Тест на 2 группу допуска по электробезопасности: Тест по электробезопасности на 2 группу до 1000 В.

Содержание

ЭБ 301.2. 2 группа допуска

Тема 1. Общие сведения об электроустановках. 33 вопроса

  • Основные сведения об электроустановках и электрооборудовании. Термины и определения.
  • Общие требования правил безопасности при эксплуатации электроустановок потребителей.
  • Ответственность и надзор за выполнением норм и правил работы в электроустановках
  • Правила технической эксплуатации электроустановок потребителей (ПТЭЭП)
  • Приказ Минтруда России от 24.07.2013 N 328н "Об утверждении Правил по охране труда при эксплуатации электроустановок"
  • Правила устройства электроустановок (ПУЭ)

Тема 2. Требования к персоналу и его подготовке. 14 вопросов

  • Задачи персонала. Характеристика административно-технического, оперативного, ремонтного, оперативно-ремонтного электротехнического персонала. Характеристика электротехнологического персонала.
  • Подготовка персонала. Группы по электробезопасности и условия их присвоения
  • Правила технической эксплуатации электроустановок потребителей (ПТЭЭП)
  • Приказ Минтруда России от 24.
    07.2013 N 328н "Об утверждении Правил по охране труда при эксплуатации электроустановок"

Тема 3. Порядок и условия безопасного производства работ в электроустановках. 27 вопросов

  • Организационные мероприятия, обеспечивающие безопасность работ. Ответственные за безопасность проведения работ. Состав бригады. Технические мероприятия, обеспечивающие безопасность работ со снятием напряжения. Меры безопасности при выполнении отдельных работ
  • Правила технической эксплуатации электроустановок потребителей (ПТЭЭП)
  • Приказ Минтруда России от 24.07.2013 N 328н "Об утверждении Правил по охране труда при эксплуатации электроустановок"

Тема 4. Заземление и защитные меры электробезопасности. Молниезащита. 25 вопросов

  • Способы выполнения заземления. Изоляция электроустановок. Основные меры по обеспечению электробезопасности. Молниезащита.
  • Правила технической эксплуатации электроустановок потребителей (ПТЭЭП)
  • Правила устройства электроустановок (извлечения) (ПУЭ)
  • Инструкция по устройству молниезащиты зданий, сооружений и промышленных коммуникаций (СО 153-34.
    21.122-2003)

Тема 5. Правила применения и испытания средств защиты, используемых в электроустановках. 20 вопросов

  • Требования к средствам защиты, используемым в электроустановках.
  • Правила пользования средствами защиты
  • Инструкция по применению и испытанию средств защиты, используемых в электроустановках (СО 153-34.03.603-2003)

Тема 6. Правила освобождения пострадавших от действия электрического тока и оказания им первой помощи. 13 вопросов

  • Общие правила оказания первой помощи. Действие электрического тока на организм человека. Порядок освобождения пострадавшего от токоведущих частей, находящихся под напряжением. Правила оказания первой помощи пострадавшим при поражении электрическим током
  • Инструкция по оказанию первой помощи при несчастных случаях на производстве (утв. РАО "ЕЭС России")
  • Оказание первой помощи пострадавшим при повреждении здоровья на производстве. Справочное пособие.

ЭБ 112.3 электробезопасностm (II группа допуска)

В данной инструкции изложены основные функции сайта, и как ими пользоваться

Здравствуйте,  

Вы находитесь на странице инструкции сайта Тестсмарт.
Прочитав инструкцию, Вы узнаете  функции каждой кнопки.
Мы начнем сверху, продвигаясь  вниз, слева направо.
Обращаем Ваше внимание, что в мобильной версии  все кнопки располагаются, исключительно сверху вниз. 
Итак, первый значок, находящийся в самом верхнем левом углу, логотип сайта. Нажимая на него, не зависимо от страницы,  попадете на главную страницу.
«Главная» -  отправит вас на первую страницу.
«Разделы сайта» -  выпадет список разделов, нажав на один из них,  попадете в раздел интересующий Вас.

На странице билетов добавляется кнопка "Билеты", нажимая - разворачивается список билетов, где выбираете интересующий вас билет.

«Полезные ссылки» - нажав, выйдет список наших сайтов, на которых Вы можете получить дополнительную информацию.

 

 

 

В правом углу, в той же оранжевой полосе, находятся белые кнопки с символическими значками.

  • Первая кнопка выводит форму входа в систему для зарегистрированных пользователей.
  • Вторая кнопка выводит форму обратной связи через нее, Вы можете написать об ошибке или просто связаться с администрацией сайта.
  • Третья кнопка выводит инструкцию, которую Вы читаете. 🙂
  • Последняя кнопка с изображением книги ( доступна только на билетах) выводит список литературы необходимой для подготовки.
Опускаемся ниже, в серой полосе расположились кнопки социальных сетей, если Вам понравился наш сайт нажимайте, чтобы другие могли так же подготовиться к экзаменам.
Следующая функция «Поиск по сайту» - для поиска нужной информации, билетов, вопросов. Используя ее, сайт выдаст вам все известные варианты.
Последняя кнопка расположенная справа, это селектор нажав на который вы выбираете, сколько вопросов на странице вам нужно , либо по одному вопросу на странице, или все вопросы билета выходят на одну страницу.

На главной странице и страницах категорий, в середине, расположен список разделов. По нему вы можете перейти в интересующий вас раздел.

На остальных страницах в середине располагается сам билет. Выбираете правильный ответ и нажимаете кнопку ответ, после чего получаете результат тестирования.
Справой стороны (в мобильной версии ниже) на страницах билетов располагается навигация по билетам, для перемещения по страницам билетов.
На станицах категорий расположен блок тем, которые были добавлены последними на сайт.
Ниже добавлены ссылки на платные услуги сайта. Билеты с ответами, комментариями и результатами тестирования.
В самом низу, на черном фоне, расположены ссылки по сайту и полезные ссылки на ресурсы, они дублируют верхнее меню.
Надеемся, что Вам понравился наш сайт, тогда жмите на кнопки социальных сетей, что бы поделиться с другими и поможете нам.
Если же не понравился, напишите свои пожелания в форме обратной связи. Мы работаем над улучшением и качественным сервисом для Вас.

С уважением команда Тестсмарт.

Тест: ЭБ 302.2. Обучение и проверка знаний электротехнического и электротехнологического персонала по электробезопасности (III группа допуска до 1000 В). Билет №5 | Вопросы и ответы, билеты

1. Что согласно Правилам устройства электроустановок называется электропомещениями?

1) Помещения или отгороженные части помещения, в которых расположено электрооборудование, доступное для всего обслуживающего персонала

2) Помещения или отгороженные части помещения, в которых расположено электрооборудование, доступное только для квалифицированного обслуживающего персонала

3) Только отгороженные и изолированные части помещения, в которых расположено электрооборудование, доступное только для обслуживающего персонала

4) Помещения с нормативно нормальными атмосферными условиями, в которых расположено электрооборудование, доступное для всего обслуживающего персонала

2. За что в соответствии с Правилами технической эксплуатации электроустановок потребителей несут персональную ответственность работники, непосредственно обслуживающие электроустановки?

1) За несвоевременное и неудовлетворительное техническое обслуживание электроустановок

2) За нарушения, происшедшие по их вине, а также за неправильную ликвидацию ими нарушений в работе электроустановок на обслуживаемом участке

3) За невыполнение требований должностной инструкции

4) За нарушения в эксплуатации электротехнологического оборудования

3. Кто имеет право единолично обслуживать электроустановки напряжением до 1000 В?

1) Работники из числа оперативного или оперативно-ремонтного персонала организации, имеющие группу по электробезопасности не ниже III

2) Работники из числа ремонтного персонала организации, имеющие группу по электробезопасности не ниже III

3) Работники из числа оперативного или оперативно-ремонтного персонала организации, имеющие группу по электробезопасности не ниже II

4) Работники из числа оперативного или оперативно-ремонтного персонала организации, имеющие группу по электробезопасности II или III

4.

Какие запрещающие плакаты вывешиваются на приводах коммутационных аппаратов во избежание подачи напряжения на рабочее место при проведении ремонта или планового осмотра оборудования?

1) "Не включать! Работают люди"

2) "Не открывать! Работают люди"

3) "Опасно!"

4) "Работа под напряжением! Повторно не включать!"

5. Какие объекты из перечисленных относятся к специальным объектам по степени опасности поражения молнией?

1) Жилые и административные строения

2) Объекты, представляющие опасность для непосредственного окружения, социальной и физической окружающей среды

3) Здания высотой не более 60 м, предназначенные для торговли и промышленного производства

4) Все объекты

6. Какие петли электрического тока (пути прохождения) через тело человека являются наиболее опасными?

1) Обе руки - обе ноги, левая рука - ноги, рука - рука, голова - ноги

2) Правая рука - ноги, рука - голова, нога - нога, голова - правая нога

3) Правая рука - левая нога, голова - левая рука, нога - нога, голова - руки

4) Левая рука - правая нога, голова - правая рука, голова - руки, голова - левая нога

7. Кто относится к оперативно-ремонтному персоналу?

1) Персонал, осуществляющий оперативное управление и обслуживание электроустановок (осмотр, оперативные переключения, подготовку рабочего места, допуск и надзор за работающими, выполнение работ в порядке текущей эксплуатации)

2) Ремонтный персонал, специально обученный и подготовленный для оперативного обслуживания в утвержденном объеме закрепленных за ним электроустановок

3) Персонал, обеспечивающий техническое обслуживание и ремонт, монтаж, наладку и испытание электрооборудования

4) Персонал, на которого возложены обязанности по организации технического и оперативного обслуживания, проведения ремонтных, монтажных и наладочных работ в электроустановках

8. Какая периодичность проверки знаний по электробезопасности установлена для персонала, непосредственно организующего и проводящего работы по обслуживанию действующих электроустановок?

1) Не реже одного раза в год

2) Не реже одного раза в два года

3) Не реже одного раза в три года

4) Не реже одного раза в пять лет

9. Какой инструктаж должен пройти электротехнический персонал перед началом работ по распоряжению?

1) Внеплановый

2) Первичный на рабочем месте

3) Целевой

4) Повторный

10. Что из перечисленного не относится к дополнительным изолирующим электрозащитным средствам для электроустановок напряжением до 1000 В?

1) Изолирующие колпаки, покрытия и накладки

2) Электроизмерительные клещи

3) Диэлектрические галоши

4) Диэлектрические ковры и изолирующие подставки

5) Лестницы приставные, стремянки изолирующие стеклопластиковые

вопросы и ответы, для чего проводится тест, что даёт удостоверение

Тест проводится в форме экзамена, где кандидаты отвечают на вопросы по электробезопасности 2 группы. Как и к любому экзамену, к этому стоит подготовиться заранее, чтобы не «срезаться» и не потратить время и силы зря.

Наши сотрудники внимательно изучили, как Ростехнадзором проводится проверка знаний по электробезопасности 2 группы. Кроме того, мы отслеживаем актуальные изменения 2018–2019 годов, поэтому готовы предоставить вам самую свежую информацию. Если вам нужны билеты по электробезопасности 2 группа с ответами — вы обратились как раз туда, куда нужно.

Профессиональное сопровождение избавит вас от проблем, связанных с излишней придирчивостью и строгостью составителей программы. Имея на руках тест по электробезопасности 2 группы с ответами, можно легко ответить на все вопросы, чтобы получить допуск и в скором времени уже трудоустраиваться на нужную должность официально.


Минимум времени и усилий — и допуск уже на руках в Ижевске

Руководителям крупных фирм, главам отдельных предприятий, заинтересованным в обучении специалистам «Единый СРО Центр» всегда готов прийти на помощь, когда заходит речь о программе по электробезопасности 2 группы.


  • Подробно узнайте, как проводится тест и что даёт допуск.
  • Не тратьте время на поиски и получите свежие, утверждённые для проверки по электробезопасности 2 группа тесты Ростехнадзора.
  • Ожидание результата сведётся всего к нескольким дням. При этом за предоставленные для допуска по электробезопасности 2 группы вопросы и ответы не придётся переплачивать.

Смета составляется индивидуально, но о расценках на услуги «Единого СРО Центра» вы можете узнать уже сейчас в ходе бесплатной консультации. Теперь можно без лишних усилий получить все преимущества электробезопасности 2 группы — до 1000В рабочего напряжения и перспективу дальнейшего роста.

Электробезопасность | Тест 24 - тестирование онлайн

Сайт «ТЕСТ 24» предлагает пользователям сайта пройти бесплатную подготовку к аттестации по курсу электробезопасности и сдать предварительный экзамен онлайн на группу допуска  как на Едином портале тестирования или по системе Олимпокс.

Билеты по электробезопасности разработаны по новым вопросам Ростехнадзора 2020 — 2021 года и рассчитаны для «Подготовки и аттестации руководителей и специалистов организаций, осуществляющих эксплуатацию электроустановок» и одобрены министерством образования для «Подготовки и проверки знаний на группу по электробезопасности до и выше 1000 В».


Тесты Ростехнадзора по электробезопасности 2021 год

ЭБ 1244.2. Проверка знаний персонала организаций требований Правил переключения в электроустановках


ЭБ 1254.8. Подготовка и проверка знаний электротехнического и электротехнологического персонала организаций, осуществляющего эксплуатацию электроустановок потребителей (II группа по электробезопасности до 1000 В)


ЭБ 1255.8. Подготовка и проверка знаний электротехнического и электротехнологического персонала организаций, осуществляющего эксплуатацию электроустановок потребителей (II группа по электробезопасности до и выше 1000 В)


ЭБ 1256. 10. Подготовка и проверка знаний работников организаций-потребителей электрической энергии (III группа по электробезопасности до 1000 В)


ЭБ 1257.8. Подготовка и проверка знаний электротехнического и электротехнологического персонала организаций, осуществляющего эксплуатацию электроустановок потребителей (III группа по электробезопасности до и выше 1000 В)


ЭБ 1258.8. Подготовка и проверка знаний электротехнического и электротехнологического персонала организаций, осуществляющего эксплуатацию электроустановок потребителей (IV группа по электробезопасности до 1000 В)


ЭБ 1259.8. Подготовка и проверка знаний электротехнического и электротехнологического персонала организаций, осуществляющего эксплуатацию электроустановок потребителей (IV группа по электробезопасности до и выше 1000 В).


ЭБ 1260.11. Подготовка и проверка знаний работников организаций-потребителей электрической энергии (V группа по электробезопасности до и выше 1000 В)


ЭБ 1547. 3. Подготовка и проверка знаний руководителей, специалистов, электротехнического и электротехнологического персонала организаций, осуществляющих эксплуатацию электроустановок потребителей (V группа по электробезопасности до 1000 В)


Тест 24 — электробезопасность

Требования электробезопасности распространяются на все промышленные и не промышленные предприятия. Охрана труда и электробезопасность — две составляющие, которые лежат в основе энергетической безопасности и промышленной безопасности.

К эксплуатацию электрооборудования может допускаться только тот персонал, который прошёл специальное обучение и имеет определенный уровень подготовки. Для проверки уровня знаний и подготовки выполняют аттестацию по электробезопасности. Функцию аттестационной комиссии несет Ростехнадзор.

Экзамен онлайн по электробезопасности составлен и разработан по вопросам и темам, которые применяются для самоподготовки как на Едином портале тестирования или по обучающей системе Олимпокс, при сдаче экзамена в Ростехнадзоре. В экзамене по электробезопасности для руководителей предприятий и для проверки знаний на группу по электробезопасности применялись вопросы с сайта надзорного органа за 2020 — 2021 г.

Аттестация, подготовка руководителей и специалистов промышленных предприятий проводится без регистрации. Тестирование и экзамен онлайн на группу по электробезопасности можно проходить повторно.

Допуск по электробезопасности2, 3, 4, 5 группа, проводится комиссией на предприятии с заполнением протокола проверки знаний. Проверка знаний ПТБ и ПТЭ у электротехнического персонала проводится 1 разв год.

Г.1.ЭБ 141.4 Тестирование для аттестации в Ростехнадзоре на V группу допуска

Г.1.ЭБ 141.4 Тестирование для аттестации в Ростехнадзоре на V группу допуска

Тесты по аттестации электротехнического и электротехнологического персонала по электробезопасности V группа допуска, составлены по вопросам опубликованным на сайте Ростехнадзора и полностью соответствуют билетам

Вариант тестирования по перечню вопросов, выбран для исключения из тестов повторяющихся вопросов.

Втестах 20 билетов по 10 вопросов, но имеются и билеты для аттестации в Ростехнадзоре.

Тема 1. Общие сведения об электроустановках.

Тема 2. Общие положения действующих норм и правил при работах в электроустановках.

Тема 3. Требования к персоналу и его подготовке.

Тема 4. Порядок и условия безопасного производства работ в электроустановках.

Тема 5. Заземление и защитные меры безопасности. Молниезащита.

Тема 6. Правила применения и испытания средств защиты, используемых в электроустановках.

Тема 7. Правила освобождения пострадавших от электрического тока и оказания им первой доврачебной помощи.

Нормативно-техническая литература для подготовки:

  • Правила устройства электроустановок
  • Правила технической эксплуатации электроустановок потребителей.
  • Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок.
  • Инструкция по применению и испытанию средств защиты, используемых в электроустановках.
  • Инструкция по устройству молниезащиты зданий, сооружений и промышленных коммуникаций (СО 153-34.21.122-2003).
  • Межотраслевая инструкция по оказанию первой помощи при несчастных случаях на производстве.
  • Учебное пособие по основам электрооборудования и электроснабжения промышленных предприятий.

Вопросы для проверки знаний электротехнического и электротехнологического персонала по электробезопасности (V группа допуска)

С сайта Ростехнадзора.

1. В течение, какого срока проводится комплексное опробование основного и вспомогательного оборудования электроустановки перед приемкой в эксплуатацию?

2. В течение, какого срока проводится комплексное опробование работы линии электропередачи перед приемкой в эксплуатацию?

3. Кто должен обеспечивать надежность и безопасность эксплуатации электроустановок?

4. На какой срок может быть продлено для работника дублирование, если за отведенное время он не приобрел достаточных производственных навыков?

5. Как часто должна проводиться проверка электрических схем электроустановок на соответствие фактическим эксплуатационным?

6. Как часто должны проводиться осмотр и проверка исправности аварийного освещения?

7. Какой допустимый класс точности должен быть у расчетных счетчиков активной электроэнергии для непромышленных объектов?

8. Каким образом производится учет электроэнергии во время ремонта средств учета электроэнергии?

9. Каким образом производится учет электроэнергии во время ремонта средств измерений при работающем технологическом оборудовании?

10. Из какого материала должны изготавливаться искусственные заземлители?

11. Какие средства индивидуальной защиты должны применяться от шагового напряжения в электроустановках выше 1000 В?

12. Какой фон должен быть у предупреждающего знака "Осторожно! Электрическое напряжение", который наносится посредством трафарета на железобетонную опору ВЛ.?

13. Какой фон должен быть у предупреждающего знака "Осторожно! Электрическое напряжение", который укрепляется на наружной двери трансформаторов?

14. Какие помещения называются сухими?

15. Какие помещения называются сырыми?

16. Какие помещения относятся к влажным?

17. Кто осуществляет государственный надзор за соблюдением требований правил и норм электробезопасности в электроустановках?

18. Кто относится к электротехнологическому персоналу?

19. Какие работы из перечисленных можно отнести к работам, выполняемым в порядке текущей эксплуатации в электроустановках напряжением до 1000. В?

20. Какой документ должен иметь электротехнический персонал для проведения измерений мегомметром в электроустановках напряжением до 1000. В?

21. Какому административному воздействию подвергаются юридические лица за непроизводительное расходование энергетических ресурсов?

22. Какие объекты относятся к обычным объектам по степени опасности поражения молнией?

23. Какие средства защиты относятся к индивидуальным?

24. Какие средства защиты относятся к дополнительным изолирующим электрозащитным средствам для электроустановок напряжением выше 1000. В?

25. Какие средства защиты относятся к дополнительным изолирующим электрозащитным средствам для электроустановок напряжением до 1000 В?

26. Какие средства защиты относятся к основным изолирующим электрозащитным средствам для электроустановок напряжением выше 1000. В?

27. Какие средства защиты относятся к основным изолирующим электрозащитным средствам для электроустановок напряжением до 1000 В?

28. В каких электроустановках диэлектрические перчатки применяются в качестве основного изолирующего электрозащитного средства?

29. В каких электроустановках диэлектрические перчатки применяются в качестве дополнительного изолирующего электрозащитного средства?

30. В каких электроустановках при пользовании указателем напряжения необходимо надевать диэлектрические перчатки?

31. В каких электроустановках применяют диэлектрические боты?

32. В каких электроустановках применяют диэлектрические галоши?

33. Какие плакаты относятся к предупреждающим?

34. Какие плакаты относятся к запрещающим?

35. Какие плакаты относятся к указательным?

36. Как делятся электроустановки по условиям электробезопасности?

37. На кого распространяются Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок?

38. Какой персонал относится к неэлектротехническому?

39. Какой персонал относится к административно-техническому?

40. В какой последовательности необходимо выполнять технические мероприятия, обеспечивающие безопасность работ со снятием напряжения?

41. Какое напряжение должно применяться для питания переносных (ручных) светильников, применяемых в помещениях с повышенной опасностью?

42. Какая надпись должна быть выполнена на счетчике электрической энергии?

43. Когда проводится проверка и осмотр устройств молниезащиты?

44. В каких электроустановках можно использовать контрольные лампы в качестве указателей напряжения?

45. Для чего предназначены электроизмерительные клещи?

46. За что несут персональную ответственность руководитель и специалисты энергетической службы?

47. Какие электроприемники в отношении обеспечения надежности электроприемников относятся к электроприемникам первой категории?

48. Какие электроприемники в отношении обеспечения надежности электроснабжения относятся к электроприемникам второй категории?

49. Какая группа электробезопасности должна быть у ответственного за электрохозяйство в электроустановках напряжением до 1000 В?

50. Какая группа электробезопасности должна быть у ответственного за электрохозяйство в электроустановках напряжением выше 1000 В?

51. Какая группа электробезопасности должна быть у производителя работ при испытании электрооборудования?

52. В каких электроустановках могут выполняться работы в порядке текущей эксплуатации?

53. Какие запрещающие плакаты вывешиваются на приводах коммутационных аппаратов во избежание подачи напряжения на рабочее место при проведении ремонта или планового осмотра оборудования?

54. В каком случае допускается применять не стандартизированные средства измерений?

55. Что понимается под напряжением прикосновения?

56. Что понимается под напряжением шага?

57. Что должен сделать работник, заметивший неисправности электроустановки или средств защиты?

58. Какие помещения относятся к электропомещениям?

59. В течение, какого срока со дня последней проверки знаний работники, получившие неудовлетворительную оценку, могут пройти повторную проверку знаний?

60. Кто проводит целевой инструктаж при работах по распоряжению для членов бригады?

61. На какой срок может быть продлен наряд на производство работ в электроустановках?

62. Кто имеет право проводить присоединение и отсоединение от сети электросварочных установок?

63. Чему должен соответствовать срок поверки трансформатора тока, встроенного в энергооборудование?

64. Когда следует выполнять защиту при косвенном прикосновении?

65. К какому виду плакатов безопасности относится плакат с надписью "Заземлено"?

66. К какому виду плакатов безопасности относится плакат с надписью "Не влезай! Убьет"?

67. Какое количество указателей напряжения для проверки совпадения фаз должна иметь при себе бригада, обслуживающая кабельные линии?

68. На какие электроустановки распространяются требования Правил устройства электроустановок?

69. Какие буквенные и цветовые обозначения должны иметь шины при переменном трехфазном токе?

70. Какие буквенные и цветовые обозначения должны иметь шины при постоянном токе?

71. Сколько человек должно быть в комиссии организации по проверке знаний электротехнического персонала?

72. Какую температуру должен иметь перекладываемый кабель, находящийся под напряжением?

73. Какой срок хранения установлен для журналов учета работ по нарядам и распоряжениям?

74. Кто имеет право осуществлять вскрытие средств электрических измерений, не связанное с работами по нормальному функционированию регистрирующих приборов?

75. В цепях, с каким напряжением должно производиться измерение тока?

76. В какой цвет должны быть окрашены, открыто проложенные заземляющие проводники?

77. Какое количество изолирующих клещей на напряжение до 1000 В должно быть на рабочем месте оперативно-ремонтного персонала?

78. Как классифицируются помещения в отношении опасности поражения людей электрическим током?

79. В течение, какого срока проводится дублирование перед допуском электротехнического персонала к самостоятельной работе?

80. Какую группу по электробезопасности должны иметь работники из числа оперативного персонала, единолично обслуживающие электроустановки?

81. Что указывается в строке "Подразделение" при заполнении наряда-допуска для работы в электроустановках?

82. В какие сроки необходимо проводить поверку расчетных средств учета электрической энергии?

83. Какая система заземления из перечисленных относится к системе TN-С-S?

84. Какая система заземления из перечисленных относится к системе TТ?

85. Какая система заземления из перечисленных относится к системе TN-С?

86. Какая система заземления из перечисленных относится к системе TN?

87. Какая система заземления из перечисленных относится к системе TN-S?

88. Какая система заземления из перечисленных относится к системе IТ?

89. На кого распространяется действие Правил технической эксплуатации электроустановок потребителей?

90. Какие требования предъявляются к командированному персоналу?

91. Сколько человек должно быть в составе бригады, выполняющих работы по перетяжке и замене проводов на воздушных линиях электропередач напряжением до 1000 В?

92. Что должно обязательно указываться в наряде-допуске рядом с фамилией и инициалами работников?

93. Каким мегомметром производится измерение сопротивления изоляции при испытании цепей напряжением до 500 В?

94. Каким мегомметром производится измерение сопротивления изоляции при испытании цепей напряжением от 500 до 1000 В?

95. Как следует прокладывать поперечные заземлители заземляющих устройств электроустановок напряжением выше 1 кВ в сетях с эффективно заземленной нейтралью?

96. Какие конструктивные элементы зданий и сооружений могут рассматриваться как естественные молниеприемники?

97. Кто определяет категорию электроприемников по надежности электроснабжения?

98. Какие помещения относятся к помещениям с повышенной опасностью?

99. Какую периодичность повышения квалификации должен обеспечивать работодатель для персонала?

100. Кто может являться ответственным за безопасное ведение работ?

101. Какое совмещение обязанностей допускается для ответственного руководителя работ?

102. Кто должен осуществлять плановую поверку электрических счетчиков?

103. Кто должен осуществлять замену расчетных электрических счетчиков?

104. Кто должен осуществлять установку и замену измерительных трансформаторов тока и напряжения?

105. В каких цепях производится измерение напряжения?

106. В каких электроустановках применяются указатели напряжения для проверки совпадения фаз?

107. В каких электроустановках производится назначение ответственного за электрохозяйство?

108. Что из перечисленного входит в обязанности ответственного за электрохозяйство?

109. Как часто проводится проверка знаний по электробезопасности для электротехнического персонала?

110. Кто имеет право единоличного обслуживания электроустановок напряжением до 1000 В?

111. Какие мероприятия из перечисленных относятся к организационным?

112. В чьем ведении должны находиться приборы технического учета электроэнергии в организации?

113. Какие условия должна выполнить организация для заключения Договора энергоснабжения с энергоснабжающей организацией?

114. Какие объекты относятся к специальным объектам по степени опасности поражения молнией?

115. Какое буквенное и цветовое обозначение должны иметь проводники защитного заземления в электроустановках?

116. Какое буквенное и цветовое обозначение должны иметь совмещенные нулевые защитные и нулевые рабочие проводники?

117. С какой нейтралью должны работать электрические сети напряжением 10 кВ?

118. Какие меры принимаются к работнику, который в период дублирования был признан профнепригодным к данному виду деятельности?

119. Какой минимальный стаж работы должен быть у человека со средним электротехническим образованием для перехода с четвертой группы электробезопасности на пятую?

120. Как часто должны проводиться осмотры кабельных колодцев с линиями напряжением до 35 кВ?

121. Какие меры безопасности необходимо принимать для предотвращения ошибочного включения коммутационных аппаратов при отсутствии в схеме предохранителей во время проведения планового ремонта электроустановки?

122. На основании чего производится энергоснабжение организаций?

123. Каким образом производится присоединение заземляющих проводников к заземлителю и заземляющим конструкциям?

124. Какая ответственность предусмотрена за нарушение правил и норм при эксплуатации электроустановок?

125. За что несут персональную ответственность работники, непосредственно обслуживающие электроустановки?

126. За что несут персональную ответственность работники, проводящие ремонт электроустановки?

127. Какая начальная группа по электробезопасности может быть присвоена работнику при его переводе с обслуживания электроустановок напряжением до 1000 В на обслуживание электроустановок напряжением выше 1000 В?

128. В течение, какого времени должны храниться наряды, работы по которым полностью завершены?

129. Сколько работников, и с какой группой по электробезопасности должны выполнять проверку отсутствия напряжения на ВЛ напряжением выше 1000 В?

130. Для чего предназначены защитные каски?

131. Кому может проводить целевой инструктаж при работах по наряду допускающий?

132. Кто имеет право проводить единоличный осмотр электроустановок напряжением выше 1000 В?

133. У кого должны находиться оперативные схемы электроустановок отдельного участка?

134. В каком случае допускается перерыв в энергоснабжении организации без согласования с абонентом?

135. Можно ли использовать средства защиты с истекшим сроком годности?

136. Какие требования предъявляются к внешнему виду диэлектрических ковров?

137. Какому административному штрафу могут быть подвергнуты юридические лица за ввод в эксплуатацию электроустановок без разрешения соответствующих органов?

138. Какому административному штрафу могут быть подвергнуты должностные лица организации за повреждение воздушных линий электропередачи напряжением выше 1000 В?

139. Какому административному штрафу могут быть подвергнуты должностные лица организации за повреждение подземных кабельных линий напряжением до 1000 В?

140. В течении какого срока должна проводиться стажировка электротехнического персонала на рабочем месте до назначения на самостоятельную работу?

141. Кто должен назначаться допускающим в электроустановках?

142. Каким образом в организации назначаются ответственные работники за поддержание в исправном состоянии переносных и передвижных электроприемников?

143. Какова периодичность осмотров заземляющих устройств с выборочным вскрытием грунта?

144. Когда проводятся внеочередные замеры сопротивления устройств молниезащиты?

145. Каким образом работник при непосредственном использовании может определить, что электрозащитные средства прошли эксплуатационные испытания и пригодны для применения?

146. Каким образом осуществляется подача напряжения на электроустановки, допущенные в установленном порядке в эксплуатацию?

147. Какую группу по электробезопасности должен иметь председатель комиссии по проверке знаний электротехнического персонала Потребителя с электроустановками выше 1000 В?

148. Какую группу по электробезопасности должен иметь допускающий к работе в электроустановках?

149. В каком случае электродвигатели должны быть немедленно отключены от питающей сети?

150. Кто в организации ведет наблюдение за работой счетчиков электрической энергии?

151. Какие защитные меры применяются для защиты людей от поражения электрическим током при косвенном прикосновении в случае повреждения изоляции?

152. Какая периодичность осмотра состояния средств защиты, используемых в электроустановках?

153. Какая электроустановка считается действующей?

154. Каким образом оформляются результаты проверки знаний персонала по электробезопасности?

155. На какой срок выдается распоряжение на производство работ в электроустановках?

156. Какая охранная зона установлена для подземных кабельных линий электропередачи напряжением до 1000 В в городах под тротуарами?

157. Каким образом проводится проверка цепи фаза - нуль в электроустановках до 1 кВ с системой TN?

158. Что может быть использовано в качестве естественных заземлителей?

159. В течении какого времени должен обеспечиваться непосредственный контакт указателя напряжения с контролируемыми токоведущими частями при проверке отсутствия напряжения в электроустановках напряжением до 1000 В?

160. Сколько источников питания необходимо для организации электроснабжения электроприемников второй категории?

161. Как обозначаются нулевые рабочие (нейтральные) проводники?

162. Какой инструктаж должен пройти электротехнический персонал перед началом работ по распоряжению?

163. Какой инструктаж должен пройти командированный персонал по прибытии на место своей командировки?

164. Кто имеет право выдавать наряды и распоряжения в электроустановках напряжением выше 1000 В?

165. Кто должен периодически проводить выборочный осмотр кабельных линий?

166. Что может использоваться в качестве РЕ-проводников в электроустановках напряжением до 1000 В?

167. Требованиям каких нормативно-технических документов должно соответствовать устройство электроустановок?

168. Какой максимальный размер штрафа, налагаемого на должностных лиц Потребителя, государственными инспекторами энергетического надзора Ростехнадзора?

169. Когда проводится очередная проверка знаний у административно-технического персонала, не занимающегося выдачей нарядов и распоряжений?

170. Что является подтверждением проведения и получения целевого инструктажа членами бригады?

171. Какие запрещающие плакаты вывешиваются на задвижках, закрывающих доступ воздуха в пневматические приводы разъединителей, во избежание подачи напряжения на рабочее место при проведении ремонта или планового осмотра оборудования?

172. Что называется рабочим заземлением?

173. Как классифицируются электроинструмент и ручные электрические машины по способу защиты от поражения электрическим током?

174. Какая проводится проверка знаний персонала при назначении или переводе на другую работу, если новые обязанности требуют дополнительных знаний норм и правил?

175. Какие работы относятся к работам со снятием напряжения?

176. По какому документу проводятся испытания элекрооборудования, проводимые с использованием передвижной испытательной установки?

177. Что называется защитным заземлением?

178. Каким образом диэлектрические перчатки проверяются на наличие проколов?

179. Какое минимальное количество диэлектрических перчаток должно быть в распределительных устройствах напряжением до 1000 В?

180. Какое количество указателей напряжения до 1000 В должна иметь при себе бригада, обслуживающая воздушные линии электропередачи?

181. На какие группы подразделяется электротехнический персонал организации?

182. Когда назначается ответственный руководитель работ?

183. Какое совмещение обязанностей допускается для производителя работ из числа оперативно-ремонтного персонала?

184. Из какого материала должна изготавливаться главная заземляющая шина?

185. В каком случае элемент заземлителя должен быть заменен?

186. Какие существуют возрастные ограничения для присвоения III группы по электробезопасности?

187. На какой срок выдается наряд на производство работ в электроустановках?

188. Какие работы по распоряжению в электроустановках напряжением выше 1000 В может проводить один работник, имеющий третью группу по электробезопасности?

189. У какого количества опор воздушных линий, имеющих заземляющие устройства, производится выборочное вскрытие грунта для осмотра этих заземляющих устройств?

190. Кто инструктирует бригаду по вопросам использования инструмента и приспособлений?

191. За что отвечает наблюдающий в электроустановках?

192. Каким должно быть сопротивление заземляющего устройства, к которому присоединены выводы источника трансформатора при линейном напряжении 380 В источника трехфазного тока?

193. От каких источников должно осуществляться питание передвижных электроустановок?

194. В каком случае удостоверение о проверке знаний норм и правил работы в электроустановках подлежит замене?

195. Кто утверждает Перечень должностей и профессий электротехнического персонала, которым необходимо иметь соответствующую группу по электробезопасности?

196. Где проводится проверка знаний работников Потребителя, численность которых не позволяет создать собственную комиссию?

197. Кому может проводить целевой инструктаж при работах по наряду выдающий наряд?

198. Какая периодичность проверки знаний по электробезопасности установлена для персонала, обслуживающего электроустановки?

199. Какая группа по электробезопасности должна быть у председателя комиссии по проверке знаний персонала организации с электроустановками до 1000 В?

200. Каким образом члены бригады, имеющие третью группу по электробезопасности, могут осуществлять временный уход с рабочего места в РУ?

201. Кто относится к оперативно-ремонтному персоналу?

Тест по электробезопасности (II группа допуска до 1000 В)

1 вопрос

На кого распространяются Правила по охране труда при эксплуатации электроустановок?

Варианты ответов:
  • На работников всех организаций независимо от формы собственности, занятых техническим обслуживанием электроустановок и выполняющих в них строительные, монтажные и ремонтные работы
  • На работников из числа электротехнического, электротехнологического и неэлектротехнического персонала, а также на работодателей
  • На работников промышленных предприятий, в составе которых имеются электроустановки
2 вопрос

Какое задание на производство работы может быть оформлено только на специальном бланке установленной формы?

Варианты ответов:
  • распоряжение и наряд-допуск
  • распоряжение
  • наряд-допуск
3 вопрос

Какое напряжение должно применяться для питания переносных электрических светильников при работах в особо неблагоприятных условиях?

Варианты ответов:
  • не выше 12 в.
  • не выше 24 в.
  • не выше 50 в.
4 вопрос

На какое расстояние допускается приближаться людям к не огражденным токоведущим частям, находящимся под напряжением от 1 до 35 кв?

Варианты ответов: 5 вопрос

Что необходимо сделать при обнаружении непригодности средств защиты?

Варианты ответов:
  • Изъять из эксплуатации, сделать запись в журнале учета и содержания средств защиты об изъятии
  • Изъять из эксплуатации, сдать на внеочередной осмотр и испытания
  • Изъять из эксплуатации, сделать запись в журнале об изъятии, сдать на внеочередной осмотр и испытания, произвести замену средств защиты
6 вопрос

Какую группу по электробезопасности должен иметь допускающий к производству работ в электроустановках напряжением до 1 кв?

Варианты ответов:
  • не ниже III группы
  • не ниже V группы
  • не ниже IV группы
7 вопрос

В каких целях допускается приближение на расстояние менее 8 метров к месту возникновения короткого замыкания на землю при работах на воздушной линии электропередачи?

Варианты ответов:
  • Только для оказания доврачебной помощи людям, попавшим под напряжение
  • Только для определения визуального расстояния до опоры ВЛ
  • Только для оперативных переключений с целью ликвидации замыкания и освобождения людей, попавших под напряжение
8 вопрос

Можно ли использовать в качестве нулевых защитных проводников нулевые рабочие проводники, идущие к переносным электроприемникам однофазного тока?

Варианты ответов:
  • можно
  • можно, если установлено узо
  • нельзя
9 вопрос

Что может быть использовано в качестве естественного заземлителя?

Варианты ответов:
  • все выше перечисленное
  • металлические трубы водопровода, проложенные в земле
  • металлические и железобетонные конструкции зданий и сооружений, находящиеся в соприкосновении с землей
10 вопрос

Каким образом следует располагаться при производстве работ около не огражденных токоведущих частей электроустановки?

Варианты ответов:
  • таким образом, чтобы эти части не находились сзади от работника
  • таким образом, чтобы эти части не находились сзади или с двух боковых сторон от работника
  • таким образом, чтобы эти части не находились с двух боковых сторон от работника
11 вопрос

В каком случае разрешается использование земли в качестве нулевого провода в электроустановках до 1000 в?

Варианты ответов:
  • на уединенных источниках, питающих потребители постоянного тока напряжением 60 в и ниже
  • на уединенных источниках, питающих потребители переменного тока напряжением не выше 220 в
  • не допускается в любом случае
12 вопрос

Какие мероприятия не относятся к организационным мероприятиям, обеспечивающим безопасность работ в электроустановках?

Варианты ответов:
  • надзор во время работы
  • первичный инструктаж
  • допуск к работе
13 вопрос

При каком условии работники, не обслуживающие электроустановки, могут допускаться в РУ до 1000 В?

Варианты ответов:
  • В сопровождении оперативного персонала, обслуживающего данную электроустановку, имеющего группу IV, либо работника, имеющего право единоличного осмотра
  • В сопровождении опытного работника из числа ремонтного персонала, имеющего группу по электробезопасности не ниже V
  • В сопровождении оперативного персонала, обслуживающего данную электроустановку, имеющего группу III, либо работника, имеющего право единоличного осмотра
14 вопрос

Распространяются ли "правила технической эксплуатации электроустановок потребителей" на граждан - владельцев электроустановок?

Варианты ответов:
  • распространяются на граждан-владельцев электроустановок напряжением выше 1000 в
  • распространяются на граждан-владельцев электроустановок напряжением до 1000 в
  • не распространяются
15 вопрос

Кто имеет право устанавливать переносные заземления в электроустановках напряжением выше 1000 в?

Варианты ответов:
  • два работника: один - имеющий группу III (из числа оперативного персонала), другой - имеющий группу II
  • два работника: один - имеющий группу IV (из числа оперативного персонала), другой - имеющий группу III
16 вопрос

Как классифицируются помещения в отношении опасности поражения людей электрическим током?

Варианты ответов:
  • Помещения без повышенной опасности, помещения с повышенной опасностью, опасные помещения, особо опасные помещения
  • Помещения без повышенной опасности, помещения с повышенной опасностью, особо опасные помещения и территория открытых электроустановок
  • Помещения без повышенной опасности, помещения с повышенной опасностью, опасные помещения
17 вопрос

Можно ли продолжать работу по распоряжению на следующий день, если в течение рабочего дня исполнители не успели завершить работу?

Варианты ответов:
  • да, можно, если не изменились условия работы
  • да, можно, если не изменился состав бригады исполнителей
  • нельзя, так как распоряжение имеет разовый характер, и срок его действия определяется продолжительностью рабочего дня исполнителей
18 вопрос

Что делать, если у пострадавшего нет сознания и нет пульса на сонной артерии?

Варианты ответов:
  • приступить к реанимации
  • проверить наличие дыхания
  • наложить жгут на сонную артерию
19 вопрос

Зависит ли оптимальное соотношение надавливаний на грудную клетку и вдохов искусственной вентиляции легких при проведении реанимации 30:2 от количества участников реанимации?

Варианты ответов: 20 вопрос

Каковы сроки очередной проверки знаний персонала, имеющего право ведения оперативных переключений?

Варианты ответов:
  • 1 раз в год
  • 1 раз в 3 года
  • 1 раз в 2 года

Стандарты и испытания электробезопасности

Стандарты электробезопасности

Чтобы помочь проверить работоспособность и безопасность медицинских устройств, в США, европейских странах и других частях мира установлены стандарты электробезопасности. Стандарты различаются критериями, измерениями и протоколом. Международная организация по стандартизации (ISO) и Международная электротехническая комиссия (IEC), базирующиеся в Европе, предоставляют стандарты во всем мире в партнерстве со Всемирной торговой организацией.К ним относятся стандарты для электромедицинского оборудования. Существуют общие и специальные стандарты электробезопасности медицинских устройств. IEC60601 AAMI / NFPA 99 Основным стандартом для медицинских устройств является IEC 60601. Общие требования к защите от поражения электрическим током изложены в IEC 60601.1, раздел 3.

В этом стандарте каждый прибор имеет класс:

  • Класс I - Токоведущая часть покрыта основной изоляцией и защитным заземлением
  • Класс II - токоведущая часть, покрытая двойной или усиленной изоляцией
  • Класс IP - Внутренний источник питания

Каждая прикладная деталь пациента или отведение пациента имеет тип:

  • Тип B - прикладная часть пациента, заземленная
  • Тип BF - плавающая часть тела пациента (поверхностный проводник)
  • Тип CF - прикладываемая часть пациента плавающая для использования в прямом контакте с сердцем

Пределы измерения утечки были разработаны для типов оборудования и измерений.В их число входят:

  • NC - нормальные условия
  • SFC - условия единичного отказа

Терминология, используемая в МЭК 60601.1, 3-е издание, включает:

  • Сопротивление защитного заземления
  • Ток утечки на землю
  • Ток прикосновения (ранее ток утечки корпуса)
  • Ток утечки на пациента
  • Вспомогательный ток пациента
  • Сеть на прикладной части (MAP)

На рисунке выше представлена ​​зависимость от тестовой нагрузки пациента.Устройства для измерения тока утечки используют эту цепь полного сопротивления для измерений.

Дополнительные важные моменты, касающиеся IEC 60601.1, включают:

  • Использование переменного тока до 25 ампер для проверки защитного заземления (это типовое испытание и обычно подходит для производителей)
  • Ток утечки измеряется при 100% напряжения сети
  • Производительность испытания электрической прочности изоляции / изоляции измеряется при 110 процентах напряжения сети.

Новый стандарт IEC 62353 используется для тестирования медицинских устройств в больницах.МЭК 62353 был разработан, потому что МЭК 60601.1 - это стандарт типовых испытаний без критериев управления рисками и непрактичный для тестирования в больничных условиях.

Испытания

IEC 62353 проводятся на оборудовании перед использованием на пациентах, во время плановых периодических испытаний и после ремонта. Таким образом, этот стандарт предназначен для полевых (больничных) испытаний и не касается конструкции оборудования. В Приложении E к документу производителю предлагается предоставить информацию об интервале и процедуре тестирования на основе риска, типичного использования и истории устройства.Минимальные требования к испытаниям жизнеобеспечения и другого критически важного оборудования - каждые 24 месяца.

В США существует несколько первичных и вторичных организаций, устанавливающих стандарты:

  1. Национальная ассоциация противопожарной защиты (NFPA): Стандарт NFPA 99 для медицинских учреждений - это основной стандарт, касающийся испытаний на электробезопасность, необходимых в медицинских учреждениях. Другие публикации включают NFPA 70, Национальный электротехнический кодекс и NFPA 70E, Электробезопасность на рабочем месте.
  2. Ассоциация развития медицинского оборудования (AAMI): ANSI / AAMI ES1 Safe Current Limits для электромедицинских приборов - еще один общепринятый стандарт.
  3. Underwriters Laboratories (UL): UL544, требования к медицинскому оборудованию являются стандартом для производителей, а не для больниц. На эти стандарты могут ссылаться органы аккредитации, кодекса или регулирующие организации, такие как Объединенная комиссия, Управление по охране труда и технике безопасности, или другие организации, контролирующие медицинские учреждения в Соединенных Штатах.
  4. Канадская ассоциация стандартов (CSA): CAN / CSA C22.2 NO. 60601-1-08 Медицинское электрическое оборудование, часть 1: Общие требования к базовой безопасности и основным характеристикам (принят IEC 60601-1: 2005, третье издание, 2005-12)

Глобальная гармонизация стандартов привела к разработке всемирных стандартов. Оборудование в перечисленных ниже регионах должно быть сертифицировано по стандарту IEC60601-1, в противном случае устройство не может продаваться в этой стране.

  • США использует UL2601-1 или ANSI / AAMI ES601
  • Европа использует EN60601-1
  • Канада использует CAN / CSA-C22.2 № 601.1-М90

Испытания на электробезопасность

Требования к испытаниям и их последовательность в соответствии с IEC 62353, приложение C, показаны ниже. Следует использовать только измерительное оборудование, соответствующее IEC 61010-1. Следует соблюдать последовательность, указанную на рисунке ниже. Например, сопротивление защитного заземления должно быть измерено до измерения тока утечки.

Общие подключения к анализатору электробезопасности (ESA) показаны на рисунке 5.Подробные сведения о вашем анализаторе электробезопасности см. В руководстве по эксплуатации. Требования к документации для IEC 62353 включают:

  • Идентификация группы тестирования (отделение больницы, независимая сервисная организация, производитель)
  • Имена лиц, проводивших тестирование и оценку
  • Идентификация оборудования / системы (например, тип, серийный номер, инвентарный номер) и протестированных принадлежностей
  • Испытания и измерения
  • Дата, тип и результат / результаты:
    • Визуальный осмотр
    • Измерения (измеряемые величины, метод измерения, измерительное оборудование)
    • Функциональные испытания
  • Заключительная оценка
  • Дата и подпись лица, проводившего оценку

Компьютеризированные системы хранения данных очень предпочтительны для хранения, поиска, просмотра и анализа данных.Обратите внимание, что поля устройства должны быть стандартизованы.

ESA609 объединяет все функции, необходимые для тестирования медицинских устройств, когда тестирование пациента не требуется, в том числе:

  • Линейное (сетевое) напряжение
  • Сопротивление провода заземления (или защитного заземления)
  • Оборудование текущее
  • Утечка в проводе заземления
  • Утечка в корпусе (корпусе)
  • Прямая утечка оборудования
  • Точечная утечка и сопротивление

Универсальный в соответствии с мировыми стандартами электробезопасности, ESA609 тестирует на соответствие ANSI / AAMI ES1, NFPA-99 и частям IEC62353 и IEC60601-1.

Чтобы узнать больше об анализаторе электробезопасности ESA609, посетите сайт www.flukebiomedical.com/ESA609.

Подводите итоги своих расходов на конец года?


Воспользуйтесь этими сбережениями до того, как они уйдут!

Часть 1: Безопасность электрических испытаний - Подготовка к отсутствию испытания напряжением

Рис. 1. Для первого испытания используйте бесконтактный измеритель напряжения.

OSHA и стандарт NFPA 70E по электробезопасности на рабочем месте предписывают рабочим обесточить все части, находящиеся под напряжением, к которым работник может быть подвержен, если только для устранения неисправностей не требуются условия под напряжением.

Приведение электрического оборудования или систем в электрически безопасное рабочее состояние может показаться простым, но необходимо учитывать несколько факторов.

  • Правильное планирование и подготовка сделают любой вид тестирования проще и безопаснее.
  • Выполните оценку рисков. Оценка риска требуется в соответствии с NFPA 70E, раздел 110.1 (G) Программа электробезопасности, 130.3 Работа в условиях поражения электрическим током, 130.4 (A) Оценка риска поражения электрическим током и 130.5 Оценка риска дугового разряда. NFPA 70E больше не использует фразу «анализ опасности / риска».Определение оценки риска в Статье 100 включает определение опасностей.
  • Необходимость останавливать работу, чтобы достать другие инструменты или испытательные инструменты, мешает сосредоточиться и может привести к аварии.
  • Дорожное движение в этом районе может представлять значительную опасность. Это включает пешеходов, а также вилочные погрузчики и другие типы транспортных средств. Для предотвращения вторжения в рабочую зону могут потребоваться барьеры, заграждения, знаки и, возможно, сопровождающий.
  • Заполните разрешение на выполнение электромонтажных работ (EEWP).Этого требует NFPA 70E Раздел 130.2 (B) Разрешение на выполнение электромонтажных работ. EEWP включает необходимые оценки рисков, детальное описание требуемых СИЗ, а также меры предосторожности, необходимые для защиты рабочей зоны. Он также содержит разрешение на выполнение работ под напряжением, которые имеют решающее значение для безопасности рабочего. Руководство должно одобрить всю активную работу до выполнения задачи, так как они несут ответственность в случае возникновения инцидента.
  • NFPA 70E расширил исключения для использования EEWP в Разделе 130.1 (B) (3), но эти исключения только освобождают работника от подписания EEWP руководством. Все остальные требования статьи 130 остаются в силе.
    • Информационное приложение J содержит пример EEWP. Поскольку он расположен в приложении, его можно при необходимости изменить в соответствии с конкретной задачей или условиями работы.

Перед проведением единичного измерения сначала определите:

  • Это поиск неисправностей или проверка отсутствия напряжения?
  • Какие контрольно-измерительные приборы необходимы для проверки включенного или обесточенного состояния?
  • Требуется ли резервное копирование? Обучен ли он / она правильным методам освобождения, обращению за неотложной помощью или СЛР / использованию АВД? Где находится ближайший AED?
  • Где будет установлена ​​безопасная рабочая зона? Будет ли это на границе ограниченного подхода или на границе вспышки дуги?
  • Какие средства индивидуальной защиты (СИЗ) потребуются?
    • Какое напряжение в цепи?
    • Что такое граница вспышки дуги?
    • Сколько падающей энергии возможно на вашем рабочем расстоянии?

    Top THREE Инструменты для тестирования электробезопасности

    1. Низковольтные бесконтактные или бесконтактные тестеры напряжения
    2. Электрические тестеры (ранее соленоидные)
    3. Цифровой мультиметр
  • Какой метод используется для определения Требуются ли одежда для защиты от дуги и СИЗ? Был ли проведен анализ падающей энергии с этикетками на оборудовании или используется табличный метод?
    • Завершена ли блокировка / маркировка?
    • Правильно ли работает испытательный прибор?
    • Самое главное, можно ли безопасно выполнить эту задачу? Строка (7), часть II образца EEWP в Информационном приложении J гласит: «Согласны ли вы, что вышеописанная работа может быть выполнена безопасно?» Честно говоря, если у вас есть хиби-джиби по поводу выполнения задачи, когда оборудование находится под напряжением, его просто нужно выключить.

При тестировании на отсутствие напряжения, то есть для проверки отсутствия напряжения перед началом работы, рассмотрите возможность использования бесконтактного бесконтактного тестера (Рисунок 1), электрического тестера (Рисунок 2) или мультиметра ( Рисунок 3).

Инструменты для использования

A) Низковольтные бесконтактные или бесконтактные тестеры напряжения

Рис. 2. Для второго теста выберите цифровой, а не электромагнитный электрический тестер.

Бесконтактные датчики напряжения хороши для начального испытания, но всегда должны сопровождаться измерителем прямого контакта.NFPA 70E требует, чтобы проводники или части схемы были проверены между фазой и землей. Бесконтактные датчики напряжения проверяют только фазу на землю. Обратите внимание, что это не относится к системам среднего и высокого напряжения, поскольку датчики напряжения приближения являются предпочтительным методом тестирования.

В Shermco Industries мы выдаем каждому техническому специалисту бесконтактный тестер, подобный показанному на рис. 1, чтобы он держал его в верхнем кармане или где-нибудь на видном месте. Во время проектов аварийного восстановления, особенно там, где произошло крупномасштабное наводнение, эти датчики напряжения приближения обеспечивают критическое раннее предупреждение о находящихся под напряжением проводниках или частях цепи, которые могут быть скрыты или предположительно обесточены.Мы считаем, что они предотвратили множество шоковых инцидентов, используя их таким образом. Если загорается датчик напряжения приближения, значит, где-то есть напряжение; это может быть не там, где ожидалось.

Имейте в виду, что датчики напряжения приближения могут давать ложноотрицательный результат (то есть не загораться), если:

  • Изолированная контрольная точка касается заземленного металла.
  • Тестируемый кабель частично закопан.
  • Пользователь изолирован от земли.
  • Используется внутри металлического корпуса.
  • Бесконтактные тестеры также не обнаруживают наличие напряжения через экран на экранированном кабеле. Чтобы лучше понять, почему датчики приближения имеют эти ограничения, прочтите примечание по применению Fluke по теме «Общие сведения о емкостных датчиках напряжения». Ключевое слово - «близость».

Близость зависит не только от расстояния, но и от силы расширяющегося и сжимающего магнитного поля вокруг проводника под напряжением.«Расстояние» должно учитывать все, что находится между тестером и источником электричества, включая воздух, изоляцию, материал выключателя, поворотные замки и так далее. Реальная проблема в том, что бесконтактные тестеры могут показывать напряжение, а могут и не показывать, в зависимости от конкретных обстоятельств. Для отсутствия испытания напряжением требуется другой, полностью надежный метод испытания.

B) Электрические тестеры (ранее соленоидные)

Раньше тестеры соленоидов были предпочтительным оружием, в основном потому, что все остальное было очень дорого.Есть некоторые проблемы с их использованием.

Рисунок 3. Цифровой мультиметр с опцией низкого импеданса - самый разумный выбор для испытания под напряжением. Рисунок 4. Обратите внимание на CPT, установленный на стороне стартера 4,16 кВ. Клеммы 480 В не могут быть четко идентифицированы
  • Если напряжение падает ниже примерно 70–90 В, в зависимости от конкретного используемого тестера, тестер не показывает наличие напряжения. Из-за этого меня не раз пригвоздили. Однажды я тестировал контроллер мотора, у которого перегоревший предохранитель.Эта фаза подавалась обратно через управляющий силовой трансформатор (CPT) и должна была показывать напряжение. Из-за импеданса CPT и тестера я не получил никаких указаний. Я кричал, как цыпленок, когда вступал в контакт.
  • Даже блоки соленоидов со световыми индикаторами перестают загораться при напряжении около 30 вольт или около того. Это не приведет к фибрилляции у человека, но может заставить его вернуться к чему-то, что может.
  • Тестеры соленоидов изнашиваются, а шкала напряжения покрывается царапинами.Если вы не можете прочитать индикатор напряжения, а соленоид настолько слаб, что почти не вибрирует, его использование ненадежно.
  • Fluke настоятельно рекомендует использовать новое поколение электронных тестеров с предохранителями. Они по-прежнему вибрируют и загораются, но они намного точнее, они измеряют напряжение до 10 вольт, имеют предохранители для защиты от переходных процессов и имеют рейтинг CAT.

C) Цифровой мультиметр

Мультиметры - лучший стандартный измерительный прибор для проведения точных контактных измерений, чтобы определить, находится ли цепь под напряжением.При использовании мультиметров необходимо соблюдать осторожность. Поворот шкалы функций мультиметра на неправильную функцию (например, ампер вместо вольт) - одна из самых распространенных ошибок, которые люди допускают при использовании мультиметра. Кроме того, более старые модели, которые не поддерживают автоматический выбор диапазона, могут быть помещены в слишком высокий диапазон, в результате чего напряжение будет казаться намного меньшим, чем оно есть на самом деле. Кто-то спешащий, напряженный или неосторожный, может попасть в беду. Использование более новых счетчиков решает эту проблему, а также добавляет новые функции и средства защиты.

Модель 117 Fluke, например, имеет функцию низкого входного импеданса для тестирования напряжения, что может быть большой мерой безопасности при определении того, вызвано ли «фантомное» напряжение обратной подачей или индуцировано. Fluke 117 также имеет встроенную функцию бесконтактного тестирования напряжения для людей, которые хотят начать с теста приближения, а затем перейти к тесту контакта с помощью того же прибора. Любой измеритель с прямым контактом может быть опасен, если он подключен к цепи с напряжением, превышающим номинальное.Во время моих путешествий по стране на нескольких предприятиях были жертвы из-за того, что электрик устранял неисправность в цепи управления пускателем двигателя на 2,3 кВ или 4,16 кВ. CPT часто устанавливается сбоку выдвижного блока, и выводы не видны четко, рис. 4. Техник пытается проверить цепь 480 В и вместо этого вступает в контакт с цепью среднего напряжения. Когда это происходит, случаются плохие вещи. OSHA заявляет, что испытательное оборудование и его аксессуары должны быть рассчитаны на схемы, к которым они будут подключены.NFPA 70E «(2) Рейтинг. Контрольно-измерительные приборы, оборудование и их принадлежности должны быть рассчитаны на схемы и оборудование, в которых они используются».

Средства индивидуальной защиты

Звучит ли странно требовать СИЗ для проверки обесточивания? До тех пор, пока электрические цепи или части не будут проверены и не будет обнаружено отсутствие напряжения, они должны считаться находящимися под напряжением. Перед тем, как работать в Shermco, я был менеджером по электрическим полевым службам и менеджером по соблюдению нормативных требований в SUNOHIO. Однажды рано утром я взял бригаду для проверки силового трансформатора, у которого возникли проблемы на предприятии промышленного заказчика.По приезду попросил в одну строку написать процедуру LOTO. Рисунок, который мне подарили, был настолько стар, что пожелтел. Меня заверили и директор завода, и начальник электричества, что с однопроводной линией все в порядке, и в систему 4,16 кВ никогда не вносились изменения.

Моя команда приступила к блокировке и маркировке системы, и, поскольку это была подстанция с двусторонним подключением, было довольно легко изолировать неисправный трансформатор. Крышка клеммной коробки была снята, и, будучи полностью уверенным, что в цепи обесточено, я собирался отклеить соединения, готовясь к тестированию.В последний момент я решил следовать правилам техники безопасности и протестировать схему, хотя я знал, что «она мертвая». Датчик напряжения приближения загорелся, и я чуть не потерял сознание. Еще один усвоенный урок. Альтернативная схема была установлена ​​когда-то в прошлом, и никто из работающих там не знал (или не запомнил) об этом. Поверьте мне на слово, он не мертв, пока не будет доказан его мертвый. Не делай моей ошибки. В этом инциденте не было ничего смешного.

Lockout / Tagout

OSHA требует от электриков привести оборудование в электрически безопасные условия работы (хотя они не используют эти слова) в 1910 году.333 (b) и NFPA 70E в Статье 120, которые включают блокировку, маркировку, тестовую работу, тестирование в точке контакта и заземление, если необходимо. Заземление может оказаться практичным или непрактичным для низковольтных систем, но должно выполняться по возможности. Конденсаторы, системы ИБП и длинные кабели могут поддерживать накопленный заряд. Применение временных защитных заземлителей устраняет эту опасность за счет разряда накопленной энергии. Также могут возникать наведенные напряжения, если проводники взяты из длинного кабельного лотка, содержащего другие неэкранированные проводники, которые все еще находятся под напряжением.Расширяющееся / сжимающееся магнитное поле вокруг кабелей под напряжением может индуцировать напряжение в обесточенном кабеле. Убедитесь, что в точке заземления имеется плотное и чистое соединение, иначе в условиях короткого замыкания земля может взорваться.

Проверка работы тестера напряжения

Перед началом проверки отсутствия напряжения осмотрите измерительный прибор, чтобы убедиться, что он работает правильно.

Рисунок 5.
  1. Осмотрите испытательный прибор:
    • Есть ли явные дефекты в корпусе или элементе счетчика?
    • Селекторный переключатель поворачивается плавно, без заедания?
    • Правильно ли меняются функции при нажатии селекторного переключателя?
    • Имеет ли испытательный прибор правильный рейтинг CAT для той части электрической системы, в которой он используется?
    • Дисплей работает правильно? Цифры сломаны или они постепенно исчезают? Это может указывать на низкий заряд батареи, повреждение дозатора или слабое соединение с дисплеем.
  2. Осмотрите измерительные провода:
    • Есть ли какие-либо признаки повреждения, такие как порезы или разрывы изоляции, оплавление или изменение цвета изоляции, или раздавливание измерительного провода. Сдавливание может указывать на внутреннее повреждение, которое может быть неочевидным снаружи.
    • Концы зонда прямые и неповрежденные. Обгоревшие или изогнутые концы зонда могут помешать правильному показанию прибора.
    • Концы зонда затянуты? Свободные концы могут помешать измерениям.
    • Проверьте целостность цепи, установив на измерительном приборе функцию ОМ (Ω) и соедините провода вместе. Любое значение выше 0,3 Ом указывает на проблему.
    • Если на измерительных выводах есть предохранители, убедитесь, что предохранитель исправен.
    • Перед тем, как продолжить, убедитесь, что на измерительном приборе подано напряжение.
  3. Надев соответствующие СИЗ, измерьте напряжение, аналогичное напряжению оборудования, которое будет проверено. Раздел 120.1 (5) стандарта NFPA 70E гласит: «До и после каждого испытания убедитесь, что испытательный прибор работает удовлетворительно, путем проверки на известном источнике напряжения.«Обратите внимание, что для проверки тестового прибора требуется известный источник напряжения. Это может быть любой известный источник напряжения, но он должен быть той же величины и типа (переменного или постоянного тока), что и тестируемый.
    • Никогда не оборачивайте измерительные провода вокруг измерительный прибор. Это может быть удобно, но оно создает чрезмерную нагрузку на угловой соединитель 900. Было обнаружено, что некоторые измерительные провода отделены внутри колена, но могут показывать напряжение при проверке работы. Чтобы убедиться, что измерительные провода не повреждены изнутри, передвигайте измерительные провода при выполнении первоначальной проверки.Осторожно потяните за провода при испытании на известном источнике напряжения. Любое прерывание указывает на возможный внутренний разрыв.
    • Измерительные провода можно легко повредить во время использования (или неправильного хранения), поэтому лучше всего заменять их ежегодно. Они одноразовые и невысокие.
  4. Проверить цепь, которая должна быть обесточена, и убедиться в отсутствии напряжения.
  5. После завершения тестирования отсутствия напряжения еще раз убедитесь, что измеритель все еще функционирует должным образом, подключившись к тому же известному источнику напряжения и выполнив еще одно измерение.Это известно как испытание «под напряжением - мертвым напряжением» и требуется OSHA, когда напряжение превышает 600 вольт. Это также требуется NFPA 70E в Разделе 110.4 (A) (5), «Проверка работы», а также в Разделе 120.1 (5), «Проверка электрически безопасных условий работы». Контрольно-измерительные приборы ведут тяжелую жизнь, и когда ваша жизнь зависит от них, жить мертвым-живым - единственный выход для напряжений любого уровня.

Меры безопасности при измерениях под напряжением - Охрана труда и безопасность

Меры безопасности при измерениях под напряжением

Большинство коммерческих и промышленных электриков работают в среде CAT III или CAT IV, иногда даже не зная об этом.А это может привести к реальной опасности.

  • Дуэйн Смит
  • 1 ноября 2006 г.

ИЗМЕРЕНИЕ напряжения и тока под напряжением в сегодняшних высокоэнергетических средах может привести к серьезной опасности для оборудования и пользователей, если не будут приняты надлежащие меры предосторожности. Учитывая риск переходных процессов, скачков напряжения и устаревшей человеческой ошибки, всегда стоит соблюдать безопасные методы работы и использовать контрольно-измерительные приборы, рассчитанные на измеряемое напряжение или ток.

По возможности работайте с обесточенными цепями и соблюдайте соответствующие процедуры блокировки / маркировки. Если вам нужно работать с цепями под напряжением, выполнение следующих шагов улучшит ваши методы измерения и поможет снизить любую опасность.


Подготовительные работы

  1. Перед измерением оцените окружающую среду.
  2. Не работайте в одиночку во взрывоопасных зонах.
  3. Носите соответствующие средства индивидуальной защиты в соответствии с требованиями NFPA 70E.
  4. Убедитесь, что ваш испытательный прибор рассчитан на среду измерения.
  5. Ознакомьтесь и знайте, как использовать ваше оборудование перед любым опасным измерением.

Лучшие практики

  1. Убедитесь, что ваш глюкометр, и особенно ваши измерительные провода и щупы, находятся в надлежащем рабочем состоянии.
  2. Измерьте в точке с наименьшей энергией.
  3. Повесьте испытательный прибор или поместите его на полку перед собой, если таковая имеется. Это позволяет вам сосредоточиться на том, где находятся ваши руки, и следить за тем, где вы исследуете.
  4. Для однофазного подключения: сначала нейтраль, а вторую - горячая.
  5. Используйте метод трехточечной проверки, описанный ниже.
  6. Используйте измерительные щупы с минимальным количеством открытого металла, например щупы с металлическим наконечником 0,12 дюйма (4 мм).

Анализ окружающей среды
Прежде чем открывать шкаф с оборудованием, осмотрите свое рабочее место.Как вы планируете использовать свой счетчик? Где вы его установите? Есть ли у вас свободный доступ к рассматриваемому оборудованию? Вы прошли обучение или хорошо разбираетесь в использовании глюкометра? Присутствуют ли опасные факторы окружающей среды, например, тесное или влажное рабочее место? Достаточно ли света и вентиляции? Кроме того, убедитесь, что у вас есть помощник, разбирающийся в электробезопасности, или сообщите кому-нибудь, где вы работаете. Никогда не рекомендуется работать в одиночку с цепями с высоким энергопотреблением. Избегайте работы в темных местах.Если вы решили работать в темном месте, включите подсветку тестового инструмента, чтобы сделать дисплей ярче и удобнее для просмотра. А если вы работаете с глубокой или утопленной панелью, используйте удлинитель щупа и свет щупа, чтобы осветить исследуемую область. Убедитесь, что вы можете четко видеть точку измерения. Удлинитель зонда облегчает измерение, удерживая руки подальше от внутренней части панели, что снижает потенциальную опасность.


Эта статья была впервые опубликована в ноябрьском номере журнала «Охрана труда и безопасность» за 2006 год.

Электробезопасность

Токоведущие части, воздействию которых может подвергнуться работник, должны быть обесточены до того, как работник будет работать на них или рядом с ними, если отключение этих частей не создает дополнительных или повышенных опасностей или является невозможным из-за конструкции оборудования или эксплуатационных ограничений. Примеры повышенных или дополнительных опасностей включают отключение оборудования жизнеобеспечения, отключение систем аварийной сигнализации, отключение вентиляционного оборудования опасной зоны или отключение освещения в зоне.Токоведущие части, которые работают при напряжении ниже 50 вольт относительно земли, не нужно отключать, если нет повышенного риска электрических ожогов или взрывов из-за электрической дуги.

Детали без напряжения

Когда сотрудники работают с обесточенными частями или достаточно близко к ним, чтобы подвергать сотрудников опасности поражения электрическим током, которые они представляют, необходимо соблюдать следующие правила работы, связанные с безопасностью:

  • Считайте находящимися под напряжением любые проводники и части электрического оборудования, которые были обесточены, но не были должным образом заблокированы или помечены.
  • В то время как любой сотрудник подвергается контакту с частями стационарного электрооборудования или цепями, которые были обесточены, цепи, питающие эти части, должны быть заблокированы или помечены, либо и то, и другое. Кроме того, необходимо контролировать опасность поражения электрическим током; квалифицированный специалист должен проверить цепь, чтобы убедиться в обесточивании всех источников напряжения.
  • Безопасные процедуры выключения цепей и оборудования должны быть определены до того, как цепи или оборудование будут выключены. Все источники электроэнергии должны быть отключены.Устройства цепей управления, такие как кнопки, электрические переключатели и блокировки, не должны использоваться в качестве единственного средства отключения цепей или оборудования. Блокировки не должны использоваться вместо процедур блокировки и маркировки.

Детали под напряжением

Считается, что работники работают с открытыми частями под напряжением или рядом с ними, когда работают с открытыми частями под напряжением либо путем прямого контакта, либо с помощью инструментов или материалов, либо при работе достаточно близко к частям, находящимся под напряжением, чтобы подвергаться любой опасности, которую они представляют.Только квалифицированному персоналу разрешается работать с частями электрических цепей или оборудованием, которые не были обесточены (блокировка / маркировка). Квалифицированный персонал способен безопасно работать в цепях под напряжением и знаком с правильным использованием специальных мер предосторожности, средств индивидуальной защиты, изоляционных и защитных материалов и изолированных инструментов.

Расстояние доступа квалифицированного специалиста к переменному току

Диапазон напряжения (между фазами)

Минимальная дистанция подхода

300 В и менее

Избегайте контакта

Более 300 В, но не более 750 В

1 фут

Более 750 В, не более 2 кВ

1 фут.6 дюймов

Более 2 кВ, но не более 15 кВ

2 фута

Более 15 кВ, но не более 37 кВ

3 фута

Более 37 кВ, но не более 87,5 кВ

3 фута 6 дюймов

Более 87.5кВ, не более 121кВ

4 фута

ВЛ

Если работы должны выполняться рядом с воздушными линиями, линии должны быть обесточены и заземлены или должны быть приняты другие защитные меры до начала работ. Такие защитные меры, как защита, изоляция или изоляция, должны предотвращать контакт квалифицированного лица, выполняющего работу, с проводами любой частью своего тела или косвенно через токопроводящие материалы, инструменты или оборудование.

Неквалифицированным лицам, работающим на возвышенности вблизи воздушных линий, не разрешается приближаться или прикасаться к токопроводящим предметам, которые могут касаться или приближаться к любой неохраняемой воздушной линии под напряжением, чем следующие расстояния:

Напряжение относительно земли

Расстояние

50кВ или ниже

10 футов

Более 50кВ

10 футов (плюс 4 дюймаза каждые 10кВ свыше 50кВ)

Неквалифицированным лицам, работающим на земле в непосредственной близости от воздушных линий, не разрешается подносить токопроводящий объект или любой изолированный объект, не имеющий надлежащих изоляционных характеристик, ближе к неохраняемым, находящимся под напряжением воздушным линиям на расстояние, указанное выше.

Квалифицированным лицам, работающим вблизи воздушных линий, как на возвышенности, так и на земле, не разрешается приближаться или брать любой токопроводящий объект без одобренной изолирующей ручки ближе к незащищенным частям под напряжением, которые в таблице выше, Расстояние подхода для Квалифицированные лица, если:) Человек изолирован от части, находящейся под напряжением, с помощью соответствующих перчаток, с рукавами, если необходимо, рассчитанными на соответствующее напряжение, или b.) Часть, находящаяся под напряжением, изолирована от всех людей, или c.) Человек изолирован от всех проводящие объекты с потенциалом, отличным от находящейся под напряжением части.

Определения NFPA 70E - Arc FlashTraining - Обучение NFPA 70E

Определения NFPA 70E необходимо знать, поскольку мы используем эти термины для объяснения оценки риска дуговых вспышек и NFPA 70E.Эти определения NFPA 70E взяты из справочника NFPA 70E, издание 2018 г. Пожалуйста, свяжитесь с ESS, если у вас есть какие-либо вопросы об определениях NFPA 70E.

Опасность дугового разряда

Опасное состояние, связанное с возможным высвобождением энергии, вызванным электрической дугой. Информационное примечание № 1: Опасность вспышки дуги может возникнуть, когда электрические проводники или части схемы под напряжением открыты или когда они находятся внутри оборудования в защищенном или закрытом состоянии, при условии, что человек взаимодействует с оборудованием таким образом, что может вызвать электрическая дуга.В нормальных условиях эксплуатации замкнутое оборудование под напряжением, которое было правильно установлено и обслуживается, вряд ли будет представлять опасность вспышки дуги.

Информационная записка № 2: См. Таблицу 130.7 (C) (15) (a) и Таблицу 130.7 (C) (15) (A) (a), где приведены примеры действий, которые могут создать опасность возникновения дугового разряда.

Опасность вспышки дуги существует, если человек подвергается или может подвергнуться значительной термической опасности. Если тепловая опасность имеет серьезность, при которой человек может получить 1,2 калории на квадратный сантиметр

(кал / см2) или более падающей (тепловой) энергии, опасность считается значительной.Необходимо использовать средства индивидуальной защиты с рейтингом, превышающим тепловую опасность. Использование средств индивидуальной защиты при облучении с падающей энергией менее 1,2 кал / см2, безусловно, разрешено и может быть сочтено целесообразным работодателем и работником.

В определенных условиях дуговое замыкание внутри оборудования может вызвать волну давления и нарушить целостность корпуса. Технический комитет предполагает, что термин «взаимодействие с оборудованием» может означать открытие или закрытие средства отключения, нажатие кнопки сброса или запирание дверцы корпуса.Однако, если оборудование установлено в соответствии с требованиями NEC, надлежащим образом обслуживается и работает нормально, вероятность того, что одно из этих действий приведет к возникновению дугового замыкания, мала.

Оценка риска вспышки дуги

Исследование, посвященное потенциальному воздействию на работника энергии вспышки дуги, проводимое с целью предотвращения травм и определения безопасных методов работы, границ вспышки дуги и соответствующих уровней личной защиты оборудование (СИЗ).

Анализ опасности вспышки дуги определяет границу защиты от вспышки и количество падающей энергии, которая может воздействовать на сотрудника при выполнении рабочей задачи, и проводится в дополнение к анализу опасности поражения электрическим током. Анализ может принимать одну из нескольких различных форм.

Анализ опасности вспышки дуги необходим независимо от наличия этикеток или маркировки на поверхности электрического оборудования. Ссылка на предупреждающую этикетку может быть одним из этапов анализа; однако анализ также должен учитывать риск.По завершении анализа у сотрудника будет достаточно информации для выбора необходимых средств индивидуальной защиты (СИЗ) от дугового разряда и методов работы, необходимых для сведения к минимуму любого теплового воздействия. Часть анализа включает определение границы вспышки дуги и падающей энергии.

Костюм для защиты от дуги

Полная система одежды и оборудования, рассчитанная на дугу, которая покрывает все тело, за исключением рук и ног.

Рейтинг дуги

Значение, приписываемое материалам, которые описывают их характеристики при воздействии электрического дугового разряда.Номинальная мощность дуги выражается в кал / см2 и выводится из определенного значения тепловых характеристик дуги (ATPV) или порога энергии размыкания (EBT) (если система материалов показывает отклик на размыкание и размыкание ниже значения ATPV). Рейтинг дуги указывается как ATPV или EBT, в зависимости от того, какое из них меньше.

Балаклава (носок)

Дуговой капюшон, защищающий шею и голову, за исключением лицевой области глаз и носа.

Граница, вспышка дуги

Когда существует опасность вспышки дуги, предел приближения на расстоянии от предполагаемого источника дуги, в пределах которого человек может получить ожог второй степени, если произойдет вспышка электрической дуги.

Граница, ограниченный подход

Предел приближения на расстоянии от открытого электрического проводника или части схемы, в пределах которой существует опасность поражения электрическим током. Ограниченная граница подхода не связана с вспышкой дуги или падающей энергией. Ограниченная граница подхода - это граница защиты от ударов, предназначенная для определения предела подхода для неквалифицированных сотрудников и устранения риска контакта с незащищенным электрическим проводником под напряжением. Этот термин используется для обозначения минимального расстояния, которое считается безопасным.Когда сотрудник находится ближе, чем это минимальное расстояние, необходимо соблюдать особые меры защиты. Любое лицо, работающее в пределах ограниченного подхода к открытым проводам цепи под напряжением или частям цепи, может сделать это только в том случае, если разрешение на работу под напряжением было заполнено и санкционировано, за исключением случаев, указанных в 130.3 (B) (3). Если неквалифицированный сотрудник должен работать в рамках ограниченного подхода, он должен находиться под прямым и постоянным наблюдением квалифицированного специалиста.

Граница, ограниченный подход

Предел приближения на расстоянии от открытого проводника под напряжением или части схемы, внутри которой существует повышенная вероятность поражения электрическим током из-за дугового разряда в сочетании с непреднамеренным движением для персонал, работающий в непосредственной близости от электрического проводника или части схемы.

Ограниченная граница подхода - это граница защиты от ударов, которая не связана с вспышкой дуги или падающей энергией. Это предел подхода для квалифицированных сотрудников. Квалифицированные сотрудники должны обладать знаниями и способностями избегать неожиданного контакта с незащищенным проводником под напряжением. Если квалифицированному сотруднику необходимо пересечь границу ограниченного подхода, он должен быть защищен от неожиданного контакта с проводниками, находящимися под напряжением и открытыми. Разрешение на электромонтажные работы необходимо заполнить и получить до того, как сотрудники будут работать в пределах ограниченных, ограниченных и запрещенных границ подхода, за исключением случаев, разрешенных законом 130.3 (В) (3).

Автоматический выключатель

Устройство, предназначенное для размыкания и замыкания цепи неавтоматическими средствами и автоматического размыкания цепи при заданном перегрузке по току без повреждения себя при правильном применении в пределах своего номинала. [70, 100]

Обесточен

Без какого-либо электрического подключения к источнику разности потенциалов и от электрического заряда; не имея потенциала, отличного от потенциала земли.

Средства отключения

Устройство или группа устройств, или другие средства, с помощью которых проводники цепи могут быть отключены от источника питания. [70, 100]

Средства отключения могут быть одним или несколькими переключателями, автоматическими выключателями или другими устройствами с номинальными характеристиками, которые могут использоваться для отключения электрических проводников от их источника энергии. Для отключения рабочей нагрузки следует использовать только средства отключения, рассчитанные на номинальную нагрузку.

Разъединяющий (или изолирующий) выключатель (разъединитель, изолятор)

Механическое переключающее устройство, используемое для отключения цепи или оборудования от источника питания. Эти устройства предназначены для работы после отключения и отключения тока нагрузки. На эти устройства можно установить замки и бирки.

Опасность поражения электрическим током

Опасное состояние, при котором контакт или отказ оборудования могут привести к поражению электрическим током, вспышке дуги, термическому ожогу или взрыву.

Пожар, поражение электрическим током и поражение электрическим током уже много лет считаются опасностями, связанными с поражением электрическим током. Начиная с издания NFPA 70E 1995 года, вспышка дуги считается опасным электрическим током. Опасность вспышки дуги в настоящее время определяется с учетом только тепловых аспектов дугового замыкания. К другим опасностям относятся летящие части и детали, а также волна давления (взрыв), возникающая при дуговом замыкании. Другие электрические опасности также могут быть связаны с дуговым замыканием.

Электрооборудование, находящееся под напряжением менее 50 В, обычно не считается источником возникновения дуги.Однако сотрудники должны осознавать, что последствия дугового замыкания связаны с доступной падающей энергией. В некоторых случаях опасность дугового замыкания может быть значительной. Если существует опасность поражения электрическим током или опасности взрыва из-за электрической дуги, в соответствии с требованиями статьи 130 могут потребоваться электробезопасные условия работы и СИЗ.

Электробезопасность

Признание опасностей, связанных с использованием электроэнергии и принятие мер предосторожности, чтобы опасности не привели к травмам или смерти.

Электробезопасность - это условие, которого можно достичь, выполнив следующие действия:

· Выявление всех электрических опасностей

· Создание комплексного плана по снижению воздействия опасностей

· Обеспечение схем защиты, включая обучение как квалифицированных, так и неквалифицированные лица

Условия электробезопасности работы

Состояние, в котором электрический проводник или часть цепи отсоединены от находящихся под напряжением частей, заблокированы / помечены в соответствии с установленными стандартами, испытаны на отсутствие напряжения и заземлены при необходимости.

Создание электрически безопасных условий работы - это единственная рабочая практика, которая гарантирует, что электротравмы не произойдет. Однако рабочие должны осознавать, что использование средств отключения и проверка отсутствия напряжения сами по себе могут быть опасными рабочими задачами.

До тех пор, пока не будут соблюдены электробезопасные условия работы, существует риск травмы из-за электрической энергии.

Открытые (применительно к электрическим проводникам или частям цепи под напряжением). Возможность непреднамеренного прикосновения или приближения человека ближе, чем на безопасном расстоянии.Он применяется к электрическим проводам или частям схемы, которые не защищены, не изолированы или не изолированы должным образом.

Предохранитель

Устройство защиты от перегрузки по току с плавкой частью, размыкающей цепь, которая нагревается и разрывается при прохождении через нее сверхтока.

Короткое замыкание на землю

Непреднамеренное электрически проводящее соединение между незаземленным проводником

электрической цепи и обычно нетоковедущими проводниками, металлическими корпусами, металлическими каналами, металлическим оборудованием или землей.

Охраняемый

Крытый, экранированный, огороженный, закрытый или иным образом защищенный подходящими крышками, кожухами, барьерами, рельсами, экранами, матами или платформами, чтобы исключить вероятность приближения или контакта людей или предметов в точку опасности. [70, 100] Когда оголенный проводник охраняется, человек, приближающийся к оголенному проводнику, вряд ли прикоснется к проводнику. Человек должен подвергаться воздействию разности потенциалов 50 вольт или более, чтобы существовала опасность поражения электрическим током.

Человек может подвергнуться опасностям, связанным с дуговым замыканием, даже если проводник защищен. Защищенный проводник защищает человека от поражения электрическим током, но не от дугового разряда.

Энергия падающего излучения

Количество тепловой энергии, приложенной к поверхности на определенном расстоянии от источника, генерируемой во время возникновения электрической дуги. Энергия падающего излучения обычно выражается в калориях на квадратный сантиметр (кал / см2).

Энергия падающей волны может быть выражена несколькими различными терминами, например калориями на квадратный сантиметр, джоулями на квадратный сантиметр или калориями на квадратный дюйм. Однако падающая энергия должна быть выражена в тех же терминах, что и СИЗ по термическому расчету. Стандарты ASTM требуют, чтобы СИЗ оценивались в калориях на квадратный сантиметр, что позволяет сотруднику выбрать адекватные СИЗ. Физические характеристики материалов различаются, в результате чего материалы по-разному реагируют на воздействие повышенных температур.Некоторые искусственные материалы плавятся перед возгоранием под воздействием тепловой энергии, образующейся при дуговом замыкании. Некоторые другие материалы воспламеняются и горят при возникновении дуги. Наиболее серьезные травмы возникают, когда одежда тает на коже сотрудника или когда одежда сотрудника воспламеняется и горит. Многие материалы плавятся или воспламеняются при нагревании до нескольких сотен градусов по Фаренгейту. Падение энергии приводит к повышению температуры одежды или кожи сотрудника при возникновении дугового разряда. Прогнозирование количества доступной падающей энергии имеет решающее значение для предотвращения травм от плавления или ожога одежды или от прямого воздействия падающей энергии на кожу.

Анализ аварийной энергии

Компонент анализа опасности вспышки дуги, используемый для прогнозирования энергии падающей дуги при оценке риска вспышки дуги для определенного набора условий.

Анализ падающей энергии - важная часть выполнения анализа опасности вспышки дуги для конкретной задачи и конкретного элемента электрооборудования. Расчетный или вычисленный анализ падающей энергии обеспечивает анализ падающей энергии для конкретной установки, которой будет подвергаться сотрудник, если произойдет вспышка дуги.Эта сфокусированная информация позволяет выбрать СИЗ в зависимости от условий, связанных с задачей, выполняемой на конкретном электрическом оборудовании.

Центр управления двигателем

Узел из одной или нескольких закрытых секций, имеющих общую шину питания и в основном содержащий блоки управления двигателем. [70, 100]. Центр управления двигателем обычно содержит стартеры, разъединители, силовые панели, твердотельные приводы и аналогичные компоненты.

Панель-панель

Отдельная панель или группа панельных блоков, предназначенная для сборки в виде одной панели, включая шины и автоматические устройства защиты от перегрузки по току, и оснащенная переключателями для управления освещением или без них. , тепловые или силовые цепи; предназначены для размещения в шкафу или ящике с вырезом в стене, перегородке или другой опоре или напротив нее; и доступен только спереди.[70, 100]

Квалифицированное лицо

Лицо, продемонстрировавшее навыки и знания, связанные со строительством и эксплуатацией электрического оборудования и установок, и прошедшее обучение технике безопасности для выявления и предотвращения возможных опасностей.

Чтобы человек считался квалифицированным, он или она должны понимать опасность поражения электрическим током, связанную с рассматриваемой рабочей задачей. Прежде чем выбрать необходимое защитное оборудование

(СИЗ), он или она также должны понимать, как правильно применять и ограничивать СИЗ и такие инструменты, как тестеры напряжения.Квалифицированный специалист должен уметь распознавать все опасности поражения электрическим током, которые могут быть связаны с рассматриваемой рабочей задачей. Сотрудник может быть квалифицирован для выполнения одной рабочей задачи и не квалифицирован для выполнения другой задачи. Квалифицированный сотрудник должен понимать конструкцию и работу оборудования или схемы, связанной с предполагаемой рабочей задачей.

Последняя редакция определения OSHA для квалифицированного специалиста (1910.399 8/07) включает фразу «продемонстрировал навыки.«Чтобы выполнить это требование, человек должен фактически продемонстрировать, что он / она может выполнить задачу. Генеральная репетиция с использованием соответствующих средств индивидуальной защиты для выполнения задачи гарантирует, что сотрудник сможет выполнить задачу с ограничениями освещения капюшона костюма-вспышки и ограничениями маневренности перчаток с защитным кожухом, рассчитанными на напряжение.

Квалифицированный специалист должен понимать, как выбрать подходящее испытательное оборудование и применить это оборудование к рабочей задаче. Он или она должны быть обучены понимать и применять детали программы и процедур по электробезопасности, предоставленные работодателем.

Квалифицированный специалист должен уметь проводить анализ опасностей / рисков и надлежащим образом реагировать на все опасности, связанные с рабочей задачей. Хотя программы лицензирования, администрируемые правительством штата и местными органами власти, обычно имеют требования к обучению, которым кандидат должен соответствовать до сдачи экзамена, а также периодически после получения лицензии, лицензия сама по себе не дает человеку квалификации для выполнения всех задач, с которыми он может столкнуться. .

Электромонтажные работы требуют непрерывного образования и демонстрации необходимых навыков для поддержания необходимого уровня навыков для безопасной работы.Быть квалифицированным специалистом частично означает признание того, что электрические работы под напряжением разрешены только при условиях, указанных в 130.2 (A).

Опасность поражения электрическим током

Опасное состояние, связанное с возможным высвобождением энергии при контакте или приближении к находящимся под напряжением электрическим проводникам или частям цепи.

Допуск электрического тока через тело варьируется от человека к человеку, а также зависит от пути тока через тело.Хотя это технически не обосновано, допуск, по-видимому, связан с плотностью тока. Однако в существующей документации указано, что любой человек может получить электрошок, если сила тока превышает 0,020 ампер. Любой контакт с источником электрической энергии, который может вызвать такой уровень тока, представляет опасность поражения электрическим током. Обычно, когда напряжение составляет 50 вольт или больше, существует опасность поражения электрическим током.

Номинальный ток короткого замыкания

Предполагаемый симметричный ток короткого замыкания при номинальном напряжении, к которому устройство или система могут быть подключены без повреждений, превышающих определенные критерии приемки.[70, 100]

Номинальные значения тока короткого замыкания маркируются на таком оборудовании, как щитовые панели, распределительные щиты, шинопроводы, контакторы и пускатели. Перечисленные продукты подвергаются тщательному тестированию в рамках их оценки, которая включает тесты в условиях сбоя. Следовательно, перечисленные продукты, используемые в их рейтингах, считаются соответствующими требованиям 110.10 NEC. Основная цель защиты от перегрузки по току - разомкнуть цепь до того, как проводники или их изоляция будут повреждены при возникновении состояния перегрузки по току.Состояние перегрузки по току может быть результатом перегрузки, замыкания на землю или короткого замыкания. Следует выбирать устройства защиты от перегрузки по току (например, предохранители и автоматические выключатели), чтобы гарантировать, что номинальный ток короткого замыкания компонентов системы не будет превышен в случае короткого замыкания или сильного замыкания на землю. Провода, шинные конструкции, коммутационные, защитные и отключающие устройства, а также распределительное оборудование имеют ограниченные характеристики короткого замыкания и будут повреждены или разрушены, если эти номинальные значения короткого замыкания будут превышены.Простое обеспечение защитных устройств от перегрузки по току с достаточными характеристиками отключения не обеспечит адекватную защиту от короткого замыкания для компонентов системы. Когда доступный ток короткого замыкания превышает номинальный ток короткого замыкания электрического компонента, устройство защиты от перегрузки по току должно ограничивать пропускаемую энергию в пределах номинала этого электрического компонента. Коммунальные предприятия обычно определяют и предоставляют информацию о доступных уровнях тока короткого замыкания на обслуживающем оборудовании.Литературу о том, как рассчитать токи короткого замыкания в каждой точке любого распределения, обычно можно получить, связавшись с производителями устройств защиты от сверхтоков или обратившись к IEEE 141-1993 (R1999), Рекомендуемая практика IEEE для распределения электроэнергии для промышленных предприятий. Растения (Красная книга). Адекватная защита от короткого замыкания может быть обеспечена с помощью предохранителей, автоматических выключателей в литом корпусе и силовых выключателей низкого напряжения, в зависимости от конкретной схемы и требований установки.

Однолинейная диаграмма

Диаграмма, которая показывает посредством одиночных линий и графических символов ход электрической цепи или системы цепей, а также составляющие устройства или части, используемые в цепи или системе.

Выключатель, изолирующий

Выключатель, предназначенный для отключения электрической цепи от источника питания. У него нет отключающей способности, и он предназначен для работы только после размыкания цепи каким-либо другим способом.[70, 100]

Коммутатор

Большая отдельная панель, рама или сборка панелей, на которых монтируются на лицевой, задней или обеих сторонах переключатели, устройства защиты от перегрузки по току и другие защитные устройства, шины, и обычно инструменты. Эти сборки обычно доступны как сзади, так и спереди, и не предназначены для установки в шкафах. [70, 100]

Распределительное устройство, устойчивое к дуге

Оборудование, спроектированное таким образом, чтобы противостоять эффектам внутреннего дугового замыкания и которое направляет высвобождаемую изнутри энергию в сторону от работника.

Дугоустойчивый коммутационный аппарат обеспечивает защиту от внутреннего дугового замыкания, когда оборудование замкнуто и работает нормально. Если двери и крышки (включая крепежные детали) закрыты не полностью, рабочие подвергаются рискам, связанным с дуговым замыканием, так же, как если бы не существовало никакого рейтинга стойкости к дуге. Такая защита не может быть обеспечена, если распределительное устройство специально не определено как дугостойкое.

Неквалифицированное лицо

Лицо, не являющееся квалифицированным лицом.

В рабочем состоянии (электрический провод под напряжением сек или части цепи).

Преднамеренный контакт с электрическими проводниками или частями цепи под напряжением руками, ногами или другими частями тела, инструментами, датчиками или испытательным оборудованием, независимо от средств индивидуальной защиты, которые носит человек. Есть две категории «работы»: Диагностика (тестирование) - это снятие показаний или измерений электрического оборудования с помощью утвержденного испытательного оборудования, которое не требует внесения каких-либо физических изменений в оборудование; Ремонт - это любое физическое изменение электрического оборудования (например, выполнение или затяжка соединений, снятие или замена компонентов и т. д.).).

Любая задача, требующая от человека пересечь границу запрещенного подхода и намеренно контактировать с электрическим проводником или частью цепи под напряжением, считается работающей с проводником или частью цепи и подчиняется всем связанным требованиям, включая выбор соответствующего уровня СИЗ. . Измерение напряжения требует нарушения границы запрещенного подхода, что предполагает, что измерение напряжения подвергает работника опасности поражения электрическим током.

Определение термина "работа над" устанавливает два совершенно разных типа задач, которые включены в это определение: диагностическое тестирование и ремонт.Определяя эти два типа задач, которые считаются выполняемыми, определение предполагает, что различные процедурные подходы могут быть в порядке в зависимости от сложности задачи и подверженности сотрудника опасности поражения электрическим током.

Конец определений NFPA 70E

Компания по оптимизации стратегических и энергетических активов

Если вы читали эту серию статей о Законах об управлении корпоративными активами (EAM) , вы заметили, что каждый закон имеет определенную цель , и насколько необходимо следить за каждым из них, чтобы добиться успеха в оптимизации активов и повысить производительность.В этом посте мы завершаем обсуждение законов EAM кратким обзором законов с первого по седьмой и обзором окончательных законов, восьмого и девятого. Прочтите ниже, чтобы узнать, как последние законы отражаются на надежности, основной дисциплине, и знайте, что путешествие на этом не заканчивается, а начинается с нового мышления и новой стратегии управления активами предприятия.

Пропустите этот пост и прочтите все 9 законов управления активами предприятия, загрузив последнюю версию официального документа.

Что мы узнали - краткий обзор


В нашей первой статье «Введение в управление активами» мы представили обзор официального документа SEAM Group, 9 законов предприятия по управлению активами , и выделили первый закон: Защищайте людей. Вторая статья посвящена законам со второго по четвертый, которые закладывают основу для управления активами: знать истинную цель; Зацикливаться на основах; и воспользуйтесь технологиями. В третьей статье обсуждается путь к оптимизации с помощью пятого закона: сосредоточьтесь на прибыли, а не на затратах; шестой закон: оптимизируйте критический путь; и закон седьмой: предвидеть катастрофу.

Размышление о надежности - основная дисциплина в триаде производительности


Окончательные законы (номера 8 и 9) управления активами предприятия отражают надежность, одну из трех основных дисциплин, необходимых для достижения наивысшего уровня операционных показателей.

Закон № 8 - Обеспечьте надежность или избыточность (или и то, и другое).


Рассмотрим следующий сценарий: Cessna 172, самый распространенный из производимых самолетов, имеет только один двигатель. Если двигатель гаснет и пилот не может его перезапустить, единственный выход, который у него есть, - это найти безопасное место для экстренной посадки.Между тем, у Cessna 310 два двигателя. Если двигатель выходит из строя, самолет может продолжать полет, хотя и не так хорошо, но все же имеет больше возможностей, чем Cessna 172.

Хотя внеплановые простои на производственном предприятии обычно не так опасны, как посадка самолета, метафора может быть такой: используется для демонстрации восьмого закона управления активами предприятия. Для продолжения работы активы, находящиеся на критическом пути промышленной эксплуатации, должны обладать надежностью или избыточностью - или тем и другим. И чтобы решить, следует ли применять надежность или избыточность или и то, и другое к жизненным циклам активов, менеджеры должны заранее рассчитать свои вероятности отказа (обсуждаемые в законе № 7).

Закон № 9 - Рассчитывать холодно.


Эмоции и интуиция слишком часто мешают логике, когда пора заменять зрелые активы. Мы видели это много раз: менеджеры привязывались к оборудованию, которое так долго было частью предприятия, даже если затраты на техническое обслуживание могут быть чрезмерными, это может затруднять производство или даже создавать угрозу безопасности.

Возникает и обратная ситуация, хотя и реже, когда операторы слишком стремятся обменять часть оборудования на последнюю модель, независимо от того, производит ли существующий компонент исключительно продукцию.

Sound EAM требует холодных и рациональных расчетов относительно того, следует ли и когда выводить актив из эксплуатации. Эмоции следует исключить из уравнения, и вместо этого показатели производительности должны руководить процессом принятия решений относительно активов.

Повысьте производительность с помощью эффективного управления активами предприятия


Многие руководители часто ошибочно полагают, что и безопасность, и эксплуатационные характеристики могут быть улучшены с помощью технических знаний, когда они должны сначала понять и продемонстрировать основные принципы, лежащие в основе EAM.Когда руководители организаций используют и применяют девять законов EAM в рамках всей организации, они приобретают более стратегический характер в принятии решений и могут раскрыть потенциал для оптимизации активов, что может значительно улучшить время безотказной работы и защитить сотрудников от вреда.

Если вы пропустили наши предыдущие статьи о 9 законах управления активами предприятия , загрузите полный технический документ, чтобы узнать, почему каждый закон важен для оптимизации активов и повышения производительности. Создайте основу в EAM и начните видеть результаты на всем своем предприятии.

ЭЛЕКТРИЧЕСКАЯ БЕЗОПАСНОСТЬ - прикладное промышленное электричество

Важность электробезопасности

С помощью этого урока я надеюсь избежать распространенной ошибки, обнаруживаемой в учебниках по электронике, состоящей в игнорировании или недостаточном освещении предмета электрической безопасности. Я предполагаю, что тот, кто читает эту книгу, хотя бы мимолетно заинтересован в реальной работе с электричеством, и поэтому тема безопасности имеет первостепенное значение.

Еще одно преимущество включения подробного урока по электробезопасности - это практический контекст, который он устанавливает для основных понятий напряжения, тока, сопротивления и схемотехники. Чем более актуальной будет техническая тема, тем больше вероятность того, что студент обратит внимание и поймет. А что может быть важнее приложения для личной безопасности? Кроме того, поскольку электрическая энергия является повседневным явлением в современной жизни, почти каждый может ознакомиться с иллюстрациями, приведенными на таком уроке.Вы когда-нибудь задумывались, почему птиц не шокируют, когда они отдыхают на линиях электропередач? Читайте и узнайте!

Физиологические эффекты электричества

Большинство из нас испытали ту или иную форму электрического «шока», когда электричество заставляет наше тело испытывать боль или травму. Если нам повезет, степень этого переживания ограничится покалыванием или приступами боли из-за накопления статического электричества, проходящего через наши тела. Когда мы работаем с электрическими цепями, способными передавать большую мощность нагрузкам, поражение электрическим током становится гораздо более серьезной проблемой, а боль - наименее значимым результатом поражения электрическим током.

Поскольку электрический ток проходит через материал, любое противодействие току (сопротивлению) приводит к рассеиванию энергии, обычно в виде тепла. Это самый простой и понятный эффект воздействия электричества на живую ткань: ток заставляет ее нагреваться. Если количество выделяемого тепла достаточно, ткань может обжечься. Эффект носит физиологический характер, такой же, как повреждение, вызванное открытым пламенем или другим высокотемпературным источником тепла, за исключением того, что электричество обладает способностью сжигать ткани под кожей жертвы, даже обжигая внутренние органы.

Как электрический ток влияет на нервную систему

Еще одно воздействие электрического тока на тело, возможно, наиболее опасное, касается нервной системы. Под «нервной системой» я имею в виду сеть особых клеток в организме, называемых нервными клетками или нейронами, которые обрабатывают и проводят множество сигналов, ответственных за регуляцию многих функций организма. Мозг, спинной мозг и сенсорные / двигательные органы в теле функционируют вместе, позволяя ему чувствовать, двигаться, реагировать, думать и запоминать.

Нервные клетки взаимодействуют друг с другом, действуя как «преобразователи», создавая электрические сигналы (очень малые напряжения и токи) в ответ на ввод определенных химических соединений, называемых нейротрансмиттерами , и высвобождая эти нейротрансмиттеры при стимуляции электрическими сигналами. Если электрический ток достаточной силы проходит через живое существо (человека или другое), его эффект будет заключаться в подавлении крошечных электрических импульсов, обычно генерируемых нейронами, что приводит к перегрузке нервной системы и предотвращению как рефлекторных, так и волевых сигналов. задействовать мышцы.Мышцы, вызванные внешним (шоковым) током, непроизвольно сокращаются, и жертва ничего не может с этим поделать.

Эта проблема особенно опасна, если пострадавший касается руками проводника под напряжением. Мышцы предплечья, отвечающие за сгибание пальцев, как правило, лучше развиты, чем мышцы, отвечающие за разгибание пальцев, и поэтому, если оба набора мышц будут пытаться сокращаться из-за электрического тока, проводимого через руку человека, «сгибающие» мышцы выиграют, сжимая пальцы в кулак.Если проводник, подающий ток к пострадавшему, обращен к ладони его или ее руки, это сжимающее действие заставит руку крепко ухватиться за провод, тем самым ухудшая ситуацию, обеспечивая отличный контакт с проводом. Пострадавший совершенно не сможет отпустить проволоку.

С медицинской точки зрения это состояние непроизвольного сокращения мышц называется столбняком . Электрики, знакомые с этим эффектом поражения электрическим током, часто называют обездвиженную жертву поражения электрическим током «зависшей в цепи».Вызванный током столбняк можно прервать, только отключив ток через пострадавшего.

Даже когда ток прекращается, жертва может не восстанавливать добровольный контроль над своими мышцами в течение некоторого времени, поскольку химический состав нейротрансмиттера находится в беспорядке. Этот принцип был применен в устройствах «электрошокера», таких как электрошокеры, которые основаны на принципе мгновенного поражения жертвы высоковольтным импульсом, передаваемым между двумя электродами. Правильно нанесенный электрошокер временно (на несколько минут) обездвиживает жертву.

Однако электрический ток может воздействовать не только на скелетные мышцы жертвы электрошока. Мышца диафрагмы, контролирующая легкие, и сердце, которое само по себе является мышцей, также могут быть «заморожены» в состоянии столбняка электрическим током. Даже токи, слишком слабые для того, чтобы вызвать столбняк, часто способны перебивать сигналы нервных клеток настолько, что сердце не может биться должным образом, что приводит к состоянию, известному как фибрилляция . Фибриллирующее сердце скорее трепещет, чем бьется, и не может перекачивать кровь к жизненно важным органам тела.В любом случае смерть от удушья и / или остановки сердца обязательно наступит из-за достаточно сильного электрического тока, проходящего через тело. По иронии судьбы, медицинский персонал использует сильный разряд электрического тока, прикладываемый к груди жертвы, чтобы «подтолкнуть» фибриллирующее сердце к нормальному ритму биений.

Эта последняя деталь подводит нас к другой опасности поражения электрическим током, свойственной коммунальным энергосистемам. Хотя наше первоначальное исследование электрических цепей будет сосредоточено почти исключительно на постоянном токе (постоянном токе или электричестве, которое движется в непрерывном направлении в цепи), современные энергетические системы используют переменный ток или переменный ток.Технические причины этого предпочтения переменного тока перед постоянным током в энергосистемах не имеют отношения к этому обсуждению, но особые опасности каждого вида электроэнергии очень важны для темы безопасности.

Воздействие переменного тока на организм во многом зависит от частоты. Низкочастотный (от 50 до 60 Гц) переменный ток используется в домашних хозяйствах США (60 Гц) и Европы (50 Гц); он может быть опаснее высокочастотного переменного тока и в 3-5 раз опаснее постоянного тока того же напряжения и силы тока. Низкочастотный переменный ток вызывает продолжительное сокращение мышц (тетанию), которое может прижать руку к источнику тока, продлевая воздействие.Постоянный ток, скорее всего, вызовет одиночное судорожное сокращение, которое часто заставляет жертву отойти от источника тока.

Переменный характер

AC имеет большую тенденцию приводить нейроны, задающие ритм сердца, в состояние фибрилляции, тогда как DC имеет тенденцию просто вызывать остановку сердца. Как только ток разряда прекращается, у «замороженного» сердца больше шансов восстановить нормальный ритм сердечных сокращений, чем у фибриллирующего сердца. Вот почему «дефибриллирующее» оборудование, используемое врачами скорой помощи, работает: электрический разряд, подаваемый дефибриллятором, - это постоянный ток, который останавливает фибрилляцию и дает сердцу шанс восстановиться.

В любом случае электрические токи, достаточно высокие, чтобы вызвать непроизвольное мышечное действие, опасны, и их следует избегать любой ценой. В следующем разделе мы рассмотрим, как такие токи обычно входят в тело и выходят из него, и рассмотрим меры предосторожности против таких случаев.

  • Электрический ток может вызвать глубокие и серьезные ожоги тела из-за рассеивания мощности через электрическое сопротивление тела.
  • Столбняк - это состояние, при котором мышцы непроизвольно сокращаются из-за прохождения внешнего электрического тока через тело.Когда непроизвольное сокращение мышц, управляющих пальцами, приводит к тому, что жертва не может отпустить проводник, находящийся под напряжением, жертва считается «замороженной в цепи».
  • Диафрагма (легкие) и сердечные мышцы одинаково подвержены воздействию электрического тока. Даже токи, слишком слабые, чтобы вызвать столбняк, могут быть достаточно сильными, чтобы мешать работе нейронов кардиостимулятора, заставляя сердце трепетать, а не сильно биться.
  • Постоянный ток (DC) с большей вероятностью вызовет столбняк в мышцах, чем переменный ток (AC), поэтому постоянный ток с большей вероятностью «заморозит» жертву в случае шока.Однако переменный ток с большей вероятностью вызовет фибрилляцию сердца жертвы, что является более опасным состоянием для жертвы после прекращения действия электрического тока.

Электричество требует полного пути (цепи) для непрерывного потока. Вот почему удар, полученный от статического электричества, является только мгновенным толчком: течение тока обязательно кратковременно, когда статические заряды уравниваются между двумя объектами. Подобные самоограниченные шоки редко бывают опасными.

Без двух точек контакта на теле для входа и выхода тока, соответственно, опасность поражения электрическим током отсутствует. Вот почему птицы могут спокойно отдыхать на высоковольтных линиях электропередачи, не подвергаясь электрошоку: они контактируют с цепью только в одной точке.

Рисунок 1.1

Для того, чтобы ток протекал по проводнику, должно присутствовать напряжение, которое его мотивирует. Напряжение, как вы должны помнить, всегда составляет относительно двух точек . Не существует такого понятия, как напряжение «на» или «в» одной точке цепи, и поэтому птица, контактирующая с одной точкой в ​​вышеуказанной цепи, не имеет напряжения, приложенного к ее телу, чтобы установить ток через нее.Да, даже если они опираются на две ноги, обе ноги касаются одного и того же провода, что делает их электрически общими . С точки зрения электричества, обе птичьи лапы соприкасаются с одной и той же точкой, поэтому между ними нет напряжения, которое могло бы стимулировать ток через тело птицы.

Это может привести к мысли, что невозможно получить поражение электрическим током, прикоснувшись только к одному проводу. Как птицы, если мы будем касаться только одного провода за раз, мы будем в безопасности, верно? К сожалению, это не так.В отличие от птиц, при контакте с «живым» проводом люди обычно стоят на земле. Часто одна сторона энергосистемы будет намеренно подключена к заземлению, и поэтому человек, касающийся одиночного провода, фактически устанавливает контакт между двумя точками в цепи (провод и заземление):

Рис. 1.2

Значок земли представляет собой набор из трех горизонтальных полос уменьшающейся ширины, расположенных в нижнем левом углу показанной схемы, а также у ступни человека, подвергающегося электрошоку.В реальной жизни заземление энергосистемы представляет собой какой-то металлический проводник, закопанный глубоко в землю для обеспечения максимального контакта с землей. Этот проводник электрически подключен к соответствующей точке соединения в цепи толстым проводом. Заземление жертвы осуществляется через ноги, которые касаются земли.

В этот момент в уме ученика обычно возникает несколько вопросов:

  • Если наличие точки заземления в цепи обеспечивает легкую точку контакта для кого-то, чтобы получить удар током, зачем вообще она в цепи? Разве схема без заземления не была бы безопаснее?
  • Человек, которого шокирует, вероятно, не ходит босиком.Если резина и ткань являются изоляционными материалами, то почему их обувь не защищает их, предотвращая образование цепи?
  • Насколько хорошим проводником может быть грязь ? Если вы можете быть поражены током, протекающим через землю, почему бы не использовать землю в качестве проводника в наших силовых цепях?

В ответ на первый вопрос, наличие преднамеренной точки «заземления» в электрической цепи предназначено для обеспечения того, чтобы одна сторона была безопасной для контакта с .Обратите внимание, что если бы наша жертва на приведенной выше диаграмме коснулась нижней стороны резистора, ничего бы не произошло, даже если бы их ноги все еще касались земли:

Рис. 1.3

Поскольку нижняя сторона схемы надежно соединена с землей через точку заземления в нижнем левом углу схемы, нижний проводник схемы выполнен электрически общим с заземлением. Поскольку между электрически общими точками не может быть напряжения, на человека, контактирующего с нижним проводом, не будет напряжения, и они не получат удара током.По той же причине провод, соединяющий цепь с заземляющим стержнем / пластинами, обычно остается оголенным (без изоляции), так что любой металлический объект, о который он задевает, будет электрически общим с землей.

Заземление цепи гарантирует, что по крайней мере одна точка в цепи будет безопасна для прикосновения. Но как насчет того, чтобы оставить цепь полностью незаземленной? Разве это не сделало бы человека, касающегося только одного провода, таким же безопасным, как птица, сидящая только на одном? В идеале да. Практически нет.Посмотрите, что происходит без земли:

Рисунок 1.4

Несмотря на то, что ноги человека все еще соприкасаются с землей, любая точка в цепи должна быть безопасной для прикосновения. Поскольку не существует полного пути (цепи), образованного через тело человека от нижней стороны источника напряжения к верхней, нет возможности установить ток через человека. Однако все это может измениться из-за случайного заземления, например, если ветка дерева касается линии электропередачи и обеспечивает соединение с землей.Такое случайное соединение между проводом энергосистемы и землей (землей) называется замыканием на землю .

Рисунок 1.5

Замыкания на землю

Замыкания на землю могут быть вызваны многими причинами, в том числе скоплением грязи на изоляторах линий электропередач (создание пути грязной воды для тока от проводника к полюсу и к земле во время дождя), проникновением грунтовых вод в подземные проводники линии электропередач. , и птицы, приземляющиеся на линии электропередач, перемыкая линию к полюсу своими крыльями.Учитывая множество причин замыканий на землю, они, как правило, непредсказуемы. В случае с деревьями никто не может гарантировать , какого провода могут касаться их ветви. Если бы дерево задело верхний провод в цепи, это сделало бы верхний провод безопасным для прикосновения, а нижний опасным - как раз противоположность предыдущему сценарию, когда дерево касается нижнего провода:

Рисунок 1.6

Когда ветвь дерева соприкасается с верхним проводом, этот провод становится заземленным проводом в цепи, электрически общим с заземлением.Следовательно, между этим проводом и землей нет напряжения, а есть полное (высокое) напряжение между нижним проводом и землей. Как упоминалось ранее, ветви деревьев являются лишь одним потенциальным источником замыканий на землю в энергосистеме. Рассмотрим незаземленную энергосистему без соприкосновения деревьев с деревьями, но на этот раз с двумя людьми, касающимися отдельных проводов:

Рис. 1.7

Когда каждый человек стоит на земле и соприкасается с разными точками цепи, путь для электрического тока проходит через одного человека, через землю и через другого человека.Несмотря на то, что каждый человек думает, что он в безопасности, только коснувшись одной точки в цепи, их совместные действия создают смертельный сценарий. Фактически, один человек действует как замыкание на землю, что делает его небезопасным для другого человека. Именно поэтому незаземленные энергосистемы опасны: напряжение между любой точкой цепи и землей (землей) непредсказуемо, потому что замыкание на землю может возникнуть в любой точке цепи в любое время. Единственный персонаж, который гарантированно будет в безопасности в этих сценариях, - это птица, которая вообще не связана с землей! Надежно подключив обозначенную точку цепи к заземлению («заземлив» цепь), по крайней мере, безопасность может быть обеспечена в этой точке.Это большая гарантия безопасности, чем полное отсутствие заземления.

Отвечая на второй вопрос, обувь do на резиновой подошве действительно обеспечивает некоторую электрическую изоляцию, чтобы помочь защитить кого-то от проведения электрического тока через ступни. Однако наиболее распространенные конструкции обуви не являются электрически «безопасными», поскольку их подошва слишком тонкая и не из подходящего материала. Кроме того, любая влага, грязь или токопроводящие соли из пота тела на поверхности подошвы или проникающие сквозь нее могут поставить под угрозу ту небольшую изоляционную ценность, которая должна была изначально иметь обувь.Есть обувь, специально предназначенная для опасных электромонтажных работ, а также толстые резиновые коврики, на которых можно стоять во время работы с цепями под напряжением, но эти специальные детали должны быть в абсолютно чистом и сухом состоянии, чтобы быть эффективными. Достаточно сказать, что обычной обуви недостаточно, чтобы гарантировать защиту от поражения электрическим током от электросети.

Исследования контактного сопротивления между частями человеческого тела и точками контакта (например, с землей) показывают широкий диапазон цифр (информацию об источнике этих данных см. В конце главы):

  • Контакт для рук или ног, с резиновой изоляцией: обычно 20 МОм.
  • Контакт ступни через кожаную подошву обуви (сухой): от 100 кОм до 500 кОм
  • Контакт ступни через кожаную подошву обуви (мокрый): от 5 кОм до 20 кОм

Как видите, резина не только является гораздо лучшим изоляционным материалом, чем кожа, но и присутствие воды в пористом веществе, таком как кожа , значительно снижает электрическое сопротивление.

Отвечая на третий вопрос, грязь - не очень хороший проводник (по крайней мере, когда она сухая!). У него слишком плохой проводник, чтобы поддерживать постоянный ток для питания нагрузки.Однако, как мы увидим в следующем разделе, требуется очень мало тока, чтобы ранить или убить человека, поэтому даже плохой проводимости грязи достаточно, чтобы обеспечить путь для смертельного тока при наличии достаточного напряжения, как обычно находится в энергосистемах.

Некоторые шлифованные поверхности лучше изолируют, чем другие. Например, асфальт на масляной основе имеет гораздо большее сопротивление, чем большинство видов грязи или камней. Бетон, с другой стороны, имеет довольно низкое сопротивление из-за внутреннего содержания воды и электролита (проводящего химического вещества).

  • Поражение электрическим током может произойти только при контакте между двумя точками цепи; когда на тело жертвы подается напряжение.
  • Цепи питания
  • обычно имеют обозначенную точку, которая «заземлена»: прочно соединена с металлическими стержнями или пластинами, закопанными в грязь, чтобы гарантировать, что одна сторона цепи всегда находится под потенциалом земли (нулевое напряжение между этой точкой и землей).
  • Замыкание на землю - это случайное соединение проводника цепи с землей (землей).
  • Специальная изолированная обувь и коврики предназначены для защиты людей от ударов через заземление, но даже эти части снаряжения должны быть в чистом, сухом состоянии, чтобы быть эффективными. Обычная обувь недостаточно хороша, чтобы обеспечить защиту от ударов, изолируя ее владельца от земли.
  • Хотя грязь является плохим проводником, она может проводить ток, достаточный для того, чтобы ранить или убить человека.

Распространенная фраза в отношении электробезопасности звучит примерно так: « Убивает не напряжение, а ток ! ”Хотя в этом есть доля правды, об опасности поражения электрическим током нужно понимать больше, чем эта простая пословица.Если бы напряжение не представляло опасности, никто бы никогда не распечатал и не вывесил надписи: ОПАСНО - ВЫСОКОЕ НАПРЯЖЕНИЕ!

Принцип «убивает текущее» по сути верен. Это электрический ток, который сжигает ткани, замораживает мышцы и вызывает фибрилляцию сердца. Однако электрический ток не возникает сам по себе: должно быть доступное напряжение, чтобы побудить ток протекать через жертву. Тело человека также оказывает сопротивление току, что необходимо учитывать.

Принимая закон Ома для напряжения, тока и сопротивления и выражая его через ток для заданных напряжения и сопротивления, мы получаем следующее уравнение:

[латекс] \ textbf {закон Ома} [/ латекс]

[латекс] Ток = \ frac {Напряжение} {Сопротивление} [/ латекс] [латекс] I = \ frac {E} {R} [/ латекс]

Величина тока, протекающего через тело, равна величине напряжения, приложенного между двумя точками этого тела, деленному на электрическое сопротивление, оказываемое телом между этими двумя точками.Очевидно, что чем больше напряжения доступно для протекания тока, тем легче он будет проходить через любое заданное сопротивление. Следовательно, существует опасность высокого напряжения, которое может генерировать ток, достаточный для получения травмы или смерти. И наоборот, если тело имеет более высокое сопротивление, меньший ток будет протекать при любом заданном напряжении. Насколько опасно напряжение, зависит от общего сопротивления цепи, препятствующего прохождению электрического тока.

Сопротивление тела не является фиксированной величиной.Это варьируется от человека к человеку и время от времени. Существует даже метод измерения содержания жира в организме, основанный на измерении электрического сопротивления между пальцами рук и ног. Различное процентное содержание жира в организме обеспечивает разное сопротивление: одна переменная влияет на электрическое сопротивление в организме человека. Чтобы методика работала точно, человек должен регулировать потребление жидкости за несколько часов до теста, что указывает на то, что гидратация тела является еще одним фактором, влияющим на электрическое сопротивление тела.

Сопротивление тела также зависит от того, как происходит контакт с кожей: от руки к руке, от руки к ноге, от ступни к ступне, от руки к локтю и т. Д. Пот, богатый солью и минералами. , являясь жидкостью, является отличным проводником электричества. То же самое и с кровью с таким же высоким содержанием проводящих химикатов. Таким образом, контакт с проводом потной рукой или открытой раной будет оказывать гораздо меньшее сопротивление току, чем контакт с чистой сухой кожей.

Измеряя электрическое сопротивление чувствительным измерителем, я измеряю примерно 1 миллион Ом (1 МОм) на руках, держась за металлические щупы измерителя между пальцами.Измеритель показывает меньшее сопротивление, когда я крепко сжимаю щупы, и большее сопротивление, когда я держу их свободно. Я сижу за компьютером и печатаю эти слова, мои руки чистые и сухие. Если бы я работал в жаркой, грязной промышленной среде, сопротивление между моими руками, вероятно, было бы намного меньше, представляя меньшее сопротивление смертельному току и большую угрозу поражения электрическим током.

Насколько опасен электрический ток?

Ответ на этот вопрос также зависит от нескольких факторов.Химический состав тела человека оказывает значительное влияние на то, как электрический ток влияет на человека. Некоторые люди очень чувствительны к току, испытывая непроизвольное сокращение мышц из-за разряда статического электричества. Другие могут получить большие искры от разряда статического электричества и почти не почувствовать его, не говоря уже о мышечном спазме. Несмотря на эти различия, с помощью тестов были разработаны приблизительные руководящие принципы, которые показывают, что для проявления вредных эффектов требуется очень небольшой ток (опять же, информацию об источнике этих данных см. В конце главы).Все текущие значения даны в миллиамперах (миллиампер равен 1/1000 ампер):

ТЕЛО ВЛИЯНИЕ МУЖЧИНЫ / ЖЕНЩИНЫ ПРЯМОЙ ТОК (DC) 60 Гц 100 кГц
Легкое ощущение под рукой Мужчины 1,0 мА 0,4 мА 7 мА
Женщины 0,6 мА 0,3 мА 5 мА
Порог боли Мужчины 5.2 мА 1,1 мА 12 мА
Женщины 3,5 мА 0,7 мА 8 мА
Болезненный, но произвольный контроль мышц сохраняется Мужчины 62 мА 9 мА 55 мА
Женщины 41 мА 6 мА 37 мА
Болезненно, провода не отпускаются Мужчины 76 мА 16 мА 75 мА
Женщины 60 мА 15 мА 63 мА
Сильная боль, затрудненное дыхание Мужчины 90 мА 23 мА 94 мА
Женщины 60 мА 15 мА 63 мА
Возможна фибрилляция сердца через 3 секунды Мужчины и женщины 500 мА 100 мА

«Гц» означает единицу измерения Гц .Это мера того, насколько быстро меняется переменный ток, иначе известный как частота . Таким образом, столбец цифр, обозначенный «60 Гц переменного тока», относится к току, который меняется с частотой 60 циклов (1 цикл = период времени, когда ток течет в одном направлении, а затем в другом) в секунду. Последний столбец, обозначенный «10 кГц переменного тока», относится к переменному току, который совершает десять тысяч (10 000) возвратно-поступательных циклов каждую секунду.

Имейте в виду, что эти цифры являются приблизительными, поскольку люди с разным химическим составом тела могут реагировать по-разному.Было высказано предположение, что ток через грудную клетку всего 17 мА переменного тока достаточно, чтобы вызвать фибрилляцию у человека при определенных условиях. Большинство наших данных относительно индуцированной фибрилляции получены в результате испытаний на животных. Очевидно, что проводить тесты индуцированной фибрилляции желудочков на людях непрактично, поэтому имеющиеся данные отрывочны. О, и если вам интересно, я понятия не имею, почему женщины, как правило, более восприимчивы к электрическому току, чем мужчины! Предположим, я положил руки на клеммы источника переменного напряжения с частотой 60 Гц (60 циклов в секунду).Какое напряжение необходимо для этого состояния чистой, сухой кожи, чтобы получить ток в 20 миллиампер (достаточно, чтобы я не мог отпустить источник напряжения)? Мы можем использовать закон Ома, чтобы определить это:

[латекс] E = IR [/ латекс]

[латекс] E = (20 мА) (1 M \ Omega) [/ латекс]

[латекс] \ textbf {E = 20 000 вольт или 20 кВ} [/ латекс]

Имейте в виду, что это «лучший случай» (чистая, сухая кожа) с точки зрения электробезопасности и что это значение напряжения представляет собой величину, необходимую для того, чтобы вызвать столбняк.Чтобы вызвать болезненный шок, потребуется гораздо меньше! Кроме того, имейте в виду, что физиологические эффекты любой конкретной силы тока могут значительно отличаться от человека к человеку, и что эти расчеты являются приблизительными оценками только .

Обрызгав пальцы водой для имитации пота, я смог измерить сопротивление рук в руках всего 17 000 Ом (17 кОм). Имейте в виду, что это касается только одного пальца каждой руки, касающегося тонкой металлической проволоки. Пересчитав напряжение, необходимое для возникновения тока в 20 мА, мы получим эту цифру:

[латекс] E = IR [/ латекс]

[латекс] E = (20 мА) (17 кОмега) [/ латекс]

[латекс] \ textbf {E = 340 V} [/ латекс]

В этих реальных условиях потребуется всего 340 вольт потенциала от одной моей руки к другой, чтобы вызвать ток 20 миллиампер.Тем не менее, все еще возможно получить смертельный удар от меньшего напряжения, чем это. При условии значительно более низкого показателя сопротивления тела, увеличенного за счет контакта с кольцом (полоса золота, обернутая по окружности пальца, обеспечивает отличную точку контакта для поражения электрическим током) или полный контакт с большим металлическим предметом, таким как труба или металл рукоятки инструмента, сопротивление корпуса может упасть до 1000 Ом (1 кОм), в результате чего даже более низкое напряжение может представлять потенциальную опасность.

[латекс] E = IR [/ латекс]

[латекс] E = (20 мА) (1 кОмега) [/ латекс]

[латекс] \ textbf {E = 20 V} [/ латекс]

Обратите внимание, что в этом состоянии 20 вольт достаточно, чтобы произвести ток в 20 миллиампер через человека; достаточно, чтобы вызвать столбняк. Помните, было высказано предположение, что сила тока всего 17 миллиампер может вызвать фибрилляцию желудочков (сердца). При сопротивлении рукопашной в 1000 Ом для создания этого опасного состояния потребуется всего 17 вольт.

[латекс] E = IR [/ латекс]
[латекс] E = (17 мА) (1 кВт) [/ латекс]
[латекс] \ textbf {E = 17 В} [/ латекс]

Семнадцать вольт - это не очень много для электрических систем. Конечно, это «наихудший» сценарий с напряжением переменного тока 60 Гц и отличной проводимостью тела, но он действительно показывает, насколько низкое напряжение может представлять серьезную угрозу при определенных условиях.

Условия, необходимые для создания сопротивления тела 1000 Ом, не должны быть такими экстремальными, как то, что было представлено (потная кожа при контакте с золотым кольцом).Сопротивление тела может уменьшаться при приложении напряжения (особенно если столбняк заставляет пострадавшего крепче держать проводник), так что при постоянном напряжении удар может усилиться после первого контакта. То, что начинается как легкий шок - ровно настолько, чтобы «заморозить» жертву, чтобы она не могла отпустить ее, может перерасти в нечто достаточно серьезное, чтобы убить ее, поскольку сопротивление их тела уменьшается, а сила тока соответственно увеличивается.

Исследования предоставили приблизительный набор цифр для электрического сопротивления точек контакта человека в различных условиях:

Ситуация Сухой мокрый
Проволока касалась пальцем 40 000 Ом - 1 000 000 Ом 4000 Ом - 15000 Ом
Проволока в руке 15000 Ом - 50 000 Ом 3000 Ом - 5000 Ом
Ручные плоскогубцы по металлу 5000 Ом - 10 000 Ом 1000 Ом - 3000 Ом
Контакт ладонью 3000 Ом - 8000 Ом 1000 Ом - 2000 Ом
1.5-дюймовая металлическая труба с захватом одной рукой 1000 Ом - 3000 Ом 500 Ом - 1500 Ом
1,5-дюймовая металлическая труба с захватом двумя руками 500 Ом - 1500 кОм 250 Ом - 750 Ом
Рука погружена в проводящую жидкость 200 Ом - 500 Ом
Опора, погруженная в проводящую жидкость 100 Ом - 300 Ом

Обратите внимание на значения сопротивления для двух состояний с 1.5-дюймовая металлическая труба. Сопротивление, измеренное при захвате трубы двумя руками, составляет ровно половину сопротивления, когда одна рука держит трубу.

Рисунок 1.8

Двумя руками площадь контакта с телом вдвое больше, чем с одной рукой. Это важный урок: электрическое сопротивление между любыми контактирующими объектами уменьшается с увеличением площади контакта при прочих равных условиях. Если держать трубу двумя руками, ток будет иметь два, параллельных маршрутов, по которым течет от трубы к телу (или наоборот). ВНИМАНИЕ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Рис. 1.9.

Как мы увидим в более поздней главе, параллельные пути всегда приводят к меньшему общему сопротивлению, чем любой отдельный путь, рассматриваемый отдельно.

В промышленности 30 вольт обычно считается консервативным пороговым значением для опасного напряжения. Осторожный человек должен расценивать любое напряжение выше 30 В как опасное, не полагаясь на нормальное сопротивление тела для защиты от поражения электрическим током. Тем не менее, держать руки в чистоте и сухости и снимать все металлические украшения при работе с электричеством по-прежнему является отличной идеей.Даже при более низком напряжении металлические украшения могут представлять опасность, поскольку проводят ток, достаточный для ожога кожи, при контакте между двумя точками в цепи. Металлические кольца, в частности, были причиной более чем нескольких ожогов пальцев из-за замыкания между точками в низковольтной и сильноточной цепи.

Кроме того, напряжение ниже 30 может быть опасным, если его достаточно, чтобы вызвать неприятное ощущение, которое может вызвать вздрагивание и случайное соприкосновение с более высоким напряжением или другой опасностью.Я вспоминаю, как однажды жарким летним днем ​​работал над автомобилем. На мне были шорты, моя голая нога касалась хромового бампера автомобиля, когда я затягивал контакты аккумулятора. Когда я прикоснулся металлическим ключом к положительной (незаземленной) стороне 12-вольтовой батареи, я почувствовал покалывание в том месте, где моя нога касалась бампера. Сочетание плотного контакта с металлом и моей вспотевшей кожи позволило почувствовать шок всего лишь с 12 вольт электрическим потенциалом.

К счастью, ничего плохого не произошло, но если бы двигатель работал и удар ощущался в моей руке, а не ноге, я мог бы рефлекторно толкнуть руку на пути вращающегося вентилятора или уронить металлический ключ на клеммы аккумулятора (производя большой () ток через гаечный ключ с большим количеством искр).Это иллюстрирует еще один важный урок, касающийся электробезопасности; этот электрический ток сам по себе может быть косвенной причиной травмы, заставляя вас подпрыгивать или спазмировать части вашего тела в опасную для вас сторону.

Ток, проходящий через человеческое тело, имеет значение, насколько он опасен. Ток будет влиять на все мышцы, находящиеся на его пути, а поскольку мышцы сердца и легких (диафрагмы), вероятно, являются наиболее важными для выживания, пути удара, проходящие через грудную клетку, являются наиболее опасными.Это делает путь электрического тока из рук в руки очень вероятным способом получения травм и смертельного исхода.

Во избежание подобных ситуаций рекомендуется работать с цепями под напряжением, находящимися под напряжением, только одной рукой, а вторую руку держать в кармане, чтобы случайно ни к чему не прикоснуться. Конечно, всегда безопаснее, чем , когда он отключен от сети, но это не всегда практично или возможно. При работе одной рукой, как правило, предпочтение отдается правой руке по двум причинам: большинство людей правши (что обеспечивает дополнительную координацию при работе), а сердце обычно находится слева от центра в грудной полости.

Для левшей этот совет может быть не лучшим. Если такой человек недостаточно скоординирован с правой рукой, он может подвергнуть себя большей опасности, используя руку, с которой ему меньше всего комфортно, даже если электрический ток через эту руку может представлять большую опасность для его сердца. Относительная опасность между сотрясением одной рукой или другой, вероятно, меньше, чем опасность работы с менее чем оптимальной координацией, поэтому выбор руки для работы лучше всего оставить на усмотрение человека.

Лучшая защита от ударов цепи под напряжением - это сопротивление, а сопротивление может быть добавлено к телу с помощью изолированных инструментов, перчаток, обуви и другого снаряжения. Ток в цепи является функцией доступного напряжения, деленного на общее сопротивление на пути потока. Как мы рассмотрим более подробно позже в этой книге, сопротивления имеют аддитивный эффект, когда они сложены так, что ток течет только по одному пути:

Фигура 1.10

Человек, находящийся в прямом контакте с источником напряжения: ток ограничен только сопротивлением тела.

[латекс] I = \ frac {E} {R_ {boot}} [/ латекс]

Теперь мы рассмотрим эквивалентную схему для человека в изолированных перчатках и ботинках:

Рисунок 1.11

Лицо в изоляционных перчатках и сапогах;

Ток теперь ограничен сопротивлением цепи:

[латекс] I = \ frac {E} {R_ {glove} + R_ {body} + R_ {boot} +} [/ latex]

Поскольку электрический ток должен проходить через ботинок и корпус и перчатку, чтобы замкнуть цепь обратно к батарее, общая сумма ( сумма ) этих сопротивлений противодействует протеканию тока в большей степени, чем любое другое. сопротивлений рассматривается индивидуально.

Безопасность - одна из причин, по которой электрические провода обычно покрывают пластиковой или резиновой изоляцией: чтобы значительно увеличить сопротивление между проводником и тем или иным предметом, который может с ним контактировать. К сожалению, было бы слишком дорого изолировать проводники линии электропередач из-за недостаточной изоляции для обеспечения безопасности в случае случайного контакта. Таким образом, безопасность обеспечивается за счет того, что эти стропы должны находиться достаточно далеко вне досягаемости, чтобы никто не мог случайно их коснуться.

Если возможно, отключите питание цепи перед выполнением каких-либо работ с ней.Вы должны обезопасить все источники вредной энергии, прежде чем систему можно будет считать безопасной для работы. В промышленности обеспечение безопасности цепи, устройства или системы в этом состоянии обычно называют переводом в состояние нулевой энергии . В центре внимания этого урока, конечно же, электробезопасность. Однако многие из этих принципов применимы и к неэлектрическим системам.

  • Вред для тела зависит от силы электрического тока. Более высокое напряжение позволяет производить более высокие и опасные токи.Сопротивление противостоит току, поэтому высокое сопротивление является хорошей защитой от ударов.
  • Обычно считается, что любое напряжение выше 30 может создавать опасные ударные токи. Металлические украшения определенно плохо носить при работе с электрическими цепями. Кольца, ремешки для часов, ожерелья, браслеты и другие подобные украшения обеспечивают отличный электрический контакт с вашим телом и сами могут проводить ток, достаточный для возникновения ожогов кожи даже при низком напряжении.
  • Низкое напряжение может быть опасным, даже если оно слишком низкое, чтобы напрямую вызвать поражение электрическим током.Их может быть достаточно, чтобы напугать жертву, заставив ее отпрянуть и коснуться чего-то более опасного в непосредственной близости.
  • Когда необходимо работать в «живой» цепи, лучше всего выполнять работу одной рукой, чтобы предотвратить смертельный путь электрического тока из рук в руки (через грудную клетку).
  • Если возможно, отключите питание цепи перед выполнением каких-либо работ с ней.

При работе с оборудованием отключите все источники питания перед выполнением любых работ.В промышленности удаление этих источников питания из схемы, устройства или системы обычно известно как перевод их в состояние нулевой энергии . В центре внимания этого урока, конечно же, электробезопасность. Однако многие из этих принципов применимы и к неэлектрическим системам.

Обеспечение безопасности чего-либо в состоянии нулевой энергии означает избавление от любого вида потенциальной или накопленной энергии, включая, помимо прочего:

  • Опасное напряжение
  • Давление пружины
  • Гидравлическое давление (жидкость)
  • Пневматическое (воздушное) давление
  • Подвесной
  • Химическая энергия (легковоспламеняющиеся или иным образом реагирующие вещества)
  • Ядерная энергия (радиоактивные или делящиеся вещества)

Напряжение по своей природе является проявлением потенциальной энергии.В первой главе я даже использовал приподнятую жидкость в качестве аналогии для потенциальной энергии напряжения, имеющей способность (потенциал) производить ток (поток), но не обязательно осознавая этот потенциал, пока не будет установлен подходящий путь для потока. и сопротивление потоку преодолевается. Пара проводов с высоким напряжением между ними не выглядит и не звучит опасно, даже если они несут между собой достаточно потенциальной энергии, чтобы протолкнуть смертоносное количество тока через ваше тело. Несмотря на то, что это напряжение в настоящее время ничего не делает, у него есть потенциал, и этот потенциал необходимо нейтрализовать, прежде чем можно будет физически контактировать с этими проводами.

Все правильно спроектированные схемы имеют механизмы отключения для снятия напряжения в цепи. Иногда эти «разъединения» служат двойной цели: автоматически размыкаются в условиях чрезмерного тока, и в этом случае мы называем их «автоматическими выключателями». В других случаях выключатели-разъединители представляют собой устройства с ручным управлением без автоматической функции. В любом случае они существуют для вашей защиты и должны использоваться должным образом. Обратите внимание, что устройство отключения должно быть отдельно от обычного выключателя, используемого для включения и выключения устройства.Это предохранительный выключатель, который должен использоваться только для защиты системы в состоянии нулевого потребления энергии:

Рисунок 1.12

Когда разъединитель находится в «разомкнутом» положении, как показано (отсутствие непрерывности), цепь разомкнута, и ток не будет существовать. На нагрузке будет нулевое напряжение, а полное напряжение источника будет падать на разомкнутые контакты выключателя. Обратите внимание, что в нижнем проводе цепи нет необходимости в размыкающем выключателе. Поскольку эта сторона цепи надежно соединена с землей (землей), она электрически является общей с землей, и ее лучше оставить таким образом.Для максимальной безопасности персонала, работающего с нагрузкой этой цепи, можно установить временное заземление на верхней стороне нагрузки, чтобы исключить падение напряжения на нагрузке:

Рисунок 1.13

При наличии временного заземляющего соединения обе стороны проводки нагрузки соединяются с землей, обеспечивая нулевое состояние энергии на нагрузке.

Поскольку заземление с обеих сторон нагрузки электрически эквивалентно короткому замыканию через нагрузку с помощью провода, это еще один способ достижения той же цели максимальной безопасности:

Фигура 1.14

В любом случае обе стороны нагрузки будут электрически общими с землей, с учетом отсутствия напряжения (потенциальной энергии) между обеими сторонами нагрузки и землей, на которой стоят люди. Этот метод временного заземления проводов в обесточенной энергосистеме очень распространен при техническом обслуживании систем распределения электроэнергии высокого напряжения.

Еще одним преимуществом этой меры предосторожности является защита от возможности включения размыкающего переключателя (включения, чтобы обеспечить непрерывность цепи), когда люди все еще контактируют с нагрузкой.Временный провод, подключенный к нагрузке, создавал бы короткое замыкание, когда выключатель был замкнут, немедленно отключая любые устройства защиты от перегрузки по току (автоматические выключатели или предохранители) в цепи, что снова отключает питание. Если это произойдет, разъединитель вполне может получить повреждение, но рабочие на нагрузке находятся в безопасности.

Здесь было бы хорошо упомянуть, что устройства максимального тока не предназначены для защиты от поражения электрическим током.Скорее, они существуют исключительно для защиты проводников от перегрева из-за чрезмерных токов. Только что описанные временные закорачивающие провода действительно могут вызвать «срабатывание» любых устройств перегрузки по току в цепи, если выключатель должен быть замкнут, но следует понимать, что защита от поражения электрическим током не является предполагаемой функцией этих устройств. Их основная функция будет просто использоваться для защиты рабочего с установленным закорачивающим проводом.

Структурированные системы безопасности: блокировка / маркировка

Поскольку очевидно, что важно иметь возможность закрепить любые отключающие устройства в разомкнутом (выключенном) положении и убедиться, что они остаются в этом положении во время работы в цепи, существует потребность в структурированной системе безопасности, которая должна быть введена в место.Такая система обычно используется в промышленности и называется Lock-out / Tag-out .

Процедура блокировки / маркировки работает следующим образом: все люди, работающие в защищенной цепи, имеют свой собственный замок или кодовый замок, который они устанавливают на рычаге управления устройства отключения перед работой с системой. Кроме того, они должны заполнить и подписать ярлык, который они вешают на свой замок, с описанием характера и продолжительности работы, которую они собираются выполнять в системе.Если есть несколько источников энергии, которые необходимо «заблокировать» (множественные разъединения, как электрические, так и механические источники энергии должны быть защищены, и т. Д.), Рабочий должен использовать столько своих замков, сколько необходимо для обеспечения питания от системы. до начала работы. Таким образом, система поддерживается в состоянии нулевого энергопотребления до тех пор, пока не будет снята каждая последняя блокировка со всех устройств отключения и отключения, а это означает, что каждый последний работник даст согласие, сняв свои личные блокировки. Если было принято решение повторно активировать систему, и замок (и) одного человека все еще остается на месте после того, как все присутствующие снимают свои, метка (и) покажет, кто этот человек и что он делает.

Даже при наличии хорошей программы безопасности по блокировке / маркировке все еще необходимы усердие и меры предосторожности, основанные на здравом смысле. Это особенно актуально в промышленных условиях, когда над устройством или системой может одновременно работать множество людей. Некоторые из этих людей могут не знать о надлежащей процедуре блокировки / маркировки или могут знать о ней, но слишком самоуверенны, чтобы ей следовать. Не думайте, что все соблюдают правила безопасности!

После того, как электрическая система была заблокирована и помечена вашим личным замком, вы должны дважды проверить, действительно ли напряжение зафиксировано в нулевом состоянии.Один из способов проверить - увидеть, запустится ли машина (или что-то еще, над чем она работает), если будет задействован переключатель или кнопка запуска или кнопка . Если он запускается, значит, вы знаете, что не смогли получить от него электроэнергию.

Кроме того, всегда должен проверять на наличие опасного напряжения с помощью измерительного прибора, прежде чем касаться каких-либо проводов в цепи. Для большей безопасности вы должны выполнить следующую процедуру проверки, использования, а затем проверки вашего глюкометра:

  • Убедитесь, что ваш измеритель правильно показывает на известном источнике напряжения.
  • Используйте свой измеритель, чтобы проверить цепь блокировки на наличие опасного напряжения.
  • Еще раз проверьте свой измеритель на известном источнике напряжения, чтобы убедиться, что он по-прежнему показывает, как должен.

Хотя это может показаться чрезмерным или даже параноидальным, это проверенный метод предотвращения поражения электрическим током. Однажды у меня был счетчик, который не смог показать напряжение, когда он должен был, при проверке цепи, чтобы убедиться, что она «мертвая». Если бы я не использовал другие средства для проверки наличия напряжения, меня бы сегодня не было в живых, чтобы написать это.Всегда есть шанс, что ваш вольтметр окажется неисправным именно тогда, когда он понадобится вам для проверки на наличие опасного состояния. Следуя этим инструкциям, вы никогда не попадете в смертельную ситуацию из-за поломки счетчика.

Наконец, электромонтажник прибудет к тому моменту процедуры проверки безопасности, когда будет считаться безопасным прикосновение к проводнику (проводам). Имейте в виду, что после принятия всех мер предосторожности возможно (хотя и очень маловероятно) наличие опасного напряжения.Последней мерой предосторожности, которую следует предпринять на этом этапе, является кратковременный контакт проводника (проводов) тыльной стороной руки перед тем, как схватить его или металлический инструмент, соприкасающийся с ним. Почему? Если по какой-то причине между этим проводником и заземлением все еще присутствует напряжение, движение пальца в результате реакции удара (сжатие в кулак) приведет к разрыву контакта с проводником. Обратите внимание, что это абсолютно последний шаг , последний шаг , который любой электрик должен когда-либо предпринять перед началом работы с энергосистемой, и не следует использовать ни при каких условиях в качестве альтернативного метода проверки опасного напряжения.Если у вас когда-либо будут основания сомневаться в надежности вашего глюкометра, воспользуйтесь другим глюкометром, чтобы получить «второе мнение»

  • Состояние нулевой энергии: Когда цепь, устройство или система защищены таким образом, что отсутствует потенциальная энергия, которая могла бы нанести вред кому-либо, работающему с ними.
  • Устройства выключателя-разъединителя должны присутствовать в правильно спроектированной электрической системе, чтобы обеспечить удобную готовность к состоянию нулевого потребления энергии.
  • К обслуживаемой нагрузке могут быть подключены временные заземляющие или закорачивающие провода для дополнительной защиты персонала, работающего с этой нагрузкой.
  • Lock-out / Tag-out работает следующим образом: при работе с системой в состоянии нулевого энергопотребления рабочий помещает личный замок или кодовый замок на каждое устройство отключения энергии, имеющее отношение к его или ее задаче в этой системе. Кроме того, на каждый из этих замков навешивается тег, описывающий характер и продолжительность работы, которую необходимо выполнить, и того, кто ее выполняет.
  • Всегда проверяйте, что цепь была зафиксирована в состоянии нулевого потребления энергии с помощью испытательного оборудования после «блокировки». Обязательно проверьте свой глюкометр до и после проверки цепи, чтобы убедиться, что она работает правильно.
  • Когда придет время действительно вступить в контакт с проводником (ами) предположительно неработающей энергосистемы, сделайте это сначала тыльной стороной руки, чтобы в случае удара током мышечная реакция оттолкнула пальцы от проводника. .

Безопасное и эффективное использование электросчетчика - это, пожалуй, самый ценный навык, которым может овладеть электронщик, как ради собственной безопасности, так и для профессионального мастерства. Поначалу может быть сложно использовать счетчик, зная, что вы подключаете его к цепям под напряжением, которые могут содержать опасные для жизни уровни напряжения и тока.Это опасение небезосновательно, и всегда лучше действовать осторожно при использовании счетчиков. Небрежность больше, чем какой-либо другой фактор, является причиной несчастных случаев с электричеством у опытных технических специалистов.

Мультиметры

Самым распространенным электрическим испытательным оборудованием является мультиметр . Мультиметры названы так потому, что они могут измерять множество переменных: напряжение, ток, сопротивление и часто многие другие, некоторые из которых не могут быть описаны здесь из-за их сложности.В руках обученного техника мультиметр является одновременно эффективным рабочим инструментом и защитным устройством. Однако в руках невежественного и / или неосторожного человека мультиметр может стать источником опасности при подключении к «действующей» цепи.

Существует много разных марок мультиметров, причем каждый производитель выпускает несколько моделей с разными наборами функций. Мультиметр, показанный здесь на следующих иллюстрациях, представляет собой «общий» дизайн, не специфичный для какого-либо производителя, но достаточно общий, чтобы научить основным принципам использования:

Фигура 1.15

Вы заметите, что дисплей этого измерителя имеет «цифровой» тип: числовые значения отображаются с использованием четырех цифр аналогично цифровым часам. Поворотный селекторный переключатель (теперь установлен в положение Off ) имеет пять различных положений измерения, в которые он может быть установлен: два значения «V», два значения «A» и одно положение посередине с забавной «подковой». Символ на нем, представляющий «сопротивление». Символ «подкова» - это греческая буква «Омега» (Ω), которая является общим символом для электрической единицы измерения ом.

Из двух настроек «V» и двух настроек «A» вы заметите, что каждая пара разделена на уникальные маркеры либо парой горизонтальных линий (одна сплошная, одна пунктирная), либо пунктирной линией с волнистой кривой над ней. . Параллельные линии представляют «постоянный ток», а волнистая кривая - «переменный ток». «V», конечно, означает «напряжение», а «A» означает «сила тока» (ток). Измеритель использует внутренние методы для измерения постоянного тока, чем он использует для измерения переменного тока, и поэтому он требует от пользователя выбора типа напряжения (В) или тока (А) для измерения.Хотя мы не обсуждали переменный ток (AC) в каких-либо технических деталях, это различие в настройках счетчика важно помнить.

Мультиметр Розетки

На лицевой панели мультиметра есть три разных гнезда, к которым мы можем подключить наши измерительные провода . Измерительные провода - это не что иное, как специально подготовленные провода, используемые для подключения измерителя к тестируемой цепи. Провода покрыты гибкой изоляцией с цветовой кодировкой (черной или красной), чтобы руки пользователя не касались оголенных проводов, а кончики зондов представляют собой острые жесткие кусочки проволоки:

Фигура 1.16

Черный измерительный провод всегда подключается к черному разъему на мультиметре: с пометкой «COM» для «общего». Красные измерительные провода подключаются либо к красному разъему с маркировкой напряжения и сопротивления, либо к красному разъему с маркировкой тока, в зависимости от того, какое количество вы собираетесь измерить с помощью мультиметра.

Чтобы увидеть, как это работает, давайте посмотрим на пару примеров, показывающих, как используется измеритель. Сначала мы настроим измеритель для измерения постоянного напряжения от батареи:

Фигура 1.17

Обратите внимание, что два измерительных провода подключены к соответствующим гнездам на измерителе для измерения напряжения, а селекторный переключатель установлен на «V» постоянного тока. Теперь рассмотрим пример использования мультиметра для измерения напряжения переменного тока от бытовой электрической розетки (настенной розетки):

Рис. 1.18

Единственное отличие в настройке счетчика - это расположение селекторного переключателя: теперь он установлен на переменный ток «V». Поскольку мы все еще измеряем напряжение, измерительные провода останутся подключенными к тем же гнездам.В обоих этих примерах настоятельно рекомендуется, , чтобы вы не позволяли наконечникам щупов соприкасаться друг с другом, пока они оба находятся в контакте со своими соответствующими точками в цепи. Если это произойдет, произойдет короткое замыкание, создающее искру и, возможно, даже шар пламени, если источник напряжения способен обеспечить достаточный ток! Следующее изображение иллюстрирует потенциальную опасность:

Рис. 1.19.

Это лишь один из способов, которым счетчик может стать источником опасности при неправильном использовании.

Измерение напряжения, пожалуй, самая распространенная функция, для которой используется мультиметр. Это, безусловно, первичное измерение, выполняемое в целях безопасности (часть процедуры блокировки / маркировки), и оно должно быть хорошо понято оператором счетчика. Поскольку напряжение между двумя точками всегда относительное, измеритель должен быть надежно подключен к двум точкам в цепи, прежде чем он будет обеспечивать надежное измерение. Обычно это означает, что оба щупа должны быть схвачены руками пользователя и прижаты к правильным точкам контакта источника напряжения или цепи во время измерения.

Поскольку путь электрического тока из рук в руки является наиболее опасным, удерживание измерительных щупов в двух точках высоковольтной цепи таким образом всегда представляет собой потенциальную опасность . Если защитная изоляция на датчиках изношена или потрескалась, пальцы пользователя могут соприкоснуться с проводниками датчика во время испытания, что приведет к сильному удару. Если можно использовать только одну руку для захвата зондов, это более безопасный вариант. Иногда можно «защелкнуть» один наконечник щупа на контрольной точке цепи, чтобы его можно было отпустить, а другой установить на место, используя только одну руку.Для облегчения этого можно прикрепить специальные аксессуары для наконечников зонда, такие как пружинные зажимы.

Помните, что измерительные провода измерителя являются частью всего комплекта оборудования и что с ними следует обращаться с той же осторожностью и уважением, что и сам измеритель. Если вам нужен специальный аксессуар для ваших измерительных проводов, такой как пружинный зажим или другой специальный наконечник зонда, обратитесь к каталогу продукции производителя измерителя или другого производителя испытательного оборудования. Не пытайтесь проявить изобретательность и изготавливать свои собственные пробники, так как вы можете подвергнуть себя опасности в следующий раз, когда будете использовать их в цепи под напряжением.

Также следует помнить, что цифровые мультиметры обычно хорошо справляются с различением измерений переменного и постоянного тока, поскольку они настраиваются на одно или другое при проверке напряжения или тока. Как мы видели ранее, как переменное, так и постоянное напряжение и ток могут быть смертельными, поэтому при использовании мультиметра в качестве устройства проверки безопасности вы всегда должны проверять наличие как переменного, так и постоянного тока, даже если вы не ожидаете найти и то, и другое. ! Кроме того, при проверке наличия опасного напряжения вы должны обязательно проверить всех пар точек, о которых идет речь.

Например, предположим, что вы открыли шкаф с электропроводкой и обнаружили три больших проводника, подающих питание переменного тока на нагрузку. Автоматический выключатель, питающий эти провода (предположительно), был отключен, заблокирован и помечен. Вы дважды проверили отсутствие питания, нажав кнопку Start для нагрузки. Ничего не произошло, поэтому теперь вы переходите к третьему этапу проверки безопасности: проверке измерителя напряжения.

Сначала вы проверяете свой измеритель на известном источнике напряжения, чтобы убедиться, что он работает правильно.Любая ближайшая электрическая розетка должна обеспечивать удобный источник переменного напряжения для проверки. Вы делаете это и обнаруживаете, что счетчик показывает как следует. Затем вам нужно проверить напряжение между этими тремя проводами в шкафу. Но напряжение измеряется между двумя точками , так где же проверить?

Рисунок 1.20

Ответ - проверить все комбинации этих трех точек. Как видите, на рисунке точки обозначены буквами «A», «B» и «C», поэтому вам нужно будет взять мультиметр (установленный в режиме вольтметра) и проверить его между точками A и B, B и C, а также A и C.Если вы обнаружите напряжение между любой из этих пар, цепь не находится в состоянии нулевой энергии. Но ждать! Помните, что мультиметр не будет регистрировать напряжение постоянного тока, когда он находится в режиме переменного напряжения, и наоборот, поэтому вам необходимо проверить эти три пары точек в для каждого режима , в общей сложности шесть проверок напряжения для завершения!

Однако, даже несмотря на все эти проверки, мы еще не охватили все возможности. Помните, что опасное напряжение может появиться между одиночным проводом и землей (в этом случае металлический каркас шкафа будет хорошей точкой отсчета заземления) в энергосистеме.Итак, чтобы быть в полной безопасности, мы должны не только проверять между A и B, B и C, и A и C (как в режимах переменного, так и постоянного тока), но мы также должны проверять между A и землей, B и землей, и C & заземление (как в режимах переменного, так и постоянного тока)! Это дает в общей сложности двенадцать проверок напряжения для этого, казалось бы, простого сценария всего с тремя проводами. Затем, конечно, после того, как мы завершили все эти проверки, нам нужно взять мультиметр и повторно проверить его с помощью известного источника напряжения, такого как розетка, чтобы убедиться, что он по-прежнему в хорошем рабочем состоянии.

Использование мультиметра для проверки сопротивления

Использование мультиметра для проверки сопротивления - гораздо более простая задача. Измерительные провода будут оставаться подключенными к тем же розеткам, что и для проверки напряжения, но селекторный переключатель необходимо повернуть, пока он не укажет на символ сопротивления «подкова». Касаясь щупами устройства, сопротивление которого необходимо измерить, прибор должен правильно отображать сопротивление в омах:

Фигура 1.21

При измерении сопротивления следует помнить, что это нужно делать только на обесточенных компонентах ! Когда измеритель находится в режиме «сопротивления», он использует небольшую внутреннюю батарею для генерации крошечного тока через измеряемый компонент. Путем определения того, насколько сложно пропустить этот ток через компонент, можно определить и отобразить сопротивление этого компонента. Если в контуре измерителя-вывод-компонент-вывод-измеритель имеется дополнительный источник напряжения, который помогает или противодействует току измерения сопротивления, производимому измерителем, это приведет к ошибочным показаниям.В худшем случае счетчик может даже выйти из строя из-за внешнего напряжения.

Режим «Сопротивление» мультиметра

Режим «сопротивления» мультиметра очень полезен для определения целостности проводов, а также для точных измерений сопротивления. Когда между наконечниками пробников имеется хорошее, прочное соединение (моделируется путем их соприкосновения), измеритель показывает почти нулевое сопротивление. Если бы измерительные провода не имели сопротивления, он показывал бы ровно ноль:

. Фигура 1.22

Если выводы не соприкасаются друг с другом или не касаются противоположных концов разорванного провода, измеритель покажет бесконечное сопротивление (обычно путем отображения пунктирных линий или сокращения «O.L.», что означает «разомкнутый контур»):

Рисунок 1.23

Измерение тока с помощью мультиметра

Безусловно, наиболее опасным и сложным применением мультиметра является измерение тока. Причина этого довольно проста: для того, чтобы измеритель мог измерять ток, измеряемый ток должен проходить с по счетчика.Это означает, что измеритель должен быть частью цепи тока, а не просто подключаться к какой-либо стороне, как в случае измерения напряжения. Чтобы сделать измеритель частью пути тока цепи, исходная цепь должна быть «разорвана», а измеритель должен быть подключен к двум точкам разомкнутого разрыва. Чтобы настроить измеритель на это, переключатель должен указывать на переменный или постоянный ток «A», а красный измерительный провод должен быть вставлен в красную розетку с маркировкой «A». На следующем рисунке показан измеритель, полностью готовый к измерению тока, и проверяемая цепь:

Фигура 1.24

Сейчас цепь разомкнута при подготовке к подключению счетчика:

Рисунок 1.25

Следующий шаг - вставить измеритель в одну линию со схемой, подключив два наконечника щупа к разомкнутым концам цепи, черный щуп к отрицательной (-) клемме 9-вольтовой батареи и красный щуп к свободному концу провода, ведущему к лампе:

Рисунок 1.26

Этот пример показывает очень безопасную схему для работы. 9 вольт вряд ли представляют опасность поражения электрическим током, поэтому не стоит бояться разомкнуть эту цепь (не голыми руками, не меньше!) И подключить счетчик параллельно с током.Однако с цепями более высокой мощности это действительно может быть опасным занятием. Даже если напряжение в цепи было низким, нормальный ток мог быть достаточно высоким, чтобы возникла опасная искра в момент установления последнего подключения датчика измерителя.

Другой потенциальной опасностью использования мультиметра в режиме измерения тока («амперметр») является невозможность правильно вернуть его в конфигурацию измерения напряжения перед измерением напряжения с его помощью. Причины этого зависят от конструкции и работы амперметра.При измерении тока в цепи путем размещения измерителя непосредственно на пути тока, лучше всего, чтобы измеритель оказывал небольшое сопротивление току или не оказывал никакого сопротивления. В противном случае дополнительное сопротивление изменит работу схемы. Таким образом, мультиметр спроектирован так, чтобы сопротивление между наконечниками измерительного щупа было практически нулевым, когда красный щуп был вставлен в красное гнездо «А» (для измерения тока). В режиме измерения напряжения (красный провод вставлен в красное гнездо «V») между наконечниками измерительных щупов имеется большое количество мегаомов сопротивления, потому что вольтметры рассчитаны на сопротивление, близкое к бесконечному (так что они не имеют t потребляет значительный ток из тестируемой цепи).

При переключении мультиметра из режима измерения тока в режим измерения напряжения легко повернуть селекторный переключатель из положения «A» в положение «V» и забыть соответственно переключить положение разъема красного измерительного провода с «A» на положение «V». «V». В результате - если счетчик затем подключить к источнику значительного напряжения - произойдет короткое замыкание счетчика!

Рисунок 1.27

Чтобы предотвратить это, у большинства мультиметров есть функция предупреждения, с помощью которой они издают звуковой сигнал, если когда-либо в гнездо «A» вставлен провод, а селекторный переключатель установлен в положение «V».Однако какими бы удобными ни были эти функции, они по-прежнему не заменяют ясного мышления и осторожности при использовании мультиметра.

Все качественные мультиметры содержат внутри предохранители, которые спроектированы так, чтобы «перегорать» в случае чрезмерного тока через них, как в случае, показанном на последнем изображении. Как и все устройства максимальной токовой защиты, эти предохранители в первую очередь предназначены для защиты оборудования (в данном случае самого счетчика) от чрезмерного повреждения и только во вторую очередь для защиты пользователя от повреждений.Мультиметр можно использовать для проверки собственного предохранителя, установив селекторный переключатель в положение сопротивления и создав соединение между двумя красными гнездами следующим образом:

Рисунок 1.28.

. Исправный предохранитель будет указывать на очень низкое сопротивление, в то время как перегоревший предохранитель всегда будет показывать «O.L.» (или любое другое указание, которое используется в этой модели мультиметра для обозначения отсутствия непрерывности). Фактическое количество Ом, отображаемое для исправного предохранителя, не имеет большого значения, если оно является произвольно низким.

Итак, теперь, когда мы увидели, как использовать мультиметр для измерения напряжения, сопротивления и тока, что еще нужно знать? Множество! Ценность и возможности этого универсального испытательного прибора станут более очевидными по мере того, как вы приобретете навыки и познакомитесь с ним.Ничто не заменит регулярные занятия со сложными инструментами, такими как эти, поэтому не стесняйтесь экспериментировать с безопасными схемами с батарейным питанием.

  • Измеритель, способный проверять напряжение, ток и сопротивление, называется мультиметром .
  • Поскольку напряжение между двумя точками всегда относительное, измеритель напряжения («вольтметр») должен быть подключен к двум точкам в цепи, чтобы получить хорошие показания. Будьте осторожны, не касайтесь оголенных наконечников щупов вместе при измерении напряжения, так как это приведет к короткому замыканию!
  • Не забывайте всегда проверять напряжение переменного и постоянного тока при использовании мультиметра для проверки наличия опасного напряжения в цепи.Убедитесь, что вы проверяете напряжение между всеми комбинациями пар проводников, в том числе между отдельными проводниками и землей!
  • В режиме измерения напряжения («вольтметр») мультиметры имеют очень высокое сопротивление между выводами.
  • Никогда не пытайтесь измерить сопротивление или обрыв цепи с помощью мультиметра в цепи, которая находится под напряжением. В лучшем случае показания сопротивления, которые вы получаете от глюкометра, будут неточными, а в худшем случае глюкометр может быть поврежден, а вы можете получить травму.
  • Измерители тока («амперметры») всегда включены в цепь, поэтому электроны должны проходить через через счетчик.
  • В режиме измерения тока («амперметр») мультиметры практически не имеют сопротивления между выводами. Это сделано для того, чтобы электроны могли проходить через счетчик с наименьшими трудностями. Если бы это было не так, измеритель добавлял бы дополнительное сопротивление в цепи, тем самым влияя на ток.

Как мы видели ранее, энергосистема без надежного соединения с землей непредсказуема с точки зрения безопасности.Невозможно гарантировать, какое или как мало будет напряжения между любой точкой цепи и землей. Заземлив одну сторону источника напряжения энергосистемы, по крайней мере, одна точка в цепи может быть электрически соединена с землей и, следовательно, не представляет опасности поражения электрическим током. В простой двухпроводной системе электропитания проводник, подключенный к земле, называется нейтраль , а другой провод - hot , также известный как live или active :

. Фигура 1.29 Двухпроводная система электропитания

Что касается источника напряжения и нагрузки, заземление не имеет никакого значения. Он существует исключительно ради личной безопасности, гарантируя, что по крайней мере одна точка в цепи будет безопасна для прикосновения (нулевое напряжение относительно земли). «Горячая» сторона цепи, названная так из-за ее потенциальной опасности поражения электрическим током, будет опасна прикасаться, если напряжение не будет обеспечено путем надлежащего отключения от источника (в идеале, с использованием процедуры систематической блокировки / маркировки).

Этот дисбаланс опасностей между двумя проводниками в простой силовой цепи важно понимать. Следующая серия иллюстраций основана на распространенных бытовых системах электропроводки (для простоты с использованием источников постоянного напряжения, а не переменного тока).

Если мы посмотрим на простой бытовой электроприбор, такой как тостер с проводящим металлическим корпусом, мы увидим, что при правильной работе не должно быть опасности поражения электрическим током. Провода, передающие питание на нагревательные элементы тостера, изолированы от соприкосновения с металлическим корпусом (и друг с другом) резиной или пластиком.

Рисунок 1.30 Отсутствие напряжения между корпусом и землей

Однако, если один из проводов внутри тостера случайно войдет в контакт с металлическим корпусом, корпус станет электрически общим для провода, и прикосновение к корпусу будет столь же опасным, как прикосновение к оголенному проводу. Представляет ли это опасность поражения электрическим током, зависит от , к которому случайно прикоснется провод :

Рисунок 1.31 случайное контактное напряжение между корпусом и землей

Если «горячий» провод касается корпуса, это подвергает опасности пользователя тостера.С другой стороны, если нейтральный провод касается корпуса, опасности поражения электрическим током нет:

Рисунок 1.32 Случайное отсутствие напряжения между корпусом и землей

Чтобы гарантировать, что первый отказ менее вероятен, чем второй, инженеры стараются проектировать устройства таким образом, чтобы свести к минимуму контакт горячего проводника с корпусом. В идеале, конечно, вы не хотите, чтобы какой-либо из проводов случайно соприкасался с токопроводящим корпусом прибора, но обычно есть способы спроектировать расположение частей, чтобы сделать случайный контакт менее вероятным для одного провода, чем для другого.

Однако эта профилактическая мера эффективна только в том случае, если может быть гарантирована полярность вилки питания. Если вилку можно перевернуть, то проводник с большей вероятностью соприкоснется с корпусом вполне может быть «горячим»:

Рисунок 1.33 Напряжение между корпусом и землей

Устройства, разработанные таким образом, обычно поставляются с «поляризованными» вилками, причем один контакт вилки немного уже, чем другой. Розетки питания также имеют такую ​​же конструкцию, причем один слот уже другой.Следовательно, вилку нельзя вставить «задом наперед», и можно гарантировать идентичность проводника внутри устройства. Помните, что это никак не влияет на основные функции устройства: это делается исключительно ради безопасности пользователя.

Некоторые инженеры решают проблему безопасности, просто делая внешний корпус прибора непроводящим. Такие приборы называются с двойной изоляцией, , поскольку изолирующий кожух служит вторым слоем изоляции над и за пределами самих проводов.Если провод внутри устройства случайно войдет в контакт с корпусом, это не представляет опасности для пользователя устройства.

Другие инженеры решают проблему безопасности, поддерживая проводящий корпус, но используя третий провод для надежного соединения этого корпуса с землей:

Рис. 1.34 Нулевое напряжение корпуса заземления между корпусом и землей

Третий контакт на шнуре питания обеспечивает прямое электрическое соединение корпуса устройства с землей, делая две точки электрически общими друг с другом.Если они электрически общие, то между ними не может быть падения напряжения. По крайней мере, так оно и должно работать. Если горячий провод случайно коснется металлического корпуса прибора, он вызовет прямое короткое замыкание обратно на источник напряжения через заземляющий провод, сработав любые устройства защиты от сверхтоков. Пользователь устройства останется в безопасности.

Вот почему так важно никогда не отрезать третий контакт вилки питания, когда пытаетесь вставить его в розетку с двумя контактами.Если это будет сделано, не будет заземления корпуса прибора для обеспечения безопасности пользователя (ей). Устройство по-прежнему будет функционировать должным образом, но если возникнет внутренняя неисправность, в результате которой горячий провод соприкасается с корпусом, результаты могут быть смертельными. Если необходимо использовать двухконтактную розетку , можно установить двухконтактный переходник розетки с заземляющим проводом, прикрепленным к винту заземляющей крышки. Это обеспечит безопасность заземленного прибора, подключенного к розетке этого типа.

Однако электрически безопасное проектирование не обязательно заканчивается нагрузкой. Последнюю защиту от поражения электрическим током можно установить на стороне источника питания цепи, а не на самом приборе. Эта мера защиты называется обнаружением замыкания на землю и работает следующим образом:

В правильно работающем приборе (показанном выше) ток, измеренный через проводник под напряжением, должен быть точно равен току через нейтральный проводник, потому что существует только один путь для прохождения электронов в цепи.При отсутствии неисправности внутри устройства нет соединения между проводниками цепи и человеком, касающимся корпуса, и, следовательно, нет удара.

Если, однако, горячая проволока случайно коснется металлического корпуса, через человека, прикоснувшегося к корпусу, пройдет ток. Наличие тока разряда будет проявляться в виде разницы в тока между двумя силовыми проводниками в розетке:

Рисунок 1.35 Разница в токе между двумя силовыми проводниками в розетке

Эта разница в токе между «горячим» и «нейтральным» проводниками будет существовать только в том случае, если есть ток через заземление, что означает, что в системе есть неисправность.Следовательно, такая разница в токе может использоваться как способ обнаруживать состояние неисправности . Если устройство настроено для измерения этой разницы в токах между двумя силовыми проводниками, обнаружение дисбаланса тока можно использовать для запуска размыкания выключателя, тем самым отключая питание и предотвращая серьезный удар:

Рисунок 1.36 Прерыватели тока замыкания на землю

Такие устройства называются прерывателями тока замыкания на землю , или сокращенно GFCI. За пределами Северной Америки GFCI также известен как предохранительный выключатель, устройство защитного отключения (RCD), RCBO или RCD / MCB в сочетании с миниатюрным автоматическим выключателем или выключателем утечки на землю (ELCB).Они достаточно компактны, чтобы их можно было встроить в розетку. Эти розетки легко идентифицировать по их характерным кнопкам «Тест» и «Сброс». Большим преимуществом использования этого подхода для обеспечения безопасности является то, что он работает независимо от конструкции устройства. Конечно, использование прибора с двойной изоляцией или заземлением в дополнение к розетке GFCI было бы еще лучше, но приятно знать, что что-то может быть сделано для повышения безопасности помимо конструкции и состояния прибора.

Прерыватель цепи дуги (AFCI) , автоматический выключатель, предназначенный для предотвращения пожаров, предназначен для размыкания при прерывистых резистивных коротких замыканиях. Например, нормальный выключатель на 15 А предназначен для быстрого размыкания цепи при нагрузке, значительно превышающей номинальную 15 А, или медленнее, немного превышающей номинальную. Хотя это защищает от прямого короткого замыкания и нескольких секунд перегрузки, соответственно, он не защищает от дуги - аналогично дуговой сварке. Дуга представляет собой сильно изменяющуюся нагрузку, периодически достигающую максимума более 70 А, разомкнутую цепь с переходами через ноль переменного тока.Хотя среднего тока недостаточно для срабатывания стандартного выключателя, его достаточно, чтобы разжечь пожар. Эта дуга может быть создана из-за металлического короткого замыкания, которое сжигает металл, оставляя резистивную распыляющую плазму ионизированных газов.

AFCI содержит электронную схему для обнаружения этого прерывистого резистивного короткого замыкания. Он защищает как от дуги от горячего к нейтральному, так и от горячего к заземлению. AFCI не защищает от опасности поражения электрическим током, как GFCI. Таким образом, GFCI по-прежнему необходимо устанавливать на кухне, в ванной и на открытом воздухе.Поскольку AFCI часто срабатывает при запуске больших двигателей и, в более общем смысле, щеточных двигателей, его установка ограничена электрическими цепями в спальнях в соответствии с Национальным электротехническим кодексом США. Использование AFCI должно уменьшить количество электрических пожаров. Однако неприятные срабатывания при работе приборов с двигателями в цепях AFCI представляют собой проблему.

  • Энергосистемы часто имеют одну сторону источника напряжения, подключенную к заземлению, чтобы обеспечить безопасность в этой точке.
  • «Заземленный» провод в энергосистеме называется нейтральным проводом , а незаземленный провод - горячим проводом .
  • Заземление в энергосистемах существует для личной безопасности, а не для работы нагрузки (ей).
  • Электробезопасность прибора или других нагрузок может быть улучшена за счет хорошей инженерии: поляризованные вилки, двойная изоляция и трехконтактные вилки с «заземлением» - все это способы повышения безопасности на стороне нагрузки.
  • Прерыватели тока замыкания на землю (GFCI) работают, считывая разницу в токе между двумя проводниками, подающими питание на нагрузку.Никакой разницы в токе быть не должно. Любая разница означает, что ток должен входить в нагрузку или выходить из нее каким-либо образом, кроме двух основных проводников, что нехорошо. Значительная разница в токе автоматически откроет размыкающий механизм выключателя, полностью отключив питание.

Обычно допустимая токовая нагрузка проводника - это предел конструкции схемы, который нельзя намеренно превышать, но есть приложение, в котором ожидается превышение допустимой токовой нагрузки: в случае плавких предохранителей .

Что такое предохранитель?

A плавкий предохранитель представляет собой устройство электробезопасности, построенное вокруг проводящей полосы, которая предназначена для плавления и разделения в случае чрезмерного тока. Предохранители всегда подключаются последовательно с компонентами, которые необходимо защитить от перегрузки по току, так что, когда предохранитель перегорает (размыкается), он размыкает всю цепь и останавливает ток через компонент (ы). Плавкий предохранитель, включенный в одну ветвь параллельной цепи, конечно, не повлияет на ток через любую из других ветвей.

Обычно тонкий кусок плавкой проволоки помещается в защитную оболочку, чтобы свести к минимуму опасность возникновения дугового разряда в случае прорыва проволоки с большой силой, что может произойти в случае сильных перегрузок по току. В случае небольших автомобильных предохранителей оболочка прозрачна, так что плавкий элемент может быть визуально осмотрен. В бытовой проводке обычно используются ввинчиваемые предохранители со стеклянным корпусом и тонкой узкой полосой из металлической фольги посередине. Фотография, на которой показаны оба типа предохранителей, представлена ​​здесь:

Фигура 1.37 Типы предохранителей

Предохранители картриджного типа популярны в автомобилях и в промышленности, если они изготовлены из материалов оболочки, отличных от стекла. Поскольку предохранители рассчитаны на «отказ» срабатывания при превышении их номинального тока, они обычно предназначены для легкой замены в цепи. Это означает, что они будут вставлены в какой-либо тип держателя, а не припаиваться или прикрепляться болтами к проводникам схемы. Ниже приведена фотография, на которой изображена пара предохранителей со стеклянным картриджем в держателе с несколькими предохранителями:

Фигура 1.38 Стеклянный патрон с предохранителями Держатель нескольких предохранителей

Предохранители удерживаются пружинными металлическими зажимами, причем сами зажимы постоянно соединены с проводниками цепи. Основной материал держателя предохранителя (или блока предохранителей , как их иногда называют) выбран как хороший изолятор.

Другой тип держателя предохранителей патронного типа обычно используется для установки в панелях управления оборудованием, где желательно скрыть все точки электрического контакта от контакта с человеком.В отличие от только что показанного блока предохранителей, где все металлические зажимы открыты, этот тип держателя предохранителя полностью закрывает предохранитель в изоляционном корпусе:

Рисунок 1.39 Патрон предохранителя закрывает изолирующий корпус

Наиболее распространенным устройством защиты от перегрузки по току в сильноточных цепях сегодня является автоматический выключатель .

Что такое автоматический выключатель?

Автоматические выключатели - это специально разработанные переключатели, которые автоматически размыкаются для отключения тока в случае перегрузки по току.Малые автоматические выключатели, например, используемые в жилых, коммерческих и легких промышленных предприятиях, имеют термическое управление. Они содержат биметаллическую полосу (тонкую полоску из двух металлов, соединенных встречно-спиной), несущую ток цепи, которая изгибается при нагревании. Когда биметаллическая полоса создает достаточную силу (из-за чрезмерного нагрева полосы), срабатывает механизм отключения, и прерыватель размыкается. Автоматические выключатели большего размера автоматически активируются силой магнитного поля, создаваемого токонесущими проводниками внутри выключателя, или могут срабатывать для отключения от внешних устройств, контролирующих ток цепи (эти устройства называются защитными реле , ).

Поскольку автоматические выключатели не выходят из строя в условиях перегрузки по току - скорее, они просто размыкаются и могут быть повторно включены путем перемещения рычага - они с большей вероятностью будут обнаружены подключенными к цепи более длительным образом, чем предохранители. Фотография маленького автоматического выключателя представлена ​​здесь:

Рисунок 1.40. Малый автоматический выключатель

Снаружи он выглядит не более чем выключателем. Действительно, его можно было использовать как таковое. Однако его истинная функция - работать как устройство защиты от перегрузки по току.

Следует отметить, что в некоторых автомобилях используются недорогие устройства, известные как плавкие вставки , для защиты от перегрузки по току в цепи зарядки аккумулятора из-за стоимости предохранителя и держателя надлежащего номинала. Плавкая вставка - это примитивный предохранитель, представляющий собой не что иное, как короткий кусок провода с резиновой изоляцией, предназначенный для плавления в случае перегрузки по току, без какой-либо твердой оболочки. Такие грубые и потенциально опасные устройства никогда не используются в промышленности или даже в жилых помещениях, в основном из-за встречающихся более высоких уровней напряжения и тока.По мнению автора, их применение даже в автомобильных схемах вызывает сомнения.

Обозначение на электрической схеме для предохранителя представляет собой S-образную кривую:

Рисунок 1.41 S-образная кривая

Номиналы предохранителей

Предохранители

, как и следовало ожидать, в основном рассчитаны на ток: ампер. Хотя их работа зависит от самовыделения тепла в условиях чрезмерного тока за счет собственного электрического сопротивления предохранителя, они спроектированы так, чтобы вносить незначительное дополнительное сопротивление в цепи, которые они защищают.Это в значительной степени достигается за счет того, что плавкий провод делается как можно короче. Точно так же, как допустимая токовая нагрузка обычного провода не связана с его длиной (сплошной медный провод 10 калибра выдержит ток 40 ампер на открытом воздухе, независимо от длины или короткого отрезка), плавкий провод из определенного материала и калибра будет дуть при определенном токе независимо от того, как долго он длится. Поскольку длина не является фактором в текущем рейтинге, чем короче она может быть сделана, тем меньшее сопротивление будет между концом и концом.

Однако разработчик предохранителя также должен учитывать, что происходит после срабатывания предохранителя: оплавленные концы сплошного провода будут разделены воздушным зазором с полным напряжением питания между концами.Если предохранитель недостаточно длинный в цепи высокого напряжения, искра может перескочить с одного из концов расплавленного провода на другой, снова замкнув цепь:

Рисунок 1.42 Принципиальная схема конструктора предохранителей Рисунок 1.43 Принципиальная схема конструктора предохранителей

Следовательно, предохранители рассчитываются с учетом их допустимого напряжения, а также уровня тока, при котором они сработают.

Некоторые большие промышленные предохранители имеют сменные проволочные элементы для снижения затрат. Корпус предохранителя представляет собой непрозрачный картридж многоразового использования, защищающий провод предохранителя от воздействия и экранирующий окружающие предметы от провода предохранителя.

Номинальный ток предохранителя - это нечто большее, чем просто цифра. Если через предохранитель на 30 ампер пропускается ток в 35 ампер, он может внезапно перегореть или с задержкой перед перегоранием, в зависимости от других аспектов его конструкции. Некоторые предохранители предназначены для очень быстрого срабатывания, в то время как другие рассчитаны на более скромное время «срабатывания» или даже на замедленное срабатывание в зависимости от области применения. Последние предохранители иногда называют плавкими предохранителями с задержкой срабатывания предохранителя из-за их преднамеренных характеристик задержки срабатывания.

Классическим примером применения плавкого предохранителя с задержкой срабатывания является защита электродвигателя, где броски тока до десяти раз превышают нормальный рабочий ток каждый раз, когда двигатель запускается с полной остановки. Если бы в таком приложении использовались быстродействующие предохранители, двигатель никогда бы не запустился, потому что при нормальных уровнях пускового тока предохранитель (и) немедленно перегорел бы! Конструкция плавкого предохранителя с задержкой срабатывания такова, что элемент плавкого предохранителя имеет большую массу (но не большую допустимую нагрузку), чем эквивалентный быстродействующий плавкий предохранитель, что означает, что он будет нагреваться медленнее (но до той же конечной температуры) при любом заданном количестве. тока.

На другом конце спектра действия предохранителей находятся так называемые полупроводниковые предохранители , предназначенные для очень быстрого размыкания в случае перегрузки по току. Полупроводниковые устройства, такие как транзисторы, как правило, особенно нетерпимы к условиям перегрузки по току и, как таковые, требуют быстродействующей защиты от сверхтоков в мощных приложениях.

Предохранители всегда должны размещаться на «горячей» стороне нагрузки в заземленных системах. Это сделано для того, чтобы нагрузка была полностью обесточена во всех отношениях после срабатывания предохранителя.Чтобы увидеть разницу между плавлением «горячей» стороны и «нейтральной» стороны нагрузки, сравните эти две схемы:

Рисунок 1.44 Принципиальная схема конструктора предохранителей Рисунок 1.45 Принципиальная схема конструктора предохранителей

В любом случае предохранитель успешно прервал ток в нагрузке, но нижняя цепь не может прервать потенциально опасное напряжение с обеих сторон нагрузки на землю, где может стоять человек. . Первая схема намного безопаснее.

Как было сказано ранее, предохранители - не единственный используемый тип устройства защиты от сверхтоков.Переключатели, называемые выключателями , часто (и чаще) используются для размыкания цепей с чрезмерным током, их популярность связана с тем, что они не разрушают себя в процессе размыкания цепи, как предохранители. В любом случае, размещение устройства защиты от сверхтоков в цепи будет соответствовать тем же общим рекомендациям, перечисленным выше: а именно, «предохранить» сторону источника питания , а не , подключенную к земле.

Хотя размещение защиты от перегрузки по току в цепи может определять относительную опасность поражения электрическим током в этой цепи при различных условиях, следует понимать, что такие устройства никогда не предназначались для защиты от поражения электрическим током.Ни предохранители, ни автоматические выключатели не предназначены для срабатывания в случае поражения электрическим током; скорее, они предназначены для открытия только в условиях потенциального перегрева проводника. Устройства максимального тока в первую очередь защищают проводники цепи от повреждения при перегреве (и опасности возгорания, связанной с чрезмерно горячими проводниками) и, во вторую очередь, защищают определенные части оборудования, такие как нагрузки и генераторы (некоторые быстродействующие предохранители предназначены для защиты особенно чувствительных электронных устройств. к скачкам тока).Поскольку уровни тока, необходимые для поражения электрическим током или поражения электрическим током, намного ниже нормальных уровней тока обычных силовых нагрузок, состояние перегрузки по току не указывает на возникновение поражения электрическим током. Существуют и другие устройства, предназначенные для обнаружения определенных условий удара (детекторы замыкания на землю являются наиболее популярными), но эти устройства строго служат этой единственной цели и не связаны с защитой проводов от перегрева.

  • Предохранитель представляет собой небольшой тонкий проводник, предназначенный для плавления и разделения на две части с целью разрыва цепи в случае чрезмерного тока.
  • Автоматический выключатель - это специально разработанный переключатель, который автоматически размыкается для прерывания тока цепи в случае перегрузки по току. Они могут срабатывать (размыкаться) термически, магнитными полями или внешними устройствами, называемыми «реле защиты», в зависимости от конструкции выключателя, его размера и области применения.
  • Предохранители
  • в первую очередь рассчитаны на максимальный ток, но также рассчитаны на то, какое падение напряжения они будут безопасно выдерживать после прерывания цепи.
  • Предохранители
  • могут быть сконструированы так, чтобы срабатывать быстро, медленно или где-то между ними при одинаковом максимальном уровне тока.
  • Лучшее место для установки предохранителя в заземленной энергосистеме - на пути незаземленного проводника к нагрузке. Таким образом, при сгорании предохранителя к нагрузке останется только заземленный (безопасный) провод, что сделает безопаснее для людей находиться рядом.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *