Схемы трансформаторных блоков питания: характеристика, схемы, как сделать своими руками

Содержание

характеристика, схемы, как сделать своими руками

Трансформаторный блок питания на 12В используется для преобразования сетевого напряжения до уровня необходимого для работы определенного устройства. Сегодня в данной разновидности блоков питания устанавливаются системы предохранения от резких скачков напряжения, коротких замыканий и для нормализации высокочастотных помех. Конструкция обладает надежностью при сравнительной простоте и низкой стоимости. Блок питания с трансформаторным типа можно самостоятельно сконструировать и собрать в домашних условиях.

Устройство и принцип работы

От обычного блока питания трансформаторный отличается наличием понижающего устройства, который позволяет снизить подаваемое в сети напряжение с 220В до 12В. Также в этих устройствах используется выпрямитель, который изготавливают из 1, 2 или 4 диодов полупроводникового типа – в зависимости от разновидности схемы.

В блоках питания этой категории используются трансформаторы в которых используется три основных компонента:

  • Сердечник специального сплава металлов или из ферромагнетика;
  • Сетевая первичная обмотка которая питается от 220В;
  • Вторичную обмотку применяют с понижающим действием – к ней подключается выпрямитель.

В остальном данный блок совпадает по принципу работы, строению и устройству с обычным блоком питания. Благодаря этому есть возможность подключать устройства различных категорий.

Применяемый выпрямитель определяется схематическим устройством, которое зависит от того, до каких значений нужно довести уровень напряжения. Например, в случае удвоения напряжения, используется два полупроводника. После проводника необходимо в устройстве конструкции использовать электролитический конденсатор.

Общая структура

Структурная схема блока питания с трансформаторным действием имеет следующий тип:

При этом в некоторых зарядных устройствах трансформаторного типа не используются последние два элемента. По сути основными являются трансформатор и выпрямитель, именно они отвечают за снижение напряжения, но фильтр и стабилизатор обеспечивают дополнительную защиту и регулировку значений в подаваемом на устройство напряжении.

На рынке электроники сегодня наиболее популярными являются однополярные трансформаторные блоки питания. Схема данного устройства выглядит следующим образом:

О конструкции самого трансформатора и принципах его работы поговорим далее. Двухполюсный блок питания данной категории имеет следующую схему:

В отличии от первой схемы, в этой применяется трансформатор с одинаковыми парными вторичными обмотками, которые последовательно соединяются.

Трансформатор

Один из основных элементов конструкции трансформатора – сердечник. В блоках питания он может быть Ш-образный либо U-образный, в редких случаях применяются тороидальные сердечники. На них располагаются трансформаторные обмотки из двух слоев: вторичная поверх первичной.

Конструкция

При сборке конструкции используется специальная формула, которая позволяет вычислить необходимые габариты трансформатора:

(1/N)~F*S*B

В этой формуле используются следующие значения:

  • N – число витков на 1 вольт;
  • F – уровень частоты в переменном напряжении;
  • S – сечение магнитопровода;
  • B – индукция магнитного поля в магнитопроводе.

Таким образом можно вычислить конструктивные особенности трансформатора. В трансформаторных блоках питания применяются тороидальные, стержневые и броневые виды обмоток.

Их внешний вид представлен на картинке ниже:

Для расчета вторичной обмотки можно использовать следующий прием. Наматывается 10 витков, собирается трансформатор и с соблюдением техники безопасности, стандартным методом первичная обмотка подключается к электросети. Затем производятся замеры уровня напряжения на выводе из вторичной обмотки. Полученные значения делятся на 10, после этого 12 делится на 10. Так определяется число витков необходимое для выработки напряжения в 12В.

Принцип работы

Трансформатор на этой разновидности блока питания позволяет преобразовывать напряжение в 220В получаемое из обычной электросети до необходимого уровня напряжения для определенного устройства.

Генератором электромагнитных полей выступает проводник через который проходит переменный ток, а благодаря тому, что на трансформаторе он смотан в катушку его действие производится более плотно.

Согласно закону электромагнитной индукции переменное поле наводится во вторичной обмотке.

Выбор напряжения

Необходимое напряжение определяется устройством, для питания которого будет использоваться блок питания. Можно использовать напряжение в 12В, 3.3В, 5В и 9В. Это самые популярные значения напряжения на выходе, при этом оно может иметь и другие значения. Все зависит от конструкции трансформатора, количества обмоток и размер сечения, используемого магнитопровода.

12В

Блок питания с напряжением на выходе в 12В широко используются в быту с конца прошлого столетия. Их применяют для питания котлов отопления, светодиодных лент, игровых устройств, сварочных аппаратов, телевизионных приставок и различных бытовых приборов.

3.3 В

Блоки с напряжением этого уровня используются преимущественно в персональных компьютерах, но могут использоваться и для подзарядки других устройств, например, в сварочных аппаратах.

Данный вид трансформаторных блоков питания также используется для обеспечения питания компьютеров и серверов.

Эта разновидность блоков для питания устройств широко применяется для работы со строительной техникой и различных бытовых устройств. Например, им подпитывается дрель, болгарка или перфоратор.

Выпрямитель

В трансформаторном блоке питания используется обычно мостовой выпрямитель с одним, двумя или четырьмя диодами.

Используем мостовую схему выпрямления

Использование мостового выпрямителя показано на данной схеме:

Как работает

Принцип работы у выпрямителя мостового типа следующий: во время течения в полупериоде, электрический ток идет через два диода, которые включены в прямом направлении. Это позволяет конденсатору получать напряжение с пульсацией в два раза большей частотой от питания.

Выше представлена схема как использовать выпрямитель мостового типа в конструкции. Чтобы понять, как работает выпрямитель с постоянным и переменным напряжением мостового типа можно использовать для ознакомления данную схему:

Треугольники на схеме – это диоды, которые позволяют работать мостовому выпрямителю.

Как спаять

Для спайки мостового выпрямителя следует использовать следующую схему:

Фильтр

В блоках трансформаторного типа фильтрация и отсечение переменных, составляющих являются обязательными. С этой целью в данных устройствах используются электролитические конденсаторы с большой емкостью.

Назначение

Электролитический конденсатор, выполняющий роль фильтра в этих устройствах используется как при работе блока с постоянным, так и переменным напряжением. Но в некоторых случаях выбор конденсатора может быть другим.

Выбор конденсатора

Для трансформаторных блоков питания подбирается конденсатор согласно уровню напряжения, с которым он работает. При постоянном напряжении вместо электролитного конденсатора можно использовать постоянный резистор, а при переменном напряжении обычной перемычкой, так как конденсатор становится проводником.

Как правильно подключать

Чтобы при самостоятельной сборке трансформаторного блока питания на 12В конденсаторы правильно работали, на выходе устройство укомплектовывается резистором с сопротивлением от 3 до 5 Мом.

Стабилизатор напряжения или тока

Источник питания стандартного типа собирается с использованием электролитического конденсатора с емкостью не более 10000 мкФ, двухполупериодного выпрямителя мостового типа из диодов с обратным напряжением в 50 вольт и прямым током 3А, а также с предохранителем 0,5А. В роли интегрального стабилизатора напряжения на 12В используется конденсатор 7912, либо 7812.

Стабилитрон

Для постоянства напряжения при выходе из блока питания рекомендуется использовать стабилитрон.

Интегральный стабилизатор напряжения

Без использования стабилизатора напряжения блок питания не сможет правильно функционировать. В роли этих компонентов используются конденсаторы серий LM 78xx и LM 79xx. Стабилитроны подбираются по подходящей величине параметров тока и напряжения, на рынке их большое множество, но самым продвинутым считается элемент типа КР142ЕН12.

Чем больше емкость конденсатора, тем лучше уровень сигнала на выходе, он имеет правильную форму и стремится к прямой линии.

Серия LM 78xx

Данные регуляторы напряжения имеют выходной ток до 1А, и выходное напряжение: 5, 6, 8, 9, 12, 15, 18, 24. Кроме того в этих конденсаторах есть тепловая защита от перегрузок и защита от коротких замыканий.

Серия LM 79xx

Эти регуляторы напряжения имеют значения схожие с серией 78xx. В них также реализована тепловая защита от больших перегрузок и защита от замыканий.

Вспомогательные узлы

В конструкции можно реализовать вспомогательные узлы, например, индикаторы или переключатели напряжения. Главное не переусердствовать и делать устройство согласно всем нормам и рекомендациям.

Индикаторные светодиоды

В конструкции можно продумать светодиодные индикаторы, которые применяются в заводских блоках и подзарядных устройствах. Светодиоды служат сигнализатором о том, что полезная работа трансформатора производится и напряжение соответствует требуемому значению.

Амперметр и вольтметр

Для произведения расчетов и подбора элементов, а также для правильной сборки блока питания необходимо использовать амперметр и вольтметр.

Схема самодельного источника питания

Схемы как собрать самодельный блок питания трансформаторного типа представлены были выше, но для удобства предлагаем для ознакомления еще одну схему, с понятными обозначениями.

На данной схеме изображен понижающий трансформатор с двумя обмотками и диодный мост для выпрямления.

Это простая схема, которая позволяет собрать самодельный источник питания с трансформатором любому начинающему электрику.

Как паять

Для сборки используется печатная плата из фольгированного диэлектрика. Сначала рисуется схема, затем на заготовку платы наносится рисунок и производится протравка. После этого засверливаются отверстия для крепления каждого элемента схемы блока.

Правила выбора комплектующих

Чтобы сделать своими руками блок питания с трансформатором необходимо правильно подобрать комплектующие. В данной статье мы разобрались как подсчитать значения необходимых элементов устройства, какие трансформаторы, выпрямители и фильтры можно использовать в блока питания этой разновидности. Для удобства предлагаю таблицу ниже, она поможет при выборе комплектующих:

В данной таблице приведены оптимальные значения и соотношения мощности устройства и технических характеристик всех компонентов, используемых в конструкции. Емкость конденсаторов должна обеспечивать заданную пульсацию в расчете 1мкФ на 1Вт в показателях мощности на выходе. Электролитический конденсатор должен выбираться для напряжения от 350В.

трансформаторный блок питания

последовательно с нагрузкой. Такое техническое решение дает ряд преимуществ по сравнению с тиристорным регулятором или ЛАТРом, например: не создает помех, проникающих в электросеть, имеет небольшие габариты и массу. Транзисторный регулятор позволяет управлять устройствами как с активной нагрузкой, так и с реактивной. Он к томе относительно прост и не содержит дефицитных деталей. Из недостатков наиболее серьезен один — на регулирующем транзисторе выделяется большое количество тепла, что создает определенные трудности с его отведением. Диодный мост VD1 — VD4 обеспечивает прямой ток через транзистор VT1 при обоих полупериодах сетевого напряжения. Пониженное трансформатором Т1 до 6В сетевое напряжение снимается с его обмотки II. Выпрямляет его диодный блок VD5 и сглаживает конденсатор С1. Переменным резистором R1 регулируют базовый ток транзистора VT1. Резистор R2 — токоограничительный. Диод VD6 предотвращает попадание на базу транзистора VT1 напряжения отрицательной полярности. Выходное напряжение контролируют по вольтметру PU1. Ток нагрузки работающей с таким источником переменного напряжения, зависит от значения управляющего напрядения на базе транзистора VT1. Изменяя это напряжение резистором R1 можно управлять током коллектора транзистора, а следовательно, и током через нагрузку. При крайнем нижнем по схеме положении движка резистора R1 транзистор VT1 оказывается полностью открытым и напряжение на нагрузке будет максимальным. В крайнем же верхнем положении движка этого резистора транзистор будет в закрытом состоянии и ток через нагрузку прекратится.
Трансформатор Т2, питающий источник постоянного напряжения, понижает переменное напряжение сети до 12В. Это напряжение выпрямляет диодный блок VD7, а пульсации напряжения сглаживают конденсаторы С2, С3. Стабилитрон VD8 и резистор R3 образуют параметрический стабилизатор напряжения, а транзистор VT2 усиливает выходную мощность этого источника. напряжение, снимаемое с его выхода, регулируют переменным резистором R4. Конденсатор С4 служит для фильтрации высокочастотных помех при питании от блока устройств на цифровых микросхемах. Выходное напряжение контролируют по вольтметру PU2.
Большую часть деталей блока можно смонтировать на печатной плате из фольгированного материала толщиной 1,5…2мм (рис.7). Мощные диоды VD1 — VD4 устанавливают на плате без теплоотводов. Плату, сетевые трансформаторы Т1, Т2 и транзисторы VT1 и VT2 размещают в пластмассовой или металлической коробке подходящих размеров. Транзисторы устанавливают на теплоотводах с полезной площадью рассеивания для транзистора VT1 — не менее 300см², а для транзистора VT2 — 30см². на лицевой панели блока размещают все органы управления, вольтметры и разъемы, а держатели предохранителя — на задней или одной из боковых стенок. Все необходимые соединения выполняют торезками тонкого монтажного провода в надежной изоляции.
Кроме указанных на схеме, в блоке питания можно использовать транзисторы: VT1 — КТ812А, КТ812Б, КТ824А, КТ824Б, КТ828А, КТ834А — КТ834В, КТ840А, КТ840Б, КТ847А, КТ856А; VT2 — КТ805АМ, КТ807А, КТ807Б, КТ815А — КТ815Г, КТ817А — КТ817Г, КТ819А — КТ819Г. Диоды VD1 — VD4 должны быть рассчитаны на напряжение не менее 250В и ток не менее 1А — например, КД202Ж — КД202С или из серий Д245, Д246, Д247, Д248 с любым буквенным индексом. Выпрямительные блоки VD5 и VD7 — КЦ405 с любым буквенным индексом; диод VD6 — Д237. Стабилитрон VD8 — Д811, Д813, Д814Г.
Оксидные конденсаторы С1 — С3 — К50-6, С4 — малогабаритный керамический КМ-5 или КМ-6. Постоянные резисторы R2, R3 — МЛТ, ОМЛТ, С2-23 или любые другие. Переменный резистор R1 — проволочный на мощность рассеивания не менее 3Вт, например, ППБ3 или ППБ15; R4 — СП, СПО мощностью не менее 0,5Вт. Предохранители FU1, FU2 — ВП1-1. Тумблеры SA1, SA2 — ТВ1-1, ТВ1-2, МТ1, МТД1, Т1 — Т3, Т3-С. Вольтметр PU1 — Ц4201 или любой другой, рассчитанный на измерение переменного напряжения 250…300В, а PU2 — М4231.40 или любой другой вольтметр постоянного тока на напряжение 12…15В. Разъем Х1 — стандартная сетевая вилка, Х2 — сетевая розетка, Х3 — любого типа. Сетевые трансформаторы Т1, Т2 подойдут от кадровой развертки старых телевизоров типа ТВК-70Л2, ТВК-110ЛМ, ТВК-110Л. В общем, для трансформатора Т1 подойдет любой сетевой с напряжением на вторичной обмотке 5…10В, выдерживающий ток 0,5А, а для трансформатора Т2 подойдет любой сетевой с напряжением на вторичной обмотке 12…18В, выдерживающий такой же ток 0,5А.
Блок питания налаживания не требует. Если при монтаже ошибок не допущено и применены исправные детали, он начинает работать сразу после включения.

Трансформаторный блок питания схема

Трансформаторный блок питания на 12В используется для преобразования сетевого напряжения до уровня необходимого для работы определенного устройства. Сегодня в данной разновидности блоков питания устанавливаются системы предохранения от резких скачков напряжения, коротких замыканий и для нормализации высокочастотных помех. Конструкция обладает надежностью при сравнительной простоте и низкой стоимости. Блок питания с трансформаторным типа можно самостоятельно сконструировать и собрать в домашних условиях.

Устройство и принцип работы

От обычного блока питания трансформаторный отличается наличием понижающего устройства, который позволяет снизить подаваемое в сети напряжение с 220В до 12В. Также в этих устройствах используется выпрямитель, который изготавливают из 1, 2 или 4 диодов полупроводникового типа – в зависимости от разновидности схемы.

В блоках питания этой категории используются трансформаторы в которых используется три основных компонента:

  • Сердечник специального сплава металлов или из ферромагнетика;
  • Сетевая первичная обмотка которая питается от 220В;
  • Вторичную обмотку применяют с понижающим действием – к ней подключается выпрямитель.

В остальном данный блок совпадает по принципу работы, строению и устройству с обычным блоком питания. Благодаря этому есть возможность подключать устройства различных категорий.

Применяемый выпрямитель определяется схематическим устройством, которое зависит от того, до каких значений нужно довести уровень напряжения. Например, в случае удвоения напряжения, используется два полупроводника. После проводника необходимо в устройстве конструкции использовать электролитический конденсатор.

Общая структура

Структурная схема блока питания с трансформаторным действием имеет следующий тип:

При этом в некоторых зарядных устройствах трансформаторного типа не используются последние два элемента. По сути основными являются трансформатор и выпрямитель, именно они отвечают за снижение напряжения, но фильтр и стабилизатор обеспечивают дополнительную защиту и регулировку значений в подаваемом на устройство напряжении.

На рынке электроники сегодня наиболее популярными являются однополярные трансформаторные блоки питания. Схема данного устройства выглядит следующим образом:

О конструкции самого трансформатора и принципах его работы поговорим далее. Двухполюсный блок питания данной категории имеет следующую схему:

В отличии от первой схемы, в этой применяется трансформатор с одинаковыми парными вторичными обмотками, которые последовательно соединяются.

Трансформатор

Один из основных элементов конструкции трансформатора – сердечник. В блоках питания он может быть Ш-образный либо U-образный, в редких случаях применяются тороидальные сердечники. На них располагаются трансформаторные обмотки из двух слоев: вторичная поверх первичной.

Конструкция

При сборке конструкции используется специальная формула, которая позволяет вычислить необходимые габариты трансформатора:

В этой формуле используются следующие значения:

  • N – число витков на 1 вольт;
  • F – уровень частоты в переменном напряжении;
  • S – сечение магнитопровода;
  • B – индукция магнитного поля в магнитопроводе.

Таким образом можно вычислить конструктивные особенности трансформатора. В трансформаторных блоках питания применяются тороидальные, стержневые и броневые виды обмоток.

Их внешний вид представлен на картинке ниже:

Для расчета вторичной обмотки можно использовать следующий прием. Наматывается 10 витков, собирается трансформатор и с соблюдением техники безопасности, стандартным методом первичная обмотка подключается к электросети. Затем производятся замеры уровня напряжения на выводе из вторичной обмотки. Полученные значения делятся на 10, после этого 12 делится на 10. Так определяется число витков необходимое для выработки напряжения в 12В.

Принцип работы

Трансформатор на этой разновидности блока питания позволяет преобразовывать напряжение в 220В получаемое из обычной электросети до необходимого уровня напряжения для определенного устройства.

Генератором электромагнитных полей выступает проводник через который проходит переменный ток, а благодаря тому, что на трансформаторе он смотан в катушку его действие производится более плотно. Согласно закону электромагнитной индукции переменное поле наводится во вторичной обмотке.

Выбор напряжения

Необходимое напряжение определяется устройством, для питания которого будет использоваться блок питания. Можно использовать напряжение в 12В, 3.3В, 5В и 9В. Это самые популярные значения напряжения на выходе, при этом оно может иметь и другие значения. Все зависит от конструкции трансформатора, количества обмоток и размер сечения, используемого магнитопровода.

Блок питания с напряжением на выходе в 12В широко используются в быту с конца прошлого столетия. Их применяют для питания котлов отопления, светодиодных лент, игровых устройств, сварочных аппаратов, телевизионных приставок и различных бытовых приборов.

Блоки с напряжением этого уровня используются преимущественно в персональных компьютерах, но могут использоваться и для подзарядки других устройств, например, в сварочных аппаратах.

Данный вид трансформаторных блоков питания также используется для обеспечения питания компьютеров и серверов.

Эта разновидность блоков для питания устройств широко применяется для работы со строительной техникой и различных бытовых устройств. Например, им подпитывается дрель, болгарка или перфоратор.

Выпрямитель

В трансформаторном блоке питания используется обычно мостовой выпрямитель с одним, двумя или четырьмя диодами.

Используем мостовую схему выпрямления

Использование мостового выпрямителя показано на данной схеме:

Как работает

Принцип работы у выпрямителя мостового типа следующий: во время течения в полупериоде, электрический ток идет через два диода, которые включены в прямом направлении. Это позволяет конденсатору получать напряжение с пульсацией в два раза большей частотой от питания.

Выше представлена схема как использовать выпрямитель мостового типа в конструкции. Чтобы понять, как работает выпрямитель с постоянным и переменным напряжением мостового типа можно использовать для ознакомления данную схему:

Треугольники на схеме – это диоды, которые позволяют работать мостовому выпрямителю.

Как спаять

Для спайки мостового выпрямителя следует использовать следующую схему:

Фильтр

В блоках трансформаторного типа фильтрация и отсечение переменных, составляющих являются обязательными. С этой целью в данных устройствах используются электролитические конденсаторы с большой емкостью.

Назначение

Электролитический конденсатор, выполняющий роль фильтра в этих устройствах используется как при работе блока с постоянным, так и переменным напряжением. Но в некоторых случаях выбор конденсатора может быть другим.

Выбор конденсатора

Для трансформаторных блоков питания подбирается конденсатор согласно уровню напряжения, с которым он работает. При постоянном напряжении вместо электролитного конденсатора можно использовать постоянный резистор, а при переменном напряжении обычной перемычкой, так как конденсатор становится проводником.

Как правильно подключать

Чтобы при самостоятельной сборке трансформаторного блока питания на 12В конденсаторы правильно работали, на выходе устройство укомплектовывается резистором с сопротивлением от 3 до 5 Мом.

Стабилизатор напряжения или тока

Источник питания стандартного типа собирается с использованием электролитического конденсатора с емкостью не более 10000 мкФ, двухполупериодного выпрямителя мостового типа из диодов с обратным напряжением в 50 вольт и прямым током 3А, а также с предохранителем 0,5А. В роли интегрального стабилизатора напряжения на 12В используется конденсатор 7912, либо 7812.

Стабилитрон

Для постоянства напряжения при выходе из блока питания рекомендуется использовать стабилитрон.

Интегральный стабилизатор напряжения

Без использования стабилизатора напряжения блок питания не сможет правильно функционировать. В роли этих компонентов используются конденсаторы серий LM 78xx и LM 79xx. Стабилитроны подбираются по подходящей величине параметров тока и напряжения, на рынке их большое множество, но самым продвинутым считается элемент типа КР142ЕН12.

Чем больше емкость конденсатора, тем лучше уровень сигнала на выходе, он имеет правильную форму и стремится к прямой линии.

Серия LM 78xx

Данные регуляторы напряжения имеют выходной ток до 1А, и выходное напряжение: 5, 6, 8, 9, 12, 15, 18, 24. Кроме того в этих конденсаторах есть тепловая защита от перегрузок и защита от коротких замыканий.

Серия LM 79xx

Эти регуляторы напряжения имеют значения схожие с серией 78xx. В них также реализована тепловая защита от больших перегрузок и защита от замыканий.

Вспомогательные узлы

В конструкции можно реализовать вспомогательные узлы, например, индикаторы или переключатели напряжения. Главное не переусердствовать и делать устройство согласно всем нормам и рекомендациям.

Индикаторные светодиоды

В конструкции можно продумать светодиодные индикаторы, которые применяются в заводских блоках и подзарядных устройствах. Светодиоды служат сигнализатором о том, что полезная работа трансформатора производится и напряжение соответствует требуемому значению.

Амперметр и вольтметр

Для произведения расчетов и подбора элементов, а также для правильной сборки блока питания необходимо использовать амперметр и вольтметр.

Схема самодельного источника питания

Схемы как собрать самодельный блок питания трансформаторного типа представлены были выше, но для удобства предлагаем для ознакомления еще одну схему, с понятными обозначениями.

На данной схеме изображен понижающий трансформатор с двумя обмотками и диодный мост для выпрямления.

Это простая схема, которая позволяет собрать самодельный источник питания с трансформатором любому начинающему электрику.

Как паять

Для сборки используется печатная плата из фольгированного диэлектрика. Сначала рисуется схема, затем на заготовку платы наносится рисунок и производится протравка. После этого засверливаются отверстия для крепления каждого элемента схемы блока.

Правила выбора комплектующих

Чтобы сделать своими руками блок питания с трансформатором необходимо правильно подобрать комплектующие. В данной статье мы разобрались как подсчитать значения необходимых элементов устройства, какие трансформаторы, выпрямители и фильтры можно использовать в блока питания этой разновидности. Для удобства предлагаю таблицу ниже, она поможет при выборе комплектующих:

В данной таблице приведены оптимальные значения и соотношения мощности устройства и технических характеристик всех компонентов, используемых в конструкции. Емкость конденсаторов должна обеспечивать заданную пульсацию в расчете 1мкФ на 1Вт в показателях мощности на выходе. Электролитический конденсатор должен выбираться для напряжения от 350В.

Делал тут намедни презентацию на тему «Однополярные и двуполярные трансформаторные блоки питания», решил заодно и здесь продублировать. Наверное, будет полезно для начинающих.

Блок питания радиоэлектронной аппаратуры является вторичным источником питания, то есть он служит для преобразования электроэнергии (первичные — для ее производства). Как правило, происходит преобразование переменного тока напряжением 220 В в постоянный с напряжением, необходимым для нормальной работы устройства. Из этих функций вытекает структурная схема трансформаторного блока питания: трансформатор, выпрямитель, сглаживающий фильтр и стабилизатор.


Последние две части могут отсутствовать, как, например, в трансформаторных зарядных устройствах ACP-7E телефонов Nokia .

В последнее время трансформаторные блоки активно вытесняются импульсными (легкими, компактными, способными переварить любую дрянь из розетки: 110-240 вольт, 50-60 Гц — трансформатор такого не потерпит), однако все еще есть ниши, где они актуальны: например, устройства высококачественного воспроизведения звука или радиоприемники, которые подвержены действию помех, излучаемых импульсными БП (да-да, некоторые экземпляры можно использовать как маленькие глушилки длинных, средних и коротких волн).

Рассмотрим наиболее простой и наиболее часто встречающийся подвид:

однополярный трансформаторный блок питания

Сразу оговорюсь, что однополупериодная схема выпрямителя (один диод, как в детекторном приемнике) в трансформаторной схемотехнике не снискала популярности ввиду низкого КПД и высокого уровня пульсаций.

В разрывы первичной и вторичной обмотки включены предохранители (у современных трансформаторов по первичной обмотке включен термопредохранитель, срабатывающий при перегреве магнитопровода). По «вторичке» предохранителя может и не быть, но по «первичке» он обязателен — это электро- и пожаробезопасность.

Вторичных обмоток может быть несколько (на разные напряжения), у одной обмотки могут быть несколько отводов от разных витков… Все это можно узнать из паспорта на трансформатор.

Диодный мост выпрямляет напряжение, а конденсаторный фильтр сглаживает его пульсации (минимально рекомендуемая емкость — 100 мкФ, максимальная ограничивается экономическими соображениями, размерами корпуса устройства, максимально возможным током через диоды и здравым смыслом). Не стоит забывать о физике: на диодном мосту неизбежно потеряется 1 — 2 вольта, но после конденсатора то, что останется, увеличится в корень из двух (1,41) раз (конденсатор заряжается до амплитудного значения напряжения). Например, с трансформатора идут 12 вольт «переменки» (действующее значение). 1,4 вольта отдадим диодам — итого уже 10,6. А на конденсаторе будет 14,94 вольта (амплитудное значение). Поэтому рабочее напряжение конденсатора должно быть с запасом — 25 вольт вполне хватит, а вот 16 — это уже пороховая бочка. Может, и не долбанет, но ресурс быстрее выработается.

Выходное напряжение снимается с конденсатора и может питать устройство как напрямую, так и через стабилизатор: в этом случае рекомендуется, чтобы выходное напряжение БП было на 3 — 5 вольт выше номинального выходного напряжения стабилизатора. Используя интегральные стабилизаторы серии L78XX и компоненты из примера выше, можно сделать шикарный блок питания на девять вольт. Или на двенадцать, если падение напряжения на самом стабилизаторе 2-3 вольта (эта информация находится в даташите микросхемы). Или на пять, но 14,94 — 5 = 9,94 вольта, которые надо куда-то девать. А куда? Только в тепло. Поэтому стабилизаторы на малое напряжение, подключенные к большому входному, очень сильно греются.

Это слайд-шоу требует JavaScript.

Примеры устройств с таким БП: радиоприемник VEF 216 (встроенный) , радиотелефоны (внешний), магнитофон «Весна 306» (встроенный).

Это слайд-шоу требует JavaScript.

Принцип работы мостового выпрямителя незатейлив: в течение каждого полупериода ток идет через два диода, включенные в прямом направлении (на одном кремниевом диоде в среднем падает 0,7 вольт — отсюда и берется число потерь 1,4). Таким образом, на конденсатор будет приходить напряжение, пульсирующее с удвоенной частотой питающей сети. Если за эти полпериода конденсатор не будет успевать разрядиться, то можно рассчитывать на то, что уровень пульсаций выходного напряжения будет низок (здесь, например, это хорошо показано: красное напряжение — с конденсатора, серое — с моста).

Следующие схемотехнические решения можно заметить в звуковоспроизводящей аппаратуре высокого класса: это пленочные конденсаторы, шунтирующие первичную и вторичную обмотки трансформатора (высоковольтный C1, C2), керамические конденсаторы, шунтирующие диоды моста (C3C6), и керамический или пленочный конденсатор емкостью 10 — 100 нФ, шунтирующий выходной электролитический (C7).

Конденсаторы на обмотках трансформатора предназначены для гашения высокочастотных помех от близких грозовых разрядов, щеточно-коллекторных узлов работающих электродвигателей и пр.

Шунтирование диодов помогает бороться с мультипликативной помехой радиоприему: она проявляется как фон в приемнике с частотой 100 Гц при настройке на мощную станцию в АМ-диапазоне.

Шунтирование выходного электролитического конденсатора помогает продлить срок его службы, так как «электролиты» склонны быстрее деградировать под действием высокочастотных помех. При наличии керамического или пленочного шунта малой емкости эти помехи через него закорачиваются на «землю».

Преимущества однополярных трансформаторных БП:

-Просты в изготовлении.
-Относительно легкие и маленькие.
-Легко обеспечить батарейное питание, что актуально для переносной техники (нужно всего лишь напыжевать достаточно батареек «в послед»).

К недостаткам можно отнести:

-Повышенное падение напряжение на выпрямителе (полтора вольта теряются, и при выпрямлении малого напряжения, например, трех вольт, это уже будет ощутимо — после конденсатора останется только 2,1 В).
-Мощные диоды в металлическом корпусе должны устанавливаться на радиатор через электроизолирующие прокладки, что в ряде случаев может быть затруднительно.

Следующий на очереди —

двуполярный трансформаторный блок питания

Здесь используется трансформатор с двумя одинаковыми вторичными обмотками, соединенными последовательно (или это может быть одна обмотка со средней точкой). В этом случае средняя точка объявляется «землей», а с фильтров снимается напряжение как положительной, так и отрицательной полярности (измерения, разумеется, относительно «земли». И логично, что между «плюсом» и «минусом» 2Uвых).

Это слайд-шоу требует JavaScript.

Примеры устройств с таким БП: магнитофон «Вильма М-212С», усилитель «Радиотехника У-101», осциллограф «С1-94».

Это слайд-шоу требует JavaScript.

Диодный мост работает точно так же, как и в случае однополярного блока питания. Попеременно открываясь, то одна, то другая пара диодов пропускает переменное напряжение к конденсаторам фильтра.

К достоинствам двуполярного БП можно отнести:

-Значительное упрощение схем с операционными усилителями (исключаются цепочки, создающие «искусственный ноль» на входе — достаточно сравнить первую и вторую схемы отсюда).
-Уменьшение количества межкаскадных емкостей, так как в большинстве случаев постоянная составляющая сигнала отсутствует. А все мы знаем, что «электролиты» имеют свойство пересыхать.
-Акустика, подключенная к выходу исправного и настроенного усилителя с двуполярным питанием, не будет хлопать при включении, так как на выходе нет постоянной составляющей и конденсатора, блокирующего ее.

Однако есть и определенные недостатки:

-Снова повышенное падение напряжение на выпрямителе.
-Трансформатор со средней точкой сложен в изготовлении; он большой, тяжелый и совсем не портативный.
-Устройство чувствительно к перекосу плеч питания — например, если в звуковоспроизводящей технике при номинальных +/-14 вольт де-факто будут +12 и -16, форма выходного сигнала может сильно исказиться относительно нуля.
-«Исправный и настроенный усилитель», став вдруг неисправным, может выжечь акустику постоянным напряжением на выходе: нужна схема ее защиты при аварии.

Как следствие, такие блоки питания прижились в стационарной аппаратуре, где нет нужды в батарейном питании.

Необычная схема:

однополярный БП с выпрямителем Миткевича

Этот блок питания также основывается на трансформаторе со средней точкой, но в качестве выпрямителя применяются два четвертьмоста, соединенные параллельно (выпрямитель Миткевича). Это двухполупериодный выпрямитель, и ток на фильтрующий конденсатор течет то с одной половины обмотки, то с другой через диод, находящийся в этот момент в прямом включении. Это было достаточно типичное решение для тех времен, когда диоды стоили дороже меди.

Пример устройства с таким БП: радиоприемник «Ишим».

Это слайд-шоу требует JavaScript.

Первым делом в глаза бросается то, что выпрямитель и фильтр включены по схеме с общим «плюсом», и с конденсатора снимается напряжение отрицательной полярности. Это обычная схемотехника 60-70-х гг.: тогда применялись германиевые транзисторы в основном p-n- p -структуры (ограничение технологии), у которых эмиттер подключается к «плюсу», а база и коллектор — к «минусу» питания.

В течение каждого полупериода ток протекает через один диод.

Положительными сторонами таких блоков питания можно считать:

-Экономию на диодах.
-Потери в выпрямители в два раза меньше, чем в мостовой схеме (ток в каждом полупериоде течет только через один диод).

Однако недостатки загнали этот вид блока питания в «Красную книгу РЭА»:

-Трансформатор со средней точкой сложен в изготовлении; он большой, тяжелый и совсем не портативный.
-В каждом полупериоде одна половина обмотки простаивает. Меди много, но работает она не вся.

Как быстро отличить импульсный блок питания от трансформаторного (имеются в виду те, что вставляются в розетку)?

Ипульсный: компактный, почти невесомый, часто бывает вытянут в осевом направлении. Жрет что угодно: чудовищный разброс по напряжению 110-240 вольт и частоте сети его не пугает (обычно эти параметры написаны на наклейке). Выходной ток при высоких напряжениях как правило, тоже достаточно большой — до 2 ампер. На секундочку: 2 А * 12 В = 24 Вт!

Трансформаторный: тяжелый, сбитый «кубик«. На наклейке обычно указано входное напряжение 230 вольт, иногда с маленькими зазорами (плюс-минус десять вольт). Частота — строго 50 Гц для постсоветского пространства. Ток обычно скромный: тот, что на картинке — девятивольтовый с полуамперным выходом (0,5 А * 9 В = 4,5 Вт). А ведь уже и такой блок достаточно громоздкий.

Для питания радиоприемников и другой старой техники, конечно, лучше выбрать трансформаторный.

Как известно, блок питания едва ли не самое распространенное электронное устройство. Простой блок питания сделать под силу даже начинающим. Но какую схему выбрать? Их столько, что многие теряются. В данной статье коротко рассказано об основных четырех типах схем и даны рекомендации их использования.

Перед тем, ка вы решили изготовить или подобрать готовый блок питания необходимо ответить на следующие вопросы:

  1. Какое напряжение должен выдавать блок питания? Это можно определить по характеристикам того устройства, которое будет подключаться к блоку питания.
  2. Какой ток должен обеспечивать блок питания? Это так же указано на устройстве, которое будет подключено. Если указана потребляемая мощность, то ток можно определить, разделив мощность на напряжение.

Учитывая сказанное, перейдем к рассмотрению основных типов схем.

  1. Бестрансформаторный блок питания с гасящим конденсатором.

Применяется при небольших токах, десятки миллиампер, редко сотни миллиампер. На практике используется для зарядки аккумуляторов небольших фонарей, питания светодиодов и т.д. Схема такого блока питания:

Величина емкости С1 при активной нагрузке определяется по формуле:

С1 – емкость, Ф

Iэфф – эффективное значение тока нагрузки, А

Uc — напряжение сети, В

Uн – напряжение на нагрузке, В

f -частота сети, 50 Гц

Если нагрузка не всегда подключена, или ее ток меняется, то схема должна содержать стабилитрон, который не позволит напряжению на конденсаторе С2 и нагрузке превысить допустимое значение:

Величина емкости С1 рассчитывается с учетом максимального тока стабилитрона и тока нагрузки.

В этой формуле: 3,5 — коэффициент, Iстmin — минимальный ток стабилитрона, Iнmax — ток нагрузки максимальный, Ucmin — напряжение сети минимальное, Uвых — напряжение выхода блока питания.

Тип емкости С1 К73-17 или подобные, рабочее напряжение не ниже 400 В. Можно С1 зашунтировать резистором несколько сотен кОм, для разряда конденсатора в выключенном состоянии.

Подробнее о расчетах таких схем рассказано в журнале Радио №5 за 1997 год (стр. 48-50).

Понятно, что при отключенной нагрузке блок питания будет потреблять мощность на работу стабилитрона, соизмеримую с мощностью нагрузки. КПД поэтому низкий. Это одна из причин использования таких схем только для малых токов. Работая с такими блоками питания важно помнить, что их детали имеют гальваническую связь с сетью и опасность поражения током велика.

  1. Второй тип схем, трансформаторные блоки питания. Вот основная схема.

По такой схеме можно делать блоки питания практически на любые напряжения и токи. На практике они представлены от маломощных, например, блок питания антенного усилителя собранный в сетевой вилке, до сварочника, вес которого десятки килограмм.

Приблизительный расчет трансформатора можно посмотреть здесь, более подробный и точный здесь.

Если токи нагрузки большие, емкость фильтра С1 нужна большая, тысячи микрофарад. В этом случае после диодного моста нужно ставить сопротивление, несколько Ом, чтобы в момент включения, когда С1 разряжен, бросок зарядного тока не вывел из строя диодный мост.

Если токи несколько ампер, то на диодах будет рассеиваться большая мощность. Для ее снижения применяют диоды Шоттки, на них падает меньшее напряжение (до 0,5 В), в отличие от кремниевых диодов на которых при больших токах может падать больше 1 В.

Чтобы еще снизить потери, применяют двухполупериодный выпрямитель с двумя диодами и двумя обмотками. Вот его схема:

В данном случае вторичных обмотки две. Они соединены последовательно. Мотаются проводом в половину тоньше, чем для схемы с четырьмя диодами. Так, что количество меди то же самое. Потери ниже вдвое, так как диода два. Допустим на каждом падает 1 В, при токе 10 А, это мощность потерь 10 Вт на каждом диоде. Если диода два вместо четырех, в тепло идет не 40 Вт, а 20. Польза очевидна.

Вышеприведенные схемы имеют существенный недостаток. Напряжение на выходе меняется при изменении напряжения сети. Как известно, допустимые изменения напряжения сети ±5%, от 220 В это составит (209-231) В, предельные изменения ±10%, (198-242) В. В процентном отношении так же будет изменяться и выходное напряжение.

Для устранения этого недостатка применяют стабилизаторы, от простейших на стабилитроне, иногда с транзистором, до стабилизаторов на микросхемах.

Здесь 7812 (LM7812 или аналог) распространенная микросхема стабилизатор на 12 В. Основные правила применения таких микросхем:

— напряжение на входе от 14 В до 35 В, (при минимальном напряжении сети не менее 14 В при максимальном не более 35 В)

— максимальный ток, при длительной работе 1,5 А

— мощность, рассеиваемая без теплоотвода 1,5 Вт, с теплоотводом до 15 Вт (в некоторых справочниках пишут даже 9 Вт).

Главная ошибка, которую допускают при применении таких микросхем заключается в том, что в основном смотрят на ток и забывают про мощность. Например, от микросхемы хотят запитать нагрузку на напряжение 12 В потребляющую ток 1 А. Кажется, что это можно сделать без проблем, ведь максимальный ток этой микросхемы 1,5 А.

Но, допустим, в сети максимальное напряжение 242 В и на входе микросхемы 35 В. Эта микросхема компенсационного типа, т.е. все лишнее напряжение 35 – 12 = 23 В упадет на микросхеме. При этом мощность, которая будет рассеиваться на микросхеме будет равна 23В х 1А= 23Вт. А допустимая мощность, с радиатором, всего 15 Вт. Микросхема перегреется и сгорит. Для такого случая ее допустимый ток 15 Вт : 23 В = 0,65 А, и это с радиатором.

  1. Импульсные стабилизаторы в трансформаторных блоках питания.

Эти стабилизаторы имеют значительно меньшие потери, чем выше рассмотренные. В них регулирующий элемент работает в ключевом режиме. У него два состояния полностью открыт или полностью закрыт. Падение напряжения на нем при этом минимально и рассеиваемая мощность также. Величина выходного напряжения пропорциональна длительности выходных импульсов.

Uвых = tоткр/T × Uвх

Uвых — напряжение на выходе стабилизатора

tоткр – время открытого состояния ключа

Т — период импульсов

Uвх – входное напряжение стабилизатора

Схема, поясняющая принцип работы:

Как видим, здесь присутствует индуктивность L, в которой накапливается энергия и импульсный диод VD. Именно с помощью этих двух элементов, ну и конечно конденсатора С, установленного за индуктивностью, импульсы после ключа VT превращаются в постоянное напряжение.

Пример такой схемы на транзисторах:

И на микросхеме:

  1. Импульсные блоки питания.

Это самые эффективные и малогабаритные блоки. У них нет большого понижающего трансформатора, даже при больших токах и мощностях. Пример наиболее мощного импульсного блока питания — сварочный инвертор, который при сварочных токах 250 А весит всего несколько килограмм.

Напряжение сети 220 В поступает на диодный мост и затем на фильтр (конденсатор). Напряжение приобретает значение 310 В (при напряжении сети 220 В). Это напряжение питает выходной трансформаторный каскад и генератор. Вся схема работает на частотах до 100 кГц и даже выше. На таких частотах трансформаторы делают из феррита и их габариты в десятки раз меньше, чем у трансформаторов, работающих на частоте сети 50 Гц. Как правило, сама схема импульсного блока питания является стабилизатором и напряжение на выходе не зависит от изменения напряжения сети. Современные импульсные блоки питания, как правило работают при изменении напряжения сети от 110 В до 240 В.

Пример схемы импульсного блока питания, поясняющий принцип работы, на наиболее распространенной микросхеме UC3842.

Напряжение сети 220В через плату фильтра (ППФ) поступает на сетевой выпрямитель (СВ), конденсатор фильтра (Сф) и через обмотку трансформатора на ключ VT. Через сопротивление R3 уменьшенное напряжение поступает на вывод 7 для запуска микросхемы. После начала работы на вывод 7 дополнительно, через диод VD1, с обмотки трансформатора поступает питание в установившемся режиме.

Внутри микросхемы мы видим генератор (ГЕН), ШИМ (широтно-импульсный модулятор) для управления мощным ключом, выполненном на полевом транзисторе VT. На вывод 3 поступает сигнал обратной связи.

Практическая схема импульсного блока питания на микросхеме UC3842:

Пример изготовления схемы блока питания для ноутбука можно посмотреть здесь.

Есть микросхемы импульсных блоков питания, совмещенные с мощным выходным ключом. Но их принцип работы аналогичен рассмотренному.

Вывод.

Если нужны токи десятки миллиампер блок питания можно сделать по схеме первого типа.

Дешевый блок питания, габариты которого не так важны можно собрать по схеме второго типа. Компенсационные стабилизаторы целесообразно применять на токах до 1 А.

Так же недорогой блок питания, даже со стабилизатором выходного напряжения, на токи до 3 А можно собрать по схеме третьего типа.

Ну а если нужен малогабаритный блок питания, с защитой от перегрузок, на токи больше 3 А, с малым уровнем пульсаций, устойчивый к изменениям напряжения сети — конечно нужно собирать по схеме четвертого типа.

Материал статьи продублирован на видео:

Как сделать простейший блок питания и выпрямитель

Как сделать простейший блок питания и выпрямитель

В этой статье ЭлектроВести расскажут вам как сделать простейший блок питания и выпрямитель.

Выпрямитель — это устройство для преобразования переменного напряжения в постоянное. Это одна из самых часто встречающихся деталей в электроприборах, начиная от фена для волос, заканчивая всеми типами блоков питания с выходным напряжением постоянного тока. Есть разные схемы выпрямителей и каждая из них в определённой мере справляется со своей задачей. В этой статье мы расскажем о том, как сделать однофазный выпрямитель, и зачем он нужен.

Определение

Выпрямителем называется устройство, предназначенное для преобразования переменного тока в постоянный. Слово «постоянный» не совсем корректно, дело в том, что на выходе выпрямителя, в цепи синусоидального переменного напряжения, в любом случае окажется нестабилизированное пульсирующие напряжение. Простыми словами: постоянное по знаку, но изменяющееся по величине.

Различают два типа выпрямителей:

  • Однополупериодный. Он выпрямляет только одну полуволну входного напряжения. Характерны сильные пульсации и пониженное относительно входного напряжение.
  • Двухполупериодный. Соответственно, выпрямляется две полуволны. Пульсации ниже, напряжение выше чем на входе выпрямителя – это две основных характеристики.

Что значит стабилизированное и нестабилизированное напряжение?

Стабилизированным называется напряжение, которое не изменяется по величине независимо ни от нагрузки, ни от скачков входного напряжения. Для трансформаторных источников питания это особенно важно, потому что выходное напряжение зависит от входного и отличается от него на Ктрансформации раз.

Нестабилизированное напряжение – изменяется в зависимости от скачков в питающей сети и характеристик нагрузки. С таким блоком питания из-за просадок возможно неправильное функционирование подключенных приборов или их полная неработоспособность и выход из строя.

Выходное напряжение

Основные величины переменного напряжения — амплитудное и действующее значение. Когда говорят «в сети 220В переменки» имеют в виду действующее напряжение.

Если говорят об амплитудной величине, то имеют в виду, сколько вольт от нуля до верхней точки полуволны синусоиды.

Опустив теорию и ряд формул можно сказать, что действующее напряжение в 1.41 раз меньше амплитудного. Или:

Uа=Uд*√2

Амплитудное напряжение в сети 220В равняется:

220*1.41=310

Схемы

Однополупериодный выпрямитель состоит из одного диода. Он просто не пропускает обратную полуволну. На выходе получается напряжение с сильными пульсациями от нуля до амплитудного значения входного напряжения.

Если говорить совсем простым языком, то в этой схеме к нагрузке поступает половина от входного напряжения. Но это не совсем корректно.

Двухполупериодные схемы пропускают к нагрузке обе полуволны от входного. Выше в статье упоминалось об амплитудном значении напряжения, так вот напряжение на выходе выпрямителя то же ниже по величине, чем действующее переменное на входе.

Но, если сгладить пульсации с помощью конденсатора, то, чем меньшими будут пульсации, тем ближе напряжение будет к амплитудному.

О сглаживания пульсаций мы поговорим позже. А сейчас рассмотрим схемы диодных мостов.

Их две:

1. Выпрямитель по схеме Гретца или диодный мост;

2. Выпрямитель со средней точкой.

Первая схема более распространена. Состоит из диодного моста – четыре диода соединены между собой «квадратом», а в его плечи подключена нагрузка. Выпрямитель типа «мост» собирается по схеме приведенной ниже:

Её можно подключить напрямую к сети 220В, так сделано в современных импульсных блоках питания, или на вторичные обмотки сетевого (50 Гц) трансформатора. Диодные мосты по этой схеме можно собирать из дискретных (отдельных) диодов или использовать готовую сборку диодного моста в едином корпусе.

Вторая схема – выпрямитель со средней точкой не может быть подключена напрямую к сети. Её смысл заключается в использовании трансформатора с отводом от середины.

По своей сути – это два однополупериодных выпрямителя, подключенные к концам вторичной обмотки, нагрузка одним контактом подключается к точке соединения диодов, а вторым – к отводу от середины обмоток.

Её преимуществом перед первой схемой является меньшее количество полупроводниковых диодов. А недостатком – использование трансформатора со средней точкой или, как еще называют, отводом от середины. Они менее распространены чем обычные трансформаторы со вторичной обмоткой без отводов.

Сглаживание пульсаций

Питание пульсирующим напряжением неприемлемо для ряда потребителей, например, источники света и аудиоаппаратура. Тем более, что допустимые пульсации света регламентируются в государственных и отраслевых нормативных документах.

Для сглаживания пульсаций используют фильтры – параллельно установленный конденсатор, LC-фильтр, разнообразные П- и Г-фильтры…

Но самый распространенный и простой вариант – это конденсатор, установленный параллельно нагрузке. Его недостатком является то, что для снижения пульсаций на очень мощной нагрузке придется устанавливать конденсаторы очень большой емкости – десятки тысяч микрофарад.

Его принцип работы заключается в том, что конденсатор заряжается, его напряжение достигает амплитуды, питающее напряжение после точки максимальной амплитуды начинает снижаться, с этого момента нагрузка питается от конденсатора. Конденсатор разряжается в зависимости от сопротивления нагрузки (или её эквивалентного сопротивления, если она не резистивная). Чем больше емкость конденсатора – тем меньшие будут пульсации, если сравнивать с конденсатором с меньшей емкостью, подключенного к этой же нагрузке.

Простым словами: чем медленнее разряжается конденсатор – тем меньше пульсации.

Скорости разряда конденсатора зависит от потребляемого нагрузкой тока. Её можно определить по формуле постоянной времени:

t=RC,

где R – сопротивление нагрузки, а C – емкость сглаживающего конденсатора.

Таким образом, с полностью заряженного состояния до полностью разряженного конденсатор разрядится за 3-5 t. Заряжается с той же скоростью, если заряд происходит через резистор, поэтому в нашем случае это неважно.

Отсюда следует – чтобы добиться приемлемого уровня пульсаций (он определяется требованиями нагрузки к источнику питания) нужна емкость, которая разрядится за время в разы превышающее t. Так как сопротивления большинства нагрузок сравнительно малы, нужна большая емкость, поэтому в целях сглаживания пульсаций на выходе выпрямителя применяют электролитические конденсаторы, их еще называют полярными или поляризованными.

Обратите внимание, что путать полярность электролитического конденсатора крайне не рекомендуется, потому что это чревато его выходом из строя и даже взрывом. Современные конденсаторы защищены от взрыва – у них на верхней крышке есть выштамповка в виде креста, по которой корпус просто треснут. Но из конденсатора выйдет струя дыма, будет плохо, если она попадет вам в глаза.

Расчет емкости ведется исходя из того какой коэффициент пульсаций нужно обеспечить. Если выражаться простым языком, то коэффициентом пульсаций показывает, на какой процент проседает напряжение (пульсирует).

Чтобы посчитать емкость сглаживающего конденсатора можно использовать приближенную формулу:

C=3200*Iн/Uн*Kп,

Где Iн – ток нагрузки, Uн – напряжение нагрузки, Kн – коэффициент пульсаций.

Для большинства типов аппаратуры коэффициент пульсаций берется 0.01-0.001. Дополнительно желательно установить керамический конденсатор как можно большей емкости, для фильтрации от высокочастотных помех.

Как сделать блок питания своими руками?

Простейший блок питания постоянного тока состоит из трёх элементов:

1. Трансформатор;

2. Диодный мост;

3. Конденсатор.

Если нужно получить высокое напряжение, и вы пренебрегаете гальванической развязкой то можно исключить трансформатор из списка, тогда вы получите постоянное напряжение вплоть до 300-310В. Такая схема стоит на входе импульсных блоков питания, например, такого как у вас на компьютере.

Это нестабилизированный блок питания постоянного тока со сглаживающим конденсатором. Напряжение на его выходе больше чем переменное напряжение вторичной обмотке. Это значит, что если у вас трансформатор 220/12 (первичная на 220В, а вторичная на 12В), то на выходе вы получите 15-17В постоянки. Эта величина зависит от емкости сглаживающего конденсатора. Эту схему можно использовать для питания любой нагрузки, если для нее неважно, то, что напряжение может «плавать» при изменениях напряжения питающей сети.

Важно:

У конденсатора две основных характеристики – емкость и напряжение. Как подбирать емкость мы разобрались, а с подбором напряжения – нет. Напряжение конденсатора должно превышать амплитудное напряжение на выходе выпрямителя хотя бы в половину. Если фактическое напряжение на обкладках конденсатора превысит номинальное – велика вероятность его выхода из строя.

Старые советские конденсаторы делались с хорошим запасом по напряжению, но сейчас все используют дешевые электролиты из Китая, где в лучшем случае есть малый запас, а в худшем – и указанного номинального напряжения не выдержит. Поэтому не экономьте на надежности.

Стабилизированный блок питания отличается от предыдущего всего лишь наличием стабилизатора напряжения (или тока). Простейший вариант – использовать L78xx или другие линейные стабилизаторы, типа отечественного КРЕН.

Так вы можете получить любое напряжение, единственное условие при использовании подобных стабилизаторов, это то, напряжение до стабилизатора должно превышать стабилизированную (выходную) величину хотя бы на 1.5В. Рассмотрим, что написано в даташите 12В стабилизатора L7812:

Входное напряжение не должно превышать 35В, для стабилизаторов от 5 до 12В, и 40В для стабилизаторов на 20-24В.

Входное напряжение должно превышать выходное на 2-2.5В.

Т.е. для стабилизированного БП на 12В со стабилизатором серии L7812 нужно, чтобы выпрямленное напряжение лежало в пределах 14.5-35В, чтобы избежать просадок, будет идеальным решением применять трансформатора с вторичной обмоткой на 12В.

Но выходной ток достаточно скромный – всего 1.5А, его можно усилить с помощью проходного транзистора. Если у вас есть PNP-транзисторы, можно использовать эту схему:

На ней изображено только подключение линейного стабилизатора «левая» часть схемы с трансформатором и выпрямителем опущена.

Если у вас есть NPN-транзисторы типа КТ803/КТ805/КТ808, то подойдет эта:

Стоит отметить, что во второй схеме выходное напряжение будет меньше напряжения стабилизации на 0.6В – это падение на переходе эмиттер база. Для компенсации этого падения в цепь был введен диод D1.

Можно и в параллель установить два линейных стабилизатора, но не нужно! Из-за возможных отклонений при изготовлении нагрузка будет распределяться неравномерно и один из них может из-за этого сгореть.

Установите и транзистор, и линейный стабилизатор на радиатор, желательно на разные радиаторы. Они сильно греются.

Регулируемые блоки питания

Простейший регулируемый блок питания можно сделать с регулируемым линейным стабилизатором LM317, её ток тоже до 1.5 А, вы можете усилить схему проходным транзистором, как было описано выше.

Вот более наглядная схема для сборки регулируемого блока питания.

Чтобы получить больший ток можно и использовать более мощный регулируемый стабилизатор LM350.

В последних двух схемах есть индикация включения, которая показывает наличие напряжения на выходе диодного моста, выключатель 220В, предохранитель первичной обмотки.

Вот пример регулируемого зарядного устройства для аккумулятора с тиристорным регулятором в первичной обмотке, по сути такой же регулируемый блок питания.

Кстати похожей схемой регулируют и сварочный ток:

Заключение

Выпрямитель используется в источниках питания для получения постоянного тока из переменного. Без его участия не получится запитать нагрузку постоянного тока, например светодиодную ленту или радиоприемник.

Также используются в разнообразных зарядных устройствах для автомобильных аккумуляторов, есть ряд схем с использованием трансформатора с группой отводов от первичной обмотки, которые переключаются галетным переключателем, а во вторичной обмотке установлен только диодный мост. Переключатель устанавливают со стороны высокого напряжения, так как, там в разы ниже ток и его контакты не будут пригорать от этого.

По схемам из статьи вы можете собрать простейший блок питания как для постоянной работы с каким-то устройством, так и для тестирования своих электронных самоделок.

Схемы не отличаются высоким КПД, но выдают стабилизированное напряжение без особых пульсаций, следует проверить емкости конденсаторов и рассчитать под конкретную нагрузку. Они отлично подойдут для работы маломощных аудиоусилителей, и не создадут дополнительного фона. Регулируемый блок питания станет полезным автолюбителями и автоэлектрикам для проверки реле регулятора напряжения генератора.

Регулируемый блок питания используется во всех областях электроники, а если его улучшить защитой от КЗ или стабилизатором тока на двух транзисторах, то вы получите почти полноценный лабораторный блок питания.

Ранее ЭлектроВести писали, что Служба безопасности Украины обнаружила в режимных помещениях Южно-Украинской атомной электростанции компьютерную технику, которая использовалась для майнинга криптовалют. По данным следствия, из-за несанкционированного размещения компьютерной техники произошло разглашение сведений о физической защите атомной электростанции, что является государственной тайной. К майнингу криптовалют, возможно, были причастны служащие части Национальной гвардии Украины, охраняющие АЭС.

По материалам: electrik.info.

Как сделать блок питания 12В своими руками

Блок питания постоянного напряжения 12 вольт состоит из трех основных частей:

  • Понижающий трансформатор с обычного входного переменного напряжения 220 В. На его выходе будет такое же синусоидальное напряжение, только пониженное до примерно 16 вольт по холостому ходу – без нагрузки.
  • Выпрямитель в виде диодного моста. Он «срезает» нижние полусинусоиды и кладет их вверх, то есть получается напряжение, меняющееся от 0 до тех же 16 вольт, но в положительной области.
  • Электролитический конденсатор большой емкости, который сглаживает полусинусоиды напряжения, делая их приближающимися к прямой линии на уровне в 16 вольт. Это сглаживание тем лучше, чем больше емкость конденсатора.

Самое простое, что нужно для получения постоянного напряжения, способного питать приборы, рассчитанные на 12 вольт – лампочки, светодиодные ленты и другое низковольтное оборудование.

Понижающий трансформатор можно взять из старого блока питания компьютера или просто купить в магазине, чтобы не заморачиваться с обмотками и перемотками. Однако чтобы выйти в конечном счете на искомые 12 вольт напряжения при работающей нагрузке, нужно взять трансформатор, понижающий вольт до 16.

Для моста можно взять четыре выпрямительных диода 1N4001, рассчитанных на нужный нам диапазон напряжений или аналогичные.

Конденсатор должен быть емкостью не менее 480 мкФ. Для хорошего качества выходного напряжения можно и больше, 1 000 мкФ или выше, но для питания осветительных приборов это совсем не обязательно. Диапазон рабочих напряжений конденсатора нужен, скажем, вольт до 25.

Компоновка прибора

Если мы хотим сделать приличный прибор, который не стыдно будет потом приделать в качестве постоянного блока питания, допустим, для цепочки светодиодов, нужно начать с трансформатора, платы для монтажа электронных компонентов и коробки, где все это будет закреплено и подключено. При выборе коробки важно учесть, что электрические схемы при работе разогреваются. Поэтому коробку хорошо найти подходящую по размерам и с отверстиями для вентиляции. Можно купить в магазине или взять корпус от блока питания компьютера. Последний вариант может оказаться громоздким, но в нем как упрощение можно оставить уже имеющийся трансформатор, даже вместе с вентилятором охлаждения.

Корпус блока питанияКорпус блока питания

На трансформаторе нас интересует низковольтная обмотка. Если она дает понижение напряжения с 220 В до 16 В – это идеальный случай. Если нет, придется ее перемотать. После перемотки и проверки напряжения на выходе трансформатора его можно закрепить на монтажной плате. И сразу продумать, как монтажная плата будет крепиться внутри коробки. У нее для этого имеются посадочные отверстия.

Низковольтная обмоткаМонтажная плата

Дальнейшие действия по монтажу будут проходить на этой монтажной плате, значит, она должна быть достаточной по площади, длине и допускать возможную установку радиаторов на диоды, транзисторы или микросхему, которые должны еще поместиться в выбранную коробку.

Диодный мост

Диодный мост собираем на монтажной плате, должен получиться такой ромбик из четырех диодов. Причем левая и правая пары состоят одинаково из диодов, подключенных последовательно, а обе пары параллельны друг другу. Один конец каждого диода маркирован полоской – это обозначен плюс. Сначала паяем диоды в парах друг к другу. Последовательно – это значит плюс первого соединен с минусом второго. Свободные концы пары тоже получатся – плюс и минус. Параллельно соединить пары – значит спаять оба плюса пар и оба минуса. Вот теперь имеем выходные контакты моста – плюс и минус. Или их можно назвать полюсами – верхним и нижним.

Схема диодного моста

Остальные два полюса – левый и правый – используются как входные контакты, на них подается переменное напряжение с вторичной обмотки понижающего трансформатора. А на выходы моста диоды подадут пульсирующее знакопостоянное напряжение.

Если теперь подключить параллельно с выходом моста конденсатор, соблюдая полярность – к плюсу моста – плюс конденсатора, он напряжение начнет сглаживать, причем настолько хорошо, насколько велика у него емкость. 1 000 мкФ будет достаточно, и даже ставят 470 мкФ.

Внимание! Электролитический конденсатор – прибор небезопасный. При неверном подключении, при подаче на него напряжения вне рабочего диапазона или при большом перегреве он может взорваться. При этом разлетается по округе все его внутреннее содержимое – лохмотья корпуса, металлической фольги и брызги электролита. Что весьма опасно.

Ну вот и получился у нас самый простой (если не сказать, примитивный) блок питания для приборов напряжением 12 V DC, то есть постоянного тока.

Проблемы простого блока питания с нагрузкой

Сопротивление, нарисованное на схеме – это эквивалент нагрузки. Нагрузка должна быть такова, чтобы ток, ее питающий, при подаваемом напряжении в 12 В не превысил 1 А. Можно рассчитать мощность нагрузки и сопротивление по формулам.

Откуда сопротивление R = 12 Ом, а мощность P = 12 ватт. Это значит, что если мощность будет больше 12 ватт, а сопротивление меньше 12 Ом, то наша схема начнет работать с перегрузкой, будет сильно греться и быстро сгорит. Решить проблему можно несколькими способами:

  1. Стабилизировать выходное напряжение так, чтобы при изменяющемся сопротивлении нагрузки ток не превышал максимально допустимого значения или при внезапных скачках тока в сети нагрузки – например, в момент включения некоторых приборов – пиковые значения тока срезались до номинала. Такие явления бывают, когда блок питания запитывает радиоэлектронные устройства – радиоприемники, и пр.
  2. Использовать специальные схемы защиты, которые бы отключали блок питания при превышении тока на нагрузке.
  3. Использовать более мощные блоки питания или блоки питания с большим запасом мощности.

Блок питания со стабилизатором на микросхеме

На рисунке ниже представлено развитие предыдущей простой схемы включением на выходе микросхемы 12-вольтового стабилизатора LM7812.

Блок питания со стабилизатором на микросхеме

Это уже лучше, но максимальный ток в нагрузке такого блока стабилизированного питания по-прежнему не должен превышать 1 А.

Блок питания повышенной мощности

Более мощным блок питания можно сделать, добавив в схему несколько мощных каскадов на транзисторах Дарлингтона типа TIP2955. Один каскад даст прибавку нагрузочного тока в 5 А, шесть составных транзисторов, подключенных параллельно, обеспечат нагрузочный ток в 30 А.

Транзисторы Дарлингтона типа TIP2955

Схема, обладающая такой выходной мощностью, требует соответствующего охлаждения. Транзисторы должны быть обеспечены радиаторами. Возможно, понадобится и дополнительный вентилятор охлаждения. Кроме того, можно защититься еще плавкими предохранителями (на схеме не показано).

На рисунке показано подключение одного составного транзистора Дарлингтона, дающего возможность увеличения выходного тока до 5 ампер. Можно увеличивать и дальше, подключая новые каскады параллельно с указанным.

Подключение одного составного транзистора Дарлингтона

Внимание! Одним из главных бедствий в электрических цепях является внезапное короткое замыкание в нагрузке. При этом, как правило, возникает ток гигантской силы, который сжигает все на своем пути. В этом случае сложно придумать такой мощный блок питания, который способен это выдержать. Тогда применяют схемы защиты, начиная от плавких предохранителей и кончая сложными схемами с автоматическим отключением на интегральных микросхемах.

Трансформаторные, импульсные блоки питания

В данной категории собраны схемы трансформаторных и импульсных блоков питания как самых распространенных конструкций. Задача блока питания обеспечить электрический прибор электроэнергией с необходимыми значениями тока и напряжения.

  • Часто возникает необходимость в блоке питания с фиксированным выходным напряжением. Рассмотренная в статье схема универсального блока питания является очень простой, но в тоже время, очень гибкой в плане уровня выходных напряжений. В данном универсальном блоке питания напряжение на выходе зависит только от используемого трансформатора и интегрального стабилизатора напряжения. Максимальный выходной ток составляет 1,5A. Номинальный — 1А.

    Подробнее об универсальном блоке питания

  • Двуполярное питания используется во многих схемах. В схемах усилителей, компьютерах, в блоках питания для лабораторных работ, в блоках питания некоторых модемов для телефонных линий. Вот и в этой статье мы познакомимся с типичным представителем двуполярных регулируемых блоков питания.

    Читать подробнее о двуполярном блоке питания

  • Довольно часто в нашей практике приходится адаптировать схемы, изначально разработанные для одних целей под другие. Например, сенсорный выключатель для автомобиля вы решили использовать для управления бра. И тут сталкиваемся с проблемой организации питания. В большинстве таких случаев поможет решить проблему маломощный регулируемый источник питания 12В.

    Читать дальше о маломощном источнике питания 12В

  • Очень часто для питания различных устройств, например, детские электронные игрушки, новогодние гирлянды, возникает необходимость в маломощном блоке питания 5 В, это довольно распространенный тип источника и, если для наладки собранного устройства подойдет лабораторный блок питания, то питать готовую конструкцию конечно же нужно собственным БП 5В.

    Читать подробнее о простом блоке питания

  • Радиолюбителю для проверки и наладки схем довольно часто нужен регулируемый блок питания. Предлагаемый импульсный блок питания кроме стабилизации выходного напряжения также ограничивает ток нагрузки, тем самым, стабилизируя выходной ток. Кроме этого, как известно, импульсные блоки питания обеспечивают очень высокий КПД в различных режимах работы.

    Читать подробнее о лабораторном импульсном блоке питания

  • Трансформаторный блок питания — Delta

    Группа продуктов


    Язык:
    БългарскиČeskýDanskDeutschEestiΕλληνικάEnglishEspañolFrançaisItalianoLatviešu Lietuvių MagyarNederlandsNorskPolskiPortuguêsPусскийRomânăSlovenskiSlovenskýSuomiSvenska

    Валюта:
    1 AUD — 2.7891 PLN1 BGN — 2.2406 PLN1 CAD — 2.9647 PLN1 CHF — 3.9979 PLN1 CZK — 0.1722 PLN1 DKK — 0.5893 PLN1 EUR — 4.3823 PLN1 GBP — 5.0972 PLN100 HUF — 1.2434 PLN1 NOK — 0.4369 PLN1 PLN — 1.0000 PLN1 SEK — 0.4309 PLN1 USD — 3.6235 PLN

    Меню




    Рекомендованная статья

    E.I.R.P. (Effective Isotropic Radiated Power) — эквивалентная заменная мощность изотропного излучения

    Бюллетень E-mail


    TopТехнический словарьТрансформаторный блок питания

    В трансформаторных блоках питания, устройством, отвечающим за выдерживание напряжения, является трансформатор. Он являет собой элемент, состоящий из сердечника и, намотанных на него первичной и вторичной обмоток, изготовленных, как правило, с медной проволоки. Сетевое напряжение в нем понижено до требуемого значения с помощью явления электромагнитной индукции или проникновения магнитного поля между первичной и вторичной обмотками. Эти обмотки гальванически изолированы, то есть не имеют между собой электрического соединения. В зависимости от соотношения числа витков первичной обмотки к вторичной, трансформаторы могут как уменьшать, так и повышать напряжение.

     

    Трансформаторные блоки питания подразделяются на нестабилизированные и стабилизированные.

     

    Рис.1. Схема нестабилизированного источника питания

     

    a — трансформатор

    b — выпрямитель в виде моста Graetza

    c — конденсатор как выходной фильтр

    В нерегулируемом источнике питания (рис.1) находятся: трансформатор (а), выпрямитель в виде моста (b) и конденсатор, как выходной фильтр (c).

     

    Напряжение, в первую очередь, снижено с помощью трансформатора до заданного значения. Далее, через двухполупериодный выпрямитель, состоящий с четырех светодиодов, напряжение выпрямляется. В результате, независимо от направления входного напряжения переменного тока, на выходе уже плывет в том же самом направлении. В результате, полученное напряжение, далеко от идеального напряжения постоянного тока из-за большой пульсации. Устраняется оно с помощью применения конденсатора в качестве фильтра, который сглаживает форму волны напряжения.

     

    Стабилизированный источник питания трансформатора (линейный) структурой не отличается от нестабилизированного, за исключением дополнитеной системы — регулятора напряжения (рис. 2).

     

    Рис.2. Схема стабилизированного источника питания

     

    d — система управления

    Система управления (d), отмеченная на схеме, отвечает за поддержание выходного напряжения на том же уровне, независимо от нагрузки источника питания и изменения входного напряжения. Кроме того, в зависимости от коэффициента ослабления пульсации, стабилизатор может дополнительно сглаживать осциллограмму напряжения. Тем не менее, эту роль в основном играют конденсаторы. В зависимости от класса источника питания, используются разные стабилизаторы, как правило, в виде интегральных схем.

     

    Рис.3. Ход напряжения на отдельных блоках линейного источника питания

     

    a — выходное напряжение трансформатора

    b — напряжение двухполупериодного выпрямления

    c — напряжение, отфильтрованное от пульсации

    d — график идеального постоянного напряжения

    Чем лучше качество источника питания, тем ближе к идеалу выходное напряжение.

     

    В отличие от импульсных, трансформаторные блоки питания характеризуются более низкой эффективностью, то есть отношением выходной мощности до входной мощности (на уровне 40-50%). Это происходит из-за конструкции трансформатора, используемых материалов, а также применения стабилизатора, в котором часть мощности остается безвозвратно утерянной в виде выделенного тепла. Существенным недостатком этих источников питания есть также большой вес и большие габариты по сравнению с соответствующими им параметрами импульсных источников питания. Это также отражается на цене, которая в случае трансформаторных источников питания значительно выше. Другим недостатком является то, что трансформатор на холостом ходу ( то есть без какого-либо подключенного устройства), тоже занимает определенный ток, который может доходить даже 20% от номинального питания постоянного тока.

     

    Преимуществами трансформаторных источников питания прежде всего является высокая устойчивость к перегрузке и перенапряжению. Их простая конструкция делает их гораздо менее ненадежными. И по этой причине они часто используются, например, для питания панели управления. Важным преимуществом является также низкий уровень генерации помех и, поэтому, широко используются для питания различных типов усилителей, например, антенных.

     

    Примером такого устройства является источник питания 12V/100MA/S-TAT, доступный в предложении фирмы Delta (рис.4).

     

    Рис.4. Стабилизированный трансформаторный блок питания 12V/100MA/S-TAT

     


    Нетто:0.00 EUR
    Брутто:0.00 EUR
    Вес:0.00 kg
    Особенно рекомендуем
    ПОДВЕСНОЙ ШКАФ RACK EPRADO-R19-9U/600

    Нетто: 103.53 EUR

    БЛОК ПИТАНИЯ POE POE-48/NX 24 W

    Нетто: 9.43 EUR

    ДИСК ДЛЯ РЕГИСТРАТОРА HDD-WD40PURX 4TB 24/7 WESTERN DIGITAL

    Нетто: 99.15 EUR

    ПОДВЕСНОЙ ШКАФ RACK EPRADO-R19-4U/450

    Нетто: 62.30 EUR

    РЕКЛАМНЫЙ НАБОР РЕКОРДЕР + ЖЕСТКИЙ ДИСК XVR5116HS-X+2TB 16 КАНАЛОВ DAHUA

    Нетто: 287.02 EUR

    Switch PoE 10-ПОРТОВЫЙ SF-108 +SFP PULSAR

    Нетто: 121.40 EUR

    IP-КАМЕРА IPC-HFW2431S-S-0280B-S2 — 4 Mpx 2.8 mm DAHUA

    Нетто: 184.15 EUR

    ВИДЕОТРАНСФОРМАТОР TR-1D*P2C CLASSIC

    Нетто: 2.24 EUR

    БЛОК ПИТАНИЯ 12V/3A/5.5

    Нетто: 6.60 EUR

    Блок-схема регулируемого источника питания

    , принципиальная электрическая схема, рабочая

    ВВЕДЕНИЕ

    Почти все основные бытовые электронные схемы нуждаются в нерегулируемом переменном токе для преобразования в постоянный постоянный ток для работы электронного устройства. Все устройства будут иметь определенный лимит питания, и электронные схемы внутри этих устройств должны обеспечивать постоянное напряжение постоянного тока в пределах этого лимита. Этот источник постоянного тока регулируется и ограничен по напряжению и току.Но питание от сети может быть нестабильным и может легко вывести из строя электронное оборудование, если оно не будет должным образом ограничено. Эта работа по преобразованию нерегулируемого переменного тока (AC) или напряжения в ограниченный постоянный ток (DC) или напряжение, чтобы сделать выход постоянным независимо от колебаний на входе, выполняется регулируемой схемой источника питания.

    Все активные и пассивные электронные устройства будут иметь определенную рабочую точку постоянного тока (точка Q или точка покоя), и эта точка должна достигаться источником питания постоянного тока.

    Источник питания постоянного тока практически преобразован в каждую ступень электронной системы. Таким образом, общим требованием для всех этих фаз будет источник питания постоянного тока. Все системы с низким энергопотреблением могут работать от аккумулятора. Но в устройствах, долгое время эксплуатируемых, батареи могут оказаться дорогостоящими и сложными. Лучше всего использовать нерегулируемый источник питания — комбинацию трансформатора, выпрямителя и фильтра. Схема представлена ​​ниже.

    Нерегулируемый источник питания — схема

    Как показано на рисунке выше, небольшой понижающий трансформатор используется для понижения уровня напряжения в соответствии с потребностями устройства.В Индии доступен источник питания 1 Ø на 230 вольт. На выходе трансформатора пульсирующее синусоидальное переменное напряжение преобразуется в пульсирующее постоянное с помощью выпрямителя. Этот выходной сигнал подается на схему фильтра, которая уменьшает пульсации переменного тока и пропускает компоненты постоянного тока. Но есть определенные недостатки в использовании нерегулируемого источника питания.

    Недостатки нерегулируемого источника питания

    1. Плохое регулирование — При изменении нагрузки выходная мощность не кажется постоянной.Выходное напряжение изменяется на большую величину из-за сильного изменения тока, потребляемого от источника питания. В основном это связано с высоким внутренним сопротивлением блока питания (> 30 Ом).

    2. Основные отклонения в питающей сети переменного тока — Максимальные отклонения в питающей сети переменного тока равны 6% от номинального значения. Но в некоторых странах это значение может быть выше (180–280 вольт). Когда значение выше, выходное напряжение постоянного тока будет сильно отличаться.

    3. Изменение температуры — Использование полупроводниковых приборов в электронных устройствах может вызвать колебания температуры.

    Эти изменения выходного напряжения постоянного тока могут вызвать неточную или неустойчивую работу или даже выход из строя многих электронных схем. Например, в генераторах частота будет сдвигаться, выходной сигнал передатчиков будет искажаться, а в усилителях рабочая точка будет сдвигаться, вызывая нестабильность смещения.

    Все вышеперечисленные проблемы решаются с помощью регулятора напряжения , который используется вместе с нерегулируемым источником питания. Таким образом, пульсации напряжения значительно снижаются.Таким образом, источник питания становится регулируемым.

    Внутренняя схема регулируемого источника питания также содержит определенные цепи ограничения тока, которые помогают цепи питания не перегореть из-за непреднамеренных цепей. В настоящее время во всех источниках питания используется микросхема IC для уменьшения пульсаций, улучшения регулирования напряжения и расширения возможностей управления. Также доступны программируемые источники питания для удаленного управления, что полезно во многих случаях.

    РЕГУЛИРУЕМЫЙ ИСТОЧНИК ПИТАНИЯ

    Регулируемый источник питания — это электронная схема, которая предназначена для обеспечения постоянного постоянного напряжения заданного значения на клеммах нагрузки независимо от колебаний сети переменного тока или колебаний нагрузки.

    Регулируемый источник питания — блок-схема

    Регулируемый источник питания по существу состоит из обычного источника питания и устройства регулирования напряжения, как показано на рисунке. Выход из обычного источника питания подается на устройство регулирования напряжения, которое обеспечивает конечный выход. Выходное напряжение остается постоянным независимо от изменений входного переменного напряжения или выходного тока (или тока нагрузки).

    На приведенном ниже рисунке показана полная схема стабилизированного источника питания с последовательным транзисторным стабилизатором в качестве регулирующего устройства.Подробно объясняется каждая часть схемы.

    Трансформатор

    Понижающий трансформатор используется для понижения напряжения от входного переменного тока до требуемого напряжения электронного устройства. Это выходное напряжение трансформатора настраивается путем изменения коэффициента трансформации трансформатора в соответствии со спецификациями электронного устройства. Вход трансформатора составляет 230 В переменного тока, выход подается на полную мостовую схему выпрямителя.

    Узнать больше: Трансформаторы

    Схема двухполупериодного выпрямителя

    FWR состоит из 4 диодов, которые выпрямляют выходное переменное напряжение или ток транзистора до эквивалентной величины постоянного тока.Как следует из названия, FWR выпрямляет обе половины входного переменного тока. Выпрямленный выход постоянного тока подается на вход схемы фильтра.

    Подробнее: полноволновой выпрямитель и полуволновой выпрямитель

    Цепь фильтра

    Схема фильтра используется для преобразования выходного сигнала постоянного тока с высокой пульсацией FWR в содержимое постоянного тока без пульсаций. Фильтр ∏ используется для устранения пульсаций на сигналах.

    Подробнее: схемы фильтров

    Вкратце

    Напряжение переменного тока, обычно 230 В, среднеквадратичное значение , подключено к трансформатору, который преобразует это напряжение переменного тока в уровень для желаемого выхода постоянного тока.Затем мостовой выпрямитель выдает двухполупериодное выпрямленное напряжение, которое сначала фильтруется ∏ (или C-L-C) фильтром для создания постоянного напряжения. Результирующее постоянное напряжение обычно имеет некоторые пульсации или колебания переменного напряжения. Схема регулирования использует этот вход постоянного тока для обеспечения постоянного напряжения, которое не только имеет гораздо меньшее напряжение пульсаций, но также остается постоянным, даже если входное напряжение постоянного тока несколько изменяется или нагрузка, подключенная к выходному напряжению постоянного тока, изменяется. Стабилизированный источник постоянного тока доступен через делитель напряжения.

    Регулируемый источник питания — схема

    Часто для работы электронных схем требуется более одного напряжения постоянного тока. Один источник питания может обеспечивать любое необходимое напряжение с помощью делителя напряжения (или потенциала), как показано на рисунке. Как показано на рисунке, делитель потенциала представляет собой резистор с одним ответвлением, подключенный к выходным клеммам источника питания. Резистор с ответвлениями может состоять из двух или трех резисторов, подключенных последовательно через источник питания.Фактически, резистор утечки также может использоваться в качестве делителя потенциала.

    Характеристики источника питания

    Качество источника питания определяется различными факторами, такими как напряжение нагрузки, ток нагрузки, регулировка напряжения, регулировка источника, выходное сопротивление, подавление пульсаций и т. Д. Некоторые характеристики кратко описаны ниже:

    1. Регулировка нагрузки — Регулировка нагрузки или влияние нагрузки — это изменение регулируемого выходного напряжения, когда ток нагрузки изменяется с минимального на максимальное значение.

      Регулировка нагрузки = V без нагрузки - V полная нагрузка  

    В без нагрузки относится к напряжению нагрузки без нагрузки

    Vfull-load относится к напряжению нагрузки при полной нагрузке.

    Из приведенного выше уравнения мы можем понять, что при отсутствии нагрузки сопротивление нагрузки бесконечно, то есть выходные клеммы разомкнуты. Полная нагрузка возникает, когда сопротивление нагрузки имеет минимальное значение, при котором регулирование напряжения теряется.

     Регулировка нагрузки % = [(V без нагрузки - V полной нагрузки) / V полной нагрузки] * 100  

    2. Минимальное сопротивление нагрузки — Сопротивление нагрузки, при котором источник питания выдает номинальный ток полной нагрузки при номинальном напряжении, называется минимальным сопротивлением нагрузки.

      Минимальное сопротивление нагрузки = Полная нагрузка / Полная нагрузка  

    Значение тока полной нагрузки при полной нагрузке никогда не должно увеличиваться, чем указано в паспорте источника питания.

    3. Регулирование источника / линии — На блок-схеме входное линейное напряжение имеет номинальное значение 230 В, но на практике здесь наблюдаются значительные колебания сетевого напряжения переменного тока.Поскольку это сетевое напряжение переменного тока является входом для обычного источника питания, отфильтрованный выход мостового выпрямителя почти прямо пропорционален сетевому напряжению переменного тока.

    Регулировка источника определяется как изменение регулируемого выходного напряжения для заданного диапазона ложного напряжения.

    4. Выходное сопротивление — Стабилизированный источник питания представляет собой очень жесткий источник постоянного напряжения. Это означает, что выходное сопротивление очень маленькое. Несмотря на то, что внешнее сопротивление нагрузки меняется, напряжение нагрузки почти не изменяется.Идеальный источник напряжения имеет нулевое выходное сопротивление.

    5. Подавление пульсаций — Регуляторы напряжения стабилизируют выходное напряжение от изменений входного напряжения. Пульсация эквивалентна периодическому изменению входного напряжения. Таким образом, регулятор напряжения ослабляет пульсации, возникающие при нерегулируемом входном напряжении. Поскольку в регуляторе напряжения используется отрицательная обратная связь, искажение уменьшается в тот же раз, что и коэффициент усиления.

    Конструкция блока питания постоянного тока

    Выбор трансформатора и выпрямителя

    Для получения постоянного напряжения из сети переменного тока используются трансформатор и выпрямитель, как показано ниже.Трансформатор изменяет сетевое напряжение на более подходящее для наших требований; а выпрямитель удаляет отрицательную часть сигнала, давая на выходе только положительные напряжения. На схеме ниже показан мостовой выпрямитель; можно использовать одинарный диодный выпрямитель, но он менее эффективен; а поскольку кремниевые диоды недороги, конструкция моста стала почти универсальной.

    Для целей этого руководства я буду использовать в качестве примера источник питания с выходом 12 В постоянного тока; однако простая теория позволит вам разработать источники питания для любого желаемого напряжения и тока.В следующих разделах в качестве примера будет использоваться конструкция переменного источника питания 2 А при напряжении до 30 В.

    Падение напряжения на выпрямителе

    Выпрямитель: одиночный кремниевый выпрямительный диод с прямой проводимостью развивает напряжение около 0,7 В (но может достигать 2 В). Обычно мы допускаем падение напряжения около 2В для конфигурации мостового выпрямителя.

    Трансформатор: Потери также возникают в обмотках трансформатора; однако трансформатор с номинальным напряжением 220 В: 30 В при 10 А обычно обеспечивает выходную мощность 30 В (среднеквадратичное значение) при выдаче номинального тока.Это означает, что напряжение без нагрузки будет выше.

    Осциллограммы вокруг контура

    На этих диаграммах показано напряжение в различных точках цепи для трансформатора 240: 12В.

    Здесь вы можете увидеть выход трансформатора. На выходе получается синусоида с центром около 0 вольт.

    Пиковое напряжение Vpk составляет 1,414 (квадратный корень из 2), умноженное на среднеквадратичное значение на выходе — значение, указанное для трансформаторов.

    Например, для трансформатора 240В: 12В пиковое напряжение будет
    1.414 умножить на 12 = 17В

    На этой схеме показан выходной сигнал мостового выпрямителя.

    Вы можете видеть отрицательный «горб» от сигнала переменного тока выше, который был «перевернут вверх дном» блоком мостового выпрямителя. Пиковое напряжение теперь составляет 17 В — 2 В = 15 В.

    Среднеквадратичное значение напряжения составляет около 10,6 В при полной нагрузке. Повышается при уменьшении нагрузки. Среднее напряжение 9,27

    Вы также можете увидеть плоскую часть около нуля, где ни один из выпрямительных диодов не начал проводить.

    Приведенный выше сигнал можно рассматривать как постоянное напряжение постоянного тока 9,27 В с наложенным изменяющимся сигналом примерно 15 В от пика до пика и средним значением 0 В.

    Среднеквадратичное значение этого сигнала составляет около 15/2 * 1,414 = 5,4 В

    Пример конструкции — выбор компонентов

    Спецификация: Разработайте и создайте блок питания для работать от сети 240 В переменного тока. Он должен питать двигатель постоянного тока 12 В, который работает в течение длительного времени и при нормальном использовании потребляет от источника питания максимум 2 А.

    Нам понадобится трансформатор на 12 В 2 А = 24 Вт или более

    Здесь вы можете увидеть два возможных стиля трансформатора. Либо подойдет.

    Оба рассчитаны на 12 В 48 Вт

    Это кремниевый мостовой выпрямитель, рассчитанный на пиковое обратное напряжение 200 В и средний прямой ток 4 А. Это было бы хорошо.

    Расчет тепла:

    При использовании ток будет 2А, а прямое падение напряжения около 0.9 В на диод (техническое описание) или 1,8 В на оба диода.

    2A * 1,8 В = 3,6 Вт.

    Тепловое сопротивление воздуху (из техпаспорта) составляет 22 градуса Цельсия на ватт, поэтому в упаковке будет температура на 22 * ​​3,6 = 80 градусов выше температуры окружающей среды. Это слишком тепло, поэтому мы добавим небольшой радиатор или прикрутим выпрямитель к металлическому корпусу.

    Обсуждение: Схема, показанная на этой странице, подходит для зарядки автомобильного аккумулятора или работы двигателя постоянного тока. В этих приложениях рябь не важна.Выход этого источника питания, как указано выше, будет 12 В — 1,8 = 10,2 В прибл. Мотор работал нормально. Однако для большинства приложений требуется сглаженный выходной сигнал, и для обеспечения этого в следующей схеме мы будем использовать конденсатор. Добавление конденсатора увеличит среднее выходное напряжение — см. Сглаживание.
    Блок-схема источника питания

    (процесс преобразования переменного тока в постоянный)

    Многим электронным схемам требуется источник напряжения постоянного тока (DC), но обычно мы находим источники напряжения переменного тока (AC).Чтобы получить источник напряжения постоянного тока, вход переменного тока должен соответствовать процессу преобразования, подобному показанному на блок-схеме источника питания ниже.

    На изображении показаны основные компоненты базовой схемы источника питания и формы сигналов в начале (вход переменного тока), в конце (выход постоянного тока) и между блоками.

    Входной сигнал, который поступает на первичную обмотку трансформатора, представляет собой синусоидальную волну, амплитуда которой зависит от системы распределения электроэнергии в стране (110/220 В переменного тока или другой).См. Основные единицы измерения в электронике.

    Блок-схема блока питания

    Электрический трансформатор

    Электрический трансформатор получает на первичную обмотку переменное напряжение и подает на вторичную обмотку другое переменное напряжение (более низкое). Это выходное напряжение переменного тока должно соответствовать напряжению постоянного тока, которое мы хотим получить в конце.

    Например: если нам нужен выход 12 В постоянного тока, вторичная обмотка трансформатора должна иметь переменное напряжение не менее 9 вольт.

    Электротрансформатор

    Пиковое значение на вторичной обмотке трансформатора составляет Vp = 1,41 x 9 = 12,69 вольт. Несмотря на то, что это значение очень близко к тому, которое мы хотели получить, это не рекомендуется, потому что нам нужно учитывать падения напряжения на разных этапах (блоках) источника питания.

    В этом случае мы можем выбрать трансформатор с вторичной обмоткой 12 В переменного тока. С этим переменным напряжением мы можем получить пиковое напряжение: Vp = 12 x 1,41 = 16.92 вольт.

    Примечание: Vpeak = Vrms x 1,41

    Выпрямительный мост (выпрямительные диоды)

    Выпрямительный мост преобразует переменное напряжение вторичной обмотки в пульсирующее постоянное напряжение. (смотрите схему). В нашем случае мы используем ½ волновой выпрямитель, затем мы устраняем отрицательную часть волны.

    Выпрямительный диод

    Фильтр (конденсаторы)

    Фильтр — это один или несколько параллельно включенных электролитических конденсаторов, которые выравнивают или сглаживают предыдущую волну, устраняя составляющую переменного тока, подаваемую выпрямителем.

    Эти конденсаторы заряжаются до максимального значения напряжения, которое может выдать выпрямитель, и разряжаются, когда пульсирующий сигнал исчезает. Посмотрите на картинку выше.

    Электролитический конденсатор

    Регулятор напряжения

    Регулятор напряжения принимает сигнал от фильтра и выдает постоянное напряжение (скажем, 12 вольт постоянного тока) независимо от изменений нагрузки или напряжения питания.

    Регулятор напряжения может быть реализован несколькими способами.Это может быть транзисторный регулятор напряжения или монолитный регулятор напряжения.

    На изображении ниже показан регулятор напряжения LM7805 (выход 5 В постоянного тока). Вы также можете найти стабилизатор напряжения LM7812 (выход 12 В постоянного тока).

    LM7805 Регулятор напряжения

    Силовые трансформаторы

    • Изучив этот раздел, вы сможете описать:
    • • Отводы.
    • • Силовые трансформаторы с многослойным и тороидальным сердечником.
    • • Изоляция.
    • • Автотрансформаторы.
    • • Импульсные трансформаторы питания.
    • • Неисправности трансформатора.

    Рис. 11.3.1 Силовой трансформатор с ламинированным сердечником.

    Силовые трансформаторы с ламинированным сердечником

    Задача силового трансформатора в электронной системе состоит в том, чтобы обеспечить эту систему несколькими источниками переменного тока различных напряжений и подходящих значений тока от высокого напряжения электроснабжения общего пользования.Кроме того, может потребоваться электрическая изоляция между электронной схемой и внешним источником питания общего пользования. Типичная конструкция силового трансформатора с многослойным сердечником показана на рис. 11.3.1.

    Сердечник из тонкой стальной пластинки E и I используется для уменьшения воздействия вихревых токов. Они зажимаются вместе, и первичная и вторичная обмотки намотаны на каркас, расположенный вокруг центрального плеча сердечника. Обмотки могут быть разделены, как показано, или, часто, для большей эффективности, намотаны концентрически слоями (первичная, вторичная, первичная, вторичная и т. Д.).Трансформаторы часто изготавливаются специально для конкретного приложения или оборудования, в котором они используются. Поэтому для правильной идентификации обмоток может потребоваться ссылка на данные производителя.

    Рис. 11.3.2 Принципиальная схема силового трансформатора с ответвлениями


    .

    Отводы.

    Чтобы трансформаторы могли подавать ряд вторичных напряжений в различные части цепи, силовые трансформаторы обычно имеют «обмотки с ответвлениями». То есть обмотки разделяются на различные секции с использованием ряда соединений, выведенных из одной обмотки, каждое из которых имеет определенное количество витков вдоль обмотки, как показано на схематической диаграмме символов Рис.3.2 ниже.

    Это обеспечивает выбор различных соотношений витков между первичной и вторичной обмотками, что позволяет использовать разные входные напряжения и получить диапазон различных выходных напряжений.

    При использовании обмотки с центральным отводом, например 9В 0В 9В, может быть обеспечен сбалансированный источник питания, дающий два равных напряжения (9В) противоположной полярности, или один источник питания 18В.

    Тороидальные силовые трансформаторы

    Рис. 11.3.3 Тороидальный силовой трансформатор

    Популярная конструкция силовых трансформаторов основана на тороидальном сердечнике, показанном на рис.11.3.3, (Тороид — это просто сердечник в форме ореха). Такая конструкция обеспечивает отличную связь между первичной и вторичной обмотками, поскольку обе катушки намотаны друг на друга вокруг одного и того же сердечника, а не отдельных обмоток, используемых на сердечниках трансформатора E-I. Потери на вихревые токи в тороидальном сердечнике поддерживаются на низком уровне за счет изготовления сердечника из спиральной полосы из стали с ориентированной зернистостью или литья сердечника из материала сердечника феррита с высокой проницаемостью. Конструкция тороидального трансформатора, хотя обычно более дорогая, чем типы с многослойным стальным сердечником E-I-образной формы, тороидальный сердечник обеспечивает меньший и более легкий трансформатор, чем для данной номинальной мощности, вместе с более высоким КПД и меньшей утечкой магнитного поля вокруг трансформатора.

    Изоляция.

    Одним из преимуществ трансформаторов (кроме автотрансформаторов) является отсутствие электрического соединения между входной цепью, подключенной к первичной обмотке, и выходной цепью, подключенной к вторичной обмотке; поэтому их можно использовать для гальванической развязки двух цепей.

    Изолирующие трансформаторы

    используются для обеспечения большей безопасности пользователей электрического оборудования, такого как наружные электроинструменты, и для технических специалистов, обслуживающих оборудование, где возможно прикосновение к токоведущим проводам и компонентам, путем обеспечения входных и выходных клемм, которые электрически изолированы от главная цепь.

    Большие разделительные трансформаторы обычно способны выдерживать выходную мощность около 250-500 ВА (вольт-амперы) без перегрузки. Их первичная обмотка подключена непосредственно к источнику питания, и для обеспечения выходного напряжения сети (или линии) их соотношение витков составляет 1: 1, как показано на рис. 11.3.4. Они также имеют заземленный металлический экран между первичной и вторичной обмотками для предотвращения прохождения переменного тока электростатическим (емкостным), а также индуктивной связи между двумя обмотками.

    Рис. 11.3.4 Разделительный трансформатор сети.

    Использование изолирующего трансформатора значительно снижает риск поражения электрическим током человека, одновременно касающегося токоведущего проводника и земли, поскольку вторичная цепь не имеет заземления и, следовательно, не имеет непрерывной цепи для протекания тока. Изолирующий трансформатор НЕ защищает от поражения электрическим током при прикосновении к фазе и нейтрали одновременно.

    Изолирующие трансформаторы гораздо меньшего размера используются в оборудовании для передачи голоса и данных, таком как факсимильные аппараты и модемы, где их задачей является безопасная изоляция оборудования, которое в условиях неисправности может допускать наличие высокого напряжения на их интерфейсе с телефонной системой общего пользования.Они также используются для согласования импеданса входов и выходов оборудования с полными сопротивлениями телефонных линий.

    Рис. 11.3.5 Принципиальная схема автотрансформатора


    .

    Автотрансформаторы.

    Это трансформатор особого типа, имеющий только одну обмотку. Он часто используется для преобразования между различными сетевыми (линейными) напряжениями, что позволяет использовать электрическое оборудование во всем мире. Одиночная непрерывная обмотка разделена на несколько «ответвлений», как показано на рис.11.3.5 для получения различных напряжений. Соответствующее количество витков обеспечивается между каждым ответвлением для создания необходимого напряжения на основе соотношения витков между полной обмоткой и ответвлением. Полезный метод расчета неизвестных напряжений на автотрансформаторе, если известно количество витков на различных ответвлениях, заключается в использовании метода вольт на виток, описанного на странице «Основные операции трансформатора». В отличие от обычного трансформатора с первичной и вторичной обмотками, автотрансформатор не обеспечивает развязки между входом и выходом.

    Автотрансформаторы

    также используются для обеспечения очень высоких напряжений, необходимых для таких приложений, как автомобильные системы зажигания и приводы электронно-лучевых трубок в ЭЛТ-телевизорах и мониторах.

    Часть имени «Авто» в данном случае не означает «автоматический», но имеет значение «Один — действует самостоятельно», как в auto nomous.

    Импульсные трансформаторы питания

    Трансформаторы с многослойным сердечником в настоящее время менее распространены из-за использования импульсных источников питания (SMPS).Эти схемы работают на гораздо более высоких частотах, чем более старые источники питания 50-60 Гц. Помимо большей эффективности, SMPS имеют то преимущество, что многие компоненты в цепи источника питания могут быть физически намного меньше и легче, включая трансформатор. В трансформаторах SMPS, работающих на частоте около 500 кГц, как в примере на рис. 11.3.6 в телевизионном приемнике, вместо ламинированных сердечников используется феррит, поскольку потери в феррите на высоких частотах намного меньше, чем в ламинированных сердечниках. Сигналы, обрабатываемые трансформаторами в SMPS, помимо высокой частоты, обычно имеют прямоугольную форму.Из-за этого они будут содержать много гармоник на еще более высоких частотах. Это создает проблему из-за «скин-эффекта»; высокочастотные токи, протекающие по проводам, имеют тенденцию течь только по внешней обшивке проводов, что усложняет обычные вычисления площади поперечного сечения проводов. Поскольку эффективная площадь поперечного сечения изменяется в зависимости от частоты, соответственно изменяется и эффективная индуктивность обмотки. Кроме того, компоновка компонентов по отношению к трансформаторам SMPS требует тщательного проектирования, поскольку электромагнитные помехи на высоких частотах выше.

    Рис. 11.3.6 Импульсный источник питания Трансформатор


    .

    Неисправности трансформатора

    Трансформаторы обычно отличаются высокой надежностью; их очень высокий КПД означает, что в нормальных условиях небольшая мощность рассеивается в виде тепла (во многих компонентах это самый большой убийца!). Как и в случае с любым другим электронным устройством, именно те, которые работают с наибольшей мощностью, являются наименее надежными, поэтому силовые трансформаторы, особенно те, которые работают с высоким напряжением, более подвержены пробоям, чем трансформаторы других типов.

    Перегрев, вызванный внутренней неисправностью или перегрузкой, может привести к опасным ситуациям, вплоть до полного «расплавления». По этой причине многие силовые трансформаторы могут быть оснащены плавким предохранителем или автоматическим выключателем. В маловероятном случае выхода этого устройства из строя первичная обмотка обычно оказывается разомкнутой. Часто бывает трудно или невозможно удалить и / или отремонтировать предохранитель, который находится глубоко внутри обмоток. Это также очень вероятно неразумно, поскольку трансформатор перегреется по одной из двух возможных причин:

    • 1.Трансформатор был серьезно перегружен в течение длительного времени; в этом случае могло произойти внутреннее повреждение изоляции. Самый безопасный вариант — заменить трансформатор.
    • 2. В трансформаторе произошло внутреннее короткое замыкание. Это означает, что нарушена изоляция между двумя витками обмотки. В результате получается обмотка с одним витком. Коэффициент трансформации сейчас огромен! Представьте трансформатор с 1000 витками на первичной обмотке и 100 витками на вторичной обмотке, имеющей короткое замыкание на вторичной обмотке.Передаточное число только что изменилось с 10: 1 до 1000: 1! Результат — очень низкое вторичное напряжение, но огромный ток. В этом случае опять же единственное решение — замена.

    Единственная неисправность, с которой я лично столкнулся и регулярно встречался за 26 лет обслуживания электроники, — это пробой изоляции на трансформаторах очень высокого напряжения; тип, используемый для генерации нескольких тысяч вольт в телевизионных приемниках. Большинство из этих неисправностей произошло летом в субботу днем, причина? Люди, возвращающиеся из отпуска, часто делали это в субботу днем, а телевизор не использовался в течение недели или больше.За это время влага проникла в обмотки трансформатора, и когда снова было приложено высокое напряжение, возникла дуга, и трансформатор сразу же замкнул виток.

    При любой неисправности, в которой подозревается трансформатор (любого типа), вероятность того, что он является виновником, очень низка в списке вероятностей.

    Источники Питания

    Источники Питания Главная | Карта | Проекты | Строительство | Пайка | Исследование | Компоненты | 555 | Символы | FAQ | Ссылки
    Типы | Двойные поставки | Трансформатор | Выпрямитель | Сглаживание | Регулятор

    Следующая страница: Преобразователи
    См. Также: AC и DC | Диоды | Конденсаторы

    Типы источников питания

    Есть много типов блоков питания.Большинство из них предназначены для преобразования сети переменного тока высокого напряжения. к подходящему низковольтному источнику питания для электронных схем и других устройств. Источник питания можно разбить на серию блоков, каждый из которых выполняет конкретная функция.

    Например, регулируемое напряжение 5 В:


    Более подробно каждый из блоков описан ниже:

    • Трансформатор — понижает напряжение сети переменного тока высокого напряжения до переменного тока низкого напряжения.
    • Выпрямитель — преобразует переменный ток в постоянный, но выходной постоянный ток меняется.
    • Smoothing (Сглаживание) — сглаживает постоянный ток от сильного колебания до небольшого.
    • Регулятор
    • — устраняет пульсации, устанавливая на выходе постоянного тока фиксированное напряжение.
    Блоки питания, изготовленные из этих блоков, описаны ниже с принципиальной схемой и график их вывода:

    Двойные расходные материалы

    Для некоторых электронных схем требуется источник питания с положительным и отрицательным выходами. а также ноль вольт (0В).Это называется «двойным питанием», потому что это как два обычные источники питания, подключенные вместе, как показано на схеме.

    Двойные источники питания имеют три выхода, например, источник ± 9 В имеет + 9 В, 0 В и Выходы -9В.


    Только трансформатор

    Низковольтный выход переменного тока подходит для ламп, нагревателей и специальных двигателей переменного тока. Это , а не , подходящий для электронных схем, если они не включают выпрямитель и сглаживающий конденсатор.

    Дополнительная информация: Трансформатор


    Трансформатор + выпрямитель

    Регулируемый выход постоянного тока подходит для ламп, обогревателей и стандартных двигателей. не подходит для электронных схем, если они не содержат сглаживающий конденсатор.

    Дополнительная информация: Трансформатор | Выпрямитель


    Трансформатор + выпрямитель + сглаживание

    Плавный выход DC имеет небольшую пульсацию.Он подходит для большинства электронных схем.

    Дополнительная информация: Трансформатор | Выпрямитель | Сглаживание


    Трансформатор + выпрямитель + сглаживание + регулятор

    Регулируемый выход DC очень плавный, без пульсаций. Подходит для всех электронных схем.

    Дополнительная информация: Трансформатор | Выпрямитель | Сглаживание | Регулятор


    Трансформатор

    Трансформаторы преобразуют электричество переменного тока из одного напряжения в другое с небольшими потерями мощности.Трансформаторы работают только с переменным током, и это одна из причин, почему в сети используется переменный ток.

    Повышающие трансформаторы повышают напряжение, понижающие трансформаторы понижают напряжение. В большинстве источников питания используется понижающий трансформатор для снижения опасно высокого напряжения в сети. напряжение (230 В в Великобритании) на более безопасное низкое напряжение.

    Входная катушка называется первичной обмоткой , а выходная катушка — вторичной обмоткой . Между двумя катушками нет электрического соединения, вместо этого они связаны переменное магнитное поле, создаваемое в сердечнике из мягкого железа трансформатора.Две линии в середине символа схемы представляют сердечник.

    Трансформаторы расходуют очень мало энергии, поэтому выходная мощность (почти) равна входной. Обратите внимание, что при понижении напряжения ток увеличивается.

    Отношение числа витков на каждой катушке, называемое соотношением витков , определяет соотношение напряжений. Понижающий трансформатор имеет большое количество витков на первичной (входной) катушке. который подключен к сети высокого напряжения, и небольшое количество витков на вторичной (выходной) катушке, чтобы обеспечить низкое выходное напряжение.

    Передаточное число витков = Vp = НП и выходная мощность = входная мощность
    VS Ns Vs × Is = Vp × Ip
    Vp = первичное (входное) напряжение
    Np = количество витков на первичной катушке
    Ip = первичный (входной) ток
    Vs = вторичное (выходное) напряжение
    Ns = количество витков вторичной катушки
    Is = вторичный (выходной) ток


    Выпрямитель

    Есть несколько способов подключения диодов, чтобы выпрямитель преобразовывал переменный ток в постоянный.Мостовой выпрямитель — самый важный и он производит двухполупериодных переменного постоянного тока. Двухполупериодный выпрямитель также может быть изготовлен из всего два диода, если используется трансформатор с центральным отводом, но этот метод используется редко теперь диоды дешевле. Одиночный диод может использоваться как выпрямитель, но он использует только положительные (+) части волны переменного тока для производят полуволны переменного постоянного тока.
    Мостовой выпрямитель
    Мостовой выпрямитель может быть выполнен с использованием четырех отдельных диодов, но он также доступен в требуются специальные пакеты, содержащие четыре диода.Он называется двухполупериодным выпрямителем. потому что он использует всю волну переменного тока (как положительную, так и отрицательную части). 1,4 В используется в мостовой выпрямитель, потому что каждый диод использует 0,7 В при проводимости, и всегда есть два проводящие диоды, как показано на схеме ниже. Мостовые выпрямители рассчитаны на максимальную ток, который они могут пропускать, и максимальное обратное напряжение, которое они могут выдержать (это должно быть при как минимум в три раза превышающее действующее значение напряжения питания, чтобы выпрямитель мог выдерживают пиковые напряжения).См. Диоды страницу для получения более подробной информации, включая изображения мостовых выпрямителей.
    Мостовой выпрямитель
    Чередующиеся пары проводящих диодов, переключающиеся через
    соединения так чередующиеся направления
    Переменный ток преобразуется в одно направление постоянного тока.
    Выход: двухполупериодный переменный постоянный ток
    (с использованием всей волны переменного тока)

    Выпрямитель одинарный диод
    Один диод можно использовать в качестве выпрямителя, но он дает полуволны переменного постоянного тока. который имеет промежутки, когда переменный ток отрицательный.Это трудно сгладить достаточно хорошо, чтобы питать электронные схемы, если они не требуют очень небольшого тока, поэтому сглаживание конденсатор существенно не разряжается во время зазоров. Пожалуйста, посетите страницу диодов для некоторых примеров выпрямительных диодов.
    Выпрямитель с одним диодом Выход: полуволна переменного тока
    (с использованием только половины переменного тока)


    Сглаживание

    Сглаживание выполняется по большому значению электролитический конденсатор, подключенный через Источник постоянного тока действует как резервуар, подающий ток на выход при изменении постоянного тока. напряжение с выпрямителя падает.На диаграмме показан несглаженный изменяющийся постоянный ток. (пунктирная линия) и сглаженная ДК (сплошная линия). Конденсатор быстро заряжается вблизи пик переменного постоянного тока, а затем разряжается по мере подачи тока на выход.


    Обратите внимание, что сглаживание значительно увеличивает среднее напряжение постоянного тока почти до пикового значения. (1,4 × значение RMS). Например, выпрямляется переменный ток 6 В RMS. до полной волны постоянного тока около 4,6 В RMS (1,4 В теряется в мостовом выпрямителе), со сглаживанием этого увеличивается почти до пикового значения, что дает 1.4 × 4,6 = 6,4 В постоянного тока.

    Сглаживание неидеальное из-за небольшого падения напряжения на конденсаторе при его разряде, давая небольшую пульсацию напряжения . Для многих цепей пульсация составляет 10% от напряжения питания. напряжение удовлетворительное, и приведенное ниже уравнение дает необходимое значение для сглаживания конденсатор. Конденсатор большего размера даст меньше пульсаций. Емкость конденсатора необходимо увеличить вдвое. при сглаживании полуволнового постоянного тока.

    Сглаживающий конденсатор для 10% пульсации, C = 5 × Io
    Vs × f
    C = сглаживающая емкость в фарадах (F)
    Io = выходной ток от источника питания в амперах (A)
    Vs = напряжение питания в вольтах (В), это пиковое значение несглаженного постоянного тока
    f = частота сети переменного тока в герцах (Гц), 50 Гц в Великобритании


    Регулятор

    ИС регулятора напряжения доступны с фиксированным (обычно 5, 12 и 15 В) или регулируемым выходом. напряжения.Они также рассчитаны на максимальный ток, который они могут пропускать. Отрицательное напряжение регуляторы доступны, в основном для использования в двойных источниках питания. Большинство регуляторов включают в себя автоматическая защита от чрезмерного тока («защита от перегрузки») и перегрева (‘тепловая защита’).

    Многие из микросхем фиксированного стабилизатора напряжения имеют 3 вывода и выглядят как силовые транзисторы, например, регулятор 7805 + 5V 1A, показанный справа. В них есть отверстие для крепления при необходимости радиатор.

    Пожалуйста, смотрите Электронику в Meccano веб-сайт для получения дополнительной информации об ИС регуляторов напряжения.

    стабилитрон
    a = анод, k = катод
    стабилитрон
    Для слаботочных источников питания можно сделать простой регулятор напряжения с резистором. и стабилитрон, подключенный в обратном направлении , как показано на схеме. Стабилитроны имеют номинальное напряжение пробоя Vz и максимальное мощность Pz (обычно 400 мВт или 1.3 Вт).

    Резистор ограничивает ток (как светодиодный резистор). Ток через резистор постоянный, поэтому при отсутствии выходного тока весь ток течет через стабилитрон, и его номинальная мощность Pz должна быть достаточно большой, чтобы выдержать это.

    Пожалуйста, посетите страницу Диоды для получения дополнительной информации. про стабилитроны.

    Выбор стабилитрона и резистора:

    1. Напряжение стабилитрона Vz — это необходимое выходное напряжение
    2. Входное напряжение Vs должно быть на несколько вольт больше, чем Vz
      (это необходимо для небольших колебаний Vs из-за пульсации)
    3. Максимальный ток Imax — это требуемый выходной ток плюс 10%
    4. Мощность стабилитрона Pz определяется максимальным током: Pz> Vz × Imax
    5. Сопротивление резистора : R = (Vs — Vz) / Imax
    6. Номинальная мощность резистора : P> (Vs — Vz) × Imax
    Пример: Требуемое выходное напряжение составляет 5 В, требуемый выходной ток составляет 60 мА .
    1. Vz = 4,7 В (ближайшее доступное значение)
    2. Vs = 8V (оно должно быть на несколько вольт больше, чем Vz)
    3. Imax = 66 мА (выходной ток плюс 10%)
    4. Pz> 4,7 В × 66 мА = 310 мВт, выберите Pz = 400 мВт
    5. R = (8 В — 4,7 В) / 66 мА = 0,05 кОм = 50, выберите R = 47
    6. Номинальная мощность резистора P> (8 В — 4,7 В) × 66 мА = 218 мВт, выберите P = 0.5 Вт


    Следующая страница: Преобразователи | Изучение электроники

    © Джон Хьюс 2007, Клуб электроники, www.kpsec.freeuk.com
    Этот сайт был взломан с использованием ПРОБНОЙ версии WebWhacker. Это сообщение не появляется на лицензированной копии WebWhacker. Блок-схема

    , характеристики и приложения

    Мы знаем, что существуют различные типы электрических и электронных схем, в которых используется источник постоянного тока.Обычно мы не можем использовать батареи постоянного тока из-за их дороговизны и необходимости замены в разряженном состоянии. В этой ситуации нам нужна схема, которая может переключать подачу переменного тока на подачу постоянного тока. Схема фильтра выпрямителя включает в себя обычный источник питания постоянного тока . Нормальный источник питания постоянного тока o / p остается стабильным, если нагрузка контрастная. Хотя в некоторых электронных схемах чрезвычайно важно поддерживать постоянный источник питания постоянным независимо от альтернативного источника переменного тока. В противном случае цепь будет повреждена.Чтобы преодолеть эту проблему, можно использовать устройства регулирования напряжения. Таким образом, сочетание устройств регулирования напряжения с обычным источником питания постоянного тока называется Источник питания постоянного тока . Это электрическое устройство, используемое для создания постоянного источника постоянного тока независимо от альтернативного источника переменного тока.

    Что такое регулируемый источник питания?

    IC Регулируемый источник питания (RPS) — это один из видов электронных схем, предназначенный для обеспечения стабильного постоянного напряжения фиксированного значения на клеммах нагрузки независимо от колебаний нагрузки.Основная функция регулируемого источника питания — преобразование нерегулируемого переменного тока (AC) в устойчивый постоянный ток (DC). RPS используется для подтверждения того, что при изменении входа выход будет стабильным. Этот источник питания также называется линейным источником питания, и он позволяет вводить переменный ток, а также обеспечивает стабильный выход постоянного тока. Пожалуйста, обратитесь по ссылке, чтобы узнать больше о — Классификация источников питания и ее различные типы


    Схема регулируемого источника питания

    Блок-схема регулируемого источника питания

    Блок-схема регулируемого источника питания в основном включает понижающий трансформатор , выпрямитель, фильтр постоянного тока и регулятор.Модель Конструкция и работа регулируемого источника питания обсуждается ниже. Блок-схема регулируемого источника питания

    Трансформатор и источник переменного тока

    Источник питания может использоваться для обеспечения необходимого количества энергии при точном напряжении от основного источника, такого как аккумулятор. Трансформатор изменяет напряжение сети переменного тока до необходимого значения, и его основная функция заключается в повышении и понижении напряжения. Например, понижающий трансформатор используется в транзисторном радиоприемнике, а повышающий трансформатор используется в CRT .Трансформатор обеспечивает отделение от линии питания, и его следует использовать, даже если никаких изменений в напряжении не требуется.

    Выпрямитель

    Выпрямитель — это электрическое устройство, используемое для преобразования переменного тока в постоянный. Это может быть двухполупериодный выпрямитель, а также однополупериодный выпрямитель с помощью трансформатора или мостового выпрямителя, в противном случае вторичная обмотка с отводом по центру. Однако выходное напряжение выпрямителя может быть переменным.

    Фильтр

    Фильтр в регулируемом источнике питания в основном используется для выравнивания разницы переменного тока от скорректированного напряжения.Выпрямители подразделяются на четыре типа: конденсаторный фильтр, индуктивный фильтр, LC-фильтр и RC-фильтр.

    Регулятор напряжения

    Регулятор напряжения в регулируемом источнике питания необходим для поддержания постоянного выходного напряжения постоянного тока путем регулирования нагрузки, а также линейного регулирования. По этой причине мы можем использовать стабилизаторы, такие как стабилитроны, транзисторные или трехконтактные встроенные стабилизаторы. Импульсный источник питания с импульсным переключением может использоваться для подачи большого тока нагрузки за счет небольшого рассеивания мощности в последовательном транзисторе.

    Характеристики регулируемого источника питания

    Качество источника питания может определяться несколькими факторами, а именно током нагрузки, напряжением, источником и регулировкой напряжения, подавлением пульсаций, импедансом o / p и т. Д. Некоторые из факторов объясняются ниже.

    Регулировка нагрузки

    Регулировка нагрузки также известна как эффект нагрузки. Это можно определить так, что всякий раз, когда ток нагрузки изменяется от наименьшего к наибольшему значению, выход регулируемого напряжения будет изменяться.Это можно рассчитать с помощью следующего уравнения.

    Регулировка нагрузки = V без нагрузки — V полная нагрузка

    Из приведенного выше уравнения регулирования нагрузки мы можем сделать вывод, что всякий раз, когда возникает напряжение холостого хода, сопротивление нагрузки будет неограниченным. Точно так же всякий раз, когда возникает напряжение полной нагрузки, сопротивление нагрузки будет наименьшим значением. Таким образом, регулирование напряжения будет потеряно.
    % регулирования нагрузки = (Vno load — Vfull load) / (Vfull-load) X 100

    Наименьшее сопротивление нагрузки

    Сопротивление нагрузки, на которое источник тока подает свой заряженный ток полной нагрузки при номинальном напряжении. называться самым низким сопротивлением нагрузки.

    Наименьшее сопротивление нагрузки = Напряжение полной нагрузки / Ток при полной нагрузке

    Регулирование линии или источника

    На блок-схеме источника питания входное напряжение составляет 230 В, однако на практике; есть существенные различия в напряжении питающей сети переменного тока. Поскольку это сетевое напряжение питания равно I / P по сравнению с нормальным питанием, отфильтрованное o / p мостового выпрямителя приблизительно прямо пропорционально напряжению сети переменного тока. Регулировку источника можно определить как изменение регулируемого опорного напряжения для определенного диапазона низкого напряжения.

    Выходное сопротивление

    Выходное сопротивление регулируемого источника питания очень мало. Несмотря на то, что внешнее сопротивление нагрузки может быть изменено, в пределах напряжения нагрузки изменений не наблюдается. Импеданс идеального источника напряжения равен нулю.

    Подавление пульсаций

    Регуляторы напряжения фиксируют выходное напряжение относительно колебаний входного напряжения. Пульсация равна периодической разнице между напряжением i / p. Таким образом, стабилизатор напряжения удовлетворяет пульсации, которые приближаются к нерегулируемому напряжению i / p.Поскольку в регуляторе напряжения используется отрицательная обратная связь, искажение можно уменьшить с коэффициентом, аналогичным коэффициенту усиления.

    Применения регулируемого источника питания

    Применения регулируемого источника питания включают следующее.

    Стабилизированный источник питания (RPS) — это встроенная схема, используемая для преобразования нерегулируемого переменного тока в стабильный постоянный ток с помощью выпрямителя. Основная функция этого состоит в том, чтобы подавать постоянное напряжение в цепь, которая должна работать с определенным пределом источника питания.

    • Зарядные устройства для мобильных телефонов
    • Регулируемые источники питания в различных устройствах
    • Различные генераторы и усилители

    Таким образом, речь идет о регулируемом источнике питания (RPS) . Из приведенной выше информации, наконец, мы можем сделать вывод, что RPS изменяет нерегулируемый переменный ток на стабильный постоянный ток. Стабилизированный источник питания постоянного тока также называется линейным источником питания. Этот источник питания допускает ввод переменного тока, а также обеспечивает стабильное отключение постоянного тока.Вот вам вопрос, что такое двойной источник питания постоянного тока?

    Общие сведения о полноволновых и полуволновых источниках питания — Примечание по применению


    В этом документе описывается опасность смешивания полуволновых и двухполупериодных источников питания, а также дается обзор основных схем полуволнового и двухполупериодного источников питания.

    Рис.1: Условное обозначение диода
    Диоды

    Чтобы понять разницу между двухполупериодными и полуволновыми источниками питания, вы должны понимать, как работает диод.
    На рисунке 1 показано схематическое обозначение диода. Диод — это электронный переключатель. Когда на анодной (+) клемме больше положительного напряжения, чем на катодной (-) клемме, переключатель замыкается, и ток будет течь через диод от анода (+) к катоду (-). Когда на катодной (-) клемме больше положительного напряжения, чем на анодной (+) клемме, переключатель разомкнут и ток не течет.

    Опасность смешивания полуволн с полноволновыми источниками питания

    На рис. 2 показана схема двухполупериодного источника питания.Во многих системах управления используются полуволновые источники питания, и в этих системах нижний вывод трансформатора 24 В переменного тока обычно заземлен. Если к такой системе подключен двухполупериодный источник питания (как показано на рисунке 4), то верхний вывод трансформатора также подключается к земле через диод D3 во время отрицательного полупериода источника питания переменного тока. Это создает короткое замыкание между клеммами трансформатора (как показано на рисунке 3), которое либо срабатывает автоматический выключатель, либо сгорает диод, либо сгорает трансформатор — или, возможно, все три.

    Поэтому никогда не следует пытаться запитать полуволновые и двухполупериодные источники питания от одного и того же трансформатора.

    Полуполупериодные и двухполупериодные источники питания могут сосуществовать в одной системе управления, их просто нужно запитать от отдельных трансформаторов.

    Рис. 2: Базовый двухполупериодный источник питания Рис. 3: Клеммы трансформатора источника питания на рисунке 4 ниже соединены вместе через диод D3 во время отрицательного полупериода подачи переменного тока. 4: Базовый двухполупериодный источник питания с нижним выводом трансформатора 24 В переменного тока, неправильно подключенным к земле
    Полуволновые источники питания

    На рисунке 5 показан простой полуволновой источник питания.24 В переменного тока — это выход силового трансформатора 24 В переменного тока. D1 — диод, который преобразует переменный ток в пульсирующий постоянный ток. C1 — фильтрующий конденсатор, сглаживающий пульсирующий постоянный ток. R1 — нагрузка схемы, 275 Ом было выбрано для нагрузки около 100 мА.

    На рис. 6 показаны формы напряжения полуволнового источника питания при входном 24 В переменного тока (среднеквадратичное значение) (или 68 вольт от пика до пика). Более светлая форма волны — это напряжение питания 24 В переменного тока, а более темная форма волны — напряжение на конденсаторе фильтра C1 и нагрузочном резисторе R1.

    Как показано на рис. 6, на каждом положительном полупериоде питания 24 В переменного тока напряжение на конденсаторе фильтра и нагрузочном резисторе повышается до пикового значения переменного напряжения. В отрицательном полупериоде конденсатор обеспечивает ток для нагрузки. Изменение напряжения нагрузки, или пульсация, зависит от емкости конденсатора — больший конденсатор будет иметь меньшую пульсацию напряжения.

    Рис. 5: Базовый полуволновой источник питания Рис. 6: Осциллограммы напряжения полуволнового источника питания

    В заштрихованной части рис.6 эффективная схема полуволнового источника питания показана на рисунке 7. Источник 24 В переменного тока заряжает C1 и обеспечивает ток нагрузки. Поскольку конденсатор должен накапливать ток в течение отрицательного полупериода, ток зарядки конденсатора может быть довольно большим, в данном случае почти 1 ампер. Чем больше конденсатор, тем больше зарядный ток.

    Рис. 7: Диод D1 закрыт во время заштрихованной части сигнала на рис. 6. Рис. 8: Диод D1 открыт во время незатененной части сигнала на рис.6.

    В незатененной части рисунка 6 эффективная схема полуволнового источника питания показана на рисунке 8. Диод открыт, поэтому источник 24 В переменного тока не подает никакой энергии, а конденсатор обеспечивает весь ток нагрузки.

    Полуволновые источники питания обычно более сложны, чем схема, показанная на рисунке 5. Эта простая схема была выбрана для облегчения объяснения. Обычно существует схема регулирования, чтобы поддерживать постоянное напряжение на выходе. Регуляторы работают хорошо, но они не могут поддерживать постоянный выход, если напряжение конденсатора фильтра падает ниже регулируемого выхода.Регуляторы также используют часть напряжения конденсатора фильтра для правильной работы.

    В показанной здесь схеме напряжение фильтрующего конденсатора падает до 20 В, прежде чем он будет заряжен 24 В переменного тока. Следовательно, было бы невозможно получить регулируемый выход выше 19,5 В постоянного тока.

    Источники питания полной волны

    На рисунке 9 показан простой двухполупериодный источник питания. 24 В переменного тока — это выход силового трансформатора 24 В переменного тока. D2, D3, D4 и D5 — это диоды, которые преобразуют переменный ток в пульсирующий постоянный ток.C2 — конденсатор фильтра, сглаживающий пульсирующий постоянный ток. R2 — нагрузка схемы, 275 Ом было выбрано для нагрузки около 100 мА.

    На рис. 10 показаны формы волны напряжения двухполупериодного источника питания, когда на входе 24 В переменного тока (среднеквадратичное значение) (или 68 вольт от пика до пика). Более светлая форма волны — это источник питания 24 В переменного тока после того, как он был преобразован диодами в пульсирующее постоянное напряжение. Более темная форма волны — это напряжение на конденсаторе фильтра C2 и нагрузочном резисторе R2.

    Как показано на рис. 10, напряжение на конденсаторе фильтра и нагрузочном резисторе повышается до пикового значения напряжения питания.Когда напряжение питания возвращается к нулю, конденсатор обеспечивает ток для нагрузки. Изменение напряжения нагрузки, или пульсация, зависит от емкости конденсатора — больший конденсатор будет иметь меньшую пульсацию напряжения.

    В темных заштрихованных прямоугольниках на фиг.10 эффективная схема источника питания показана на рисунке 11. В светлых заштрихованных прямоугольниках на рисунке 10 эффективная схема источника питания показана на рисунке 12. В течение обоих этих периодов. , источник питания 24 В переменного тока заряжает C1 и обеспечивает ток нагрузки.Ток зарядки конденсатора может быть довольно большим, в данном случае почти 0,5 ампер. Чем больше конденсатор, тем больше зарядный ток.

    В незатененной части рисунка 10 все диоды открыты, и конденсатор обеспечивает весь ток нагрузки.

    Рис. 9: Базовый двухполупериодный источник питания Рис. 10: Формы напряжения полноволнового источника питания Рис. 11: Путь тока в темной заштрихованной части рис. 10 Рис. 12: Путь тока в светлой части рисунка 10. Полнополупериодные источники питания

    обычно более сложны, чем схема, показанная на рисунке 9.Эта простая схема была выбрана для облегчения объяснения. Обычно существует схема регулирования, чтобы поддерживать постоянное напряжение на выходе. Регуляторы работают хорошо, но они не могут поддерживать постоянный выход, если напряжение конденсатора фильтра падает ниже регулируемого выхода. Регуляторы также используют часть напряжения конденсатора фильтра для правильной работы. В схеме, показанной на предыдущей странице, напряжение фильтрующего конденсатора падает до 25,5 В, прежде чем он будет заряжен 24 В переменного тока.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *