Схема реле времени: Реле времени: схема работы, разновидности, подключение

Содержание

Таймеры и реле времени, схемы самодельных устройств (Страница 3)


Самодельное реле времени для включения нагрузки на 1 час (CD4060)

Принципиальная схема простого таймера (реле времени) для включения нагрузки на один час, время работы можно изменить заменив всего лишь некоторые компоненты. Это устройство предназначено для ограничения времени работы чего-либо, например, паяльника. А ведь это актуально, — мы часто забываем …

1 3880 0

Реле времени для отключения электрооборудования (К561ЛН2, К561ИЕ16)

Принципиальная схема реле времени для ограничения времени работы электроприборов, выполнено с бестрансформаторным питанием на микросхемах К561ЛН2, К561ИЕ16. На рисунке показана схема автомата для ограничения времени работы оборудования, например, паяльника или утюга. Ограничитель может быть …

1 2818 0

Реле времени с установкой двух интервалов работы (CD4060, CD4066)

Принципиальная схема самодельного реле времени с установкой двух интервалов работы, выполнена на микросхемах CD4060, CD4066. В журнале Р-01-2009 была статья В. Васильева «Двухинтервальное реле времени», в которой описывался автомат для управления освещением в курятнике в ночное время …

1 4285 0

Реле времени (таймер) с зависимостью интервала времени от температуры

Принципиальная схема самодельного реле времени в котором задержка по времени зависит от температуры на термодатчике. Суть работы данного устройства в том, что отрабатываемый им временной интервал находится в обратной зависимости оттемпературы. То есть, чем холоднее, тем больше времени нагрузка под …

1 2618 0

Схема таймера с установкой интервала от 1 до 999 секунд (К561ИЕ8, CD4060)

Принципиальная схема таймера (электронного реле) с точной установкой интервала работы от 1 до 999 секунд, выполнен на микросхемах К561ИЕ8 и CD4060. Таймер для фотоэкспозиции предназначен для задания времени свечения лампы фотоувеличителя или осветителя. Он нужен не только профессиональным …

1 3549 0

Схема таймера перерывателя питания для активации режима Stand-by

Принципиальная схема таймера с задержкой времени на 1 час, который отключает телевизор на 4-5 секунд от сети и тем самым переводит его в ждущий режим. Некоторые люди, особенно пожилые, имеют привычку засыпать под работающий телевизор. Потом этот телевизорнужно как-то выключить. В меню многих …

0 2055 0

Реле времени для подключения нагрузки через 1мин после включения

Не сложное самодельное реле времени для включения нагрузки через 1 минуту после появления напряжения в сети 220В. К сожалению, по многих населенных пунктах бывают отключения напряженияэлектросети как на короткое время, так и на длительное. При этом, особенно в сельской местности, может быть …

1 2385 0

Схема электронного реле времени на 2,2-110 минут, таймер (CD4541B)

Сейчас в радиолюбительской литературе или на радиолюбительских сайтах, если речь идет о простом таймере на основе счетчика, то это обычно CD4060. Но ведь есть и другие варианты. Например, микросхема CD4541 (или CD4541B). Микросхема CD4541B представляет собой цифровой одновибратор/мультивибратор …

1 7192 3

Как ограничить время работы электронной игрушки, схема таймера

Схема таймера для ограничения времени работы электронных игрушек, самодельное реле времени своими руками. Детям очень интересны электромеханические игрушки, вроде машинок, тракторов, вездеходов, военной техники. В игрушке есть электромотор и батарейный источник питания. Еще выключатель …

2 2305 0

Таймер для насоса жидкостной системы отопления (CD4020)

Схема самодельного таймера для управления насосом в системе жидкостного отопления, использована микросхема CD4020. В индивидуальной системе жидкостного отопления для равномерного распределения теплапо отопительным радиаторам применяют циркуляционные насосы, которые ускоряют циркуляцию нагретой …

0 2430 0

 1  2 3 4  5  6  7  … 15 

Радиодетали, электронные блоки и игрушки из китая:

Схема простого реле времени для начинающих радиолюбителей

В этом выпуске канала Паяльник TV рассмотрим простую схему. Она представляет из себя несложный таймер, или реле времени. Выполнена всего на одном активном компоненте в виде биполярного транзистора обратной проводимости.  Доступна схема начинающим и опытным радиолюбителям для самостоятельной сборки. Радиодетали дешево в этом китайском магазине.

Элементы таймера.

Несколько слов про элементную базу. Диод D1 можно даже не использовать. Заменить перемычкой. Если решите использовать, то любой маломощный диод, например 1N4007, или любой другой выпрямительный диод. Конденсатор C2 подбирается, если устройство будет питаться от блока питания. Если от аккумулятора, то отпадает нужда в конденсаторе C2, так как он предназначен для фильтрации питания. Резисторы R2 и R1 с мощностью 0,25 Вт. Однако можно и не столь мощные 0,125 Вт. Конденсатор C1 в схеме имеет ёмкость 100 мкФ, но нужно его подобрать. Из него зависит время срабатывания схемы. Напряжение этого конденсатора 16-25 В, поскольку питание у нас само 12 В. Транзистор T1 – любой маломощный транзистор биполярный, обратной проводимости. Можно использовать даже КТ315. В представленной сборке задействован транзистор средней мощности КТ815А. Можно также транзисторы большой мощности, к примеру КТ805, КТ803 даже, КТ819, и так далее.

В эмиттерную цепочку транзистора подключена обмотка электромагнитного реле, для управления мощными сетевыми нагрузками. В случае, если схему будете применять для запитки низковольтных маломощных нагрузок, например, светодиодов, то реле можно убрать и в эмиттерную цепь подключить напрямую сам светодиод.

Как работает схема?

При подключении источника питания, 12 В, к примеру, поступает питание на схему, через ограничительный резистор R2 заряжается конденсатор C1. И как только заряд на конденсаторе достиг определённого уровня, питание через резистор R1 поступает на базу транзистора. Вследствие чего последний открывается, и плюс через переход транзистора подаётся на обмотку электромагнитного реле. Вследствие чего последнее замыкается, включая или выключая сетевую нагрузку.

В представленном варианте в качестве сетевой нагрузки использована обычная лампа накаливания на 220 В. Если хотите управлять сетевыми нагрузками, то обратите внимание именно на параметры реле. Во-первых, катушка реле должна быть рассчитана на напряжение 12 В. Сами контакты должны быть довольно мощными, в зависимости, конечно же, от подключённой нагрузки. То есть, обратите внимание на ток допустимый через контакты.

Время срабатывания реле, то есть, время зарядки конденсатора, в большей степени зависит от резистора R2. Чем выше его номинал, тем медленнее будет заряжаться конденсатор. И, разумеется, от ёмкости самого конденсатора C. Чем выше его номинал, тем дольше он будет заряжаться, значит, тем большее время потребуется на зарядку и срабатывание схемы.

Рассмотрим схему в железе.

Реле имеет катушку на 12 В, об этом говорит маркировка. Также допустимый ток через контакты составляет 10 А при напряжении 250 В, переменном. Транзистор абсолютно не нагревается в схеме. Но поскольку схема имеет довольно большую задержку, с таким раскладом использованных компонентов, было решено изменить сопротивление R2. В схеме 47 кОм было заменено на 4,4 кОм, и этим получена задержку 2-3 с.

Давайте подключим к источнику питания 12 В. Будет использован такой аккумулятор, точное напряжение где-то 10, 8 В. Это три литиевые банки, подключённые последовательным образом. Обратите внимание на светодиод. У нас синий светодиод подключён через ограничительный резистор на 1 кОм. Как только контакты реле замкнутся, подаётся питание на сам светодиод. Обратите внимание на задержку. Где-то 2 с. Разумеется, схема может находиться в включённом состоянии бесконечно долгое время.

Данную схему можно использовать не только в качестве таймера, но и в качестве системы плавного пуска Soft Start. Применяется система импульсных мощных блоков питания. Почему именно советуется в мощных источниках питания импульсных использовать плавный пуск? Потому что при включении схемы в сеть на очень короткое время схема потребляет запредельный ток. Это происходит потому, что в момент включения заряжаются конденсаторы большим током. И вследствие этого другие компоненты схемы, например, диодный мост и так далее, могут не выдерживать такие токи и выйти из строя. Поэтому применяется эта система.

Как работает система плавного пуска в схемах импульсных источников?

При подключении в сеть 220 В через резистор, который имеет некоторое сопротивление и является токогасительным, то есть, ограничивает ток, заряжается через этот резистор мощный электролитический конденсатор, малым током. И как только конденсаторы полностью заряжены, тут уже срабатывает реле и подаётся основное питание по контактам реле на схему импульсного источника питания. Таким образом, к примеру, можно подобрать время заряда конденсатора, настроить тут время срабатывания, и получить довольно хорошую систему для мощных импульсных блоков питания. На этом всё. Такова простая и доступная схема для начинающих радиолюбителей. Еще простая схема реле времени.

обсуждение

radmir tagirov
это пример как не надо делать реле времени. Индуктивная нагрузка должна обязательно шунтироваться диодом. Иначе в одно прекрасное время у вас погорит транзистор. И почему реле подключено к эммитеру?

Serghei
Это не реле времени, а реле задержки! Да и диод ты не туда вставил!

Taras tsaryuk
а диод параллельно реле типа ставить не нужно да!?если не жалко транзистора – когда закроется транзистор и реле обесточится, есть такая фигня как обратный ток, вот в этот момент и транзистору придет полный. Ну в общем как угодно. Если деталей не жалко.

An _
собрал такую схему, только без диода и кондера на входе, и реле заменил на светодиод с последовательно соединенным резистором в 300 ком, транс кт 3102, при подключении к аккуму на приблизительно 12в светодиод плавно начинает светиться и светит, светит, светит.! При меньшем напряжении на источнике питания картина та же. Пробовал менять кондер и резисторы – разница в скорости засвечивания светодиода. Я думал, что он должен засветиться и потухнуть. Где ошибка?

Zahar shoihit
действительно это не урок математики но мне кажется так как статья для начинающих то все-таки стоит объяснить людям, как посчитать время задержки.

Zahar shoihit
как ты получил задержку в две секунды?
Ведь τ=rc 4. 4k*100µf=0. 44сек.
12 вольтовое реле срабатывает где то при 9в.
То есть 3/4 от полного заряда конденсатора.
3/4 от 5τ =(5*0. 44)/4*3=1. 65сек
это в идеале, а по идее и того меньше.

кардан youtube
доброго времени суток. Возможно ли собрать на основе данной схемы реле на 4 контакта с последовательным включением с задержкой в 5 секунд? Хотелось бы использовать нечто подобное в разгоне козлового крана.

дарья новгородова
ребята, оставьте человека в покое со своими вопросами по поводу устройства этого реле. У меня на компрессоре оно уже год отключает пусковые кондёры. А пользуюсь компрессором я довольно часто. А ещё в сигнализации я его применил. Пока проблем не было.

Андрей ф
я не волшебник, а только учусь. Товарищи электронщики поясните пожалуйста, разве базовый ток транзистора у этой схемы через r2, r1 и катушку появляется не с разу. Есть такое предположение, как говорит автор, что транзистор открывается с задержкой в 2 сек, когда на верхней обкладке по мере заряда появляется напряжение, допустим 0, 7 в, достаточное для открытия транзистора и ёмкость конденсатора особой роли не играет. Вот если бы тут стояла кнопка с откидным контактом между r2 и узлом соединения с1 и r1 тогда бы размер ёмкости играл бы свою роль на длительный разряд. Короче говоря, кто может поясните.

Sako grig
напряжение для открывания транзистора 0. 7 в как раз появляется через несколько секунд, время зависит от величины r2 и с1. При увеличении емкости конденсатора 0. 7 в появиться позже, то же самое при увеличении r2, так как уменшится ток зарядки конденсатора. I*t=c*u

андрей ф
спасибо за разъяснение. Собрал схему в мультисим, транзистор поставил 2n6488. Реле подключал и к коллектору и к эммитору. С реле в коллекторной цепи схема ведёт себя приблизительно так как вы написали на базе u= 0, 5в ток открытия 0, 01ма. А когда реле в эммиторной цепи картина другая, напряжение на базе u= 4b ток 0, 01ма и реле вроде бы как срабатывало при 4в. Сопротивление и конденсатор ставил разные, время заряда менялось в обоих случаях.

Sako grig
вообше то я рекомендовал реле подключить в цепь колектора, эмитер заземлять, вместо r1 поставить стабилитрон на 3-4 вольта( что- бы увеличивать время задержки), желательно транзистер взять с большим коэф усиления по току-h31э.

Sako grig
не думаю, что мултисим может разбираться в тонкостях работы разных модификации реле, например у одних, хотя они на 12вольт, напряжение срабатывания 8-9вольт, а напряжение отпускания может быть где то в районе 3-4вольта.

Андрей ф
интересно было лет 20 назад когда цветные телевизоры весили 20 кг и что бы отремонтировать надо было его в ателье везти или на дом мастера вызывать, поэтому самому пришлось прикупить книги и самостоятельно изучать это дело, но моя база всё равно маловата так как подсказать особо было не кому. Собирать и посмотреть как работает схема в мультисим, да почему нет. В интернете очень много роликов но таких, чтобы досконально объяснили работу схемы очень мало. Вот и тут автор мог бы показать на схеме направления токов, напряжения на конденсаторе, на базе транзистора. Тогда бы не было вопросов, а почему реле поставил в цепь эммитера, а не коллктора.

Stas stasovih
подскажи самую простую схему реле задержки отключения? Питание 24в, задержка после отключения питания 60-120 секунд, у меня есть всякое барахло типа пб от компа, и маленькие бп, возможно от туда выдернуть комплектующие?

Sako grig
это зависит от того что подразумевать говоря, отключение,. Если отключение это отключить питающий 24вольт, то спасет только аккумлятор в схеме, если, отключение, надо сделать командной кнопкой, будет другая схема.

Олег мальцев
оно работает? А как? При достижении на базе 0. 7в транзистор откроется и на его эмиттере появится напряжение питания минус напряжение падения на переходе к-э, и по идее он должен закрыться до того момента пока на базе не появится напряжение больше напряжения на эмиттере на 0. 7в. По идее реле нужно включить в коллектор и добавить блокировочный диод. Не?

алекс lamin
а не проще всем одинаково обозначать коненсаторы электролитические плюсом и минусом что такое черное и белое нужно искать людям отдельно тратить время.

Алекс lamin
сотни роликов с названием реле времени чтобы узнать реле включения или выключения нужно досмотреть ролики до конца. А не проще написать в названии. Люди недели тратят на поиски. Не говоря уж об ииотском обозначении изначально любой схемы реле. Где катушка не указывают ни на схеме ни на реле. Вместо привычных знаков скажем нуля и фазы какое то черчение с абстрактным мышлением.

схема на 12 и 220 вольт

В современном оборудовании часто необходим таймер, т. е. устройство, которое сработает не сразу, а через промежуток времени, поэтому его еще называют реле задержки. Прибор создает временные задержки включения или выключения других устройств. Его не обязательно приобретать в магазине, ведь грамотно сконструированное самодельное реле времени будет эффективно выполнять свои функции.

Сфера применения реле времени

Области использования таймера:

  • регуляторы;
  • датчики;
  • автоматика;
  • различные механизмы.

Все данные устройства делятся на 2 класса:

  1. Циклические.
  2. Промежуточные.

Первое считается самостоятельным прибором. Он подает сигнал через заданный временной промежуток. В автоматических системах циклическое устройство включает и отключает необходимые механизмы. С его помощью управляют освещением:

  • на улице;
  • в аквариуме;
  • в теплице.

Циклический таймер является неотъемлемым устройством в системе «Умный дом». Его применяют для выполнения следующих задач:

  1. Включение и выключение отопления.
  2. Напоминание о событиях.
  3. В строго указанное время включает необходимые устройства: стиральную машинку, чайник, свет и др.

Кроме вышеуказанных, есть еще отрасли, в которых эксплуатируется циклическое реле задержки:

  • наука;
  • медицина;
  • робототехника.

Промежуточное реле используется для дискретных схем и служит вспомогательным устройством. Оно осуществляет автоматическое прерывание электрической цепи. Сфера применения промежуточного таймера реле времени начинается там, где необходимы усиление сигнала и гальваническая развязка электрической цепи. Промежуточные таймеры разделяются на виды в зависимости от конструктивного исполнения:

  1. Пневматические. Срабатывание реле после поступление сигнала не происходит мгновенно, максимальная время срабатывания — до одной минуты. Используется в цепях управления металлорежущих станков. Таймер управляет приводами для ступенчатой регулировки.
  2. Моторные. Диапазон установки временной задержки начинается с пары секунд и заканчивается десятками часов. Реле задержки являются частью цепей защиты воздушных линий электропередач.
  3. Электромагнитные. Предназначены для цепей постоянного тока. С их помощью происходят разгон и торможение электропривода.
  4. С часовым механизмом. Основной элемент — взведенная пружина. Время регулирования — от 0,1 до 20 секунд. Используются в релейной защите воздушных линий электропередач.
  5. Электронные. Принцип действия построен на физических процессах (периодические импульсы, заряд, разряд емкости).

Схемы различных реле времени

Существуют разные варианты исполнения реле времени, схема каждого вида имеет свои особенности. Таймеры можно изготовить самостоятельно. Перед тем как сделать реле времени своими руками, необходимо изучить его устройство. Схемы простых реле времени:

  • на транзисторах;
  • на микросхемах;
  • для выходного питания 220 В.

Опишем каждую из них более подробно.

Схема на транзисторах

Необходимые радиодетали:

  1. Транзистор КТ 3102 (или КТ 315) — 2 шт.
  2. Конденсатор.
  3. Резистор номиналом 100 кОм (R1). Также понадобится еще 2 резистора (R2 и R3), сопротивление которых будет подбираться вместе с емкостью в зависимости от времени срабатывания таймера.
  4. Кнопка.

При подключении схемы к источнику питания начнет заряжаться конденсатор через резисторы R2 и R3 и эммитер транзистора. Последний откроется, поэтому на сопротивлении будет падать напряжение. В результате откроется второй транзистор, что приведет к срабатыванию электромагнитного реле.

При заряде емкости ток будет уменьшаться. Это вызовет снижение эммитерного тока и падения напряжения на сопротивлении до того уровня, которое приведет к закрытию транзисторов и отпускания реле. Чтобы запустить таймер заново, потребуется кратковременное нажатие кнопки, которое вызовет полную разрядку емкости.

Для увеличения временной задержки используют схему на полевом транзисторе с изолированным затвором.

На базе микросхем

Применение микросхем уберет необходимость разряжать конденсатор и подбирать номиналы радиодеталей для выставления необходимого времени срабатывания.

Необходимые электронные компоненты для реле времени на 12 вольт:

  • резисторы номиналом 100 Ом, 100 кОм, 510 кОм;
  • диод 1N4148;
  • емкость на 4700 мкФ и 16 В;
  • кнопка;
  • микросхема TL 431.

Положительный полюс источника питания должен соединяться с кнопкой, параллельно к которой подключен один контакт реле. Последний также подключается к резистору 100 Ом. С другой стороны резистор соединен с сопротивлениями на 510 и на 100 кОм. Один из выводов последнего идет на микросхему. Второй вывод микросхемы соединен с резистором на 510 кОм, а третий — с диодом. К полупроводниковому устройству подключается второй контакт реле, которое соединено с исполняющим устройством. Отрицательный полюс источника питания связан с сопротивлением на 510 кОм.

Под питание на выходе 220 В

Две вышеописанные схемы рассчитаны на напряжение 12 В, т. е. не подходят для мощных нагрузок. Устранить этот недостаток допустимо с помощью магнитного пускателя, установленного на выходе.

Если в качестве нагрузки выступает маломощное устройство (бытовое освещение, вентилятор, трубчатый электрический нагреватель), то можно обойтись без магнитного пускателя. Роль преобразователя напряжения выполнят диодный мост и тиристор. Необходимые детали:

  1. Диоды, рассчитанные на ток больше 1 А и обратное напряжение не выше 400 В, — 4 шт.
  2. Тиристор ВТ 151 — 1 шт.
  3. Емкость на 470 нФ — 1 шт.
  4. Резисторы: на 4300 кОм — 1шт, на 200 Ом — 1 шт., регулируемый на 1500 Ом — 1 шт.
  5. Выключатель.

К питанию 220 В подключается контакт диодного моста и выключатель. Второй контакт моста соединен с выключателем. Параллельно к диодному мосту подключается тиристор. Тиристор соединяется с диодом и сопротивлениями на 200, на 1500 Ом. Вторые выводы диода и резистора (200 Ом) идут на конденсатор. Параллельно последнему подключено сопротивление на 4300 кОм. Но необходимо помнить, что данное устройство не используется для мощных нагрузок.

Реле времени своими руками 2 (на 555).

Реле времени на транзисторе рассматриваемое в статье реле времени своими руками просто в изготовлении но обладает многими недостатками например: небольшие задержки, необходимость сброса энергии конденсатора для следующего запуска, сложность расчёта длительности задержки. Хорошее реле времени можно сделать на микросхеме NE555 (или LM555 (вместо LM или NE могут быть другие буквы)).

Рисунок 1 — Реле времени

 Или в таком виде:

Рисунок 2 — Реле времени

Но собирать реле времени нужно используя схему:

Рисунок 3 — Реле времени с защитой (R4) от «выкручивания» переменного резистора в крайнее положение


Элементы R2 (и R4 если он есть) и C1 задают время задержки. Нажатие кнопки SB1 приводит к замыканию контактов K1.1 и после некоторого времени (задержки) они размыкаются, далее можно снова нажать на кнопку SB1. Длительность задержки рассчитывается по формуле:
В этой формуле нужно добавить умножение на R4 если этот резистор есть.
Такое реле годится для множества видов нагрузок и источников питания.
Кнопка м.б. например такой:
Транзисторы любые которые могут включать реле.
Резистор R2 выбирается в зависимости от требуемых задержек.
R2 может быть таким:
Для удобства, к резистору можно приделать шкалу задержек. Также последовательно этому резистору желательно поставить постоянный резистор (R4 на схеме на рисунке 3) для защиты от «выкручивания» переменного резистора в крайние положения.
Или таким:
Конденсатор C2:
Схема может работать от источника питания с сетевым трансформатором, диодным мостом, конденсаторами и без параметрического стабилизатора напряжения.
Элементы можно припаять на плату.
Проверка работы реле времени:

Для расчёта задержки можно воспользоваться программой:

Усовершенствованная помехоустойчивая схема без транзистора:

Подробнее про усовершенствованную схему можно прочитать на странице http://electe.blogspot.ru/2016/03/555.html».

5 штук таймеров 555 http://ali.pub/4xhmj
50штук таймеров 555 http://ali.pub/v5x9t
КАРТА БЛОГА (содержание)

Реле времени на 12 вольт своими руками на основе чипа NE555

Некоторые из моих друзей сделали своими руками подсветку для велосипедов. Каждая из подсветок получилась с различной конфигурацией корпуса, лампами, батареями, рабочим напряжением и силой тока. Мне нужно было построить такую схему реле времени на 12 вольт, которая вместила бы все светодиоды без дополнительных усилий. Я нашел ответ в схеме с использованием чипа 555. Это идеальный и дешевый выбор самодельного электронного реле времени.

Конечно, дешевле и проще было бы купить готовую подсветку, но сделать собственную гораздо веселее. Также нужно сказать, что использование этой схемы ограничивается лишь воображением. Это может быть строба велосипеда, рождественская гирлянда, стробоскоп для автомобиля и т.д.

Несколько слов о могучем чипе 555

Он может работать от источника постоянного тока от 3В до 16В. Также он может дать выход 200 мА на из пина 3, чего хватает для управления несколькими обычными светодиодами, но мало для серьезного устройства. Лучшим решением будет использование транзистора.

Шаг 1: Выход LOAD и материалы

Добавьте силы вашему чипу 555

Какой транзистор лучше подойдет? Вот список транзисторов от маленькой до высокой мощности. Их можно использовать в этом проекте.

LOAD = это ток (А) лампочки. 1 А = 1000 мА.

Для 200mA LOAD => BC547 NPN
Для 500 мА LOAD => BC337, 2N1711 NPN
Для 1,5A LOAD => BD135 NPN
Для 3A LOAD => TIP31, BD241 NPN
Для 4A LOAD => BD679 NPN
Для 5-15A LOAD => TIP3055 N-gate (этот транзистор не рекомендуется для данной печатной платы, потому что дорожки слишком тонкие, чтобы нести нагрузку больше 5А)

Совет. Никогда не используйте транзистор 500 мА для нагрузки 500 мА без радиатора. Лучше используйте транзистор 1А.

Необходимые инструменты

  • Паяльник. Не более 25 Вт
  • Припой в виде проволоки — 0,5-1,0 мм
  • Губка для припоя
  • Паяльная паста (флюс)
  • Маленькие ножницы для припоя
  • Сверла = 0,7 мм и 1 мм
  • Цифровой мультиметр

Шаг 2: Чип 555 с циклом включения/выключения 1:1

Печатная плата с циклом включения/выключения 1:1

Эта плата достаточно мала, чтобы поместиться в почти любой корпус. Вы можете скачать и распечатать компоновку печатной платы с помощью любого графического редактора, который может изменить размер изображения при предварительном просмотре перед печатью, например, corel photo-paint. Размер платы — 21,5 мм x 32 мм с разрешением 72dpi.

Распечатайте печатную плату, удалите медь, используя любую химическую технику. Просверлите отверстия самым маленьким сверлом, которое вы сможете найти, нанесите флюс на плату, а затем переверните её вверх ногами, чтобы поместить компоненты. Будьте внимательны, соблюдайте полярность всех компонентов, особенно диода D1 и конденсатора C1. Длинная клемма светодиода обозначает анод (положительный +). Для транзистора Q1 смотри схему. Сверху чипа 555 есть точка, обозначающая номер пина (1).

Список частей — для чипа 555 с циклом включения/выключения 1:1

  • Все резисторы 1/4 Вт
  • R1 = 1K
  • R2 = 10K
  • R3 = 1K
  • R4 = 680 для красного светодиода 5 мм. 470 для белого светодиода 5 мм
  • D1 = 1N5817 диод Шоттки
  • D2 = красный или белый светодиод 5 мм
  • C1 = 33uF / 25V электролитический конденсатор
  • C2 = 10nF
  • Q1 = BD135 NPN-транзистор
  • IC1 = 555 (NE555), 8-контактный коннектор с разъемом DIN (корпус)
  • PCB = около 25 мм x 35 мм
  • какой-нибудь тонкий провод

Эксплуатация и регулировка чипа 555 с циклом включения/выключения 1:1

Из-за наличия диода D1 Шоттки в качестве защиты от обратной полярности вы заметите разницу между входом и выходом около 0,3 — 0,5 В. Это нормально для диодов Шоттки.

Лучше защитить цепь от обратной полярности, чем все сжечь. Чтобы отрегулировать выход в герцах = циклах в секунду (мерцаний), требуется только заменить конденсатор С1. Для более коротких циклов используйте конденсатор меньшей емкости в uF, а для более длинных — большей емкости.

Если C1 = 47uF, то это примерно 1 герц (1 мерцание в секунду). Если C1 = 33uF, то это около 2 герц и т. Д. Это все!

Шаг 3: 555 с вариативным циклом включения/выключения

Ниже приведена схема изменения цикла включения/выключения с использованием 2 триммеров.

Схема и печатная плата 2(А), 2(Б)

Скачайте изображение печатной платы 2(А) и изображение расположения компонентов, если вы собираетесь использовать горизонтальные триммеры 10 мм. Размеры печатной платы = 31 х 37 мм.

Скачайте схему печатной платы 2 (Б) и изображение расположения компонентов, если вы собираетесь использовать 10 мм вертикальные многооборотные триммеры, которые более точные и экономят место на печатной плате. Размеры печатной платы = 32 х 33 мм.

Регулировка для чипа 555 с вариативным циклом включения/выключения

  • Это легко сделать и это очень универсальный вариант, потому что для смены цикла нужно только заменить конденсатор С1 на конденсатор с большей емкостью в uF.
  • POT1 используется для активного периода времени (вкл.).
  • POT2 используется для неактивного периода времени (выкл.).
  • Опять же, вы можете использовать любой транзистор NPN, в зависимости от требуемого значения силы тока.
  • Рабочее напряжение составляет 5 — 15 В постоянного тока.

Список частей для чипа 555 с вариативным циклом включения/отключения:

  • Все резисторы 1/4 Вт
  • R1 = 1K
  • R2 = 1K
  • R3 = 470
  • POT 1,2 = 100K триммеры или многооборотные потенциометры
  • R4 = 680 для красного светодиода 5 мм. 470 для белого 5мм светодиода
  • D2,3 = 1N4148
  • Красный или белый светодиод 5 мм
  • C1 = 10 мкФ / 25В электролитический конденсатор
  • C2 = 10nF керамический конденсатор
  • Q1 = BD241 NPN-транзистор
  • IC1 = 555 (NE555), 8-контактный коннектор с разъемом DIN

Шаг 4: Обновленная версия печатной платы

Здесь приведена обновленная версия печатной платы на основе LM555, в которой могут быть установлены потенциометры с одним поворотом или многооборотные триммеры для лучшей точности в зависимости от ваших потребностей.

Поскольку электролитический конденсатор C1 отвечает за период времени, может потребоваться заменить его на другой, с большей ёмкостью. Для простоты использования C1 заменен на 2-контактный клеммный блок для печатных плат. Все, что нам нужно сделать, это вставить C1 в разъем.

Помните правило для С1:

  • C1 (электролитический конденсатор) отвечает за максимальное время включения / выключения схемы.
  • Низкая емкость конденсатора, скажем, 1uF = короткие временные интервалы.
  • Высокая емкость конденсатора, скажем, 100uF = более длительные интервалы времени.

Настройка таймера задержки:

  1. POT1 (потенциометр): установите желаемый период времени, когда схема включит подключенное устройство (в пределах максимального предела времени, которое может дать C1).
  2. POT2 (потенциометр): установите желаемый период времени, когда схема выключит подключенное устройство (в пределах максимального предела времени, которое может дать C1).

Скачайте приложенный файл, содержащий все изображения и схему платы. Руководствуйтесь изображением, чтобы разместить компоненты на печатной плате.

Файлы

Схема реле времени. Автоматика в быту. Электронные устройства автоматики.

 

РЕЛЕ   ВРЕМЕНИ

            Реле времени  широко применяются в  быту  и промышленной автоматике  для получения задержки включения или отключения различных устройств, в схемах сигнализации, в различных бытовых приборах для ограничения времени работы этих устройств, если забыли их выключить.  Данные устройства можно использовать для отключения освещения в ванной комнате или туалете через заданное время, автоматического отключения дежурного освещения в подъезде дома  или гараже,  включения охранной сигнализации через некоторое время, после того, как Вы покинули охраняемый объект, в качестве таймера газовой или электроплиты, чтобы не забыть про оставленный пирог, автоматического отключения электроутюга  и т.д.  Как правило, в схемах  реле времени  используют специализированные микросхемы — счётчики с предустановкой коэффициента деления и встроенным задающим генератором, что позволяет изменять параметры устройства в очень широких пределах.  При отсутствии специализированных микросхем  реле времени легко собрать на очень широко распространённых  КМОП элементах. Для получения коротких выдержек в несколько секунд иногда используют  зарядные RC цепи, которые подключаются к пороговому элементу  с высоким входным сопротивлением — КМОП триггерам Шмитта, компараторам, интегральным таймерам NE555N, операционным усилителям, полевым транзисторам и  другим элементам, но такие схемы сложно настраивать,  а стабильность  их выдержки невысока.  

         Предлагаемое реле времени собрано на специализированной микросхеме КР512ПС10,  очень широко применяемой в подобных устройствах. Точное  время  задержки срабатывания   устанавливается подбором  R1 , C1.  Для  дискретного изменения времени задержки в широких пределах используются входы предустановки коэффициента деления  М1 … М5, назначение которых показано в таблице. Установкой перемычек на плате можно  задать время от нескольких секунд до нескольких суток. Перемычка  S1 позволяет получить различный режим работы: если замкнуть  площадки 1, 2  реле времени  будет периодически включаться и выключаться  через заданное время, причем время включенного состояния равно времени выключенного состояния.  Если  замкнуть площадки 2, 3 — реле времени отсчитает  заданный интервал и включит выходное реле , которое останется в этом состоянии сколь угодно долго, пока не будет выключено и заново включено напряжение питания.   Более удобна  микросхема  MC14536BCP  или  CD4536B,  которая  имеет  широкий диапазон напряжения питания  — до 18 В, вместо +6 В  у  КР512ПС10,  что позволяет легко встраивать узлы задержки времени в различные  устройства  автоматики на  КМОП микросхемах.

На следующей странице смотри остальные схемы.

 


Уважаемые посетители!
Все материалы сайта в случае их некоммерческого использования предоставляются бесплатно, хотя автор затрачивает достаточно большие средства на их обновление расширение и размещение.
Если Вы хотите, чтобы автор отвечал на Ваши письма, обновлял и добавлял  новые материалы — активней используйте контекстную рекламу,  размещённую на страницах — для себя  Вы  узнаете много нового и полезного,
а автору  позволит частично компенсировать собственные затраты  чтобы  уделять
Вам больше внимания.

ВНИМАНИЕ!

Вам нужно разработать сложное электронное устройство?

Тогда Вам сюда…

 

Схемка в блокнот. Реле времени на КМОП микросхемах


Иногда возникает необходимость отключать (или включать) нагрузку по истечении определенного времени, для этого используют реле времени. Сейчас в интернете существует множество схем на микроконтроллерах, но не всем радиолюбителям это «чудо техники» доступно.

Используя информацию из [1] собрал несколько экземпляров реле времени с делителем частоты на КМОП микросхемах серии К561.

Содержание / Contents


Сначала собрал реле по схеме (Рис. 1) из журнала Радио, номера не помню. Но при емкости электролитического конденсатора С1 больше 1000 мкФ время выдержки сильно зависит от температуры и от напряжения питания. Реле может сработать через час, а может и через два.
Поэтому были разработаны и проверены в железе другие схемы.Первый вариант реле времени (Рис. 2) состоит из генератора импульсов на элементах DD1.1 – DD1.2 и делителей частоты на микросхемах DD2 и DD3.

Частота генератора импульсов определяется сопротивлением резистора R2 и емкостью конденсатора С1. При нажатии кнопки SA1.1 обнуляются счетчики DD2.1 и DD3.2, на выводах 13, 14 последнего устанавливается логический ноль, а на выходе элемента DD1.4 – логическая единица. Элемент DD1.3 начинает пропускать импульсы от генератора к делителям DD2 и DD3. Открывается транзистор VT1 приводя к срабатыванию реле К1, которое своими контактами коммутирует исполнительное устройство, например подключает нагрузку.

Весь процесс продолжается до того времени пока на выводах 13, 14 счетчика DD3.2 установится логическая единица, на выходе элемента DD1.4 – логический ноль, элемент DD1.3 прекратит пропускать импульсы от генератора к делителю DD2, весь процесс прекратится. Закрывание транзистора VT1 обесточит реле К1. Выдержка времени зависит от частоты генератора импульсов и коэффициента деления делителей частоты. Светодиод VD1 сигнализирует о работе делителей и об отсчете времени. Конденсаторы С2 – С4 служат для повышения помехоустойчивости устройства.

Вариант питания реле времени непосредственно от сети переменного тока показан на (Рис. 3). В дежурном режиме контакты реле К1.1 и К1.2 разомкнуты, питание обесточено, устройство ничего не потребляет. При нажатии кнопки SA1 контакты SA1.2 подают питание на нагрузку и на выпрямитель на диодах VD3 – VD6, который питает цепь электромагнитного реле и микросхем. По истечении заданного времени транзистор VT1 закрывается обесточивая реле К1, контакты К1.1 и К1.2 размыкаются, отключая нагрузку и само реле времени. Напряжения застабилизированы стабилитронами VD7 и VD8.

Напряжение 18 В выбрано из-за типа применяемого реле, хотя при использовании реле с меньшим напряжением срабатывания это напряжение можно уменьшить. Остаток сетевого напряжения гасится на конденсаторе С5. Резистор R11 ограничивает ток зарядки С5 при включении, а резистор R12 обеспечивает разрядку С5 после включения устройства. Выключатель SA2 используется для постоянного включения нагрузки.

Для увеличения выдержки времени можно увеличить сопротивление резистора R2 или емкость конденсатора С1. Но при емкости конденсатора С1 больше 4,7 мкФ растут его размеры, так же не желательно применять электролитические конденсаторы из-за ухудшения стабильности частоты, а следовательно времени выдержки. В этом случае лучше применить еще несколько счетчиков (делителей), или делитель с большим коэффициентом деления, например К561ИЕ16.

Исключён фрагмент. Полный вариант статьи доступен меценатам и полноправным членам сообщества. Читай условия доступа.
Второй вариант реле времени изображен на (Рис. 4). Схема работает аналогично (Рис. 2), но благодаря применению делителя DD2 типа К561ИЕ16 можно получить несколько разных временных интервалов переключая выходы DD2 галетным переключателем SA3, каждый последующий в два раза больше предыдущего. Теперь о деталях. Вместо микросхем серии К561 можно применить К176 и К564. Электромагнитное реле К1 на напряжение 10 – 15 В и ток срабатывания 10 – 20 мА, в данном случае применено реле типа РКМ-1, контакты запаралелены, лучше применить реле с более мощными контактами.
Конденсатор С5 бумажный, на напряжение не ниже 500 В, конденсаторы на 400 В не всегда выдерживают работу в сети переменного тока 220 В и могут выйти из строя. Стабилитроны VD7 типа Д815Е, Д815Ж, а VD8 типа Д814Б, КС191А.
Кнопка SA1 без фиксации с двумя группами замыкающихся контактов. Выключатель SA2 на коммутируемое напряжение 250 В и ток не менее 2 А, например ТВ-2. Галетный переключатель SA3 одноплатный на 11 положений.

После сборки проверяем монтаж на наличие ошибок, вольтметром измеряем напряжение + 18 В и + 9 В, в указанных точках. В качестве нагрузки подсоединяем лампу накаливания 220 В 40 Вт. Нажимаем кнопку SA1, запускаем таймер, мигание светодиода VD1 сигнализирует о работе генератора импульсов DD1.1, DD1.2 и делителя DD2. По истечении заданного времени светодиод VD1 гаснет и реле К1 отключит нагрузку. Выдержка времени прямопропорциональна сопротивлению резистора R2 и емкости конденсатора С1.

При изготовлении и наладке безтрансформаторного варианта питания по схеме (Рис. 3) следует помнить, что все детали схемы находятся под напряжением сети переменного тока. Любые изменения в схеме производить только после отключения устройства от сети.

Реле времени по схеме (Рис. 4) собрано в корпусе от коммутатора елочных гирлянд типа «Снежинка» и показано на (Рис. 5).

1. С. Алексеев. Применение микросхем серии К561. – Радио №1 1987 с. 43.

дядя Вася (UR5YW), г. Черновцы,
Украина, планета Земля, Солнечная система

Камрад, рассмотри датагорские рекомендации

🌻 Купон до 1000₽ для новичка на Aliexpress

Никогда не затаривался у китайцев? Пришло время начать!
Камрад, регистрируйся на Али по нашей ссылке. Ты получишь скидочный купон на первый заказ. Не тяни, условия акции меняются.

🌼 Полезные и проверенные железяки, можно брать

Куплено и опробовано читателями или в лаборатории редакции.

 

Реле задержки времени

Некоторым прикладным проектам требуется питание после некоторой задержки или необходимо отключить питание после некоторой задержки, для этой цели мы можем использовать эту простую схему реле с временной задержкой.

Цепь реле с выдержкой времени

содержит электромеханическое реле и схему привода, эта схема определяет время задержки для подачи питания на катушку электромеханического реле по пути к нагрузке, подключенной к реле.

Принципиальная схема

Строительно-рабочие

Первая секция этой схемы — это элементы временной задержки, такие как последовательный резистор делителя напряжения и два электролитических конденсатора, а вторая секция — реле со светодиодным индикатором.

Резистор R1, потенциометр и R2 подключены последовательно и параллельно к входу постоянного тока, выход переменного резистора (потенциометра) подключен к конденсатору C1 и смещенному в обратном направлении стабилитрону, затем конденсатор C2, наконец, к базе транзистора SL100.

Реле

12 В подключено к клемме коллектора транзистора SL100, клемма двухцветного светодиода зеленого цвета подключена к эмиттеру Q1, а клемма красного цвета подключена к коллектору.

Когда питание, подаваемое на эту схему, зависит от значения напряжения малого уровня потенциометра, передаваемого на C1, и он заряжается, когда он завершается и превышает предел отсечки стабилитрона, напряжение передается на конденсатор C2, и он получает заряд, наконец, базовый эмиттер предел напряжения транзистора Q1 устанавливается C2, затем Q1 включается, и катушка реле получает полное питание постоянного тока, затем реле включается для завершения вышеуказанного процесса, требуется некоторая задержка времени, в зависимости от значения потенциометра, времени заряда C1-C2 и напряжения пробоя стабилитрона мы можем добиться задержки от нескольких секунд до нескольких минут.

Изменяя значение потенциометра или значение C1-C2, мы можем достичь различных уровней задержки по времени. Мы можем использовать эту схему для включения или выключения некоторых чувствительных электрических приложений с временной задержкой.

Реле с задержкой времени

с использованием таймера 555, моделирования Proteus и проектирования печатных плат

(Последнее обновление: 2 апреля 2021 г.)

Реле задержки времени Описание:

Реле с выдержкой времени с использованием таймера 555 — В этом руководстве вы узнаете, как включить реле на определенное время с помощью таймера 555 и нескольких электронных компонентов, таких как резисторы, конденсаторы и диоды.Реле с задержкой времени можно использовать в сотнях различных типов электронных устройств и проектов на базе контроллеров. В этом проекте я использовал кнопку, которая используется для включения реле на указанное время. Переменный резистор или потенциометр используется для регулировки времени. Это недорогой проект, основанный исключительно на электронике. Это самая дешевая и простая схема контроллера автоматического реле .

Advanced Реле с выдержкой времени может быть спроектирован с использованием программируемых контроллеров.

В моем предыдущем руководстве я разработал проект «Управляйте чем угодно на основе времени», этот проект был основан на микроконтроллере Atmega328, это тот же микроконтроллер, который используется в плате Arduino Uno. С помощью этого проекта вы можете ВКЛЮЧИТЬ что угодно, подробнее читайте в моей статье «Контролировать что угодно на основе времени».

Позже я разработал расширенную версию того же проекта «Расширенный таймер обратного отсчета».

Таймер обратного отсчета может использоваться в качестве конечного продукта.С помощью этого таймера обратного отсчета , вы можете управлять различными типами электрических нагрузок, таких как, например, лампочки, нагреватели, водяные насосы, стиральные машины, вентиляторы и т. Д. Фактически, этот таймер обратного отсчета можно использовать везде, где вы нужно контролировать что-либо на временной основе. Этот таймер обратного отсчета идеально подходит для нагрузок переменного и постоянного тока.

Использовать этот таймер обратного отсчета на базе Arduino очень просто; инструкции отображаются на ЖК-дисплее 16 × 2.Пользователь просто вводит время в минутах и ​​секундах и нажимает звездочку «*» на клавиатуре. Общее время отображается в секундах. Запускается таймер, основанный на функции миллисекунд . Нагрузка, подключенная к реле, включена. Эта нагрузка будет оставаться включенной, пока общее количество секунд не уменьшится до 0.

Если в любой момент вам нужно изменить минуты и секунды, вы можете просто нажать кнопку «#» на клавиатуре, которая вернет вас на главный экран, и вы можете начать заново, введя минуты и секунды.

Итак, если вам нужен больший контроль над реле, вам следует прочитать мои статьи выше. В любом случае, давайте продолжим нашу исходную тему «Реле с задержкой времени с использованием таймера 555 ». Прежде, я собираюсь объяснить принципиальную схему реле с выдержкой времени , я настоятельно рекомендую прочитать мою статью о таймере 555 IC , которая охватывает все основы. Прочитав мою статью о таймере 555 IC , вы можете продолжить работу отсюда.

Без промедления, приступим !!!

Компоненты и инструменты, используемые в этом проекте, можно приобрести на Amazon, ссылки для покупки компонентов приведены ниже:

555 таймер IC:

12V SPDT реле:

Одноканальный релейный модуль:

1n4007 диод:

10к Резистор:

2n2222 NPN транзистор

16X2 ЖК-дисплей

Прочие инструменты и компоненты:

Супер стартовый набор для начинающих

Цифровые осциллографы

Переменная поставка

Цифровой мультиметр

Наборы паяльников

Малые переносные сверлильные станки для печатных плат

* Обратите внимание: это партнерские ссылки.Я могу получить комиссию, если вы купите компоненты по этим ссылкам. Буду признателен за вашу поддержку!

Очень просто генерировать задержки с помощью Arduino Uno, Arduino Mega, Arduino Nano, микроконтроллера PIC и т. Д. Но бывают ситуации, когда мы предпочитаем микросхему таймера 555, и это потому, что 555 Time дешев, прост в использовании, долговечность, не требуется программирования и многие другие факторы. Позвольте привести пример.

Допустим, вы хотите создать систему автоматического управления уличным освещением с использованием Arduino.Теперь вы можете выполнить этот проект, используя Arduino Uno или любую другую плату контроллера. Вы можете легко связать LDR и релейный модуль с Arduino. Но вы знаете, что это увеличит общую стоимость проекта. Такую дорогостоящую схему никто покупать не собирается. С другой стороны, тот же проект можно выполнить с помощью микросхемы таймера 555.

Схема выводов IC 555 / описание / конфигурация / распиновка: Схема контактов микросхемы таймера NE 555

Стандартный корпус микросхемы таймера 555 включает 25 транзисторов, 15 резисторов и 2 диода на кремниевой микросхеме, установленной в 8-контактном мини-DIP «двухпроводном корпусе».Доступны два других пакета микросхем таймера: 556 и 558. ИС таймера 556 имеет 2 схемы синхронизации «Двойной таймер», а микросхема таймера 558 имеет в общей сложности 4 схемы синхронизации «Квадратный таймер». Но в этой статье мы обсудим только таймер IC 555. Как вы можете видеть на рисунке выше, микросхема таймера 555 имеет в общей сложности 8 контактов, которые четко обозначены как GND, TRIG, OUT, RESET, CTRL, THR, DIS и Vcc. Давайте подробно поговорим о каждой булавке.

555 Описание выводов микросхемы таймера:
  1. GND «Земля»:

Опорное напряжение заземления, низкий уровень 0 В.

  1. TRIG «Триггер»:

Вывод 3 OUT становится высоким, и временной интервал начинается, когда этот вход падает ниже 1/2 напряжения CTRL, которое обычно составляет 1/3 В постоянного тока, а CTRL по умолчанию составляет 2/3 В постоянного тока, если CTRL остается открытым. Другими словами, вывод OUT остается высоким, пока триггер находится на низком уровне. Выход таймера IC 555 полностью зависит от амплитуды внешнего триггерного напряжения, приложенного к этому выводу.

  1. ВЫХ:

Этот выход устанавливается примерно на 1.7В ниже + Vcc или на GND.

  1. СБРОС:

Временной интервал можно сбросить, переведя этот вход на GND, но отсчет отсчета времени не начнется снова, пока на выводе RESET микросхемы таймера NE555 не поднимется напряжение выше примерно 0,7 вольт. Переопределяет TRIG, который отменяет порог.

  1. CTRL «Контроль»:

Обеспечивает управляющий доступ к внутреннему делителю напряжения (по умолчанию 2/3 В постоянного тока).

  1. THR «Порог»:

Временной интервал (OUT high) заканчивается, когда напряжение на выводе порогового значения больше, чем на выводе CTRL (2/3 Vcc, если CTRL открыт).

  1. ДИС «Выгрузка»:

Выход с открытым коллектором, который может разрядить конденсатор между интервалами. По фазе с выходом.

  1. Vcc:

Положительное напряжение питания, обычно от 3 до 15 В.

555 Характеристики микросхемы таймера:
  • Возможность сильноточного привода (200 мА)
  • Регулируемый рабочий цикл
  • Температурная стабильность 0,005% / ° C
  • Время от мксек до часов

555 Применение микросхем таймера
  • Прецизионная синхронизация
  • Генерация импульсов
  • Генерация задержки времени
  • Последовательная синхронизация

555 Таймер IC Рабочий:

Таймер 555 имеет три режима работы:

  • Моностабильный
  • Астабильный
  • Бистабильный режим

Если вы хотите изучить различные режимы работы, прочтите мою статью о 555 Timer IC .

555 Схема реле задержки времени с таймером:

Для лучшего понимания позвольте мне поделиться с вами внутренней схемой микросхемы таймера 555.

В этой цепи реле задержки времени таймер 555 используется в моностабильном режиме . Несомненно, сердцем этой схемы является микросхема таймера 555 IC . Другими основными компонентами являются резисторы R1, R2, кнопка S1, конденсаторы C1, C2, диоды и реле типа SPDT на 12 В.

Как вы можете видеть, R2 соединен последовательно с конденсатором C2, это электролитический конденсатор. Положительный вывод конденсатора соединен с резистором, а вывод заземления конденсатора соединен с землей.

Разрядный вывод и неинвертирующий вход первого компаратора напряжения подключены между R2 и C2. Vcc — 12 В. Одна сторона резистора R1 соединена с Vcc, а другая сторона R1 соединена с переключателем S1, а другая сторона S1 соединена с землей.Провод от середины R1 и S1 подключен к инвертирующему входу компаратора напряжения 2 nd , который является контактом запуска микросхемы таймера 555 IC .

Когда переключатель разомкнут, R1 поддерживает высокий уровень триггерного входа, подключая его к напряжению питания Vcc. Из-за этого напряжение на инвертирующем входе будет больше, чем напряжение на неинвертирующем входе, которое составляет 1/3 В постоянного тока. Таким образом, на выходе компаратора напряжения 2 nd будет ноль 0, который подается на вывод S триггера.Мы получаем 1 на полосе Q, которая включает транзистор и разряжает конденсатор C2. Таким образом, напряжение на инвертирующем входе компаратора напряжения 1 st «2/3 Vcc» больше, чем напряжение на неинвертирующем входе. Из-за этого на выходе компаратора напряжения 1 st также будет ноль «0». Таким образом, выход микросхемы таймера 555 остается НИЗКИМ.

Чтобы сделать выход таймера 555 IC высоким, или, простыми словами, включить реле, нам нужно нажать переключатель S1, который является кнопкой.Когда мы нажимаем переключатель S1, контакт триггера становится низким, и на выходе компаратора 1, который подается на вход триггера. Q-полоса дает 0, что отключает транзистор, из-за чего теперь R2 будет заряжать конденсатор C2, в то время как выход микросхемы таймера 555 остается высоким. Когда конденсатор заряжен и напряжение достигает 2/3 В постоянного тока, выход таймера 555 становится низким.

Итак, время включения таймера 555 зависит от номинала резистора R2 и конденсатора C2.Для зарядки конденсаторов большой емкости потребуется много времени. Мы можем рассчитать время, используя следующую формулу.

Т = 1,1 * С2 * R2.

Таким образом, время задержки можно регулировать с помощью потенциометра R2, вы также можете использовать резистор с фиксированным значением, если вы хотите сохранить постоянную времени задержки .

Это реле с задержкой времени также можно использовать в проектах безопасности. Вы можете заменить кнопку на датчик PIR, ИК-датчик или любой другой датчик, когда датчик активирован, он включит зуммер или свет на указанное время.Вы можете подключать нагрузки переменного или постоянного тока с помощью реле 12. Итак, это все о реле задержки времени Цепь .

Реле задержки срабатывания Proteus Simulation:

Загрузить Time Delay Relay Proteus Simulation:

Перед тем, как протестировать схему реле с временной задержкой на макетной плате, я сначала разработал имитацию Proteus . Мне удалось отрегулировать время включения с помощью переменного резистора или потенциометра.Я успешно управлял реле.

Реле включилось, когда я нажал на переключатель:

Реле выключилось по истечении времени:

На этом этапе я был довольно уверен в подключениях.

После этого я сделал все подключения на макетной плате, и она работала точно так же. Я варьировал продолжительность, я слышал звук тика реле. Теперь последним шагом было проектирование печатной платы.

Следуя тем же точным соединениям, я разработал печатную плату для реле задержки на основе таймера 555 и реле типа 12V SPDT.Хорошо видны все связи. Сделать дизайн элегантным и сократить время травления печатной платы; Я применил команду Ratnest.

Загрузите файл платы реле задержки времени:

Подробнее о реле с выдержкой времени:

Реле с выдержкой времени или реле с выдержкой времени позволяют выполнять необходимые действия в определенное время в электрическом устройстве, поскольку они, по сути, действуют как таймер. Назначение реле с выдержкой времени — запускать или останавливать токи в катушках и якорях, движущихся частях электрических механизмов.Они предназначены для отключения электрических цепей в определенное время. Эти типы реле срабатывают либо при размыкании и замыкании сигнала, либо от входных токов. Реле с выдержкой времени чрезвычайно полезны во многих современных электрических устройствах. Например, одно реле с выдержкой времени, используемое в сочетании с другим, может задерживать включение некоторых частей конвейерных лент. Поскольку конвейерные ленты должны работать согласованно друг с другом, но все части не должны работать одновременно, используются реле временной задержки, так что разные части запускаются в разное время.Если бы реле с задержкой времени не использовалось в конвейерных лентах, предметы бы складывались друг на друга, вместо того, чтобы перемещаться с одной рабочей конвейерной ленты на другую в нужное время, когда это необходимо.

Еще одно применение реле с выдержкой времени — использование многих современных ламп, которые включаются и выключаются в определенное время. Рождественские огни и светофоры являются отличными примерами реле с задержкой времени или реле времени, используемых для включения и выключения света или для переключения сигналов с одного положения на другое.В этих типах приложений требуется более одного реле с выдержкой времени, чтобы обеспечить равномерную частоту освещения и измерить время для желаемого освещения. Другая полезная операция реле с выдержкой времени — это когда они используются по соображениям безопасности. Например, в печах и печных вентиляторах камера сгорания печи должна использоваться до зажигания печи, чтобы вентилятор выдувал пары, которые могут взорвать печь, если задержка по времени не помешает этому. В этом случае используются реле с выдержкой времени, чтобы обеспечить вентиляцию камеры сгорания, чтобы избежать газообразных паров или взрыва.Двигатели, которые должны запускаться медленно, являются еще одним примером реле с выдержкой времени. Эти реле используются в двигателях, которые должны запускаться медленно, чтобы активироваться медленно и потребляют гораздо меньше энергии, чем если бы машина запускалась сразу. Промышленное оборудование часто должно запускаться медленно с реле задержки времени, потому что без них промышленные машины вырабатывали бы огромное количество энергии, если бы их запускали сразу. Это не только израсходует огромное количество энергии каждый раз, когда они должны быть запущены, но и может вызвать опасные условия из-за количества используемого тока.

Надеюсь, вы узнали что-то новое. Если у вас есть какие-либо вопросы по этой статье, дайте мне знать в комментарии.

Реле с задержкой времени

| Таймер задержки включения | Таймер задержки выключения

Реле задержки времени

Некоторым или всем промышленным системам управления требуется синхронизация. Устройства синхронизации используются для включения или выключения пилотных устройств в заранее установленное время. Реле задержки времени и твердотельные таймеры аналогичны и используются для обеспечения желаемых функций задержки и времени.

Таймеры состоят из циферблатов, дисплеев или какого-либо типа интерфейса оператора, используемого для установки времени и состояния контактов на нормально открытый или нормально закрытый на устройстве. Хотя существует много типов таймеров и различных функций, которые они могут выполнять, все они основаны на двух основных типах временных функций, а именно: таймер задержки включения и таймер задержки выключения .

Принцип работы таймера задержки включения

Таймер реле задержки включения обеспечивает изменение состояния контактов, которые управляются включением таймера.Таймер реле задержки включения может быть установлен или запрограммирован на заранее определенное время, и это называется заранее установленным временем. Предварительно установленное время может составлять от миллисекунд до часов и даже дней, но обычно в промышленных системах управления оно устанавливается на секунды и минуты.

Когда на катушку таймера подается питание, таймер начинает отсчет от нуля до предварительно установленного времени, этот счет известен как накопленное время . Когда заданное время и суммарное время равны, контакты таймера меняют свое состояние; контакты, которые нормально разомкнуты, когда на катушку не подается питание, замыкаются, а контакты, которые нормально замкнуты, изменяются на разомкнутые.Контакты таймера будут оставаться в своем измененном состоянии в течение того же времени, в течение которого катушка находится под напряжением. Когда питание обмотки таймера снимается, накопленное время возвращается к нулю, а контакты возвращаются в исходное состояние.

Временные диаграммы обычно используются для иллюстрации работы функции таймеров, поэтому потребуется небольшое обучение, чтобы понять работу таймеров.

Обозначение контакта задержки включения

Таймеры задержки включения можно легко идентифицировать на лестничных диаграммах.Катушки таймера задержки включения представлены как все нагрузки, проиллюстрированные лестничными диаграммами, за исключением того, что есть этикетка с аббревиатурой TD , которая обозначает временную задержку, а контакты нарисованы как однополюсный переключатель с двумя выводами, выходящими из нижней части, как показано на рисунке 1.

Контакт будет либо нормально замкнутым, либо нормально разомкнутым. Нормально открытый контакт обозначен как нормально открытый, закрытый по времени (NOTC) , а нормально закрытый контакт обозначен как , нормально закрытый, закрытый по времени (NCTO) .

Контакты задержки включения не имеют набора мгновенных контактов (это означает, что контакты изменят состояние немедленно, когда на катушку таймера будет подано напряжение). Отсутствие этой операции означает, что таймер не может быть активирован устройствами мгновенного управления без использования реле управления, которое является пилотным устройством с мгновенными контактами. Когда активируется устройство мгновенного управления, реле управления может использоваться для герметизации цепи и удержания катушки таймера задержки включения под напряжением в течение необходимого периода времени.

Рис.1: Контакт задержки включения NOTC

Временная диаграмма таймера задержки включения

Временная диаграмма — это график, который показывает состояние таймера на устройстве отсчета времени в зависимости от производительности контакта или выход таймера. Схема состоит из двух графиков, один используется для представления входного сигнала для устройства синхронизации; Для обозначения выходов или контактов синхронизирующих устройств используются графические линии. Графические линии на временной диаграмме нарисованы так, чтобы показать ложное значение на истинное, включение или выключение или высокое значение низкого уровня.Линии нарисованы под прямым углом, чтобы представить дискретные значения временного цикла, потому что нет промежуточных значений, значения могут быть только выключены или включены.

Рис. 2: Нормально открытый с выдержкой времени закрытый (NOTC)

На рис. 2 представлена ​​временная диаграмма, используемая для представления нормально открытого с выдержкой времени закрытого контакта задержки . Когда на катушку таймера подается питание, начинается отсчет заданного времени. Как только накопленное время сравняется с заданным временем, контакт таймера изменится с нормально замкнутого на разомкнутый и останется открытым до тех пор, пока катушка таймера не потеряет питание.В это время таймер был сброшен обратно на ноль, и цикл можно начинать снова.

Рис.3: Нормально закрытый по времени открытый контакт (NCTO)

На рисунке 3 временная диаграмма используется для представления нормально закрытого с задержкой открытия контакта . На этой схеме нагрузка, подключенная к контакту таймера, включена и останется включенной после того, как катушка таймера будет под напряжением, и заданное время станет равным накопленному времени. В этот момент контакт размыкается, в результате чего нагрузка отключается и остается выключенной до тех пор, пока катушка таймера не будет обесточена.После обесточивания катушка таймера вернется к нулю и снова будет готова к циклу.

Принцип работы таймера задержки выключения

Как и таймеры задержки включения, таймеры задержки выключения могут быть легко идентифицированы. Катушка таймера задержки выключения помечена так же, как и другие нагрузки, обозначенные на лестничных диаграммах, за исключением аббревиатуры TD для обозначения задержки по времени. Контакты задержки выключения выглядят как однополюсный переключатель со стрелкой, направленной вниз от переключателя.Нормально открытый контакт с задержкой отключения называется нормально разомкнутым по времени открытием, а нормально замкнутый — нормально замкнутыми контактами с задержкой по времени. Причина противоположной операции заключается в том, что контакты задержки отключения мгновенно . При подаче напряжения на катушку таймера задержки выключения контакты немедленно меняют свое состояние. Катушка задержки выключения находится под напряжением в цепи управления, но счет не запускается.

Счетчик задержки выключения не начинается до тех пор, пока с катушки не будет отключено питание.Как только катушка будет обесточена, время начнет истекать, и когда накопленное время станет равным заданному времени, контакты задержки выключения вернутся в свое нормальное состояние.

Временная диаграмма таймера задержки выключения

Временную диаграмму задержки выключения можно интерпретировать так же, как временную диаграмму задержки включения. Важный фактор, который следует помнить при интерпретации временной диаграммы задержки выключения, — это помнить, что таймер задержки выключения содержит мгновенных контактов .

Рис. 4: Нормально замкнутый контакт с задержкой отключения по времени (NCTC)

На рисунке 4 временная диаграмма используется для представления нормально замкнутого контакта таймера задержки выключения. Нагрузка, подключенная к нормально замкнутому контакту, будет включена до подачи питания на катушку таймера. Как только на катушку таймера будет подано напряжение, контакт немедленно откроется, что приведет к отключению нагрузки и останется выключенным до тех пор, пока катушка не будет обесточена и не истечет заданное время.

Рис.5: Нормально разомкнутый контакт задержки выключения с синхронизацией и временем открытия (NOTO)

На рисунке 5 показана временная диаграмма , на которой показан нормально открытый контакт с задержкой выключения с таймером открытия. На графике катушка таймера находится под напряжением, а контакт, к которому подключена нагрузка, разомкнут. Когда катушка таймера находится под напряжением, контакт немедленно замыкается, включая нагрузку, подключенную к контакту. Нагрузка останется включенной после обесточивания катушки таймера до тех пор, пока предварительно установленное время не сравняется с истекшим временем, после чего нагрузка отключится.

Реле задержки времени II

Barry R Реле задержки времени II 23 августа 2013 г. 15:26:14
Я использую цифровой сейф, и когда цепь активирована, выход опускает соленоид на 6 вольт — проблема в том, что выходной импульс составляет всего 1 секунду — должен быть 6 или 7 секунд (питание 6 вольт и выход на соленоид составляет 6 вольт) Цепи, которые я просмотрел, похоже, требуют 12 вольт.
ахмед Счетный рабочий таймер на 2 секунды и 2 минуты выключения пятница, 6 мая 2011 г. 7:38:39
Уважаемый сэр, я хочу, чтобы в течение 2 секунд включалось и 2 минуты выключалось, схема условно рабочего типа.пожалуйста, помогите мне. очень срочно. спасибо ахмед.

(Примечания редактора: см. Техническое описание микросхемы таймера 556.)

аноним Реле задержки времени II 10 апреля 2011 г. 22:48:15
привет Мне нужно реле с выдержкой времени на 8 часов (12 В постоянного тока или 230 В переменного тока) при включении реле через 8 часов я надеюсь, ты сможешь мне помочь спасибо
giedrius Реле задержки времени II 4 февраля 2011 г. 9:12:44
не работает.что-то не так с проводкой. задержка 2 с. и вместимость r и C не меняет интервала.
Лаянал Счетный рабочий таймер на 2 секунды и 3 минуты выключения 23 мая 2010 г. 22:50:31
Уважаемый сэр, я хочу, чтобы схема на 2 секунды включения и 3 минуты выключения была условно работающей схемой. пожалуйста, помогите мне. очень срочно. спасибо Лаянал
аноним Реле задержки времени II 6 апреля 2009 г. 12:52:52
В вашей заметке № 2 выше говорится: 2. Чтобы рассчитать задержку по времени, используйте уравнение R1 * C1 * 0.85 = T, где R1 — значение R1 в Ом, C1 — значение C1 в мкФ, а T — время задержки в секундах. Разве это не должно читаться как C1 в фарадах?
СК Онг Реле задержки времени II 9 февраля 2009 г. 11:40:23
Привет! Я студент 3-го курса и хочу построить простую схему с переменной задержкой для задержки непрерывных импульсов на светодиоды от генератора произвольной формы. Мне интересно, возможна ли эта конструкция для задержек в диапазоне от 100 наносекунд до 10 микросекунд? Пожалуйста, посоветуйте, спасибо.Наилучшие пожелания, CK Ong
Робин Реле задержки времени II 15 ноября 2008 г. 10:53:48
Следуя вашим примечаниям, я положил R-1 = 50 Ом и C-1 = 10 мкФ, чтобы таймер включился примерно через 7 минут после подключения переключателя S-1 (50x10x0,85 = 425 секунд, что равно 7 минутам плюс). С переключателем S-1 все еще подключенным, я жду включения реле на 6 вольт. Но через 20 минут ничего не произошло…. Могу я дать вам добрый совет для решения такой проблемы … я могу проверить определенную точку в этой цепи? Большое спасибо за ваше внимание. Робин — Джакарта
Патик Кеннеди Реле задержки времени II 31 октября 2008 г. 11:53:31
Я ищу таймер или схему отсчета времени для сигнала начала дня / перерыва / обеда / конца дня. Что необходимо, так это таймер, который будет звонить в звонок в начале периода и снова звонить в конец периода.Система звонков уже существует, и владелец не хочет ее заменять. Спасибо Патрик С. Кеннеди Natco Industries West Warwick RI
Крейг Реле задержки времени II 27 октября 2008 г. 11:38:18
Я создаю компонент, который должен активировать соленоид 12 В постоянного тока, 2 ампер, на 2 или 3 секунды после того, как триггерный переключатель отправил сигнал. Триггерный переключатель активируется человеком и не остается открытым в течение 2 или 3 секунд.Есть ли вам известная простая схема для этой операции?

Регулируемая схема таймера задержки автоматического включения и выключения с использованием 555 IC

Учебное пособие о том, как создать схему регулируемого таймера задержки с использованием 555 IC, которая может автоматически включать / выключать любой выход по истечении фиксированного времени. Эта схема электронного таймера полезна, когда вам нужно включить / выключить любые устройства переменного тока по истечении заранее определенного времени. Например, вы можете использовать эту схему для автоматического выключения мобильного зарядного устройства, скажем, через 1 час, чтобы предотвратить перезарядку аккумулятора.

Задержку таймера можно установить на периоды времени, например 1, 5, 10 минут и т. Д. (Или на любую продолжительность от нескольких секунд до часов).

Посмотрите видеоурок выше, чтобы получить подробные пошаговые инструкции о том, как построить эту схему, и для визуальной демонстрации того, как эта схема работает. (Включены оба сценария, а именно автоматическое выключение и автоматическое включение)

Необходимые компоненты

Ниже приведен список компонентов, необходимых для построения схемы электронного таймера задержки:

  • 555 IC таймера
  • Кнопочный переключатель мгновенного действия
  • Светодиод / любое выходное устройство
  • Конденсатор 470 мкФ
  • Резисторы: 68 кОм, 10 кОм, 220R
  • Макетная плата
  • Несколько разъемов макетной платы
  • (5-12) В Источник питания
  • Потенциометр (дополнительно)
  • Релейный модуль

Обратитесь к таблице резисторов светодиодов, показанной в видеоуроке, для получения точного значения последовательного резистора светодиода (220R)

Цепь таймера с фиксированной задержкой включения

На рисунке ниже представлена ​​схема простого таймера автоматического включения и выключения с фиксированный резистор синхронизации и конденсатор.Таким образом, период времени, по истечении которого эта схема будет автоматически включать / выключать выход, является фиксированным и может быть определен с помощью формулы, упомянутой в разделе расчетов.

Для управления устройствами переменного тока или любыми тяжелыми нагрузками, такими как двигатели постоянного тока, с использованием этой схемы, вам необходимо добавить релейный модуль на выходе микросхемы таймера 555 (как показано в видеоуроке).

Цепь таймера с регулируемой задержкой включения и выключения

Для регулировки продолжительности таймера «на лету» резистор синхронизации заменяется потенциометром, и его соединения выполняются, как показано на принципиальной схеме ниже.Вы можете выбрать значение потенциометра в зависимости от требуемой максимальной продолжительности.

Как работает эта схема

В предыдущих руководствах серии проектов таймера 555 мы узнали, как триггерный вывод (вывод 2) и пороговый вывод (вывод 6) микросхемы таймера 555 определяют напряжения и управляют выходом. Ниже приводится резюме:

  • Если триггерный вывод (вывод 2 микросхемы таймера 555) обнаруживает любое напряжение менее 1/3 напряжения питания, он включает на выход
  • Если пороговое значение Контакт (контакт 6 микросхемы таймера 555) определяет любое напряжение, превышающее 2/3 напряжения питания, он выключает ВЫКЛ выход
  • Всякий раз, когда выход микросхемы таймера 555 находится в состоянии ВЫКЛ , Разрядный вывод (вывод 7) действует как заземление / отрицательная шина i.е, он внутренне подключен к 0V

Принимая во внимание вышеупомянутые 3 пункта, давайте попробуем понять, как эта схема работает.

Первоначально, когда эта схема включена, выход будет в состоянии ВЫКЛ. Когда выход выключен, разрядный вывод (вывод 7) будет внутренне подключен к 0В. Таким образом, конденсатор полностью разряжается и не может заряжаться через последовательный резистор, соединяющий его с положительной шиной.

При нажатии кнопочного переключателя мгновенного действия i.е, таймер задержки активируется, происходит следующая последовательность:

  • 0 В подается на контакт триггера (контакт 2) через кнопочный переключатель
  • Поскольку это приложенное напряжение (0 В) на контакте 2 меньше 1 / 3-го напряжения питания, выход включается
  • Одновременно вывод разрядки внутренне отключается от 0 В
  • Итак, теперь конденсатор начинает заряжаться через резистор / потенциометр, который соединяет его с положительной шиной
  • Поскольку входной вывод порогового значения (вывод -6) подключен к положительному выводу конденсатора, он активно контролирует напряжение на нем
  • Как только конденсатор заряжается до 2/3 напряжения питания, вывод 6 выключает выход
  • (этот период времени для время задержки, которое конденсатор заряжает от 0 В до 2/3 напряжения питания)
  • Как только выход выключается, контакт 7 внутренне повторно подключается к 0 В, и конденсатор полностью разряжается
  • Вышеуказанные шаги: повторять d каждый раз, когда нажимается кнопочный переключатель

Включение выхода означает, что напряжение на выходном контакте (контакт 3) таймера 555 равно Vs (напряжение питания).Выход в выключенном состоянии означает, что напряжение равно 0 В.

В видеоуроке я подключил анод синего светодиода к выходу микросхемы таймера 555, а катод — к отрицательной шине. Что касается красного светодиода, я подключил его катод к выходу микросхемы таймера 555, а анод — к положительной шине. Таким образом, когда выход таймера 555 находится во включенном состоянии, горит синий светодиод, а когда выход выключается, горит красный светодиод.

Расчет периода задержки таймера

Период времени созданной нами схемы таймера задержки равен времени, необходимому конденсатору для зарядки от 0 В до 2/3 напряжения питания, и теоретически это значение равно:

Т = 1.1 * R * C, где T — период времени в секундах, а R, C — значения используемых резистора синхронизации и конденсатора.

Например, на принципиальной схеме таймера с фиксированной продолжительностью задержки мы использовали резистор 68 кОм и конденсатор емкостью 470 мкФ, что дает нам время задержки:

T = 1,1 * (68000) * (0,000470) = 32 секунды.

А чтобы вычислить значения компонентов для заданного времени задержки, проще зафиксировать номинал конденсатора и вычислить номинал резистора. Например, если нам требуется время задержки 60 секунд:

60 = 1.1 * Р * (0,000470). Решив это уравнение, мы получаем значение R равное 116К.

Практически время задержки будет больше расчетного значения из-за утечки конденсатора. Итак, для вашей справки, я измерил и свел в таблицу значения временного резистора и конденсатора для основных интервалов, как показано на изображении ниже.

Приложения

  • Для автоматического выключения мобильных зарядных устройств для предотвращения перезарядки аккумулятора
  • Для автоматического выключения ламп для чтения по истечении установленного времени
  • Для управления последовательностью устройств вывода одно за другим после регулярных / нерегулярных периодов времени ( Это может быть достигнуто путем каскадного подключения нескольких схем таймера задержки через вывод сброса микросхемы таймера 555)
  • В схемах автоматического включения / выключения питания с использованием реле

Если у вас есть какие-либо вопросы / предложения, не стесняйтесь размещать их в разделе комментариев из этого видео: Регулируемая схема таймера задержки автоматического включения и выключения с использованием 555 IC

Защита компрессора — эффективность нагрева и охлаждения

Реле задержки времени для систем отопления, вентиляции и кондиционирования воздуха

Реле с выдержкой времени — отличный способ защитить ваш блок переменного тока от постоянного включения и выключения.Это может быть сделано для предотвращения механических проблем с HVAC, которые заставляют кондиционер быстро запускаться и останавливаться — или в случае некоторых домашних хозяйств, где есть дети, которые любят играть с кнопками и тумблерами.

Получение различий между всеми легко доступными характеристиками с помощью реле задержки времени часто может быть сложной задачей. При создании цепей с использованием реле с выдержкой времени возникают такие вопросы, как: что срабатывает безжизненное реле времени, будет ли синхронизация сосредоточена на форме приложения или высвобождении напряжения, когда срабатывает реле результата и т. Д., следует спросить.

Реле с выдержкой времени — это просто управляющие реле со встроенным в цепь отсчетом времени. Их функция — управлять событием по времени. Разница между реле и сообщением безжизненного времени заключается в том, что контакты результата размыкаются и замыкаются: на реле управления это происходит, когда напряжение используется и исчезает с катушки; реле быстрого отключения, соединения могут размыкаться или замыкаться до или с течением времени.

Чаще всего реле с выдержкой времени запускаются или срабатывают одним из двух способов:

  1. приложение Insight Voltage
  2. открытие или закрытие результата по сигналу

Эти триггерные знаки могут быть одного из двух стилей:

  1. изменение управления (высохший контакт), т.е.е., ограничительный выключатель, кнопка движения, смена поплавка и т. д.
  2. напряжение (широко известное как результат питания).

Реле блокировки в любое время, которое создается для запуска с триггером переключения управления с сухим контактом, может быть повреждено, если напряжение подается на клеммы переключения триггера. Только предметы, у которых есть «причина питания», должны использоваться с напряжением в результате.

Чтобы лучше понять идею, необходимо изучить некоторые термины.

Insight Voltage — управляющее напряжение, подаваемое на клеммы Insight.Что касается функции, Insight Voltage либо запустит машину, либо подготовит ее к запуску всякий раз, когда будет применен результат.

Результат в сигнале для определенных функций синхронизации, результат используется для запуска системы после того, как было использовано контрольное напряжение. Как помните выше, эту причину можно рассматривать либо как изменение управления (пересыхание контакта), либо как результат мощности (напряжение).

Выход (вес) — каждое реле с задержкой времени имеет результат (механическое реле или сильное состояние), который открывается и закрывается для управления нагрузкой.

Примите во внимание, что человек должен подавать напряжение для питания напряжения, изменяемого результирующими контактами реле задержки этого периода времени.

Реле с задержкой времени — DARE Electronics, Inc.

Главная> Продукция> Реле с временной задержкой

DARE Electronics объединяет передовые современные схемы синхронизации с твердотельными или электромеханическими выходами для производства полной линейки высоконадежных реле с выдержкой времени.Эта линия включает в себя множество различных точных временных интервалов реле, обычно обозначаемые как:

  • одноразовые таймеры
  • таймеры повторения цикла
  • реле задержки времени рециркуляции
  • полупроводниковые таймеры
  • интервальные таймеры
  • сторожевые таймеры
  • Таймеры с моторным приводом

Эти реле с выдержкой времени доступны в различных стандартных и пользовательских вариантах, как показано на фото выше и в нашем техническом описании реле с задержкой времени. опция с фиксированной выдержкой времени или регулируемой выдержкой времени с выдержкой времени при срабатывании (втягивание) и / или выдержкой времени при расцеплении (отпускание) и нормально разомкнутыми или нормально замкнутыми контактами.

Доступны модели с:

  • Время задержки от миллисекунд до часов
  • Рабочее напряжение:

18-32 В постоянного тока (номинальное 28 В постоянного тока) или

от 105 до 125 В перем. Тока (115 В среднекв. Номинальное) 50 Гц, 60 Гц или 400 Гц

  • Конфигурации контактов реле в:

SPDT, DPDT, 3PDT, 4PDT или 6PDT и

  • Номинальные характеристики контактов реле:

2 А, 5 А, 10 А или 25 А

Если вы не уверены, нужна ли вам задержка при срабатывании (втягивание), задержка при отпускании (отпускание), интервальный таймер, таймер повторного цикла, фиксированное или регулируемое реле задержки времени, проконсультируйтесь с нашим реле задержки времени лист для получения дополнительной информации о каждом из различных типов реле с выдержкой времени.

Для получения информации о типовых спецификациях, стандартных корпусах и подключениях проводки см. Нашу техническую информацию о реле с выдержкой времени или обратитесь к инженеру по продажам за помощью в отношении требований к реле с выдержкой времени. Инженеры по продажам DARE будут рады вместе с вами разработать однократный таймер, таймер повторения / повторного использования, твердотельный, интервальный или сторожевой таймер специально для вашего приложения, или поможет вам определить, какая из различных моделей реле с задержкой времени подходит для вашего приложения.

Например, многие клиенты используют реле временной задержки с задержкой включения (срабатывания) для защиты чувствительного, критически важного оборудования во время включения системы, обеспечивая короткую задержку времени во время запуска до тех пор, пока система не будет полностью под напряжением. Кроме того, реле с временной задержкой может использоваться для упорядочивания событий или управления приборами, а также в цепи аварийной сигнализации или сторожевой схемы. Иногда два реле с выдержкой времени используются вместе друг с другом для обеспечения импульсного или мигающего режима. лампа.Эти два реле задержки времени могут быть объединены внутри в одно реле задержки времени, обычно известное как мигалка или таймер цикла повторения.

Кроме того, в то время как реле с временной задержкой находят множество применений в различных отраслях промышленности, реле с временной задержкой DARE в первую очередь предназначены для удовлетворения жестких экологических требований военной и аэрокосмической промышленности. Как таковой, большинство реле задержки времени DARE, таймеров повторения / повторного цикла, интервальных таймеров, твердотельных реле задержки времени и сторожевых таймеров считаются реле mil-spec, так как они были разработаны для соответствия или превышения требований различных военных спецификаций, такие как MIL-R-83726 (теперь MIL-PRF-83726), MIL-STD-704 и MIL-STD-810.Если ваши потребности в реле с задержкой времени не требуют таких строгих военных или аэрокосмических спецификаций и стандартов, пожалуйста, сообщите нам об этом, чтобы мы могли предложить наиболее подходящее реле с выдержкой времени.

В качестве обзора линейка продуктов реле с задержкой времени DARE включает в себя следующие модели и особенности реле с задержкой времени:

Линия продуктов Выход Функция задержки Фиксированное / Регулируемое Мощность
Таймер Релейный выход Задержка при срабатывании или втягивании Внешний регулируемый резистор Питание от переменного тока
Таймер Релейный выход Задержка при срабатывании или втягивании Внешний регулируемый резистор Питание от постоянного тока
Таймер Релейный выход Задержка при срабатывании или втягивании Фиксированный Питание от переменного тока
Таймер Релейный выход Задержка при срабатывании или втягивании Фиксированный Питание от постоянного тока
Таймер Релейный выход Задержка при выпуске или отключении Внешний регулируемый резистор Питание от переменного тока
Таймер Релейный выход Задержка при выпуске или отключении Внешний регулируемый резистор Питание от постоянного тока
Таймер Релейный выход Задержка при выпуске или отключении Фиксированный Питание от переменного тока
Таймер Релейный выход Задержка при выпуске или отключении Фиксированный Питание от постоянного тока
Таймер Релейный выход Интервальные таймеры Внешний регулируемый резистор Питание от переменного тока
Таймер Релейный выход Интервальные таймеры Внешний регулируемый резистор Питание от постоянного тока
Таймер Релейный выход Интервальные таймеры Фиксированный Питание от переменного тока
Таймер Релейный выход Интервальные таймеры Фиксированный Питание от постоянного тока
Таймер Твердотельный выход Задержка при срабатывании или втягивании Внешний регулируемый резистор Питание от переменного тока
Таймер Твердотельный выход Задержка при срабатывании или втягивании Внешний регулируемый резистор Питание от постоянного тока
Таймер Твердотельный выход Задержка при срабатывании или втягивании Фиксированный Питание от переменного тока
Таймер Твердотельный выход Задержка при срабатывании или втягивании Фиксированный Питание от постоянного тока
Таймер Твердотельный выход Интервальные таймеры Фиксированный Питание от переменного тока
Таймер Твердотельный выход Интервальные таймеры Фиксированный Питание от постоянного тока
Таймер Твердотельный выход Повторный цикл Фиксированный Питание от переменного тока
Таймер Твердотельный выход Повторный цикл Фиксированный Питание от постоянного тока
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *