Схемы регуляторов переменного напряжения: Регулятор напряжения 220 В своими руками: схемы и способы сборки

Содержание

РадиоКот :: Три регулятора переменного напряжения.

РадиоКот >Схемы >Питание >Блоки питания >

Три регулятора переменного напряжения.

2009

Лабораторных источников питания постоянного напряжения описано невероятное количество, а источников переменного напряжения практически нет. Тем не менее они могут быть достаточно полезны. Так появилась идея сделать универсальный источник питания переменного напряжения, чтобы к нему можно было подключать различный электроинструмент применяемый в радиолюбительском деле. И паяльники на разные напряжения, и моторы переменного напряжения, и обжигатель. У меня было два блока питания «Марс» , один было решено переделать. Одной из задач ставилось вместить в достаточно компактный корпус как можно больше полезных функций. Не хватает электронной защиты , но на момент разработки этой штуки у меня не было соответствующих решений , а сейчас наверное можно поставить самовосстанавливающийся предохранитель , но с ним не пробовал.


Итак: Представляю на Ваш суд «Блок питания стабилизированный тиристорный». Далее будем называть его просто и коротко прибор БПСТ-2 .

Он имеет следующие характеристики:
Мощность трансформатора ____________ 63 Вт
Диапазоны регулирования _____________9-13,5 ; 12-18 ; 18-27 ; 24-36 ; 30-45 вольт
Ток на дополнительном выходе_________до 10А
Тип регулирования напряжения _________ключевой ( фазовый и беспомеховый)
Диапазон контроля температуры________180-360о С
Время установки таймера______________1 час
Габариты____________________________123х72х208 мм

Описание
В качестве элементной базы были выбраны счетверенные операционные усилители, а для таймера — счетчик с набором делителей и встроенным генератором 176ИЕ5. Это позволило получить достаточно компактную конструкцию.

Принципиальная схема для удобства чтения разбита на функциональные узлы . Схемотехника прибора достаточно простая . Основные узлы хорошо описаны в радиолитературе и нуждаются лишь в коротких пояснениях .
Весь диапазон регулирования разбит на 5 поддиапазонов. Обмотки расчитаны так, что бы в каждом поддиапазоне получить как можно большую мощность .
Включается прибор кратковременным нажатием на кнопку SW3 , одна группа контактов которой , обнуляет таймер . Отключается нажатием на кнопку SW4 .
В приборе применяется таймер на 1 час. После 1 часа работы раздается предупреждающий сигнал и , если не сбросить таймер нажатием на SW3 , прибор отключится. Это очень удобно при применении прибора в качестве паяльной станции .
Для контроля напряжения на нагрузке применяется среднеквадратичный детектор . Это дает точное представление о напряжении на нагрузке , не зависимо от формы напряжения.
С помощью SW2 выбирается тип регулирования. Для формирования беспомехового режима используется метод аналогичный принципу работы сигма-дельта АЦП, где в качестве задающего генератора используется частота сети. Такой метод дает равномерное распределение периодов поступающих на нагрузку. Подробнее , с моделью в Proteus»е , об этом рассказывается в следующей конструкции «Беспомеховый регулятор».
Измеритель PV1 включен таким образом , что он дает показания в верхней трети диапазона . То есть он работает по принципу «растянутой шкалы». Так в диапазоне 30-45 В показаниям «0» по шкале будет соответствовать 30 В. Диапазоны регулирования выбраны из удобства считывания показаний по одной шкале 0-15 В.
С помощью SW1 можно включить встроенный измеритель температуры. Его диапазон 180-360 о С. Отсчет показаний начинается со 180 о С . Коэффициент усиления термоусилителя был «подсмотрен» у паяльной станции «Solomon». В качестве датчика температуры использовалась термопара от китайского мультиметра . При «горячей» проверке она показала 3мВ при 100 о С. Как оказалось взаимно совместимо. Прибор не имеет обратной связи по температуре. Возможен только контроль . (Микропроцессорный термостат все равно этим прибором не заменить ).

При подключении на выход «~10А» обжигателя срабатывает датчик тока на герконе и выход «~9-45 В» отключается. Если применение обжигателя неактуально можно подключать выжигатель . Во всяком случае наличие выхода с большим током ( до 10A ) может пригодиться .

Изготовление
Прибор БПСТ-2 собран в корпусе из под блока питания типа «Марс». От него же используется и измерительный прибор. В качестве потенциометра R8 применен проволочный переменный резистор. Трансформатор был взят более мощный чем в «Марсе», на 63 ВТ, что практически перекрывает все потребности в малых мощностях.

Вместо имеющейся фальш-панели была сделана новая из алюминия . На кнопки насажены алюминиевые втулки. Надписи нанесены маркером. Очень удобно , так как надпись можно «подновить».
Провод термопары свит в бухточку и уложен сбоку, чтобы при калибровке термоусилителя термопару было удобно помещать в кипяток .


В качестве соединительных контактов применяются одиночные гнезда и штекера . За более чем 15 лет работы они ни разу не менялись .
Катушка датчика тока L1 мотается на герконе с нормально разомкнутыми контактами во всю длину геркона, проводом которым намотана обмотка обжига . В моем случае L1, была намотана непосредственно на герконовом реле РЕС-55 без удаления обмоток .

Почти все детали смонтированы на печатной плате размером 68х115 мм. Плата односторонняя с перемычками из МГТФ «а . Реле К1 и симистор VS1 на радиаторе смонтированы на задней стенке. Резисторы R33-R36 распаяны непосредственно на галетном переключателе. Кнопки SW3, SW4 типа П2К без фиксации, SW1, SW2 — П2К с фиксацией.
Данные на трансформатор даны по напряжениям на обмотках на холостом ходу и диаметру провода которым мотались обмотки . Обмотка выхода «~10A» W8 мотается самой наружной.
JP1 убирается, если необходимо ограничить длительность запускающих импульсов .
Чертеж печатной платы не приводится, так существует только в бумажном виде невысокого качества. Да и сам прибор за время эксплуатации был несколько модифицирован.
На плате установлены некоторые детали другие чем указаны на схеме.

Настройка
С помощью подстроечного резистора R27 добиваемся уверенной работы синхронизатора . При крайнем правом положении потенциометра R8 , устанавливаем подстроечником R10 отклонение стрелки измерительного прибора на максимальную отметку .
Далее проводим калибровку среднеквадратичного детектора [Л1]. Сначала измеряем амплитудное (Umax) значение напряжения на выходе. Потом потенциометром R8 выставляем показания PA1 U = 1/2 (Umax). Затем подстроечником R4 выставляем в режиме фазового регулирования 1/2 полупериода или 50% заполнения в режиме беспомехового регулирования. Можно посчитать и так U = Uср.в.полн./1.41. Где Uср.в.полн. — средневыпрямленное полное (до симисторного регулятора) напряжение. Его измеряем обычным тестером непосредственно на обмотке трансформатора.
Резистором R7 выставляют значение, которому будет соответствовать нулевой отсчет шкалы при измерении температуры.

Напряжение на роторе R7 относительно точки +7.5V должно быть равно половине от напряжения на (R7+R8) . Затем помещают термопару в кипящую воду и выставляют подстроечником R10 напряжение на 6 ноге DA4 напряжение в 1.8 меньшее чем на роторе R7. Это измерение проводится также относительно точки +7.5V. О настройке термоусилителя можно прочитать [Л3].
Нет техники которую нельзя усовершенствовать. О некоторых недостатках конструкции честно расскажем. Желательна электронная защита, чтобы не менять предохранители. Для работы на индуктивную нагрузку желательны демпфирующие цепи .

Литература
1. Среднеквадратичный милливольтметр. Н. СУХОВ «Радио», 1981. № 11, с. 53.
2. Искусство схемотехники . Хоровиц П., Хилл У.
3. Паяльная станция своими руками . https://audio.micronet.lv/diy/soldering/solder.html#2

Эта конструкция существует в виде модели реализованной в Proteus»е. Вы можете им пополнить свою библиотеку моделей .

В «живую» схема не делалась , так как не было необходимости в подобной конструкции , а сам метод регулировки прошел проверку в ранее описанном приборе БПСТ-2 . Proteus для моделирования был выбран с перспективой перехода на микроконтроллеры.
Собственно этот проект является частным случаем предыдущего. В нем реализован , как следует из названия , только один беспомеховый метод регулирования. Остановимся на его особенностях подробней. Схема аналогична схеме сигма-дельта АЦП и реализует равномерное распределение периодов поступающих на нагрузку ( Как выяснилось у такого метода есть название — алгоритм Брезенхема [L2] ). Особенно это заметно при малых шагах регулирования и малых мощностях. Предположим: шаг регулировки 1% и нам надо выставить 10% мощности . При обычно применяемом методе заполнение/пауза , распределение будет : (10 периодов активных)/ (90 периодов пауза) или (200 милисекунд)/(1.8 секунды) . Как видим пауза составит 1,8 секунды ! В нашем случае все периоды будут равномерно распределены по времени : (1 период активный) / (9 периодов пауза ) или (20 милисекунд)/(180 милисекунд).
Как видим пауза сократилась аж в 10 раз !

Выход имеет гальваническую развязку от схемы управления. Схема управления регулятора отсчитывает полные периоды напряжения , для симметрии перемагничивания индуктивностей , и поэтому к нему можно подключать в том числе и трансформаторы. Этот регулятор может применяться для регулирования различных нагревателей, таких как паяльники , ТЕНы и т.п. .

Литература
1. Искусство схемотехники. Хоровиц П., Хилл У.
2. Леонид Иванович Ридико. Два микроконтроллерных регулятора мощности https://www.telesys.ru/electronics/projects.php?do=p022

Разумеется реализовать подобные регуляторы можно и на микроконтроллерах. Удобство микроконтроллеров состоит в том что меняя только прошивку можно задавать разные алгоритмы управления и вводить дополнительные функции.
Заменяем схему на программу
В этой части рассмотрим перевод схемы , собранной на дискретных элементах , в программный код . Для начала возьмем исходную схему сигма-дельта АЦП .

Программа написана на ассемблере для AVR «ов . В программе входное значения U_in и значение тока уравновешивания I_ur, взяты с инверсией от схемы. В качестве элемента AND применяется ключ переменного напряжения (симистор). F — частота сети. Значения С_INT специально задавать не нужно. Постоянная времени интегратора будет формироваться частотой подачи входных значений U_in. Для удобства подавать входные значения U_in будем с частотой F. Синхронизировать триггер DT будем по моменту перехода сетевого напряжения через ноль. Максимальное входное значение ( U_in ) примем 100. Это оптимально для хранения результатов преобразований в одном восьмиразрядном регистре и удобно для расчетов . Таким образом дискретность шага регулирования получится 1/100 или 1% .
Программа получается на удивление простой .

.def U_in = r17 ; Регистр входного значения
. def D_INT= r18 ; Регистр значения интегратора DA1
.equ I_ur = 100 ; Задаем значение тока уравновешивания I_ur
.equ REF_comp = 125 ; Задаем уровень сравнения компаратора D_comp
.equ DT = PortB ; Задаем порт выполняющий назначение триггера DT
.equ Q = 0 ; Задаем бит выполняющий назначение выхода Q триггера DT
;************************************************************************************
; С частотой равной или кратной частоте задающего генератора входим в программу
; дельта-модулятора в момент нулевого сетевого напряжения
delta :
add D_INT, U_in ; Увеличиваем значение интегратора D_int на величину входного значения
cpi D_INT , REF_comp ; Имитация компаратора D_comp
brpl DT_1 ; Если больше триггер DT переключим в «1»
DT_0 :
cbi DT , Q ; Установим выход Q триггера DT в «0»
reti ; Выйдем из подпрограммы
DT_1 :
subi D_INT , I_ur ; Подадим ток уравновешивания
sbi DT, Q ; Установим выход Q триггера DT в «1»
reti ; Выйдем из подпрограммы
;***********************************************************************************

Описание регулятора
С применением этого алгоритма было спроектировано следующее устройство. В качестве микроконтроллера взят воcьминожечный чип с АЦП — ATtiny15 . Схема формирует отрицательные запускающие импульсы необходимые для симистора ТС106. Стабилизатор на 5 вольт выполнен на транзисторе . В качестве потенциометра используется переменный резистор с линейной шкалой. Его шкала градуируется в % в режиме «Б.П.» и в градусах в режиме «ФАЗА». В устройстве реализована автоподстройка под частоту питающей сети. Кнопкой КН1 включают и отключают регулятор. Кнопкой КН2 выбирают режим регулирования «ФАЗА» или «Б.П.» (беспомеховый). При отключении в EEPROM запоминается последний режим и с него начинается включение . Кроме того в режиме «ФАЗА» реализовано плавное включение нагрузки до уровня заданного регулятором. Светодиод VL1 сигнализирует о наличии сетевого напряжения. Светодиод VL2 сигнализирует о режиме. Мигает — «ФАЗА», горит постоянно — «Б.П.», не горит — управление отключено. На этом ножки у ATtiny15 закончились : (Конечно можно поизощряться и нарастить функциональность , но мы этого делать на будем ).

Характеристики
Диапазон регулирования в режиме «Фаза»_____________10:80 град
Диапазон регулирования в режиме «Б.П.» ______________2:98 %
Диапазон рабочих частот______________________________ 30:80 Гц

Изготовление
Устройство собиралось на макетной плате по самой прогрессивной технологии (кучка проводов и деталей в три этажа). Желающие привести плату к промышленному знаменателю, могут воспользоваться возможностями трассировщика ARES ( схема в Proteus»e прилагается ).

Кнопки КН1 и КН2 — угловые, над ними установлены светодиоды. Cимистор , нагрузка и питающее напряжение подключаются через разъем установленный сзади. При программирование байт коррекции частоты внутреннего генератора записывается по адресу 0 в EEPROM. Для безопасности на такие устройства разъемы внутрисхемного программирования лучше совсем не ставить.
Абсолютно безопасно посмотреть работу регулятора можно в Proteus»e.
Режим «Б.П.» можно использовать для создания световых эффектов — смотрите видео.

Файлы:
Проект для Proteus (часть вторая).
Проект для Proteus (часть третья).
Прошивка МК.
Видео работы регулятора (WMV, 2Мб).

Вопросы, как обычно, складываем тут.


Как вам эта статья?

Заработало ли это устройство у вас?

cxema.org — Три схемы простых регуляторов тока

В сети очень много схем регуляторов напряжения для самых разных целей, а вот с регуляторами тока дела обстоят иначе. И я хочу немного восполнить этот пробел, и представить вам три простые схемы регуляторов постоянного тока, которые стоит взять на вооружение, так, как они универсальны и могут быть использованы во многих самодельных конструкциях.  

Регуляторы тока по идее не многим отличается от регуляторов напряжения. Прошу не путать регуляторы тока со стабилизаторами тока, в отличии от первых они поддерживают стабильный выходной ток не зависимо от напряжения на входе и выходной нагрузки.

Стабилизатор тока — неотемлимая часть любого нормального лабораторного блока питания или зарядного устройства, предназначен он для ограничения тока подаваемого на нагрузку. В этой статье мы рассмотрим пару стабилизаторов и один регулятор общего применения. 

Во всех трех вариантах в качестве датчика тока использованы шунты, по сути низкоомные резисторы. Для увеличения выходного тока любой из перечисленных схем нужно будет снизить сопротивление шунта. Нужное значение тока выставляют вручную, как правило вращением переменного резистора. Все три схемы работают в линейном режиме, а значит силовой транзистор при больших нагрузках будет сильно нагреваться. 

Первая схема отличается максимальной простотой и доступностью компонентов.   Всего два транзистора, один из них управляющий, второй является силовым, по которому и протекает основной ток. 

Датчик тока представляет из себя низкоомный проволочный резистор. При подключении выходной нагрузки на этом резисторе образуется некоторое падение напряжения, чем мощнее нагрузка, тем больше падение. Такого падения напряжения достаточно для срабатывания управляющего транзистора, чем больше падение, тем больше приоткрыт транзистор. Резистор R1, задает напряжение смещения для силового транзистора, именно благодаря ему основной транзистор находится в открытом состоянии. Ограничение тока происходит за счет того, что напряжение на базе силового транзистора, которое было образовано резистором R1 грубо говоря затухаеться или замыкается на массу питания через открытый переход маломощного транзистора, этим силовой транзистор будет закрываться, следовательно, ток протекающий по нему уменьшается вплоть до полного нуля.

Резистор R1 по сути обычный делитель напряжения, которым  мы можем задать как бы степень приоткрытия управляющего транзистора, а следовательно, управлять и силовым транзистором ограничивая ток протекающий по нему.  

Вторая схема построена на базе операционного усилителя. Ее неоднократно использовал в зарядных устройствах для автомобильного аккумулятора. В отличии от первого варианта — эта схема является стабилизатором тока.

Как и в первой схеме тут также имеется датчик тока (шунт), операционный усилитель фиксирует падение напряжения на этом шунте, все по уже знакомой нам схеме. Операционный усилитель  сравнивает напряжение на шунте с опорным, которое задается стабилитроном. Переменным резистором мы искусственно меняем опорное напряжение. Операционный усилитель в свою очередь постарается сбалансировать напряжение на входах путем изменения выходного напряжения. 

Выход операционного усилителя управляет мощным полевым транзистором. То есть принцип работы мало чем отличается от первой схемы, за исключением того, что тут имеется источник опорного напряжения выполненный на стабилитроне. 

Эта схема также работает в линейном режиме и силовой транзистор при больших нагрузках будет сильно нагреваться.

Последняя схема построена на базе популярной интегральной микросхеме стабилизатора LM317. Это линейный стабилизатор напряжения, но имеется возможность использовать микросхему в качестве стабилизатора тока. 

Нужный ток задается переменным резистором. Недостатком схемы является то, что основной ток протекает именно по ранее указанному резистору и естественно тот нужен мощный, очень желательно использование проволочных резисторов. 

Максимально допустимый ток для микросхемы LM317 1,5 ампера, увеличить его можно дополнительным силовым транзистором. В этом случае микросхема уже будет в качестве управляющей, поэтому нагреваться не будет, взамен будет нагреваться транзистор и от этого никуда не денешься. 

Небольшое видео

Печатные платы 

 

Три простые схемы регулятора тока для зарядных устройств

Мы уже рассматривали много схем регуляторов напряжения для самых разных целей, сегодня же я вам покажу три простые схемы регуляторов постоянного тока, которые стоит взять на вооружение, так как они универсальны и могут быть использованы не только в зарядных устройствах, но и во многих самодельных конструкциях, включая и лабораторные блоки питания.

Регулятор тока по идее не многим отличается от регулятора напряжения, стоит заметить, что есть понятие стабилизатор тока.

В отличие от регулятора он поддерживает стабильный выходной ток независимо от напряжения на входе и выходной нагрузки.

Сегодня мы рассмотрим пару вариантов стабилизатора и один регулятор общего применения, стабилизатор тока неотъемлемая часть любого нормального лабораторного блока питания или зарядного устройства, предназначен он для ограничения тока подаваемого в нагрузку.

Важный момент… во всех трех вариантах в качестве датчика тока использованны шунты, по сути это низкоомные резисторы, для увеличения выходного тока любой из перечисленных схем нужно будет снизить сопротивление шунта экспериментальным образом.

Кстати ссылки на все печатные платы найдёте в конце статьи. Нужное значение тока выставляют вручную, как правило вращением переменного резистора.

Все три варианта которые мы сегодня рассмотрим работают в линейном режиме, а значит силовой элемент — транзистор. При больших нагрузках будет нагреваться и нуждается в охлаждении.

Постараюсь пояснить принцип работы схем максимально простыми словами…

Первая схема отличается максимальной простотой и доступностью компонентов, всего два транзистора, один из них управляющий, второй же является силовым, по которому протекает основной ток.Датчик тока или шунт представляет из себя низкоомный проволочный резистор, при подключении выходной нагрузки на этом резисторе образуется некоторое падение напряжения, чем мощнее нагрузка, тем больше падение.

Такого падения напряжения достаточно для срабатывания управляющего транзистора, чем больше падение, тем больше приоткрыт этот транзистор.

Резистор R1 задаёт напряжение смещения для силового транзистора, именно благодаря ему основной транзистор находится в открытом состоянии.

Ограничение тока происходит за счет того, что напряжение на базе силового транзистора, которое было образовано резистором R1, грубо говоря затухается или замыкается на плюс питания через открытый переход маломощного транзистора. Этим силовой транзистор будет закрываться, следовательно ток протекающий по нему уменьшается вплоть до полного нуля.

Резистор R2 по сути обычный делитель напряжения, которым мы можем задать как бы степень приоткрытости управляющего транзистора, а следовательно управлять и силовым транзистором, ограничивая ток протекающий по нему.Увеличить общий ток коммутации этой схемы, можно дополнительными силовыми транзисторами, подключенных параллельно. Так как характеристики даже одинаковых транзисторов будут отличаться, в их коллекторную цепь добавлены резисторы, они предназначены для выравнивания токов через транзисторы, чтобы последние были нагружены равномерно.

Вторая схема построена на базе операционного усилителя, её неоднократно использовал в зарядных устройствах для автомобильных аккумуляторов, в отличие от первого варианта эта схема является именно стабилизатором тока.Как и в первой схеме, тут также имеется датчик тока или шунт, операционный усилитель фиксирует падение напряжения на этом шунте, всё по уже знакомой нам схеме.

Усилитель сравнивает напряжение на шунте с опорным, которое задается стабилитроном. Переменным резистором мы искусственно меняем опорное напряжение, операционный усилитель в свою очередь постарается сбалансировать напряжение на входах, путём изменения выходного напряжения.

Выход операционного усилителя управляется мощным полевым транзистором.

То есть, принцип работы мало, чем отличается от первой схемы за исключением того, что тут имеется источник опорного напряжения в лице стабилитрона.

Эта схема также работает в линейном режиме и силовой транзистор при больших нагрузках будет сильно нагреваться и ему необходим радиатор, кстати возможно применение биполярных транзисторов.

Последняя схема построена на базе популярной интегральной микросхемы стабилизатора LM317, это линейный стабилизатор напряжения но имеется возможность использовать микросхему в качестве стабилизатора тока.Нужный ток задается переменным резистором. Недостатком схемы является то, что основной ток протекает именно по ранее указанному резистору и естественно тот нужен мощный, очень желательно использование проволочных резисторов.

Введите электронную почту и получайте письма с новыми поделками.

Максимально допустимый ток для микросхема LM317 составляет около полтора ампера, увеличить его можно дополнительным силовым транзистором, в этом случае микросхема уже будет в качестве управляющей, следовательно нагреваться она не будет.

Взамен будет нагреваться транзистор и от этого никуда не денешься.

Архив к статье; скачать…

Автор; АКА Касьян

Симисторный регулятор мощности с микроконтроллерным управлением / Хабр

Однажды для одного небольшого домашнего проекта мне потребовался регулятор мощности, пригодный для регулировки скорости вращения электромотора переменного тока. В качестве основы использовалась вот такая плата на базе микроконтроллера STM32F103RBT6. Плата была выбрана как имеющая честный RS232 интерфейс и имеющая при этом минимум дополнительных компонентов. На плате отсутствует слот под литиевую батарейку для питания часов, но приживить его — дело пятнадцати минут.

Итак, начнём с теории. Все знакомы с так называемой широтно-импульсной модуляцией, позволяющей управлять током в (или, что реже, напряжением на) нагрузке с максимальным КПД. Лишняя мощность в таком случае просто не будет потребляться, вместо того, чтобы рассеиваться в виде тепла, как при линейном регулировании, представляющем собой не более чем усложнённый вариант реостата. Однако, по ряду причин такое управление, будучи выполненным «в лоб», не всегда подходит для переменного тока. Одна из них — бо́льшая схемотехническая сложность, поскольку требуется диодный мост для питания силовой части на MOSFET или IGBT транзисторах. Этих недостатков лишено симисторное управление, представляющее собой модификацию ШИМ.

Симистор (TRIAC в англоязычной литературе) — это полупроводниковый прибор, модификация тиристора, предназначенный для работы в качестве ключа, то есть он может быть либо открыт, либо закрыт и не имеет линейного режима работы. Основное отличие от тиристора — двусторонняя проводимость в открытом состоянии и (с некоторыми оговорками) независимость от полярности тока (тиристоры и симисторы управляются током, как и биполярные транзисторы) через управляющий электрод. Это позволяет легко использовать симистор в цепях переменного тока. Вторая особенность, общая с тиристорами, — это свойство сохранять проводимость при исчезновении управляющего тока. Закрывается симистор при отключении тока между основными электродами, то есть, когда переменный ток переходит через ноль. Побочным эффектом этого является уменьшение помех при отключении. Таким образом, для открывания симистора нам достаточно подать на управляющий электрод открывающий импульс небольшой, порядка десятков микросекунд, длительности, а закроется он сам в конце полупериода переменного тока.

Симисторное управление учитывает вышеперечисленные свойства этого прибора и заключается в отпирании симистора на каждом полупериоде переменного тока с постоянной задержкой относительно точки перехода через ноль. Таким образом, от каждого полупериода отрезается «ломтик». Заштрихованная на рисунке часть — результат этой процедуры. Таким образом, на выходе вместо синусоиды мы будем иметь что-то, в известной степени напоминающее пилу:

Теперь наша задача — вовремя отпирать симистор. Эту задачу мы возложим на микроконтроллер. Приведённая ниже схема является результатом анализа имеющихся решений а также документации к оптронам. В частности, силовая часть взята из документации на симисторный оптрон производства Texas Instruments. Схема не лишена недостатков, один из которых — мощный проволочный резистор-печка, через который включён оптрон, детектирующий переход через ноль.

Как это работает? Рассмотрим рисунок.

На положительном полупериоде, когда ток через оптрон превышает некоторое пороговое значение, оптрон открывается и напряжение на входе микроконтроллера опускается практически до нуля (кривая «ZC» на рисунке). Когда же ток снова опускается ниже этого значения, на микроконтроллер снова поступает единица. Происходит это в моменты времени, отстоящие на dz от нуля тока. Это dz ощутимо, в моём случае составляет около 0.8 мс, и его необходимо учитывать. Это несложно: мы знаем период T и длительность импульса высокого уровня h, откуда dz = (h — T / 2) / 2. Таким образом, нам необходимо открывать симистор через dz + dP от переднего фронта сигнала с оптрона.

О фазовом сдвиге dP стоит поговорить отдельно. В случае c ШИМ постоянного тока среднее значение тока на выходе будет линейно зависеть от скважности управляющего сигнала. Но это лишь потому, что интеграл от константы даёт линейную зависимость. В нашем случае необходимо отталкиваться от значения интеграла синуса. Решение простого уравнения даёт нам искомую зависимость: для линейного изменения среднего значения тока необходимо менять фазовый сдвиг по закону арккосинуса, для чего достаточно ввести в управляющую программу LUT таблицу.

Всё, о чём я расскажу в дальнейшем, имеет прямое отношение к архитектуре микроконтроллеров серии STM32, в частности, к архитектуре их таймеров. Микроконтроллеры этой серии имеют разное число таймеров, в STM32F103RBT6 их семь, из которых четыре пригодны для захвата и генерации ШИМ. Таймеры можно каскадировать: для каждого таймера одно из внутренних событий (переполнение, сброс, изменение уровня на одном из входных или выходных каналов и т. д.; за подробностями отсылаю вас к документации) можно объявить выходным и направить его на другой таймер, назначив на него определённое действие: старт, стоп, сброс и т.д. Нам потребуются три таймера: один из них, работая в т.н. PWM input режиме, замеряет период входного сигнала и длительность импульса высокого уровня. По окончании измерения, после каждого периода генерируется прерывание. Одновременно с этим запускается связанный с этим событием таймер фазового сдвига, работающий в ждущем режиме. По событию переполнения этого таймера происходит принудительный сброс таймера, генерирующего выходной управляющий сигнал на симистор, таким образом, через каждый полный период переменного тока подстраивается фаза управляющего сигнала. Только первый таймер генерирует прерывание, и задача обработчика сводится к подстройке фазового сдвига (регистр ARR ждущего таймера) и периода ШИМ таймера (также регистр ARR) так, чтобы он всегда был равен половине периода переменного тока. Таким образом, всё управление происходит на аппаратном уровне и влияние программных задержек полностью исключается. Да, это можно было сделать и программно, но грех было не воспользоваться такой возможностью, как каскадируемые таймеры.

Выкладывать на обозрение код всего проекта я не вижу смысла, к тому же, он далёк от завершения. Приведу лишь фрагмент, содержащий описанный выше алгоритм. Он абсолютно независим от прочих частей и легко может быть портирован в другой проект на совместимом микроконтроллере.

И напоследок, видеоролик, показывающий устройство в действии:

Семь тиристорных регуляторов напряжения


Семь тиристорных регуляторов напряжения

С амплитуднофазовым управлением

  В регуляторе, схема которого показана на рис. 1, использованы два тринистора, открывающиеся один в положительный, а другой — в отрицательный полуперноды сетевого напряжения. Действующее напряжение на нагрузке Rн регулируют переменным резистором R3. Регулятор работает следующим образом. В начале положительного полупериода (плюс на верхнем по схеме проводе) тринисторы закрыты. По мере увеличения сетевого напряжения конденсатор. С1 заряжается через резисторы R2 и R3. Увеличение напряжения на конденсаторе отстает (сдвигается по фазе) от сетевого на величину, зависящую от суммарного сопротивления резисторов R2 и R3 и емкости конденсатора С1. Заряд конденсатора продолжается до тех пор, пока напряжение на нем не достигнет порога открывания тринистора Д1. Когда тринистор откроется, через нагрузку Rн потечет ток, определяемый суммарным сопротивлением открытого тринистора и Rн. Тринистор Д1 остается открытым до конца полупериода. Подбором резистора R1 устанавливают желаемые пределы регулирования. При указанных на схеме номиналах резисторов и конденсаторов напряжение на нагрузке можно изменять в пределах 40- 220 В.

  В течение отрицательного полупериода аналогично работает тринистор Д4. Однако, конденсатор С2, частично заряженный в течение положительного полупериода (через резисторы R4 и R5 и диод Д6), должен перезаряжаться, а значит и время задержки включения тринистора должно быть большим. Чем дольше был закрыт тринистор Д1 в течение положительного полупериода, тем большее напряжение будет на конденсаторе С2 к началу отрицательного и тем дольше будет закрыт тринистор Д4. Синфазность работы тринисторов зависит от правильного подбора номиналов элементов R4, R5, С2. Мощность нагрузки может быть любой в пределах от 50 до 1000 Вт.

И.ЧУШАНОК г. Гродно


С фазоимпульсным управлением

  Регулятор, схема которого показана на рис. 2, управляется автоматически сигналом Uynp. В регуляторе использованы два тиристора — тринистор Д5 и динистор Д7. Тринистор открывается импульсами, которые формируются цепочкой, состоящей из динистора Д7 и конденсатора С1. В начале каждого полупериода тринистор и динистор закрыты и конденсатор С1 заряжается током коллектора транзистора Т1. Когда напряжение на конденсаторе достигнет порога открывания динистора, он откроется и конденсатор быстро разрядится через резистор R2 и первичную обмотку трансформатора Тр1. Импульс тока со вторичной обмотки трансформатора откроет тринистор. При этом управляющее устройство будет обесточено (так как падение напряжения на открытом тринисторе очень мало), динистор закроется. По окончании полупериода триннстор выключится и с началом следующего полупериода начнется новый цикл работы регулятора.

  Время задержки импульса, открывающего тринистор, относительно начала полупериода определяется скоростью заряда конденсатора С1, которая пропорциональна току коллектора транзистора Т1. Изменяя управляющее напряжение Uynp, можно управлять этим током и, в конечном итоге, регулировать напряжение на нагрузке. Источником сигнала Uynp может быть полосовой фильтр (с выпрямителем) цветомузыкальнои установки, программное устройство. В системах автоматического регулирования в качестве Uупр используют напряжение обратной связи.

  Резистор R5 необходимо подобрать таким, чтобы при Uynp=0 тринистор открывался в каждый полупериод в момент времени, близкий к окончанию полупериода. Для того, чтобы перейти на ручное регулирование, достаточно заменить резистор R5 последовательной цепочкой из переменного резистора и постоянного сопротивлением 10- 12 кОм. Напряжение стабилизации стабилитрона Д6 должно быть на 5-10 В больше максимального напряжения включения динистора.

  Транзистор Т1. может быть любым из серий МП21, МП25, МП26. Динистор можно применить типов КН102Б, Д227А, Д227Б, Д228А, Д228Б. Резистор R1 составлен из двух мощностью по 2 Вт. Импульсный трансформатор Тр1 намотан на кольцевом сердечнике, имеющем размеры 26Х18Х4 мм, из пермаллоя 79НМА (или такого же сечения из феррита М2000НМ1). Обмотка I содержит 70 витков, а обмотка II — 50 витков провода ПЭВ-2 0,33 мм. Межобмоточная изоляция должна выдерживать напряжение, близкое к сетевому. Вместо динистора в регуляторе можно использовать транзистор, работающий в лавинном режиме. О работе транзисторов, в этом режиме подробно рассказывалось в «Радио», 1974, № 5, С. 38-41. Схема одного из таких регуляторов показана на рис. 3.

  По принципу работы регулятор с транзистором, работающим в лавинном режиме, не отличается от предыдущего. Используемый транзистор типа ГТ311И имеет напряжение лавинного пробоя около 30 В (при сопротивлении резистора R3 равном 1 кОм). В случае применения других транзисторов — номиналы элементов R4, R5, С1 потребуется изменить.

  В регуляторе (рис. 3) могут быть использованы и другие транзисторы, в том числе и структуры р-n-р, например П416. В этом случае нужно у транзистора Т1 (см. рис. 3) поменять местами выводы эмиттера и коллектора. Резистор R3 во всех случаях должен быть включен между базой и эмиттером. Напряжение на нагрузке регулируют переменным резистором R4.

Инж. Е. ФУРМАНСКИЙ Москва


С аналогом однопереходного транзистора

  В регуляторе, схема которого показана на рис. 4, применен фазоимпульсный метод управления тринистором. В управляющем устройстве регулятора использован транзисторный аналог однопереходного транзистора (двухбазового диода). О работе однопереходных транзисторов можно прочитать в «Радио», 1972, № 7, с. 56.

  Силовая цепь регулятора построена так же, как у регулятора, опубликованного в «Радио», 1972, № 9, с. 55. При разомкнутых контактах выключателя В’2 действующее значение напряжения на нагрузке можно изменять в пределах от нескольких вольт до 110 В, а при замкнутых — от 110 до 220 В.

  По принципу работы управляющее устройство описываемого регулятора не отличается от устройств на динисторе или лавинном транзисторе (рис. 2 и 3). Мощность, подводимую к нагрузке, регулируют переменным резистором R5.

  Тринистор ДЗ и диод Д1 установлены на общем радиаторе площадью 50-80 см2. Резистор R1 составлен из двух резисторов мощностью 2 Вт.

Инж. В. ПОПОВИЧ г. Ижевск.


На симисторе

  Описываемый регулятор построен по схеме фазоимпульсного регулирования с использованием симистора (симметричного тирнстора). Схема регулятора показана на рис. 5. В управляющем устройстве применен транзисторный аналог однопереходного транзистора n-типа.

  При включении регулятора (выключателем В1) транзисторы Т1 ч Т2 закрыты и конденсатор С1 начинает заряжаться через резистор R4 (с помощью которого регулируют мощность, выделяемую на нагрузке Rн). Заряд продолжается до тех пор, пока напряжение на конденсаторе не превысит порог открывания транзистора Т1. В этот момент транзисторы открываются и переходят в режим насыщения. Конденсатор быстро разряжается через них на первичную обмотку импульсного трансформатора Тр1. Импульс тока со вторичной обмотки открывает симистор Д5. Порог открывания транзисторов определяется сопротивлениями резисторов делителя R2R3.

  Импульсный трансформатор Тр1 намотан на кольце из феррита М2000НМ1-15 типоразмера К20х 12х6. Обмотка I содержит 50 витков, а II — 30 витков провода ПЭЛШО 0,25 мм. Конденсатор С1 — МБМ с рабочим напряжением 160 В.

  Максимально допустимый ток нагрузки регулятора 5 А. Пределы регулирования напряжения от нескольких вольт до 215 В.

Инж. В. ПОНОМАРЕНКО. инж. В. ФРОЛОВ г. Воронеж


C улучшенной регулировочной характеристикой

  В тиристорных регуляторах с фазоимпульсным управлением напряжение на конденсаторе RС-цепи во время его заряда увеличивается по экспоненциальному закону. При синусоидальной форме сетевого напряжения регулировочная характеристика, выражающая зависимость напряжения на нагрузке от сопротивления переменного резистора, оказывается резко нелинейной, что затрудняет плавную регулировку напряжения на нагрузке.

  Тиристорный регулятор, схема которого показана на рис. 6, в значительной степени свободен от этого недостатка. В регуляторе использован однопереходный транзистор. Улучшение линейности регулировочной характеристики достигается тем, что конденсатор С1 заряжается от напряжения сети (через резистор R4) и одновременно от источника постоянного стабилизированного напряжения (через делитель R5R6 и диод Д6}. Изменяя резистором R6 уровень постоянного напряжения, можно управлять моментом открывания тринистора и, следовательно, напряжением на нагрузке. Диод Д6 исключает возможность разряда конденсатора через резистор R6.

  Сопротивление резистора R4 выбирают таким, чтобы при замкнутом накоротко резисторе R6 напряжение на нагрузке было минимальным. Тогда при крайнем нижнем (по схеме) положении движка резистора R6 напряжение на нагрузке будет максимальным.



Со стабилизацией выходного напряжения

  Особенностью описываемого регулятора является способность стабилизировать напряжение на нагрузке при изменении напряжения питающей сети. Управляющее устройство построено на однопереходном транзисторе по схеме фазоимпульсного регулирования.

Источник: shems.h2.ru

Регулятор напряжения для тена от 1 до 6 кВт

Регулятор напряжения в электрических цепях, служит для изменения мощности, подаваемой в нагрузку. С помощью регулятора напряжения можно управлять скоростью вращения электродвигателей, уровнем освещенности и нагревательными приборами такие как паяльник, электрическая плитка, тэн. В радиомагазинах можно купить готовое изделие но сделать регулятор напряжения своими руками не сложно.

В процессе самогоноварения выяснилось что на газу процес нагревания браги происходит достаточно долго (около 2-х часов) и к тому же, неудобно регулировать процесс дистилляции браги, газовой плиткой. В следствии чего возникла острая необходимость в модернизации самогонного(дистиллятного) аппарата, врезкой в него электрического нагревателя. Изначально задумывалось, что тен будет ставится мощностью 3 kW но в дальнейшем передумали и уменьшили до 2500 ватт. Далее нам понадобилась регулировка напряжения для управления процессом дисциляции, её мы решили изготовить своими руками, благо схем в общем доступе полно, они простые, минимум деталей и изготовление много времени не занимает.

Схема регулятора напряжения на 220 вольт

  • Рисунок 1. Схема.

Схема состоит из симистора, BTA41-800B по названию можно определить его параметры ток и напряжение. Например BTA это обозначение симистора, 41 это его ток в амперах и 800B это его напряжение. Симистор можна заменить на более слабый ток для этого нужно мощность вашего тена разделить на напряжение, например: 2 кВт разделить на напряжение в сети 220 вольт мы получим нужный нам ток 2000/220=9,1 Ампер. В этом случае мы можем использовать другой симистор BTA12-600B, но так как симистор будет работать практически на пределах своих возможностей, он будет греться и придется закрепить его на радиатор, в противном случае он может выйти из строя.

  • Рисунок 2. Схема с вольтметром.

Примечание.В схеме можно применять любой симистор не менее 600B и током в зависимости применяемого нагревательного элемента. В любом случае для облегчения работы симистора его следует разместить на радиаторе охлаждения. Дополнительно можно поставить вольтметр на выход схемы, чтобы видеть изменение напряжения наглядно и на вход поставить автомат на 16-25 ампер.

Детали для схемы:

1.Симистор выбираем от нагрузки но можете как в моем случае чем больше тем лучше BTA8-600b, BTA12-600b, BTA16-600b, BTA20-600b, BTA24-600b, BTA25-600b, BTA26-600b, BTA40-600b, BTA41-600b.

2.Потенциометр можно ставить в пределах от 470 кОм до 1 мегаом (МОм). Советую ставить потенциометр на 1 МОм так как у него больше диапазон регулировки, можно регулировать фактически до нуля. В начале я собрал схему с потенциометром на 500 кОм и в дальнейшем перепаивал на 1 мОм.

3.Динистор DB3 у него нет полярности припаиваем как хотим.

4.Резистор 10 кОм.

5.Конденсатор керамический 0,1 мкФ.

Изготовление схемы

  • Рисунок 3. Схема в моем исполнение.

Для изготовления схемы нам понадобится в первую очередь паяльник, припой и канифоль и радио детали которые без труда можно приобрести в любом радио-магазине. Пожалуйста, уделяйте пристальное внимание, есть риск поражения электрическим током (как и во всем электрическом).

И так, для начала берем печатную плату и на ней располагаем компактно все детали после чего спаиваем все по схеме. Останется прикрепить симистор на радиатор. Я взял радиатор из старого блока питания телевизора. И останется самое сложное найти корпус и разместить схему в нем. На собирание схемы по времени у меня ушло буквально 15 минут.

  • Рисунок 4. Схема регулятора мощности в моем исполнение.

Примечание. Эта схема часто встречается в пылесосах, китайских точильных станках.

  • Рисунок 5. Регулировка с пылесоса.

Также можно заказать с сайта Алиэкспресс вот несколько вариантов. 1 вариант, 2 вариант по заверению китайца способен держать 5 кВт, 3 вариант в красивом корпусе с вольтметром, 4 вариант.

Как происходит процесс регулировки напряжения в дистилляторном аппарате.

На начальном этапе нагреватель включаем на полную мощность. После достижения температуры (78,8) градусов, что соответствует точки кипения этилового спирта, мощность нагревателя уменьшаем. Опытным путем меняя положения регулятора, нужно добиться того, чтобы весь выделяющийся пар конденсировался системой охлаждения. Это поможет избежать лишних потерь спирта и в то же время при правильно подобранной мощности позволит сократить время производства до возможного минимума.

Регулятор напряжения Цепи регулятора напряжения

— линейный регулятор напряжения, стабилитрон и импульсный регулятор напряжения

Регулятор напряжения

, как следует из названия, представляет собой схему, которая используется для регулирования напряжения. Регулируемое напряжение — это плавная подача напряжения без каких-либо шумов или помех. Выход регулятора напряжения не зависит от тока нагрузки, температуры и изменения линии переменного тока. Регуляторы напряжения присутствуют почти в каждой электронике или бытовой технике, такой как телевизор, холодильник, компьютер и т. Д., Для стабилизации напряжения питания.

В основном, регулятор напряжения минимизирует колебания напряжения для защиты устройства. В системе распределения электроэнергии регуляторы напряжения находятся либо в фидерных линиях, либо на подстанции. В этой линейке используются два типа регуляторов, один — ступенчатый, в котором переключатели регулируют подачу тока. Другой — индукционный регулятор, представляющий собой переменную электрическую машину, подобную асинхронному двигателю, которая подает энергию в качестве вторичного источника. Он сводит к минимуму колебания напряжения и обеспечивает стабильный выход.

Существуют различные типы регуляторов напряжения, которые описаны ниже.

Типы схем регулятора напряжения

Схема линейного регулятора напряжения

    Регулятор напряжения серии
  • Шунтирующий регулятор напряжения

Цепь стабилизатора напряжения Зенера

Цепь импульсного регулятора напряжения

  • Бак типа
  • Тип наддува
  • Buck / Boost тип

Цепь линейного регулятора напряжения

Это наиболее распространенные регуляторы, используемые в электронике для поддержания постоянного выходного напряжения.Линейные регуляторы напряжения действуют как цепь делителя напряжения, в этом регуляторе сопротивление изменяется в зависимости от изменения нагрузки и дает постоянное выходное напряжение. Некоторые преимущества и недостатки линейного регулятора напряжения приведены ниже:

Преимущества

  • Низкое напряжение пульсации на выходе
  • Ответ быстрый
  • Меньше шума

Недостатки

  • Низкий КПД
  • Требуется большое пространство
  • Выходное напряжение всегда будет меньше входного напряжения

1.Регулятор напряжения серии

Стабилизатор напряжения серии

является частью линейного регулятора напряжения и также называется последовательным регулятором напряжения. Последовательно включенный регулируемый элемент, используемый для поддержания постоянного выходного напряжения. При изменении сопротивления падения напряжения на последовательном элементе его можно изменять, чтобы обеспечить постоянство напряжения на выходе.

Как вы можете увидеть схему для серии стабилизатора напряжения, NPN-транзистор Т1 является элементом серии и стабилитрон используется для обеспечения опорного напряжения.

Когда выходное напряжение увеличивается, напряжение база-эмиттер уменьшается, из-за этого транзистор T1 проводит меньше. Поскольку T1 проводит меньше, он снижает выходное напряжение, следовательно, поддерживает постоянное выходное напряжение.

Когда выходное напряжение уменьшается, напряжение база-эмиттер увеличивается, благодаря чему транзистор T1 проводит больше. По мере увеличения проводимости T1 увеличивает выходное напряжение, следовательно, поддерживает постоянное выходное напряжение.

Выходное напряжение определяется как:

  V  O  = V  Z  - V  BE  
Где,
V  O  - выходное напряжение
V  Z  - напряжение пробоя стабилитрона
V  BE  - напряжение база-эмиттер 

2.Шунтирующий регулятор напряжения

Нерегулируемое напряжение прямо пропорционально падению напряжения на последовательно соединенных сопротивлениях, и это падение напряжения зависит от тока, потребляемого нагрузкой. Если ток, потребляемый нагрузкой, увеличивается, базовый ток также будет уменьшаться, и из-за этого меньший ток коллектора будет течь через вывод коллектора-эмиттера, и, следовательно, ток через нагрузку будет увеличиваться, и наоборот.

Регулируемое выходное напряжение шунтирующего регулятора напряжения определяется как:

  В  ВЫХ  = V  Z  + V  BE   

Стабилитрон

Стабилитроны

дешевле и подходят только для цепей малой мощности.Его можно использовать в приложениях, где количество энергии, потраченное впустую во время регулирования, не имеет большого значения.

Сопротивление

А, последовательно подключено к стабилитрону для ограничения количества тока, протекающего через диод, и входного напряжения Vin (которое должно быть больше, чем напряжение стабилитрона). подключается параллельно, как показано на изображении, и на выходе напряжение Vout снимается на стабилитроне с Vout = Vz (напряжение стабилитрона). Как мы знаем, стабилитрон начинает проводить в обратном направлении, когда приложенное напряжение выше, чем напряжение пробоя стабилитрона.Таким образом, когда он начинает проводить, он поддерживает то же напряжение на нем и возвращает дополнительный ток, обеспечивая тем самым стабильное выходное напряжение.

Узнайте больше о работе стабилитрона здесь.

Импульсный регулятор напряжения

Есть три типа импульсных регуляторов напряжения:

  • Понижающий или понижающий импульсный регулятор напряжения
  • Повышающий или повышающий импульсный регулятор напряжения
  • Понижающий / повышающий импульсный регулятор напряжения

Понижающий или понижающий импульсный регулятор напряжения

Понижающий стабилизатор используется для понижения напряжения на выходе, мы даже можем использовать схему делителя напряжения для уменьшения выходного напряжения, но эффективность схемы делителя напряжения низкая, поскольку резисторы рассеивают энергию в виде тепла.Мы используем в цепи конденсатор, диод, индуктор и переключатель. Принципиальная схема понижающего импульсного регулятора напряжения приведена ниже:

Когда переключатель находится в положении ON, диод остается смещенным в обратном направлении, и к индуктору подключается питание. Когда переключатель разомкнут, полярность катушки индуктивности меняется на обратную, диод становится смещенным вперед и подключает катушку индуктивности к земле. Затем ток через дроссель уменьшается с крутизной:

  d I  L  / dt = (0-V  OUT ) / L  

Конденсатор используется для предотвращения падения напряжения на нагрузке до нуля.Если мы продолжаем открывать и закрывать переключатель, среднее напряжение на нагрузке будет меньше подаваемого входного напряжения. Вы можете контролировать выходное напряжение, изменяя рабочий цикл переключающего устройства.

  Выходное напряжение = (Входное напряжение) * (процент времени, в течение которого переключатель находится в положении ВКЛ)  

Если вы хотите узнать больше о Buck Converter, перейдите по ссылке.

Повышающий или повышающий импульсный регулятор напряжения

Повышающий регулятор используется для повышения напряжения на нагрузке.Принципиальная схема регулятора наддува приведена ниже:

Когда переключатель замкнут, диод ведет себя как смещенный в обратном направлении, а ток через катушку индуктивности продолжает расти. Теперь, когда переключатель разомкнут, индуктор создаст силу, заставляющую ток продолжать течь, и конденсатор начнет заряжаться. Постоянно переводя переключатель в положение ВКЛ и ВЫКЛ, мы получим напряжение на нагрузке выше входного. Мы можем контролировать выходное напряжение, контролируя время включения (Ton) переключателя.

  Выходное напряжение = Входное напряжение / процент времени, в течение которого переключатель открыт  

Если вы хотите узнать больше о Boost Converter, то перейдите по ссылке.

Импульсный стабилизатор напряжения

Понижающий-повышающий импульсный регулятор — это комбинация понижающего и повышающего регуляторов, он дает инвертированный выходной сигнал, который может быть больше или меньше подаваемого входного напряжения.

Когда переключатель находится в положении ON, диод ведет себя как смещенный в обратном направлении, и индуктор накапливает энергию, а когда переключатель находится в положении OFF, индуктор начинает выделять энергию с обратной полярностью, которая заряжает конденсатор.Когда энергия, запасенная в катушке индуктивности, становится равной нулю, конденсатор начинает разряжаться в нагрузку с обратной полярностью. Из-за этого понижающий-повышающий регулятор также называется инвертирующим регулятором .

Выходное напряжение определяется как

  Выход = Vin (D / 1-D) 
  Где, D - рабочий цикл  

Следовательно, если рабочий цикл низкий, регулятор ведет себя как понижающий регулятор, а когда рабочий цикл высокий, регулятор ведет себя как повышающий регулятор.

Практический пример схем регулятора

Цепь регулятора положительного линейного напряжения

Мы разработали схему положительного линейного стабилизатора напряжения с использованием 7805 IC . Эта ИС имеет все схемы для обеспечения 5-вольтного стабилизированного питания. Входное напряжение должно быть как минимум более чем на 2 В от номинального значения, как для LM7805, мы должны обеспечить как минимум 7 В.

На микросхему подается нерегулируемое входное напряжение, и мы получаем стабилизированное напряжение на выходе.Название ИС определяет ее функцию, 78 представляет положительный знак, а 05 представляет значение регулируемого выходного напряжения. Как вы видите на принципиальной схеме, мы подаем 9 В на 7805IC и получаем стабилизированное + 5 В на выходе. Конденсаторы C1 и C2 используются для фильтрации.

Цепь стабилитрона

Здесь мы разработали стабилизатор напряжения на стабилитроне 5,1 В. Стабилитрон работает как чувствительный элемент.Когда напряжение питания превышает его напряжение пробоя, он начинает проводить в обратном направлении и поддерживает то же напряжение на нем, а дополнительный ток течет обратно, обеспечивая тем самым стабильное выходное напряжение. В этой схеме мы даем 9 В входного напряжения и получаем почти 5,1 напряжения регулируемого выхода.

% PDF-1.4 % 54 0 объект > endobj xref 54 585 0000000016 00000 н. 0000015195 00000 п. 0000015303 00000 п. 0000015445 00000 п. 0000016244 00000 п. 0000016408 00000 п. 0000023213 00000 п. 0000032731 00000 п. 0000032758 00000 п. 0000032790 00000 н. 0000032836 00000 н. 0000032896 00000 п. 0000033110 00000 п. 0000033234 00000 п. 0000033316 00000 п. 0000033667 00000 п. 0000033720 00000 п. 0000033769 00000 п. 0000033817 00000 п. 0000033877 00000 п. 0000033941 00000 п. 0000077774 00000 п. 0000077973 00000 п. 0000078608 00000 п. 0000079254 00000 п. 0000117190 00000 н. 0000117410 00000 н. 0000117991 00000 н. 0000118435 00000 н. 0000174758 00000 н. 0000174952 00000 н. 0000175717 00000 н. 0000176409 00000 н. 0000212821 00000 н. 0000213022 00000 н. 0000213673 00000 н. 0000214328 00000 н. 0000222871 00000 н. 0000223081 00000 н. 0000223448 00000 н. 0000223809 00000 н. 0000223884 00000 н. 0000224905 00000 н. 0000225029 00000 н. 0000225111 00000 п. 0000226206 00000 н. 0000226331 00000 п. 0000226402 00000 н. 0000227100 00000 н. 0000227227 00000 н. 0000227299 00000 н. 0000228167 00000 н. 0000228294 00000 н. 0000228366 00000 н. 0000229550 00000 н. 0000229678 00000 н. 0000229750 00000 н. 0000229842 00000 н. 0000229933 00000 н. 0000229988 00000 н. 0000230341 00000 п. 0000230386 00000 п. 0000230418 00000 н. 0000238204 00000 н. 0000238411 00000 п. 0000238654 00000 н. 0000238900 00000 н. 0000253486 00000 н. 0000253695 00000 н. 0000254140 00000 н. 0000254530 00000 н. 0000271746 00000 н. 0000271967 00000 н. 0000272577 00000 н. 0000273034 00000 н. 0000273104 00000 н. 0000273206 00000 н. 0000281021 00000 н. 0000281222 00000 н. 0000281532 00000 н. 0000281992 00000 н. 0000282124 00000 н. 0000282238 00000 н. 0000349515 00000 н. 0000349550 00000 п. 0000354375 00000 н. 0000354407 00000 н. 0000354485 00000 н. 0000453515 00000 н. 0000540418 00000 н. 0000540466 00000 н. 0000541573 00000 н. 0000541605 00000 н. 0000541675 00000 н. 0000541796 00000 н. 0000569181 00000 п. 0000569384 00000 п. 0000569920 00000 н. 0000570582 00000 н. 0000570713 00000 н. 0000570803 00000 п. 0000614895 00000 н. 0000725596 00000 н. 0000725644 00000 н. 0000728991 00000 н. 0000729023 00000 н. 0000729374 00000 н. 0000729591 00000 н. 0000729835 00000 н. 0000760997 00000 н. 0000761195 00000 н. 0000761852 00000 н. 0000762504 00000 н. 0000762574 00000 н. 0000762662 00000 н. 0000767613 00000 н. 0000767827 00000 н. 0000767986 00000 н. 0000768222 00000 п. 0000768364 00000 н. 0000768434 00000 н. 0000768537 00000 п. 00007

00000 н. 00007 00000 н. 0000790563 00000 н. 0000790800 00000 н. 0000790932 00000 н. 0000791097 00000 п. 0000888523 00000 н. 0000888558 00000 п. 0000894227 00000 н. 0000894255 00000 н. 0000894290 00000 н. 0000894491 00000 н. 0000894616 00000 н. 0000894700 00000 н. 0000895057 00000 н. 0000895112 00000 п. 0000895163 00000 п. 0000895230 00000 н. 0000895300 00000 н. 0000895400 00000 н. 0000899925 00000 н. 0000

9 00000 н. 0000
  • 2 00000 н. 00004 00000 н. 00006 00000 н. 0000

    6 00000 н. 0000

    8 00000 н. 0000908305 00000 н. 0000908512 00000 н. 0000908801 00000 н. 0000909170 00000 н. 0000909308 00000 н. 0000909484 00000 н. 0000910124 00000 п. 0000910249 00000 п. 0000910333 00000 п. 0000910381 00000 п. 0000910429 00000 н. 0000910788 00000 н. 0000910836 00000 н. 0000921368 00000 н. 0000921396 00000 н. 0000921431 00000 н. 0000921556 00000 н. 0000921640 00000 н. 0000921997 00000 н. 0000922052 00000 н. 0000922103 00000 п. 0000922170 00000 н. 0000922308 00000 н. 0000922433 00000 п. 0000922517 00000 н. 0000922565 00000 н. 0000922613 00000 н. 0000922971 00000 п. 0000923019 00000 п. 0000931767 00000 н. 0000931799 00000 н. 0000932246 00000 н. 0000932468 00000 н. 0000932944 00000 н. 0000933082 00000 п. 0000940060 00000 н. 0000940088 00000 н. 0000940123 00000 п. 0000940249 00000 н. 0000940333 00000 п. 0000940690 00000 н. 0000940745 00000 н. 0000940796 00000 н. 0000940863 00000 н. 0000941013 00000 н. 0000942023 00000 н. 0000942150 00000 н. 0000942234 00000 п. 0000942282 00000 н. 0000942330 00000 н. 0000942689 00000 п. 0000942737 00000 н. 0000950096 00000 н. 0000950139 00000 п. 0000950209 00000 н. 0000950297 00000 н. 0000955540 00000 п. 0000955758 00000 п. 0000955921 00000 н. 0000956156 00000 п. 0000956302 00000 н. 0000956372 00000 п. 0000956459 00000 п. 0000957360 00000 п. 0000957562 00000 н. 0000957731 00000 н. 0000957983 00000 п. 0000958116 00000 п. 0000958318 00000 п. 0000958531 00000 н. 0000988397 00000 н. 0000988445 00000 н. 0000995589 00000 н. 0000995621 00000 н. 0000995691 00000 п. 0000995779 00000 н. 0001000842 00000 п. 0001001064 00000 п. 0001001231 00000 н. 0001001467 00000 n 0001001617 00000 п. 0001001987 00000 п. 0001002209 00000 п. 0001002457 00000 п. 0001002527 00000 n 0001002619 00000 п. 0001007898 00000 п. 0001008112 00000 п. 0001008282 00000 п. 0001008526 00000 п. 0001008668 00000 п. 0001008738 00000 п. 0001008826 00000 п. 0001014702 00000 п. 0001014910 00000 п. 0001015063 00000 п. 0001015299 00000 п. 0001015435 00000 п. 0001015662 00000 п. 0001055951 00000 п. 0001055983 00000 п. 0001056096 00000 п. 0001056124 00000 п. 0001056159 00000 п. 0001056284 00000 п. 0001056368 00000 п. 0001056724 00000 п. 0001056779 00000 п. 0001056830 00000 п. 0001056956 00000 п. 0001057040 00000 п. 0001057399 00000 п. 0001057454 00000 п. 0001057505 00000 п. 0001057585 00000 п. 0001057748 00000 п. 0001057873 00000 п. 0001057957 00000 п. 0001058084 00000 п. 0001058168 00000 п. 0001058242 00000 п. 0001058316 00000 п. 0001058675 00000 п. 0001059035 00000 п. 0001059109 00000 п. 0001067209 00000 п. 0001067241 00000 п. 0001067416 00000 п. 0001075935 00000 п. 0001075967 00000 п. 0001076117 00000 п. 0001082711 00000 п. 0001082743 00000 п. 0001082880 00000 п. 0001092640 00000 п. 0001092701 00000 п. 0001092758 00000 п. 0001092827 00000 п. 0001092897 00000 п. 0001092986 00000 п. 0001098398 00000 п. 0001098601 00000 п. 0001098749 00000 п. 0001098985 00000 п. 0001099116 00000 п. 0001099253 00000 п. 0001101288 00000 п. 0001101323 00000 п. 0001112202 00000 п. 0001112234 00000 п. 0001112371 00000 п. 0001122149 00000 п. 0001122181 00000 п. 0001122319 00000 п. 0001133601 00000 п. 0001133633 00000 п. 0001133758 00000 п. 0001145788 00000 п. 0001145820 00000 п. 0001153654 00000 п. 0001153864 00000 п. 0001154176 00000 п. 0001154525 00000 п. 0001154701 00000 п. 0001154736 00000 п. 0001167306 00000 п. 0001167338 00000 п. 0001175122 00000 п. 0001175323 00000 п. 0001175564 00000 п. 0001175724 00000 п. 0001175863 00000 п. 0001177842 00000 п. 0001177877 00000 п. 0001187946 00000 п. 0001187978 00000 п. 0001188090 00000 п. 0001205614 00000 п. 0001205642 00000 п. 0001205677 00000 п. 0001205804 00000 п. 0001205888 00000 п. 0001206244 00000 п. 0001206299 00000 п. 0001206350 00000 п. 0001206417 00000 п. 0001206567 00000 п. 0001206694 00000 п. 0001206778 00000 п. 0001206826 00000 п. 0001206874 00000 п. 0001207232 00000 п. 0001207280 00000 п. 0001216378 00000 п. 0001216410 00000 п. 0001216536 00000 п. 0001226183 00000 п. 0001226211 00000 п. 0001226246 00000 п. 0001226371 00000 п. 0001226455 00000 п. 0001226798 00000 п. 0001226853 00000 п. 0001226904 00000 п. 0001226971 00000 п. 0001227108 00000 пн 0001227233 00000 n 0001227317 00000 п. 0001227365 00000 пн 0001227413 00000 п. 0001227758 00000 н. 0001227806 00000 п. 0001237534 00000 п. 0001237603 00000 п. 0001237672 00000 п. 0001237784 00000 п. 0001238897 00000 п. 0001238932 00000 п. 0001248115 00000 п. 0001248147 00000 п. 0001248297 00000 п. 0001258469 00000 п. 0001258501 00000 п. 0001258628 00000 п. 0001264244 00000 п. 0001267783 00000 н. 0001271865 00000 п. 0001273947 00000 п. 0001294290 00000 п. 0001332505 00000 п. 0001334375 00000 п. 0001337523 00000 п. 0001337649 00000 п. 0001345237 00000 п. 0001345269 00000 п. 0001345420 00000 п. 0001399002 00000 н. 0001444108 00000 п. 0001444156 00000 п. 0001452964 00000 п. 0001452996 00000 п. 0001453136 00000 п. 0001506409 00000 п. 0001506444 00000 п. 0001510531 00000 п. 0001510563 00000 п. 0001510633 00000 п. 0001510729 00000 п. 0001516868 00000 п. 0001517080 00000 п. 0001517329 00000 п. 0001517665 00000 п. 0001517805 00000 п. 0001517970 00000 п. 0001651839 00000 п. 0001651874 00000 п. 0001658382 00000 п. 0001658414 00000 п. 0001658515 00000 п. 0001658550 00000 п. 0001675359 00000 п. 0001675387 00000 п. 0001675421 00000 п. 0001675546 00000 п. 0001675630 00000 п. 0001675974 00000 п. 0001676029 00000 п. 0001676080 00000 п. 0001676146 00000 п. 0001676246 00000 п. 0001676881 00000 п. 0001677006 00000 п. 0001677090 00000 п. 0001677136 00000 п. 0001677182 00000 п. 0001677526 00000 п. 0001677572 00000 н. 0001687571 00000 п. 0001687599 00000 п. 0001687634 00000 п. 0001687762 00000 п. 0001687846 00000 п. 0001688204 00000 п. 0001688259 00000 п. 0001688310 00000 п. 0001688377 00000 п. 0001688527 00000 н. 0001688656 00000 п. 0001688740 00000 п. 0001688788 00000 н. 0001688836 00000 п. 0001689196 00000 п. 0001689244 00000 п. 0001697681 00000 п. 0001697713 00000 п. 0001697850 00000 п. 0001737612 00000 п. 0001761731 00000 п. 0001762816 00000 п. 0001763905 00000 пн 0001765112 00000 п. 0001766550 00000 п. 0001767990 00000 н. 0001769406 00000 п. 0001773691 00000 п. 0001778543 00000 п. 0001778695 00000 п. 0001786133 00000 п. 0001786165 00000 п. 0001786289 00000 п. 0001796625 00000 п. 0001796657 00000 п. 0001796770 00000 п. 0001807429 00000 п. 0001807461 00000 п. 0001807588 00000 п. 0001824200 00000 п. 0001824232 00000 п. 0001824356 00000 п. 0001833857 00000 п. 0001833889 00000 п. 0001834002 00000 пн 0001853333 00000 п. 0001853368 00000 п. 0001863953 00000 п. 0001863985 00000 п. 0001864097 00000 п. 0001921831 00000 п. 0001921866 00000 п. 0001929521 00000 н. 0001929553 00000 п. 0001929665 00000 n 0001956966 00000 п. 0001957001 00000 п. 0001966092 00000 п. 0001966120 00000 н. 0001966155 00000 п. 0001966280 00000 п. 0001966364 00000 n 0001966719 00000 п. 0001966774 00000 п. 0001966825 00000 п. 0001966950 00000 п. 0001967034 00000 п. 0001967383 00000 п. 0001967438 00000 п. 0001967489 00000 n 0001967569 00000 п. 0001967693 00000 п. 0001967818 00000 п. 0001967902 00000 н. 0001968027 00000 п. 0001968111 00000 п. 0001968185 00000 п. 0001968259 00000 п. 0001968615 00000 п. 0001968965 00000 n 0001969039 00000 п. 0001977005 00000 п. 0001977037 00000 п. 0001977138 00000 п. 0001986578 00000 п. 0001986626 00000 н. 0001986661 00000 п. 0001986693 00000 п. 0001986807 00000 п. 0002004 00000 n 0002002039 00000 н. 0002002071 00000 н. 0002002175 00000 n 0002019038 00000 п. 0002019066 00000 п. 0002019101 00000 п. 0002019229 00000 п. 0002019313 00000 п. 0002019670 00000 н. 0002019725 00000 п. 0002019776 00000 п. 0002019901 00000 п. 0002019985 00000 п. 0002020342 00000 п. 0002020397 00000 н. 0002020448 00000 н. 0002020528 00000 п. 0002020652 00000 п. 0002021811 00000 п. 0002021940 00000 п. 0002022024 00000 н. 0002022680 00000 п. 0002022805 00000 п. 0002022889 00000 п. 0002022963 00000 пн 0002023037 00000 п. 0002023396 00000 п. 0002023754 00000 п. 0002023802 00000 п. 0002023984 00000 п. 0002024071 00000 п. 0002030842 00000 п. 0002030885 00000 п. 0002030998 00000 п. 0002112149 00000 п. 0002112377 00000 п. 0002135774 00000 п. 0002135835 00000 п. 0002143055 00000 п. 0002143087 00000 п. 0002143215 00000 п. 0002160303 00000 п. 0002170985 00000 п. 0002182451 00000 п. 0002191753 00000 п. 0002191827 00000 n 0002198446 00000 п. 0002198474 00000 п. 0002198509 00000 п. 0002198634 00000 п. 0002198718 00000 п. 0002199069 00000 н. 0002199124 00000 п. 0002199175 00000 п. 0002199242 00000 п. 0002199404 00000 п. 0002199529 00000 п. 0002199613 00000 п. 0002199661 00000 п. 0002199709 00000 п. 0002200062 00000 н. 0002200110 00000 п. 0002208200 00000 п. 0002208232 00000 п. 0002208370 00000 п. 0002311176 00000 п. 0002324850 00000 п. 0002324898 00000 п. 0000011996 00000 п. трейлер ] / Назад 2343682 >> startxref 0 %% EOF 638 0 объект > поток hTSGǿ

    Различные типы регуляторов напряжения и принцип работы

    Регулятор напряжения используется для регулирования уровней напряжения.Когда требуется стабильное и надежное напряжение, предпочтительным устройством является регулятор напряжения. Он генерирует фиксированное выходное напряжение, которое остается постоянным при любых изменениях входного напряжения или условий нагрузки. Он действует как буфер для защиты компонентов от повреждений. Стабилизатор напряжения — это устройство с простой конструкцией с прямой связью, в котором используются контуры управления с отрицательной обратной связью. В основном есть два типа регуляторов напряжения: линейные регуляторы напряжения и импульсные регуляторы напряжения; они используются в более широких приложениях.Линейный регулятор напряжения — самый простой тип регулятора напряжения. Он доступен в двух типах, которые являются компактными и используются в системах с низким энергопотреблением и низким напряжением. Обсудим различные типы регуляторов напряжения.

    Регулятор напряжения

    Типы регуляторов напряжения и их принцип работы

    В основном существует два типа регуляторов напряжения: линейный регулятор напряжения и импульсный регулятор напряжения.


    • Существует два типа линейных регуляторов напряжения: последовательные и шунтовые.
    • Существует три типа импульсных регуляторов напряжения: повышающие, понижающие и инверторные регуляторы напряжения.
    Линейный регулятор

    Линейный регулятор действует как делитель напряжения. В омической области используется полевой транзистор. Сопротивление регулятора напряжения меняется в зависимости от нагрузки, что приводит к постоянному выходному напряжению.

    Преимущества линейного регулятора напряжения

    • Обеспечивает низкую пульсацию выходного напряжения
    • Быстрое время отклика на нагрузку или изменения линии
    • Низкие электромагнитные помехи и меньший шум

    Недостатки линейного регулятора напряжения

    • Очень низкий КПД
    • Требуется большое пространство — необходим радиатор
    • Напряжение выше входа не может быть увеличено
    Регулятор напряжения серии

    В последовательном регуляторе напряжения используется регулируемый элемент, подключенный последовательно с нагрузкой.Изменяя сопротивление этого последовательного элемента, можно изменить падение напряжения на нем. И напряжение на нагрузке остается постоянным.

    Регулятор напряжения серии

    Потребляемый ток эффективно используется нагрузкой; это главное преимущество последовательного регулятора напряжения. Даже когда нагрузка не требует тока, последовательный регулятор не потребляет полный ток. Таким образом, последовательный стабилизатор значительно эффективнее шунтирующего регулятора напряжения.Цепь регулятора напряжения серии

    Цепь регулятора напряжения серии

    Шунтирующий регулятор напряжения

    Шунтирующий регулятор напряжения работает, обеспечивая путь от напряжения питания к земле через переменное сопротивление. Ток через шунтирующий регулятор отклоняется от нагрузки и бесполезно течет на землю, что делает эту форму обычно менее эффективной, чем последовательный регулятор. Это, однако, более простое, иногда состоящее только из напряжения опорного диода, и используется в очень маломощных схемах, в котором впустую ток слишком мал, чтобы быть озабоченность.Эта форма очень часто для эталонного напряжения цепей. Шунтирующий регулятор обычно может только поглощать (поглощать) ток.

    Шунтирующий регулятор напряжения

    Применение шунтирующих регуляторов

    Шунтирующие регуляторы используются в:

    • Импульсные источники питания с низким выходным напряжением
    • Цепи источника и стока тока
    • Усилители ошибки
    • Регулируемые линейные и импульсные источники питания напряжения или тока
    • Мониторинг напряжения
    • Аналоговые и цифровые схемы, требующие точных ссылок
    • Прецизионные ограничители тока
    Импульсный регулятор напряжения

    Импульсный регулятор быстро включает и выключает последовательные устройства.Рабочий цикл переключателя устанавливает количество заряда, передаваемого нагрузке. Это контролируется механизмом обратной связи, аналогичным линейному регулятору. Импульсные регуляторы эффективны, потому что последовательный элемент либо полностью проводит ток, либо выключен, потому что он почти не рассеивает мощность. Импульсные регуляторы способны генерировать выходное напряжение, превышающее входное напряжение, или противоположную полярность, в отличие от линейных регуляторов.

    Импульсный регулятор напряжения

    Импульсный регулятор напряжения быстро включается и выключается, изменяя выходной сигнал.Он требует управляющего генератора, а также заряжает компоненты накопителя.

    В импульсном регуляторе с частотно-импульсной модуляцией изменяются частота, постоянный рабочий цикл и спектр шума, налагаемые PRM, изменяются; отфильтровать этот шум труднее.

    Импульсный стабилизатор с широтно-импульсной модуляцией, постоянной частотой, изменяющимся рабочим циклом, эффективен и легко отфильтровывает шум.
    В импульсном стабилизаторе ток в непрерывном режиме через индуктор никогда не падает до нуля.Это обеспечивает максимальную выходную мощность. Это дает лучшую производительность.

    В импульсном регуляторе ток в прерывистом режиме через катушку индуктивности падает до нуля. Это дает лучшую производительность при низком выходном токе.

    Топологии коммутации

    Имеет два типа топологий: диэлектрическая изоляция и неизолированная.

    Без изоляции: Он основан на небольших изменениях Vout / Vin. Примеры: повышающий регулятор напряжения (Boost) — повышает входное напряжение; Step Down (Бак) — снижает входное напряжение; Повышение / Понижение (повышение / понижение) Регулятор напряжения — понижает, повышает или инвертирует входное напряжение в зависимости от контроллера; Зарядный насос — обеспечивает многократный ввод без использования индуктора.
    Диэлектрик — Изоляция: Основано на радиации и интенсивных средах.

    Преимущества коммутационных топологий

    Основными преимуществами импульсного источника питания являются эффективность, размер и вес. Это также более сложная конструкция, способная обеспечить более высокую энергоэффективность. Импульсный регулятор напряжения может обеспечивать выходной сигнал, который больше или меньше или инвертирует входное напряжение.

    Недостатки топологий коммутации

    • Повышенное пульсирующее напряжение на выходе
    • Более медленное переходное время восстановления
    • EMI производит очень шумный выходной сигнал
    • Очень дорогой
    Повышающий регулятор напряжения

    Повышающие переключающие преобразователи также так называемые повышающие импульсные регуляторы, обеспечивают более высокое выходное напряжение за счет увеличения входного напряжения.Выходное напряжение регулируется до тех пор, пока потребляемая мощность находится в пределах выходной мощности схемы. Для управления гирляндой светодиодов используется повышающий импульсный регулятор напряжения.

    Повышающий регулятор напряжения

    Предположим, что вывод цепи без потерь = Pout (входная и выходная мощности одинаковы)

    Тогда V в I в = V out I out ,

    I out / I дюйм = (1-D)

    Из этого следует, что в этой схеме

    • мощности остаются прежними
    • Напряжение увеличивается
    • Ток уменьшается
    • Эквивалентно трансформатору постоянного тока
    Понижение (Понижение) Регулятор напряжения

    Снижает входное напряжение.

    Понижающий регулятор напряжения

    Если входная мощность равна выходной мощности, тогда

    P на входе = P на выходе ; V вход I вход = V выход I выход ,

    I выход / I дюйм = V вход / V выход = 1 / D

    Понижающий преобразователь эквивалентен к трансформатору постоянного тока, в котором коэффициент трансформации находится в диапазоне 0-1.

    Повышение / Понижение (повышение / понижение)

    Его также называют инвертором напряжения.Используя эту конфигурацию, можно повышать, понижать или инвертировать напряжение в соответствии с требованиями.

    • Выходное напряжение имеет полярность, противоположную входной.
    • Это достигается за счет прямого смещения диода с обратным смещением VL во время выключения, выработки тока и зарядки конденсатора для выработки напряжения во время выключения.
    • Используя этот тип импульсного стабилизатора, можно достичь эффективности 90%.
    Повышающий / понижающий регулятор напряжения
    Регулятор напряжения генератора

    Генераторы переменного тока вырабатывают ток, необходимый для удовлетворения электрических требований транспортного средства при работе двигателя.Он также восполняет энергию, которая используется для запуска автомобиля. Генератор имеет способность производить больше тока на более низких скоростях, чем генераторы постоянного тока, которые когда-то использовались в большинстве транспортных средств. Генератор состоит из двух частей.

    Регулятор напряжения генератора

    Статор — это неподвижный компонент, который не движется. Он содержит набор электрических проводников, намотанных катушками на железный сердечник.
    Ротор / Якорь — Это движущийся компонент, который создает вращающееся магнитное поле любым из следующих трех способов: (i) индукцией (ii) постоянными магнитами (iii) с помощью возбудителя.

    Электронный регулятор напряжения

    Простой регулятор напряжения может быть изготовлен из резистора, соединенного последовательно с диодом (или серией диодов). Из-за логарифмической формы кривых V-I на диоде напряжение на диоде изменяется незначительно из-за изменений потребляемого тока или изменений на входе. Когда точный контроль напряжения и эффективность не важны, эта конструкция может работать нормально.

    Электронный регулятор напряжения
    Транзисторный регулятор напряжения

    Электронные регуляторы напряжения имеют нестабильный источник опорного напряжения, который обеспечивается диодом Зенера, который также известен как обратный пробой рабочего напряжения диода.Он поддерживает постоянное выходное напряжение постоянного тока. Пульсации переменного напряжения блокируются, но фильтр не блокируется. Регулятор напряжения также имеет дополнительную схему для защиты от короткого замыкания и схему ограничения тока, защиту от перенапряжения и тепловое отключение.

    Транзисторный регулятор напряжения

    Речь идет о различных типах регуляторов напряжения и принципах их работы. Мы считаем, что информация, представленная в этой статье, поможет вам лучше понять эту концепцию.Кроме того, по любым вопросам, касающимся этой статьи или любой помощи в реализации проектов в области электротехники и электроники, вы можете обратиться к нам, оставив комментарий в разделе комментариев ниже. Вот вам вопрос — где мы будем использовать регулятор напряжения генератора?

    Источники фото:

    регулятор напряжения | Определение, типы и факты

    Регулятор напряжения , любое электрическое или электронное устройство, поддерживающее напряжение источника питания в допустимых пределах.Стабилизатор напряжения необходим для поддержания напряжения в предписанном диапазоне, который может выдерживать электрическое оборудование, использующее это напряжение. Такое устройство широко используется в автомобилях всех типов для согласования выходного напряжения генератора с электрической нагрузкой и требованиями к зарядке аккумулятора. Стабилизаторы напряжения также используются в электронном оборудовании, в котором чрезмерные колебания напряжения могут быть вредными.

    В автомобилях регуляторы напряжения быстро переключаются с одного на другое из трех состояний цепи с помощью подпружиненного двухполюсного переключателя.На низких скоростях некоторый ток от генератора используется для усиления магнитного поля генератора, тем самым увеличивая выходное напряжение. На более высоких скоростях в цепь генератора поля вводится сопротивление, так что его напряжение и ток уменьшаются. На еще более высоких скоростях цепь отключается, уменьшая магнитное поле. Частота переключения регулятора обычно составляет от 50 до 200 раз в секунду.

    В электронных регуляторах напряжения используются твердотельные полупроводниковые устройства для сглаживания колебаний тока.В большинстве случаев они работают как переменные сопротивления; то есть сопротивление уменьшается, когда электрическая нагрузка большая, и увеличивается, когда нагрузка меньше.

    Регуляторы напряжения выполняют те же функции в крупных системах распределения электроэнергии, что и в автомобилях и других машинах; они минимизируют колебания напряжения, чтобы защитить оборудование, использующее электричество. В системах распределения электроэнергии регуляторы находятся либо на подстанциях, либо на самих фидерных линиях.Используются два типа регуляторов: ступенчатые регуляторы, в которых переключатели регулируют подачу тока, и индукционные регуляторы, в которых асинхронный двигатель подает вторичное, постоянно регулируемое напряжение для выравнивания колебаний тока в линии подачи.

    Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

    Лучшая схема регулятора переменного тока — Выгодные предложения на схемы регулятора переменного тока от глобальных продавцов схем регулятора переменного тока

    Отличные новости !!! Вы находитесь в нужном месте для цепи регулятора переменного тока.К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

    Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

    AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку эта лучшая схема стабилизатора переменного тока вскоре станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели схему стабилизатора переменного тока на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

    Если вы все еще не уверены в схеме стабилизатора переменного тока и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов. Мы поможем вам решить, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.А если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

    А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести ac Regulator circuit по самой выгодной цене.

    У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

    Лучшая цена на схему регулятора напряжения — Отличные предложения на схему регулятора напряжения от глобальных продавцов схем регулятора напряжения

    Отличные новости !!! Вы попали в нужное место для схемы регулятора напряжения.К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

    Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

    AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, так как эта верхняя схема регулятора напряжения в кратчайшие сроки станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели схему регулятора напряжения на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

    Если вы все еще не уверены в схеме регулятора напряжения и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов. Мы поможем вам решить, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.А если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

    А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести the Voltage Regulator circuit по самой выгодной цене.

    У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

    .
  • Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *