принцип работы и подключение тензометрического датчика
«Точность – вежливость королей!» В наше время актуальность этого средневекового французского афоризма только растет. Для проведения точных измерительных вычислений на производстве и в быту все шире используются приборы на основе тензометрических датчиков.
Что такое тензометрия и для чего нужны тензодатчики
Тензометрия (от лат. tensus — напряжённый) – это способ и методика измерения напряжённо-деформированного состояния измеряемого объекта или конструкции. Дело в том, что нельзя напрямую измерить механическое напряжение, поэтому задача состоит в измерении деформации объекта и вычислении напряжения при помощи специальных методик, учитывающих физические свойства материала.
В основе работы тензодатчиков лежит тензоэффект — это свойство твёрдых материалов изменять своё сопротивление при различных деформациях. Тензометрические датчики представляют собой устройства, которые измеряют упругую деформацию твердого тела и преобразуют её величину в электрический сигнал. Этот процесс происходит при изменении сопротивления проводника датчика при его растяжении и сжатии. Они являются основным элементом в приборах по измерению деформации твёрдых тел (например, деталей машин, конструкций, зданий).
Устройство и принцип работы
Основу тензодатчика составляет тензорезистор, оснащенный специальными контактами, закрепленными на передней части измерительной панели. В процессе измерения чувствительные контакты панели соприкасаются с объектом. Происходит их деформация, которая измеряется и преобразуется в электрический сигнал, передаваемый на элементы обработки и отображения измеряемой величины тензометрического датчика.
В зависимости от сферы функционального использования датчики различаются как по типам, так и по видам измеряемых величин. Важным фактором является требуемая точность измерения. Например, тензодатчик грузовых весов на выезде с хлебозавода совершенно не подойдет к электронным аптекарским весам, где важна каждая сотая часть грамма.
Рассмотрим более предметно виды и типы современных тензометрических датчиков.
Датчики крутящего момента
Датчики крутящего момента предназначены для измерения крутящего момента на вращающихся частях таких систем, как коленвал двигателя или рулевой колонки. Тензодатчики крутящего момента могут определять как статический, так и динамический момент контактным либо бесконтакным (телеметрическим) способом.
Тензодатчики балочного, консольного и кромочного типов
Эти типы датчиков изготавливают обычно на основе параллелограммной конструкции со встроенным элементом изгиба для высокой чувствительности и линейности измерений. Тензорезисторы в них закрепляются на чувствительных участках упругого элемента датчика и соединяются по схеме полного моста.
Конструктивно балочный тензодатчик имеет специальные отверстия для неравномерного распределения нагрузки и выявления деформаций сжатия и растяжения. Для получения максимального эффекта тензорезисторы по специальным меткам строго ориентируют на поверхности балки в ее самом тонком месте. Высокоточные и надежные датчики этого типа используют для создания многодатчиковых измерительных систем в платформенных или бункерных весах. Нашли они свое применение и в весовых дозаторах, фасовщиках сыпучих и жидких продуктов, измерителях натяжения тросов и других измерителях силовых нагрузок.
Тензодатчики силы растяжения и сжатия
Тензодатчики силы растяжения и сжатия, как правило, имеют S-образную форму, изготавливаются из алюминия и легированной нержавеющей стали. Предназначены для бункерных весов и дозаторов с пределом измерения от 0,2 до 20 тонн. S-образные тензодатчики силы растяжения и сжатия могут использоваться в станках по производству кабелей, тканей и волокон для контроля силы натяжения этих материалов.
Тензорезисторы проволочные и фольговые
Проволочные тензорезисторы делают в виде спирали из проволоки малого диаметра и крепят на упругом элементе или исследуемой детали с помощью клея. Их отличает:
- простота изготовления;
- линейная зависимость от деформации;
- малые размеры и цена.
Из недостатков отмечают низкую чувствительность, влияние температуры и влажности среды на погрешность измерения, возможность применения только в сфере упругих деформаций.
Фольговые тензорезисторы в настоящее время являются наиболее распространенным типом тензорезисторов из-за их высоких метрологических качеств и технологичности производства. Это стало доступным благодаря фотолитографической технологии их изготовления. Передовая технология позволяет получать одиночные тензорезисторы с базой от 0,3 мм, специализированные тензометрические розетки и цепочки тензорезисторов с широким рабочим температурным диапазоном от –240 до +1100 ºС в зависимости от свойств материалов измерительной решетки.
Преимущества и недостатки тензодатчиков
Широкое применение тензодатчики получили благодаря своим свойствам:
- возможности монолитного соединения датчика деформации с исследуемой деталью;
- малой толщине измерительного элемента, что обеспечивает высокую точность измерения с погрешностью 1-3 %;
- удобстве крепления, как на плоских, так и на криволинейных поверхностях;
- возможности измерения динамических деформаций, меняющихся с частотой до 50000 Гц;
- возможности проведения измерений в сложных условиях окружающей среды в температурном интервале от -240 до +1100˚С;
- возможности измерений параметров одновременно во многих точках деталей;
- возможности измерения деформации объектов, расположенных на больших расстояниях от тензометрических систем;
- возможностью измерения деформаций в движущихся (крутящихся) деталях.
Из недостатков следует отметить:
- влияние метеоусловий (температуры и влажности) на чувствительность датчиков;
- незначительные изменения сопротивления измерительных элементов (около 1%) требует применение усилителей сигналов.
- при работе тензодатчиков в условиях высокотемпературной или агрессивной среды необходимы специальные меры их защиты.
Основные схемы подключения
Рассмотрим это на примере подключения тензометрических датчиков к бытовым или промышленным весам. Стандартный тензодатчик для весов имеет четыре разноцветных провода: два входа – питание (+Ex, -Ex), два других – измерительные выходы (+Sig, -Sig). Встречаются также варианты с пятью проводами, где дополнительный провод служит в качестве экрана для всех остальных. Суть работы весового измерительного датчика балочного типа довольно проста. На входы подается питание, а с выходов снимается напряжение. Величина напряжения зависит от приложенной нагрузки на измерительный датчик.
Если длина проводов от весового тензодатчика до блока АЦП значительна, то сопротивление самих проводов будет влиять на показание весов. В этом случае целесообразно добавить цепь обратной связи, которая компенсирует падение напряжения путем корректировки погрешности от сопротивления проводов, вносимую в измерительную цепь. В этом случае схема подключения будет иметь три пары проводов: питания, измерения и компенсации потерь.
Примеры использования тензометрических датчиков
- элемент конструкции весов.
- измерение усилий деформации при обработке металлов давлением на штамповочных прессах и прокатных станах.
- мониторинг напряженно-деформационных состояний строительных конструкций и сооружений при их возведении и эксплуатации.
- высокотемпературные датчики из жаропрочной легированной стали для металлургических предприятий.
- с упругим элементом из нержавеющей стали для измерений в химически агрессивной среде.
- для измерения давления в нефте и газопроводах.
Простота, удобство и технологичность тензодатчиков – основные факторы для дальнейшего активного их внедрения, как в метрологические процессы, так и использования в повседневной жизни в качестве измерительных элементов бытовой техники.
odinelectric.ru
принцип действия, описание, виды, схемы
Измерение напряжений и усилий в действующих узлах и конструкциях оборудования считается одной из наиболее сложных задач. Между тем в процессе эксплуатации техника подвергается разным видам нагрузок, которые определяют долговечность и надежность оборудования. Решение поставленных задач возможно с помощью тензометрических датчиков. Установка подобных устройств целесообразна тогда, когда в дополнение к производственным факторам добавляются остаточные напряжения, постепенно накапливаемые в ходе работы.
Описание и назначение
При измерении деформаций, напряжений и усилий при помощи тензометрических датчиков используют изменение значений омического сопротивления материала, которое вызывается упругими деформациями металлической проволоки или полупроводников стержневого исполнения. Изменение сопротивления датчика передаётся при помощи кабеля или бесконтактным путем на измерительный мост. Там оно преобразуется в усиленные электрические сигналы, которые и фиксируются прибором.
Все типы тензометрических датчиков (или, иначе – тензорезисторов) используют зависимость между напряжениями и деформациями – закон Гука – который справедлив в области упругих деформаций. Согласно закону Гука изменение электросопротивления, отнесённое к исходному значению данного параметра до деформации, пропорционально изменению удлинения, отнесённому к первоначальной длине измерительного элемента. Применяя коэффициент пропорциональности, который зависит от диапазона измеряемых параметров и материала устройства, устанавливают зависимость между нагрузкой на датчик и его удлинением:
ΔR/R = k×Δl/l,
где:
R – исходное значение электрического сопротивления;
ΔR – изменение значения электрического сопротивления в процессе деформации;
k – коэффициент пропорциональности;
Δl – изменение длины при деформировании;
l – исходная длина измерительного элемента до приложения к нему эксплуатационной нагрузки.
Указанный тип устройств используется в весоизмерительной технике, поскольку относится к тензорным, определяющим усилия и внешние нагрузки.
Виды
Применяемость рассматриваемых измерительных элементов определяется материалом, из которого выполнен датчик. Чаще всего исходным материалом служит сплав константан, состоящий из 40% никеля и 60% меди. Для константана k ≈ 2; таким же порядком значений (1.5…3,5) обладают и другие сплавы постоянного электросопротивления.
Датчики полупроводникового типа имеют более высокие значения коэффициента пропорциональности. В зависимости от материала полупроводника (кремний или германий), а также состава легирующих добавок значения коэффициента достигают 50…70. В связи с этим полупроводниковые тензометрические датчики более чувствительны, и их применяют для оценки малых удлинений. Вместе с тем полупроводниковые датчики характеризуются повышенными отклонениями своего удлинения в диапазонах 1,5…9 % относительного удлинения. Для проволочных датчиков этот показатель не превышает 0,5%.
Конструкции тензометрических датчиков проволочного типа разрабатываются с учетом следующих ограничений:
- С целью получения достаточной точности измерений величина сопротивления проволочного элемента должна находиться в пределах 100…1000 Ом;
- Диаметр проволоки целесообразно иметь в диапазоне 0,01…0,03 мм;
- Длина проволочного элемента не должна превышать 250…300 мм.
В некоторых случаях приведенные ограничения не позволяют устанавливать тензометрические датчики в виде проволок, поэтому измерительные устройства изготавливают из фольги или плоских измерительных решеток. Для предохранения от повреждений, которые могут возникнуть при транспортировке или сборке таких датчиков, для их крепления в напольном исполнении применяют подложку из бумаги или тонкого пластика.
Чтобы обеспечить электрический контакт с измерительной решеткой, на подложке размещают проволочные выводы, которые затем присоединяются к датчику при помощи пайки.
Виды тензодатчиков, включающих в себя активный измерительный элемент, контактные выводы и подложку:
- Плоский проволочный.
- Фольговый.
- Полупроводниковый, с одним или двумя стержнями.
- Трубчатый.
Краткая характеристика наиболее распространённых исполнений тензодатчиков приводится далее.
- Консольные. Предназначены для измерения крутящих и изгибающих моментов, устанавливаются в метах наибольшего прогиба конструкций.
- Цилиндрические. Наименее компактны, зато позволяют определять значительные напряжения, приближающиеся по своим значениям к пределу текучести лимитирующего материала.
- S-образные. Дают возможность оценивать трехмерные деформации при объемном напряженно-деформированном состоянии. Чаще других нуждаются в поверке.
Устройство и принцип работы
По типу воздействия на исполнительные элементы конструкции различают тактильные, резистивные, пьезорезонансные, пьезоэлектрические, магнитные и емкостные датчики.
Тактильные
Срабатывают в результате механического действия на чувствительную поверхность. Позволяют устанавливать минимальные деформации, но при неточных настойках могут подавать и ложный сигнал.
Резистивные
Наиболее распространенный тип датчиков. Требуют подключения к слаботочной управляющей цепи, поскольку включают в себя тензорезисторный контур. Надежны при любом состоянии окружающей среды.
Пьезорезонансные
Относятся к устройствам полупроводникового типа, нуждаются в надежном обслуживании и тонкой настройке. Работают по принципу сравнения эталонного сигнала с фактическим.Пьезоэлектрические
По своему действию подобны измерителям предыдущего типа, но подают сигнал при изменении значений контактных деформаций, прикладываемых к чувствительному элементу.
Магнитные
Изготавливаются из сплавов с переменным значением коэрцитивной силы, используются при измерении усилий в узлах оборудования, работающих в сильных электромагнитных полях.
Емкостные
Предназначены для измерения малых механических напряжений в деталях со сложной конфигурацией, когда изменение длины токопроводящей проволоки изменяет ее электрическую емкость.
Характеристика
Для изготовления тензометрических датчиков необходимо использовать материалы проволок, относительное изменение сопротивления которых пропорционально удлинению в максимальном диапазоне деформаций.
Условия оптимального использования тензорезисторов:
- Малое различие между коэффициентами теплового расширения материала конструкции (или узла) и измерительной проволоки устройства.
- Нечувствительность к термическим напряжениям, которые возникают при соединении измерительного элемента с контролируемой частью оборудования или конструкции (для такого присоединения чаще всего используют пайку).
- Хорошая обрабатываемость паяных соединений, которая не изменяет эксплуатационные параметры оборудования.
- Надежность соединения, учитывающая возможные динамические удары и перемещения.
На параметр пропорциональности k влияют коэффициент Пуассона ε (представляющий собой условную меру изменения поперечного сечения детали при приложении к ней растягивающих напряжений) и теплофизические параметры материала, из которого изготовлен тензометрический прибор.
Схемы подключения
Конструкции тензометрических датчиков, в частности, их малая жесткость, вынуждают применять особые способы подключения рассматриваемых элементов. Например, участки проволочной решетки в местах возможного изгиба при деформации часто располагаются поперечно к направлению измерений. Они воспринимают составляющие удлинения, действующие именно в этом направлении, и поэтому недостаточно точно реагируют на силы и деформации продольного направления. Отношение чувствительности измерения удлинений в продольном и поперечном направлениях для датчиков проволочного исполнения находятся в пределах от -0,01 до +0,04.
Влияние описанного фактора уменьшается, если для измерения напряжений, крутящих моментов или усилий использовать фольговые силоизмерительные датчики. По аналогии с печатными схемами, измерительная фольговая решетка, которая расположена на пластмассовой подложке, может быть получена в результате травления тонкой металлической фольги. Кроме того, токовая нагрузка на тензометрические датчики фольгового типа больше, чем на проволочные, вследствие чего тепло от фольговых тензометров отводится лучше.
Тензорезисторы часто приклеиваются к исследуемому конструктивному элементу. Клеевое соединение обеспечивает постоянную передачу деформации через подложку на измерительную решетку. Поэтому к клеям предъявляется также и ряд особых требований:
- Высокое сопротивление ползучести.
- Отсутствие гистерезиса.
- Влагостойкость.
- Адгезионная способность.
- Температуростойкость.
Наибольшую эксплуатационную надежность проявляют эпоксидные смолы холодного твердения. Для экспериментального определения многосторонней деформации используют розеточную систему данных устройств, которые образуют измерительный мост. При этом образованная схема состоит из не менее, чем четырех закрепленных на подложке датчиков, которые размещаются крестообразно, треугольником, т-образно, в виде звезды. Благодаря многолучевому размещению тензорезисторов их удлинения измеряются в двух, трех или четырех направлениях.
Сферы применения
Кроме определения удлинений, которые вызываются действием внешних нагрузок на конструктивные части оборудования, тензометрические датчики могут применяться для измерения собственных (остаточных) напряжений в момент их релаксации, это явление происходит при высверливании или разрезке некоторых конструктивных деталей и узлов.
Тонкопленочные датчики давления, которые изготавливаются путем осаждения из паровой фазы или распыления, используются для определения усилий, напряжений, крутящих моментов и деформаций в изоляционных элементах, которые размещаются непосредственно на полированных мембранах. Для калибровки резистивных элементов используется лазерная подгонка, повышающая точность замеров. Диффузионные полупроводниковые датчики давления могут проникать в кремниевую чувствительную к давлению диафрагму, и не связаны со свойствами поверхности. Это позволяет использовать их в технологиях миниатюрного тензометрирования.
Основным преимуществом тонкопленочных преобразователей является устранение нестабильности, вызванной клеем.
Технология тонких пленок считается более современной и обеспечивает превосходную стабильность при нулевом температурном режиме и полной чувствительности, а также высокую долговечность.
Часто применяемые условия для использования тензодатчиков перечислены далее.
Измерение веса
Необходимо в системах напольного типа, при помощи которых определяют массу груза. Характеризуются минимальными требованиями к точности монтажа и наладки.
Измерение давления
Используется в технологических линиях обработки металлов давлением. Одновременно производится также измерение рабочих сил и упругих деформаций. Датчики снабжаются силоизмерительным устройством с цифровой индикацией.
Измерение крутящего момента
Применяется для испытательного оборудования станций технического обслуживания автомобильного транспорта.
Определение ускорения
Иногда используется в экспериментальных лабораториях, где занимаются проектированием и испытаниями высокоскоростной рельсовой и безрельсовой техники.
Контроль перемещения
Самые распространенные отрасли применения – сейсмологические станции и фундаменты высокоточного массивного оборудования, преимущественно энергетического.
Плюсы и минусы
Тензорные датчики компактны, удобны при установке, практически не ограничивают работоспособность конструкции, где они установлены. Вместе с тем они часто подвержены эффекту старения, чувствительны к температурным напряжениям и иногда характеризуются повышенным разбросом получаемых данных. Тонкоплёночные тензорезисторы, кроме того, характеризуются низким уровнем выходного сигнала, ограниченными частотными характеристиками и влиянием высокого напряжения на точность получаемых результатов. Чаще других типов применяются в качестве весовых, а также для определения комплекса силовых факторов, постоянно изменяющихся в процессе работы оборудования или конструкции.
Преимущества тензометрических технологий:
- Быстрое время отклика;
- Простота компенсации температурных эффектов;
- Малая чувствительность к динамическим воздействиям.
Недостатки:
- Невозможность обеспечить более низкие диапазоны измерений;
- Снижение точности показаний при вибрациях;
- Необходимость точного совмещения с окружающей средой;
- Сложность первоначальной настройки.
Выпуск современных тензометрических датчиков регламентируется требованиями ГОСТ 21616-91.
prodatchik.ru
Тензометрические датчики (Тензодатчики). Виды и работа. Устройство
На многих предприятиях существует необходимость для измерения различных параметров, изменения состояния деталей, различных конструкций. Для решения этих задач используются тензометрические датчики. Они преобразовывают величину деформации в электрический сигнал. Это получается за счет уменьшения или увеличения сопротивления датчика во время деформации, нарушения геометрии формы датчика от сжатия или растяжения. В результате определяется значение деформации.
Резистивный преобразователь, является главной составной частью высокоточных устройств и приборов. Изготавливают датчик из чувствительного тензорезистора, представляющего собой тонкую алюминиевую проволоку или фольгу. Резистор в результате деформации изменяет свое сопротивление, подает сигнал на индикатор.
Виды
В разных отраслях промышленности используется множество видов тензометрических датчиков:
- Приборы, измеряющие силу и нагрузку.
- Контроль давления.
- Измерители ускорения.
- Измерители перемещения.
- Датчики контроля момента для станков, моторов автомобилей.
Модели датчиков разнообразны, но чаще всего используется датчик определения веса, который изготавливается в различных вариантах: шайбовый, бочковой, S-образный. Исходя из назначения подбирается необходимое исполнение.
Тензометрические датчики имеют классификацию, как по форме, так и по особенностям конструкции, которая зависит от вида чувствительного элемента.
Применяются следующие виды датчиков:
- Из фольги.
- Пленочные.
- Из проволоки.
Датчик из фольги
Применяется в виде наклеивания на поверхность. Конструкция датчика состоит из фольговой ленты 12 мкм. Частично пленка плотная, остальная часть решетчатая. Эта конструкция отличительна тем, что к ней можно припаять вспомогательные контакты. Такие датчики легко используются при низких температурах.
Пленочные датчики
изготовлены по аналогии с фольговыми, кроме материала. Такие виды производятся из тензочувствительных пленок, имеющих специальное напыление, повышающее чувствительность датчика. Эти измерители удобно применять для контроля динамической нагрузки. Пленки изготавливаются из германия, висмута, титана.
Проволочный вариант
датчика может измерить точную нагрузку от сотых частей грамма до тонн. Они называются одноточечные, так как измерение происходит не на площади, а в одной точке, в отличие от датчиков из фольги и пленки. Проволочными датчиками можно контролировать растяжение и сжатие.
Принцип действия тензодатчиков
Тензометрические датчики представляет собой конструкцию из тензорезистора, имеющего контакт на панели. Она соприкасается с телом для измерения. Принципиальная схема действия датчика заключается в действии на чувствительный элемент исследуемой детали. Для подключения датчика к питанию используются электроотводы, соединенные с чувствительной пластиной.
В контактах существует постоянное напряжение. На тензодатчик кладется деталь через подложку. Вес детали разрывает цепь путем деформации. Деформация видоизменяется в сигнал тока.
Мост измерения тензодатчика дает возможность измерить минимальные нагрузки, расширяя этим применяемость прибора. Схема подключения мостом датчика основывается на законе Ома. Если сопротивления равны, то проходящий ток будет одинаковым. Действие снаружи обрело название «внешний фактор», изменение сигнала – «внутренний фактор». Тогда можно сказать, что принцип работы датчика заключается в определении внешнего фактора с помощью внутреннего.
В быту тензометрические датчики работают в весах. Тензорезисторы подключены с поверхностью работы весов. Подключение к питанию весов осуществляется через батареи.
Этот контрольный прибор имеет высокую точность. Погрешность чувствительных элементов составляет менее 0,02%, это высокий показатель. Существуют приборы с чувствительностью гораздо выше этого. Их работа основана на контроле действия силы. Значение силы давления прямопропорционально преобразованному сигналу тензодатчика.
Принцип действия датчиков силы
Датчики силы, другими словами динамометры входят в состав приборов, измеряющих вес. Их отсутствие делает невозможным работу системы по автоматизированию техпроцессов на производстве. Они используются в сельском хозяйстве, строительстве, металлургии.
Работа основывается на изменении деформации в сигнал. В действии происходит много разных явлений, которые обусловили несколько типов тензодатчиков:
- Тактильные.
- Резистивные.
- Пьезорезонансные.
- Пьезоэлектрические.
- Магнитные.
- Емкостные.
Тактильные датчики
Этот тип датчиков самый новый, появился после возникновения робототехники. Тактильные датчики делятся на: датчики усилия, касания, проскальзывания. Первые два определяют силу и отличаются сигналом. От других они отличаются небольшой толщиной из-за применения специальных материалов, обладающих прочностью, эластичностью, гибкостью.
Конструкция состоит из 2-х пластин(1 и 2). Между ними находится прокладка (3) с ячейками из изоляционного материала. Один провод соединен с верхней, второй с нижней пластиной. При воздействии силы на верхнюю пластину она прогибается и замыкается с нижней. Падение напряжения на резисторе является сигналом выхода.
Резистивный тензодатчик
Это широко применяемый вид датчиков, так как интервал усилий работы составляет от 5 Н до 5 МН, используются для разных нагрузок. Преимуществом его стала линейность сигнала выхода. Рабочий элемент – тензорезистор, состоящий из проволоки на гибкой подложке.
1 — Подложка
2 — Чувствительный элемент
3 — Контакты
Датчик приклеивают к измеряемому предмету. Под действием деформации изменяется сопротивление резистора, а соответственно подающего сигнала.
Пьезорезонансный тензодатчик
В этом типе датчиков применяются два эффекта: обратный и прямой. Элемент чувствительности датчика – резонатор. Пьезоэффект обратный обуславливается напряжением, которое вызывает заряды, это называется прямым пьезоэффектом.
Колебания резонатора вызывают резонансные колебания. Пьезорезонансные датчики подключаются по разным схемам. На рисунке изображена схема с генератором частоты и фильтра резонанса. Сила действует на резонатор, изменяет настройки частоты фильтра, от которых зависит напряжение выхода.
Пьезоэлектрические тензометрические датчики
Работа заключается на основе прямого пьезоэффекта. Им обладают такие материалы: кристаллы титаната бария, турмалина, кварца. Они химически устойчивы, имеют высокую прочность, их свойства мало зависят от окружающей температуры.
Суть эффекта состоит в действии силы на материал. Возникают заряды разной полярности, величина которых зависит от силы. Датчик состоит из корпуса, двух пьезопластин, выводов. При воздействии силы пластины сжимаются, возникает напряжение, поступающее на усилитель сигнала.
Такие тензометрические датчики используются для контроля динамических сил.
Магнитные тензометрические датчики
Магнитострикция является основным явлением для работы датчиков этого типа. Такой эффект меняет геометрию размеров в магнитном поле. Изменение геометрии изменяет магнитные свойства, что называется магнитоупругого эффекта. При снятии усилия свойства тела возвращаются.
Это определяется изменением расположения атомов в решетке кристаллов в магнитном поле или под действием силы. В нашем варианте катушка индуктивности расположена на ферромагнитном сердечнике. От силы сердечник деформируется, получая состояние напряженности.
Изменение сердечника дает изменение его проницаемости, а, следовательно, изменяется магнитное сопротивление и индуктивность катушки.
Широко применяемыми стали датчики с двумя катушками. Первичная – запитана генератором, во вторичной образуется ЭДС. Во время деформации магнитная проницаемость меняется. В результате меняется ЭДС 2-й обмотки.
Емкостные датчики
Это параметрический тип датчиков, представляющий собой конденсатор. Чем больше площадь пластин, тем больше емкость. А чем больше промежуток между пластинами, тем меньше емкость.
Это свойство применяют для конструкции емкостных датчиков. Чтобы было удобно пользоваться измерениями, емкость преобразуют в ток. Для этого пользуются разными схемами подключения.
Обычно применяют вариант со сжатием диэлектрика между пластинами.
Преимущества тензометрических датчиков
- Повышенная точность измерения.
- Сочетаются с измерениями напряжений, не имеют искажений данных измерения. Это удобство незаменимо при применении датчиков на транспорте или в критических ситуациях и условиях.
- Малые размеры дают возможность применять их в любых измерениях.
К недостаткам тензометрических датчиков, можно отнести снижение чувствительности при резких изменениях температуры. Для получения точных результатов рекомендуется делать контроль измерения при комнатной температуре.
Подключение тензодатчиков
Подключить тензометрические датчики можно легко самому, используя схему. Перед приобретением тензодатчиков определите длину кабеля подключения. Если короткий кабель наращивать в длину, то точность измерения индикатором будет значительно меньше. Оптимизацию этого параметра можно произвести контроллером SE 01, который действует вместо усилителя.
Если в конструкции весов применяются разные индикаторы, то их соединяют по параллельной схеме с помощью специальных коробок. Проводники датчиков обязательно заземляются, независимо от вида питания. Установка заземления производится в общей одной точке. Для этих целей применяется коробка для разветвления.
Далее проверяется правильность подключения по схеме датчиков, надежность контактов и заземления. Монтаж прибора осуществляется экранированным кабелем. Он заглушает помехи, вспомогательные модули при его использовании не нужны. По подобию подсоединяется преобразователь в дозатор.
Похожие темы:
electrosam.ru
устройство, принцип работы, схема подключения
Для измерения давления и веса на производстве и в бытовой электронике используются тензометрические датчики. Это устройства, основная задача которых преобразовать механическое воздействие в электрический сигнал. В этой статье мы рассмотрим, что такое тензодатчик, какой у него принцип работы и схема подключения.
Виды и сфера применения
Для начала разберемся в принципе действия тензометрических датчиков. При воздействии на тело внешних сил оно деформируется, противодействует приложенной силе. За счёт деформаций корпуса датчика происходит воздействие на измерительный элемент тензодатчика. В результате устройство выдаёт электрический сигнал, считывая который система обработки выдаёт результат измерений. Но для чего нужен такой тип устройств?
Тензометрические датчики используются для:
- Измерения веса. При этом в зависимости от конструкции измерительного узла могут использоваться на сжатие или на растяжение. Соответственно их назначение – измерение веса на платформах (например, весы в магазинах) или на подвесе (краны и прочее).
- Измерения давления. Например, в трубопроводах газов и жидких веществ.
- Измерения крутящего момента (на двигателях автомобилей или станков).
- Определения ускорения.
- Контроля перемещения.
По типу измерительного элемента и принципа работы тензодатчики делятся на:
- Тензорезистивные.
- Пьезоэлектрические.
- Оптико-поляризационные.
- Волоконно-оптические.
- Пьезорезистивные.
Конструктивные особенности тензодатчика определяет то где он применяется, ведь конструкция определяет наличие монтажных отверстий и векторов возможного приложения сил, соответственно и самого процесса измерения. По форме также тензометрические датчики бывают разных типов:
- Консольные. Назначение таких устройств – измерение количества веществ в дозаторах, конвейерных, платформенных, бункерных и напольных весах.
- Цилиндрические. Применяются для взвешивания вагонов, автомобилей, баков и емкостей – там, где нужно измерять большие веса.
- S-образные, срабатывают на растяжение, подходят для измерения веса, поднимаемого краном и в других подобных конструкциях.
На практике тензометрические датчики могут производиться в совершенно разнообразном исполнении.
Устройство и принцип действия
Для измерения давления или веса используется тензодатчики, все они выдают электрический цифровой или аналоговый электрический сигнал при изменении формы чувствительного элемента. Но из чего они состоят?
Основа или корпусы бывают разных типов, от этого зависит, куда вы сможете установить датчик. А также то, в каком направлении он работает – на сжатие, растяжение или на изгиб.
В корпусе тензодатчика кроме чувствительного элемента могут находиться и дополнительные блоки, например, АЦП, формирователи питания и пр. Если тензометрический датчик цифровой, то и блок для преобразования аналогового сигнала (АЦП). Рассмотрим принцип работы чувствительного элемента тензометрического датчика на примере тензорезистивного компонента – они нашли наиболее широкое применение.
Тензометрический датчик резистивного типа представляет собой гибкую плёнку или подложку, на которую нанесён резистивный слой. Если это плёночный датчик – тонкое напыление или фольга, если проволочный — на гибкой подложке размещена проволока. Напыление или проволока укладываются в извилистую линию.
При механическом воздействии на подложку он изгибается, в результате чего плёнка, фольга или проволока растягивается. Соответственно в натянутом состоянии изменяется (уменьшается) её площадь поперечного сечения и сопротивление увеличивается. При снижении давления подложка возвращается в исходное положение, резистивный слой тоже, а его сопротивление начинает уменьшаться и возвращаться к норме.
Пьезоэлектрические чувствительные органы работают напротив. При давлении на пьезокристалл возникает ЭДС, тогда как у пьезорезистивных датчиков из тонких плёнок полупроводников также изменяется сопротивление.
Ещё можно встретить и емкостные датчики – это приборы, принцип работы которых заключается в измерении ёмкости между гибкими пластинами. А также электромагнитные устройства, в которых под воздействием на магнитопровод изменяются характеристики контура.
Схема подключения
Как работает тензодатчик мы разобрались. Теперь следует ознакомиться со схемой подключения. Блок схема устройства, которое считывает сигнал, изображена на рисунке ниже. На ней вы видите один из вариантов усиления и преобразования сигнала с датчика.
Если рассмотреть тензорезистивный датчик, то реально он представляет собой мост из резисторов, включённый следующим образом. Такая схема включения называется «Мост Уинстона» или измерительный мост.
Для его работы недостаточно подключить лишь сигнальные провода, нужны еще и провода питания. В некоторых сложных системах могут подключаться еще и провода для термостабилизации или других функций.
На видео подробно рассказывается, что собой представляют тензометрические датчики и как они работают:
Современные тензометрические датчики в зависимости от своего назначения могут использоваться в установках для измерения от долей грамм до сотен тон. Соответственно для каждого диапазона весов подбираются тензодатчки определённой конструкции и типа чувствительного элемента. Кроме измеряемых весов немаловажную роль в выборе контрольно-измерительной аппаратуры играет и условия, в которых они будт работать, а также требуемый класс точности.
Материалы по теме:
samelectrik.ru
Что такое тензодатчик?! Разница между тензометрическим датчиком и тензорезисторным датчиком.. Статьи. Поддержка. РАЗНОВЕС.РУ
Тензодатчик веса – это основной и, пожалуй, главный весоизмерительный элемент, который применяется практически во всех типах оборудования, применяемого для измерения массы. Именно от тензодатчика напрямую зависит точность и скорость измерений веса.
Общие сведения
Принцип работы системы измерения веса с использованием тензодатчика предельно прост: под действием массы груза, в тензодатчике возникает механическая деформация, которую и учитывает датчик, преобразует её в электрический аналоговый или цифровой сигнал, и передаёт на индикатор веса, на котором и отображается масса взвешиваемого груза.
Современные тензодатчики прекрасно справляются со своей работой даже в достаточно жестких условиях, поскольку обладают хорошей влаго- и пылезащитой. Спектр применения тензометрического оборудования довольно широк — от самых простых весоизмерительных элементов, до сложнейших технологических промышленных комплексов динамического взвешивания.
Отвечая на вопрос, который был поставлен в шапке статьи, можно сказать, что понятия «тензорезисторного» и «тензометрического» датчика отличаются также, как «ксерокс» и «копировальный аппарат». Дело в том, что тензометрические датчики – это наиболее широкое понятие, включающее в себя все виды весоизмерительных датчиков. Существуют различные способы измерения деформаций: тензорезистивный, пьезорезистивный, оптико-поляризационный, волоконно-оптический, и механический — простое считывание показаний с линейки механического тензодатчика. Каждый из этих способов дал название виду тензодатчика. А поскольку, наибольшее распространение среди электронных тензодатчиков получили тензорезистивные датчики, то это название стало практически нарицательным.
Тензодатчик
Итак, тензодатчик – это силоизмерительный элемент в оборудовании, принцип действия которого основывается на измерении деформации. Тензодатчики используются в бункерных и крановых весах, весовых дозаторах и др. Тензодатчики используются практически во всех современных электронных весоизмерительных системах и системах дозирования.
Тензодатчик
Тензодатчики обеспечивают высокую точность измерений, устойчивы к воздействию окружающей среды, а современные технологии позволяют добиться систематизации и автоматизации всего процесса измерения, используя оборудование с электронными тензодатчиками.
Следует отметить высокие показатели таких основных аспектов, как:
- Высокая точность измерения. Современные тензодатчики обладают практически безупречной точностью. Самыми распространенными тензодатчиками являются датчики класса точности C3, что соответствует комбинированной погрешности 0.02%. Существуют тензодатчики и с более высоким классом точности.
- Разнообразие конструкций. Современные тензодатчики обладают огромным разнообразием конструкций: S-образный, мостовой, балочный, шайбовый, сильфонный, одноточечный и колонный. Применение конкретного типа датчика зависит от назначения и конструкции весовой системы, места и способа его установки. Благодаря огромному разнообразию конструкций тензодатчиков, можно выбрать оборудование, наиболее подходящее для конкретных производственных нужд заказчика.
- Надежность материалов. Большинство тензодатчиков изготовлены из алюминия, нержавеющей или легированной стали, что обеспечивает долгий срок службы оборудования. Водонепроницаемые тензодатчики, которые изготавливаются из нержавеющей стали, обладающие классом защиты IP68, особенно востребованы в пищевой и рыбной промышленности.
Примечательно, что даже в условиях неисправности одного из датчиков, весы с несколькими тензодатчиками сохраняют работоспособность и точность измерений.
Тензометрические датчики (тензодатчики) – конструктивно представляет собой металлическую конструкцию, внутри которой расположены резисторы с электросхемой. Тензодатчик связан с корпусом весового дозатора или весовой платформы, и, при изменении веса, корпус тензодатчика подвергается деформации, после чего результат деформации передается на тензорезисторы, а оттуда, информация о массе — на весовой терминал.
Среди многообразия форм, типов тензометрических датчиков, среди датчиков, различных по цене и качеству сложно сделать правильный выбор.
При выборе тензодатчика следует учитывать следующие показатели:
- Наибольший предел измерения (НПИ) — следует учитывать, что предполагаемая номинальная нагрузка на тензодатчик не должна превышать НПИ. Хотя фактически датчик имеет дополнительный запас прочности, некоторые конструкции весов требовательны к наличию дополнительного запаса НПИ.
- Материал тензодатчика – как мы уже писали выше, наибольшее распространение получили тензометрические датчики из нержавеющей и легированной стали, а также алюминия. Как правило, только одноточечные тензодатчики изготавливаются из алюминия, все остальные выполнены из стали.
- Класс точности тензодатчика – на практике класс точности тензодатчика может лежать в диапазоне от D1 до С6, хотя, в соответствии с OIML R 60, класс точности тензометрического датчика может быть и в более широком диапазоне. Наиболее распространен класс точности C3. Необходимость применения более точных датчиков требует обоснования, поскольку с классом точности цена растет в геометрической прогрессии.
- Схема подключения тензодатчика – обычно для подключения тензодатчиков используется «четырехжильная» схема подключения. Однако в частных случаях, и в случаях, когда присутствует большая разница в сопротивлении кабелей смежных тензодатчиков, применяется «шестижильная» схема подключения.
Выбирая тип тензометрического датчика, также, обратите внимание на следующие характеристики: рабочий диапазон температур, рабочий коэффициент передачи, класс защиты, диаметр и длину кабеля, входное и выходное сопротивление, рекомендуемое и максимальное напряжение питания.
Выделяют следующие виды тензодатчиков
Одноточечные тензодатчики — главным их как преимуществом, так и недостатком является возможность создания весоизмерительной системы используя лишь один датчик. Такие датчики применяются в фасовочном и дозирующем оборудовании, а также в конструкциях небольших платформенных весов с малой нагрузкой на платформу.
Одноточечный тензодатчик.
Консольные тензодатчики (консольная балка сдвига) напротив, используются как чувствительные элементы в весах и весоизмерительных системах с общим НПВ в 5-7 тонн.
Консольный тензодатчик.
S-образные тензодачтики (балка на растяжение-сжатие) — предназначаются для использования в подвесных и бункерных весах. Датчики укомплектованы шарнирными подвесами, за счет которых снижается затрачиваемое время на установку и запуск оборудования. В основе работы таких тензодатчиков лежит принцип преобразования механической силы растяжения/сжатия в электрический сигнал, пропорциональный этой механической силе.
S-образный тензодатчик.
Цилиндрические тензодатчики работают по принципу преобразования показаний механической деформации при сжатии в пропорциональный электрический сигнал. Чаще всего применяются при выпуске новых или модернизации старых вагонных, автомобильных или многотонных бункерных весов, а также в испытательных стендах.
Цилиндрический тензодатчик.
Высокотемпературные тензодатчики применяются при необходимости измерения веса в условиях высокой температуры. Чаще всего такие датчики встречаются в металлургической отрасли и на промышленных предприятиях.
Датчики, выполненные из нержавеющей стали, как правило, рассчитаны на долгий срок эксплуатации в агрессивных условиях, поэтому чаще всего встречаются на предприятиях пищевой или химической промышленности.
Подводя итоги, можно сказать, что тензодатчик – это важный элемент, составляющий основу механизма любого электронного весоизмерительного оборудования. Электронное весовое оборудование, в отличие от механического оборудования, благодаря применению датчиков силы, стало менее громоздким, более точным и намного более функциональным. Электронная система с применением тензодатчиков позволила перейти на качественно новый уровень работы и полностью автоматизировать контрольно-измерительные процессы.
www.raznoves.ru
Что такое цифровой тензодатчик
Что такое цифровой тензодатчик и чем он отличается от обычного аналогового
Цифровой тензометрический датчик — это измерительное тензорезистивное устройство, которое в результате измерения выдает оцифрованный сигнал. То есть результатом измерения тензодатчика с цифровым выходом становится не регистрация физических характеристик тензорезистора — изменения его сопротивления, а число, представленное в виде многоразрядного двоичного кода.
Наглядная разница между цифровым и аналоговым сигналом | |
Аналоговый сигнал | Цифровой сигнал |
Если касаться внутреннего устройства, то цифровой тензодатчик — это тот же самый аналоговый датчик, только оборудованный АЦП — аналогово-цифровым преобразователем. Если из цифрового датчика вытащить АЦП, то он станет аналоговым и полностью сохранит свою работоспособность (точнее, сохранил бы, если бы это можно было сделать, не повредив корпус). Внешне они тоже ничем не отличаются друг от друга, разве что шильдой и этикеткой:
Цифровой тензодатчик HBM C16i | Аналоговый тензодатчик HBM C16A |
---|---|
Справочная информация
Вообще, аналогово-цифровой преобразователь — это не специфическое оборудование, которое используется только в весоизмерительной технике. Это очень распространенный тип приборов, который предназначен для оцифровки любого сигнала. В частности, звуковая карта вашего компьютера — это тоже разновидность АЦП.
АЦП для электронных весов | Это тоже АЦП, только для оцифровки звука |
---|---|
|
|
Что лучше — аналоговый или цифровой тензодатчик
Существует распространенное мнение, что тензометрические датчики с цифровым выходом лучше, чем обычные аналоговые модели. Но, на самом деле, это вопрос очень неоднозначный. Конечно, у каждого типа есть свои достоинства и недостатки. Нюанс в том, что различия лежат в очень специфической области и, за редким исключением, они ни на что не влияют.
Давайте разбираться со всеми пунктами по порядку.
Заблуждения про цифровые тензодатчики
Про тензодатчики с цифровым выходом ходит много неверных предположений и домыслов, которые можно встретить даже на авторитетных ресурсах:
Заблуждение | Как обстоит на самом деле |
---|---|
Цифровой тензометрический датчик является отдельным типом измерительного датчиков, принципиально отличающимся от обычных аналоговых моделей. |
Как уже было сказано выше, цифровой тензометрический датчик — это тот же самый аналоговый тензодатчик, на котором установлен преобразователь выходного сигнала (АЦП). В случае с аналоговым датчиком функцию АЦП на себя берет весовой терминал. |
Цифровые тензодатчики точнее аналоговых моделей. | Цифровые тензодатчики имеют такую же точность, как и обычные аналоговые. Более того, это утверждение в принципе бессмысленно. Если тензодатчик сертифицирован на какой-нибудь класс точности, например C3, то вообще не имеет значения марка производителя и тип тензодатчика. Он не может быть более или менее точнее, чем другой датчик класса C3. |
Цифровые тензометрические датчики меньше по размерам | Цифровые и аналоговые тензодатчики одной серии изготавливаются в одинаковом корпусе. Даже если предположить, что тип датчика влияет на его размер, то цифровой датчик будет больше, так как он дополнительно включает в себя микросхему АЦП. |
Весы на цифровых тензодатчиках не надо перекалибровывать в случае выхода из строя цифровых элементов | С одной стороны, цифровые тензодатчики идут уже настроенные и не требуют калибровки при установке. Достаточно ввести нужный коэффициент в программное обеспечение весового терминала. Но весы, на которых произошла замена тензометрического датчика, автоматически лишаются сертификата о поверке. Так что поверять весы придется в любом случае. |
Справочная информация
Из всего вышесказанного можно сделать любопытный вывод — цифровой тензометрический датчик уже сам по себе является весами, на которых нет устройства вывода информации — дисплея или чекопечатающего принтера. Причем это поправимо — через специализированное программное обеспечение можно подключить тензодатчики и к тому, и к другому.
Преимущества цифровых тензометрических датчиков
Основными преимуществами тензодатчиков с цифровым выходом являются:
Высокая помехоустойчивость сигнала |
Сигнал может передаваться без потери качества на расстояние до 1200 м. Как было сказано выше, это очень специфическое преимущество — возможность поставить весы за километр от терминала и на практике никем не используется |
Возможность определить нагрузку на каждый тензодатчик в отдельности |
Потенциально это преимущество может расширить возможности весового оборудования, но этот вопрос волнует скорее производителей, чем пользователей электронных весов. Практического применения этому свойству пока нет. |
Простота замены и калибровки |
Это, пожалуй, самый главный плюс весового оборудования на цифровых тензодатчиках. Если для Вас критично бесперебойное использование весов, а их простаивание даже в течение пары суток несет значительные убытки, то это — однозначно Ваш выбор. Проблема в том, что высокая скорость замены и ввода в строй весового оборудования полностью нивелируется необходимостью заново его поверять. |
Внимание!
После замены любого тензодатчика весы необходимо заново поверять. При этом не имеет значения — цифровой это датчик или аналоговый.
Недостатки цифровых тензодатчиков
К недостаткам тензометрических датчиков с цифровым выходом можно отнести:
Последовательная передача сигнала | Это обратная сторона возможности определить нагрузку на каждый датчик в весах. В отличие от аналоговых датчиков, где сигнал передается одновременно и суммируется в соединительной коробке, система из цифровых тензодатчиков передает сигнал по очереди от каждого датчика. В результате увеличивается время обработки сигнала. Это не существенно на весах статического взвешивания, но в высокоскоростных системах динамического взвешивания этот фактор становится критичным — скорость обработки сигнала не успевает за скоростью подачи грузов. Поэтому цифровые тензодатчики практически не используются в чеквейерах и конвейерных весах. |
Стоимость цифровых тензодатчиков | Цена на цифровые тензометрические датчики выше, чем на их аналоговые копии |
Взаимозаменяемость цифровых тензодатчиков | Цифровые тензометрические датчики не взаимозаменяемы с моделями других производителей. И могут работать только с одним — специально для них созданным — весовым терминалом. |
Цифровые тензодатчики Keli
Тензометрические датчики производства Keli Sensing Technology (Ningbo) Co. имеют специальную маркировку в своем наименовании — литеру D. Например, ZSFY-AD20t.
В модельном ряде тензорезистивных датчиков Кели большинство позиций имеют модификации как в цифровом исполнении, так и в аналоговом.
Цифровые тензодатчики HBM
Немецкая корпорация Hottinger Baldwin Messtechnik GmbH также имеет цифровые датчики в своем модельном ряду.
Самой большой популярностью пользуется датчик C16i. Литера i обозначает, что это «цифра» (аналоговый тензодатчик называется C16A).
Ссылка на статью открывается в новом окне
Подробнее про тензодатчик C16
Купить цифровые тензодатчики
Мы предлагаем купить тензодатчики с цифровым выходом по выгодной цене со склада и под заказ. Широкий выбор, наличие сотен позиций на складе, прямые поставки из Китая и стран Европы.
Любой вид цифровых датчиков — колонные, сильфонные, балочные, s-образные, двухопорная балка и мембранные — на любую нагрузку от 1 килограмма до 500 тонн.
Доставка по всей территории России, Белоруссии и Казахстана — Москва, Минск, Астана, Алма-Ата, Караганда, Псков, Нижний Новгород, Омск, Челябинск, Уренгой, Саратов, Элиста, Красноярск, Самара, Калининград, Магадан, Рязань, Иркутск, Новосибирск, Пермь, Тюмень.
Все тензодатчики имеют гарантию производителя.
Компания Модуль – Ваш персональный инженер в мире измерительного оборудования!
Узнать наличие тензодатчиков на складе
modul-ves.ru
ТЕНЗОДАТЧИК — это… Что такое ТЕНЗОДАТЧИК?
тензодатчик — тензодатчик … Орфографический словарь-справочник
ТЕНЗОДАТЧИК — ТЕНЗОДАТЧИК, прибор для измерения механической ДЕФОРМАЦИИ, например, вызванной движением моста или ледника. Электрические тензодатчики используют явление (впервые замеченное лордом КЕЛЬВИНОМ в 1856 г.), заключающееся в следующем: если трос… … Научно-технический энциклопедический словарь
тензодатчик — сущ., кол во синонимов: 2 • датчик (31) • тензометр (5) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов
тензодатчик — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN strain gagestrain sensor … Справочник технического переводчика
ТЕНЗОДАТЧИК — измерительный преобразователь в виде (см.), сопротивление которого изменяется под влиянием (см.) тела, на котором он укреплён … Большая политехническая энциклопедия
Тензодатчик — Измерительный преобразователь деформации твёрдого тела, вызываемой механическими напряжениями, в сигнал (обычно электрический), предназначенный для последующей передачи, преобразования и регистрации. Наибольшее распространение получили Т … Большая советская энциклопедия
тензодатчик — įtempio jutiklis statusas T sritis automatika atitikmenys: angl. strain gage; strain gauge; strain sensor vok. Dehnungsgeber, m; Tensogeber, m rus. тензодатчик, m pranc. capteur tensométrique, m; jauge extensïométrique, f … Automatikos terminų žodynas
тензодатчик — įtempio jutiklis statusas T sritis radioelektronika atitikmenys: angl. strain gage; strain sensor vok. Dehnungsgeber, m; Tensogeber, m rus. тензодатчик, m pranc. capteur tensométrique, m; jauge extensométrique, f … Radioelektronikos terminų žodynas
тензодатчик — įtempio jutiklis statusas T sritis fizika atitikmenys: angl. strain sensor; strain gage sensing element; strain gauge sensing element vok. Dehnungssensor, m; Spannungsgeber, m rus. тензодатчик, m; тензометрический датчик, m pranc. capteur… … Fizikos terminų žodynas
ТЕНЗОДАТЧИК — (от лат. tensus напряженный, еатянутый и датчик) измерит. преобразователь деформации твёрдых тел в электрич. сигнал, выполненный в виде электрич. тензометра. Работа Т. сопротивления (тензорезистора) осн. насв ве металлич. проволоки (или фольги)… … Большой энциклопедический политехнический словарь
dic.academic.ru