Схема мощного импульсного блока питания: cxema.org — Мощный импульсный блок питания

Содержание

cxema.org - Мощный импульсный блок питания

В радиолюбительской практике многие самодельные конструкции остаются на полках без внимания по той причине, что не имеют блока питания. Одна из самых повторяемых конструкций - усилитель мощности низкой частоты, которому тоже нужен источник питания. Сетевые трансформаторы для запитки мощных усилителей стоят немало денег, да и размеры и вес иногда некстати. По этому в последнее время широкое применение нашли импульсные блоки питания. Эти блоки имеют полностью электронную начинку и работают в импульсном режиме. За счет повышенной рабочей частоте удается резким образом уменьшить размеры и вес источника питания. Схема такого блока питания была найдена в одном из зарубежных сайтов, недолго думая, решил повторить конструкцию.

3510315272.gif

Конструкция отличается особой простотой и дешевизной, в моем случае было потрачено всего 5$ на транзисторы и микросхему, все остальное можно найти в нерабочем компьютерном блоке питания.

Мощность такого блока может доходить до 400 ватт, для этого нужно только поменять диодный выпрямитель и электролиты, вместо 220 мкФ, поставить на 470.

4024771368.jpg3531934360.jpg

1621481096.jpg1689350880.jpg

Термистор - любой, он сохранит транзисторы во время броска напряжения при подачи питания. Имеется также сетевой фильтр, который состоит из дросселя и пленочных конденсаторов, в какой-то мере сглаживает сетевые помехи и пульсации.

1573257016.jpg442861032.jpg

654683224.jpg1506892624.jpg

Выпрямитель можно взять готовый, от компьютерного БП или собрать мост из диодов с током 3 А и более, обратное напряжение диодов не менее 400Вольт.

Полевые ключи - в моем случае использовались мощные силовые транзисторы IRF740 с рабочим напряжением 400 Вольт при токе 10 Ампер.

1585030125.jpg2734539572.jpg

Ключи установлены на общий теплоотвод, но изолированы от него во избежания коротких замыканий. Выбор транзисторов не критичен, в ходе работы они у меня остаются холодными даже с выходной нагрузкой 50 ватт (при этом транзисторы без теплоотводов).

Трансформатор - выпаян из блока питания АТХ.

2526620829.jpg3510195789.jpg

Сердцем блока питания является драйвер IR2153, она же и является задающим генератором. Драйвер достаточно мощный и номинал выходного сигнало достаточен для управления полевыми ключами. В случае использования микросхем в обычном DIP корпусе, нужен ультрабыстрый или быстрый диод, подключенный в прямом направлении от 1 к 8 выводу.

616165517.jpg433707325.jpg

2885223725.jpg767374996.jpg

Собранная схема заработает сразу, если с монтажом ничего не перепутали. Ограничительный резистор 47 к для питания микросхемы нужен с мощностью 1-2 ватт, в моем случае нужного резистора не нашлось, поэтому использовал два резистора, суммарное сопротивление которых 47к. Этот резистор в ходе работы может чуть перегреться, но это не страшно и вполне нормально.

1846143020.jpg2458749173.jpg

На выходе трансформатора можно использовать импульсные или быстрые диоды, можно также ставить диодные сборки Шоттки из компьютерных БП, как право, они рассчитаны на большие токи. Можно применять также отечественные диоды серии

КД213А, которые могут работать на частотах до 100кГц, а максимальный допустимый ток доходит до 10Ампер.

3639464259.jpg3851286771.jpg

Первый запуск схемы нужно проводить с последовательно подключенной лампой накаливания на 220 Вольт 100 - 150 ватт, чтобы при неправильном монтаже схема не взорвалась.

ЧТО СДЕЛАТЬ, ЕСЛИ СХЕМА НЕ ЗАРАБОТАЛА? (несколько советов)

Если схема при первом включении не заработала, то в первую очередь проверьте в лишний раз монтаж, а вначале работ тщательно проверяйте компоненты на исправность.

На выход трансформатора подключите галогенную лампу на 20 ватт, которая будет играть в роль контрольной лампочки. Если при включении лампа начнет мигать, а схема будет издавать свист, то скорее всего не хватает напряжения для питания микросхемы. В таком случае нужно понизить номинал резистора 47к до 45, если не поможет, то до 40килоом и так до тех пор, пока не нормализуется работа генератора.

2720891427.jpg2672667539.jpg

Нормально настроенная и рабочая схема не должна издавать слышимых звуков, транзисторы без выходной нагрузки должны быть холодными, на каждом конденсаторе должно быть 150 160 вольт постоянного тока. Если один из конденсаторов греется, то проверьте мост, скорее всего имеется неисправный диод и на конденсатор поступает переменный ток. После устранения неполадок замените конденсатор и включите схему.

img24.jpg

551807702.jpg

Такой блок питания можно использовать в качестве лабораторного блока питания, или зарядного устройства для мощных кислотных аккумуляторов автомобиля, мы лишь представили вариант сборки, а где применить - ваша фантазия. Оставайтесь с нами, станьте подписчиком нашей группы ВК и будьте в курсе о новых обновлениях.

Плата в формате Sprint-layout

С уважением - АКА КАСЬЯН

Мощный импульсный блок питания на 12 В своими руками
Доброго времени суток дорогие друзья, в этой статье хочу поделиться с вами своим опытом по созданию импульсных источников питания. Речь пойдет о том как собрать своими руками импульсный источник питания на микросхеме IR2153.
Микросхема IR2153 представляет собой высоковольтный драйвер затвора, на ней строят много различных схем, блоки питания, зарядные устройства и т. д. Напряжение питания варьируется от 10 до 20 вольт, рабочий ток 5 мА и рабочую температуру до 125 градусов Цельсия.
Начинающие радиолюбители побаиваются собрать свой первый импульсный блок питания, очень часто прибегают к трансформаторным блокам. Я в свое время тоже опасался, но все таки собрался и решил попробовать, тем более что деталей было достаточно для его сборки. Теперь поговорим не много о схеме. Это стандартный полумостовой источник питания с IR2153 на борту.
Мощный импульсный блок питания на 12 вольт своими руками

Детали


Диодный мост на входе 1n4007 или готовая диодная сборка рассчитанная на ток не менее 1 А и обратным напряжением 1000 В.
Резистор R1 не менее двух ватт можно и 5 Ватт 24 кОм, резистор R2 R3 R4 мощностью 0,25 Ватт.
Конденсатор электролитический по высокой стороне 400 вольт 47 мкф.
Выходной 35 вольт 470 – 1000 мкФ. Конденсаторы фильтра пленочные рассчитанные на напряжение не менее 250 В 0,1 - 0,33 мкФ. Конденсатор С5 – 1 нФ. Керамический, конденсатор С6 керамический 220 нФ, С7 пленочный 220 нФ 400 В. Транзистор VT1 VT2 N IRF840, трансформатор от старого блока питания компьютера, диодный мост на выходе полноценный из четырех ультрабыстрых диодах HER308 либо другие аналогичные.
В архиве можно скачать схему и плату:

Мощный импульсный блок питания на 12 вольт своими руками

Печатная плата изготовлена на куске фольгированного одностороннего стеклотекстолита методом ЛУТ. Для удобства подключения питания и подключения выходного напряжения на плате стоят винтовые клемники.
Мощный импульсный блок питания на 12 вольт своими руками
Мощный импульсный блок питания на 12 В своими руками

Схема импульсного блока питания на 12 В


Преимущество этой схемы в том, что эта схема очень популярная в своем роде и ее повторяют многие радиолюбители в качестве своего первого импульсного источника питания и КПД а разы больше не говоря уже и размерах. Схема питается от сетевого напряжения 220 вольт по входу стоит фильтр который состоит из дросселя и двух пленочных конденсаторов рассчитанных на напряжение не менее 250 – 300 Вольт емкостью от 0,1 до 0,33 мкФ их можно взять из компьютерного блока питания.
Мощный импульсный блок питания на 12 В своими руками
В моем случае фильтра нет, но поставить желательно. Далее напряжение поступает на диодный мост рассчитанный на обратное напряжение не менее 400 Вольт и током не менее 1 Ампера. Можно и поставить готовую диодную сборку. Дальше по схеме стоит сглаживающий конденсатор с рабочим напряжением 400 В, поскольку амплитудное значение сетевого напряжение составляет в районе 300 В. Емкость данного конденсатора подбирается следующим образом, 1 мкФ на 1 Ватт мощности, так как я не собираюсь выкачивать из этого блока большие токи, то в моем случае стоит конденсатор на 47 мкФ, хотя из такой схемы можно и выкачивать сотни ватт. Питание микросхемы берется с переменки, здесь организован источник питания резистор R1 который обеспечивает гашение тока, желательно ставить помощнее не менее двух ватт так как осуществляется его нагрев, затем напряжение выпрямляется всего одним диодом и поступает на сглаживающий конденсатор а затем на микросхему. 1 вывод микросхемы плюс питания и 4 вывод это минус питания.
Мощный импульсный блок питания на 12 В своими руками

Можно и собрать отдельный источник питания для нее и подать согласно полярности 15 В. В нашем случае микросхема работает на частоте 47 – 48 кГц для такой частоты организована RC цепочка состоящая из резистора R2 15 ком и пленочного или керамического конденсатора на 1 нФ. При таком раскладе деталей микросхема будет работать правильно и вырабатывать прямоугольные импульсы на своих выходах которые поступают на затворы мощных полевых ключей через резисторы R3 R4 номиналы их могут отклоняться в пределах от 10 до 40 Ом. Транзисторы необходимо ставить N канальные, в моем случае стоят IRF840 с рабочим напряжением сток исток 500 В и максимальным током стока при температуре 25 градусов 8 А и максимальной рассеиваемой мощностью 125 Ватт. Далее по схеме стоит импульсный трансформатор, после него идет полноценный выпрямитель из четырех диодов марки HER308, обычные диоды тут не подойдут так как они не смогут работать на высоких частотах, поэтому ставим ультрабыстрые диоды и после моста напряжение уже поступает на выходной конденсатор 35 Вольт 1000 мкФ, можно и 470 мкФ особо больших емкостей в импульсных блоках питания не требуется.
Мощный импульсный блок питания на 12 вольт своими руками
Вернемся к трансформатору, его можно найти на платах компьютерных блоков питания, определить тут его не сложно на фото видно самый большой вот он то нам и нужен. Чтобы перемотать такой трансформатор необходимо прослабить клей, которым склеены половинки феррита, для этого берем паяльник или паяльный фен и потихоньку прогреваем трансформатор, можно опустить в кипяток на несколько минут и аккуратно разъединяем половинки сердечника. Сматываем все базовые обмотки, наматывать будем свои. Из расчета того что мне на выходе нужно получить напряжение в районе 12-14 Вольт, первичная обмотка трансформатора содержит 47 витков проводом 0,6 мм в две жилы, делаем изоляцию между намоткой обычным скотчем, вторичная обмотка содержит 4 витка того же провода в 7 жил. ВАЖНО производить намотку в одну сторону, каждый слой изолировать скотчем, отмечая начало и конец обмоток иначе ни чего работать не будет, а если и будет тогда блок не сможет отдать всю мощность.

Проверка блока


Ну а теперь давайте протестируем наш блок питания так как мой вариант полностью исправен то я сразу подключаю в сеть без страховочной лампы.
Проверим выходное напряжение как видим оно в районе 12 – 13 В не много гуляет от перепадов напряжения в сети.
Мощный импульсный блок питания на 12 вольт своими руками
В качестве нагрузки автомобильная лампа на 12 В мощностью 50 Ватт ток соответственно протекает 4 А. Если такой блок дополнить регулировкой тока и напряжения, поставить входной электролит большей емкости, то можно смело собирать зарядное устройство для авто и лабораторный блок питания.
Мощный импульсный блок питания на 12 вольт своими руками
Перед запуском блока питания необходимо проверить весь монтаж и включаем в сеть через страховочную лампу накаливания 100 Ватт, если Лампа горит в полный накал значит ищите ошибки при монтаже сопли не смытый флюс либо не исправен какой то компонент и т д. При правильной сборке лампа должна слегка вспыхнуть и погаснуть, это нам говорит, что Конденсатор по входу зарядился и ошибок в монтаже нет. Поэтому перед установкой компонентов на плату их необходимо проверять даже если они новые. Еще один не мало важный момент после запуска напряжение на микросхеме между 1 и 4 выводом должно быть не менее 15 В. Если это не так подбирать нужно номинал резистора R2.
Мощный импульсный блок питания на 12 вольт своими руками

Смотрите видео


Как работают импульсные блоки питания: 7 правил

Домашний мастер часто сталкивается с поломками сложной бытовой техники из-за отказов ее электрической схемы. Не всегда удается сразу выполнить такой ремонт. Часто требуются знания про импульсные блоки питания, принципы работы их составных частей.

Такие работники популярны, всегда востребованы, заслуживают уважения. Однако не все так сложно в этом вопросе, как кажется на первый взгляд.

Я выделил 7 правил, по которым работает любой ИБП, постарался объяснить их простыми словами для новичков. А что получилось — оценивайте сами.

Содержание статьи

Блоки питания — это электротехнические устройства, которые изменяют характеристики промышленной электроэнергии до уровня параметров, необходимых для работы конечных механизмов.

Они подразделяются на трансформаторные и импульсные изделия.

Схема трансформаторного блока питанияСтруктурная схема блока питания

Силовой трансформатор понижает входное напряжение и одновременно обеспечивает гальваническую развязку между электрической энергией первичной и вторичной цепи.

Силовой трансформатор

Трансформаторные модули тратят значительную часть мощности на электромагнитные преобразования и нагрев, имеют повышенные габариты, вес.

Импульсные блоки питания: как работает структурная схема и взаимодействуют ее части — краткое пояснение

Правило №1 всех ИБП: чем выше рабочая частота, тем лучше. Преобразование электроэнергии выполняется не на промышленных 50 герц, а на более высоких сигналах в пределах 1÷100кГц.

За счет этого снижаются потери и общий вес всех элементов, но усложняется технология. Принципы работы импульсного блока питания помогает понять его структурная схема.

Показываю ее составные части прямоугольниками, связи стрелками, а форму выходного сигнала из каждого блока — мнемонической фигурой преобразованного напряжения (темно синий цвет сверху).

Структурная схема импульсного блока питания

Сетевой фильтр пропускает через себя промышленную синусоиду. Одновременно он отделяет из нее все посторонние помехи.

Очищенная от помех синусоида поступает на выпрямитель со сглаживающим фильтром. Он превращает полученную гармонику в сигнал напряжения строго постоянной формы действующей величины.

Следующим этапом начинается работа инвертора. Он из постоянного стабилизированного сигнала формирует высокочастотные колебания уже не синусоидальной, а практически строго прямоугольной формы.

Преобразованная в подобный вид электрическая энергия поступает на силовой высокочастотный трансформатор, который, как и обычный аналоговый, видоизменяет ее на пониженное напряжение с увеличенным током.

После силового трансформатора наступает очередь работы выходного выпрямителя.

Заключительным звеном работает сглаживающий выходной фильтр. После него на блок управления бытового прибора поступает стабилизированное напряжение постоянной величины.

Качество работы импульсного блока поддерживается за счет создания в рабочем состоянии обратной связи, реализованной в блоке управления инвертора. Она компенсирует все посадки и броски напряжения, вызываемые колебаниями входной величины или коммутациями нагрузок.

Пример монтажа деталей показан на фотографии платы импульсного блока питания ниже.

Импульсный блок питания

Сетевой выпрямитель имеет в своем составе предохранитель на основе плавкой вставки, диодный мост, электромеханический фильтр, набор дросселей, конденсаторы развязки со статикой.

Накопительная емкость сглаживает пульсации.

Генератор инвертора на основе силового ключевого транзистора
в комплекте с импульсным трансформатором выдает напряжение на выходной
выпрямитель с диодами, конденсаторами и дросселями.

Оптопара в узле обратной связи обеспечивает оптическую развязку электрических сигналов.

Разберем все эти части подробнее.

Схемы сетевых фильтров импульсных и высокочастотных помех: 4 типа конструкций

Правило №2: у качественных ИБП в конструкции блока должен работать надежный фильтр в/ч сигналов.

Важно понимать, что импульсы высокой частоты играют двоякую роль:

  1. в/ч помехи могут приходить из бытовой сети в блок питания;
  2. импульсы высокочастотного тока генерируются встроенным преобразователем и выходят из него в домашнюю проводку.

Причины появления помех в бытовой сети:

  • апериодические составляющие переходных процессов, возникающие от коммутации мощных нагрузок;
  • работы близкорасположенных приборов с сильными электромагнитными полями, например, сварочных аппаратов, мощных тяговых электродвигателей, силовых трансформаторов;
  • последствия погашенных импульсов атмосферных разрядов и других факторов, включая наложение высокочастотных гармоник.

Помехи ухудшают работу радиоэлектронной аппаратуры, мобильных устройств и цифровых гаджетов. Их необходимо подавлять и блокировать внутри конструкции импульсного блока питания.

Основу фильтра составляет дроссель, выполненный двумя обмотками на одном сердечнике.

Дроссели фильтров

Дроссели могут быть выполнены разными габаритами, намотаны толстой или тонкой проволокой на больших или маленьких сердечниках.

Начинающему мастеру достаточно запомнить простое правило: лучше работает фильтр с дросселем большого магнитопровода, увеличенным числом витков и поперечным сечением проволоки. (Принцип: чем больше — тем и лучше.)

Дроссель обладает индуктивным сопротивлением, которое резко ограничивает высокочастотный сигнал, протекающий по проводу фазы или нуля. В то же время оно не оказывает особого влияния на ток бытовой сети.

Работу дросселя эффективно дополняют емкостные сопротивления.

Конденсаторы для ВЧ фильтров

Конденсаторы подобраны так, что закорачивают ослабленные дросселем в/ч сигналы помех, направляя их на потенциал земли.

Принцип работы фильтра в/ч помех от проникновения на блок питания входных сигналов показан на картинке ниже.

Как работает фильтр

Между потенциалами земли с нулем и фазой устанавливают Y конденсаторы. Их конструктивная особенность — они при пробое не способны создать внутреннее короткое замыкание и подать 220 вольт на корпус прибора.

Между цепями фазы и нуля ставят конденсаторы, способные выдерживать 400 вольт, а лучше — 630. Они обычно имеют форму параллепипеда.

Однако следует хорошо представлять, что ИБП в преобразователе напряжения сами выправляют сигнал и помехи им практически не мешают. Поэтому такая система актуальна для обычных аналоговых блоков со стабилизацией выходного сигнала.

Самодельный блок питания

У импульсного блока питания важно предотвратить выход в/ч помех в бытовую сеть. Эту возможность реализует другое решение.

Фильтр ВЧ помех

Как видите, принцип тот же. Просто емкостные сопротивления всегда располагаются по пути движения помехи за дросселем.

Фильтр ВЧ

Третья схема в/ч фильтра считается универсальной. Она объединила элементы первых двух. Y конденсаторы в ней просто работают с двух сторон каждого дросселя.

Универсальный фильтр

У самых дорогих и надежных устройств используется сложный фильтр с дополнительно подключенными дросселями и конденсаторами.

Сложный фильтр

Сразу же показываю схему расположения фильтров на всех цепочках блока питания: входе и выходе.

Схема фильтра

Обратите внимание, что на кабель, выходящий из ИБП и подключаемый к электронному прибору, может быть дополнительно установлен ферритовый фильтр, состоящий из двух разъемных полуцилиндров или выполненный цельной конструкцией.

Ферритовый фильтр

Примером его использования является импульсный блок питания ноутбука. Это уже четвертый вариант применения фильтра.

Ферритовый фильтр на кабеле

Сетевой выпрямитель напряжения: самая популярная конструкция

Правило №3: после выхода с фильтра напряжение подается на схему выпрямителя, состоящего в базовой версии из диодного моста и электролитического конденсатора.

В ходе электрического преобразования форма синусоиды, состоящая из полуволн противоположных знаков, вначале меняется на сигнал положительного направления после диодной сборки, а затем эти пульсации сглаживаются до практически постоянной амплитудной величины 311 вольт.

Схема выпрямителя

Такой сетевой выпрямитель напряжения заложен в работу всех блоков питания.

Преобразователь импульсного напряжения: объяснение простыми словами с поясняющими картинками

Правило №4: выпрямленный сигнал подвергается широтно-импульсной модуляции на силовом ключе под управлением ШИМ контроллера.

Силовой ключ выполняется первичной обмоткой высокочастотного трансформатора. Для эффективной трансформации в/ч импульсов до 100 килогерц конструкцию магнитопровода делают из альсифера или ферритов.

Схема управления силовым ключом

На обмотку трансформатора от цепей управления через в/ч транзистор поступают импульсы сигналов в несколько десятков килогерц.

ШИМ импульсы

Прямоугольные импульсы тока подаются по времени, чередуются с паузами, обозначаются единицей (1) и нулем (0).

Продолжительность протекания импульса или его ширина в каждый момент низкочастотного синусоидального напряжения соответствует его амплитуде: чем она больше, тем шире ШИМ. И наоборот.

ШИМ контроллер отслеживает величину подключенной нагрузки на выходе импульсного блока питания. По ее значению он вырабатывает импульсы, кратковременно открывающие силовой транзистор.

Если подключенная к ИБП мощность начинает возрастать, то схема управления увеличивает длительность импульсов управления, а когда она снижается, то — уменьшает.

За счет работы этой конструкции производится стабилизация напряжения на выходе блока в строго определенном диапазоне.

Импульсный трансформатор: принцип работы одного импульса в 2 такта

Правило №5: импульсный трансформатор для блока питания передает каждый ШИМ импульс за счет двух преобразований электромагнитной энергии.

Во время преобразования электрической энергии в магнитную и обратно в электрическую с пониженным напряжением обеспечивается гальваническое разделение первичных входных цепей с вторичной выходной схемой.

Каждый ШИМ импульс тока, поступающий при кратковременном открытии силового транзистора, протекает по замкнутой цепи первичной обмотки трансформатора.

Его энергия расходуется:

  1. вначале на намагничивание сердечника магнитопровода;
  2. затем на его размагничивание с протеканием тока по вторичной обмотке и дополнительной подзарядкой конденсатора.
Как работает импульсный трансформатор

По этому принципу каждый ШИМ импульс из первичной сети подзаряжает накопительный конденсатор.

Генераторы ИБП могут работать по простой однотактной или более сложной двухтактной технологии построения.

Однотактная схема импульсного блока питания: состав и принцип работы

На стороне 220 расположены: предохранитель, выпрямительный диодный мост, сглаживающий конденсатор, биполярный транзистор, цепочки колебательного контура и коллекторного тока, а также обмотки импульсного трансформатора.

Схема электронного генератора

Однотактная схема импульсного блока питания создается для передачи мощности 10÷50 ватт, не более. По ней изготавливают зарядные устройства мобильных телефонов, планшетов и других цифровых гаджетов.

В выходной цепочке трансформатора используется выпрямительный диод Д7. Он может быть включен в прямом направлении, как показано на картинке, или обратно, что важно учитывать.

При прямом включении импульсный трансформатор накапливает индуктивную энергию и передает ее в выходную цепь к подключенной нагрузке с задержкой по времени.

Если диод включен обратно, то трансформация энергии из первичной схемы во вторичную цепь происходит во время закрытого состояния транзистора.

Однотактная схема ИБП отмечается простотой конструкции, но большими амплитудами напряжения, приложенными к виткам первичной обмотки импульсного трансформатора.

Их защита осуществляется дополнительными цепочками из
резисторов R2÷R4 и конденсаторов С2, С3.

Двухтактная схема импульсного блока питания: 3 варианта исполнения

Более высокий КПД и пониженные потери мощности являются неоспоримыми преимуществами этих ИБП по сравнению с однотактными моделями.

Простейший вариант исполнения двухполупериодной методики показан на картинке.

Двухполупериодная схема

Если в нее дополнительно подключить два диода и один сглаживающий конденсатор, то на этом же трансформаторе получается двухполярная схема.

Двухполярная схема питания

Она распространена в усилителях мощности, работает по обратноходовому принципу. В ней через каждую емкость протекают меньшие токи, обеспечивающие повышенный ресурс конденсаторов при эксплуатации.

Продлить ресурс работы электролитических конденсаторов в ИБП можно заменой одного большой мощности несколькими составными. Ток будет распределяться по всем, что вызовет меньший нагрев. А отвод тепла с каждого отдельного происходит лучше.

Прямоходовая схема блока питания имеет в своей конструкции дроссель, который выполняет функцию накопления энергии. Для этого два диода направляют поступающие импульсы ШИМ на его вход в одной полярности.

Прямоходовая схема блока питания

Дроссель этих устройств изготавливается большими габаритами и устанавливается отдельно внутри платы ИБП. Он дополняет работу накопительного конденсатора.

Это наглядно видно по верхней форме сигнала, показанного осциллограммой выпрямления одного и того же блока без дросселя и с ним.

Как работает дроссель

Прямоходовая схема используется в мощных блоках питания, например, внутри компьютера.

В ней выпрямлением тока занимаются диоды Шоттки. Их применяют за счет:

  • уменьшенного падения напряжения на прямом включении;
  • и повышенного быстродействия во время обработки высокочастотных импульсов.

3 схемы силовых каскадов двухтактных ИБП

По порядку сложности их исполнения генераторы выполняют по:

  • полумостовому;
  • мостовому;
  • или пушпульному принципу построения выходного каскада.

Полумостовая схема импульсного блока питания: обзор

Конденсаторы С1, С2 собраны последовательно емкостным делителем. На него и переходы коллектор-эмиттер транзисторов Т1, Т2 подается напряжение постоянного питания.

Полумостовая схема

К средней точке емкостного делителя и транзисторов подключена первичная обмотка трансформатора Тр2. С ее вторичной обмотки снимается выходное напряжение генератора, которое пропорционально входному сигналу ТР1, трансформируемому на базы Т1 и Т2.

Полумостовая схема ИБП работает для нагрузок от нескольких ватт до киловатт. Ее недостатком является возможность повреждения элементов при перегрузках, что требует использования сложных защит.

Мостовая схема импульсного блока питания: краткое пояснение

Вместо емкостного делителя предыдущей технологии здесь работают транзисторы T3 и T4. Они попарно открываются совместно с Т1 и Т2: (пара Т1-Т4), (пара Т2-Т3).

Мостовая схема

Напряжение переходов эмиттер-коллектор у закрытых транзисторов не выше величины питающего напряжения, а на обмотке w1 ТР3 оно возрастает до значения U пит. За счет этого увеличивается величина КПД.

Мостовая схема сложна в наладке из-за трудностей с настройкой цепей управления транзисторов Т1÷Т4.

Пушпульная схема: важные особенности

Первичная обмотка выходного ТР2 имеет средний вывод, на который подается плюсовой потенциал источника питания, а его минус — на среднюю точку вторичной обмотки Т1.

Пушпульная схема

Во время прохождения одного полупериода колебания работает один из транзисторов Т1 или Т2 и соответствующая ему часть полуобмотки трансформатора.

Здесь создается самый высокий КПД, малые пульсации и низкие помехи. Амплитудное значение импульсного напряжения на любой половине обмотки w1 ТР2 достигает величины U пит.

К напряжению перехода коллектор-эмиттер каждого транзистора добавляется ЭДС самоиндукции, и оно возрастает до 2U пит. Поэтому Т1 и Т2 надо подбирать на 600÷700 вольт.

Пушпульная схема ключевого каскада пользуется большей популярностью. Она применяется в наиболее мощных преобразователях.

Выходной выпрямитель: самое популярное устройство

Правило №6: сигнал, поступающий с выхода ИБП, выпрямляется и сглаживается.

Простейшая схема выпрямителя, состоящая из диода и накапливающего конденсатора, показана картинкой ниже.

Простая схема выпрямителя

Она может дорабатываться подключением дополнительных конденсаторов, дросселей, элементов фильтров.

Схема стабилизации напряжения: как работает

Правило №7: оптимальные условия для работы нагрузки при изменяющихся условиях эксплуатации обеспечивает принцип стабилизации вторичного напряжения.

Самая примитивная схема стабилизации выходного напряжения создается на дополнительной обмотке импульсного трансформатора.

Простая схема стабилизации напряжения

С нее снимается напряжение и подается для корректировки величины сигнала первичной обмотки.

Лучшая стабилизация создается за счет контроля выходного сигнала с вторичной обмотки и отделения его гальванической связи через оптопару.

Схема импульсного блока питания

В ней используется светодиод, через который проходит ток, пропорциональный значению выходного напряжения. Его свечение воспринимается фототранзистором, который посылает соответствующий электрический сигнал на схему управления генератора ключевого каскада.

Как работает оптопара

Повысить качество стабилизации выходного напряжения позволяет последовательное дополнение к оптопаре стабилитрона, как показано на примере микросхемы TL431 на картинке ниже.

Схема стабилизации

Для закрепления материала в памяти рекомендую посмотреть видеоролик владельца Паяльник TV, который хорошо объясняет информацию про импульсные блоки питания: принципы работы на примере конкретной модели.

Надеюсь, что моя статья поможет вам выполнить ремонт ИБП своими руками за 7 шагов, которые я изложил в другой статье.

Задавайте возникшие вопросы в разделе комментариев, высказывайте свое мнение. Его будет полезно знать другим людям.

Схема импульсного блока питания - четыре версии на чипе IR2153

Схема импульсного блока питания — 4 рабочие схемы

Схема импульсного блока питания-1Схема импульсного блока питания-1

Схема импульсного блока питания, но не одна, а сразу четыре. В этом материале будет представлено вам несколько схем импульсных источников питания, выполненных на популярной и надежной микросхеме IR2153. Все эти проекты были разработаны известным пользователем Nem0. Поэтому я здесь буду писать от его имени. Показанные здесь все схематические решения были пару лет назад лично автором собраны и протестированы.

Но вот сейчас, в середине 2018 года, автор решил вновь предложить их вам для повторения, схемы абсолютно рабочие. В данной статье к сожалению не каждая схема имеет для наглядности фото уже готового прибора, но это пока все, что есть.

В общем начнем пока с так называемого «высоковольтного» блока питания:

Схема импульсного блока питания-2Схема импульсного блока питания-2

Схема традиционная, которую использует Nem0 в большинстве своих конструкций импульсников. Драйвер получает питание напрямую от электросети через сопротивление. Это в свою очередь способствует уменьшению рассеиваемой на этом сопротивлении мощности, сравнительно с подачей напряжения от цепи 310v. Схема импульсного блока питания располагает функцией плавного включения напряжения, что существенно ограничивает пусковой ток. Модуль плавного пуска запитывается через конденсатор С2 понижающий сетевое напряжение 230v.

В блоке питания предусмотрена эффективная защита предотвращения короткого замыкания и пиковой нагрузки во вторичном силовом тракте. Роль датчика тока выполняет постоянный резистор R11, а регулировку тока срабатывания защиты выполняется с помощью подстроечника R10. Во время отсечки тока защитой, начинает светится светодиод, сигнализирующий о том, что защита сработала. Выходное двух полярное выпрямленное напряжение составляет +/-70v.

Трансформатор выполнен с одной первичной обмоткой, состоящей из пятидесяти витков, а 4 вторичные обмотки, содержат по двадцать три витка. Диаметр медной жилы и магнитопровод трансформатора расчитываются в зависимости от заданной мощности определенного блока питания.

Схема импульсного блока питания-3Схема импульсного блока питания-3

Схема импульсного блока питания-4Схема импульсного блока питания-4

Схема импульсного блока питания-5Схема импульсного блока питания-5

Теперь рассмотрим следующий блок питания:

Схема импульсного блока питания-6Схема импульсного блока питания-6

Эта версия блока питания во много схожа с описанной выше схемой, хотя в ней имеется существенное отличие. Дело в том, что здесь напряжение питания на драйвер поступает от специальной обмотки трансформатора, через балластный резистор. Все остальные компоненты в конструкции практически одинаковы.

Мощность на выходе этого источника питания обусловлено как характеристикой трансформатора и параметрами микросхемы IR2153, но и ресурсом диодов в выпрямителе. В данной схеме были задействованы диоды КД213А, у которых обратное максимальное напряжение 200v и прямой максимальный ток 10А. Для обеспечения корректной работы диодов при больших токах, их нужно устанавливать на радиатор.

Отдельного внимания заслуживает дроссель Т2. Наматывают его на совместном кольцевом магнитопроводе, в случае необходимости можно использовать другой сердечник. Намотка делается эмаль-проводом с сечением рассчитанным согласно току в нагрузке. Также и мощность импульсного трансформатора определяется в зависимости от того, какую выходную мощность вы хотите получить. Очень удобно делать расчеты трансформаторов с помощью специальных компьютерных калькуляторов.

Схема импульсного блока питания-7Схема импульсного блока питания-7

Схема импульсного блока питания-8Схема импульсного блока питания-8

Теперь третья схема импульсного блока питания на мощных полевых транзисторах IRFP460:

Схема импульсного блока питания-9Схема импульсного блока питания-9

Этот вариант схемы уже имеет конкретную разницу относительно предыдущих моделей. Главные отличия, это система защиты от КЗ и перегруза здесь собрана с использованием трансформатора по току. И есть еще одна разница, это наличие в схеме пары предвыходных транзисторов BD140. Именно эти транзисторы дают возможность отрезать большую входную емкость мощных полевых ключей, относительно выхода драйвера.

Есть еще маленькое отличие, это гасящий напряжение резистор, относящейся к модулю плавного включения, установлен он в цепи 230v. В предыдущей схеме он расположен в силовом тракте +310v. Кроме этого в схеме имеется ограничитель перенапряжения, служащий для гашения остаточного импульса трансформатора. Во всем остальном никаких различий между приведенными выше схемами у этой больше нет.

Схема импульсного блока питания-10Схема импульсного блока питания-10

Четвертая схема импульсника:

Схема импульсного блока питания-11Схема импульсного блока питания-11

В этой схеме все упрощено до придела, здесь нет защиты от короткого замыкания, но собственно она не особо и нужна. В этом варианте блока питания, ток на выходе вторичной цепи 260v уменьшается на сопротивлении R6. Резистор R1 обрезает пиковый ток при пуске, а также сглаживает сетевые искажения.

Схема импульсного блока питания-12Схема импульсного блока питания-12

Схема импульсного блока питания-13Схема импульсного блока питания-13

Скачать: Дополнительные файлы

cxema.org - Мощный импульсный блок питания до 4кВт

Этот проект является одним из самых долгих, который делал. Заказал блок питания один человек для усилителя мощности.

Ранее никогда не довелось делать такие мощные импульсники стабилизированного типа, хотя опыт в сборке ИИП довольно большой. Проблем во время сборки было много. Изначально хочу сказать, что схема часто встречается в сети, а если точнее, то на сайте интервалка, но.... схема изначально не идеальна, с ошибками и скорее всего ничего не заработает, если собрать точно по схеме с сайта.

Мощный импульсный блок питания до 4кВт, схема
В частности изменил схему подключения генератора, взял схему с даташита. Переделал узел питания управляющей цепи, вместо параллельно соединенных 2-х ваттных резисторов, задействовал отдельный ИИП 15 Вольт 2 Ампер, что дало возможность избавиться от многих хлопот.

Заменил некоторые компоненты под свои удобства и все запустил по частям, настроив каждый узел отдельно.

Несколько слов о конструкции блока питания. Это мощный импульсный сетевой блок питания по мостовой топологии, имеет стабилизацию выходного напряжения, защиту от кз и перегруза, все эти функции подлежат регулировке.

Мощность в моем случае 2000 ватт, но схема без проблем позволит снять до 4000 ватт, если заменить ключи, мост и напичкать электролитов на 4000 мкФ. На счет электролитов - емкость подбирается исходя из расчета 1 ватт - 1мкФ.

Диодный мост - 30 Ампер 1000 Вольт - готовая сборка, имеет свой отдельный обдув (кулер)

Сетевой предохранитель 25-30 Ампер.

Транзисторы - IRFP460, старайтесь подобрать транзисторы с напряжением 450-700 Вольт, с наименьшей емкостью затвора и с наименьшим сопротивлением открытого канала ключа. В моем случае эти ключи были единственным вариантом, хотя в мостовой схеме обеспечить заданную мощность они могут. Устанавливаются на общий теплоотвод, обязательно нужно изолировать их друг от друга, теплоотвод нуждается в интенсивном охлаждении.

Реле режима плавного пуска - 30 Ампер с катушкой 12 Вольт. Изначально, когда блок подключается в сеть 220 Вольт пусковой ток на столь велик, что может спалить мост и еще много чего, поэтому режим плавного пуска для блоков питания такого ранга необходим. При подключении в сеть через ограничительный резистор (цепочка последовательно соединенных резисторов 3х22Ом 5 Ватт в моем случае) заряжаются электролиты. Когда напряжение на них достаточно велико, срабатывает блок питания управляющей цепи (15 Вольт 2 Ампер), который и замыкает реле и через последний подается основное (силовое) питание на схему.

Трансформатор - в моем случае на 4-х кольцах 45х28х8 2000НМ, сердечник не критичен и все, что с ним связано придется рассчитать по специализированным программам, тоже самое с выходными дросселями групповой стабилизации.

Мощный импульсный блок питания до 4кВт, ферритовые кольцаМощный импульсный блок питания до 4кВт, сердечник трансформатора

Мой блок имеет 3 обмотки, все они обеспечивают двухполярное напряжение. Первая (основная, силовая) обмотка на +/-45 Вольт с током 20 Ампер - для запитки основных выходных каскадов (усилителя по току) УМЗЧ, вторая +/-55 вольт 1,5Ампер - для запитки дифф каскадов усилителя, третья +/-15 для запитки блока фильтров.

Мощный импульсный блок питания до 4кВт, трансформаторМощный импульсный блок питания до 4кВт, трансформатор

Мощный импульсный блок питания до 4кВт, трансформаторМощный импульсный блок питания до 4кВт, трансформатор

Мощный импульсный блок питания до 4кВт, трансформаторМощный импульсный блок питания до 4кВт, трансформатор

Мощный импульсный блок питания до 4кВт, трансформаторМощный импульсный блок питания до 4кВт, трансформатор

Генератор построен на TL494, настроен на частоту 80 кГц, дальше драйвера IR2110 для управления ключей.

Трансформатор тока намотан на кольце 2000НМ 20х12х6 - вторичная обмотка намотана проводом МГТФ 0,3мм и состоит из 2х45 витков.
В выходной части все стандартно, в качестве выпрямителя для основной силовой обмотки задействован мост из диодов KD2997 - с током 30 ампер. Мостом для обмотки 55 вольт стоят диоды UF5408, а для маломощной обмотки 15 Вольт - UF4007. Использовать только быстрые или ультрабыстрые диоды, хотя и можно обычные импульсные диоды с обратным напряжением не менее 150-200 Вольт (напряжение и ток диодов зависит от параметров обмотки).

Конденсаторы после выпрямителя стоят на 100 Вольт (с запасом), емкость 1000мкФ, но разумеется на самой плате усилителей будут еще.

Мощный импульсный блок питания до 4кВт, платаМощный импульсный блок питания до 4кВт, плата

Мощный импульсный блок питания до 4кВт, платаМощный импульсный блок питания до 4кВт, плата

Мощный импульсный блок питания до 4кВт, платаМощный импульсный блок питания до 4кВт, плата

Мощный импульсный блок питания до 4кВт, платаМощный импульсный блок питания до 4кВт, плата

Устранение неполадок начальной схемы.

Приводить свою схему не буду, поскольку она мало чем отличается от указанной. Скажу только, что в схеме 15 вывод ТЛ отцепляем от 16 и припаиваем к 13/14 выводам. Дальше убираем резисторы R16/19/20/22 2 ватт, и питаем узел управления отдельным блоком питания 16-18 Вольт 1-2 ампер.

Резистор R29 заменяем на 6,8-10кОм. Исключаем из схемы кнопки SA3/SA4 (ни в коем случае не замкнуть их! будет бум!). R8/R9 заменяем - при первом же подключении они выгорят, поэтому заменяем на резистор 5 ватт 47-68Ом, можно использовать несколько последовательно соединенных резисторов с указанной мощностью.

R42 - заменяем на стабилитрон с нужным напряжением стабилизации. Все переменные резисторы в схеме очень советую использовать многооборотного типа, для наиболее точной настройки.

Минимальная грань стабилизации напряжения 18-25 Вольт, дальше уже пойдет срыв генерации.

Мощный импульсный блок питания до 4кВт, платаМощный импульсный блок питания до 4кВт, плата

Мощный импульсный блок питания до 4кВт, платаМощный импульсный блок питания до 4кВт, плата

Мощный импульсный блок питания до 4кВт, платаМощный импульсный блок питания до 4кВт, плата

Мощный импульсный блок питания до 4кВт, платаМощный импульсный блок питания до 4кВт, плата

Мощный импульсный блок питания до 4кВт, платаМощный импульсный блок питания до 4кВт, плата

Мощный импульсный блок питания до 4кВт, платаМощный импульсный блок питания до 4кВт, плата

Мощный импульсный блок питания до 4кВт, платаМощный импульсный блок питания до 4кВт, плата

Мощный импульсный блок питания до 4кВт, платаМощный импульсный блок питания до 4кВт, плата

Мощный импульсный блок питания до 4кВт, платаМощный импульсный блок питания до 4кВт, плата

Мощный импульсный блок питания до 4кВт, платаМощный импульсный блок питания до 4кВт, плата

Мощный импульсный блок питания до 4кВт, платаМощный импульсный блок питания до 4кВт, плата

Мощный импульсный блок питания до 4кВт, платаМощный импульсный блок питания до 4кВт, плата

Мощный импульсный блок питания до 4кВт, платаМощный импульсный блок питания до 4кВт, плата

Мощный импульсный блок питания до 4кВт, платаМощный импульсный блок питания до 4кВт, плата

Мощный импульсный блок питания до 4кВт, платаМощный импульсный блок питания до 4кВт, плата

Мощный импульсный блок питания до 4кВт, платаМощный импульсный блок питания до 4кВт, плата

Во многих источниках упомянули, что данный блок не включается без нагрузки - но это не так! Он очень даже хорошо запускается и на всех обмотках есть напряжение.

Никогда не выставляйте максимальное выходное напряжения - блок может в нагруженном состоянии издавать свист - на своем опыте понял, что это полностью безопасно, но неприятно.

С уважением - АКА КАСЬЯН

Импульсный блок питания своими руками: принцип работы, схемы

В большинстве современных электронных устройств практически не используются аналоговые (трансформаторные) блоки питания, им на смену пришли импульсные преобразователи напряжения. Чтобы понять, почему так произошло, необходимо рассмотреть конструктивные особенности, а также сильные и слабы стороны этих устройств. Мы также расскажем о назначении основных компонентов импульсных источников, приведем простой  пример реализации, который может быть собран своими руками.

Конструктивные особенности и принцип работы

Из нескольких способов преобразования напряжения для питания электронных компонентов, можно выделить два, получивших наибольшее распространение:

  1. Аналоговый, основным элементом которого является понижающий трансформатор, помимо основной функции еще и обеспечивающий гальваническую развязку.
  2. Импульсный принцип.

Рассмотрим, чем отличаются эти два варианта.

БП на основе силового трансформатора

Рассмотрим упрощенную структурную схему данного устройства. Как видно из рисунка, на входе установлен понижающий трансформатор, с его помощью производится преобразование амплитуды питающего напряжения, например из 220 В получаем 15 В. Следующий блок – выпрямитель, его задача преобразовать синусоидальный ток в импульсный (гармоника показана над условным изображением). Для этой цели используются выпрямительные полупроводниковые элементы (диоды), подключенные по мостовой схеме. Их принцип работы можно найти на нашем сайте.

Упрощенная структурная схема аналогового БПУпрощенная структурная схема аналогового БП

Следующий блок играет выполняет две функции: сглаживает напряжение (для этой цели используется конденсатор соответствующей емкости) и стабилизирует его. Последнее необходимо, чтобы напряжение «не проваливалось» при увеличении нагрузки.

Приведенная структурная схема сильно упрощена, как правило, в источнике данного типа имеется входной фильтр и защитные цепи, но для объяснения работы устройства это не принципиально.

Все недостатки приведенного варианта прямо или косвенно связаны с основным элементом конструкции – трансформатором. Во-первых, его вес и габариты, ограничивают миниатюризацию. Чтобы не быть голословным приведем в качестве примера понижающий трансформатор 220/12 В номинальной мощностью 250 Вт. Вес такого агрегата – около 4-х килограмм, габариты 125х124х89 мм. Можете представить, сколько бы весила зарядка для ноутбука на его основе.

Понижающий трансформатор ОСО-0,25 220/12Понижающий трансформатор ОСО-0,25 220/12

Во-вторых, цена таких устройств порой многократно превосходит суммарную стоимость остальных компонентов.

Импульсные устройства

Как видно из структурной схемы, приведенной на рисунке 3, принцип работы данных устройств существенно отличается от аналоговых преобразователей, в первую очередь, отсутствием входного понижающего трансформатора.

Структурная схема импульсного блока питанияРисунок 3. Структурная схема импульсного блока питания

Рассмотрим алгоритм работы такого источника:

  • Питание поступает на сетевой фильтр, его задача минимизировать сетевые помехи, как входящие, так и исходящие, возникающие вследствие работы.
  • Далее вступает в работу блок преобразования синусоидального напряжения в импульсное постоянное и сглаживающий фильтр.
  • На следующем этапе к процессу подключается инвертор, его задача связана с формированием прямоугольных высокочастотных сигналов. Обратная связь с инвертором осуществляется через блок управления.
  • Следующий блок – ИТ, он необходим для автоматического генераторного режима, подачи напряжения на цепи, защиты, управления контроллером, а также нагрузку. Помимо этого в задачу ИТ входит обеспечение гальванической развязки между цепями высокого и низкого напряжения.

В отличие от понижающего трансформатора, сердечник этого устройства изготавливается из ферримагнитных материалов, это способствует надежной передачи ВЧ сигналов, которые могут быть в диапазоне 20-100 кГц. Характерная особенность ИТ заключается в том, что при его подключении критично включение начала и конца обмоток. Небольшие размеры этого устройства позволяют изготавливать приборы миниатюрных размеров, в качестве примера можно привести электронную обвязку (балласт) светодиодной или энергосберегающей лампы.

Пример миниатюрных импульсных БППример миниатюрных импульсных БП
  • Далее вступает в работу выходной выпрямитель, поскольку он работает с высокочастотным напряжением, для процесса необходимы быстродействующие полупроводниковые элементы, поэтому для этой цели применяют диоды Шоттки.
  • На завершавшей фазе производится сглаживание на выгодном фильтре, после чего напряжение подается на нагрузку.

Теперь, как и обещали, рассмотрим принцип работы основного элемента данного устройства – инвертора.

Как работает инвертор?

ВЧ модуляцию, можно сделать тремя способами:

  • частотно-импульсным;
  • фазо-импульсным;
  • широтно-импульсным.

На практике применяется последний вариант. Это связано как с простотой исполнения, так и тем, что у ШИМ неизменна коммуникационная частота, в отличие от двух остальных способов модуляции. Структурная схема, описывающая работу контролера, показана ниже.

Структурная схема ШИМ-контролера и осциллограммы основных сигналовСтруктурная схема ШИМ-контролера и осциллограммы основных сигналов

Алгоритм работы устройства следующий:

Генератор задающей частоты формирует серию прямоугольных сигналов, частота которых соответствует опорной. На основе этого сигнала формируется UП пилообразной формы, поступающее на вход компаратора КШИМ. Ко второму входу этого устройства подводится сигнал UУС, поступающий с регулирующего усилителя. Сформированный этим усилителем сигнал соответствует пропорциональной разности UП (опорное напряжение) и UРС (регулирующий сигнал от цепи обратной связи). То есть, управляющий сигнал UУС, по сути, напряжением рассогласования с уровнем, зависящим как от тока на грузке, так и напряжению на ней (UOUT).

Данный способ реализации позволяет организовать замкнутую цепь, которая позволяет управлять напряжением на выходе, то есть, по сути, мы говорим о линейно-дискретном функциональном узле. На его выходе формируются импульсы, с длительностью, зависящей от разницы между опорным и управляющим сигналом. На его основе создается напряжение, для управления ключевым транзистором инвертора.

Процесс стабилизации напряжения на выходе производится путем отслеживания его уровня, при его изменении пропорционально меняется напряжение регулирующего сигнала UРС, что приводит к увеличению или уменьшению длительности между импульсами.

В результате происходит изменение мощности вторичных цепей, благодаря чему обеспечивается стабилизация напряжения на выходе.

Для обеспечения безопасности необходима гальваническая развязка между питающей сетью и обратной связью. Как правило, для этой цели используются оптроны.



Сильные и слабые стороны импульсных источников

Если сравнивать аналоговые и импульсные устройства одинаковой мощности, то у последних будут следующие преимущества:

  • Небольшие размеры и вес, за счет отсутствия низкочастотного понижающего трансформатора и управляющих элементов, требующих отвода тепла при помощи больших радиаторов. Благодаря применению технологии преобразования высокочастотных сигналов можно уменьшить емкость конденсаторов, используемых в фильтрах, что позволяет устанавливать элементы меньших габаритов.
  • Более высокий КПД, поскольку основные потери вызывают только переходные процессы, в то время как в аналоговых схемам много энергии постоянно теряется при электромагнитном преобразовании. Результат говорит сам за себя, увеличение КПД до 95-98%.
  • Меньшая стоимость за счет применения мене мощных полупроводниковых элементов.
  • Более широкий диапазон входного напряжения. Такой тип оборудования не требователен к частоте и амплитуде, следовательно, допускается подключение к различным по стандарту сетям.
  • Наличие надежной защиты от КЗ, превышения нагрузки и других нештатных ситуаций.

К недостаткам импульсной технологии следует отнести:

Наличие ВЧ помех, это является следствием работы высокочастотного преобразователя. Такой фактор требует установки фильтра, подавляющего помехи. К сожалению, его работа не всегда эффективна, что накладывает некоторые ограничения на применение устройств данного типа в высокоточной аппаратуре.

Особые требования к нагрузке, она не должна быть пониженной или повышенной. Как только уровень тока превысит верхний или нижний порог, характеристики напряжения на выходе начнут существенно отличаться от штатных. Как правило, производители (в последнее время даже китайские) предусматривают такие ситуации и устанавливают в свои изделия соответствующую защиту.

Сфера применения

Практически вся современная электроника запитывается от блоков данного типа, в качестве примера можно привести:

  • различные виды зарядных устройств; Зарядки и внешние БПЗарядки и внешние БП
  • внешние блоки питания;
  • электронный балласт для осветительных приборов;
  • БП мониторов, телевизоров и другого электронного оборудования.
Импульсный модуль питания монитораИмпульсный модуль питания монитора

Собираем импульсный БП своими руками

Рассмотрим схему простого источника питания, где применяется вышеописанный принцип работы.

Принципиальная схема импульсного БППринципиальная схема импульсного БП

Обозначения:

  • Резисторы: R1 – 100 Ом, R2 – от 150 кОм до 300 кОм (подбирается), R3 – 1 кОм.
  • Емкости: С1 и С2 – 0,01 мкФ х 630 В, С3 -22 мкФ х 450 В, С4 – 0,22 мкФ х 400 В, С5 – 6800 -15000 пФ (подбирается),012 мкФ, С6 — 10 мкФ х 50 В, С7 – 220 мкФ х 25 В, С8 – 22 мкФ х 25 В.
  • Диоды: VD1-4 – КД258В, VD5 и VD7 – КД510А, VD6 – КС156А, VD8-11 – КД258А.
  • Транзистор VT1 – KT872A.
  • Стабилизатор напряжения D1 — микросхема КР142 с индексом ЕН5 – ЕН8 (в зависимости от необходимого напряжения на выходе).
  • Трансформатор Т1 – используется ферритовый сердечник ш-образной формы размерами 5х5. Первичная обмотка наматывается 600 витков проводом Ø 0,1 мм, вторичная (выводы 3-4) содержит 44 витка Ø 0,25 мм, и последняя – 5 витков Ø 0,1 мм.
  • Предохранитель FU1 – 0.25А.

Настройка сводится к подбору номиналов R2 и С5, обеспечивающих возбуждение генератора при входном напряжении 185-240 В.

Импульсный блок питание схема самостоятельной сборки

Импульсный блок питание схема-1Импульсный блок питание схема-1

Импульсный блок питание, схема которого представлена в этой статье, собран на хорошо известной микросхеме IR2153 и предназначен для использования в усилителе мощности от 300 Вт до 500 Вт.

Благодаря исключительной энергоэффективности и отличной общей производительности таких устройств они в настоящее время очень востребованы на рынке. Импульсный источник питания постоянного тока (также известный как импульсный источник питания) регулирует выходное напряжение посредством процесса, называемого широтно-импульсной модуляцией (ШИМ).

Процесс ШИМ может генерировать некоторый высокочастотный шум, однако позволяет создавать импульсные источники питания с очень высоким КПД и малым форм-фактором. Благодаря хорошей конструкции импульсный источник питание, схема которого может иметь отличную регулировку нагрузки.

Представленный здесь источник питания имеет следующие особенности:

  • В первичной обмотке данного трансформатора, а также в силовом тракте выходного напряжения установлена эффективная система защита от КЗ.
  • Мягкий старт ИБП.
  • Защита входной цепи, с помощью варистора предотвращает схему от бросков сетевого напряжения превышающего максимальное значение, а также от случайного подключения 380v.
  • Особенность данной схемы заключается в ее простоте и доступности деталей.

Технические характеристики импульсный блок питание (данные приводятся именно для этой модели):

  • Номинальная мощность на выходе — 300W
  • Предельная мощность на выходе — 500W
  • Номинальная рабочая частота — 50кГц
  • Напряжение в выходной цепи — 2х35v (выходное напряжение можно создать любое, исходя из числа витков на трансформаторе).
  • КПД — составляет 86%, опять же в зависимости от сердечника трансформатора.

Схема ИБПСхема ИБП

Примечание: в этом устройстве задействован стандартный модуль управления импульсным блоком питания, схема которого скопирована из даташита на IR2153.

Схема импульсного блока питания имеет функцию защиты от возможной перегрузки БП и короткого замыкания в цепях питания. При этом, узел защиты обеспечивает подстройку требуемого порога срабатывания, путем установки необходимого значения тока на резисторе R10. Встроенный светодиод HL1 сигнализирует о включении защиты в момент появления нештатной ситуации. В том случае, когда сработала защита, указывая на неполадки в устройстве, то силовые цепи ИИП отключаются.

Сам же блок питания может прибывать в таком состоянии бесконечно долго, так как в этот момент ток потребляемый устройством, практически равен току холостого хода прибора. В представленном здесь источнике питания порог защиты установлен на отключение силовой цепи при превышении мощности более 310 Вт в нагрузке.

Такая технология построения защитной функции дает гарантию, что БП не пострадает в следствии перегрузки, которая влечет за собой перегрев устройства. В данной модели ИБП, функцию токового датчика выполняют постоянные резисторы, последовательно включенные в цепь первичной обмотки импульсного трансформатора. Такой вариант использования гасящих резисторов позволил обойтись без установки дополнительного трансформатора по току.

Принцип работы схемы защиты такой: в случае короткого замыкания или чрезмерной нагрузки, напряжение на базе транзистора VT1, поступающее через сопротивление R11, может составлять от 0,5v до 0,8v, в следствии чего сработает защита. При этом питающее напряжение микросхемы IR2153 за счет шунтирования будет переключено на «землю». Тем самым, автоматически будет отключен драйвер и сам блок питания. После устранения проблемы в схеме БП, повлекшая за собой отключение устройства, подача напряжения питания на драйвер, также автоматически включится. То есть, блок питания начнет работать в прежнем режиме.

Схема импульсного блока питания обладает функцией мягкого старта, а именно, при включении устройства в сеть, встроенная цепочка защиты созданная на резисторе R6, лимитирует пусковой ток. Это существенно оберегает силовые ключи от пробоя и продлевает срок их службы.

Далее, этим урезанным током происходит зарядка электролитического конденсатора C10 и остальных емкостей во вторичной цепи. Данный процесс выполняется за несколько долей секунд, после того как все емкости будут полностью заряжены и ток потребления станет минимальным, включается реле К1 и замыкает гасящий резистор R6. Таким образом полный ток начнет поступать в схему устройства, обеспечивая его работу на заданную мощность.

Драйвер, через цепочку, собранную на диоде и гасящим сопротивлении, получает питающее напряжение прямо от сети 220v. Отличие этой схемы заключается в том, что в стандартных схемах запитка драйвера выполняется от цепи +310v, из точки после выпрямителя, а здесь непосредственно от 220v. Тем самым мы получаем несколько положительных моментов:

  1. Мощность гасящего резистора будет значительно снижена, тем самым уменьшается выделение общего количества тепла на печатной плате у увеличивается суммарный КПД устройства.
  2. Питающее напряжение на драйвер поступает с незначительным уровнем пульсаций, что не скажешь о подачи напряжения по тракту +310v.

Во входной цепи блока питания расположен варистор, который предназначен для контроля скачков сетевого напряжения, превышающего максимальное значение. В случае возникновения нештатной ситуации в силовой цепи БП, на варисторе моментально уменьшается его собственное сопротивление, что приводит к короткому замыканию и сгоранию плавкого предохранителя F1.

Ниже предлагается описание как я испытывал на максимальной мощности собранный мной импульсный блок питание, схема которого представлена выше.

Импульсный блок питание схема-3Импульсный блок питание схема-3

В процессе тестирования БП я использовал эквивалент нагрузки собранный на четырех керамических резисторах проволочного типа, с мощностью рассеивания 25 Вт. При этом эти сопротивления я размещал в коробке с чистой водой для более интенсивного охлаждения. Через 1 час работы устройства на максимальном режиме, вся эта чистая вода приобретает ржавый цвет, в следствии подъема наверх различных примесей. В виду прохождения большого тока через резисторы, вода в емкости интенсивно испарялась, так как ее температура доходила почти до 100 градусов.

Импульсный блок питание схема-4Импульсный блок питание схема-4

В представленном здесь импульсном блоке питания я задействовал трансформатор, который собственноручно изготовил на магнитопроводе EPCOS ETD29. Первичная обмотка трансформатора выполнена из 47 витков намотанных в два прохода эмаль-проводом сечением 0,8 мм². Четыре вторичные обмотки содержат по 12 витков каждая и намотанные в один ряд проводом такого же сечения. С первого взгляда можно усомнится в правильности выбора сечения провода, но это ошибочное мнение.

Чтобы гарантировать корректную работу для этого источника питания обеспечивающий питающим напряжением усилитель мощности низкой частоты, такого сечения провода в обмотках трансформатора вполне хватает. Так как мощность, которую потребляет усилитель существенно ниже предельной. Испытание блока питания при длительной его работе на нагрузку составленной из резисторов и выходной мощностью 210W показало, что нагрев трансформатора составил всего около 43 градусов.

Примечание: если потребуется поднять выходное напряжение выше 45v, то тогда нужно будет поменять сдвоенные диоды Шотки VD5 — VD6, установленные в выходном тракте на более высоковольтные.

Кроме этого, чтобы поднять выходную мощность нужно использовать трансформатор с большим по площади сечения магнитопроводом и усиленными обмотками.

Здесь показана готовая к монтажу печатная плата выполненная ЛУТом:

Печатная платаПечатная плата

Печатка с другой стороныПечатка с другой стороны

Печатная плата имеет следующие размеры: 188 х 88 мм. Был использован стеклотекстолит с усиленной медью, составляющей 50 мкм, обычно используется 35 мкм, хотя можно применять и стандартную толщину, только при этом необходимо хорошо облудить токопроводящие дорожки и контактные площадки.

Перечень радиодеталей

Перечень деталей-7Перечень деталей-7

Перечень деталей-8Перечень деталей-8

Что такое источник питания и типы блоков питания для электрических цепей

Блок питания является важным компонентом в любой электрической или электронной системе. Существуют различные требования, которые необходимо учитывать при выборе точного источника питания, такие как; Потребности в мощности для цепи или нагрузки в основном включают в себя напряжение и ток. Функции безопасности цепи электропитания, такие как ограничения тока и напряжения для защиты нагрузки, эффективности, физического размера и помехоустойчивости системы.В этой статье мы рассмотрим определение источника питания , различных типов источников питания и их работу. Эти источники питания в основном используются для измерений, технического обслуживания, испытаний и расширения ассортимента продукции.

Что такое блок питания?

Источник питания может быть или , так как это электрическое устройство, используемое для подачи электрической энергии на электрические нагрузки. Основная функция этого устройства заключается в изменении электрического тока от источника до точного напряжения, частоты и тока для питания нагрузки.Иногда эти источники питания можно назвать преобразователями электроэнергии. Некоторые типы расходных материалов представляют собой отдельные части грузов, в то время как другие изготавливаются в устройствах, которые они контролируют.

Цепь источника питания

Цепь источника питания используется в различных электрических и электронных устройствах. Цепи питания классифицируются на различные типы в зависимости от мощности, которую они используют для обеспечения цепей или устройств. Например, схемы на основе микроконтроллера, как правило, представляют собой схемы регулируемого источника питания (RPS) 5 В постоянного тока, которые могут быть разработаны с помощью другого метода для изменения мощности с 230 В переменного тока до 5 В постоянного тока.

Схема источника питания показана выше, а пошаговое преобразование 230 В переменного тока в 12 В постоянного тока обсуждается ниже.

  • Понижающий трансформатор преобразует переменный ток 230 В в 12 В.
  • Мостовой выпрямитель используется для замены переменного тока на постоянный.
  • Конденсатор используется для фильтрации пульсаций переменного тока и подает на регулятор напряжения.
  • Наконец, регулятор напряжения регулирует напряжение до 5 В, и, наконец, блокирующий диод используется для получения пульсирующего сигнала.
Power Supply Block Diagram Power Supply Block Diagram

Блок-схема блока питания

Различные типы блоков питания

Различные типы блоков питания классифицируются следующим образом.

1) SMPS-импульсный источник питания

SMPS-блок питания или компьютерный блок питания - это один тип блока питания, который включает в себя импульсный регулятор для мощного преобразования электроэнергии. Подобно другим источникам питания, этот источник питания передает энергию от источника постоянного тока или источника переменного тока к нагрузкам постоянного тока, таким как ПК (персональный компьютер), при изменении характеристик тока и напряжения. Обратитесь по этой ссылке, чтобы узнать больше о Know All о импульсном источнике питания

SMPS - Switched Mode Power Supply SMPS - Switched Mode Power Supply

SMPS - импульсный источник питания

2) Источник бесперебойного питания

A ИБП (источник бесперебойного питания) - это электрическое устройство, которое позволяет ПК, чтобы продолжать работать в течение некоторого времени, так как основное питание потеряно.Это устройство также защищено от перетока.

UPS - Uninterruptible Power Supply UPS - Uninterruptible Power Supply ИБП

- источник бесперебойного питания

ИБП включает в себя аккумулятор для хранения энергии, когда устройство обнаруживает пропадание питания от основного источника. Например, если вы используете ПК, когда источник бесперебойного питания обнаруживает потерю мощности, вам необходимо сохранить данные до того, как ИБП (вторичный источник питания) разрядится.

Когда и первичный и вторичный источники питания заканчиваются, любые данные в оперативной памяти вашего ПК (оперативная память) стираются.Когда происходит сбой питания, вторичный источник питания останавливает потерю мощности, чтобы не повредить персональный компьютер. Обратитесь по этой ссылке, чтобы узнать больше о схеме и источнике бесперебойного питания

3) Источник питания переменного тока

Как правило, источник питания переменного тока получает напряжение от электросети, и напряжение можно увеличивать или уменьшать с помощью использование трансформатора до требуемого напряжения и возможна некоторая фильтрация. Различные типы источников питания переменного тока предназначены для обеспечения почти стабильного тока, и напряжение О / П может изменяться в зависимости от сопротивления нагрузки.В некоторых случаях, поскольку источником питания является постоянный ток, повышающий трансформатор и инвертор могут использоваться для преобразования его в мощность переменного тока. Некоторые виды изменения мощности переменного тока не используют трансформатор.

AC Power Supply AC Power Supply

Блок питания переменного тока

Если входные и выходные напряжения одинаковы, и основная функция устройства состоит в фильтрации мощности переменного тока. Если устройство предназначено для обеспечения резервного питания, его можно назвать источником бесперебойного питания (ИБП). В настоящее время источники питания переменного тока подразделяются на два типа, а именно однофазные системы, а также трехфазные системы.Основными различиями между этими двумя являются надежность доставки. Эти источники питания также могут применяться для изменения напряжения и частоты.

4) Источник питания постоянного тока

Источник питания постоянного тока - это источник постоянного напряжения для своей нагрузки. В соответствии с его планом источник питания постоянного тока может управляться от источника постоянного тока или от источника переменного тока, такого как сеть электропитания.

DC Power Supply DC Power Supply Источник питания постоянного тока

5) Регулируемый источник питания

RPS (регулируемый источник питания) - это фиксированная цепь, используемая для преобразования нерегулируемого переменного тока в стабильный постоянный ток.

Здесь выпрямитель используется для переключения источника переменного тока в постоянный, и его основной функцией является подача стабильного напряжения на устройство или цепь, которая должна функционировать в определенном ограничении источника питания. Выход RPS может изменяться (или) однонаправленно, но это всегда постоянный ток (постоянный ток).

Regulated Power Supply Regulated Power Supply

Стабилизированный источник питания

Используемый тип стабилизации может контролироваться для обеспечения того, чтобы выходное давление оставалось в определенных ограничениях при различных условиях нагрузки.

6) Программируемый источник питания

Этот тип источника питания позволяет осуществлять дистанционное управление своей работой через аналоговый вход, в противном случае - цифровые интерфейсы, такие как GPIB или RS232. Контролируемые свойства этого источника включают ток, напряжение, частоту. Эти типы расходных материалов используются в широком спектре приложений, таких как изготовление полупроводников, рентгеновские генераторы, мониторинг роста кристаллов, автоматическое тестирование аппаратуры.

Как правило, в этих типах источников питания используется необходимый микрокомпьютер для управления и контроля работы источника питания.Источник питания, снабженный интерфейсом компьютера, использует стандартные (или) собственные протоколы связи и язык управления устройством, такой как SCPI (стандартные команды для программируемых инструментов)

7) Блок питания компьютера

Блок питания в компьютере - это часть аппаратного обеспечения, которая используется для преобразования питания, подаваемого из розетки, в полезную мощность для нескольких частей компьютера. Он преобразует переменный ток в постоянный ток.

Он также контролирует перегрев через управляющее напряжение, которое может изменяться вручную или автоматически в зависимости от источника питания.Блок питания или блок питания также называется преобразователем питания или блоком питания.

В компьютере внутренние компоненты, такие как корпуса, материнские платы и источники питания, доступны в различных конфигурациях, размеры которых известны как форм-фактор. Все эти три компонента должны быть согласованы друг с другом для правильной совместной работы.

8) Линейный источник питания

Цепь LPS (линейный источник питания) или LR (линейный регулятор) используется в различных электрических и электронных цепях для подачи постоянного тока ко всей цепи.Линейный источник питания в основном включает понижающий трансформатор, выпрямитель, цепь фильтра и регулятор напряжения. Основная функция этой схемы на первых порах; понизить напряжение переменного тока, а затем изменить его на постоянный ток. Основными функциями этого блока питания являются следующие.

  • КПД этого блока питания колеблется от 20 до 25%
  • Магнитные материалы, используемые в этом блоке питания, - это сердечник CRGO или St Alloy.
  • Более надежно, менее сложно и громоздко.
  • Это дает более быстрый ответ.

Основными преимуществами линейного источника питания являются надежность, простота, низкая стоимость и низкий уровень шума. Наряду с этими преимуществами, есть некоторые недостатки, такие как

. Они лучше всего подходят для нескольких приложений с низким энергопотреблением в результате, когда требуется высокая мощность; недостатки превращаются в более четко. Недостатки этого источника питания включают высокую потерю тепла, размер и низкий уровень эффективности. Всякий раз, когда линейный источник питания используется в приложениях большой мощности; это требует больших компонентов для управления питанием.

Таким образом, речь идет о различных типах источников питания, и они используются для обеспечения эффективного энергоснабжения различных систем. Источники питания являются необходимыми компонентами каждой системы, чтобы получать электроэнергию для работы. Таким образом, некоторые соображения относительно источника питания, такие как проектирование или разработка, более важны. Потому что изо дня в день совершенствуются технологии и источники питания для обеспечения защиты электрических и электронных устройств.

Импульсный датчик тока - часть 1: основы

Управление в токовом режиме широко используется для переключения источников питания из-за его высокой надежности, простой конструкции компенсации контура и простой и надежной возможности распределения нагрузки. Токовый чувствительный сигнал является неотъемлемой частью конструкции источника питания с переключением режимов тока; он используется для регулирования выхода, а также обеспечивает защиту от перегрузки по току. На рисунке 1 показана схема измерения тока для понижающего источника питания с синхронным переключением в режиме LTC3855.LTC3855 - это устройство управления в токовом режиме с циклическим ограничением тока. Сенсорный резистор R S контролирует ток.

Рисунок 1. Импульсный датчик тока в режиме переключения (R S ).

На рисунке 2 показано объемное изображение тока индуктивности для двух случаев: в одном случае - с нагрузкой, на которую способен индуктивный ток (красная линия), и во втором случае, когда выход замкнут (фиолетовая линия) ,

Рисунок 2.Ограничение тока LTC3855 с примером обратного отсчета, как видно на шине 1,5 В / 15 А.

Первоначально пиковый ток индуктора задается выбранным значением индуктора, временем включения питания, входным и выходным напряжениями цепи и током нагрузки (обозначен «1» на графике). Когда применяется короткое замыкание, ток индуктора быстро возрастает, пока не достигнет предела тока в точке, где R S × I INDUCTOR (IL) равняется максимальному напряжению считывания тока, защищая как устройство, так и нисходящую цепь ( обозначается «2» на участке).После этого встроенный предел обратного тока (цифра «3» на графике) дополнительно уменьшает ток индуктора для минимизации теплового напряжения.

Датчик тока также служит для других целей. Это позволяет точное распределение тока в конструкции многофазного источника питания. В слабо нагруженных конструкциях электропитания его можно использовать для повышения эффективности путем предотвращения обратного протекания тока (обратные токи - это токи, которые протекают в обратном направлении через индуктор от выхода к входу, что может быть нежелательным или даже разрушительным в некоторых приложениях).Кроме того, когда многофазное приложение слегка загружено, для определения необходимого количества фаз можно использовать измерение тока, что повышает эффективность схемы. Для нагрузок, требующих источника тока, датчик тока может превратить источник питания в источник постоянного тока для таких приложений, как управление светодиодами, зарядка аккумулятора и управление лазерами.

Во второй части этой серии, «Где разместить резистор измерения тока», мы рассмотрим, на каком участке цепи разместить резистор измерения тока и как это влияет на работу.

Программное обеспечение

LTspice

Программное обеспечение LTspice ® - это мощный, быстрый и бесплатный инструмент моделирования, захвата схемы и средства просмотра формы волны с улучшениями и моделями для улучшения моделирования переключающих регуляторов.

LTpowerCAD

Инструмент проектирования LTpowerCAD - это комплексная программа проектирования блоков питания, которая может значительно облегчить задачи проектирования блока питания. Он направляет пользователей к решению, выбирает компоненты ступени мощности, обеспечивает детальную эффективность энергопотребления, демонстрирует стабильность построения графика Боде и анализ переходных процессов нагрузки и может экспортировать окончательный проект в LTspice для моделирования.

,
Защита от короткого замыкания Cctv привело импульсный источник питания 12 В

Защита от короткого замыкания CCTV Светодиодный импульсный источник питания 12 В

Характеристики входа и выхода
Номинальное входное напряжение 100 ~ 240 В переменного тока, 50/60 Гц
Общая выходная мощность 60 Вт
Диапазон выходного напряжения 11 ~ 13,8 В
Выходной ток

Выходной ток 500 мА / канал, всего 10 каналов, может быть подключено к

одновременно 10 мониторов

Тип предохранителя Стеклянный предохранитель
Емкость предохранителя 5A / 250 В перем. переключиться в режим работы от батареи автоматически с

звуковым предупреждением шума, чтобы предотвратить напряжение от роста и защиты нагрузок.

Защита от перегрузки

Когда все каналы подключены к нагрузкам, а общая мощность этих

нагрузок превышает максимальную мощность устройства, устройство издаст звуковой сигнал, чтобы предупредить

, и некоторые нагрузки должны быть удалены или отключены. автоматически для предотвращения перегрева и выгорания его источника питания

Защита от короткого замыкания

Когда один из каналов замкнут накоротко, он автоматически отключит неисправный канал

, и соответствующий светодиодный индикатор будет

отключите, чтобы эта неисправность не затронула другие каналы.Вы можете проверить и

отремонтировать этот неисправный канал после снятия перемычки, и, если неисправность устранена,

он восстановит после включения перемычки в

Стандартные спецификации
Рабочая температура 0 ℃ ~ 40 ℃
Температура хранения -20 ℃ ~ + 85 ℃
Рабочая влажность 5% ~ 95% RH
Размер 305 * 260 * 80 мм
Вес 4.8 кг

Приложение

Монитор безопасности, камера, видеодомофон, PTZ, ИК-подсветка и т. Д.

Характеристика

  • Мягкий запуск, эффективно смягчает воздействие на вход переменного тока; 100 ~ 240 В перем. Тока
  • Каждый канал оснащен индивидуальным переключателем и светодиодом
  • Встроенный фильтр электромагнитных помех, чрезвычайно малая пульсация, хорошее качество, высокая эффективность, низкий рост температуры, может использоваться в течение длительного времени
  • Блок питания
  • поставляется с Светодиодные индикаторы, отображающие рабочее состояние изделия
  • Защита от перегрузки, короткого замыкания, молнии, перенапряжения на выходе, перегрузки по току, пониженного напряжения батареи
  • Простота установки, экономия времени и энергии

Состояние Красный свет Зеленый свет Желтый свет BUZZER
Режим работы аккумулятора Нормальный Полный заряд В Выкл Выкл Тихий
Уровень заряда батареи ниже 50% включен выключен включен тихий
низкий уровень заряда батареи 900 16 Вспышка Выкл. Вкл. Быстрый сигнал
Ошибка Вкл. / Вспышка Выкл. Вкл. / Вспышка Медленный сигнал
Режим переменного тока Нормальный Уровень заряда батареи выше 90 % Или полностью Выкл. Вкл. Выкл. Тихо
Зарядка Выкл. Вспышка Выкл. Тихо
Ошибка Выкл. Вкл. / Вспышка Выкл. Медленный звуковой сигнал

Предупреждение

1.Пожалуйста, прочитайте введение и инструкцию перед использованием продукта, четко знать, как правильно подключить и убедитесь, соответствующий входному напряжению входного диапазона продукта.

2. Что касается мощного источника питания, его выходной порт обычно состоит из нескольких клемм, которые связаны друг с другом (эквивалентно одному источнику питания), поэтому нагрузки должны быть подключены одинаково.

3. Перед подключением, пожалуйста, вытащите перемычку и снова подтвердите правильность подключения полярности после установки.Вставьте перемычку, когда подтвердится коррекция.

4. Для дополнительной безопасности и уменьшения помех, пожалуйста, убедитесь, что клемма заземления заземлена.

5. Не открывайте корпус и не разбирайте изделие, это может привести к поражению электрическим током или повреждению изделия.

1. Образцы

Образцы доступны для тестирования и рыночного тестирования.

2. Гарантия на продукцию Unipower

Unipower предоставляет гарантию от дефектов материалов и качества изготовления для своего источника бесперебойного питания, инвертора / зарядного устройства, включая инвертор 12 В, 24 В, 48 В, солнечные контроллеры заряда («Продукт»).

3. Руководства и консультации по послепродажному обслуживанию

Unipower Power Team предложит эти руководства ниже.

A. Нужен аксессуар?

B. Продукты Ремонт?

C. Проблемы с питанием для решения?

D. Решения по защите электропитания и т. Д.?

Круглосуточная консультация послепродажного обслуживания только для вас и для решения ваших проблем.

4.Обслуживание OEM

Обслуживание OEM Unipower строго основано на системе обеспечения качества ISO9001 ISO14001. TOP включает эффективную совместную работу отделов продаж, от R & D, и техники, закупок, производства и контроля качества, обеспечивающих высокое качество продукции и своевременную доставку для клиентов. Стандартизация системы качества и стабильность качества заработали нам доверие наших клиентов на протяжении 13 лет.

У нас есть 33 комплекта полностью автоматических линий SMT, 10 комплектов оборудования для автоматической установки, оборудование для тестирования печатных плат ICT, центр автоматического тестирования ATE и мастерская старения для всех продуктов.Ежемесячный выпуск серии ИБП превышает 200000. Мы предлагаем услуги OEM более 13 лет.

Сертификаты

Почему стоит выбрать Unipower ?

1. 13 лет поставщик золотого кредита на Alibaba

2. 13 лет опыт экспорта ИБП и инверторов

3. 13 лет опыт производителей ИБП и

4 , 13 лет из опыта OEM высокого уровня

5. 400 сотрудников

6. 16 000 квадратных метров Размер фабрики (кв. Метров)

7. 200 000 шт. Ежемесячная вместимость

8. Процент экспорта: 80%

9. Высокотехнологичная команда по исследованиям и разработкам

10. Сертификаты - применяются с CE, ISO 9001, ISO14001 и т. Д.

11 ,Гарантия качества, гарантия.

,

Линейный и Импульсный источник питания

Источник питания является важной частью конструкции схемы, и стабильность источника питания в значительной степени определяет стабильность схемы. Линейный источник питания и импульсный источник питания являются двумя распространенными источниками питания, и они имеют большое различие в принципах, которые определяют разницу между двумя приложениями.

Принцип работы
Линейный источник питания состоит из промышленного преобразователя частоты, выходного выпрямителя и фильтра, цепи управления, защитной цепи и т. Д.Основной принцип линейного электропитания состоит в том, что коммерческая мощность понижается до мощности переменного тока низкого напряжения через промышленный преобразователь частоты, затем она выпрямляется и фильтруется в постоянный ток, и, наконец, через напряжение выводится стабильный низковольтный постоянный ток. стабилизирующий контур Установочные компоненты в цепи работают в линейном состоянии.
linear power supply working principle diagram
Импульсный источник питания состоит из входного сетевого силового фильтра, входного выпрямителя и фильтра, инвертора, выходного выпрямителя и фильтра, цепи управления и защитной цепи.Основной принцип заключается в том, что переменный ток непосредственно выпрямляется в постоянный ток на выходной стороне, а затем под действием высокочастотного колебательного контура с переключающей трубкой для управления током включения-выключения ток высокочастотного импульса составляет формируется. С помощью индуктора (высокочастотного трансформатора) выводится стабильный низковольтный постоянный ток.
switching power supply principle diagram

Преимущества и недостатки

  • Линейный источник питания
    Преимущества: относительно простая структура, небольшая пульсация на выходе, небольшие высокочастотные помехи.Простая структура означает простоту обслуживания, то есть обслуживание линейного источника питания зачастую намного сложнее, чем импульсный источник питания, а показатель успешности технического обслуживания линейного источника питания также намного выше, чем у одного из импульсных источников питания.
    Ripple - это компонент переменного тока, который накладывается на постоянное состояние постоянного тока. Чем меньше пульсация на выходе, тем выше чистота выходного постоянного тока, что является важным символом качества питания постоянного тока. Высокая пульсация постоянного тока повлияет на нормальную работу трансивера.Теперь линейная пульсация высокого качества может достигать уровня 0,5 мВ, общая продукция может достигать уровня 5 мВ. Линейный источник питания не имеет устройства, которое работает на высоких частотах, поэтому почти нет высокочастотных помех или высокочастотных помех, если входной фильтр работает хорошо.
    Недостатки: поскольку необходим большой и тяжелый трансформатор, объем и вес требуемого конденсатора фильтра достаточно велики. Схема обратной связи по напряжению работает в линейном состоянии, и регулирующая трубка имеет определенное падение напряжения, что приводит к высокому энергопотреблению и низкой эффективности преобразования при выводе большего рабочего тока.Также необходимо установить большой радиатор. Он не подходит для компьютеров и другого оборудования, которое будет постепенно заменяться импульсным источником питания.
  • Импульсный источник питания
    Преимущества: малый размер, малый вес, высокая эффективность, низкое энергопотребление, более сильная защита от помех, широкий диапазон регулирования и модульность.
    Недостатки: в цепи инвертора может быть создано высокочастотное напряжение, которое имеет некоторые помехи для окружающего оборудования, поэтому требуется хорошее экранирование и заземление.После выпрямления переменный ток может стать постоянным. Однако из-за изменений напряжения переменного тока и тока нагрузки выпрямленное напряжение постоянного тока обычно приводит к изменениям напряжения от 20% до 40%. Чтобы получить стабильное напряжение постоянного тока, следует использовать схему регулятора напряжения для достижения регулирования напряжения.

Применения
Линейный источник питания работает в линейном режиме. Другими словами, устройства питания никогда не останавливаются после запуска, поэтому они плохо работают с точки зрения эффективности работы, которая составляет 50-60%.И это также большой размер, низкая эффективность и большой нагрев. Тем не менее, линейный источник питания также имеет преимущества. Он генерирует меньше шума из-за меньшего количества пульсаций и удовлетворительной скорости регулировки. Линейный источник питания применим для искусственной цепи и различных усилителей.
Импульсный источник питания имеет небольшой размер, высокую эффективность, но с некоторыми колебаниями и помехами. С непрерывным развитием электронных технологий, дизайн импульсного источника питания становится все более научным. В настоящее время импульсные источники питания применяются более широко, чем линейные источники питания, и становятся основным направлением во всех видах приложений.

,

Отправить ответ

avatar
  Подписаться  
Уведомление о