Схемы электрических соединений: Схемы электрические соединений | Лаборатория Электронных Средств Обучения (ЛЭСО) СибГУТИ

Содержание

Схемы электрических соединений электрических станций и подстанций

1. Схемы электрических соединений электрических станций и подстанций.

Основное
назначение схем
электрических соединений
энергообъектов заключается в
обеспечении связи ее
присоединений между собой в
различных режимах работы.

3. Изменения в структуре схемы электрических соединений энергообъекта может привести к резкому изменению конфигурации энергосистемы. Напри

Изменения в структуре схемы электрических соединений
энергообъекта может привести к резкому изменению
конфигурации энергосистемы. Например, отключение Q7 на
s/s4 делит узел на две части.
• Любой элемент схемы электрических соединений
может служить источником аварийных режимов.
• Любой элемент требуется иногда ремонтировать.
Свойства любой схемы, ее достоинства и недостатки
выявляются в результате анализа последствий аварийных
ситуаций.
Аварийные ситуации, последствия которых анализируются:
1. Отказ
2.Ремонт
3.Ремонт + Отказ
4.Отказ + Отказ
5.Ремонт + Отказ + Отказ
Схемы с однократным принципом подключения
присоединений
(присоединение коммутируется одним выключателем).
Структура – односвязная симметричная схема звезды.
Основные достоинства:
Основной недостаток – следствие
•высокая экономичность;
•наглядность;
•простота;
•возможность отключения
присоединения одним
выключателем
«односвязности» структуры –
неустойчивость к внутренним
повреждениям, любое внутреннее
повреждение требует срабатывания
большого числа выключателей и влечет
за собой потерю большого числа
присоединений
Применение
секционного
выключателя не
устраняет основной
недостаток схемы, а
лишь снижает в два
раза число
одновременно
теряемых
присоединений в
результате внутренних
повреждений.
Применение развилки из разъединителей (схема с двумя
рабочими системами шин) позволяет осуществлять ремонт
систем сборных шин без потери присоединений. Применение
обходного выключателя и обходной системы шин позволяет
производить ремонт выключателя присоединения без потери
присоединения, но не меняет структуру схемы.
Применение развилки из разъединителей (схема с двумя
рабочими системами шин) позволяет осуществлять ремонт
систем сборных шин без потери присоединений. Применение
обходного выключателя и обходной системы шин позволяет
производить ремонт выключателя присоединения без потери
присоединения, но не меняет структуру схемы.
Применение развилки из разъединителей (схема с двумя
рабочими системами шин) позволяет осуществлять ремонт
систем сборных шин без потери присоединений. Применение
обходного выключателя и обходной системы шин позволяет
производить ремонт выключателя присоединения без потери
присоединения, но не меняет структуру схемы.
В нормальном состоянии схема «живет» в состоянии
одиночной секционированной и, по прежнему, любое
внутреннее повреждение приводит к потере всех
присоединений связанных с системой сборных шин.
Следует отметить, что с ростом надежности оборудования
распределительных устройств, недостатки этой структуры
ослабевают, а достоинства — усиливаются.
Схемы с двухкратным принципом подключения
присоединений (присоединение коммутируется двумя выключателями).
Родоначальником данного класса является схема многоугольника – двухсвязная
симметричная структура.
Основные достоинства:
•высокая экономичность;
•наглядность;
•устойчивость к внутренним
повреждениям
Основной недостаток – резкое изменение
конфигурации схемы при ремонтах
любого оборудования кольца.
Схема из кольцевой превращается в
разомкнутую цепочку. В этот период
любое повреждение может привести к
тяжелым последствиям.
Применяемые в настоящее время для высоких классов
напряжения схемы “3/2” и “4/3”являются, по сути, схемами
смежных многоугольников. Существенное увеличение числа
выключателей не устраняет, а ослабляет основной недостаток.
При ремонтах выключателей снижается надежность не всех, а
части присоединений (размыкается не все кольцо, а только его
часть).
А при ремонтах систем сборных шин, размыкаются
все кольца и снижается надежность всех
присоединений.
Схемы с трехкратным принципом подключения
присоединений (присоединение коммутируется тремя выключателями).
Родоначальником данного класса является куб – трехсвязная симметричная структура.
W1
Q1
W2
Q2
Q4
W3
Q3
Q5
Q7
Q6
Q8
W4
Q9
W5
W6
Отказ W2 – отключаются Q2, Q3 и Q5
Отказ Q5 – отключаются Q2, Q3, Q8 и Q9 – на время оператиыных переключений
теряются W2 и W5
W1
W2
Q2
W3
Q3
Q4
Q6
Q8
W4
Q9
W5
W6
W1
W2
Q1
W3
Q3
Q4
Q5
Q6
Q7
Q9
W4
W5
W6
Многоугольник с подменным выключателем
В нормальном состоянии схема «живет» в режиме
многоугольника и кроме того:
•вновь добавленное оборудование отключено от схемы, а, следовательно,
не снижает надежность в нормальном режиме работы;
•ремонт любого выключателя кольца происходит с сохранением
многоугольника.
•ремонт любого оборудования схемы (в том числе и вновь добавленного)
можно проводить с сохранением многоугольника.
Ремонты любого оборудования происходят без
снижения надежности присоединений. Данным
свойством не обладает ни одна из известных схем.
Схемы электрических
соединений подстанций

23. Классификация подстанций

Схемы тупиковых ПС
Схемы ответвтительных ПС
Схемы проходных ПС
Схемы узловых ПС

24. Схемы для тупиковых и ответвительных ПС

*)
**)
**)
*)
23
a)
б)
Рис.2.6. а) Схема № 110-4Н. Два блока с выключателями и неавтоматической перемычкой со стороны линий. Разъединители, отмеченные *),
предусматриваются при наличии питания со стороны СН. Трансформаторы напряжения, отмеченные **), устанавливаются при соответствующем
обосновании. При присоединении одной линии 35 кВ исключается установка разъединителей в перемычке и второй линии 35 кВ.
б) Схема № 110-5. Мостик с выключателем в перемычке и отделителями в цепях трансформаторов. Трансформаторы тока, отмеченные *),
устанавливаются при соответствующем обосновании.

25. Схемы для проходных ПС

*)
*)
*)
*)
*)
24
*)
*)
a)
б)
Рис.2.7. а) Схема № 110-5Н. Мостик с выключателями в цепях линий и ремонтной перемычкой со стороны линий. Трансформаторы тока, отмеченные
*), устанавливаются при соответствующем обосновании. б) Схема № 110-5АН. Мостик с выключателями в цепях трансформаторов и ремонтной
перемычкой со стороны трансформаторов. Трансформаторы тока, отмеченные *), устанавливаются при соответствующем обосновании.

26. Схемы для узловых ПС

*)
*)
*)
*)
*)
28
Рис.2.10. Схема № 110-13. Две рабочие и обходная системы шин. Трансформаторы тока, отмеченные *),
устанавливаются при соответствующем обосновании. Необходимостьустановки разрядников на шинах уточняется при
конкретном проектировании.
Рис.2.11. Схема № 110-14. Две рабочие, секционированные выключателями, и обходная системы шин с двумя обходными и двумя
шиносоединительными выключателями. Трансформаторы тока, отмеченные *), устанавливаются при соответствующем обосновании.
Необходимостьустановки разрядников на шинах уточняется при конкретном проектировании.

27. Схемы для узловых ПС

*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
31
*)
*)
*)
Рис.2.12. Схема № 500-15. Трансформатор-шины с присоединением линий через два выключателя. Cплошной линией показано
подключение реакторов к линиям, а пунктирной — к шинам. Трансформаторы тока, отмеченные *), устанавливаются при
соответствующем обосновании.
*)
Трансформаторы тока, отмеченные *), устанавливаются при соответствующем обосновании
Рис.2.13. Схема № 500-16. Трансформатор-шины с полуторным присоединением линий. Cплошной
линией показано подключение реакторов к линиям, а пунктирной — к шинам. Трансформаторы тока,
отмеченные *), устанавливаются при соответствующем обосновании.
30
*)
Схемы электрических
соединений тепловых
станций с местной нагрузкой
ТЭЦ расположены близко к местам
электропотребления.
Схема Генераторного
Распределительного Устройства ТЭЦ.
PY BH
Схемы районных
электростанций (ГРЭС)
Основа схемы блочной электростанции – энергоблок, который
представляет собой генератор, работающий последовательно
с повышающим трансформатором, который, к тому же, имеет
отбор на собственные нужды. Генератор приводится во
вращение турбиной, вращаемой за счет энергии котла и т.д.
РУВН
ПАР
К
КОНДЕНСАТ
Поэтому, создавая схему электрических соединений
энергообъекта, мы в первую очередь должны заботиться о том,
чтобы связность блока с энергосистемой не прерывалась.
Рассмотрим создание схемы электрических
соединений распредустройства 500 кВ. К РУ
подключены 3 генератора мощностью 300 МВт, а
также 3 ВЛ 500 кВ. Типовой схемой для класса
напряжения 500 кВ является схема 3/2 или 4/3.
Возьмем за основу схему 3/2.
Ремонт В4 + Отказ В8:
Л1
Л2
Л3
Отключаем В5, В7, В9
теряем Б1 и Б2 на время
СШ1
оперативных
переключений.
В3
В1
В2
Ремонт В4 + Отказ В6:
Отключаем В7, В8, В6 –
потеря первого и третьего
В5
В6
В4
блоков на всё время
оперативных
переключений.
В8
В9
В7
Аналогичные ситуации
СШ2
наблюдаем при отказах и
ремонте на параллельных
ячейках.
Б1
Б2
Б3
Главные схемы электрических соединений ГЭС.
Используются специальные трансформаторы, объединяющие несколько генераторов малой
мощности.
РУ 110-220 кВ блочные схемы.
Р У В Н 110 — 220 кВ
Главные схемы электрических соединений атомных электростанций.
Не имеют никаких особенностей.
Имеют большое отличие в схемах собственных нужд.

Главные схемы электрических соединений электростанций

Главная схема электростанции любого типа – это совокупность основного электрооборудования (генераторы, трансформаторы, линии), сборных шин, коммутационной и другой первичной аппаратуры со всеми выполненными между ними в натуре соединениями. Главная схема изображается графически с помощью условных графических и буквенно-цифровых обозначений согласно единой системе конструкторской документации (ЕСКД). Помимо главных схем в данном курсе будут рассмотрены схемы собственных нужд.

Главная схема и схема собственных нужд отображаются в данном учебном пособии в виде принципиальных схем. Принципиальная электрическая схема – графическое изображение элементов электрического устройства и связей между ними. Принципиальная схема не показывает взаимного (физического) расположения элементов, а лишь указывает на то, какие элементы с какими соединяются в принципе.

Также применяются оперативные, монтажные схемы электрических соединений и схемы вторичных соединений. Оперативные схемы служат для отображения истинного состояния элементов схемы на текущий момент времени и используются оперативным персоналом в повседневной работе. Монтажные схемы содержат информацию о физическом расположении элементов схемы и применяются при монтаже и наладке электрооборудования. К схемам вторичных соединений относятся электрические схемы цепей управления, релейной защиты и автоматики, контроля состояния оборудования, автоматизированной системы управления и т. п.

Вернёмся к главным схемам электростанций. Выбор главной схемы является определяющим при проектировании электрической части электростанции, так как он определяет полный состав элементов и связей между ними. Выбранная главная схема является исходной при составлении принципиальных схем электрических соединений, схем собственных нужд, схем вторичных соединений, монтажных схем и т. д.

На чертеже главные схемы изображаются в однолинейном исполнении (то есть показана лишь одна фаза из трёх реально существующих) при отключенном положении всех элементов установки. В некоторых случаях допускается изображать отдельные элементы схемы в рабочем положении, а также в трёхфазном исполнении.

При проектировании электроустановки до разработки главной схемы составляется структурная схема выдачи мощности, на которой показываются основные функциональные части электроустановки (распределительные устройства, трансформаторы, генераторы) и связи между ними. Структурные схемы служат для дальнейшей разработки более подробных и полных принципиальных схем, а также для общего ознакомления с работой электроустановки.

На чертежах этих схем функциональные части изображаются в виде прямоугольников или условных графических изображений. Никакой аппаратуры (выключателей, разъединителей, трансформаторов тока и т. д.) на этой схеме не показывают.

Структурные схемы электростанций могут быть блочными, с генераторным распределительным устройством (ГРУ) и комбинированными.

Вариант блочной схемы показан на рис. 9.1. На данном рисунке каждый из шести блоков состоит из одного генератора и одного блочного повышающего трансформатора. Электроэнергия на повышенном напряжении поступает на распределительные устройства высшего (РУ-ВН) и среднего (РУ-СН) напряжений и далее – по линиям электропередачи в энергосистему. Как правило, на электростанции имеются два РУ повышенного напряжения, которые для надежности связываются автотрансформаторами связи (АТ) – одним или двумя.

Выключатели повышенного напряжения показаны условно. В действительности они находятся в составе соответствующего РУ, а их количество на одно присоединение не обязательно равно одному. Возможные схемы РУ подробно рассмотрены в главе 8.

На рис. 9.1 не показаны рабочие и резервные трансформаторы собственных нужд, секции собственных нужд одного из блоков, магистраль резервного питания – более подробно соответствующие схемы приведены в главе 11.

Рис. 9.1. Главная схема блочной электростанции

В зависимости от количества генераторов и трансформаторов в блоке и от способа их соединения различают следующие виды блоков, перечисленные в порядке убывания надежности и стоимости капитальных затрат:

моноблок, когда для одного генератора используется один трансформатор – рис. 9.2а;

объединенный блок, когда два моноблока объединяются между собой на стороне высшего напряжения повышающих трансформаторов и имеют один общий выключатель высокого напряжения – рис. 9.2б;

укрупненный блок, когда два генератора подключены к одному общему повышающему трансформатору с расщепленной обмоткой низшего напряжения – рис. 9.2в;

сдвоенный блок, когда два генератора подключены к общей шине, а затем – к повышающему трансформатору с нерасщепленной обмоткой низшего напряжения – рис. 9.2г.

а) б) в) г)

Рис. 9.2. Разновидности блоков генератор-трансформатор

Моноблок – наиболее надёжный блок, т. к. при выходе из строя любого элемента одного из моноблока соседний моноблок остаётся в работе.

Объединённый блок дешевле двух моноблоков, т. к. происходит экономия на одном выключателе высокого напряжения. С другой стороны надёжность объединённого блока ниже, т. к. при аварийном или плановом ремонте единственного выключателя высшего напряжения приходится останавливать оба генератора.

Укрупнённый блок ещё дешевле, т. к. происходит экономия на повышающем трансформаторе. Но при выходе из строя единственного трансформатора произойдёт потеря обоих генераторов, тогда как в объединённом блоке на время ремонта трансформатора отключится лишь один генератор. Второй генератор отключится кратковременно – на время отключения выводимого в ремонт трансформатора разъединителями.

Сдвоенный блок дешевле укрупнённого, т. к. нерасщеплённый трансформатор при прочих равных дешевле расщеплённого. Однако надёжность такой схемы ниже. Действительно, оба генератора имеют общую электрическую точку – генераторную шину. Данная шина является дополнительным элементом, в результате чего вероятность коротких замыканий увеличивается по отношению к другим видам блоков. С другой стороны, как и в случае укрупнённого блока, КЗ могут происходить и на самих генераторах. Здесь также есть принципиальное отличие по отношению к укрупнённому блоку. В сдвоенном блоке при коротком замыкании на одном из генераторов, на другом генераторе произойдёт значительное снижение напряжения, т. к. между генераторами практически отсутствует сопротивление. В схеме укрупнённого блока уменьшение напряжения также произойдёт, но в меньшей степени – из-за большого сопротивления расщеплённой обмотки низшего напряжения. По этой же причине в схеме укрупнённого блока будут ниже токи КЗ.

Для единичной мощности генератора 1000 МВт используется блок особого типа – с 6-фазной обмоткой генератора и с расщеплённой обмоткой повышающего трансформатора – см. рис. 9.3.

Рис. 9.3. Блок с 6-фазной обмоткой генератора и с расщеплённой обмоткой повышающего трансформатора

Блочные схемы характерны для крупных электростанций, электроэнергия которых передаётся на большие расстояния – АЭС, КЭС, мощные ТЭЦ и ГЭС. Действительно, передача электроэнергии на большие расстояния наиболее экономична при повышенных напряжениях.

От блочных схем перейдём к схемам с ГРУ. Схемы с ГРУ характерны для ТЭЦ, которые производят не только электроэнергию, но и тепловую энергию и поэтому находятся рядом с потребителем, на расстоянии до 10 км (электрическую нагрузку такого потребителя будем называть местной). Следовательно, для передачи электроэнергии на малые расстояния можно использовать сравнительно невысокое напряжение, то есть генераторное напряжение 6,3 кВ или 10,5 кВ. С другой стороны, ТЭЦ должна быть связана с единой энергосистемой, куда выдаются избытки мощности, а эту связь дешевле выполнить на повышенном напряжении 110 кВ или 220 кВ. Поэтому помимо ГРУ схема ТЭЦ имеет также РУ-ВН для передачи электроэнергии на большие расстояния. Если вблизи ТЭЦ имеется энергоёмкое производство, то его питание осуществляется на напряжении 35 кВ или 110 кВ, в этом случае предусматривается ещё одно распределительное устройство – РУ-СН. На рис. 9.4 изображен один из вариантов схемы электростанции с использованием ГРУ.

Рис. 9.4. Главная схема с ГРУ

Рис. 9.5. Комбинированная главная схема

Достоинства схем с ГРУ по сравнению с блочными схемами:

достигается экономия на повышающих трансформаторах и выключателях повышенного напряжения, – их число может быть меньше количества генераторов;

схема выдачи мощности становится более гибкой и надёжной, – при выходе из строя одного из генераторов нет необходимости отключать трансформатор и наоборот при отключении одного из трансформаторов другой трансформатор может быть кратковременно перегружен.

Недостатки схем с ГРУ по сравнению с блочными схемами:

из-за увеличения токов КЗ происходит удорожание выключателей и токоведущих частей генераторного напряжения;

для снижения токов КЗ приходится применять токоограничивающие реакторы;

при больших мощностях генераторов токи КЗ становятся настолько значительными, что схема становится нереализуемой технически;

возникают дополнительные капитальные затраты на сооружение ГРУ с многочисленными аппаратами и токоведущими частями.

Кроме рассмотренных выше типов схем выдачи мощности, структурная схема станции может быть также комбинированной, то есть совмещать достоинства блочных схем и схем с ГРУ – рис. 9.5. Комбинированные схемы используются в случае ТЭЦ.

Представленные схемы являются типовыми. Для конкретных электростанций схемы могут несколько варьироваться с изменением топологии и количества элементов. Далее рассмотрим особенности построения главных схем электростанций различного типа.

9.
1. Главная схема теплоэлектроцентрали

Рассмотрим различные подходы к формированию главной схемы ТЭЦ в зависимости от доли мощности, потребляемой местной нагрузкой, и от напряжения, на котором электроэнергия выдаётся в энергосистему и к местной нагрузке.

1. Рассмотрим ТЭЦ с большой местной нагрузкой (РМН > 30 % от Рген) на напряжении 6-10 кВ. В этом случае используется чисто блочный принцип – рис. 9.6. Мощность, выдаваемая собственным нуждам, обозначена РСН. Связь с энергосистемой осуществляется обычно от одного РУ-ВН на напряжениях 110-220 кВ через два (реже один) двухобмоточных трансформатора.

Рис. 9.6. Главная схема ТЭЦ с большой местной нагрузкой на напряжении 6-10 кВ

2. Рассмотрим ТЭЦ с большой местной нагрузкой (РМН > 30 % от Рген) на напряжении 6-110 кВ. В этом случае помимо РУ-ВН появляется РУ-СН – рис. 9.7. Соответственно приходится либо использовать трёхобмоточные трансформаторы (рис. 9.7а) и автотрансформаторы (рис. 9.7б), либо увеличивать число двухобмоточных трансформаторов (рис. 9.7в). Трёхобмоточные трансформаторы используется в случае, когда напряжения РУ-ВН и РУ-СН отличаются значительно – например 110/35 кВ или 220/35 кВ. Если напряжения РУ-ВН и РУ-СН отличаются в меньшей степени (220/110 кВ), то используют трёхобмоточные автотрансформаторы. В этом случае проявляются достоинства автотрансформаторов по сравнению с обычными трансформаторами – см. раздел 4.3.

Рис. 9.7. Главная схема ТЭЦ с большой местной нагрузкой на напряжении 6-110 кВ

а – с трёхобмоточными трансформаторами;

б – с трёхобмоточными автотрансформаторами;

в – с двухобмоточными трансформаторами

3. Рассмотрим ТЭЦ с малой местной нагрузкой (РМН < 30 % от Рген) на напряжении 6-10 кВ. В этом случае используется чисто блочная схема, а питание местной нагрузки происходит от отпайки генераторного токопровода, обычно через сдвоенные токоограничивающие реакторы – рис. 9.8.

Рис. 9.8. Главная схема ТЭЦ с малой местной нагрузкой на напряжении 6-10 кВ

4. Рассмотрим ТЭЦ с большой местной нагрузкой (РМН > 30 % от Рген) на напряжении 6-10 кВ и с генераторами разной мощности, что характерно для расширения существующей электростанции. Например, до расширения на ТЭЦ имелись генераторы единичной мощностью Рген ≤ 110 МВт, работающие на общее ГРУ. Такие генераторы имеют номинальное напряжение 6,3 кВ или 10,5 кВ [1]. Допустим в процессе расширения станции предусматривается установка более мощных генераторов единичной мощностью Рген ≥ 120 МВт. Эти генераторы невозможно подключить к существующему ГРУ по двум причинам. Во-первых, согласно [1] их номинальное напряжение больше либо равно 15,75 кВ, то есть не соответствует напряжению ГРУ. Во-вторых, даже если бы напряжения соответствовали, то подключение дополнительного мощного генератора к ГРУ повлекло бы за собой значительное увеличение токов КЗ, а следовательно – невозможность выбора токоведущих частей и коммутационных аппаратов. Поэтому дополнительные генераторы подключаются к РУ-ВН по блочному принципу, а схема станции становится комбинированной – рис. 9.9.

Рис. 9.9. Комбинированная главная схема ТЭЦ

9.2. Главная схема конденсационной тепловой электростанции

Требования к главным схемам электрических соединений КЭС сформулированы в [10]. Главные схемы электрических соединений КЭС выбираются на основании утвержденной схемы развития энергосистемы и участка последней, к которому присоединяется данная электростанция, а также с учетом общей и единичной мощности устанавливаемых агрегатов.

Главная схема КЭС строится по чисто блочному принципу, т. к. электроэнергия от КЭС передаётся на большое расстояние и на повышенном напряжении, а значительная местная нагрузка на генераторном напряжении отсутствует. Обычно в главных схемах КЭС используют моноблоки. Пример главной схемы КЭС с шестью блоками показан на рис. 9.1.

9.3. Главная схема атомной электрической станции

Требования к главным схемам электрических соединений АЭС сформулированы в [11].

Схемы присоединения к энергосистеме должны обеспечивать в нормальных исходных режимах на всех стадиях сооружения АЭС выдачу полной введенной мощности и сохранение устойчивости ее работы в энергосистеме без воздействия системной противоаварийной автоматики при отключении любой отходящей линии электропередачи или автотрансформатора связи.

В ремонтных режимах, а также при отказах выключателей главной схемы и устройств релейной защиты, устойчивость работы АЭС в энергосистеме должна обеспечиваться действием противоаварийной системной автоматики на разгрузку станция.

Как уже отмечалось, АЭС является, по сути, конденсационной электростанцией с дополнительным циклом, относящимся к ядерному реактору. В связи с этим главная схема АЭС аналогична главной схеме КЭС. Отличие состоит в большем разнообразии видов блоков – на АЭС используются не только моноблоки, но и более сложные блочные схемы. Это объясняется двумя причинами. Во-первых, имеются блоки АЭС достаточно большой мощностью – РБМК-1000 МВт и ВВЭР-1000 МВт на существующих АЭС и ВВЭР-1200 МВт на строящихся. Во-вторых, на некоторых АЭС один реактор обслуживается двумя генераторами – ВВЭР-440 (2х220 МВт) и РБМК-1000 (2х500 МВт), или даже тремя генераторами – БН-600 (3х200 МВт).

Главная схема АЭС с реакторами ВВЭР-440 имеет объединенные блоки – два генератора ТВВ-220 и два трансформатора ТЦ-250 – рис. 9.10.

Главная схема блоков ВВЭР-1000 и ВВЭР-1200 имеет отличительную особенность – имеется 6-фазный генератор, подключенный к расщепленному повышающему трансформатору. На рис. 9.11 показана главная схема проекта Ленинградской АЭС-2.

Рис. 9.10. Главная схема Кольской АЭС

Рис. 9.11. Главная схема проекта Ленинградской АЭС-2

Главная схема АЭС с реакторами РБМК-1000 содержит укрупненные блоки – два генератора ТВВ-500 и расщеплённые трансформаторы. При этом в связи с большими перетоками мощности используется группа из трёх однофазных трансформаторов ОРЦ-417. На схемах показывается один однофазный трансформатор, т. к. схема однолинейная. Главная схема АЭС с реакторами РБМК-1000 показана на рис. 9.12 на примере Ленинградской АЭС.

Рис. 9.12. Главная схема действующей Ленинградской АЭС-1

Главная схема АЭС с реакторами БН-600 изображена с учётом того, что один реактор обслуживается тремя генераторами – рис. 9.13.

Рис. 9.13. Главная схема Белоярской АЭС

9.4. Главная схема гидравлической электростанции

Требования к главным схемам электрических соединений ГЭС сформулированы в [12] и во многом совпадают с аналогичными требованиями для АЭС.

Дополнительно учитывается возможность работы гидроагрегатов в режиме синхронных компенсаторов, высокая маневренность гидроагрегатов и более частые коммутации, связанные с участием в покрытии пиковой и полупиковой части графика нагрузки энергосистемы, возможность работы гидрогенераторов в режиме потребления реактивной мощности.

Гидроэлектростанции с агрегатами средней и большой мощности (от 50 МВт и выше) обычно не имеют генераторного распределительного устройства (ГРУ) и всю энергию выдают в энергосистему на напряжениях 110-750 кВ по блочным схемам. В главных электрических схемах ГЭС применяются моноблоки, а также объединенные, укрупнённые и сдвоенные блоки.

Укрупнение и объединение блоков позволяет уменьшить число присоединений к распределительному устройству высокого напряжения и применить схемы с меньшим числом выключателей на присоединение, например, схему многоугольника вместо схемы “3/2”. Это может оказаться существенным для ГЭС, сооружаемых в районах со сложной топографией и ограниченной площадью для РУ высокого напряжения, а также в условиях ограниченной площади под главные повышающие трансформаторы со стороны нижнего или верхнего бьефа.

Главная электрическая схема ГЭС должна учитывать очередность ввода агрегатов и возможность расширения распределительных устройств повышенных напряжений в соответствии с перспективой развития энергосистемы. Выдача электроэнергии от гидроагрегатов первых очередей строящейся электростанции должна предусматриваться через соответствующие части постоянных распределительных устройств.

Главную схему ГЭС рассмотрим на примере проекта Саяно-Шушенской гидростанции – рис. 9.14.

На Саяно-Шушенской ГЭС используются уникальные гидрогенераторы СВФ-1275/275-42 активной мощностью 640 МВт и полной мощностью 711 МВА, что на сегодняшний день в России является максимальной единичной мощностью гидрогенератора. Специально для данного гидрогенератора разработана группа из трёх однофазных трансформаторов 3хОРЦ-533000/500//15,75-15,75 с двумя расщепленными обмотками генераторного напряжения.

Рис. 9.14. Главная схема Саяно-Шушенской ГЭС

9.5. Главная схема гидроаккумулирующей электростанции

Гидроаккумулирующие электростанции ГАЭС имеют обратимые синхронные генераторы-двигатели мощностью в сотни МВт. В связи с этим важно обеспечить допустимые колебания напряжения на шинах повышенных напряжений РУ при различных режимах работы обратимых агрегатов, в том числе при прямом асинхронном пуске. Для облегчения операции пуска обратимых машин ГАЭС в насосном режиме необходимо использование передовых технических решений за счет использования частотного метода запуска через регулируемые тиристорные статические преобразователи. Для включения, отключения и реверсирования обратимых агрегатов ГАЭС используются два выключателя на генераторном напряжении – рис. 9.15.

Рис. 9.15. Главная схема Ленинградской ГАЭС

12.2. Оперативная схема и схема-макет электрических соединений электростанций и подстанций

12.2. Оперативная схема и схема-макет электрических соединений электростанций и подстанций

Основные требования к оперативным схемам и схемам-макетам изложены в указанной выше в п. 10.1 «Инструкции по переключениям в электроустановках».

На заготовленных оперативных схемах электрических соединений электростанций и ПС все коммутационные аппараты и стационарные заземляющие устройства изображаются в положении (включенном или отключенном), соответствующем схеме нормального режима, утвержденной главным инженером станции или предприятия электрических сетей.

Оборудование новых присоединений, на которое напряжение может быть подано включением коммутационных аппаратов, считается действующим и наносится на оперативную схему.

На оперативных схемах и схемах-макетах отражаются все изменения положений коммутационных аппаратов, устройств РЗиА, места наложения переносных заземлений и включения заземляющих ножей.

При сдаче дежурства персонал передает по смене оперативную схему (схему-макет) электроустановки с обозначением на ней действительных положений коммутационных аппаратов, отключенных устройств РЗиА, а также заземляющих устройств.

Действительные положения коммутационных аппаратов, отключенных устройств РЗиА и заземляющих устройств обозначаются нанесением на оперативную схему условных знаков непосредственно на графическое обозначение аппарата или рядом с графическим обозначением соответствующего аппарата (устройства), если положение аппарата (устройства) было изменено.

Знаки наносятся карандашом, чернилами или пастой красного цвета.

Знак «З!» — устройство релейной защиты отключено — наносится рядом с графическим обозначением защищаемого оборудования (генератор, трансформатор, линия, сборные шины).

Знак «А!» — устройство автоматики отключено — наносится рядом с графическим обозначением выключателя, на который воздействует автоматическое устройство.

При снятии с оборудования переносного заземления, а также при включении в работу отключенного ранее устройства релейной защиты или автоматики соответствующие знаки на оперативной схеме перечеркиваются карандашом, ручкой (чернилами или пастой) темного цвета.

Не допускается исправление ошибочно нанесенных знаков. Ошибочные знаки обводятся кружком синего цвета, а рядом наносятся правильные знаки.

Срок действия оперативной схемы не ограничивается; новая оперативная схема составляется по мере необходимости.

Оперативная схема имеет порядковый номер. При сдаче дежурства оперативная схема подписывается сдающим и принимающим дежурство с указанием даты и времени.

При пользовании схемами-макетами ведение оперативных схем необязательно.

На схемах-макетах все изменения положений коммутационных аппаратов, устройств РЗиА, заземляющих устройств отражаются с помощью символов коммутационных аппаратов и навесных условных знаков. Порядок ведения схемы-макета электроустановки указывается в инструкции энергопредприятия.

Допускается ведение оперативной схемы на компьютере. Порядок ведения оперативной схемы на компьютере также устанавливается в инструкции энергопредприятия.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Vi. схемы электрических соединений объектов электроэнергетики и осуществление переключений в них постановление правительства РФ от 27-12-2004 854 об утверждении правил оперативно-диспетчерского управления в электроэнергетике (2021). Актуально в 2019 году

размер шрифта

ПОСТАНОВЛЕНИЕ Правительства РФ от 27-12-2004 854 ОБ УТВЕРЖДЕНИИ ПРАВИЛ ОПЕРАТИВНО-ДИСПЕТЧЕРСКОГО УПРАВЛЕНИЯ В… Актуально в 2018 году

VI. Схемы электрических соединений объектов электроэнергетики и осуществление переключений в них

59. Схемы электрических соединений объектов электроэнергетики (в том числе для ремонтных электроэнергетических режимов энергосистемы) должны обеспечивать:

снабжение потребителей электрической энергией, качество которой соответствует требованиям технических регламентов и иным обязательным требованиям;

запас устойчивости энергосистем, определяемый системным оператором;

соответствие возможных параметров электроэнергетического режима энергосистемы параметрам, допустимым для оборудования;

максимальную пропускную способность электрических сетей;

локализацию аварий при минимизации отклонений производства и потребления электрической энергии от уровня, предшествовавшего аварийному электроэнергетическому режиму энергосистемы.

60. Схемы электрических соединений объекта электроэнергетики ежегодно утверждаются соответствующим субъектом электроэнергетики. Схемы электрических соединений объектов электроэнергетики, входящих в операционную зону диспетчерского центра, утверждаются руководителем этого диспетчерского центра.

61. Все переключения в схемах объектов электроэнергетики осуществляются в соответствии с инструкциями по производству переключений соответствующих субъектов электроэнергетики. Указанные инструкции составляются в соответствии с требованиями, определяемыми системным оператором (в технологически изолированной территориальной электроэнергетической системе — соответствующим субъектом оперативно-диспетчерского управления).

62. Субъекты электроэнергетики и диспетчерские центры определяют в отношении соответствующих объектов электроэнергетики перечни переключений, требующих соблюдения строгой последовательности операций (сложных переключений). Указанные перечни пересматриваются при изменении схемы электрических соединений и состава оборудования объекта электроэнергетики.

Сложные переключения осуществляются на основании документов, устанавливающих состав и последовательность соответствующих операций (программ и бланков переключений).

63. В диспетчерской команде по осуществлению переключений указывается последовательность операций со степенью детализации, не допускающей неверную трактовку команды дежурным работником. Дежурному работнику подается одновременно не более одной диспетчерской команды, содержащей операции одного целевого назначения.

3.1 Составление полных схем электрических соединений. Проектирование районной электрической сети 220/110 кВ

Похожие главы из других работ:

Выбор основного оборудования на проектируемой подстанции

2. Выбор и обоснование главной схемы электрических соединений. Разработка схем и распределительных устройств собственных нужд

Проектирование подстанции 220/110/10 кВ

1. Обоснование выбора схем электрических соединений подстанции

На основе исходных данных предусматриваются два варианта структурных схем. На основе технико-экономического расчета прошел вариант №1. Согласно НТППП на стороне напряжения 220 кВ принимаем схему четырехугольника…

Проектирование районной понизительной подстанции

3. Выбор электрических схем первичных соединений подстанции

Распределительным устройством (РУ) называется электрическая установка, которая служит для приёма электроэнергии от генераторов станции или трансформаторов подстанции и распределения её по потребителям…

Проектирование районной электрической сети

1.9 Формирование схем электрических соединений вариантов сети

В связи с конструктивными недостатками схем на отделителях и короткозамыкателях и отрицательным воздействием их работы при коротких замыканиях на оборудование и потребителей…

Проектирование районной электрической сети

2. Составление полных схем электрических соединений

Полные схемы электрических соединений включают в себя схемы распределительных устройств (РУ) на подстанциях и схемы присоединения подходящих линий к шинам подстанций…

Проектирование районной электрической сети 220/110 кВ

2. Составление полных схем электрических соединений, выполнение предварительного технико-экономического расчёта каждого варианта

Рисунок 18. Полная схема электрического соединения радиальная сеть Рисунок 19. Полная схема электрического соединения кольцевая сеть На основании полных схем электрических соединений произведем технико-экономические расчеты для обеих схем…

Проектирование сети 110-150 кВ для передачи и распределения электроэнергии

1.9 Формирование схем электрических соединений вариантов сети

На выбор рационального варианта построения сети существенное влияние оказывают главные схемы электрических соединений понижающих подстанций Главная схема электрических соединений определяет основные качества электрической части станций…

Проектирование ТЭЦ – теплоэлектроцентрали

7. Выбор схем электрических соединений распределительных устройств электростанции

Распределительное устройство — электроустановка, предназначенная для приема и распределения электрической энергии на одном классе напряжения. Распределительное устройство низшего напряжения. Число присоединений к секции равно 5…

Проектирование тяговой подстанции переменного тока

2. Составление однолинейной схемы главных электрических соединений тяговой подстанции.

Схема главных электрических соединений составлена на основе типовых проектных решений приведенных в [2, 4]. Тяговая подстанция получает питание по двум одно-цепным линиям 110 кВ, являющимися частью системы энергоснабжения района…

Проектирование электрической сети

7.1 Выбор схем электрических соединений РУ ПС на стороне ВН

Наиболее дорогостоящим оборудованием распределительных устройств являются высоковольтные выключатели, и поэтому выбор схем распределительных устройств выполняется только с целью определения числа их ячеек…

Проектирование электрической части станции типа ТЭЦ

13. Выбор схем электрических соединений РУ электростанции

электростанция мощность трансформатор Распределительное устройство — электроустановка, предназначенная для приема и распределения электрической энергии на одном классе напряжения. · Распределительное устройство среднего напряжения…

Проектирование электропередачи большой пропускной способности

5. Разработка полных принципиальных схем вариантов электропередачи

На электростанции будем использовать укрупнённые энергоблоки, схему ОРУ станции принимаем по [1,10] трансформатор-шины с присоединением линий через два выключателя для первого варианта, для второго используем полуторную схему…

Районная электрическая сеть

5. Выбор главных схем электрических соединений подстанций

Схемы электрических соединений понижающих ПС 110…220/10 кВ на стороне ВН определяется назначением каждой из ПС и ее местоположением в составе сети. Это могут быть узловая, проходная, тупиковая или на ответвлениях от линии ПС…

Реконструкция внешнего электроснабжения организации

2.2.3 Выбор электрических схем первичных соединений подстанции

Распределительным устройством называется электрическая установка, которая служит для приёма электроэнергии от генераторов станции или трансформаторов подстанции и распределения её по потребителям…

Характеристика подстанции «Бисерово» 35/10 кВ

2.2 Выбор главных схем электрических соединений

схема электрических соединений — это… Что такое схема электрических соединений?

схема электрических соединений
connection layout

Большой англо-русский и русско-английский словарь. 2001.

  • схема экскавации
  • схема энергетических уровней

Смотреть что такое «схема электрических соединений» в других словарях:

  • Схема электрических соединений объектов электроэнергетики — схема электрических соединений объекта (объектов) электроэнергетики характеристика технологического режима работы объекта электроэнергетики (электроэнергетического режима энергосистемы), определяющая состояние соединения оборудования объекта… …   Официальная терминология

  • схема электрических соединений энергосистемы — Схематическое представление связей между электрическими станциями энергетической системы и пунктами преобразования, распределения и потребления электрической энергии …   Политехнический терминологический толковый словарь

  • Однолинейная схема электрических соединений электроустановки — должна быть составлена для всех напряжений каждой электроустановки при нормальных режимах работы оборудования. Утверждается 1 раз в 2 года ответственным за электрохозяйство потребителя. ПТЭЭП, п. 1.5.18 …   Коммерческая электроэнергетика. Словарь-справочник

  • схема — Упрощённое графическое изображение предмета или процесса с пояснением и описанием [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] схема Условное графическое изображение объекта, в общих чертах передающее суть его… …   Справочник технического переводчика

  • схема — Упрощённое графическое изображение предмета или процесса с пояснением и описанием [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] схема Условное графическое изображение объекта, в общих чертах передающее суть его… …   Справочник технического переводчика

  • схема — 2.59 схема (schema): Описание содержания, структуры и ограничений, используемых для создания и поддержки базы данных. Источник: ГОСТ Р ИСО/МЭК ТО 10032 2007: Эталонная модель управления данными 3.1.17 схема : Документ, на котором показаны в виде… …   Словарь-справочник терминов нормативно-технической документации

  • Схема изделия — У этого термина существуют и другие значения, см. Схема. Схема изделия  согласно ЕСКД (ГОСТ 2.701), графический документ, на котором в виде условных обозначений или изображений показаны составные части некоторого изделия и связи между ними.… …   Википедия

  • главная электрическая схема (ВЭС) — 3.4 главная электрическая схема (ВЭС): Схема электрических соединений основного оборудования электрической части ветроэлектростанции (ВЭУ, ЛЭП и РУ) с указанием типов и основных электрических параметров оборудования, она включает все… …   Словарь-справочник терминов нормативно-технической документации

  • главная электрическая схема электростанции — 10 главная электрическая схема электростанции [подстанции] Схема соединений основного оборудования электрической части электростанции [подстанции] с указанием типов и основных электрических параметров оборудования Источник: ГОСТ 24291 90:… …   Словарь-справочник терминов нормативно-технической документации

  • главная электрическая схема электростанции (подстанции) — 3.7 главная электрическая схема электростанции (подстанции): Схема соединений основного оборудования электрической части электростанции (подстанции) с указанием типов и основных электрических параметров оборудования. Источник …   Словарь-справочник терминов нормативно-технической документации

  • СТО 70238424.29.220.20.001-2009: Аккумуляторные установки электрических станций. Организация эксплуатации и технического обслуживания. Нормы и требования — Терминология СТО 70238424.29.220.20.001 2009: Аккумуляторные установки электрических станций. Организация эксплуатации и технического обслуживания. Нормы и требования: 3.1 аккумулятор (элемент) : Совокупность электродов и электролита, образующая… …   Словарь-справочник терминов нормативно-технической документации


Зарайский Электротехнический Завод | Схемы электрических соединений

Ниже приведены часто используемые схемы КТПБ. Полный перечень вы можете найти, загрузив ТИ-064, доступный к загрузке справа страницы.

Схемы электрических соединений и оборудование главных цепей элементов КТПБ приведены в таблице 3.

Таблица 3.

Схема 35-3Н

Блок (линия – трансформатор) с выключателем

Схема 35-4Н

Два блока с выключателем и неавтоматической перемычкой со стороны линии

Схема 35-9

Секционированная система шин

Схема 35-5А

С автоматической перемычкой

Схема 35-5Б

С автоматической перемычкой

Схема 35-5АН

С автоматической перемычкой

Схема 110-1

Блок (линия – трансформатор) с разъединителем

Схема 110-3Н

Блок (линия – трансформатор) с выключателем

Схема 110-4Н

Схема с неавтоматической перемычкой со стороны линий

Схема 110-5Н

Мостик с выключателями в цепях трансформатора и ремонтной перемычкой со стороны линий

Схема 110-5АН

Мостик с выключателями в цепях линий и ремонтной перемычкой со стороны трансформатора

Схема 110-6

Схема транзита


Как читать автомобильные электрические схемы (Краткая версия для начинающих) — Rustyautos.com

Автомобильная электрическая схема может выглядеть устрашающе, но как только вы поймете несколько основ, вы увидите, что они на самом деле очень простые.

Схема подключения автомобиля — это карта. Чтобы прочитать его, определите рассматриваемую цепь и, начиная с источника питания, проследите за ней до земли. Используйте легенду, чтобы понять, что означает каждый символ в цепи.

Я работаю автомехаником более двадцати лет, мне всегда нравилась электрическая сторона ремонта автомобилей.Прочитав этот пост, вы поймете, как читать основную электрическую схему, которая, как вы знаете, является ключом к быстрому обнаружению электрических проблем.

Понимание базовой схемы

Здесь я объясню основной принцип, лежащий в основе схемы. Это легко, и если вы уже знакомы, можете пропустить его.

Цепь проводки называется так, потому что для протекания напряжения проводка должна проходить полный круг. Разрыв или ограничение в круге вызовет прерывистый или постоянный дефект.

Заземляющий путь обратно к отрицательному полюсу аккумулятора, отмечен черным цветом

Питание покидает положительную (красный знак плюс) сторону автомобильного аккумулятора через кабель питания и всегда активно ищет кратчайший возможный обратный путь к отрицательному полюсу (знак минус на аккумуляторе). кожух) сторона автомобильного аккумулятора.

Обратный путь к отрицательной стороне батареи после нагрузки известен как путь заземления. Нагрузкой является то, что есть у потребителя, на диаграмме выше это свет.

Базовая электрическая схема

Очевидно, будут более сложные схемы, которые будут иметь реле и блоки управления, но помните, что все они работают в соответствии с одной и той же основной идеей.

Питание оставляет положительный полюс батареи и ищет кратчайший путь к заземленной стороне цепи.

Символ заземления обозначает соединение с шасси

Типичная базовая схема состоит из пяти важных частей:

  1. Источник питания (положительный от батареи)
  2. Предохранитель (защищает цепь от перегрузки)
  3. Переключатель (ручной или управляемый)
  4. Нагрузка ( Лампочка, двигатель и т. Д.)
  5. Земля (обратный путь к отрицательной стороне аккумулятора)

Что такое мощность?

Мощность — это напряжение батареи, и в любой цепи путь к нагрузке от плюса батареи может быть описан как сторона цепи питания.

Что такое земля?

Как вы знаете, напряжение любит проходить через любой металл, а не только через металл внутри проводов. Таким образом, заземление — это любая металлическая часть шасси или двигателя, подключенная к минусу аккумуляторной батареи.

Путь заземления выделен синим.

Путь возврата после нагрузки известен как сторона заземления цепи. И обычно не отображается на схеме как провод, идущий к отрицательной стороне батареи, вместо этого используется символ заземления.

Что такое реле?

Реле не сильно изменились с годами, они используются в старых и новых машинах, хорошая идея никогда не устареет.

Функция реле состоит в том, чтобы управлять цепью высокого тока, такой как стартер или фары, с помощью схемы переключателя низкого тока.

Повышенный ток через небольшой переключатель может привести к его перегоранию и выходу из строя, возможно, к возгоранию.

Реле часто встречаются в цепях, а также размещаются в блоках управления. Когда они являются неотъемлемой частью блока управления, схема часто ссылается на них, но это не будет исправным реле.

Традиционно клеммы реле пронумеровывались двузначными числами, но в последних версиях используются однозначные числа, я обозначил их на схеме ниже.

Как это работает?

Реле — это электромагнитный переключатель, он имеет две отдельные цепи: цепь управления и цепь нагрузки. Переключатель приводится в действие вручную, или блок управления передает питание через клемму 2/86, которая передается на землю через клемму 4/85.

Это приводит к тому, что катушка реле становится магнитной, что закрывает подвижный якорь внутри реле. Когда он закрыт (открыт на приведенной выше диаграмме), он позволяет энергии перемещаться от батареи к свету.(Через контакты 30 и 87)

Если вам нужна помощь в понимании DVOM, также известного как мультиметр, ознакомьтесь с инструкциями по использованию мультиметров Kindle по ссылке ниже на Amazon.

Amazon Как использовать мультиметр

Когда переключатель выключен (аккумулятор отключен), катушка больше не намагничивается, и подпружиненный подвижный якорь возвращается в открытое положение (положение по умолчанию).

Профессиональный совет: при поиске неисправностей в схемах критически важным является качественный DVOM. Дешевые вольтметры подходят для определения мощности и заземления, но современные автомобили потребуют точных показаний сопротивления для правильной диагностики неисправной цепи или компонента.

Неправильные показания счетчика могут вызвать массу проблем. Если вы покупаете вольтметр, купите что-нибудь вроде Klein MM400, он идеально подходит для новичков или ветеранов и удобно продается и доставляется через Amazon.com.

Реле цепи стартера на рисунке выше работает аналогичным образом. При повороте переключателя зажигания в положение пуска напряжение проходит через контакт 86 и заземляется на 85. Это намагничивает катушку, что, в свою очередь, заставляет якорь (контакты 30-87) замыкаться, замыкая цепь на стороне нагрузки, и двигатель запускается.

Что такое блок управления?

Вы здесь, чтобы научиться читать электрическую схему, и поэтому вы наверняка столкнетесь с модулями управления (компьютерами). Современные автомобили, как известно, укомплектованы модулями управления. Обычно они также известны как блоки управления, CU, контроллеры, модули, CM, электронный блок управления и компьютеры.

Различные блоки управления системой будут иметь разные названия, и у каждого производителя будет свое собственное сокращение, вот некоторые из наиболее распространенных названий PCM — модуль управления силовой передачей, также известный как ECU и блок управления трансмиссией, вместе взятый, ECU — Engine Control Unit, CEM — Центральный электронный модуль, EBCM — Электронный модуль управления тормозом, BCM — Модуль управления кузовным оборудованием и т. Д.

Я не собираюсь здесь углубляться в сорняки, но было бы полезно получить краткое описание того, как работать с блоками управления.

Прекомпьютерные классические автомобили имеют простую электрическую схему — например, нажатие переключателя посылает мощность по проводу на двигатель стеклоподъемника, и окно перемещается.

Современные автомобили справляются с этим немного иначе — нажатие переключателя посылает сигнал по проводу на блок управления (компьютер), который, в свою очередь, передает питание на двигатель стеклоподъемника.

Блок управления или контроллер будет отправлять питание на двигатель стеклоподъемника только при соблюдении определенных предварительно запрограммированных условий.Могут возникнуть условия, при которых модуль управления не будет подавать питание на окно. Например, если он запрограммирован на экономию энергии при низком заряде батареи.

Конечно, окно может не двигаться по другим причинам, возможно, неисправен блок управления, неисправна проводка, неисправен двигатель и т. Д.

Так почему же они сделали все более сложным и дорогим для ремонта? Что ж, блоки управления действительно имеют значительные преимущества, некоторые из которых включают:

  • Меньше проводки
  • Автомобили более экономичны
  • Автомобили чище
  • Автомобили безопаснее
  • Разрешить установку большего количества электронных модулей, таких как информационно-развлекательные системы и вспомогательные средства водителя
  • Можно считывать коды неисправностей системы

Все блоки управления соединены друг с другом витой парой проводов, система связи известна как CAN (сеть контроллеров).

При чтении электрических схем технический специалист не видит внутренних схем блоков управления, и поэтому мы не заботимся об их работе.

Вместо этого мы используем подход Шерлока Холмса — проверьте всю проводку к блоку управления и от него, если все проверки завершились и неисправность сохраняется — единственный логический вывод — неисправный модуль.

Конечно, неправильно интерпретировать данные, особенно если тестер не понимает параметры контроллера.

Например, понимание того, что блок управления микроклиматом не включает кондиционер не из-за проблемы с системой кондиционирования, а из-за того, что контроллер ЭСУД обнаруживает, что система охлаждения слишком горячая.

Если вы не поняли правильно, очень легко предположить, что это проблема там, где ее нет.

Вот почему я советую всем самодельным механикам приобрести электрическую схему и руководство по ремонту. Это окупится в несколько раз.

Понять легенду

Каждая диаграмма имеет легенду, это ключ к пониманию схемы подключения.Обычно он показывает набор символов и краткое описание.

Не важно знать эти символы в лицо, вы можете ссылаться на легенду, когда встретите различные символы вместе со схемами, которые вы читаете. В любом случае, вы обнаружите, что символы у разных производителей различаются.

Совет: Некоторые схемы легче понять, чем другие, но неправильная схема подключения может уловить даже профи. Чтобы избежать разочарования, убедитесь, что ваша электрическая схема соответствует вашему автомобилю.

Держите легенду под рукой, читая схему подключения. Не зная, что означает каждый из различных символов, вы быстро увязнете.

Информация в легенде может включать:

  • Цветовой код проводки
  • Значения символов
  • Коды модулей
  • Системные групповые коды
  • Аббревиатуры компонентов
  • Любые особые примечания

Легенды обычно хорошо продуманы, логичны , и за ним легко следить.

Чтение электрической схемы

Электросхемы традиционно печатались в виде книжек, диаграммы большие, как вы знаете, помещать их все на одной странице сделало бы их нечитаемыми.

Решение — число в конце каждой цепи указывает страницу, на которой продолжается остальная часть принципиальной схемы.

Это может быть немного обременительно, особенно при одновременном обращении к большому количеству различных цепей.

Другие решения включают в себя отображение схемы подключения только одной системы на странице, например, просто отображение схемы подключения фар.Это работает довольно хорошо и было перенесено в эпоху цифровых технологий.

Цифровые схемы подключения намного эффективнее и проще в использовании, поэтому, если возможно, всегда выбирайте цифровые схемы.

Теперь, когда вы знаете, что такое легенда, и имеете краткое представление о том, что означают различные символы, пора прочитать электрическую схему.

Почти все современные диаграммы построены так, что мощность вверху страницы / экрана и земля внизу. Это естественный поток, и это лучший способ их прочитать.

Схема ниже представляет собой базовую схему автомобильного освещения, на первый взгляд она может показаться сложной, но когда вы поймете схему, она станет ясной.

Помните, мощность (напряжение) батареи в верхней части страницы пытается достичь уровня земли в нижней части диаграммы.

Начиная с верхней части прилагаемой схемы, вы можете увидеть потоки мощности по двум направлениям: (1) вниз к реле света (слева) и (2) к центральному электронному модулю (CEM), который является блоком управления.

Схема нарисована с зажиганием в положении 0 — «ВЫКЛ.» положение.

Путь (1) — Реле света получает напряжение, но, поскольку якорь находится в открытом / закрытом положении, он останавливается в этой точке.

Путь (2) — Модуль управления получает напряжение, и этот путь заканчивается.

Однако изображение меняется, когда ключ зажигания находится в положении два «Вкл.».

Модуль CEM обеспечивает заземление на X при включенном зажигании. Это, как вы знаете, намагничивает катушку реле и вызывает замыкание якоря.Закрытый якорь, в свою очередь, обеспечивает путь для подачи энергии к переключателю.

Переключатель теперь заправлен. Теперь нажатие на выключатель света позволяет напряжению проходить через катушку реле выключателя света и заземлять через интегрированный путь заземления CEM .

Катушка реле света Катушка , как вы знаете, теперь намагничена, поэтому она закрывает якорь реле, обеспечивая поток энергии от пути 1 до земли в нижней части диаграммы, запитывая огни как он это делает.Цепь завершена.

Вот и все, вы читали схему, некоторые схемы будут более сложными, но чем больше вы тренируетесь, тем лучше у вас получится.

Вам также могут понравиться эти сообщения:

Чтобы увидеть все инструменты, которые я использую, посетите страницу Инструменты для автоматического ремонта электрооборудования. Чтобы получить мгновенный цифровой доступ к схемам электрических соединений и руководствам по ремонту автомобилей, перейдите по ссылке Emanuel ниже.

Магазин Руководств по эксплуатации автомобилей.

Связанные вопросы

В чем разница между диаграммой и схемой? Схема — это подробная карта системы, а схема — это более упрощенное представление.

Джон Каннингем

Джон Каннингем — автомобильный техник и писатель на Rustyautos.com. Я работаю механиком более двадцати лет и использую свои знания и опыт, чтобы писать статьи, которые помогают коллегам-механикам разбираться во всех аспектах владения классическими автомобилями, от шин до антенн на крыше и всего остального.

Недавние сообщения

ссылка на O’Reilly vs AutoZone Batteries: Какой аккумулятор лучше для вашего автомобиля? Ссылка на Стоят ли дешевые автомобильные аккумуляторы? Избегайте этих типичных ошибок.

электрических схем | Резнор

ОТКАЗ ОТ ОТВЕТСТВЕННОСТИ

Этот материал предназначен только для профессионального использования и предназначен только для использования в качестве справочные материалы лицензированных подрядчиков при установке или обслуживании оборудования Reznor.

Nortek Global HVAC / Reznor не одобряет какие-либо изменения заводских схем электропроводки на месте. Также обратите внимание, что определенные поля могут быть изменены, чтобы приспособиться к использованию других Системы контроля. Все обслуживание продукта должно выполняться лицензированным подрядчиком. в соответствии с местными и национальными требованиями.

Все материалы на этом сайте защищены законами об авторских правах. Любое использование или воспроизведение кроме ремонта / установки продуктов Reznor категорически запрещено.


Формат AutoCad ® (файлы DWG)
  1. Начало работы

  2. На вашем компьютере должен быть установлен AutoCad или Autodesk View. Если у вас нет Autodesk View, выполните следующие действия:
  3. Установка Autodesk View

  4. Чтобы просмотреть электрические схемы, загрузите и установите бесплатную версию Voloview Express от Autodesk. Идти на www.autodesk.com. Перейдите в «Продукты».Просто мера предосторожности Примечание — для работы требуется много оперативной памяти (не менее 32 мегабайт).
  5. Начальные чертежи

  6. После установки Autodesk View вы можете автоматически открывать чертежи с веб-сайта, просто щелкнув рисунок и выбрав «Открыть» после перехода по ссылке в браузере (это будет работать в более новых версиях Internet Explorer и Netscape Navigator).
  7. Печать на бумаге размером 8,5 x 11 дюймов

  8. После открытия чертежа, если вы хотите распечатать весь чертеж, вы найдете выгодно печатать в альбомном режиме.Для начала нужно повернуть рисунок. Это делается выбирая «Вид», «Повернуть», «Влево» в строке меню.


Adobe Acrobat ® Формат (файлы PDF)
  1. Начало работы

  2. На вашем компьютере должен быть установлен Adobe Acrobat Reader. Если у вас нет Acrobat Reader, выполните следующие действия:
  3. Установка Adobe Acrobat® Reader

  4. Чтобы просмотреть электрические схемы прямо в браузере для чтения или печати файлов в формате PDF, вы можете установить бесплатную версию Acrobat Reader от Adobe.Перейти к продуктам Adobe по щелкнув изображение «Получить Acrobat Reader» ниже.
  5. Начальные чертежи

  6. После установки Acrobat Reader вы можете автоматически открывать чертежи с веб-сайта, просто щелкнув рисунок в браузере.
  7. Печать на бумаге размером 8,5 x 11 дюймов

  8. После открытия файла PDF вы можете щелкнуть значок принтера на панели инструментов Acrobat Reader. и обязательно установите флажок «Уменьшить негабаритные страницы до размера бумаги».’
Электрические схемы для всех новых продуктов регулярно добавляются на наш веб-сайт. Проводка диаграммы для старых агрегатов периодически добавляются. Если вы не можете найти Схема подключения, которая вам нужна, свяжитесь с нами.

Электроника Чертеж — ЭЛЕКТРИЧЕСКИЕ СХЕМЫ




Изучив этот раздел, вы сможете:

— Выберите способы подключения.

— Создайте список проводов.

— Составьте диаграмму «точка-точка».

— Создание графической двухточечной диаграммы.

— Нарисуйте схему шоссе.

— Нарисуйте схему соединений.

— Нарисуйте кабельную сборку.

— Сделать сборочные чертежи жгутов.

— Выберите методы заделки проводов.

Большая часть электронного оборудования нуждается в каких-либо межсоединениях.Понимание того, как документировать эту проводку, важно для составитель. В этом разделе будут рассмотрены основные методы, используемые основными компании.

СПОСОБЫ ПОДКЛЮЧЕНИЯ

Есть много способов показать заводских рабочих, обслуживающий персонал и другие в семье инженеров, как подключать электронное оборудование. Как обычно решение о выборе одного метода вместо другого основано на трех разных вещей:

1.Знание техника.

2. Строительное количество.

3. Сложность изготавливаемого оборудования. Вот некоторые из способы документирования проводки составителями.

СХЕМА

Самый простой способ построить проект электропроводки — это предоставить высококвалифицированному специалисту. техник схемотехник. Схема предоставит только «от» и «К» в образовании. Эта информация будет описывать, где будет проводиться быть зацепленным (исходное положение) и куда он идет (исходное положение), ИНЖИР.1.


РИС. 1. Схема, используемая для соединения компонентов. Примечание 1: Техник проходит провод, соединяющий все переключатели. Примечание 2: провод проходит от S1 до TB1-1. (клеммная колодка).

Из схемы составитель может создать список проводов или другие документы проводки. Список проводки сэкономит время технического специалиста при чтении схемы.

Список проводов — еще один элементарный документ. Он будет включать информацию из схемы плюс некоторая дополнительная информация, например:

1.Цвет провода.

2. Калибр провода.

3. Длина провода.

4. Внесение в список запчастей.

5. Состояние на терминалах.

РИС. 2 показано, как представлена ​​информация о списке проводов. Понять информацию о списке проводов, вы должны быть знакомы с проводами и их прекращения.


РИС. 2. Список проводов и список сопутствующих деталей. Примечание: номера в перечне деталей используются в столбце 3 списка проводов.

ПРОВОДОВ ИЛИ ПРОВОДНИКОВ

Проводники, используемые для электромонтажа электронного оборудования, бывают трех разных типов. типы: сплошная, многожильная и плоская лента, РИС. 3. Твердые проводники имеют традиционно использовались там, где они не изгибаются. Они менее дороги, чем многожильные провода, но имеют более ограниченное применение. В электронике сплошная разводка используется в основном для перемычек (разводка шины). и для процесса обмотки проволоки.

Многожильный провод отличается превосходными характеристиками маневренности и гибкости.Это делает это наиболее универсальный провод. Обратитесь к фиг. 4. Стойкость о многожильном проводе судят по количеству содержащихся в нем жил. В Чем больше количество прядей, тем больше его выносливость на изгиб. Тоньше проволока будет гнуться лучше, чем проволока большего диаметра.


РИС. 3. A — Пример одножильных и многопроволочных проводов. B — многожильный круглый провод и плоский ленточный кабель. (См. Стрелку.)


РИС. 4. Концевая заделка кабеля на печатной плате экономит место на плате. край.Гибкий монтаж и многожильный провод помогают снизить нагрузку на плату и на разъеме. (Амфенол продукты)

Диаметр проволоки определяет ее калибр. Калибр провода определяется согласно американскому стандарту калибра проводов, фиг. 5. Будет идентифицирован многожильный провод. двумя числами. Первое число указывает количество прядей в провод. Второе число указывает калибр каждой пряди. Пример 7/26 означает 7 жил провода № 26 AWG. Номер провода калибра 26 есть.0159 дюймов в диаметре, фиг. 5.

Калибры проводов идут от № 4/0 — самый большой до № 44, самый маленький. Стол показанный на фиг. 5 дал только четные размеры. Он также был сокращен чтобы показать наиболее часто используемые сечения проводов.

Длина и диаметр проволоки влияют как на сопротивление, так и на ток. способность. Провода меньшего диаметра имеют большее сопротивление электронам. поток и, следовательно, меньшая способность выдерживать токовые нагрузки, фиг.6.

РИС. 6. Номинальные токи проводов. Военные стандарты допускают только 60% этих текущих значений. (не показано)

ПРОВОД ШИНЫ

Провод шины — это оголенный провод (без изоляции), обычно используемый для короткого замыкания. клеммные соединения. Это сплошной провод, поэтому он будет использоваться где изгиб не происходит после установки. Где автобусный провод требуется изоляция, поверх нее надевается изоляция трубчатого типа. Эта трубка утеплитель называется СПАГЕТТИ.Причина использования спагетти в том, чтобы Избегайте зачистки обоих концов короткого провода.

РИС. 5. Таблица американских размеров проводов. (не показано)

ЭКРАНИРОВАННЫЕ И КОАКСИАЛЬНЫЕ КАБЕЛИ

Экранированные или коаксиальные провода используются для исключения или сдерживания нежелательных излучение, фиг. 7, А и Б. Пример использования коаксиального провода находится в автомобильной радиоантенной системе. Щит вокруг сигнала провод не позволяет нежелательному двигателю и электрическому шуму проникать в сигнальный провод.Без этого щита мы бы услышали много мешающих шумы. Экран коаксиального кабеля заземлен, поэтому мешающие электрическая энергия или излучение будут поглощаться шасси, где экран заземлен.


РИС. 7. A — Коаксиальный кабель. B — многожильный экранированный кабель. C, D, E — The три способа подключения проводов. Буква E показывает столб для упаковки проволоки, а обмотанный провод.

ОКОНЧАНИЕ ПРОВОДА

Чтобы сделать провод полезным, мы должны иметь возможность электрически защищать там, где мы желаем.Есть три основных способа защитить или прекратить провода:

Пайка, опрессовка и упаковка. Используемый метод продиктован клемма, к которой должен быть прикреплен провод. Вы можете показать метод на вашем рисунке методами, показанными на фиг. 7, C, D и E.

Обмотка осуществляется специальным инструментом для намотки проволоки. Большая обмотка проволоки Работы будут выполнять автоматические упаковочные машины. Инструменты для упаковки зачистите изоляцию провода, а затем плотно оберните его вокруг упаковка поста.

Обмотка проводов имеет экономическое преимущество перед пайкой и обжимом концов. Автоматизированные машины могут значительно упростить упаковку.

Проволока, используемая для обертывания концевых заделок, — сплошная. Датчики для этого диапазон методов подключения от # 20 AWG до # 32 AWG.

СХЕМА ПРОВОДКИ ТОЧКИ К ТОЧКЕ

Назначение двухточечной диаграммы — показать инженерные, производственный и обслуживающий персонал прокладывает проводку между компонентами и между ними.См. Фиг. 8. Диаграммы «точка-точка» содержат необходимую информацию. сделать или проследить за всеми подключениями проводов. Эту схему подключения можно показать по сборочному чертежу. Схема сборки будет включена только если это практично и если есть место. Точка-точка на чертеже не будет списка деталей. Все необходимые предметы будут называться в сборочном документе.

На некоторых схемах связи точка-точка показаны пути проводки на фоне компонентов. которые нарисованы не в масштабе.См. Фиг. 8 снова. Компоненты нарисованы вне масштаба, чтобы соответствовать требованиям очень сложной электрической схемы. За проводкой легче следить, когда провода расположены на одинаковом расстоянии. Второй чертеж часто показывает компоненты, нарисованные в истинном масштабе.

Двухточечные диаграммы показывают общее физическое устройство составные части, фиг. 9. Общие правила для электрических схем:

1. Сведите к минимуму изгибы в линиях. Обратитесь к фиг. 9 снова для примера.

2. Проведите линии с минимумом крестов.

3. Расстояние между линиями должно составлять не менее 3/8 дюйма.

4. Разделяйте каждые три или четыре строки очень широким интервалом, когда группы линий идут параллельно друг другу. Это помогает глазу читателя следуйте отдельным линиям.


РИС. 8. На сложном промышленном чертеже «точка-точка» показана сборка. технические характеристики.

5. Пометьте компоненты с правой стороны.Это поможет читателю, когда поиск по большому чертежу, чтобы найти конкретный компонент.

6. Обозначьте компоненты более крупными жирными буквами. Используйте более мелкие буквы для внутренних терминалов.

7. Пронумеруйте компоненты в верхнем левом углу. Сделайте диаграмму читать как книгу с наивысшим номером компонента внизу правый угол.


РИС. 9. Правильно нарисованная двухточечная электрическая схема. Обратите внимание на неправильную нумерацию TB1 и S1, чтобы не переходить дорогу и не бегать трусцой.Это хорошая практика.

ИЗОБРАЖЕНИЕ «ТОЧКА-ТОЧКА»

Иногда, когда нужно выполнить простое сквозное рисование, его часто можно нарисовать как иллюстрацию. ИНЖИР. 10 — хороший пример графический двухточечный рисунок. Однако изображения должны быть попытка, когда есть только небольшое количество проводов и простое шасси макеты.


РИС. 10. Типичная наглядная точка-точка.

СХЕМЫ ПОДКЛЮЧЕНИЙ

На схеме подключения магистрали провода группируются в основные пути. называемые автомагистралями, фиг. 11. Техника позволяет ставить много проводов. на чертеже, потому что этот организованный метод экономит место. На чертеже показано физическое расположение составных частей, как мы делали точка. Можно будет указать места назначения, цвет и датчик, посмотрев на любой из его концов.

На ФИГ. 11 D мы видим второй метод отображения автомагистралей. Обратите внимание, что некоторые компании применяют номер к каждому проводу, а затем создают отдельный стол. Номер провода в таблице предоставит место назначения, цвет и калибр.


РИС. 11. A — Типовая схема автомагистрали. Этот метод может обрабатывать множество проводов. организованно. B, C — два метода прокладки отдельных проводов. в шоссе. Оба они показывают направление движения. D — альтернативный метод построения схем автомобильных дорог.Он использует таблицу для отображения информации о проводке. Таблица может быть напечатана на чертеже, что сокращает время составления. Но это читается медленнее, чем в Части А, потому что читатель идет между стол и рисунок.

БАЗОВЫЕ ДИАГРАММЫ

Базовые диаграммы похожи на схемы шоссе в двух отношениях. Они оба могут организованно обрабатывают множество проводов и связывают их вместе в одной основной строке фиг. 12. У них также есть несколько отличий.Один это размещение компонентов. Схема шоссе очень беспокоит с физическим размещением компонентов. Базовая диаграмма просто выстраивает их в прямую линию.

Еще одно отличие состоит в том, как провода входят в основной жгут. В На схемах магистралей показано, в каком направлении будет проложен провод в пучке. Базовая линия просто входит в жгут проводов под углом 90 градусов.

Метод построения схем базовых линий:

1.Проведите светлую линию посередине листа.

2. Выровняйте компонент по обе стороны от линии.

3. Возьмите короткие линии от каждого компонента и проведите их в центре. линия под углом 90 °.

4. Определите назначение и цвет провода.

5. Сделайте центральную линию темной жирной линией, РИС. 12.

Базовые чертежи используются в основном для руководств по обслуживанию и книг по техобслуживанию. Они есть особенно хороши для такого рода информации, потому что они могут аккуратно покажите много линий на листе бумаги размером с книгу.Эти рисунки не будут обычно используется для монтажных работ, потому что информация слишком ограничена.


РИС. 12. Базовая диаграмма, показывающая еще один метод управления многими провода организованно.

СХЕМЫ СОЕДИНЕНИЙ

Схемы соединений показывают проводку между различными электронными устройствами. единиц и между сборочными узлами, фиг. 13. Этот документ похож на к схеме подключения точка-точка.Каждая кабельная сборка и электроника модуль будет вызван и ему будет присвоен заголовок и номер чертежа. Примечание подсборки показаны пунктирными линиями. Внутренние соединения электронные блоки не показаны.


РИС. 13. Типовая схема подключения. Это сборочный чертеж и потребуется список запчастей. Подузлы на схеме соединений показаны пунктирными линиями.


РИС. 14. Кабельная сборка и схема его проводов.

ЧЕРТЕЖИ СБОРКИ КАБЕЛЯ

Кабельные чертежи представляют собой сборочные чертежи, РИС. 14. В них есть все необходимое. информация для изготовления готового кабеля. Рисунок будет включать следующая информация:

1. Полный список запчастей.

2. Чертеж, показывающий все компоненты.

3. Условные обозначения для каждого компонента.

4. Чаще всего в чертеж входит электрическая схема.Это покажет внутренние провода в кабеле.

5. Общие примечания, которые проведут сборщика через сборка.

ЧЕРТЕЖ ЖГУТА ЖГУТА ПРОВОДА (КАБЕЛЯ)

Жгут проводов — это единственный чертеж проводки, выполненный в точном масштабе, ИНЖИР. 15. Он нарисован в масштабе, потому что это не просто рисунок, а это тоже инструмент.


РИС. 15. A — Ремень снимается с монтажной доски.B — Изображение жгутов, установленных в оборудовании.

Этот инструмент будет использоваться в производстве, поэтому многие идентичные детали могут быть созданы. Чертежи жгутов будут сопровождаться списком проводки и список деталей. Это сборка, поэтому ее нужно будет дополнить вся информация, необходимая ассемблеру. Преимущества этого рисунка являются:

1. Он будет поддерживать крупносерийное производство.

2. Это не потребует дорогостоящих специалистов.

3. Упрощение контроля качества проводки.

4. Сборка дешевле в производстве, чем множество отдельных проводов.

Прежде чем мы начнем рисовать обвязку, мы должны знать точное расположение всех подключаемых электрических компонентов. Макет чертежа и направление ремня будет определено путем изучения этого расположения, ИНЖИР. 16. Как только мы узнаем, где будет проходить обвязка, мы сможем спланировать ее расположение. на чертеже.


РИС. 16. Клеммный блок нужно подключить. Правый вид показывает как проводка будет проложена к сервису TB1. Примечание: Провода выйти за пределы позиции TB1. Это необходимо для обеспечения цикла обслуживания, чтобы провода можно легко зацепить и отсоединить.

Прокладка проводов в жгуте осуществляется путем их удержания. между ЖГУТ ПРОВОДОВ, РИС. 17. Столбы привязи будут вбиваться в фрезерная доска, как указано на чертеже.Также будут использоваться стойки для ремней безопасности. в качестве фиксирующих столбов для каждого конца провода. Проволока будет намотана вокруг стартового столба. После защиты он будет пропущен через маршрутизацию. сообщения, как описано в списке проводов. После маршрутизации он будет защищен вокруг конечного поста.


РИС. 17. A — Проводка проходит через стойки жгута. B — изображение жгут проводов прокладывается автоматически. C — Пример готовой проводки обуздать.(Подразделение Amphenol North America, Bunker Ramo Corp.)

Шнуровка или обвязка ремня безопасности будет производиться после всех проводов. маршрутизируются. См. Фиг. 18. Шнуровка или обвязка — это связывание провода в постоянный блок. После того, как провода будут постоянно связаны, затем они могут быть сняты с фрезерной доски. После того, как жгут был удален, может быть запущен другой дублирующий жгут.


РИС. 18. Пример наложения шнуровки вокруг жгута проволоки.Видеть ИНЖИР. 17 для примера кабельных стяжек. Применяются шнуровка и тросик. чтобы жгут проводов имел желаемую форму.


РИС. 19. Три способа обозначения проводов для облегчения установки ремня безопасности. После изготовления обвязки она поступает на вышестоящую сборку. уровень, на котором он будет остановлен. Чтобы произвести установку проще идентифицируем каждый провод в жгуте. Есть три метода идентификации проводов, фиг.19. Три метода: цвет, число, или место назначения. При использовании цветов каждый провод несет разные электронные сигнал будет иметь другой цвет. Пронумерованные провода будут пронумерованы на оба конца с одинаковым тегом номера. Провод, идентифицированный по назначению, будет иметь точное место, где он должен быть прекращен, помеченный прямо на его концы. Метод назначения устранит необходимость в списке проводов. во время установки. Пронумерованные и цветные провода должны иметь список проводов. с ремнем безопасности, чтобы завершить установку.

ТИПОВЫЕ УКАЗАНИЯ, ИСПОЛЬЗУЕМЫЕ НА СХЕМАХ ЭЛЕКТРОПРОВОДКИ

Вот часто используемые примечания к схемам подключения:

1. Этот чертеж используется с— Сборочным чертежом

Схематический чертеж

Схема подключения

2. Длины проводов, определенные по прототипу

3. Цветовая кодировка проводов в соответствии с MIL-STD-681

4. Электропроводка должна соответствовать ____________

5. Пайка соответствует ___________

6.Если не указано иное, все провода ____

7. Кружевной ремень в каждой точке отрыва и через каждые ________ дюймов между

8. Прикрепите кабельные хомуты к каждой точке разрыва и через каждые _____ дюймов. между


РИС. 20. Компоненты и розетки и их условные обозначения.

ОБОЗНАЧЕНИЯ

Условные обозначения должны быть идентичны обозначениям на схеме. за исключением компонентных сокетов с префиксом «X».См. Фиг. 20.

КОМПОНЕНТНОЕ ПРЕДСТАВИТЕЛЬСТВО

Представление компонентов должно быть просто физическим контуром, наводящим на размышления. характеристик компонента, фиг. 21. Это должно быть упрощенное вид со стороны проводки.


РИС. 21. Фактический компонент слева и его представление справа. Примечание: контактам присвоены номера. Это помогает технику во время монтаж провода.

ИДЕНТИФИКАЦИЯ ТЕРМИНАЛА

Каждый терминал должен быть идентифицирован.Большинство компонентов и разъемов обозначены надлежащим образом, но если нет: необходимо предоставить достаточные детали вместе с схема подключения. Выводы компонентов, таких как транзисторы, диоды, электролитические конденсаторы, батареи и другие устройства должны иметь идентифицированные клеммы. или обозначена полярность, как на фиг. 22.


РИС. 22. Поляризованные компоненты с определенными выводами.

ВОПРОСЫ НА ОБЗОР

1. Какие три вещи учитываются при выборе метода подключения?

2.Какая информация обычно включается в список проводки?

3. Назовите два типа проводов.

4. В чем преимущество многожильной проводки?

5. Что означает 7/26, когда мы относим это к проводке?

а. 7 прядей, намотанных вокруг 26.

г. Проволока 7-го калибра обернута проволокой 26-го калибра.

г. 7 жил проволоки 26-го калибра.

г. 7 нитей, что в сумме составляет 26 дисковых фрез.

6. Калибр провода определяется ГОСТом _____ ______ _____.

7. На что влияют длина и диаметр провода?

8. Как использовать провод шины?

9. Экранированный или __________ кабель снижает радиационные помехи.

10. Двухточечная диаграмма показывает физическое расположение компонентов. Какую еще информацию он передает?

11. Когда мы будем использовать наглядные двухточечные диаграммы?

12. В чем преимущество схемы автострад?

13.Какую информацию будут содержать чертежи кабельной сборки?

14. Почему жгут проводов выполнен в масштабе?

15. Каковы преимущества жгутов проводов?

16. Как используются стойки для привязных ремней?

17. Какую функцию выполняют тросы или шнуровка?

18. Что определяет тип концевой заделки провода?

19. Наиболее экономичным методом оконечной заделки с автоматизацией является (пайка, опрессовка, упаковка).

20. Узлы на схемах показаны пунктирными линиями.

ПРОБЛЕМЫ

PROB. 1. Используя схему имитатора испытаний, фиг. 23, создайте проводку список и список деталей. Проводка между разъемами печатной платы, переключателями, должны быть указаны контрольные точки и разъем. См. Фиг. 2 для списка проводов формат. Замыкание проводки на переключатели выполнено в узле. так что не перечисляйте.


РИС.23. Печатная плата, обведенная пунктирными линиями, и соединительные линии для переключения, контрольные точки и внешний разъем J3. Создайте проводку список и список деталей.

PROB. 2. Составьте схему соединений точка-точка для РИС. 24, тест симулятор. Проверьте РИС. 25 для нумерации компонентов и размеров. ИНЖИР. 26 будет показать монтажные позиции на панели. Используйте список проводки, созданный в Проблема 1, чтобы помочь в решении этой проблемы. Если список проводки не был составлен, используйте информация, указанная в Задаче 1.Начните с «отмены» сборки в ИНЖИР. 11А. Длина всех проводов определяется при сборке. Примечание: проводка установлена с панелью, перевернутой вверх стороной вниз. См. Фиг. 27.


РИС. 24. Покомпонентное изображение пакета тестового симулятора. Это чертеж окончательной сборки. Составьте двухточечную диаграмму.


РИС. 25. Эти компоненты, используемые в проекте симулятора тестирования, очень важны. для проектирования оборудования для монтажа корпуса. Проблемы раздела относятся к нескольким раз к этому рисунку.

PROB. 3. Создайте схему автомагистрали, используя информацию, описанную в разделе «Проблема». 1 и 2. Фиг. 27 показывает схему трасс для шоссе. Используйте столько же информацию как можно выше проблемы.

PROB. 4. Используя всю накопленную информацию по вышеуказанным задачам, создать чертеж жгута проводов. Примечание. Этот чертеж составлен с точностью до 1/1 шкала. Это будет инструмент для изготовления. Проверьте фиг. 23, 6-24, 6-25, и 6-26.

PROB.5. Составьте базовую схему тестового симулятора. Пример использования на фиг. 1 2, например. Назначьте цвет каждому проводу.


РИС. 26. Передняя панель тестового симулятора. Переключатель и контрольная точка позиции показаны в полном масштабе. Это шелкография для панель. Некоторая информация необходима в нескольких задачах раздела.


РИС. 27. Это базовый макет схемы автострады для теста. симулятор. Заполните эту схему автомагистрали, указав места назначения проводов. на схеме.

Выбор профессионала (справочная серия Pal Pocket): Розенберг, Пол: 9780965217149: Amazon.com: Books

ОСНОВАТЕЛЬ — генеральный директор

Будучи уроженцем Лас-Вегаса, 31 год Пола в фитнес-индустрии коснулся жизней тысяч людей. людей в сообществе. Его карьера в фитнесе началась в клубе Judy Gillette’s 1 на 1 в 1990 году, затем в качестве независимого подрядчика в Gold’s Gym, затем в семейных фитнес-центрах, LVAC, Turnberry Towers и Panorama Towers.

С 2012 года Пол владеет и управляет фитнес-залом REAL RESULTS в центре Лас-Вегаса, а второе место REAL RESULTS откроется в 2017 году в отеле Plaza.

REAL RESULTS обеспечивает корпоративное благополучие для Zappos, водного района долины Лас-Вегаса и в недавнем прошлом EBG (Entertainment Benefits Group).

Список достижений:

Автор недавно изданной книги REAL NUTRITION — 2021

A.C.E. Сертификат персонального тренера — 1995

Graduate of Leadership Las Vegas — 2015

Награда MIND BODY BOLD Бизнес года — 2015

Начиная с 2009 года REAL RESULTS принимала РЕАЛЬНЫЕ РЕЗУЛЬТАТЫ 5k and kids dash race, проводимые ежегодно в течение 3 лет в округе на ранчо Грин Вэлли.Все собранные деньги были пожертвованы Фонду Хиршберга по борьбе с раком поджелудочной железы и на местном уровне Институту рака Невады. В 2010 году было собрано 30 000 долларов, и в гонке приняли участие более 600 участников.

Коучинг / Философия тренинга:

Самый важный аспект тренинга, на котором основана большая часть моей карьеры, — это привлечение клиентов к ответственности за то, чтобы регулярные упражнения стали образом жизни. Образ жизни. Упорно работать — отлично, долго — тоже хорошо, но тренироваться часто — лучше всего. Так люди добиваются результатов и результатов на долгие годы.

Любимое оборудование для тренировок и почему:

«Человеческое тело. Есть бесчисленное множество способов двигать своим телом, и мир — это ваша игровая площадка. Раньше я всегда был человеком со свободным весом, но по мере того, как я рос и когда появился Covid, мне пришлось развиваться, и я развился до тренировок, которые можно выполнять практически без оборудования ».

Media Initiatives:

В 2010 году вместе с ведущими новостей Univision он участвовал в местной вечерней телепередаче 12 недель подряд. Сериал «Libra Por Libra» был номинирован на премию «Грэмми» в 2011 году.

В 2010 году лично обучил ведущих утренних новостей FOX 5 Хайди Хейс, Дэйва Холла и Теда Претти для 12-недельной программы по снижению веса. В результате Пол появлялся в местных утренних новостях FOX еженедельно в течение 12 недель.

Показано в:

Seven Magazine / LVAC Magazine / Las Vegas Weekly / Zip Codes magazine / Desert Companion / The View magazine / LV Health Magazine / Review Journal

Появился на:

ABC / NBC / CBS / FOX / UNIVISION

Электрические схемы тележки для гольфа | Cartaholics Golf Cart Forum


Электрические схемы гольф-каров EZGO, Club Car, Yamaha и всех других марок гольф-каров

Электрические схемы гольф-каров для Club Car, E-Z-GO, Yamaha, Par Car, Hyundai, Harley Davidson, Fairplay, Star Car, Melex и всех других производителей газовых и электрических гольф-каров.Если вы ищете электрическую схему EZGO для гольф-кары, электрическую схему для гольф-клуба клубного автомобиля, электрическую схему для гольф-кар Yamaha, электрическую схему для гольф-кары Harly Davidson или любую другую электрическую схему для гольф-кара, вы попали в нужное место . У Cartaholics есть все электрические схемы газовых гольф-каров и электрические электрические гольф-кары в разделах ресурсов форума. Cartaholics также имеет электрическую схему зарядного устройства для гольф-каров для всех моделей зарядных устройств для гольф-каров. Вы можете найти всю необходимую информацию на Cartaholics.com для ремонта тележек для гольфа, поиска неисправностей тележек для гольфа, электрических схем тележек для гольфа, руководств по эксплуатации тележек для гольфа, аккумуляторов тележек для гольфа, картоголиков — ваш источник номер 1 для информации о тележках для гольфа по ремонту тележек для гольфа и устранению неисправностей тележек для гольфа. Если вам нужна электрическая схема тележки для гольфа, у Cartaholics есть ресурсы для тележки для гольфа. У Cartaholics есть электрические схемы гольф-каров для гольф-каров всех марок и моделей. Если вы не видите электрическую схему или информацию по устранению неисправностей гольф-кары, которую ищете, спросите нас, и мы предоставим вам необходимую электрическую схему или информацию о ремонте гольф-кары.Cartaholics — это самый продолжительный форум по гольф-картам, и мы стремимся помочь с ремонтом вашей гольф-карты, поиском неисправностей в гольф-картах, вопросами по гольф-картам, поиском лучших предложений по качественным деталям для гольф-каров и аксессуарам для гольф-карт.

Cartaholics Golf Cart Forum — Электрические схемы гольф-кары

Электрические электрические гольф-кары Club Car | Электрические схемы газовой тележки для гольфа Club Car


Схема электрических соединений газовой тележки для гольфа Club Car

Схема электрических соединений электрической тележки для гольфа Club Car

Схемы электрических соединений электрической тележки для гольфа E-Z-GO | Электрические схемы газовой тележки для гольфа E-Z-GO


Схема электрических соединений газовой тележки для гольфа EZGO

Схема электрических соединений электрической тележки для гольфа EZGO

Ремонт электрической тележки для гольфа Yamaha | Ремонт газовой гольф-тележки Yamaha


Схема электрических соединений газовой гольф-тележки Yamaha

Электрическая электрическая тележка для гольфа Yamaha

Ремонт электрических гольф-каров других производителей | Ремонт газовой тележки для гольфа других производителей


Схема электрических соединений газовой тележки для гольфа других производителей

Схема подключения электрической тележки для гольфа других производителей



Cartaholics ™ © 2000-2021 Все права защищены Никакая часть этого веб-сайта не может быть воспроизведена без разрешения Cartaholics LLC®

.

Добавить комментарий

Ваш адрес email не будет опубликован.