остаются разомкнутыми, пока горит лампа дневного света. Конденсаторы С1 и С2 уменьшают реактивные нагрузки и увеличивают кпд.

Балласты для люминесцентных ламп подключения и принципы работы

Люминесцентная лампа (ЛЛ) — это источник света из стеклянной герметичной колбы, внутри создается электрический электродный разряд, протекающий в газовой среде.На ее внутренней поверхности находится фосфорсодержащий слой (люминофор). Внутри лампы находится инертный газ и 1% паров ртути. При действии на них электрического разряда они излучают невидимый визуально ультрафиолетовый свет, который заставляет светиться люминофор.

Балластники для люминесцентных ламп

Если в помещении разобьется даже одна люминесцентная лампа, пары ртути превысят допустимые показатели в 10 раз. Ее вредное влияние сохраняется в течение 1-2 месяцев.

Причины неполадок люминесцентных светильников

Стоит коротко описать взаимодействие компонентов люминесцентного светильника — сама лампа не может работать без пускорегулирующего аппарата (балласта), который бывает электромагнитным (ЭмПРА) в виде дросселя и стартера, и электронным (ЭПРА), в котором условия запуска и свечения источника света обеспечиваются радиоэлектронными составляющими.

Электронный балласт для люминесцентных светильников Osram

Соответственно, причиной неработающего светильника могут быть неполадки, как в электронной схеме пускорегулирующего аппарата, так и старения, износа и перегорание самой лампы. Правильное определение причин осуществить своими руками ремонт неработающей лампы дневного света.

Мигание лампы как признак неполадок

В отличие от обычных ламп накаливания, которая перестает работать (перегорает) мгновенно и всегда неожиданно, быстро износ лампы дневного света можно определить по тому, как она моргает (мигает) во время запуска.Данный процесс свидетельствует об изменениях в химическом составе светящегося газа (вырождение паров ртути) а также о выгорании электродов.

Мигает, как правило, лампа дневного света, у которой с торцов наблюдается почернение — данный нагар свидетельствует о выгорании спирали и об необратимых химических процессах, происходящих внутри колбы — ремонту такой источник света не подлежит, но можно продлить срок его службы.

Очень часто люминесцентный светильник моргает из-за неполадок в ЭмПРА или ЭПРА.Замена лампы на новую точно определить причину мигания

Но не стоит выбрасывать старую лампу. Во-первых, ее нужно утилизировать, согласно государственным законам, как внутри колбы имеются вредные пары ртути.

Во втором случае, даже если перегорели нити накаливания, можно продлить линию эксплуатации данного источника света, при помощи несложной схемы, которую можно спаять своими руками, или подключив лампу к ЭПРА с холодным запуском, замкнув контактные выводы, как показано на видео:

Иногда даженый люминесцентный светильник моргает при запуске из-за череды исправных стартовых обстоятельств — разрыв цепи стартера происходит в момент прохождения синусоидой нуля, из-за чего индукционный всплеск напряжения оказывается недостаточным для ионизации газа внутри колбы.

По аналогичной причине люминесцентная лампа мигает на старте из-за низкого напряжения сети. Во время работы, если скачки напряжения не превышают допустимых пределов, исправный светильник дневного света мигать не должен — пускорегулирующий аппарат поддерживает ток в газе на одном уровне.

Почернение у торцов лампы свидетельствует о потере эмиссии, что влечет мигание при запуске, нестабильную работу и ослабление свечения

Принцип работы люминесцентной лампы и область ее применения

Рабочая способность лампы дневного освещения заключается в свечении люминофоров, которые реагируют на воздействие ультрафиолетовых лучей. Светоотдача этого прибора в 5 размах свойства у ламп накаливания.

Принцип работы люминесцентной лампы и область ее применения

Срок действия может быть достаточно длительным, но на это влияет ряд важных факторов, таких как, соблюдение электрического балласта, исключение скачков напряжения и коротких замыканий.

Лампа дневного освещения сегодня пользуется большим спросом и используется в домашних условиях. Этот прибор достаточно экономичен в стоимости и в дальнейшей эксплуатации.Не исключено применение люминесцентных ламп в производстве. В этой отрасли они очень практичны и позволяют хорошо освещать помещение в любое время суток. Немного рассмотрев, как работает люминесцентная лампа, перейдем к вопросу утилизации данного приспособления.

Внимание! Хранение в домашних условиях люминесцентной лампы опасно для вашего здоровья!

Изготовить своими руками

Трубчатые ЛЛ длиной 1200 мм недорого стоят и могут освещать большие площади. Светильник можно изготовить своими руками, например, из 2 ламп по 36 Вт.

  1. Корпус — основание прямоугольной формы из негорючего материала. Можно использовать бывший в употреблении светильник, для которого ремонт уже не требуется.
  2. ЭПРА подбирается под мощность светильников.
  3. На каждую из ламп понадобится по 2 патрона G13, многожильный провод и крепеж.
  4. Патроны для ламп крепятся на корпусе после выбора между ними.
  5. ЭПРА устанавливается в зоне минимального режима от ламп (обычно ближе к центру) и подключается к патронам.Каждый блок выпускается со схемой подключений на корпусе.
  6. Светильник крепится на стене или потолке с подключением к сети питания на 220 В через выключатель.
  7. Для защиты ламп желательно применить прозрачный колпак.

Правила поиска неисправности лампы

Каждое дело по работе с электрическими приборами должно начинаться, поэтому рассмотрим, как выявить неисправность люминесцентного прибора, при не повредив его детали оболочку и рабочие.

  1. Снимаем рассеиватель света. Для этого аккуратно отгибаем все крепежи. Если корпус прикреплен болтами, значит пользуемся фигурной отверткой.
  2. Снимаем из гнездо саму лампу дневного света, рассматриваем внимательно ее внешний вид. Встречаются случаи, когда на белом фоне видны темные пятна. Они говорят о том, что этот прибор навряд ли уже будет годен к применению.

Внимание! Не выбрасывайте дневную лампу, если на ней по краям есть почернение — проверьте ее также

  1. Теперь проводим механическую диагностику.Берем мультиметр и проверяем работоспособность нитей накала. Значения прибора, указывающие на сопротивление, подскажут, что нити, еще работать. Показания электроники равные единице — это знак неисправности одной из нитей.
  2. В случае, когда проверка показала рабочие результаты, но освещение так и не появилось, прибегают к ремонту электронного балласта. Возможно, из-за окислившихся контактов, лампа не пропускает электроды.
  3. Далее очищаются контакты, если есть необходимость. В ситуации, когда прибор не заработал, он заменяется на новый.

Как проверить люминесцентную лампу

Разновидности и принцип функционирования

Главная функция ЭПРА заключается в преобразовании переменного тока в постоянный. По-другому электронный балласт для газоразрядных ламп называется еще и высокочастотным инвертором. Один из плюсов таких приборов — компактность и, соответственно, небольшой вес, упрощающий работу люминесцентных источников света.А еще ЭПРА не создает шум при работе.

Балласт электронного типа после подключения к источнику питания обеспечивает выпрямление тока и подогрев электродов. Чтобы люминесцентная лампа зажглась, напряглось напряжение. Настройка тока происходит в автоматическом режиме, что реализуется посредством специального регулятора.

Такая возможность исключает вероятность появления мерцания. Последний этап — происходит высоковольтный импульс. Поджиг люминесцентной лампы осуществляется за 1,7 с.Если при запуске источника света имеет место сбой, накала моментально выходит из строя (перегорает). Тогда можно попытаться сделать ремонт своими руками, для чего требуется вскрыть корпус. Схема электронного балласта выглядит так:

Основные элементы ЭПРА люминесцентной лампы: фильтры; непосредственно сам выпрямитель; преобразователь; дроссель. Схема обеспечивает еще защиту от скачков напряжения питающего, что исключает необходимость ремонта по данной причине. А, кроме того, балласт для газоразрядных ламп реализует функцию коррекции коэффициента мощности.

По целевому назначению встречаются следующие виды ЭПРА:

  • для линейных ламп;
  • балласт, встроенный в конструкцию компактных люминесцентных источников света.

ЭПРА для люминесцентных ламп подразделяются на группы, отличные по функциональности: аналоговые; цифровые; стандартные.

Ремонт ЭПРА

В случае отсутствия возможности быстрой замены вышедшего из строя ЭПРА можно попытаться отремонтировать балластник самостоятельно. Для этого выбираем последовательность действий для устранения неисправности:

  • для начала проверяется целостность предохранителя. Эта поломка часто встречается из-за перегрузки (перенапряжения) в сети 220 вольт;
  • производит визуальный осмотр электронных компонентов: диодов, резисторов, транзисторов, конденсаторов, трансформаторов, дросселей;
  • в случае обнаружения характерного почернения детали или платы производится с помощью на исправный элемент.Как проверить своими руками неисправный диод или транзистор, имея в наличии обычный мультиметр, хорошо известно любому пользователю с техническим образованием;
  • может оказаться, что стоимость деталей для будет выше или сопоставима со стоимостью нового ЭПРА. В таком случае лучше не тратить время на ремонт, а подобрать близкую по параметрам замену.

Инструкция по ремонту

Сейчас мы рассмотрим основные неисправности, которые можно устранить без особых вложений.Начнем с электронного балласта, в его схеме достаточно много элементов, которые могут выйти из строя и к тому же трубчатые люминесцентные лампы с ЭПРА на сегодняшний день встречаются более часто.

Самая распространенная неисправность — это пробой транзисторов. Определить данную поломку можно только, выпаяв из схемы транзисторы и проверив их тестером. В целом транзисторе сопротивление перехода

400-700 Ом. Сгорая, транзистор за собой тянет резистор в цепи базы номиналом 30 Ом.

Также на плате присутствует предохранитель или низкоомный резистор 2-5 Ом, скорее всего его придется заменить, на чем ремонт и закончится. Возможно дополнительно поменять диодный мост или его элементы.

Редко встречается пробой пленочных конденсаторов 47n (пол микрофарада) или конденсатора резонанса в цепи накала. Бывали случаи, когда все из перечисленного целого и исправно, а светильник не работает, причина кроется в динисторе DB3. Если вы проверили все элементы цепи, то попробуйте заменить динистор.

Возможно решите, что дешевле будет приобрести новый ЭПРА, чем отремонтировать сломанный. Замена пусковой аппаратуры не должна вызывать сложности, ведь схема подключения нанесена на само устройство. При внимательном изучении проста для понимания, L и N это клеммы для подключения к сети 220В.

Также просматривайте видео, на котором наглядно показывается, как самому отремонтировать электронный балласт люминесцентной лампы:

Инструкция по ремонту ЭПРА

Обращаем ваше внимание на то, что по такой технологии можно починить и энергосберегающую лампочку КЛЛ.К примеру, если перегорел один накал, ремонт представляет собой следующий порядок действий:

Стартер + дроссель

Если у вас не зажигается лампа старого образца и вы уверены, что причина кроется именно в ней, первым делом рекомендуем проверить стартер. Проще выполнить проверку, имея под рукой рабочий стартер с такими же характеристиками. Однако если для замены нет подходящего устройства, тогда можно провести проверку работоспособности, используя лампочку накаливания с патроном.Все достаточно просто — подключаем один провод от патрона напрямую в розетку, а второй через стартер, как показано на фото ниже:

Если лампочка светится не будет, значит причина в нем. Инструкция по замене стартера люминесцентной лампы наглядно предоставлена ​​на видео:

Как заменить стартер?

Дроссель можно проверить мультиметром, прозвонив его обмотку. Если действительно вышел из строя дроссель, то ремонт люминесцентной лампы сводится к тому, что нужно просто поменять дроссель на целый.

Вот самые неисправности, которые постоянно сталкивались и успешно устраняли. Следуя нашему алгоритму поиск неисправности займет немного времени и вернуть светильник в работу самостоятельно будет пара пустяков. Надеемся, наша инструкция по ремонту люминесцентной лампы своими руками была для вас понятной и полезной! Обязательно просмотрите видео уроки, т.к. в них подробно рассмотрены все этапы, позволяющие починить неработающую лампочку.

Будет интересно прочитать:

Инструкция по ремонту ЭПРА

Возможные неисправности люминесцентных ламп

Люминесцентные лампы к газоразрядным лампам низкого давления.Они могут быть различной формы: прямые трубчатые, фигурные и компактные (КЛЛ). Люминесцентные светильники по конструкции намного сложнее, чем светильники с лампами накаливания. и у них бывает гораздо больше неисправностей. В нижеприведенной таблице приведены типовые неисправности и способы их устранения.

Схема включения люминесцентной лампы.

Трубчатые лампы имеют двухштырьковые типы цоколей, отличающиеся друг от друга расстояния между штырьками: G-13 (расстояние — 13 мм) для ламп диаметром 40 мм и 26 мм и G-5 (расстояние — 5 мм) для ламп диаметром 16 мм.

Особенность устройства компактных люминесцентных ламп в том, что специальная трубка специальной формы для уменьшения длины лампы. Многие компактные люминесцентные лампы небольшой мощности (до 20 Вт) предназначены для замены ламп накаливания и сконструированы так, что могут ввертываться в резьбовойрон непосредственно или через адаптер. Компактные люминесцентные лампы могут быть разных форм, могут быть с электронным пускорегулирующим аппаратом (ЭПРА) и разной длины.

Люминесцентные лампы требуют для работы специального устройства — пускорегулирующего аппарата (дросселя). Большинство зарубежных ламп могут работать как с обычными (с дросселем), так и с электронными пускорегулирующими аппаратами (ЭПРА). Но некоторые из них предназначены только для одного вида ПРА.

Таблица 1. Типовые неисправности светильников с люминесцентными лампами.

Светильники с ЭПРА имеют следующие преимущества: лампа не мерцает, лучше зажигается, не шумит (шум от дросселя), легче по весу, экономит электроэнергию (потери мощности в ЭПРА намного ниже, чем в ПРА).

Достоинства: по сравнению с лампами накаливания, они экономичнее и долговечнее, обладают хорошим светопередачей. Срок службы до 10000 часов у импортных ламп и до 5000-8000 часов у отечественных. Удобно использовать там, где свет горит много часов.

Недостатки: при температуре ниже 5 градусов тяжело зажигаются и могут гореть более тускло.

Меняя виды люминофора, можно попробовать цветовые характеристики ламп. Буквы, входящие в обозначение типов таких ламп, означают: Л — люминесцентная, Б — белой цветности, ТБ — тепло-белая, Д — дневной цветности, Ц — с улучшенной цветопередачей. Цифры 18, 20, 36, 40, 65, 80 обозначают номинальную мощность в ваттах. Например, ЛДЦ-18 — лампа люминесцентная, дневная, с улучшенной цветопередачей, мощностью 18 Вт.

Таблица 2. Типовые неисправности светильников с люминесцентными лампами.

Светильник с люминесцентными лампами работает следующим образом. Трубчатая лампа заполнена аргоном и парами ртути. Стартер необходим для пуска лампы, нужно на короткое время прогреть электроды. Ток, текущий через дроссель и стартер, увеличивает, нагревает биметаллическую пластину стартера.Электроды лампы прогреваются, контакт стартера размыкается, ток в цепи уменьшается, на дросселе образует кратковременное большое напряжение. Его накопленной энергии не хватает на то, чтобы пробить газ в колбе лампы. Далее ток идет через дроссель и лампу, при этом 110 Вольт падает на дросселе, а 110 Вольт на лампе. Пары ртути с помощью люминофора показывает свечение, воспринимаемое глазом человека.

Дроссель почти не потребляет энергию. Энергию, которую он берет при намагничивании, он почти полностью возвращает при размагничивании, при этом бесполезно загружаются провода.Чтобы разгрузить сеть, используется конденсатор С. Обмен энергией происходит не между сетью и дросселем, а между дросселем и конденсатором. Наличие конденсатора повышает КПД лампы, без него КПД лампы 50-60%, с конденсатором С — 95%. Конденсатор, который подключен параллельно стартеру, используется для защиты от радиопомех.

Неисправность люминесцентного светильника может заключаться в нарушении электрического контакта в схеме или выходе из строя одного из элементов светильника.Надежность контактов проверяется визуальным осмотром и проверкой тестером.

Работоспособность лампы или пускорегулирующей аппаратуры проверяется путем последовательной замены всех элементов на заведомо исправные.

Светильник с двумя люминесцентными лампами

Для начала рассмотрим такие схемы светильников с люминесцентными лампами:

Схема рис. 1 содержит:

  • две люминесцентные лампы;
  • два стартера;
  • один дроссель;
  • конденсатор.

Люминесцентная лампа имеет две спирали накаливания. Лампы, стартера и дроссель в электрическую цепь состоящую из последовательностей. Конденсатор параллельно.

Схема рис.2 содержит:

  • конденсатор;
  • два стартера;
  • две люминесцентных лампы;
  • два дросселя.

Подключение люминесцентных ламп рис.2 ни чем не отличаются от схемы подключения ламп рис.1. Два провода фаза, ноль имеют в этой схеме ответвление.

И наиболее простое светильника с одной лампой схема на рис.3, где конденсатор, лампа и стартер в схеме, — подключены параллельно. Дроссель подключен в электрической цепи — последовательно.

Похожие светильники встречаются и с тремя лампами. Сама суть дела не в этом, — не в количестве ламп.

Схема подключения, запуск

Пускорегулирующий подключается с одной стороны к источнику питания, с другой — к осветительному элементу. Нужно предусмотреть возможность установки и крепления ЭПРА. Подключение производится в соответствии с полярностью проводов. Если планируется установить две лампы через ПРА, используется вариант параллельного соединения.

Схема будет следующим образом:

Группа газоразрядных люминесцентных ламп не может нормально работать без пускорегулирующего аппарата. Его электронный вариант конструкции обеспечивает мягкий, но одновременно с тем и практически мгновенный запуск источника света, что также продлевает срок его службы.

Поджиг и поддержание функционирования лампы осуществляется в три этапа: прогрев электродов, появление излучения в результате высоковольтного импульса, поддержание горения осуществляется постоянной подачей напряжения небольшой величины.

Определение поломки и ремонтные работы

Если наблюдаются проблемы в работе газоразрядных ламп (мерцание, отсутствие свечения), можно сделать ремонт самостоятельно. Но сначала необходимо понять, в чем заключается проблема: в балласте или осветительном элементе. Чтобы проверить работоспособность ЭПРА, из светильников удаляется линейная лампочка, электроды замыкаются, и подключается обычная лампа накаливания. Если она загорелась, проблема не в пускорегулирующем аппарате.

В противном случае нужно искать причину поломки внутри балласта. Чтобы определить неисправность люминесцентных светильников, необходимо «прозвонить» все элементы по очереди. Начинать следует с предохранителя. Если один из узлов схемы вышел из строя, необходимо заменить его аналогом.Параметры можно увидеть на сгоревшем элементе. Ремонт балласта для газоразрядных ламп предполагает использование навыков владения паяльником.

Если с предохранителем все в порядке, следует проверить на исправность конденсатор и диоды, которые установлены в непосредственном контакте с ним. Напряжение конденсатора не должно быть ниже определенного порога (для разных элементов эта величина разнится). Если все элементы ПРА в рабочем состоянии, без видимых повреждений и прозвон также ничего не дал, осталось проверить обмотку дросселя.

В некоторых случаях проще купить новую лампу. Это целесообразно в случае возникновения стоимости отдельных элементов выше ожидаемого уровня предела или при наличии достаточных навыков в процессе пайки.

Ремонт компактных люминесцентных ламп по выполняется сходному принципу: сначала разбирается корпус; проверяются нити накала, определяется причина поломки на плате ПРА. Часто встречаются ситуации, когда балласт полностью исправен, а нити накаливания перегорели. Починку лампы в этом случае проведения сложно.Если в доме имеется еще один сломанный источник света сходной модели, но с неповрежденным телом накала, можно совместить два изделия в одно.

Таким образом, ЭПРА представляет группу усовершенствованных аппаратов, обеспечивающих эффективную работу люминесцентных ламп. Если было замечено, мерцание источника света или он вообще не включается, проверка балласта и его последующий ремонт позволят продлить срок службы лампочки.

Схема подключения люминесцентных ламп и принцип их работы

На сегодняшний день люминесцентные лампы используются одним из самых распространенных искусственного освещения. Это объясняется тем, что светильники данного типа в несколько раз более экономичнее, чем привычные стандартные приборы накаливания и на порядок дешевле светодиодных.

Люминесцентный вид на сегодняшний день встречаются чуть ли не на каждом шагу: в офисах, больницах, школах и домах.

Как работает

Люминесцентная лампа представляет собой газоразрядный прибор, внутри которого и образует этот разряд среди пары спиралей. Данные спирали есть не что, как анод и катод, они расположены с обеих сторон.Видимый свет появляется при ультрафиолетовом излучении парами ртути. Этому нанесенный на внутреннюю поверхность лампы люминофор — вещество, в составе которого имеется фосфор и другие элементы.

Люминесцентные лампы работают благодаря специальному устройству –пускорегулирующему аппарату, который по-другому называется дроссель. Многие модели импортного производства функционируют как со стандартным дросселем, так и с автоматической работой. Последние распространены как электронные пускорегулирующие автоматы.

Преимущества приборов, работающих на ЭПРА

Среди положительных качеств данных моделей можно следующие:

  • отсутствие мерцания;
  • отсутствие шума;
  • относительно малый вес;
  • лучшее зажигание;
  • экономия электроэнергии.

Каждая люминесцентная лампа имеет ряд преимуществ перед стандартной лампой накаливания:

  • долговечность;
  • экономичность;
  • большая светопередача.

Однако в данной технологии есть существенный недостаток — если температура в помещении не больше, чем пять градусов, зажигание такой медленно, а свет от нее более тусклый.

Схема подключения

Существует несколько схем подключения люминесцентных светильников.

Если используется электронная пускорегулирующая аппаратура, схема подключения выглядит следующим образом:

  • С — компенсационный конденсатор;
  • LL– дроссель;
  • EL– лампа люминесцентная;
  • SF– стартёр.

Как правило, на практике наиболее распространены светильники, используемые в двух приборах, подключенных последовательно. При этой схеме их подключения имеет вид:

А — для люминесцентных моделей мощностью 20 (18) ВТ

В — для люминесцентных моделей мощностью 40 (36) ВТ

Когда применяются две лампы, появляется возможность вращения именно мгновенного светового потока.Это происходит из-за того, что пульсация взятой лампы неодновременная, то есть небольшой сдвиг по времени. В связи с этим никогда не станет равным нулю значение суммарного светового потока. Другое название схемы, когда применяется сразу два светильника — это схема с расщепленной фазой. Важным ее преимуществом является то, что при ней не требуется дополнительных мер с целью повышения коэффициента мощности. Еще одним преимуществом является то, что при снижении напряжения в сети, суммарный световой поток остается стабильным.

При подключении мощности дросселя и лампы должны быть идентичными. Если же мощность второй велика, то возможно стоит использовать сразу два дросселя.

, несмотря на все явные достоинства, следует указать еще один существенный недостаток таких моделей. Все они содержат такое небезопасное вещество, как ртуть в жидком виде. На сегодняшний день существует проблема утилизации подобных устройств, вышедших из строя, использование люминесцентных ламп представляет среду окружающей среды.

Если при креплении светильник нечаянно выскальзывает из рук и разбивается вдребезги, можно увидеть мелкие шарики ртути, которые раскатываются по земле.

Далее описана подробная схема подключения в комплекте с электромагнитным балластом.

  • Подается питающее напряжение на схему. Затем оно проходит через дроссель и нити накала, а следом — к выводам стартера;
  • — есть не что иное, как неоновая лампочка, имеющая два контакта. На один из данных контактов приваривается биметаллическая пластина;
  • испытывающее напряжение начинает ионизировать неон.Сквозь начинает течь ток значительно силы, разогревающий газ и пластину из биметалла;
  • пластина при этом начинает изгибаться и замыкать выводы стартера;
  • электрический ток проходит по замкнутой цепи, благодаря чему нити накала разогреваются;
  • этот разогрев и дает толчок для возникновения в лампах свечения в условиях более низкого напряжения;
  • в тот момент, когда лампа начинает светиться, на стартере начинает падать напряжение. Падает оно до такого уровня, когда ион уже не способен ионизироваться.Стартер при этом автоматически отключается, а нити накала перестают быть под текущей текущей ситуацией.

С целью функционирование светильников, устанавливают дроссель. Данный прибор используется с целью ограничивать ток до необходимой величины, в зависимости от. Благодаря самоиндукции обеспечивается надежный пуск ламп.

Плюсы и минусы ламп, имеющий электромагнитный балласт

Конструкция и схема светильников достаточно проста. Однако, несмотря на это их, отличает высокая надежность и сравнительно небольшая стоимость.

Среди них:

  • нет гарантии запуска при пониженной температуре;
  • мерцание;
  • вероятность низкочастотного гула;
  • повышенное потребление электроэнергии;
  • достаточно большой вес и габариты.

Люминесцентные светильники компактного типа

Многие современные лампы люминесцентного типа подходят для промышленных помещений. Однако для домашнего использования они неудобны больших габаритов и неподходящего дизайна.Технологии не стоят на месте и сегодня такие приборы, которые имеют малогабаритный электронный балласт. Патент на компактную люминесцентную лампу был получен в 80-х годах прошлого века, номинация они в быту не так давно. Сегодня по размеру компактные люминесцентные модели не превышают привычных стандартных. Что касается принципа работы, то он был прежним. На концах лампы есть две нити накала. Именно между ними и появляется дуговой разряд, который производит ультрафиолетовые волны.Под воздействием волн происходит свечение люминофора.

Сколько служит компактная лампа

Компактная лампа по заявлению производителя, должна служить около десяти тысяч часов. Однако из-за постоянной нестабильности напряжения в сети, срок службы устройств значительно сокращен. На уменьшение срока службы влияет и частота включения и выключения в схеме, а также функционирование в условиях повышенных либо наоборот, слишком низких температур. По статистике самой частой причиной выхода таких устройств из строя является перегорание нитей канала.

Схема включения люминесцентных ламп

Лампы дневного света с самых первых выпусков и частично до сих пор зажигаются с помощью электромагнитной пускорегулирующей аппаратуры — ЭмПРА. Классический вариант лампы выполнен в виде герметичной стеклянной трубки со штырьками на концах.

Как выглядят люминесцентные лампы

Внутри она заполнена инертным газом с парами ртути. Ее установка производится в патроны, через которые подается напряжение на электроды. Между ними создается электрический разряд, вызывающий ультрафиолетовое свечение, которое действует на слой люминофора, нанесенный на внутреннюю поверхность стеклянной трубки.В результате появляется яркое свечение. Схема включения люминесцентных ламп (ЛЛ) обеспечивается двумя элементами: электромагнитным балластом L1 и лампой тлеющего разряда SF1.

Схема включения ЛЛ с электромагнитным дросселем и стартером

Схемы зажигания с ЭмПРА

с дросселем и стартером работает по следующему принципу:

  1. Подача напряжения на электроды. Ток через газовую среду лампы сначала не проходит из-за ее большого сопротивления.Он поступает через стартер (Ст) (рис. Ниже), в котором образуется тлеющий разряд. При этом через спирали электродов (2) проходит ток и начинает их подогревать.
  2. Контакты стартера разогреваются, и один из них замыкается, так как он выполнен из биметалла. Ток проходит через них, и разряд прекращается.
  3. Контакты стартера перестают разогреваться, и после остывания биметаллический контакт снова размыкается. В дросселе (Д) импульс напряжения за счет самоиндукции, которого достаточно для зажигания ЛЛ.
  4. Через газовую среду лампы проходит ток, после запуска он уменьшается вместе с падением напряжения на дросселе. Стартер при этом остается отключенным, так как этого тока недостаточно для его запуска.

Схема включения люминесцентной лампы

Конденсаторы (С 1 ) и (С 2 ) в схеме для снижения уровня помех. Емкость (С 1 ), подключенная параллельная лампе, способствует снижению амплитуды импульса напряжения и увеличению продолжительности.В результате увеличивается срок службы стартера и ЛЛ. Конденсатор (С 2 ) на входе обеспечивает существенное снижение реактивной составляющей нагрузки (cos φ увеличивается с 0,6 до 0,9).

Если знать, как подключить люминесцентную лампу с перегоревшими нитями накала, ее можно использовать в схеме ЭмПРА после небольшого изменения самой схемы. Для этого спирали замыкают накоротко и последовательно к стартеру подключают конденсатор. По такой схеме источник света сможет проработать еще какое-то время.

Широко распространен способ включения с одним дросселем и двумя лампами дневного света.

Включение двух ламп дневного света с общим дросселем

2 лампы подключаются между собой и дросселем. Для каждой из них установка параллельного стартера. Для этого используется по одному выводному штырьку с торцов лампы.

Для ЛЛ необходимо использовать выключатели, чтобы у них не залипали контакты от высокого пускового тока.

Зажигание без электромагнитного балласта

Для продления жизни сгоревших ламп дневного света можно установить одну из схем включения без дросселя и стартера. Для этого используют умножители напряжения.

Схема включения ламп дневного света без дросселя

Нити накала замыкают накоротко и предъявили на схему напряжение. После выпрямления оно увеличивается в 2 раза, и достаточно, чтобы светильник загорелся. Конденсаторы (С 1 ), (С 2 ) подбирают под напряжение 600 В, а (С 3 ), (С 4 ) — под 1000 В.

Способ подходит также для исправных ЛЛ, но они не должны работать с питанием постоянным током. Через некоторое время ртуть вокруг одного из электродов, и яркость свечения падает. Чтобы ее восстановить, надо перевернуть лампу, тем изменив полярность.

Подключение без стартера

Применение стартера увеличивает время разогрева лампы. При этом срок его службы небольшой. Электроды можно подогревать без него, если установить для этого вторичные трансформаторные обмотки.

Схема подключения люминесцентной лампы без стартера

Там, где не используется стартер, на лампе есть обозначение быстрого старта — RS. Если установить такую ​​лампу со стартерным запуском, у нее может быстро перегореть спирали, так как для них предусмотрено большее время разогрева.

Электронный балласт

Электронная схема управления ЭПРА пришла на смену старым источником дневного света для устранения присущих им недостатков. Электромагнитный балласт потребляет лишнюю энергию, часто шумит, выходит из строя и при этом портит лампу.Кроме того, светильники мерцают из-за низкой частоты напряжения питания.

ЭПРА представляет собой электронный блок, который занимает мало места. Люминесцентные светильники легко и быстро запускаются, не создавая шума и равномерное освещение. В схеме несколько способов защиты лампы.

ЭПРА работает следующим образом:

  1. Разогрев электродов ЛЛ.Запуск происходит быстро и мягко, что увеличивает срок службы лампы.
  2. Поджиг — генерирование импульса высокого напряжения, пробивающего газа в колбе.
  3. Горение — поддержание небольшого напряжения на электродах лампы, которого достаточно для стабильного процесса.

Схема электронного дросселя

Вначале переменное напряжение выпрямляется с помощью диодного моста и сглаживается конденсатором (С 2 ). Следом установлен полумостовой генератор высокочастотного напряжения на двух транзисторах.Нагрузкой служит тороидальный трансформатор с обмотками (W1), (W2), (W3), две из них включены противофазно. Они поочередно открывают транзисторные ключи. Третья обмотка (W3) подает резонансное напряжение на ЛЛ.

Параллельно лампе подключен конденсатор (С 4 ). Резонансное напряжение поступает на электроды и пробивает газовую среду. К этому времени нити накала уже разогрелись. После зажигания сопротивления лампы падает, вызывая снижение напряжения до достаточной величины, чтобы поддерживать горение.Процесс запуска продолжается менее 1 с.

Электронные схемы имеют следующие преимущества:

  • пуск с любой заданной задержкой времени;
  • не требуется установка стартера и массивного дросселя;
  • светильник не моргает и не гудит;
  • качественная светоотдача;
  • компактность устройства.

Использование ЭПРА дает возможность установить его в цоколь лампы, которые также уменьшили до размеров лампы накаливания.Это дало начало новым энергосберегающим лампам, которые можно вворачивать в обычный стандартный патрон.

В процессе эксплуатации лампы дневного света стареют, и для них требуется увеличение рабочего напряжения. В схеме ЭмПРА напряжение зажигания тлеющего разряда у стартера уменьшается. При этом может происходить размыкание его электродов, что вызовет срабатывание стартера и отключение ЛЛ. После она снова запускается. Подобное мигание лампы приводит к ее выходу из строя вместе с дросселем.В схеме ЭПРА подобное явление не происходит, поскольку электронный балласт автоматически подстраивается под изменение параметров лампы, подбирая для нее благоприятный режим.

Ремонт лампы. Видео

Советы по ремонту люминесцентной лампы можно получить из этого видео.

Устройства ЛЛ и схемы их включения постоянно расширяются в направлении улучшения характеристик. Важно уметь выбирать подходящие модели и правильно их эксплуатировать.

Оцените статью:

Схема подключения люминесцентной лампы

Люминисце́нтный светильник был изобретен в 1930-е годы, как источник света, получил известность и распространение с конца 1950-х.

Его преимущества неоспоримы:

  • Долговечность.
  • Ремонтопригодност.
  • Экономичность.
  • Теплый, холодный и цветной оттенок свечения.

Длительный срок службы обеспечивает правильно спроектированное разработчиками устройство пуска и регулировки работы.

Люминисцентный светильник промышленного производства

ЛДС (лампа дневного света) намного экономичнее, чем привычная лампочка накаливания, впрочем, аналогичное по мощности светодиодное устройство превосходит по этому показателю люминесцентное.

С течением времени светильник перестает запускаться, мигает, «гудит», одним режимом словом, не выходит в нормальный. Нахождение и работа в помещении становятся опасными для зрения человека.

Для исправления ситуации пробуют включить заведомо исправную ЛДС.

Если простая замена не дала положительных результатов, человек, не знающий как устроен люминесце́нтный светильник, заходит в тупик: «Что делать дальше?» Какие запчасти покупать рассмотрим в статье.

Кратко об особенностях работы лампы

ЛДС относится к газоразрядным источником света низкого внутреннего давления.

Принцип работы заключается в следующем : герметичный стеклянный корпус устройства, заполненный инертным газом и парами ртути, давление невелико.Внутренние стенки колбы, покрыты люминофором. Под воздействием электрического разряда, возникающего между электродами, ртутный состав газа начинает светиться, генерируя невидимое глазу ультрафиолетовое излучение. Оно, оказывая действие на люминофор, вызывает свечение в видимом диапазоне. Меняя активный состав люминофора, воспринимает холодный или теплый белый и цветной свет.

Принцип работы ЛДС

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Бактерицидные приборы устроены также как ЛДС, но внутренняя поверхность колбы, изготовленной из кварцевого песка, люминофором не покрыта. Ультрафиолет беспрепятственно излучается в окружающее пространство.

к содержанию ↑

Подключение с использованием электромагнитного балласта или ЭПРА

Особенности строения не позволяют подключить ЛДС непосредственно в сеть 220 В — работа от уровня такого напряжения невозможна. Для запуска требуется напряжение не ниже 600В.

С помощью электронных схем необходимо последовательно друг за другом обеспечить нужные режимы работы, каждый из которых требует определенного уровня напряжений.

Режимы работы:

  • розжиг;
  • свечение.

Запуск заключается в подаче импульсов высокого напряжения (до 1 кВ) на электроды, в результате чего между ними возникает разряд.

Отдельные виды пускорегулирующей аппаратуры, перед тем как произвести пуск, нагревают спираль электродов.Накаливание помогает легче запустить разряд, нить при этом меньше используется и служит.

После того как светильник загорелся, питание производится переменным напряжением, включается энергосберегающий режим.

Подключение с применением ЭПРАсхема подключения

В устройствах, выпускаемых промышленностью, используются два вида пускорегулирующей аппаратуры (ПРА):

  • электромагнитный пускорегулирующий аппарат ЭмПРА;
  • электронный пускорегулирующий аппарат — ЭПРА.

Схемы предусматривают различное подключение, оно представлено ниже.

Схема с ЭмПРА

Подключение с применением ЭмПРА

В состав электрической схемы светильника с электромагнитной пускорегулирующей аппаратурой (ЭмПРА) входят элементы:

  • дроссель;
  • стартер;
  • компенсирующий конденсатор;
  • люминесцентная лампа.
схема включения

В момент подачи питания через цепь: дроссель — электроды ЛДС, на контактах стартера напряжения появляется.

Биметаллические контакты стартера, находящиеся в газовой среде, нагреваясь, замыкаются. Из-за этого в светильнике цепи создается замкнутый контур: контакт 220 В — дроссель — электроды стартера — электроды лампы — контакт 220 В.

Нити электродов, разогреваясь, испускают электроны, которые дают тлеющий разряд. Часть тока начинает течь по цепи: 220В — дроссель — 1-й электрод — 2-й электрод — 220 В. Ток в стартере падает, биметаллические контакты размыкаются. По возникновению высоковольтного импульса на электродах возникает самоиндукция на контактах дросселя, что приводит к возникновению высоковольтного импульса.Происходит пробой газовой среды, возникает электрическая дуга между противоположными электродами. ЛДС начинает светиться ровным светом.

В подключенный в линию дроссель обеспечивает низкий уровень силы тока, протекающего через электроды.

Дроссель, подключенный в цепь переменного тока, работает как индуктивное сопротивление, сниженная до 30% коэффициент полезного действия светильника.

Внимание! С целью уменьшения энергии в схеме включает в себя компенсирующий конденсатор, без него потребление энергии увеличится.

Схема с ЭПРА

Внимание! В рознице ЭПРА часто встречаются под наименованием электронного балласта. Название драйвер продавцы применяют для обозначения блоков питания для светодиодных лент.

Внешний вид и устройство ЭПРА

Внешний вид и устройство электронного балласта, предназначенного для включения двух ламп мощностью 36 в каждую.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Важно! Запрещено вход ЭПРА без нагрузки в виде люминесцентных ламп. Если устройство предназначено для подключения двух ЛДС, его нельзя использовать в схеме с одной.

В схемах с ЭПРА физические процессы остаются прежними. В некоторых моделях предварительное нагревание электродов, увеличив срок службы лампы.

Вид ЭПРА

На рисунке показан внешний вид ЭПРА для различных по мощности устройств.

Размеры позволяют link ЭПРА даже в цоколе Е27.

ЭПРА в цоколе энергосберегающей лампы

Компактные ЭСЛ — один из видов люминесцентных могут иметь цоколь g23.

Настольная лампа с цоколем G23

Функциональная схема ЭПРА

На представленном языке представлена ​​функциональная схема ЭПРА.

к содержанию ↑

Схема для последовательного подключения двух ламп

Существуют светильники, конструктивно предусматривающие подключение двух ламп.

В случае замены деталей сборка осуществляется по схемам, для различных ЭмПРА и ЭПРА.

Внимание! Принципиальные схемы ПРА рассчитаны на работу с мощностью нагрузки. Этот показатель всегда имеется в паспортах изделий. Если подключить лампы большего номинала, дроссель или балласт перегореть.

Схема включения двух ламп с одним дросселем

Если на корпусе прибора есть надпись 2Х18 — балласт предназначен для подключения двух ламп мощностью по 18 ватт каждую. 1Х36 — такой дроссель или балласт начальник одну ЛДС мощностью 36 Вт.

В случаях, когда используется дроссель, лампы должны подключаться последовательно.

Запускать их свечение будут два стартера. Подсоединение этих деталей осуществляется с помощью ЛДС.

к содержанию ↑

Подключение без стартера

Схема ЭПРА в своем составе стартера не имеет изначально.

Кнопка вместо стартера

Однако и в схемах с дросселем можно обойтись без него. Собрать рабочую схему поможет включить последовательность подпружиненный выключатель — проще говоря, кнопка.Кратковременное включение и отпускание кнопки обеспечит соединение похожее по действию на стартерный пуск.

Важно! Включаться такой безстартерный вариант будет, только при целых нитях накаливания.

Бездроссельный вариант, в котором также отсутствует стартер, может быть осуществлен разными способами. Один из них показан ниже.

Схема без стартера

На схеме напряжения представлен двухполупериодный диодный умножитель.

Электроды закорачиваются, к ним подключается однопроводная линия.Напряжение будет около 600 В, чего достаточно, чтобы между ними в газовой среде протекал постоянный ток.

Собранный по таким схемам бесстартерный блок питания способен заставлять светиться даже устройством с перегоревшими спиралями электродов.

к содержанию ↑

Видео — Схема подключения люминесцентных ламп

Предыдущая

Люминесцентные принципыЧто делать если разбилась люминесцентная лампа

Люминесцентные лампочки Схема подключения люминесцентных ламп от светодиодных

.

Среди всех источников искусственного света самыми распространенными сегодня являются люминесцентные лампы. Благодаря тому что они в 5-7 раз экономичнее ламп накаливания и намного дешевле самых сверхэффективных на сегодня- светодиодных.

Люминесцентные лампы сегодня можно встретить на каждый шагу. Они используются преимущественно для освещения в магазинах, супермаркетах, коммерческих помещениях, общественных зданиях, а после использования компактных вариантов, подходящих под обычные патроны E27 и E14 домашних светильников и люстр, люминесцентные лампы стали широко использоваться в многокрных квартирах и частных домах.

Принцип работы.

Люминесцентная лампа — это газоразрядный источник света, протекает электрический разряд между двумя спиралями (катодом и анодом), расположенными с обоих сторон. Пары ртути под воздействием электрического разряда излучают невидимое для наших глаз ультрафиолетовое излучение, которое затем преобразовывается в видимый свет при помощи нанесения по внутренней поверхности лампы люминофора, состоящего из смеси фосфора с другими элементами.

Схема подключения с применением электромагнитный балласта или ЭмПРА.

ЭмПРА — это сокращенная аббревиатура- Электромагнитный Пускорегулирующий Аппарат . Часто называемый, как дроссель. Его мощность должна соответствовать подключаемому к нему лампам.
Это довольно старая (активно применяется еще в советское время) простая стартерная схема подключения к электросети люминесцентной лампы дневного света.

Стартер — это миниатюрная лампочка с неоновым наполнителем с двумя биметаллическими электродами внутри, которые разомкнуты в нормальном положении.

Принцип работы: при включении электропитания в стартере возникает разряд и замыкаются накоротко биметаллические электроды, после чего ток в цепи электродов и стартера ограничивается только внутренним сопротивлением дросселя, в результате чего возрастает почти в три раза больше рабочий ток в лампе и моментально разогреваются электроды люминесцентной лампы. Одновременно с этим остывают биметаллические контакты стартера и цепь размыкается.
В этот момент разрыва дроссель, благодаря самоиндукции создает запускающий высоковольтный импульс (до 1 кВольта), который приводит к разряду в газовой среде и зажигается лампа.После этого напряжения на ней будет равняться сила от сетевого, которого будет для повторного замыкания электродов стартера.
Если лампа светит стартер не будет участвовать в схеме работы и его контакты всегда будут разомкнуты.

используется последовательность последовательная схема включения 2 ламп, для работы в которой используются стартеры на 127 Вольт, и они не будут работать в одноламповой схеме, для которых используются стартеры на 220 Вольт!

Недостатки схемы ПРА:

  1. По сравнению со схемой с электронным балластом на 10-15% больший расход электроэнергии .
  2. Долгий запуск не менее 1 до 3 секунд (зависимость от износа лампы).
  3. Звук от гудения пластин дросселя, возрастающий со временем.
  4. Стробоскопический эффект мерцания лампы, что негативно влияет на зрение, при чем детали станков, вращающиеся синхронно с сетью кажутся неподвижными.
  5. Неработоспособность при низких температурах окружающей среды. Например, зимой в неотапливаемом гараже.

Схема подключения с электронного электронного балласта или ЭПРА.

Электронный Пускорегулирующий Аппарат (сокращенно- ЭПРА) в отличии от электромагнитного- подает на напряжение лампы не сетевой частоты, а высокочастотное от 25 до 133 кГц. А это полностью исключает возможность появления заметного для глаз мигания ламп. В ЭПРА используется автогенераторная схема, включающая трансформатор и выходной каскад на транзисторах.

Схемы подключений бывают разные , как правило, они наносятся сверху на блоке и не вызывают трудности в подключении.Давайте рассмотрим пример.


Слева, L — фаза и N- ноль от электропитания. Один провод на контакты с левой стороны и два — раздельные.
Справа, 4 контакта. По два на каждую нить накала. Только соблюдайте схему подключения на каждую лампу с обоих сторон.

Преимущества с ЭПРА:

  • Увеличение срока службы люминесцентных ламп , благодаря специальному режиму работы и запуска.
  • По сравнению с ПРА до 20% экономия электроэнергии.
  • Отсутствие в процессе работы шума и мерцания.
  • Отсутствует в схеме стартер , который часто ломается.
  • Специальные модели выпускаются с помощью диммирования или регулирования яркости свечения.

Как вы уже поняли в ЭПРА много преимуществ, поэтому мы только и рекомендуем их использовать.
Дополнительно прочитайте по этой теме нашу статью ”Характеристики люминесцентных ламп и светильников”.

Стартерная схема включения люминесцентных ламп

Пуск без стартеров

Лампы дневного света владеют рядом преимуществ по сопоставлению с лампами накаливания. К их защищенной большой срок службы, экономичность, отменная освещаемость. Ко всем плюсам, им присущи также и недостатки.

Это ненадежность осветительных приборов, долгий процесс зажигания (особенности при пониженных температурах) и перегорание ламп, а конкретно нити накала.. Она быстро и надежно зажигает лампы мощностью 20 и 40 Вт (в том числе и лампы со спаленными нитями накала).

Без стартерная схема включения ламп дневного света

C1, C2 — 0,5 мкФ 400 B C3, C4 — 0,1 мкФ 1000 B VD1… VD6– Любые на ток 0,1 А для ЛДС-20 и 0,2 А для ЛДС-40 и оборотное напряжение более 600 В (по последней мере для VD5, VD6).L1 — Дроссель, соответственный типу лампы. Если вы переделываете осветительный прибор промышленного производства — оставьте имеющийся. Если же вы собираете осветительный прибор с нуля, то дроссель можно поменять лампой накаливания 75… 150 Вт (зависимо от мощности ЛДС).

Внимание: При зажигании лампы на выходе схемы добивается 1200 В. Будьте аккуратны при наладке.Выбор сечения провода по нагреву и потерям напряжения.

Категория: Электричество на даче

Схемы включения ламп накаливания.Управление двумя лампами, подключенными к сети, осуществляется одним однополюсным выключателем, пятью лампами —двумя выключателями, расположенными рядом (одним выключателем, включающим две лампы, другими — тремя, тремя лампами) — с помощью люстрового переключателя для поперечного изменения числа включаемых ламп.

Рис. 1.

Схемы присоединения группы ламп накаливания к осветительной сети: а — двух ламп одним выключателем; б — пяти ламп двумя выключателями; в — с помощью люстрового переключателя; г — с двух мест двумя переключателями, соединенными перемычками; д — ламп к сети, питаемой от трехпроводной системы с изолированной нейтралью; е — ламп к сети, питаемой от четырехпроводной системы с заземленной нейтральюПри первом повороте переключателя включается одна из трех ламп, при втором двух, но выключается первая лампа, при третьем — выключаются все лампы, при четвертом — выключаются все лампы люстры.Для независимого управления одними или двумя местами применяется схема, в которой используются два переключателя, соединенных двумя перемычками. Эту схему включения люминесцентных ламп.

2) или бесстартерной схемам (рис. 3) зажигания.При включении ламп по стартерной схеме зажигания в стартерают газоразрядную неоновую лампу с двумя (подвижным и неподвижным) электродами.Включают люминесцентную лампу в электрическую сеть только последовательно с балластным резистором, ограничивающим рост тока в лампе и таким образом предохраняющим ее от разрушения.

В сети переменного тока в качестве балластного резистора применяют конденсатор или катушку с большим индуктивным сопротивлением — дроссель.Зажигание люминесцентной лампы следующим образом. При ее включении между электродами возникает тлеющий разряд, теплота которого нагревает подвижный биметаллический электрод.При нагреве до определенной температуры подвижный электрод стартера, изгибаясь, замыкается с неподвижным, образуя электрическую цепь, по которой проходит ток, необходимый для предварительного подогрева электродов лампы.

Рис. 2. Стартерное зажигание люминесцентной лампы: а — схема; б — общий вид стартера; 1 — дроссель; 2 — лампа; 3 — стартер

Рис. 3.

Схема бесстартерного зажигания двухлампового люминесцентного светильникаПривод тока в цепи электродов лампы разряд в стартере прекращается, в результате чего подвижный электрод стартера остывает и, разгибаясь, возвращается в исходное положение, разрывая электрическую цепь лампы.При разрыве к напряжению сети добавляется ЭДС самоиндукции дросселя, и возникший в дросселе импульс повышенного напряжения вызывает дуговой разряд в лампе, зажигая ее. С возникновением электрического разряда напряжение на электродах лампы и параллельных с ними электродах стартера снижается, что оказывается недостаточным для возникновения тлеющего разряда между электродами стартера.Если лампа не зажжется, на электродах стартера появится полное напряжение сети и весь процесс повторится.Для включения люминесцентных ламп используют стартерные и бесстартерные пускорегулирующие аппараты (ПРА), которые обеспечивают надежное зажигание и нормальную работу ламп, а также повышение коэффициента мощности. Управление двумя лампами, подключенными к сети, осуществляется одним однополюсным выключателем (рис.1, а), пятью лампами — двумя выключателями (рис.

1, б), расположенными рядом (одним выключателем, включающим две лампы, другие — три лампы), тремя лампами — с помощью люстрового переключателя (рис. 1, в) для поперечного изменения числа включаемых ламп. ламп, при втором — остальные две лампы, но выключается первая лампа, при третьем — выключаются все лампы, при четвертом — выключаются все лампы люстры. Для независимого управления одной или двумя местами размещения схему (рис.

1, г), в которой используются два переключателя, соединенных двумя перемычками. Это применяется при освещении коридоров и лестничных клеток жилых домов и предприятий, а также туннелей с двумя перемычками. Схема питания сети, питаемой от четырехпроводной системы с заземленной нейтралью ламп от трехпроводной и четырехпроводной сети на рис. 1, д, е.

Рис.

1. Схема присоединения группы ламп накаливания к осветительной сети: двух ламп одним выключателем, с помощью люстрового переключателя, г — с двумя местами переключателями, соединенными перемычками, д — ламп к сети, питаемая от трехпроводной системы с изолированной нейтралью, е — лампСхемы включения люминесцентных ламп.Люминесцентные лампы могут включаться в электрическую сеть по стартерной или бесстартерной схемам зажигания.При включении ламп по стартерной схеме зажигания (рис.

)

2, а) в качестве стартера (рис.2, б) применяют газоразрядную неоновую лампу с двумя (подвижным и неподвижным) электродами. Включают люминесцентную лампу в электрическую сеть только последовательно с балластным резистором, ограничивающим рост тока в лампе и таким образом предохраняющим ее от разрушения. В сети переменного тока в качестве балластного резистора применяют конденсютатор или катушку с большим индуктивным сопротивлением — дроссель.

Рис. 2.

Стартерное зажигание люминесцентной лампы: а — схема, б — общий вид стартера; 1 — дроссель, 2 — лампа, 3 — стартерЗажигание люминесцентной лампы следующим образом. При включении лампы между электродами возникает электрический разряд, теплота которого нагревает подвижный биметаллический электрод.Подогреваясь, электроды начинают испускать электроны.

Приращение тока в цепи электродов лампы разряд в стартере прекращается, в результате чего подвижный электрод стартера остывает и, разгибаясь, возвращается в исходное положение, разрывая электрическую цепь лампы. вызывает дуговой разряд в лампе, зажигая ее. С возникновением дугового разряда напряжение на электродах лампы и параллельных с ними электродах стартера снижается настолько, что оказывается недостаточным для возникновения тлеющего разряда между электродами стартера.Если лампа не зажжется, на электродах стартера появится полное напряжение сети и весь процесс повторится.

Рис. 3. Схема бесстартерного зажигания двухлампового люминесцентного светильника: ООДр — основная обмотка дросселя, ДОДр — дополнительная обмотка дросселя, С — конденсатор, НТр — нахальный трансформатор, Л — люминесцентная лампаДля включения люминесцентных ламп , обеспечивающие надежное зажигание и нормальную работу ламп, а также повышение повышения мощности.

Схема включения бесстартерных ПРА двухлампового люминесцентного светильника на рис. 3.Схемы включения ламп ДРЛ. Двухэлектродные лампы включают в электрическую сеть переменного тока напряжением 220 В через поджигающее устройство, с помощью которого (импульсом высокого напряжения) зажигается лампа (рис.

).

4) .Для защиты выпря-напряжения служит конденсатор С1.Конденсатор СЗ необходим для устранения помех радиоприему, создаваемых поджигающим при зажигании лампы.Четырехэлектродная лампа в отличие от приведенной выше схемы включения двухэлектродной лампы включается в сеть по упрощенной схеме, в которой отсутствует поджигающее устройство. Зажигание четырехэлектродной лампы от питающей сети напряжением 220 В. В схеме включения в сеть четырехэлектродной лампы имеются дроссель и конденсатор, которые выполняют те же функции, что и в схеме включения двухэлектродной лампы ДРЛ.

Рис.4. Схема включения двух-электродной лампы ДРЛ: ООДр — основная обмотка дросселя, ДОДр — дополнительная обмотка дросселя, С1 — конденсатор защиты выпрямителя, С2 — зарядный конденсатор, СЗ — помехоподавляющий конденсатор, СВ — селеновый выпрямитель, R — зарядный резистор, Л — двухэлектродная лампа ДРЛ.Р — разрядникПоджигающее устройство состоит из разрядника Р, селенового выпрямителя (диода) СВ, зарядного резистора R и конденсаторов С1 и С2.

Основная обмотка дросселя в схеме служит для предотвращения резкого увеличения тока в лампе, а также источника стабилизации ее режима горения. Электромонтажные работы- Схемы включения электрических источников светаЛюминесцентная лампа (ЛЛ) представляет собой света, создаваемый электрический разряд в среде паров ртути и инертного газа. При этом возникает невидимое ультрафиолетовое свечение, действующее на слой люминофора, нанесенный изнутри на стеклянную колбу.Типовая схема включения люминесцентной лампы представляет собой пускорегулирующее устройство с электромагнитным балластом (ЭмПРА).

Устройство и описание ЛЛ

Колба может быть в виде цилиндрической формы, но сейчас она может быть в виде сложной формы. На торцах в нее вмонтированы электроды, конструктивно похожие на некоторые спирали ламп накаливания, изготовленные из вольфрама. Они подпаяны к расположению снаружи штырькам, на которые подают напряжение.

Газовая электропроводная среда внутри ЛЛ имеет отрицательное сопротивление.Оно проявляется в снижении напряжения между противоположными электродами при росте тока, который необходимо ограничивать.

Схема включения люминесцентной лампы содержит балластник (дроссель), предназначение которого — создание большого импульса напряжения для ее зажигания. Кроме него в ЭмПРА входит стартер — лампа тлеющего разряда с размещенными внутри нее двумя электродами в среде инертного газа. Один из них изготовлен из биметаллической пластины.

Принцип работы ЛЛ

Стартерная схема включения люминесцентных работает следующим образом.

На схему подается напряжение, но сначала через ЛЛ ток не идет из-за большого сопротивления среды. По спиралям катодов проходит и разогревает их. Кроме того, он поступает также на стартер, для которого возникло напряжение достаточно, чтобы внутри тлеющего разряда возникло разогревание контактов пускателя от проходящего тока биметаллическая пластина замыкается.

После этого проводника становится металл, и разряд прекращается. Биметаллический электрод остывает и размыкает контакт. При этом дроссель выдает импульс высокого напряжения из-за самоиндукции, и ЛЛ зажигается.Через лампу идет ток, который в 2 раза уменьшается, поскольку напряжение на дросселе падает. Его недостаточно для повторного запуска стартера, контакты которого остаются разомкнутыми при горении ЛЛ.

Схема включения двух ламп люминесцентных устройств в одном светильнике, предусматривает использование для них одного общего дросселя.Они подключаются друг к другу, но на каждой лампе установлено по одному параллельному стартеру.

Недостатком светильника является отключение второй лампы, если одна из них вышла из строя.

Важно! С люминесцентными лампами необходимо использовать специальные выключатели. У бюджетных устройств стартовые токи большие, и контакты залипать.

Бездроссельное включение люминесцентных ламп: схемы

Несмотря на дешевизну, электромагнитные балласты имеют недостатки.Они и явились причиной создания электронных схем зажигания (ЭПРА).

Как запускается ЛЛ с ЭПРА

Бездроссельное включение люминесцентных ламп производится через электронный блок, в котором формируется последовательное изменение напряжения при их зажигании.

Достоинства электронной схемы запуска:

    возможность пуска с любой временной задержкой; не нужны массивный электромагнитный дроссель и стартер; отсутствие гудения и моргания ламп; высокая светоотдача; легкость и компактность устройства; больший срок эксплуатации.

Современные электронные балласты обладают компактными размерами и низким потреблением энергии. Их называют драйверами, помещая в цоколь малогабаритной лампы. Бездроссельное включение люминесцентных ламп позволяет использовать обычные стандартные патроны.

Система ЭПРА преобразует сетевое переменное напряжение 220 Вв высокочастотное. Сначала разогреваются электроды ЛЛ, а затем высокое напряжение.

При высокой повышается КПД и полностью исключается мерцание.Схема включения люминесцентной лампыможет холодный запуск или плавным яркости. В первом случае срок эксплуатации электродов сокращается.

Повышенное напряжение в электронной схеме создается через колебательный контур, приводящий к резонансу и зажиганию лампы. Запуск совершается легче, чем в классической схеме с электромагнитным дросселем. Затем также снижается напряжение до необходимого значения удерживания разряда.

Выпрямление напряжения осуществляется диодным мостом, после чего оно сглаживается подключенным конденсатором С1.После подключения к сети сразу заряжается конденсатор С4и пробивается динистор.Запускается полумостовой генератор на трансформаторе TR1и транзисторах Т1и Т2. При достижении частоты 45-50 кГц создается резонанс с помощью последовательности С2, С3, L1, подключенного к электродам, и лампа зажигания.

В этой схеме также есть дроссель, но с очень малыми габаритами, позволяющими использовать его в цоколь лампы.ЭПРА имеет автоматическую подстройку под ЛЛ по мере изменения характеристик.Через некоторое время для изношенной лампы требуется повышение напряжения для зажигания. В схеме ЭмПРА она просто не запустится, а электронный балласт подстраивается под изменение характеристик и тем режимом эксплуатировать устройство в благоприятных условиях.Преимства современных ЭПРА следующие: плавное включение; экономичность работы; сохранение электродов; исключение мерцания; работоспособность при низкой производительности; компактность; долговечность. .Недостатками являются более высокая стоимость и сложная схема зажигания.

Применение умножителей напряжения

Способ дает возможность использовать ЛЛ без электромагнитного балласта, но использовать преимущественно для продления жизни лампам.

Схема включения сгоревших люминесцентных ламп позволяет им проработать еще некоторое время, если мощность не превышает 20-40 Вт. При этом нити накала могут быть как целыми, так и перегоревшими. В обоих случаях каждой нити накала нужно закоротить.

После выпрямления напряжение удваивается, и лампа загорается моментально.Конденсаторы С1, С2выбираются под рабочее напряжение 600 В. Их недостаток заключается в больших габаритах.

Конденсаторы С3, С4устанавливают слюдяные на 1000 В.ЛЛ не предназначены для питания постоянным током.Со временем ртуть скапливается около одного из электродов, и свечение ослабевает. Для его восстановления изменяют полярность, перевернув лампу. Можно установить переключатель, чтобы ее не снимать.

Бесстартерная схема включения люминесцентных ламп

Схема со стартером требует долгого разогрева лампы.Кроме того, его иногда приходится менять. В связи с этим существует другая схема с подогревом электродов через вторичные обмотки трансформатора, который также выполняет функцию балласта.

Когда включается включение люминесцентных ламп без стартера, на них должно быть обозначение RS (быстрый старт). Светильник со стартерным запуском здесь не подойдет, поскольку его электроды дольше разогреваются, и спирали быстро перегорят.

Как включить сгоревшую лампу?

Если спирали вышли из строя, ЛЛ можно зажечь без умножителя напряжения, используя обычную схему ЭмПРА.

Схема включения перегоревшей люминесцентной лампы незначительно изменяется по обычной с обычной. Для этого к стартеру замыкают конденсатор, а штырьки электродов замыкают накоротко. После такой небольшой переделки лампа проработает еще какое-то время.

Заключение

Конструкция и схема включения люминесцентной лампы совершенствуется в сторону экономичности, уменьшения размеров и повышения срока службы. Важно правильно ее эксплуатировать, разбираться во всем множестве выпускаемых типов и эффективных способов подключения.

Источники:

  • elektrica.info
  • gardenweb.ru
  • gardenweb.ru
  • fb.ru

Схема подключения люминесцентных ламп, видео инструкция

Наиболее распространённым освещением, применяемым в офисных, промышленных и общественных зданиях, являются люминесцентные светильники. В последнее время, в связи с экономией энергоресурсов, их, также, начали часто применять в домашнем быту.

Стандартные светильники, кроме своих достоинств, таких как малое энергопотребление, простота монтажа, низкой стоимости, имеют и ряд конструктивных недостатков. Часть из них выплывает из достоинств: устаревшие, устаревшие схемы и материалы производитель снижает стоимость светильника, при этом заранее снижает потребительские качества.

Схема подключения люминесцентных ламп

Подключение одной или двух люминесцентных ламп заводского производства, можно изучить, разобрав обычный светильник.Обычная стандартная, широко применяемая схема подключения люминесцентных ламп, включает в себя стартер, дроссель, соединительные провода, конденсатор, и сами лампы. В данном случае используется так называемая электромагнитная управляющая система.

Улучшить самостоятельно степень освещённости, убрать надоедливое гудение и моргание вполне реально. Для этого необходимо заменить устаревшую систему управления на современную электронную — (ЭПРА).

Для начала нужно демонтировать светильник, вынуть из него всю начинку.Приобретя новый электронный блок, исходя из параметров вашего светильника, можно будет выполнить подключение люминесцентных ламп без дросселя и стартера. Для такой работы, вам понадобятся отвёртки с разными жалами, кусачки для зачистки проводов, шуруповёрт для крепления блоков управления, изолента, отвёртка-тестер.

Подключение ЭПРА для люминесцентных ламп легко выполнить, имея минимальные познания в электрических схемах, и навыки работы с электропроводкой. Фактически, в светильнике останется сам блок, комплект проводов и лампы дневного света.

Перед началом работ, нужно выбрать в корпусе светильника соответствующее место для установки электронного блока управления, руководствуясь удобством подключения к клеммам, находимся на его корпусе. Крепим блок к корпусу при помощи саморезов обычным шуруповёртом. Соединяем аппаратуру управления с лампой и клеммой подключения.

Схема подключения 2-х люминесцентных ламп аналогична, просто они подключаются последовательно этого блока, и исходя из этого, мощность электронного блока должна быть в два раза больше мощности ламп.Тот же принцип, при подключении трёх и более ламп, в одном корпусе.

После сборки всей конструкции, нужно убедиться в правильности подключения всех проводников, после чего можно установить светильник на место. Проверив тестером напряжения отсутствие в сети, подключаем светильник к электропроводке, соединяя провода через специальный клеммник.

Последний аккорд, это включение для напряжения удостоверения правильной работы светильника. Если схема, к примеру, подключения двух люминесцентных ламп, была выполнена правильно, то сам процесс работы будет разительно отличатся от первоначального.Во-первых, лампы зажгутся моментально, без так называемого разогрева, во-втором исчезнет низкочастотное гудение, свет перестанет пульсировать, заметно для человеческих глаз, общая светимость увеличится.

Настоятельно рекомендуем вызвать электриков-профессионалов, если вы не уверены в своих силах! Ведь работа с электрикой опасна для здоровья и жизни!

Видео подключения люминесцентных ламп

Более подробно об устройстве люминесцентных ламп: