Система заземления tn и ее подвиды, схема заземления tn c s, tt, система зануления tn s
Люди каждый день в быту пользуются различными электрическими приборами, начиная от кофеварки и фена, заканчивая холодильником и стиральной машиной. Они живут в многоэтажных домах, ездят на работу в метро и даже не подозревают, сколько усилий сделано разработчиками этих приборов и устройств, чтобы они могли без страха за свою жизнь пользоваться этими дарами цивилизации. Сейчас любое устройство, здание, сооружение проверяется на электробезопасность. При проектировании любых электроустановок независимо от их назначения, главным условием является их безопасная и нормальная работа, что обеспечивается безупречным проектом и безошибочным устройством заземления. Существуют системы заземления tn, tt и другие. Основным документом, определяющим работу разработчиков систем заземления, являются Правила устройства электроустановок.
Категории
Наша земля является колоссальным поглотителем электроэнергии любого происхождения, и это ее качество используется человеком для обеспечения безопасности при использовании электрических приборов.
Все заземлители делятся на две категории: естественные и искусственные. К первым относятся все металлические изделия, находящиеся в соприкосновении с землей. Это арматура в железобетонных конструкциях, в буронабивных сваях, канализационные, водопроводные трубы и прочие электропроводные предметы.
Но проводимость земли в разных местах сильно различается, зависит от типа почвы, места расположения, поэтому нормировать ее проводимость в местах растекания электрических зарядов от этих предметов не представляется возможным. Кроме этого, использование арматуры, труб, металлических ферм приводит к ускоренной коррозии и ухудшению их прочностных характеристик. В связи с этим, запрещается использовать естественное заземление при эксплуатации электроприборов и оборудования.
Государственными и международными стандартами разрешено применение только искусственного заземления. В этом случае оборудование через специальную шину присоединяется к заземлителю с допустимой нормированной проводимостью.
Виды искусственного заземления
Если рассматривать по функциональности, то существует защитное и рабочее заземления. Первое обеспечивает безопасность людей при использовании электроприборов, а второе – нормальную работу электроустановок. По типу заземления нулевого провода делятся на системы с изолированной (IT) и глухозаземленной (TN) нейтралью. На рисунке показаны все типы заземления.
В системе IT нулевой провод генератора электроэнергии не имеет гальванической связи с заземлением, а токопроводящие части намеренно заземляются. Допускается между заземлителем и нейтралью установка дугообразующего устройства или приборов с большим внутренним сопротивлением.
Система заземления TN самая распространенная. В ней нулевой провод генератора электроэнергии глухо заземлен, а токопроводящие части с помощью специальных шин присоединяются к нему.
Она подразделяется еще на четыре подвида:
- систему заземления TN-С, в ней рабочий и защитный нулевые провода представляют собой один проводник от источника до потребителя энергии;
- систему TN-S, в ней рабочий и защитный нулевые провода представляют собой два проводника от источника до потребителя энергии;
- систему заземления TN C S, в ней рабочий и защитный нулевые проводники представляют собой один проводник, начиная от генератора электроэнергии, затем на каком-то участке разделяются на два;
- систему ТТ, в ней нулевой провод генератора электроэнергии глухо заземлен, а открытые токопроводящие части потребителя электроэнергии заземлены через собственное заземление, которое никак не связано с нулевым проводом генератора электроэнергии.
Первый символ аббревиатуры сообщает, в каком состоянии относительно земляного слоя находится нулевой провод производителя электроэнергии (генератора, трансформатора).
Т – заземленный нулевой проводник.
I — изолированный нулевой проводник.
Второй символ информирует о состоянии токопроводящих частей относительно заземления.
Т — токопроводящие части заземлены, состояние нулевого провода генератора электроэнергии значения не имеет;
N — токопроводящие части присоединены к глухозаземленному нулевому проводнику источника электропитания.
Символ после N показывают, как соотносятся рабочий и защитный нулевые проводники.
S (separated)— разделены рабочий (N) и защитный (PE) нулевые проводники.
С (combined)— объединены в (PEN) проводе N и PE проводники.
Системы с глухозаземлённым нулевым проводом
Система зануления TN C впервые была применена компанией AEG в начале ХХ века. Классическим ее видом является обычная схема электроснабжения с тремя фазными и одним нулевым проводом. Он одновременно является функциональным (N) и защитным (PE) «нолем», наглухо заземленным. С ним соединяют все корпуса и доступные токопроводящие части устройств. Самая большая проблема у системы возникает при обрыве нулевого провода, на токоведущих частях корпусов устройств появляется линейное напряжение в 1,73 раза больше фазного. При нормальной работе, попадание фазного провода на корпус приведет к короткому замыканию, но, благодаря специальным устройствам, произойдет мгновенное отключение, что оградит людей от удара током. В странах СНГ схема заземления TN C используется в наружном освещении и в зданиях, построенных до девяностых годов ХХ века.
Система TN-S
Самая надежная и безопасная система заземления TN-S была создана перед Второй мировой войной. Главная ее особенность заключается в раздельном использовании рабочего и защитного нулевого проводников, начиная от генератора электроэнергии. При трехфазном электроснабжении используются пять проводов, однофазном — три. Электробезопасность обеспечивается за счет практического дублирования защитного проводника. Независимо от места обрыва N проводника, система оставалась относительно безопасной. Позже, благодаря этому способу заземления были разработаны дифференциальные автоматы.
ГОСТ Р50571 и новая редакция ПУЭ предписывает при электроснабжении новых объектов, при капитальном ремонте зданий использовать систему зануления TN-S. Но ее распространению мешает высокая стоимость и то, что вся российская энергетика работает по четырехпроводной системе электроснабжения.
Система TN-C-S
Компромиссной стала система заземления TN-C-S, которая использовала преимущества TN-S, но по стоимости стала значительно дешевле. Все дело в том, что с трансформатора подача электроэнергии происходит с применением объединенного нуля «PEN», наглухо заземленного. При входе на объект PEN провод разделяется на защитный и рабочий нуль, но расщепление возможно и раньше ввода в сооружение. При обрыве провода PEN на участке генерирующая станция — здание, на корпусах электроустановок, появится опасное напряжение. Поэтому в системе заземления TN C S нормами предусмотрены особые меры защиты проводника PEN.
Система TT
Самый экономичный способ доставки электроэнергии на селе по воздушным линиям. Использование системы TN-S, как наиболее безопасной, обходится дорого, у систем заземления TN-C и TN-C-S сложно обеспечить надежную защиту нулевого проводника PEN. Поэтому часто используется система TT, с заземленным нулевым проводом у источника электропитания. При трехфазном электроснабжении система работает по четырехпроводной схеме с одним нулевым проводником.
Около приемника электроэнергии делается местное заземление, к которому присоединяют токоведущие части и корпуса устройств. В случае обрыва нулевого провода, а вне города это нередкое явление, на корпусе устройства не возникает опасного напряжения благодаря местному заземлению. В городской черте система заземления TT используется при электроснабжении временных сооружений, при этом обязательно должны быть установлены устройства защитного отключения и проведена грозозащита.
Система IT
Это система, в которой имеется полностью изолированный от земли нулевой провод или соединенный с ней через высокоомное сопротивление, а также наличие у потребителя электроэнергии собственного защитного заземления. Все токопроводящие части оборудования при этом надежно заземляются. Система IT применяется в электроустановках зданий с повышенными требованиями безопасности, например, в больницах для медицинского оборудования, в шахтах, карьерах.
Сами заземляющие устройства прежде выглядели как набор трехметровых стальных стержней вкопанных в землю на расстоянии нескольких метров, вершины которых соединялись стальной полосой. Получившийся огромный контактный элемент проверялся на сопротивление, если превышал нормированную величину, то вкапывались дополнительные стержни, пока не получали необходимый результат. Недостатком его были большие занимаемые площади и недостаточная стойкость к коррозии. Современные заземляющие устройства лишены этих недостатков. Они строятся на основе омедненных стальных стержней, которые могут соединяться между собой при помощи латунных муфт и забиваться на глубину до 50 м. По верху соединяются медной полосой. За счет такой конструкции могут устанавливаться на любых грунтах, не требуют земляных работ и занимают мало площади.
Вот такими заземляющими устройствами и системами заземления обеспечивается электробезопасность людей.
evosnab.ru
схема, описание, плюсы и минусы
В российских электрических сетях наряду с самой распространенной системой заземления TN-C, к которой привыкло и пользуется подавляющее большинство потребителей, имеет место применение системы TN-S. Европа приняла на вооружение данный вид электроснабжения еще до Второй мировой войны. Система заземления TN-S по таким характеристикам, как безопасность и надежность, значительно превосходит TN-C, но при всех своих преимуществах в силу объективных причин, не прижилась ни в СССР, ни в Российской Федерации. Основная причина – большая себестоимость обустройства. Несмотря на это, в новых жилых микрорайонах и на современных предприятиях энергетики уже внедряют электроснабжение в соответствии с европейскими стандартами. Переоборудование всего жилого, служебного и производственного фонда потребует огромных затрат, так как модернизации должна быть подвергнута вся энергетическая структура, начиная от источников питания вплоть до квартирных розеток. Далее мы предоставим подробное описание системы заземления TN-S, ее плюсы и минусы, а также схему подключения.Принцип передачи электроэнергии
- в трехфазных сетях по 5 проводникам;
- в однофазных сетях по 3 проводникам.
Для того чтобы составить подробное описание данного принципа передачи электроэнергии, необходимо обратиться к схеме подключения.
Схема подключения системы TN-S:
Пояснение к схеме: А, В, С – фазы электрической сети, PN – рабочий нулевой проводник, PE – защитный нулевой проводник
Отличительной особенностью линий электроснабжения с заземлением по принципу TN-S является то, что от источника питания исходит пять проводников, три из них выполняют функции силовых фаз, а также два нейтральных, подключенных к нулевой точке:
- PN — чисто нулевой проводник, задействован в работе схемы электрооборудования.
- PE – глухо заземлен, выполняет защитные функции.
Воздушные линии электропередач должны быть укомплектованы пятью проводами, питающий кабель укомплектован таким же количеством жил. Эти технические требования обуславливают значительное удорожание себестоимости системы.
На рабочие клеммы трехфазной нагрузки согласно схеме подключения подводятся три фазы и нулевой провод. Пятый проводник выполняет функции перемычки между корпусом электроприбора и землей. Однофазные потребители в обязательном порядке обвязываются тремя проводниками, один из которых фазный, второй – нулевой, третий — заземление. Бытовые электроприборы обеспечиваются таким подключением за счет розеток с тремя гнездами и трехштекерных электрических вилок и заземляющих ножей. В разговорном обиходе данные изделия наделены приставкой «евро».
Бесспорные преимущества TN-S
Повышенные материальные издержки и финансовые издержки монтажа и содержания подобных линий электропередач вполне оправдываются бесспорными преимуществами присущими этой системе заземления.
Во-первых, обеспечивает повышенную степень электропожаробезопасности. Данный вариант позволяет задействовать в оптимальном режиме устройства защитного отключения (УЗО). Вариант TN-C позволяет использовать УЗО, как средство защиты от токов утечки, однако срабатывать оно будет только при прикосновении к электроприбору с пониженным сопротивлением изоляции, что сопряжено с кратковременным протеканием электрического тока через организм человека. УЗО, подключенное в электрическую сеть со схемой заземления TN-S, отключает подачу электроэнергии к неисправному потребителю сразу же при появлении токов утечек.
Во-вторых, отпадают проблемы в создании и контроле технического состояния заземляющего контура объекта. Следует знать, что контур заземления требует постоянного контроля. Под воздействием времени и природных факторов устройство может выйти из строя, что повлечет за собой нарушение работы электрических систем, а самое главное, послужит угрозой жизни и здоровья людей.
В-третьих, нет необходимости в использовании перемычек, соединяющих металлические корпуса электроприборов с заземляющим контуром, которые могут создавать ряд неудобств и нарушать эстетическую привлекательность интерьера помещения.
В-четвертых, исключает наводки помех высокой частоты, оказывающих пагубное воздействие на работу электроники. Электроснабжение объектов, насыщенных чувствительной электронной аппаратурой, должно быть оборудовано раздельными нулевыми проводниками PE и PN.
Как сделать контур в своем доме
Рассмотрев все плюсы и минусы данной системы, редкий домовладелец не согласится от переоборудования электрической сети своего жилища и приведения ее в соответствии с TN-S. Ждать федеральной программы по всеобщему переоборудованию электрических сетей придется, скорее всего, долго. Для ускорения процесса существует система заземления TN-C-S, сочетающая в себе элементы TN-S и TN-C и отвечающая всем требованиям Правил устройства электроустановок (ПУЭ). Перейти на нее вполне реально как для условий коттеджа, так и для дачи. Для этого необходимо во вводном распределительном устройстве (ВРУ) произвести переключение, которое обеспечит разделение приходящего в дом проводник PEN на нулевые рабочий PN и защитный РЕ. Обустроить заземляющий контур и подключить к нему РЕ. В результате такого переоборудования домашняя электрическая сеть будет приведена в соответствие с TN-S.
Схема заземления TN-C-S выглядит следующим образом:
Теперь вы знаете, что такое система заземления TN-S, какие у нее преимущества, недостатки, а также как сделать подобный вариант защиты в частном доме. Надеемся, предоставленная информация была для вас полезной и интересной.
Наверняка вы не знаете:
samelectrik.ru
Системы заземления TN, TN-C, TN-C-S, TN-S, TT, IT: достоинства и недостатки
Содержание статьи:
Заземление – это важный технологический процесс, который защищает человека от случайного поражения электрическим разрядом во время работы бытовой техники или электрических приборов. Для замены проводки, ее ремонта или модернизации предварительно нужно ознакомиться с системой заземления, которая применена в конкретном строительном сооружении. От этого по окончании работ будет зависеть безопасность домочадцев, а также эксплуатация оборудования.
Классификация систем заземления
Заземление в частном доме
Существует несколько видов систем заземления, которые были разработаны Международной электротехнической комиссией и приняты Госстандартом РФ. Все они перечислены и подробно описаны в “Правилах устройства электроустановок” (ПУЭ).
- Система TN и три подвида;
- Система ТТ;
- Система IТ.
Их основное отличие заключается в используемом источнике электроэнергии, а также способы заземления электрических приборов. Классификации систем заземления обозначаются буквами по определенному принципу.
По первой букве удается определить, каким образом заземлен источник питания:
- Т – непосредственное соединение нулевого рабочего проводника источника электроэнергии (нейтрали) с землей.
- I – с землей в данном случае соединена нейтраль источника электроэнергии исключительно через сопротивление.
Вторая буква в аббревиатуре указывает на заземление в проводящих отрытых частях здания:
- Т – свидетельствует о раздельном (местном) заземлении источника питания и электрических приборов.
- N – источник электроэнергии заземлен, но потребители заземлены только через PEN-проводник.
Буква N определяет функциональный способ, суть реализации которого заключается в устройстве нулевого защитного и нулевого рабочего проводников:
- С – функции обоих проводников действуют благодаря общему проводнику под названием – PEN.
- S – свидетельствует о том, что рабочий нулевой проводник (N) и защитный (PE) раздельные.
Системы заземления также делятся на рабочие и защитные. Первое предназначено для безопасной и производительной работы всех электрических приборов, суть последнего – обеспечить полную безопасность в процессе эксплуатации этих приборов.
Значения напряжения и тока могут достигать критических отметок лишь по двум причинам – неправильное использование оборудования и удар молнии.
Естественные и искусственные виды заземления
Естественное заземление – конструкции непосредственно соприкасающиеся с землей
В качестве естественной защиты используются:
- Свинцовые оболочки кабелей, проложенные в траншеях под землей; рельсовые пути неэлектрифицированных подъездных путей, железных дорог и т.д.
- Железобетонные и металлические конструкции любых строительных сооружений, которые непосредственно соприкасаются с землей.
- Проведенные под землей водопроводные и канализационные магистрали. Нельзя использовать металлические трубы, по которым проходят взрывоопасные и горючие вещества.
Искусственное заземление
Как правило, для искусственных заземлителей используют горизонтальные и вертикальные электроды. Роль вертикальных может играть прутик или стальная труба, длиной не менее 3 метров. Суть реализации состоит в том, чтобы верхние концы погрузить в землю и соединить полоской из стали, используя сварочный аппарат. Такая технология образует контур заземления.
Для безопасного использования электрических приборов должны быть использованы естественные заземлители. Их применение позволяет сэкономить семейный бюджет и время, поскольку нет необходимости сооружать искусственные заземлители. Если естественный вид удовлетворяет все требования ПУЭ по сопротивлению растекания, искусственное можно не сооружать.
Сравнение искусственного и естественного контура
Трубопроводы, находящиеся в земле, выполняют роль естественного заземлителя
Естественный контур – это две и более металлические конструкции, которые контактируют с почвой для безопасного использования бытовой техники. Естественное заземление также делится на следующие разновидности:
- Трубопроводы, предназначенные для различных целей, находящиеся в земле.
- Арматура строительных сооружений, которая погружается в слои грунта.
Данные типы защитного контура обязательно должны быть связаны с объектом минимум двумя элементами. Как правило, их устанавливают в разных частях конструкции.
В качестве естественной защиты запрещается использовать:
- отопительные системы и канализационные магистрали;
- трубы, поверхность которых покрыта антикоррозийным составом;
Искусственный заземлитель
- металлоконструкции, предназначенные для транспортировки горючих и токсичных веществ.
Искусственный контур – это специальные конструкции, изготовленные из металла. Для работы их погружают в слои грунта. Наиболее распространенные примеры искусственных защитных контуров:
- Металлические полотна, заложенные в землю. Им могут быть свойственны разные формы и размеры.
- Стержни, уголки, трубы и стальные балки, помещенные в землю.
Каждый элемент искусственного контура в обязательном порядке должен иметь коррозиестойкие электрические проводники, изготовленные из цинка или меди.
Типы искусственного заземления
Основной регламентирующий документ в России, который позволяет использовать разные системы заземления – ПУЭ пункт 1,7. Он был разработан с учетом способов устройства заземляющих систем, их классификации и принципов. Документ утвержден специальным протоколом Международной электротехнической комиссии.
Сокращенные названия существующих систем являются сочетаниями первых букв французских слов.
- Т – заземление.
- N – подсоединение к нейтрали.
- I – изолирование.
- С – соединение рабочего и защитного нулевых проводников в один провод.
- S – раздельное использование защитного и рабочего нулевых проводников.
Чтобы понять, в чем заключаются отличия и способы реализации, нужно ознакомиться с каждой разновидностью более детально.
Устройство заземления TN
Самый распространенный вид заземляющих систем. Суть его заключается в соединении нулей с землей вдоль всей длины. Этот тип имеет еще одно альтернативное название – снабжение глухозаземленной нейтрали.
Для реализации способа требуется технологично вбить в вертикальном положении группу штырей в землю, чтобы глубина залегания была не менее 2,5 метров. Все штыри должны быть соединены друг с другом при помощи кабеля и полоски в единый контур жилого дома.
Система TN-C
Достаточно устаревшая система, которая все еще используется в старых жилых фондах. Суть защиты заключается в том, что ноль N играет также роль защитного провода РЕ, две функции совмещены в одном проводнике. Преимущество этого способа заключается в простоте реализации и бюджетном изготовлении, предназначен для электрических приборов мощностью не более 1000 В.
На сегодняшний день этот тип несет потенциальную опасность, поскольку не имеет ни единого отдельного проводника. Если при аварийной или нештатной ситуации обрывается нулевой провод, весь электрический потенциал концентрируется на приборах, а это уже несет опасность для здоровья и жизни человека, есть вероятность образования пожара.
Система TN-S
TN-S
В проектируемых новых зданиях используется новая заземляющая система. Суть ее реализации заключается в присутствии отдельного провода фазы, нейтрали и защитного проводника. Проводники РЕ и N – отдельные составляющие системы электроснабжения.
Из принятых и утвержденных способов заземления электрической сети система TN-S считается самой безопасной и надежной. Из недостатков следует выделить дороговизну.
Система заземления TN-C-S
Система заземления TN-C-S
Данная заземляющая система вобрала в себя лучшие качества своих предшественников и частично исключила их недостатки. Способ относительно прост в реализации, еще одно достоинство вида – можно реализовать во время реконструкции и модернизации устаревших зданий. Смысл состоит с организации системы TN-C, здесь разделяют нейтральный провод на два проводника N и PE, далее начинает реализовываться способ TN-S.
Однако по-прежнему не решена проблема защитного контура системы ТN-С. Если шина обрывается, весь электрический потенциал концентрируется на бытовых приборах. Бороться с этим недостатком можно с помощью вспомогательных конструкций, например, реле напряжения, которое способно автоматически проводить аварийное отключение приборов от сети.
Функциональное заземление типа ТТ
Функциональное заземление используется в тех условиях, когда организовать заземляющий контур типа ТN попросту невозможно. Суть реализации заключается в двух разделенных заземляющих устройствах. Чаще всего применяют при прокладке воздушных линий электропередач. Также его используют при аварийном состоянии нулевых проводников.
Особенность защиты человека от поражения током заключается в обязательной установке и использовании прибора защитного отключения с дифференциальным током не более 30 мА.
Заземляющая схема IT
Система используется исключительно на горных выработках, например, шахтах или карьерах. Особенности использования электрического оборудования на подобных предприятиях таковы, что обеспечить качественный защитный контур там попросту невозможно.
Заземляется только нейтраль трансформатора с помощью контрольно-измерительных приборов, которые выполняют функции защиты от утечки электроэнергии. Если приборы улавливают избыточное энергопотребление, происходит аварийное отключение приборов.
Основное назначение заземления – сделать использование электрических приборов безопасным, а также продлить их эксплуатационный срок. Не стоит пренебрегать проектированием и сооружением заземления, это неоправданный риск.
strojdvor.ru
«Система tn-c-s в электроустановках напряжением до 1000 в пуэ?» – Яндекс.Знатоки
L1, L2, L3 — фазы, N — нуль провод, PE — Protect нуль — защитный нуль, PEN — проводник совмещающий защитный и нулевой проводник. Штрих-пунктирный прямоугольник — ввод к потребителю.
Самая безопасная TN-S:
Оставшаяся от советских времён (стандартная тогда) TN-C:
Для минизации проблем с TN-C компромиссный вариант TN-C-S:
В схеме TN-S объединения нуля и земли выполняется на подстанции и отгорание нуля у потребителя не влечёт для него последствий. В случае TN-S отгорание нуля опасно тем, что может оказаться у потребителя напряжение до 600 вольт. TN-C-S схема признана устранить такие проблемы, так переход от схемы TN-C (старой советской) к TN-S (безопасной) требует прокладки многих километров новых кабелей межде подстанцией и потребителем, что зачастую ещё и просто невозможно, то появилась схема TN-C-S — компромисс между TN-C и TN-S. Вот как выглядит TN-S на деле:
Отличие TN-C-S от TN-S. Обычно на входе объекта глухозаземлённая магистраль соединяется с нулевым проводом. В каждый же щиток линии входят уже разделёнными (N и PE). Внешне выглядит как безопасная TN-S. На деле не совсем так.
yandex.ru
Система заземления ТТ — редирект
Если системы заземления TN-S, TN-C-S, TN-C в каком-то конкретном случае не обеспечивает возможность добиться высокой степени безопасности, используется система заземления ТТ. Она позволяет достичь хорошей степени защиты человека от поражения током от токопроводящих поверхностей мобильных сооружений, временных построек или зданий. Данная система особенно уместна для полностью металлических конструкций: киосков, вагончиков, контейнеров, павильонов, палаток, торговых точек сбыта или обслуживания.
Этот метод заземления обязателен к применению в бытовых и монтажно-строительных вагончиках и для ряда помещений с диэлектрическими стенами, характеризующихся постоянной высокой влажностью и сыростью. Обычно такие постройки находятся в островных или прибрежных регионах, где наблюдаются частые туманы, либо на севере, где большая глубина промерзания почвы.
В системе заземления ТТ используется помимо глухо заземлённой нейтрали источника электроэнергии дополнительное заземляющее устройство (защитный проводник PE), которое является полностью независимым. То есть, не допускается ни при каких обстоятельствах соединять дополнительный контур заземления PE с нулевым проводом N.
Этим способом достигается полная изоляция металлических (токопроводящих) поверхностей временных построек и зданий от электросетей. Реализуется это следующим образом: устанавливается защитный токопровод PE (пруток или пластина) по всему периметру строения, который подключён к отдельному независимому контуру заземления.
Для обеспечения безопасности системы заземления ТТ необходимо использовать двухступенчатую дифзащиту. К плюсам такого устройства относится достижение качественной защиты в условиях плохого состояния питающих линий. К таким условиям относятся: не полностью изолированные провода, голые алюминиевые провода, двухпроводной (вместо трёхфазного) ввод в дом, не соблюдены правила организации повторных заземлений на столбах высоковольтных линий и др.
Среди недостатков системы ТТ можно назвать только необходимость дублировать систему защиты установкой минимум двух УЗО, поскольку в противном случае, при отказе одного устройства и одновременном пробое на заземлённую конструкцию, возможно поражение человека током. Это происходит из-за того, что ток может не достигнуть величины, при которой сработает автоматический выключатель линии.
pue8.ru
Системы защитного заземления TNC, TNCS, TNS, TT, IT
Стандарт Стандарт ПУЭ 1.7, EN60950, IEC60364
Схемы электроснабжения нагрузки TNC, TNCS, TNS, TT, IT
TNC – Нейтраль и PE («земля») объединены вместе везде в системе в единую щину PEN.
Neutral and PE (protected earth conductor) are combined throughout the system.
TNS – Нейтраль соединена с землёй трансформатора, но не соединена с землёй (PE) где-нибудь ещё в системе. PE приходит на объект от трансформатора отдельно и может быть соединена с местной землёй.
Neutral is earthed at the transformer but is not bonded to earth or the PE elsewhere. PE is carried to the site from the transformer and bonded to site earth.
TNCS – Общая в начале шина PEN затем разъеделяется на 2 отдельных проводника: N (нейтраль) и PE (защищённую шину земли). Стандарт США – разновидность данного. Нейтраль заземлена на трансформаторе.
TNCS splits the combined PEN into a separate neutral and PE at service entry (U.S. practice is a variation of this). The neutral is earthed at the transformer.
TT – Нейтраль заземлена на трансформаторе. Местная Земля – PE (объект-потребитель) не связана с нейтралью. Между землёй трансформатора и землёй потребителя (PE) соединений нет.
Neutral is earthed at the transformer. The PE originates at site but is not bonded to the neutral. There is no interconnection between PE and transformer earth.
IT – Нейтраль трансформатора не заземлена (или заземлена через сопротивление с высоким импедансом).
The transformer is unearthed (or earthed through high impedance). The PE originates at site but is not bonded to a service conductor; no conductor in this system is designated as ‘neutral’ (standard IT system).
Разновидности IT системы:
- A) проводник «N / Нейтраль» отсутствует в системе (стандартная счистема IT).
- B) проводник «N / Нейтраль» есть в системе.
Нейтраль на потребителе также не заземлена (или заземлена через сопротивление с высоким импедансом).
Для обоих случаев возможны разновидности:
- I) Местная Земля – PE (объект-потребитель) отсутствует. Потребитель использует PE от трансформатора.
- II) Местная Земля – PE (объект-потребитель) есть. Потребитель может использовать местную Землю или Землю трансформатора. Эти Земли могут быть как соединены так и не соединены.
Главное требование системы IT – незаземлённая или импедансно-заземлённая нейтраль трансформатора.
Термины / сокращения:
- T – Terra / Земля (лат. terra, франц. terre)
- N – Neutral / Нейтраль
- C – Combined / Совмещённый
- S – Separated / Отдельный
- I – Isolated / Изолированный (франц. terre isolee)
- PE – Protected Earth conductor / Защищённая шина Земли
- PEN – Protected Earth + Neutral conductor / единая шина объединяющая Нейтраль (N) и Землю (PE)
Различные стандарты СИСТЕМ ЗАЗЕМЛЕНИЯ
Трём системам заземления дан официальный статус посредством стандарта (IEC 60364) который подразделяется на большое число национальных стандартов.
Системы TN
Основные принципы схемы TN:
- Нейтраль трансформатора заземлена, поэтому корпуса нагрузок (подключенные к заземлению PE или PEN трансформатора) оказываются гальванически соединены с нейтралью.
- Нагрузка не имеет местного заземления.
Существующие варианты схемы TN:
- TNC – «Земля» и нейтраль объединены в 1 проводнике (PEN) (C = Combined).
- TNS – «Земля» и нейтраль разъединены (PE и N) (S = Separate).
- TNCS = TNC+TNS Объединённые вначале «Земля» и нейтраль затем разъединяются (CS = Combined then Separate). То-есть TNC преобразуется в TNS.
Система TNS не может существовать перед системой TNC.
Система TNС (TN-C). Нарушение изоляции в системе TNC
Общие замечания:
В системе TNC, с защитными токовыми автоматами, нарушение изоляции опасно. Разрушение изоляции, то есть замыкание фазного проводника на «Землю» вызывает рост тока замыкания до максимального значения, ограниченного защитными автоматами в цепи.
Такая защита во многих случаях достаточна для защиты самой нагрузки, но не является полной, например если изоляция разрушена не полностью и ток фаза-«Земля» недостаточен для срабатывания защитного автомата. Однако этого может привести к возникновению пожара или для опасного поражения током человека, а защитный автомат при этом не сработает (не обеспечит защитное отключения аварийного участка цепи).
Cистема имеет самый низкий уровень безопасности так как УЗО корректно установить невозможно.
Несмотря на опасность система продолжает использоваться в России в т.ч. на госпредприятиях. В России в настоящий момент вытесняется системой TNS.
Подробные замечания:
Рис.1. Нарушение изоляции в системе TNC
Возможные варианты:
- Человек коснулся фазного проводника и «Земли» одновременно.
- При затоплении (пожаре и др.) изоляция провода разрушена и фаза замкнулась на корпус (на «Землю»).
- Изоляция старого провода разрушена и фаза замкнулась на корпус (на «Землю»).
Система TNS (TN-S). Нарушение изоляции в системе TNS
Общие замечания:
В системе TNS, с защитными токовыми автоматами, нарушение изоляции опасно. Разрушение изоляции, то есть замыкание фазного проводника на «Землю» вызывает рост тока замыкания до максимального значения, ограниченного защитными автоматами в цепи.
Такая защита во многих случаях достаточна для защиты самой нагрузки, но не является полной, например, если изоляция разрушена не полностью и ток фаза-«Земля» недостаточен для срабатывания защитного автомата. Тем не менее, этого тока может быть достаточно для возникновения пожара или для опасного поражения током человека, а защитный автомат при этом не сработает (не обеспечит защитное отключения аварийного участка цепи).
Максимальная степень безопасности может быть достигнута путём установки УЗО. Система является самой распространённой в мире. В России введена как стандарт.
Степень безопасности TNS выше чем TNC по следующим причинам (П1, П2):
- П1) защитные автоматы в TNS при срабатывании могут размыкать цепь полностью (как нейтраль так и фазы), защитная шина «Земли» PE продолжает при этом выполнять свои функции. В то время, как и в системе TNC при аварии могут быть разомкнуты только фазы.
- П2) Защитный проводник «Земля» PE выполняет только свои функции, то есть служит заземлением. В то время как в системе TNC защитный проводник выполняет сразу две функции: заземления и нейтрали, что может привести к проблемам, например: нагрузка (ПК) будет «зависать» от помех из-за некачественного заземления, так как на заземляющем проводнике возникают наводки (помехи), вызванные текущим по нему току нагрузки.
Подробные замечания:
Рис.2. Нарушение изоляции в системе TNS
Возможные варианты:
- Человек коснулся фазного проводника и Земли одновременно.
- При затоплении (пожаре и др.) изоляция провода разрушена и фаза замкнулась на корпус («Землю»).
- Изоляция старого провода разрушена и фаза замкнулась на корпус («Землю»).
Система TNСS (TN-C-S). Нарушение изоляции в системе TNСS
Общие замечания:
В системе TNS, с защитными токовыми автоматами, нарушение изоляции опасно. Разрушение изоляции, то есть замыкание фазного проводника на «Землю» вызывает рост тока замыкания до максимального значения, ограниченного защитными автоматами в цепи.
Такая защита во многих случаях достаточна для защиты самой нагрузки, но не является полной, например, если изоляция разрушена не полностью и ток фаза-«Земля» недостаточен для срабатывания защитного автомата. Тем не менее, этого тока может быть достаточно для возникновения пожара или для опасного поражения током человека, а защитный автомат при этом не сработает (не обеспечит защитное отключения аварийного участка цепи).
Система защиты имеет средний уровень безопасности, так как установив УЗО можно добиться достаточно высокой степени безопасности, но при этом остаётся проблема некачественного заземления из-за использования объединённой шины PEN.
Используется достаточно часто в России. В России в настоящий момент вытесняется системой TNS.
Подробные замечания:
Рис.3. Нарушение изоляции в системе TNCS
Возможные варианты:
- Человек коснулся фазного проводника и Земли одновременно.
- При затоплении (пожаре и др.) изоляция провода разрушена и фаза замкнулась на корпус («Землю»).
- Изоляция старого провода разрушена и фаза замкнулась на корпус («Землю»).
Система TT
Основные принципы схемы TT:
- Нейтраль трансформатора заземлена.
- «Земля» / корпус нагрузки также заземлены.
- «Земля» трансформатора не связана кабелем с землёй нагрузки / потребителя (PE).
Нарушение изоляции в системе TT
Общие замечания:
Степень безопасности зависит от сопротивления между «Землей» трансформатора ТП и «Землей» потребителя. Если это сопротивление низкое, безопасность такая же как в TNS с УЗО. Если это сопротивление высокое, безопасность системы снижается, так как УЗО может не сработать.
Установка УЗО является общепринятой в системе TT. Данная система в России используется редко.
Подробные замечания:
Рис.4. Нарушение изоляции в системе TT
Возможные варианты:
- Человек коснулся фазного проводника и Земли одновременно.
- При затоплении (пожаре и др.) изоляция провода разрушена и фаза замкнулась на корпус («Землю»).
- Изоляция старого провода разрушена и фаза замкнулась на корпус («Землю»).
Показана стандартная схема ТТ с УЗО. Ток пробоя (нарушения) изоляции фазных проводов и нейтрального провода ограничен сопротивлением (импедансом) участка между «Землей» трансформатора и «Землей» потребителя.
Защита обеспечена Устройством защитного отключения (УЗО): повреждённый блок / участок отключается устройством УЗО как только порог тока ΔI УЗО помещённого перед данным блоком / участком будет превышен током утечки / пробоя изоляции (на землю) IL:
IL > ΔI
IL = UL / RL – ток пробоя / утечки / leakage
Условие надёжной работы УЗО:
R (CD) << 220 В / ΔI; для УЗО с ΔI=30мА: R (CD) << 7кОм.
R(AB) =RL – сопротивление повреждённого участка (между точкой токоведущего проводника из которого произошла утечка на «землю» и «Землей»).
U(AB) =UL – разность потенциалов между точкой токоведущего проводника (из которого произошла утечка на «землю») и «Землей» (напряжение пробоя).
R(CD) – сопротивления между «Землей» трансформатора ТП и «Землей» потребителя.
Если R(CD) мало (в норме), то при нарушении изоляции срабатывание УЗО будет обеспечивать безопасное отключение аварийного участка и свидетельствовать, что это место подлежит ремонту.
Если R(CD) велико (не в норме) и УЗО работать не будет, то первое нарушение изоляции не приведёт к удару током, но отсутствие сработавшего УЗО не позволит обнаружить аварию и сделать своевременный ремонт, а второй пробой приведёт к аварии.
Система IT (Изолированная нейтраль)
Основные принципы схемы IT:
- Нейтраль трансформатора НЕ заземлена. Но не заземлена только теоретически. Фактически она заземлена посредством паразитных ёмкостей кабелей и / или принудительно через высокое сопротивление около 1.5 кОм («импедансно-заземлённая нейтраль»).
- Земля/корпус нагрузки заземлены.
Нарушение изоляции в системе IT
Подробные замечания:
Рис.5а. Одиночный пробой / нарушение изоляции в системах IT
Рис.5б. Двойной пробой / нарушение изоляции в системах IT
Если происходит первое нарушение изоляции на фазном проводнике, в месте нарушения развивается и протекает небольшой ток (между токоведущим проводником и «Землей»), обусловленный паразитными емкостями кабелей (и / или дополнительным принудительным высоким сопротивление ZN Нейтраль-«Земля») (см. рис. 5а). Контактная разность потенциалов (напряжение пробоя) U(A1B1) = UL1 при этом достигает всего нескольких вольт и не опасно (ток также не опасен):
IL1 = UФ / Rлинии
UL1 = RL1 * IL1
Первое нарушение изоляции не опасно в IT! То есть человек безопасно может коснуться одновременно фазы и «Земли »в IT.
RL1 – сопротивление повреждённого участка (между точкой токоведущего проводника из которого произошла утечка на землю и «Землей».
Rлинии – сопротивление линии, включающее паразитные емкостные сопротивления кабелей RП и принудительное высокое разрядное сопротивление Нейтраль-«Земля» ZN (если установлено).
UL1 – разность потенциалов между точкой токоведущего проводника (из которого произошла утечка на землю) и «Землей» (напряжение пробоя).
Uф – фазное напряжение трансформатора
IL1 – ток пробоя / утечки / leakage.
Если происходит второе нарушение изоляции на другом фазном проводнике, в то время как первое нарушение ещё не устранено (см. рис. 5б), контактная разность потенциалов второго места нарушения (напряжение пробоя) равна UL2 = √3*UФ-UL1 может быть велика и опасна.
При малых сопротивлениях первого и второго повреждённых участков (RL1, RL2) значительный ток утечки может протекать по проводнику, соединяющему «земли» первого и второго повреждённого участков (корпуса нагрузок):
IL1 = IL2 = √3*UФ / (RL1 + RL2)
Второе нарушение изоляции опасно в IT!
Корпуса нагрузок приобретают потенциалы, обусловленные этим током. Таким образом, если КЗ на 1 участке не опасно то последующее КЗ на 2 участке так же опасно, как и в системах TN. Поэтому необходимо УЗО.
Обозначения:
- UL1 (UL2) – напряжение пробоя первого (второго) повреждённого участка.
- UФ – фазное напряжение трансформатора.
- IL1 (IL2) – ток пробоя/утечки 1 участка (2 участка).
- RL1 (RL2) – сопротивление 1 (2) повреждённого участка.
Совместное использование автоматов токовой защиты и УЗО обеспечивают в данных случаях необходимую защиту. В этом случае по безопасности система IT сравнима с TNS с УЗО, то есть срабатывание УЗО (аварийный участок отключается) свидетельствует о том, что произошло первое нарушение изоляции и позволяет его своевременно устранить.
Для надёжного срабатывания УЗО требуется установка принудительного сопротивления ZN (Нейтраль-«Земля») обычно не более 1500 Ом. Без этого сопротивления первый пробой нельзя обнаружить (и своевременно устранить), если в системе других устройств нет (кроме УЗО и токовых автоматов – см. ниже).
Кроме этих возможностей, только система IT позволяет ещё сильнее повысить безопасность.
Дополнительно повысить степень защищённости можно установкой ПМИ / PIM (постоянного мониторинга изоляции / датчика изоляции). ПМИ представляет собой высокоомный амперметр (или вольтметр, подключенный параллельно ZN), включаемый так же как и ZN между Нейтралью и «Землей» ТП.
ПМИ позволяет:
- Точно фиксировать серьёзные пробои фаза – «Земля», вплоть до КЗ.
- Постоянно фиксировать состояние изоляции проводников в системе (медленное старение и ухудшение параметров изоляционного материала).
В отличие от остальных систем (TN, TT), это позволяет обнаружить первое нарушение изоляции, но не отключать аварийный участок (так как в IT первое нарушение изоляции не опасно), а довести работу на нём до конца, и только после ее завершения произвести штатное отключение и ремонт изоляции. Это особенно важно, например, для больниц и др. мест где важно не столько своевременно автоматически «отрубить» аварийную цепь, сколько заранее устранять все неисправности и исключать возможности внезапного неконтролируемого автоматического отключения цепей. Поэтому система IT введена во многих странах как стандарт для госпиталей, сооружений связанных с проводящими средами (водой, землёй и др.), например, корабли, метро и др. мест требующих повышенной безопасности.
Таким образом под повышенной безопасностью системы IT понимается возможность безопасно обнаруживать и устранять аварии изоляции всех проводников в системе.
В IT системе установка токовых автоматов обязательна. УЗО устанавливаются в зависимости от особенностей нагрузок и применяемых ZN и ПМИ.
Кроме этого, сами защитные цепи ПМИ дополнительно защищаются, например, на ТП с помощью разрядника или блока защиты от выбросов напряжения (surge limiter, surge suppresor).
Обозначения:
- SCPD (Short-Circuit Protection Device) – автомат защиты от короткого замыкания, токовый автомат, автоматический выключатель с термомагнитным расцепителем. Автомат размыкает цепь, если ток в цепи превысил паспортный номинальный ток автомата.
- RCD (Residual Current Devices) – УЗО, устройство защитного отключения, устройство разностного тока или более точное название: устройство защитного отключения, управляемое дифференциальным (остаточным) током, сокращенно УЗО−Д) или выключатель дифференциального тока (ВДТ) или защитно-отключающее устройство (ЗОУ) – механический коммутационный аппарат, который при достижении (превышении) дифференциальным током заданного значения вызывает размыкание цепи нагрузки.
- PIM (permanent insulation monitor) – ПМИ постоянный мониторинг изоляции / датчик изоляции.
- ZN optional impedance – дополнительное принудительное сопротивление Нейтраль-Земля на ТП.
- Surge Limiter (surge suppresor, surge arrestor) – разрядник или блок защиты от выбросов напряжения или блок защиты от перенапряжения.
Внимание!
Все вышеприведённая информация относится к защите пользователя, имеющего доступ только к изолированным проводам и электрооборудованию в защитном корпусе.
Пожалуйста помните, что более глубокое проникновение в электрооборудование может быть опасно для жизни, даже при самых безопасных системах заземления, при использовании автоматов, УЗО, датчиков изоляции и т.п.
Примеры тяжёлой опасности для человека:
Пример 1
Установлены: Любая система заземления. Любые устройства защиты в цепях переменного тока. ИБП 100 кВА – батареи в батарейном кабинете всегда под напряжением (в том числе. при отключенном ИБП) и опасны.
ВНИМАНИЕ! ВЫСОКОЕ ПОСТОЯННОЕ НАПРЯЖЕНИЕ!
Пример 2
Система IT. Есть автомат. Есть УЗО. Есть датчик изоляции. Есть изолированный коврик. Имеется любое устройство, например, электромотор, стабилизатор, ИБП 100 кВA. Касание (одновременное) человеком фазы и нейтрали или двух фаз на клеммной панели (или соответствующих проводов с нарушенной изоляцией) этого устройства опасно
ВНИМАНИЕ! ВЫСОКОЕ ПЕРЕМЕННОЕ НАПРЯЖЕНИЕ!
(УЗО не сработает, если человек находится на изолирующем коврике!)
Пример 3
Так же поражение человека может случиться вообще без касания им проводников под током, например гаечный ключ уроненный на клеммы сборки аккумуляторов 100 А·ч может сгореть как предохранитель с опасной световой вспышкой и поражая окружающее пространство брызгами металла.
Внимание!
Для обеспечения полной безопасности необходимо ещё 4 дополнительных условия:
- Разработчик оборудования принял меры по обеспечению высокого уровня безопасности оборудования и его обслуживания.
- Инженер, работающий с оборудованием, принял меры по обеспечению высокого уровня безопасности проводимых работ.
- Окружающая среда в норме, например, температура, влажность в норме и нет опасности прорыва соседней водопроводной трубы и т.д.
- Часы наработки оборудования не превысили опасный предел (вопрос времени).
–
www.xn--80aacyeau1asblh.xn--p1ai
Система заземления TN-S | Заметки электрика
Здравствуйте, дорогие гости сайта заметки электрика.
Уже изучив, системы заземления TN-C и TN-C-S, сегодня Вашему вниманию я представляю систему заземления TN-S.
Когда же появилась система заземления TN-S?
Давайте немного вернемся в прошлое. История возникновения системы заземления TN-S лежит в далеко 1940-ых годах прошлого столетия. Такую систему впервые стали применять в странах Европы и продолжают применять по сей день.
Как я уже говорил, аналогичная задача стоит и у России.
При проектировании и электромонтаже новых объектов необходимо использовать для однофазных сетей потребителей — трехжильные кабельные линии (фаза, N, PE), а для трехфазных сетей — пятижильные кабельные линии (А,В,С, N, PE) с самого источника электроэнергии, и заканчивая, электрической точкой (розетка) непосредственно у потребителя.
Эти требования взяты не из головы — необходимые рекомендации по переходу из системы TN-C в систему TN-S или TN-C-S обуславливается таким нормативным документом, как ПУЭ (пункт 1.7.132).
Почему же сразу нельзя перейти на систему заземления TN-S?
Да потому, что это процесс очень затратный и дорогостоящий.
Принцип исполнения системы TN-S
Чем же система TN-S отличается от других систем заземления?
Принцип системы заземления TN-S основан на том, что нулевой рабочий проводник N и защитный проводник PE приходят к потребителю отдельными жилами с питающей трансформаторной подстанции (ТП), в отличии от системы TN-C-S, где эти проводники разделялись в определенном месте, например в ВРУ на вводе в жилой дом.
Наглядное представление системы заземления TN-S
В данной системе повторного заземления не требуется, т.к. на трансформаторной подстанции имеется основной заземлитель.
Достоинства системы TN-S
Система TN-S — самая надежная и безопасная система заземления, которая максимально осуществляет защиту электрооборудования, и самое главное, человека от поражения электрическим током с помощью применения в схемах УЗО и диффавтоматов, а также системы уравнивания потенциалов (СУП).
Еще один плюс этой системы — это отсутствие высокочастотных наводок (от электроприборов таких как, электрическая бритва, пылесос, перфоратор) и других помех на силовые линии потребителей.
Система TN-S не требует контроля за состоянием контура заземления, потому как нет в этом необходимости.
Недостатки системы заземления TN-S
Я считаю, что единственным недостатком этой системы является дорогостоящий монтаж электропроводки по причине наличия силовых кабелей (проводов) с большим числом жил.
В следующей статье читайте про систему заземления TT.
P.S. В завершении статьи о системе заземления TN-S посмотрите видео-ролик о настоящем адреналине.
Если статья была Вам полезна, то поделитесь ей со своими друзьями:
zametkielectrika.ru