Ток кз расчет: Расчет тока короткого замыкания в сети 0,4 кВ

Содержание

что это такое, методика расчета

Ток короткого замыкания (short-circuit current) — это сверхток в электрической цепи при коротком замыкании (определение согласно ГОСТ 30331.1-2013). В некоторой нормативной документации используется сокращение «ток КЗ».

Харечко Ю.В. конкретизировал понятие «ток короткого замыкания» следующим образом [2]:

« Ток короткого замыкания представляет собой одну из разновидностей сверхтока. В отличие от тока перегрузки ток короткого замыкания обычно возникает в условиях повреждений, когда повреждается изоляция каких-либо проводящих частей, находящихся под разными электрическими потенциалами, и между ними возникает электрический контакт с пренебрежимо малым полным сопротивлением. В условиях повреждений также возможно замыкание частей, находящихся под напряжением, на открытые и сторонние проводящие части, которые в электроустановках зданий с типами заземления системы TN-S, TN-C-S и TN-C имеют электрическую связь с заземленной нейтралью источника питания.

»

« Токи замыкания на землю в системах TN, протекающие по фазным проводникам и защитным или PEN-проводникам, будут сопоставимы с токами однофазных коротких замыканий, которые протекают по фазным проводникам и нейтральным или PEN-проводникам. »

Ток короткого замыкания может также возникнуть в нормальных условиях, когда отсутствуют повреждения, из-за ошибочного соединения проводящих частей с разными электрическими потенциалами, допущенного при монтаже и эксплуатации электроустановки здания. Если ошибочно выполнено электрическое соединение, например, фазного и нейтрального проводников какой-то электрической цепи, то при ее включении по обоим проводникам будет протекать ток однофазного короткого замыкания.

Особенности.

В своей книге [2] Харечко Ю.В. также отразил некоторые особенности, которые касаются понятия «ток короткого замыкания»:

« Величина тока короткого замыкания может многократно (на несколько порядков) превышать значение тока перегрузки и тем более значение номинального тока. Даже кратковременное его воздействие на какие-либо элементы электроустановки зданий может вызвать их механическое повреждение, перегрев, возгорание и, как следствие, явиться причиной пожара в здании. Поэтому электрооборудование в электроустановках зданий, прежде всего – проводники электрических цепей, должно быть надежно защищено от токов короткого замыкания с помощью устройств защиты от сверхтока – автоматических выключателей и плавких предохранителей. »

« Токи короткого замыкания определяют при проектировании электроустановок зданий и учитывают при выборе характеристик электрооборудования. Максимальные токи короткого замыкания всегда соотносят с предельными сверхтоками, которые способны отключить коммутационные устройства и устройства защиты от сверхтока, а также могут пропустить через себя некоторые виды электрооборудования. Минимальные токи короткого замыкания используют для проверки способности устройств защиты от сверхтока выполнить их отключение в течение нормируемого или предпочтительного промежутка времени.

»

О методике расчета токов короткого замыкания.

Методики расчета токов короткого замыкания изложены в ГОСТ 28249-93, в стандартах и технических отчетах комплекса МЭК 60909. ГОСТ 28249-93 распространяется на трехфазные электроустановки переменного тока напряжением до 1 кВ, присоединенные к энергосистеме или к автономным источникам электрической энергии. Стандарт устанавливает общую методику расчета токов симметричных и несимметричных коротких замыканий в начальный и произвольный моменты времени с учетом параметров синхронных и асинхронных машин, трансформаторов, реакторов, кабельных и воздушных линий электропередачи, а также шинопроводов.

Комплекс МЭК 60909 применяют для расчета токов короткого замыкания в низковольтных и высоковольтных электроустановках переменного тока частотой 50 или 60 Гц. Однако, как указано в стандарте МЭК 60909-0, электрические системы с напряжением 550 кВ и более, имеющие протяженные линии электропередачи, требуют специального рассмотрения.

Список использованной литературы

  1. ГОСТ 30331.1-2013
  2. Харечко Ю.В. Краткий терминологический словарь по низковольтным электроустановкам. Часть 4// Приложение к журналу «Библиотека инженера по охране труда». – 2015. – № 6. – 160 c.;

Пример расчета тока трехфазного к.з. в сети 0,4 кВ

Содержание

В данном примере будет рассматриваться расчет тока трехфазного короткого замыкания

в сети 0,4 кВ для схемы представленной на рис.1.

Исходные данные:

1. Ток короткого замыкания на зажимах ВН трансформатора 6/0,4 кВ составляет — 11 кА.

2. Питающий трансформатор типа ТМ — 400, основные технические характеристики принимаются по тех. информации на трансформатор:

  • номинальная мощностью Sн.т — 400 кВА;
  • номинальное напряжение обмотки ВН Uн.т.ВН – 6 кВ;
  • номинальное напряжение обмотки НН Uн.т.НН – 0,4 кВ;
  • напряжение КЗ тр-ра Uк – 4,5%;
  • мощность потерь КЗ в трансформаторе Рк – 5,5 кВт;
  • группа соединений обмоток по ГОСТ 11677-75 – Y/Yн-0;

3. Трансформатор соединен со сборкой 400 В, алюминиевыми шинами типа АД31Т по ГОСТ 15176-89 сечением 50х5 мм. Шины расположены в одной плоскости — вертикально, расстояние между ними 200 мм. Общая длина шин от выводов трансформатора до вводного автомата QF1 составляет 15 м.

4. На стороне 0,4 кВ установлен вводной автомат типа XS1250CE1000 на 1000 А (фирмы SOCOMEC), на отходящих линиях установлены автоматические выключатели типа E250SCF200 на 200 А (фирмы SOCOMEC) и трансформаторы тока типа ТСА 22 200/5 с классом точности 1 (фирмы SOCOMEC).

5. Кабельная линия выполнена алюминиевым кабелем марки АВВГнг сечением 3х70+1х35.

Решение

Для того, чтобы рассчитать токи КЗ, мы сначала должны составить схему замещения, которая состоит из всех сопротивлений цепи КЗ, после этого, определяем все сопротивления входящие в цепь КЗ. Активные и индуктивные сопротивления всех элементов схемы замещения выражаются в миллиомах (мОм).

В практических расчетах для упрощения расчетов токов к. з. учитывается только индуктивное сопротивление энергосистемы, которое равно полному. Активное сопротивление не учитывается, данные упрощения на точность расчетов – не влияют!

1.1 Определяем сопротивление энергосистемы со стороны ВН по выражению 2-7 [Л1. с. 28]:

1.2 Определяем сопротивление энергосистемы приведенное к напряжению 0,4 кВ по выражению 2-6 [Л1. с. 28]:

2.1 Определяем полное сопротивление трансформатора для стороны 0,4 кВ по выражению 2-8 [Л1. с. 28]:

2.2 Определяем активное сопротивление трансформатора для стороны 0,4 кВ по выражению 2-9 [Л1. с. 28]:

2.3 Определяем индуктивное сопротивление трансформатора для стороны 0,4 кВ по выражению 2-10 [Л1. с. 28]:

Для упрощения расчетов можно воспользоваться таблицей 2.4 [Л1. с. 28], как видно из результатов расчетов, активные и индуктивные сопротивления совпадают со значениями таблицы 2.4.

3.1 Определяем индуктивное сопротивление алюминиевых прямоугольных шин типа АД31Т сечением 50х5 по выражению 2-12 [Л1.

с. 29]:

3.1.1 Определяем среднее геометрическое расстояние между фазами 1, 2 и 3:

3.2 По таблице 2.6 определяем активное погонное сопротивление для алюминиевой шины сечением 50х5, где rуд. = 0,142 мОм/м.

Для упрощения расчетов, значения сопротивлений шин и шинопроводов, можно применять из таблицы 2.6 и 2.7 [Л1. с. 31].

3.3 Определяем сопротивление шин, учитывая длину от трансформатора ТМ-400 до РУ-0,4 кВ:

4.1 Определяем активное и индуктивное сопротивление кабелей по выражению 2-11 [Л1. с. 29]:

Значения активных и индуктивных сопротивлений обмоток для одного трансформатора тока типа ТСА 22 200/5 с классом точности 1, определяем по приложению 5 таблица 20 ГОСТ 28249-93, соответственно rта = 0,67 мОм, хта = 0,42 мОм.

Активным и индуктивным сопротивлением одновитковых трансформаторов (на токи более 500 А) при расчетах токов КЗ можно пренебречь.

Согласно [Л1. с. 32] для упрощения расчетов, сопротивления трансформаторов тока не учитывают ввиду почти незаметного влияния на токи КЗ.

Определяем активное сопротивление контактов по приложению 4 таблица 19 ГОСТ 28249-93:

  • для рубильника на ток 1000 А – rав1 = 0,12 мОм;
  • для автоматического выключателя на ток 200 А — rав2 = 0,60 мОм.

Для упрощения расчетов, сопротивления контактных соединений кабелей и шинопроводов, я пренебрегаю, ввиду почти незаметного влияния на токи КЗ.

Если же вы будете использовать в своем расчете ТКЗ значения сопротивления контактных соединений кабелей и шинопроводов, то они принимаются по приложению 4 таблицы 17,18 ГОСТ 28249-93.

При приближенном учете сопротивлений контактов принимают:

  • rк = 0,1 мОм — для контактных соединений кабелей;
  • rк = 0,01 мОм — для шинопроводов.

8.1 Определяем ток трехфазного к.з. в конце кабельной линии:

1. Беляев А.В. Выбор аппаратуры, защит и кабелей в сети 0,4 кВ. Учебное пособие. 2008 г.
2. Голубев М.Л. Расчет токов короткого замыкания в электросетях 0,4 — 35 кВ. 2-e изд. 1980 г.
3. ГОСТ 28249-93 – Методы расчета в электроустановках переменного тока напряжением до 1 кВ.

Всего наилучшего! До новых встреч на сайте Raschet.info.

Поделиться в социальных сетях

Расчет токов короткого замыкания: особенности процесса

Короткое замыкание между проводниками является опаснейшим явлением, как в электрической сети частного домовладения, так и в сложных разводках подстанций и питающих цепей мощного производственного оборудования. Короткое замыкание может стать причиной пожара и выхода из строя дорогостоящих электроприборов, поэтому расчёт токов короткого замыкания, является обязательным этапом перед осуществлением прокладки кабелей для различных потребителей электричества.

Кто занимается вычислением КЗ

Расчёт КЗ, производится квалифицированными специалистами, которые не только производят необходимые вычисления, но и несут ответственность за дальнейшую эксплуатацию электрического оборудования.

Домашние электрики также могут осуществить данные вычисления, но только при наличии начальных знаний о природе электричества, свойствах проводников и о роли диэлектриков, в их надёжной изоляции друг от друга.

При этом, полученный результат значения короткого замыкания, перед проведением электротехнических работ, необходимо перепроверить самостоятельно, либо воспользоваться услугами специализированных фирм, которые осуществляют данные вычисления на платной основе.

Как рассчитать ток короткого замыкания используя специальные формулы, будет подробно описано далее.

Особенности расчёта

Расчёт токов трёхфазного оборудования производится с применением специальных формул.

Если расчёт тока трёхфазного короткого замыкания, необходимо сделать для электрических сетей напряжением до 1000 В, то необходимо учитывать следующие нюансы при проведении расчётов:

  1. Трёхфазная система должна считаться симметричной.
  2. Питание трансформатора принимается за неизменяемую величину, равную его номинальному значению.
  3. Момент возникновения КЗ принято считать при максимальном значении силы тока.
  4. ЭДС источников питания, удалённых на значительное расстояния от участка электрической сети, где происходит КЗ.

Также при вычислении параметров КЗ необходимо правильно посчитать результирующее сопротивление проводника, но делать это необходимо через приведение единого значения мощности.

Если производить расчёт сопротивления стандартными формулами известными из курса физики, то можно допустить ошибки, по причине неодинакового номинального напряжения в момент возникновения короткого замыкания для различных участков электрической цепи. Выбор такой базисной мощности позволяет значительно упростить расчёты, и значительно повысить их точность.

Напряжение, при вычислении тока короткого замыкания также принято выбирать не исходя из номинального значения, а с превышением данного показателя на 5%. Например для электрической сети 380 В, базисное напряжение для расчёта токов короткого замыкания составит 0,4 кВ.

Для сети переменного тока наприряжением 220 В, базисное напряжение будет равно 231 В.

Формулы вычисления трёхфазного замыкания

Расчёт токов коротких замыканий в электроэнергетических системах трёхфазного электричества производится с учётом особенности возникновения данного процесса.

Из-за проявления индуктивности проводника, в котором происходит короткое замыкание, сила КЗ изменяется не мгновенно, а происходит нарастание данной величины по определённым законам. Чтобы методика расчёта токов короткого замыкания позволила произвести высокоточные вычисления, необходимо высчитать все основные величины вносимые в расчётные формулы.

Часто для этой цели требуется воспользоваться дополнительными формулами или специальным программным обеспечением. Современные возможности вычислительной техники, позволяют осуществлять сложнейшие операций в считанные секунды.

Методы расчёта токов короткого замыкания могут быть расширены применением специального программного обеспечения. В данном случае, может быть использована компьютерная программа, которая может быть написана любым квалифицированным программистом.

Если вычисление параметров КЗ в трёхфазной сети осуществляется вручную, то в для получения точного результата этого значения применяется формула:

где:

Хвн — сопротивление между точкой короткого замыкания и шинами.
Хсист — сопротивление всей системы по отношению к шинам источника.
Uс — напряжение на шинах системы.

Если какой-либо показатель отсутствует при проведении расчётов, то его можно высчитать применив для этого дополнительные формулы, или следует применить специальные программы для компьютера.

В том случае, когда расчёт КЗ, необходимо произвести для сложной разветвлённой сети, производится преобразование схемы замещения. Для максимально упрощения вычислений схема представляется с одним сопротивлением и источником электричества.

Для упрощения схемы необходимо:

  1. Сложить все показатели параллельно подключённого сопротивления электрических цепей.
  2. Сложить последовательно подключённые сопротивления.
  3. Вычислить результирующее сопротивлению, путём сложения всех параллельно и последовательно подключённых сопротивлений.

Расчёт однофазной сети

Расчет токов коротких замыканий в электроэнергетических системах однофазного напряжения допускает проведение упрощённых вычислений. Обычно, электроприборы тока однофазного не потребляют много электричества, и для надёжной защиты квартиры или дома от возникновения короткого замыкания, достаточно установить автоматический выключатель рассчитанный на величину срабатывания, равную 25 А.

Если требуется осуществить приблизительный расчёт однофазного короткого замыкания, то его производят по формуле:

где
Uf — напряжение фазы.
Zt — сопротивление трансформатора, при возникновении КЗ.
Zc — сопротивление между фазным и нулевым проводником.
Ik — однофазный ток короткого замыкания.

Вычисление параметров КЗ в однофазной цепи с использованием данной формулы производится с погрешностью до 10%, но в большинстве случаев этого достаточно для осуществления правильной защиты электрической сети.

Основным затруднением для получения данных рассчитанных по этой формуле, является сложность в получении значения Zc.

Если параметры проводника известны и переходные сопротивления также определены, то сопротивление между фазным и нулевым проводником рассчитывается по формуле:

где:
rf — активное сопротивление фазного провода, Ом;
rn — активное сопротивление нулевого провода, Ом;
ra — суммарное активное сопротивление контактов цепи фаза-нуль, Ом;
xf» — внутреннее индуктивное сопротивление фазного провода, Ом;
xn» — внутреннее индуктивное сопротивление нулевого провода, Ом;
x’ — внешнее индуктивное сопротивление цепи фаза-нуль, Ом.

Таким образом подставляя известные значения в формулы приведённые выше, легко найдём ток короткого замыкания для однофазной сети.

Вычисление параметров КЗ в однофазной сети осуществляется в такой последовательности:

  1. Выяснится параметры питающего трансформатора или реактора.
  2. Определяются параметры используемого проводника.
  3. Если электрическая схема слишком разветвлена, то её следует упростить.
  4. Определяется полное сопротивление можду «фазой» и «0».
  5. Вычисляется полное сопротивление трансформатора или реактора, если данное значение нельзя получить из документации к источнику питания.
  6. Значения подставляются в формулу.

Если вся последовательность действий была проведена верно, то таким образом можно рассчитать силу тока при возникновении КЗ в однофазной сети.

Вычисление КЗ по паспортным данным

Значительно упрощается задача по расчёту КЗ, если имеются паспортные данные реактора или трансформатора. В этом случае достаточно номинальные значения электричества и напряжения подставить в расчётные формулы, чтобы получить значение тока КЗ.

Сила и мощность КЗ могут быть определены по следующим формулам:

В данной формуле значение Iном равно номинальному току электрического трансформатора или реактора.

Определение тока КЗ в сети неограниченной мощности

Если необходимо рассчитать КЗ в системе, где мощность источника электричества несоизмеримо выше суммарной мощности потребителей электричества, то величину напряжения можно условно считать неизменной.

В таких условиях мощность электричества будет равна бесконечности, а сопротивление проводника — нулю. Данные условия могут быть применены только к таким расчётным условиям, когда точка короткого замыкания удалена на значительное расстояние от источника электричества, а результирующее сопротивление цепи в десятки раз превышает сопротивление системы.

Для электрической сети неограниченной мощности сила электрической напряжённости рассчитывается по формуле:

Ik=Ib/Xрез
где:
Ik — сила тока короткого замыкания;
Ib — базисный ток;
Хрез — результирующее напряжения сети.

Подставив значение в формулу можно получить значение параметров КЗ в сети неограниченной мощности.

Руководящие указания по расчёту токов короткого замыкания, изложенные в данной статье, содержат основные принципы, по которым определяется сила тока в проводнике в момент образования этого опасного явления.

Если возникает сложность в проведении данных расчётов самостоятельно, то можно воспользоваться услугами профессиональных инженеров-электриков, которые проведут все необходимые вычисления.

Расчёт токов короткого замыкания и выбор электрооборудования по совету профессионалов позволит гарантировать бесперебойное и безопасное использование электрических сетей в частном доме или на производстве.

Расчёт трёхфазного короткого замыкания

а) Изменение тока при коротком замыкании

Рассчитать трёхфазное короткое замыкание — это значит определить токи и напряжения, имеющие место при этом виде повреждения как в точке к. з., так и в отдельных ветвях схемы.

Ток в процессе короткого замыкания не остаётся постоянным, а изменяется, как показано на рис. 1-23. Из этого рисунка видно, что ток, увеличившийся в первый момент времени, затухает до некоторой величины, а затем под действием автоматического регулятора возбуждения (АРВ) достигает установившегося значения.

 

Промежуток времени, в течение которого происходит изменение величины тока к. з., называется переходным процессом. После того как изменение величины тока прекращается и до момента отключения короткого замыкания продолжается установившийся режим к. з. В зависимости от того, производится ли выбор уставок релейной защиты или проверка электрооборудования на термическую и динамическую устойчивость, могут интересовать значения тока в разные моменты времени к. з.

Поскольку всякая сеть имеет определённые индуктивные сопротивления, препятствующие мгновенному изменению тока при возникновении короткого замыкания, величина его не изменяется скачком, а нарастает по определённому закону от нормального до аварийного значения.

Для упрощения расчёта и анализа ток, проходящий во время переходного процесса к. з., рассматривают как состоящий из двух составляющих: апериодической и периодической.


Апериодической называется постоянная по знаку составляющая тока ia, которая возникает в момент короткого замыкания и сравнительно быстро затухает до нуля (рис. 1-23).

Периодическая составляющая тока к. з. в начальный момент времени Inmo называется начальным током короткого замыкания. Величину начального тока к. з. используют, как правило, для выбора уставок и проверки чувствительности релейной защиты. Начальный ток короткого замыкания называют также сверхпереходным, так как для его подсчёта в схему замещения вводится так называемое сверхпереходное сопротивление генератора  и сверхпереходная э. д. с.

Установившийся ток к. з. представляет собой периодический ток после окончания переходного процесса, обусловленного как затуханием апериодической составляющей, так и действием АРВ. Полный ток к. з. представляет собой сумму периодической и апериодической составляющих в любой момент переходного процесса. Максимальное мгновенное значение полного тока называется ударным током к. з. и вычисляется при проверке электротехнического оборудования на динамическую устойчивость.

Как уже отмечалось выше, для выбора уставок и проверки чувствительности релейной защиты используется обычно начальный или сверхпереходный ток к. з., расчёт величины которого производится наиболее просто. Используя начальный ток при анализе быстродействующих защит и защит, имеющих небольшие выдержки времени, пренебрегают апериодической составляющей. Допустимость этого очевидна, так как апериодическая составляющая в сетях высокого напряжения затухает очень быстро, за время 0,05—0,2 с, что обычно меньше времени действия рассматриваемых защит.

При к. з. в сети, питающейся от мощной энергосистемы, генераторы которой оснащены АРВ, поддерживающими постоянным напряжение на её шинах, периодическая составляющая тока в процессе к. з. не меняется (рис. 1-23, б). Поэтому расчётное значение начального тока к. з. в этом случае можно использовать для анализа поведения релейной защиты, действующей с любой выдержкой времени.

В сетях же, питающихся от генератора или системы определённой ограниченной мощности, напряжение на шинах которой в процессе к. з. не остаётся постоянным, а изменяется в значительных пределах, начальный и установившийся ток к. з. не равны (рис. 1-23, а). При этом для расчёта защит, имеющих выдержку времени порядка 1—2 с и более, следовало бы использовать установившийся ток к. з. Однако поскольку расчёт установившегося тока к. з. сравнительно сложен, допустимо в большинстве случаев использовать начальный ток к. з. Такое допущение, как правило, не приводит к большой погрешности. Объясняется это следующим. На величину установившегося тока к. з. значительно большее влияние, чем на величину начального тока, оказывают увеличение переходного сопротивления в месте повреждения, токи нагрузки и другие факторы, не учитываемые обычно при расчёте токов к. з. Поэтому расчёт установившегося тока к. з. может иметь весьма большую погрешность.

Принимая во внимание всё сказанное выше, можно считать целесообразным и в большинстве случаев вполне допустимым использование для анализа релейных защит, действующих с любой выдержкой времени, начального тока к. з. При этом возможное снижение тока в течение короткого замыкания следует учитывать для защит, имеющих выдержку времени, введением в расчёт повышенных коэффициентов надёжности по сравнению с быстродействующими защитами.

б) Определение начального тока к. з. в простой схеме


Поскольку при трёхфазном к. з. (рис. 1-24) э. д. с. и сопротивления во всех фазах равны, все три фазы находятся в одинаковых условиях. Векторная диаграмма для такого короткого замыкания, которое, как известно, называется симметричным, приведена на рис. 1-18, б. Расчёт симметричной цепи может быть существенно упрощён. Действительно, так как все три фазы находятся в одинаковых условиях, достаточно произвести расчёт для одной фазы и результаты его затем распространить на две другие. Расчётная схема при этом будет иметь вид, показанный на рис. 1-24, б. Совершенно очевидно, что даже в рассматриваемом простейшем случае последняя схема значительно проще, чем показанная на рис. 1-24, а.

 

В сложных же электрических цепях, имеющих много параллельных и последовательных ветвей, разница будет ещё более очевидной.

Итак, в симметричной системе расчёт токов и напряжений можно производить только для одной фазы. Расчёт начинается с составления схемы замещения, в которой отдельные элементы расчётной схемы заменяются соответствующими сопротивлениями, а для источников питания указывается их э. д. с. или напряжение на зажимах. Каждый элемент вводится в схему замещения своими активным и реактивным сопротивлениями. Сопротивления генераторов, трансформаторов, реакторов определяются на основании паспортных данных и вводятся в расчёт, как указано ниже.

Реактивные сопротивления линий электропередачи рассчитываются по специальным формулам или могут приниматься приближенно по следующему выражению:

 

где l — длина участка линии, км; худ — удельное реактивное сопротивление линии, Ом/км, которое можно принимать равным:

 

Активные сопротивления медных и алюминиевых проводов могут быть подсчитаны по известному выражению

 

Допускается при расчётах токов к. з. не учитывать активного сопротивления и вводить в схему замещения только реактивные сопротивления элементов, если суммарное реактивное сопротивление больше чем в 3 раза превышает суммарное активное сопротивление

 

В дальнейшем для упрощения рассуждений будем считать, что условие (1-23), которое, как правило, выполняется для сетей напряжением 110 кВ и выше, действительно, и в расчёты будем вводить только реактивные сопротивления расчётной схемы.

Определение тока к. з. при питании от системы неограниченной мощности. Ток к. з. в расчётной схеме (рис. 1-25) определится согласно следующему выражению, кА:

 

где xрез — результирующее сопротивление до точки к. з., равное в рассматриваемом случае сумме сопротивлений трансформатора и линии, Ом;

 

Uс — междуфазное напряжение на шинах системы неограниченной мощности, кВ.

Под определением система неограниченной мощнoсти подразумевается мощный источник питания, напряжение на шинах которого остаётся постоянным независимо от места к. з. во внешней сети. Сопротивление системы неограниченной мощности принимается равным нулю. Хотя в действительности системы неограниченной мощности быть не может, это понятие широко используют при расчетах коротких замыканий. Можно считать, что рассматриваемая система имеет неограниченную мощность в тех случаях, когда её внутреннее сопротивление много меньше сопротивления внешних элементов, включенных между шинами системы и точкой к. з.

Пример 1-1. Определить ток. проходящий при трёхфазном к. з. за реактором сопротивлением 0,4 Ом, который подключен к шинам генераторного напряжения 10,5 кВ мощной электростанции.

Решение. Поскольку сопротивление реактора значительно больше, чем сопротивление системы, можно считать, что он подключен к шинам неограниченной мощности.

Тогда

 

Определение тока к. з. при питании от системы ограниченной мощности. Если сопротивление системы, питающей точку короткого замыкания, сравнительно велико, его необходимо учитывать при определении тока к. з. В этом случае в схему замещения вводится дополнительное сопротивление хспст и принимается, что за этим сопротивлением находятся шины неограниченной мощности.

Величина тока к. з. определяется по следующему выражению (рис. 1-26):

 

где xвн — сопротивление цепи короткого замыкания между шинами и точкой к. з.; хсист — сопротивление системы, приведенное к шинам источника.

Сопротивление системы можно определить, если задан ток трёхфазного к. з. на её шинах Iк.з.зад.:

 

Пример 1-2. Определить ток трёхфазного к. з. за сопротивлением 15 Ом линии 110 кВ, питающейся от шин подстанции. Ток трёхфазного к. з. на шинах подстанции, приведенный к напряжению 115 кВ, равен 8 кА.

Решение. Согласно (1-26) определяется хсист:

 

Определяется ток в месте к. з. в соответствии с (1-25):

 

Сопротивление системы при расчётах к. з. может быть задано не током, а мощностью короткого замыкания на шинах подстанции. Мощность короткого замыкания — условная величина, равная

 

где Iк.з. — ток короткого замыкания; Ucp — среднее расчётное напряжение на той ступени трансформации, где вычисляется ток короткого замыкания.

Пример 1-3. Определить ток трёхфазного к. з. за реактором сопротивлением 0,5 Ом. Реактор питается от шин 6,3 кВ подстанции, мощность к. з. на которых равна 300 MB • А.

Решение. Определим сопротивление системы:

 

в) Определение остаточного напряжения

В схеме, приведенной на рис. 1-26, величина остаточного напряжения на шинах определяется согласно следующим выражениям:

 

где x к.з. — сопротивление от шин подстанции, на которых определяется остаточное напряжение, до места к. з., или

 

х — сопротивление от шин источника питания до точки, в которой определяется остаточное напряжение.

Поскольку сопротивление рассматриваемой цепи принято чисто реактивным, в выражения (1-27) и (1-28) входят абсолютные величины, а не векторы.

Пример 1-4. Определить остаточное междуфазное напряжение на шинах подстанции в примере 1-2.

Решение. По первому выражению (1-27):

 

г) Расчёты токов короткого замыкания и напряжений в разветвлённой сети

В сложной разветвлённой сети, для того чтобы определить ток в месте к. з., необходимо предварительно преобразовать схему замещения так, чтобы она имела простой вид, по возможности с одним источником питания и одной ветвью сопротивления. С этой целью производится сложение последовательно и параллельно включенных ветвей, треугольник сопротивлений преобразуется в звезду и наоборот.

Пример 1-5. Преобразовать схему замещения, приведенную на рис. 1-27, определить результирующее сопротивление и ток в месте к. з. Значения сопротивлений указаны на рис. 1-27.

Решение. Преобразование схемы замещения производим в следующей последовательности.

 

Для распределения тока к. з. по ветвям схемы можно воспользоваться формулами, приведенными в табл. 1-1. Распределение токов производится последовательно в обратном порядке начиная с последнего этапа преобразования схемы замещения.

Пример 1-6. Распределить ток к. з. по ветвям схемы, приведенной на рис. 1-27.

Решение. Определим токи в параллельных ветвях 4 и 7 в соответствии с формулами (табл. 1-1):

 

 

Ток I7 проходит по сопротивлению х5 и затем разветвляется по параллельным ветвям х2 и х3:

 

Остаточное напряжение в любой точке разветвлённой схемы может быть определёно путём последовательного суммирования и вычитания падений напряжения в её ветвях.

Пример 1-7. Определить остаточное напряжение в точках а и б схемы, приведенной на рис. 1-27. Решение.

 

Если в схему замещения входят две или несколько э. д. с, точки их приложения объединяются и они заменяются одной эквивалентной э. д. с. (рис. 1-28).

Если э. д. с. источников равны по величине, то эквивалентная э. д. с. будет иметь такую же величину

 

Если же э. д. с. не равны, эквивалентная э. д. с. подсчитывается по следующей формуле:

 

д) Расчёт токов короткого замыкания по паспортным данным реакторов и трансформаторов

Во всех примерах, рассмотренных выше, сопротивления отдельных элементов схемы задавались в омах. Сопротивления же реакторов и трансформаторов в паспортах и каталогах не задаются в омах.

Параметры реактора обычно задаются в процентах как относительная величина падения напряжения в нём при прохождении номинального тока хP, %.

Сопротивление реактора (Ом) можно определить по следующему выражению:

 

гле UHOM и IHOM — номинальное напряжение и ток реактора.

Сопротивление трансформатора также задаётся в процентах как относительная величина падения напряжения в его обмотках при прохождении тока, равного номинальному, uK, %.

Для двухобмоточного трансформатора можно записать сопротивление (Ом):

 

где uK, %, и UHOM, кВ, — указаны выше, а S HOM — номинальная мощность трансформатора, MB• А.

При коротком замыкании за реактором или трансформатором подключенными, к шинам системы неограниченной мощности, ток и мощность к. з. определяются по следующим выражениям:

 

где IHOM — номинальный ток соответствующего реактора или трансформатора.

Пример 1-8. Вычислить максимально возможный ток трёхфазного к. з. за реактором РБA-6-600-4. Реактор имеет следующие параметры: UH = 6 кВ, IH = 600 А, хP = 4%.

Решение. Поскольку требуется определить максимально возможный ток к. з., считаем, что реактор подключен к шинам системы неограниченной мощности.

В соответствии с (1-33) ток к. з. за реактором определится как

 

Пример 1-9. Определить максимально возможный ток и мощность трёхфазного к. з. за понизительным трансформатором: SH = 31,5MB • А, UН1= 115 кВ, UН2 = 6,3 кВ, uK = 10,5%

Решение. Принимая, как и в предыдущем примере, что трансформатор подключен со стороны 115 кВ к шинам системы неограниченной мощности, определяем ток к. з.

Номинальный ток обмотки 6,3 кВ трансформатора равен:

 


Расчет токов короткого замыкания | Заметки электрика

Здравствуйте, уважаемые читатели и посетители сайта «Заметки электрика».

У меня на сайте есть статья про короткое замыкание и его последствия. Я в ней приводил случаи из своей практики.

Так вот чтобы минимизировать последствия от подобных аварий и инцидентов, необходимо правильно выбирать электрооборудование. Но чтобы его правильно выбрать, нужно уметь  рассчитывать токи короткого замыкания.

В сегодняшней статье я покажу Вам как можно самостоятельно рассчитать ток короткого замыкания, или сокращенно ток к.з., на реальном примере.

Я понимаю, что многим из Вас нет необходимости производить расчеты, т.к. обычно этим занимаются, либо проектанты в организациях (фирмах), имеющих лицензию, либо студенты, которые пишут очередной курсовой или дипломный проект. Особенно понимаю последних, т.к. сам будучи студентом (в далеком двух тысячном году), очень жалел, что в сети не было подобных сайтов. Также данная публикация будет полезна энергетикам и электрикам для поднятия уровня саморазвития, или чтобы освежить в памяти когда-то прошедший материал.

Кстати, я уже приводил пример расчета защиты асинхронного двигателя. Кому интересно, то переходите по ссылочке и читайте.

Итак, перейдем к делу. Несколько дней назад у нас на предприятии случился пожар на кабельной трассе около цеховой сборки №10. Выгорел практически полностью кабельный лоток со всеми там идущими силовыми и контрольными кабелями. Вот фото с места происшествия.

Сильно вдаваться в «разбор полетов» я не буду, но у моего руководства возник вопрос о срабатывании вводного автоматического выключателя и соответствие его номинального тока для защищаемой линии. Простыми словами скажу, что их интересовала величина тока короткого замыкания в конце вводной силовой кабельной линии, т.е. в том месте, где случился пожар.

Естественно, что никакой проектной документации у цеховых электриков по расчетам токов к.з. на эту линию не нашлось, и мне пришлось самому производить весь расчет, который я выкладываю в общий доступ.

 

Сбор данных для расчета токов короткого замыкания

Силовая сборка №10, около которой случился пожар, питается через автоматический выключатель А3144 600 (А) медным кабелем СБГ (3х150) от понижающего трансформатора №1 10/0,5 (кВ) мощностью 1000 (кВА).

В скобках около марки кабеля указано количество жил и их сечение (как рассчитать сечение кабеля). 

Не удивляйтесь, у нас на предприятии еще много действующих подстанций с изолированной нейтралью на 500 (В) и даже на 220 (В).

Скоро буду писать статью о том, как в сеть 220 (В) и 500 (В) с изолированной нейтралью установить счетчик. Не пропустите выход новой статьи — подпишитесь на получение новостей.

Понижающий трансформатор 10/0,5 (кВ) питается силовым кабелем ААШв (3х35) с высоковольтной распределительной подстанции № 20.

Некоторые уточнения для расчета тока короткого замыкания

Несколько слов хотелось бы сказать про сам процесс короткого замыкания. Во время короткого замыкания в цепи возникают переходные процессы, связанные с наличием в ней индуктивностей, препятствующих резкому изменению тока. В связи с этим ток к.з. во время переходного процесса можно разделить на 2 составляющие:

  • периодическая (появляется в начальный момент и не снижается, пока электроустановка не отключится от защиты)
  • апериодическая (появляется в начальный момент и быстро снижается до нуля после завершения переходного процесса)

Ток к.з. я буду расчитывать по РД 153-34.0-20.527-98.

В этом нормативном документе сказано, что расчет тока короткого замыкания допускается проводить приближенно, но при условии, что погрешность расчетов не составит больше 10%.

Расчет токов короткого замыкания я буду проводить в относительных единицах. Значения элементов схемы приближенно приведу к базисным условиям с учетом коэффициента трансформации силового трансформатора.

Цель — это проверить вводной автоматический выключатель А3144 с номинальным током 600 (А) на коммутационную способность. Для этого мне нужно определить ток трехфазного и двухфазного короткого замыкания в конце силовой кабельной линии.

 

Пример расчета токов короткого замыкания

Принимаем за основную ступень напряжение 10,5 (кВ) и задаемся базисной мощностью энергосистемы:

  • базисная мощность энергосистемы Sб = 100 (МВА)

  • базисное напряжение Uб1 = 10,5 (кВ)

  • ток короткого замыкания на сборных шинах подстанции №20 (по проекту) Iкз = 9,037 (кА)

Составляем расчетную схему электроснабжения.

На этой схеме указываем все элементы электрической цепи и их параметры. Также не забываем указать точку, в которой нам нужно найти ток короткого замыкания. На рисунке выше я ее забыл указать, поэтому объясню словами. Она находится сразу же после низковольтного кабеля СБГ (3х150) перед сборкой №10.

Затем составим схему замещения, заменив все элементы вышеприведенной схемы на активные и реактивные сопротивления.

При расчете периодической составляющей тока короткого замыкания допускается активное сопротивление кабельных и воздушных линий не учитывать. Для более точного расчета активное сопротивление на кабельных линиях я учту. 

Зная, базисные мощности и напряжения, найдем базисные токи для каждой ступени трансформации:

Теперь нам нужно найти реактивное и активное сопротивление каждого элемента цепи в относительных единицах и вычислить общее эквивалентное сопротивление схемы замещения от источника питания (энергосистемы) до точки к.з. (выделена красной стрелкой).

Определим реактивное сопротивление эквивалентного источника (системы):

Определим реактивное сопротивление кабельной линии 10 (кВ):

  • Хо — удельное индуктивное сопротивление для кабеля ААШв (3х35) берем из справочника по электроснабжению и электрооборудованию А.А. Федорова, том 2, табл. 61.11 (измеряется в Ом/км)
  • l — длина кабельной линии (в километрах)

Определим активное сопротивление кабельной линии 10 (кВ):

  • Rо — удельное активное сопротивление для кабеля ААШв (3х35) берем из справочника по электроснабжению и электрооборудованию А.А. Федорова, том 2, табл. 61.11 (измеряется в Ом/км)
  • l — длина кабельной линии (в километрах)

Определим реактивное сопротивление двухобмоточного трансформатора 10/0,5 (кВ):

  • uк% — напряжение короткого замыкания трансформатора 10/0,5 (кВ) мощностью 1000 (кВА), берем из справочника по электроснабжению и электрооборудованию А.А. Федорова, табл. 27.6

Активным сопротивлением трансформатора я пренебрегаю, т.к. оно несоизмеримо мало по отношению к реактивному. 

Определим реактивное сопротивление кабельной линии 0,5 (кВ):

  • Хо — удельное сопротивление для кабеля СБГ (3х150) берем из справочника по электроснабжению и электрооборудованию А.А. Федорова, табл. 61.11 (измеряется в Ом/км)
  • l — длина кабельной линии (в километрах)

Определим активное сопротивление кабельной линии 0,5 (кВ):

  • Rо — удельное сопротивление для кабеля СБГ (3х150) берем из справочника по электроснабжению и электрооборудованию А.А. Федорова, табл. 61.11 (измеряется в Ом/км)
  • l — длина кабельной линии (в километрах)

Определим общее эквивалентное сопротивление от источника питания (энергосистемы) до точки к.з.:

Найдем периодическую составляющую тока трехфазного короткого замыкания:

Найдем периодическую составляющую тока двухфазного короткого замыкания:

Результаты расчета токов короткого замыкания

Итак, мы рассчитали ток двухфазного короткого замыкания в конце силовой кабельной линии напряжением 500 (В). Он составляет 10,766 (кА).

Вводной автоматический выключатель А3144 имеет номинальный ток 600 (А). Уставка электромагнитного расцепителя у него выставлена на 6000 (А) или 6 (кА). Поэтому можно сделать вывод, что при коротком замыкании в конце вводной кабельной линии (в моем примере по причине пожара) автомат уверенно сработал и отключил поврежденный участок цепи.

Еще полученные значения трехфазного и двухфазного токов можно применить для выбора уставок релейной защиты и автоматики.

В этой статье я не выполнил расчет на ударный ток при к.з. 

P.S. Вышеприведенный расчет был отправлен моему руководству. Для приближенного расчета он вполне сгодится. Конечно же низкую сторону можно было рассчитать более подробно, учитывая сопротивление контактов автоматического выключателя, контактных соединений кабельных наконечников к шинам, сопротивление дуги в месте замыкания и т.п. Об этом я как-нибудь напишу в другой раз.

Если Вам нужен более точный расчет, то можете воспользоваться специальными программами на ПК. Их в интернете множество.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Расчет токов короткого замыкания. Назначение. Допущения. Литература

Зачем вообще рассчитывать ток короткого замыкания?

Прежде всего это делается для выбора и проверки аппаратов, устанавливаемых в цепи протекания тока короткого замыкания (КЗ). Чтобы при возникновении КЗ аппарат не разрушился, а в случае с выключателем был способен отключить протекающий через него ток.

Есть еще одно назначение у расчетов тока короткого замыкания- это выбор уставок релейной защиты. Дело в том, что часть защит, например, токовые отсечки, могут отстраиваться от токов короткого замыкания. Следовательно, чтобы выполнить расчет их уставок необходимо рассчитать ток КЗ. Для проверки чувствительности уставок защит также необходимо знать значения токов КЗ в различных точках сети.

Допущения при расчете токов КЗ

При расчетах токов КЗ в электроустановках переменного тока напряжением свыше 1 кВ принимаются следующие допущения:

  1. Не учитываются активные сопротивления элементов сети, если их суммарное эквивалентное активное сопротивление до точки КЗ не превышает 30% суммарного индуктивного сопротивления элементов схемы до той же точки КЗ. Хотя получается, что для того чтобы рассчитать будет ли активное сопротивление составлять менее 30% индуктивного необходимо все равно посчитать активные сопротивления всех элементов схемы. А если они определены, то что мешает учесть их при расчете токов КЗ?
  2. Не учитываются токи нагрузки
  3. Не учитываются емкостные токи воздушных и кабельных линий
  4. Считается, что сопротивления фаз трехфазной сети равны между собой
  5. Не учитываются токи намагничивания трансформаторов и насыщение стали магнитопроводов.
  6. Допустимая погрешность расчета токов КЗ составляет 10%

Литература для выполнения расчетов токов КЗ

В РФ для определения токов КЗ в электроустановках напряжением свыше 1 кВ следует руководствоваться ГОСТ Р 52735-2007 «Короткие замыкания в электроустановках. Методы расчета в электроустановках переменного тока напряжением свыше 1 кВ».

В Украине действует ДСТУ IEC 60909-0:2007 «Токи короткого замыкания в системах трехфазного переменного тока. Часть 0. Расчет силы тока (IEC 60909-0:2001, IDT).

Приведу ещё некоторую литературу, которая может быть полезной при выполнении расчетов токов КЗ:

  1. Беляева Е.Н. Как рассчитать ток короткого замыкания. -2-е изд. перераб. и доп., 1983 год (Библиотечка электромонтера, выпуск 544)
  2. ГОСТ 27514-87 Короткие замыкания в электроустановках. Методы расчета в электроустановках переменного тока напряжением свыше 1 кВ
  3. РД 153-34.0-20.527-98 Руководящие указания по расчету токов короткого замыкания и выбору электрооборудования
  4. СТО ДИВГ-058-2017 Расчет токов коротких замыканий и замыканий на землю в распределительных сетях. Методические указания. Механотроника

Для расчетов токов короткого замыкания в электроустановках напряжением до 1 кВ следует руководствоваться ГОСТ 28249-93 Короткие замыкания в электроустановках. Методы расчета в электроустановках переменного тока напряжением до 1 кВ.

Расчеты токов КЗ в электроустановках переменного тока напряжением до 1 кВ имеют свои особенности, в частности обязательно следует учитывать активные сопротивления элементов, а также сопротивления контактов, переходные сопротивления и т.д., так они оказывают значительное влияние на результат расчета.

Автор статьи, инженер-проектировщик систем релейной защиты станций и подстанций

Определение тока в начальный момент несимметричного к.з.

Схема прямой последовательности составляется аналогично случаю трехфазного к. з. (см. раздел).
Подпитывающий эффект нагрузки при несимметричном к. з. проявляется слабее, чем при трехфазном.
Начальное значение тока прямой последовательности будет равно:

Остальные симметричные составляющие тока и напряжения определяют, пользуясь табл. 38-3.

Пример 2. При однофазном к. з. в точке К схемы рис. 38-33, а определить ток в месте повреждения для начального момента к. з. Построить векторную диаграмму токов генератора и найти для него коэффициент асимметрии токов.
Данные

  • сопротивление прямой и обратной последовательностей линий х=0,4 Ом/км;
  • сопротивление обратной последовательности генератора ;
  • сопротивление обратной последовательности нагрузки ;
  • сопротивления нулевой последовательности:

воздушные линии для Л-1; для Л-2 и Л-3;
система ;

  • сопротивление в нейтрали T-1 Ом; соединение обмоток трансформатора Т-1 U0/D-11·

 

Рис. 38-33. Схемы к примеру 2.

Решение. Расчет выполняем в именованных единицах по средним коэффициентам трансформации. На рис. 38-33, б показана схема замещения прямой последовательности; э. д. с. источников и сопротивления элементов приведены к ступени 230 кВ, принятой за основную.
Фазные э. д. с:

Сопротивления:

Упрощаем схему прямой последовательности:

После преобразований схема прямой последовательности имеет вид, представленный на рис. 38-33, в. Суммарная э. д. с. прямой последовательности

Суммарное сопротивление прямой (обратной) последовательности

Схема нулевой последовательности показана на рис. 38-33, г. Сопротивления ее элементов равны:

Преобразуем схему нулевой последовательности

Суммарное сопротивление нулевой последовательности

Дополнительное сопротивление

Ток прямой последовательности фазы А в месте к. з.

Полный ток в месте к. з.

Определение составляющих тока прямой и обратной последовательностей в цепи гидрогенератора.
Найдем напряжение прямой последовательности фазы А в месте к. з.:

Напряжение прямой последовательности в точке М (рис. 38-33, в)

Ток прямой последовательности фазы А в цепи гидрогенератора

Напряжение обратной последовательности в месте к. з.

То же в точке М

Ток обратной последовательности в цепи генератора

Асимметрия токов в генераторе равна:

Векторная диаграмма токов гидрогенератора дана на рис. 38-34.

Рис. 38-34. Векторная диаграмма токов гидрогенератора к примеру.

Расчет токов несимметричных коротких замыканий методом расчетных кривых
Определение периодической составляющей тока прямой последовательности в месте короткого замыкания производится при помощи кривых рис. 38-12 и 38-13.
Для заданного вида короткого замыкания определяют



В приближенных расчетах токов к. з. турбогенераторов и машин с успокоительными обмотками можно принимать . Поэтому при расчете по расчетным кривым схемы обратной последовательности можно не составлять и практически принимать



При расчете по общему изменению для



определяют по соответствующим расчетным кривым относительный ток прямой последовательности в рассматриваемый момент времени t. При



Периодическая составляющая твка в месте к. з.



Определение токов на землю при однофазном и двухфазном коротких замыканиях на землю
Ток в земле в месте к. з.:
1) при однофазном к. з.



2) при двухфазном к. з. на землю



Если , то

при
при

Простой метод расчета основных токов короткого замыкания

Чтобы глубже изучить простой способ расчета тока короткого замыкания, мы должны сначала разработать нашу базу знаний по основам анализа короткого замыкания.

«Анализ тока короткого замыкания используется для определения величины тока короткого замыкания, который способна произвести система, и сравнения величины величины короткого замыкания с отключающей способностью устройств защиты от сверхтоков (OCPD).»

Мы всегда должны помнить, что номинальный ток отключения не совпадает с номинальным током короткого замыкания (SCCR). Если вы хотите узнать об этом больше, расскажите нам в комментариях, и мы обсудим это в другом блоге.

В предыдущем блоге мы кратко познакомили вас с «Анализ короткого замыкания» . Если вы еще не проверяли его, прочтите этот блог, а затем вернитесь к этому!

Основная электрическая теорема гласит, что ток короткого замыкания на самом деле зависит от двух наиболее важных параметров:

  1. Полный импеданс от источника до точки повреждения
  2. Номинальное напряжение системы

С помощью основной формулы мы можем легко рассчитать ток короткого замыкания в месте повреждения, и с помощью этих значений мы можем проанализировать систему и установить защитные устройства и защитить объект от любого серьезного повреждения или повреждения.

I_fault = V / Z

Существует множество методов расчета токов короткого замыкания, однако мы дадим вам основное представление о том, как можно рассчитать токи короткого замыкания в простой распределительной системе переменного тока.

Пожалуйста, рассмотрите однолинейную схему (SLD) с электросетью, трансформатором и устройством защиты от перегрузки по току (OCPD), имеющим определенный номинал прерывания тока короткого замыкания.

Давайте сначала поговорим об источнике питания.Обычно мы рассматриваем источник питания или сеть как бесконечную емкость или «Источник имеет бесконечную шину».

Все, что было сказано, это то, что напряжение источника не имеет внутреннего сопротивления. В результате простой расчет становится очень консервативным. Поскольку предполагается, что источник не имеет собственного импеданса, соответствующий ток короткого замыкания будет наихудшим сценарием.

Теперь следующее, что мы видим на нашей однолинейной схеме, — это трансформатор. Импеданс, определяющий величину тока короткого замыкания на вторичной обмотке трансформатора, состоит из двух отдельных импедансов:

«Собственный импеданс плюс импеданс кабеля, подключенного между электросетью и трансформатором.Собственный импеданс трансформатора — это величина его сопротивления протеканию через него тока короткого замыкания ».

Все трансформаторы имеют импеданс, который обычно выражается в процентах напряжения. Это процент от нормального номинального первичного напряжения, которое должно быть приложено к трансформатору, чтобы вызвать протекание номинального тока полной нагрузки во вторичной обмотке, замкнутой накоротко.

Что это значит? а почему важен простой расчет?

Мы только что выпустили нашу серию Power Systems Engineering Vlog , и в этой серии мы собираемся поговорить о всевозможных различных исследованиях и комментариях по энергетике.Мы рассмотрим различные блоги, написанные AllumiaX. Это весело, это весело, по сути, это видеоблог, и мы надеемся, что вы, , присоединитесь к нам, и получите от этого пользу.

Предположим, что если у нас есть понижающий трансформатор 480 В / 220 В с импедансом 5%, это означает, что 5% от 480 В, т.е. 24 В, приложенные к его первичной стороне, вызовут ток номинальной нагрузки во вторичной обмотке. .

Если 5% первичного напряжения вызовут такой ток, то 100% первичного напряжения вызовет 20-кратное (100 деленное на 5) вторичное напряжение полной нагрузки, которое будет протекать через короткое замыкание на его вторичных выводах.

Очевидно, что чем ниже полное сопротивление трансформатора с заданным номиналом кВА, тем большую величину тока короткого замыкания он может выдать.

Теперь, когда мы понимаем основные переменные, которые определяют токи короткого замыкания, давайте сделаем простой расчет для той же однолинейной схемы, которая упоминалась выше.

Предположим, у нас есть простая система распределения, состоящая из следующих компонентов:

  • Энергосистема, обеспечивающая питание системы
  • Понижающий трансформатор для преобразования уровня напряжения
  • Трансформатор тока для понижения уровня тока, который затем подается на реле
  • Реле для защиты, которое подает сигнал на автоматический выключатель при любом ненормальном состоянии.Ознакомьтесь с курсом «Основы защиты энергосистемы» , в котором мы кратко обсудили «Типы защитных реле и требования к конструкции».

Считайте, что на главной шине произошло короткое замыкание. Для ясности и упрощения предположим, что сопротивление линии между вторичной обмоткой трансформатора и местом повреждения пренебрежимо мало.

Во время неисправности трансформатор тока определяет величину тока, протекающего через вторичную обмотку трансформатора, что приводит к немедленному срабатыванию реле максимального тока (OC Relay) и подает сигнал на подключенный автоматический выключатель, который срабатывает. со временем разомкнуть его контакты и уберечь рабочий персонал от травм.Таким образом будет защищена система, подключенная к выходу этой шины.

Итак, для правильной работы всех этих защитных устройств нам необходимо определить 2 вещи.

  1. Определить вторичный ток полной нагрузки (Isec)
  2. Определить значение тока короткого замыкания на вторичной обмотке трансформатора (Isc)

Для этого мы будем использовать простую формулу. Предположим, сеть имеет номинальную мощность 100 кВА и значение импеданса 2.5%, и мы уже знаем, что 220 вольт доступны на вторичной обмотке трансформатора. Итак,

I_sec = (номинальная мощность источника в кВА) / (напряжение вторичной обмотки трансформатора)

Подставив значения, мы получим;

I_sec = 100000/220

Теперь мы рассчитаем значение тока короткого замыкания на вторичной обмотке трансформатора, это поможет защитному устройству действовать соответствующим образом.

I_sc = ((100%) / ((Импеданс трансформатора (Z%))) * I_sec

Подставив значения, мы получим;

I_sc = (100/2.5) * 454,54

I_sc = 18181,6 А

Ор, 18,18 КА. Это означает, что защитное устройство, которое мы будем использовать, должно иметь мощность короткого замыкания более 20 кА. Это поможет устройству защиты от перегрузки по току (OCPD) безопасно прервать это количество тока короткого замыкания.

В этом блоге вы получили общее представление о том, как рассчитать ток короткого замыкания для малой энергосистемы.

В следующем блоге (посвященном короткому замыканию) мы углубимся и объясним каждый аспект расчета токов короткого замыкания в однофазной и трехфазной энергосистеме.

Надеюсь, вам понравится этот блог, и вы также будете рекомендовать его другим. Если у вас есть какие-либо вопросы, не стесняйтесь задавать их в разделе комментариев.

Расчет тока короткого замыкания — журнал IAEI

Время считывания: 11 минут

Один из самых фундаментальных расчетов системы распределения электроэнергии — это вычисление доступного тока короткого замыкания. В выпуске журнала IAEI за сентябрь — октябрь 2012 г. была статья под названием «Основы, максимальный ток повреждения», в которой говорилось на эту тему, но не рассматривались математические выкладки.С тех пор я получил много просьб заняться математикой. Я надеюсь, что эта статья удовлетворит пытливые умы подробностями о вычислении доступного тока короткого замыкания и предоставит некоторые уравнения для изучения студентом.

Доступный ток короткого замыкания

Максимальный доступный ток короткого замыкания является важным параметром для каждой системы распределения электроэнергии, поскольку он предоставляет точку данных, необходимую для подтверждения того, что оборудование используется в пределах своих номинальных характеристик, и что система работает в соответствии с ожиданиями.Имеющийся ток короткого замыкания также используется во многих других приложениях.

Национальный электротехнический кодекс требует эту точку данных для обеспечения соблюдения таких разделов, как 110.9, рейтинг прерывания; 110.10. Полное сопротивление цепи, номинальные значения тока короткого замыкания и другие характеристики; и 110.24 Доступный ток повреждения. Независимо от того, являетесь ли вы проектировщиком, установщиком или инспектором, в какой-то момент вашей карьеры вы столкнетесь с необходимостью расчета доступного тока повреждения. Понимание математики, лежащей в основе этого, и того, как используются расчетные токи короткого замыкания, может только расширить знания и понимание.Это также может помочь нам понять, что эти расчеты должен производить квалифицированный специалист. Итак, ради понимания, я предлагаю эту статью, чтобы помочь вам в этом.

Основы расчета тока короткого замыкания

Все, что вам нужно знать о вычислении токов короткого замыкания, вы изучили в схемах 101, тригонометрии и базовых математических курсах. На рисунке 1 показана простая однолинейная схема, которая вполне может быть вашим основным служебным входом для коммерческой или промышленной установки.

Рисунок 1. Однолинейная диаграмма

Рисунок 2 — это основная принципиальная схема того, что представлено на Рисунке 1, и которая будет использоваться для расчета доступного тока короткого замыкания в любой точке приведенной выше простой однолинейной диаграммы. Инженеры назовут то, что вы видите на Рисунке 2, диаграммой импеданса, поскольку она в основном преобразует каждый компонент на Рисунке 1 выше в значения импеданса. Для тех из вас, кто разбирается в цепях 101, то, что вы видите ниже, когда все импедансы сложены вместе, представляет собой «эквивалент Теванина», который включает в себя импеданс и источник напряжения.Эта базовая схема будет использоваться в этой статье.

Рис. 2. Диаграмма импеданса (схема)

Для расчетов и упрощения нашей работы с этим документом необходимо сделать допущения.

Предположения для трансформатора, который будет использоваться как часть примера для этой статьи, будут включать следующие. Эта информация должна быть доступна при чтении паспортной таблички трансформатора.

Трансформатор кВА 1500
Первичное напряжение 4160 В
Вторичное напряжение 480 В
% Импеданс 5.75%

Предполагается для тока короткого замыкания, доступного для электросети. Для этого упражнения будет использовано 50 000 ампер. Перед проведением исследования с коммунальным предприятием связываются для получения этой информации. Они могут обеспечить доступный ток короткого замыкания одним из нескольких различных способов. Самыми простыми и, вероятно, наиболее заметными данными от электросети будут доступный ток короткого замыкания в кА. Некоторые утилиты могут вместо этого предоставлять данные в виде MVA короткого замыкания. В этой статье будут представлены уравнения для обеих форм ввода, но с учетом доступного тока короткого замыкания 50 кА.

Что касается импеданса проводника, следующие расчеты будут игнорировать сопротивление проводника и использовать только реактивное сопротивление. Это сделает две вещи для этой статьи. Во-первых, это приведет к более высокому току повреждения, чем можно было бы рассчитать, если бы мы приняли во внимание как сопротивление, так и реактивное сопротивление. Во-вторых, это упростит математику. В последнем разделе этой статьи будут представлены результаты анализа, включающие сопротивление и реактивное сопротивление проводников и электросети.Используемые методы отражают методы, используемые в таких программах, как SKM Systems Analysis A-Fault.

Эта статья также не предполагает участия двигателя. Максимальный доступный ток короткого замыкания должен включать все составляющие короткого замыкания. Мы не включаем этот вклад в эти усилия для простоты.

Основные расчеты трансформатора

Самым первым шагом этого процесса является расчет ампер полной нагрузки (FLA) для трансформатора. Еще один базовый расчет, который электротехнику придется выполнять в какой-то момент своей карьеры, и который некоторые выполняют много раз в день.Уравнения для расчета FLA приведены ниже:

FLA вторичный = кВА
(√3) × (кВсек)
FLA Вторичный = 1500
[(√3) × (0,480)] = 1804 А

Этот трансформатор на 1500 кВА имеет FLA вторичной обмотки 1804 ампер. Этот параметр необходим для выбора вторичных проводов для этого трансформатора.Основываясь на этом FLA и использовании таблицы 310.15 (B) (16) из NEC 2014, количество проводников, используемых на вторичной обмотке трансформатора, будет составлять 5-500 проводов MCM на фазу.

Расчет тока короткого замыкания на вторичной обмотке главного трансформатора

Есть два подхода к вычислению доступного тока короткого замыкания на вторичной обмотке трансформатора. Мы можем рассчитать максимальное количество, которое трансформатор пропустит, как если бы объект выработки электроэнергии был подключен непосредственно к линейной стороне трансформатора, или мы можем рассчитать доступный ток повреждения с учетом предоставленного доступного тока повреждения от электросети.Первый подход, который приводит к максимальной величине тока повреждения, который пропускает трансформатор, называется расчетом «бесконечной шины». Схема на рисунке 2 может быть перерисована, чтобы включить нулевой импеданс для электросети, что уменьшит полное сопротивление цепи и, таким образом, увеличит значение расчетного тока короткого замыкания. На рис. 3 будет показан максимально допустимый ток короткого замыкания, который может подавать трансформатор.

Рисунок 3. Эквивалентная схема бесконечной шины

На рис. 3 показано только полное сопротивление трансформатора.Уравнение для расчета максимального доступного тока короткого замыкания, который может обеспечить трансформатор, выглядит следующим образом:

Isc = (трансформатор кВА) × 100
(√3) × (вторичный кВ) × (трансформатор% Z)

Используя информацию, указанную выше для примера трансформатора 1500 кВА для этого примера, максимальный доступный ток повреждения, который пропускает этот конкретный трансформатор, составляет 31 378 ампер и рассчитывается следующим образом:

Isc = 1500 × 100
(√3) × (0.480) × (5,75) = 31 378 ампер

Это говорит нам о том, что вторичная обмотка трансформатора не может видеть больше тока повреждения, чем мы рассчитали. На стороне электросети НЕТ изменений, которые могут повлиять на этот доступный ток короткого замыкания до точки, где он будет превышать 31 378 ампер. Единственный способ получить более 31 378 ампер, если мы изменим трансформатор, и новый трансформатор, который предположительно будет таким же по всем другим характеристикам, будет иметь другой% импеданса.На рисунке 4 представлена ​​таблица, которая включает результаты изменения импеданса исследуемого трансформатора +/- 20% с шагом 5% по сравнению со значением импеданса 5,75%, используемым в этом примере. Это показывает, как изменение импеданса трансформатора повлияет на максимально допустимый ток короткого замыкания, который он может пропустить.

Как показано на рисунке 4, смена трансформатора и изменение его импеданса может оказать значительное влияние на систему. Если бы я рискнул предположить, я бы сказал, что в большинстве случаев коммунальное предприятие, меняющее служебный трансформатор, будет признано предприятием.Задача состоит в том, чтобы владелец объекта или постоянные сотрудники понимали, как это изменение может повлиять на их систему распределения электроэнергии. После внесения изменений метки, подобные тем, которые включены в Раздел 110.24 NEC , должны быть обновлены.

Рис. 4. Влияние изменения импеданса (+ / — 20%) трансформатора на 1500 кВА

В этом расчете не учитывается полное сопротивление источника электросети и не учитываются проводники на стороне нагрузки. Давайте теперь исследуем влияние добавления в сеть доступного тока короткого замыкания.

Расчет тока короткого замыкания с учетом тока повреждения сети

Как и в большинстве ситуаций, мы выбираем консервативные ярлыки, консервативные в отношении безопасности, пока не возникнут ситуации, требующие углубления в детали. Вышеупомянутый ярлык для расчета тока повреждения является консервативным, поскольку он НЕ учитывает доступный ток повреждения сети, дающий максимальное значение. При рассмотрении прерывания и других аналогичных номиналов устройства и оборудование, которые могут выдерживать это консервативное значение тока короткого замыкания, не нуждаются в дополнительных исследованиях.Когда новое или существующее оборудование не может справиться с этим консервативно высоким доступным током короткого замыкания, может быть проведен дальнейший подробный анализ или оборудование может быть заменено или рассчитано соответствующим образом. Ниже будет рассмотрен вопрос о добавлении полезности при наличии доступного тока повреждения. В частности, 50 кА доступны в коммунальном хозяйстве. Это продемонстрирует, что таким образом можно уменьшить рассчитанные 31 378 ампер.

Ниже приведены два уравнения, которые относятся к наличию кА и наличию MVA короткого замыкания.В этом примере мы будем использовать приведенное ниже уравнение, в котором предполагается, что электросеть предоставила вам доступный ток короткого замыкания в кА.

Принципиальная схема теперь выглядит так, как показано на рисунке 5.

Рис. 5. Принципиальная электрическая схема, которая включает импеданс трансформатора и сетевого источника.

Первым необходимым шагом является преобразование предоставленной электросетью доступной информации о токе повреждения (50 кА) в полное сопротивление источника.
Если кА предоставляется от электросети:

% Z утилита = кВА Трансформатор × 100
(Isc электросети) × (√3) × (кВ первичная)

При коротком замыкании MVA предоставляется коммунальным предприятием:

% Z утилита = кВА Трансформатор
Короткое замыкание кВА инженерных сетей

Для данного доступного тока короткого замыкания электросети 50 кА% Z электросети рассчитывается следующим образом:

% Z утилита = 1500 × 100
(50 000) × (√3) × (4.160) = 0,420

На рисунке 6 показаны значения импеданса источника электросети для различных токов повреждения электросети для этого конкретного примера. Как отмечалось выше, трансформатор кВА и первичное напряжение будут играть ключевую роль в этих значениях.

Рисунок 6. Значения импеданса сетевого источника для различных уровней доступного тока короткого замыкания в сети

Уравнение для расчета доступного тока короткого замыкания на вторичной обмотке трансформатора, которое включает полное сопротивление электросети, выглядит следующим образом:

Isc = (трансформатор, кВА) × 100)
(√3) × (Вторичный кВ) × [(% Zтрансформатор) + (% Z полезность)]

После вставки всех известных переменных новый доступный ток повреждения рассчитывается следующим образом:

Isc = 1500 × 100
(√3) × (0.480) × [(5,75) + (0,4164)] = 29 259 А

Если мы сравним расчет бесконечной шины и тот, который включал импеданс источника электросети (доступный ток короткого замыкания 50 000 ампер), мы увидим, что доступный ток короткого замыкания упал с 31 378 ампер до 29 259 ампер, т.е. в доступном токе короткого замыкания (2119 ампер).

Влияние изменяющегося тока короткого замыкания, доступного в электросети, показано на рисунке 7. В этой таблице показано, как изменяется расчетный доступный ток короткого замыкания при изменении значений тока повреждения источника электросети.Доступный ток повреждения 50 кА используется в качестве значения, с которым сравниваются изменения. Интересно отметить, что увеличение доступного тока короткого замыкания от электросети, если исходная точка составляет 50 кА, не имеет такого большого влияния, как можно было бы подумать. Например, удвоение доступного тока повреждения в электросети с 50 кА до 100 кА увеличивает доступный ток повреждения вторичной обмотки трансформатора только на 3%, или на 1022 ампер. Для большинства устройств защиты от сверхтоков это изменение не должно быть значительным.Я слышал, что некоторые говорили, что мы не должны маркировать оборудование входа для обслуживания, потому что коммунальное предприятие может вносить изменения в коммутацию на стороне линии, которые повлияют на номер на этикетке. Рисунок 7 — хороший пример, который показывает, что даже если бесконечная шина не использовалась, изменения на стороне электросети не имеют такого значительного влияния на ток короткого замыкания, как можно было бы подумать.

Рис. 7. Влияние различных токов короткого замыкания, доступных в электросети, на систему распределения электроэнергии.

Напомним, где мы находимся в этом обсуждении, доступные токи замыкания показаны на рисунке 7a.

Следующее, что мы должны рассмотреть, — это провод на вторичной обмотке трансформатора. Это еще больше снизит доступный ток короткого замыкания.

Расчет — после длины проводника

Проводники могут оказывать значительное влияние на доступный ток короткого замыкания. Давайте продолжим анализ этого примера трансформатора 1500 кВА, добавив параллельные проводники 500MCM на стороне нагрузки.

Эквивалентная схема уже представлена ​​как часть рисунка 1.Теперь давайте рассмотрим влияние длины проводника на доступный ток короткого замыкания. Нам понадобится следующее уравнение:

Данные, необходимые для этого примера, взяты из национального электрического кодекса . Из Таблицы 9 NEC 2014 для проводника 500 MCM в стальном трубопроводе, Xl (реактивное сопротивление) определено как 0,048 Ом / 1000 футов. В этом примере, как указывалось ранее, мы используем только значение реактивного сопротивления, которое приведет к немного более высоким значениям тока короткого замыкания и сделает математические вычисления для этой публикации более приемлемыми.Для трансформатора мощностью 1500 кВА с током полной нагрузки 1804 нам потребуется 5-500 мкс проводов, включенных параллельно на каждую фазу. Расчет производится следующим образом:


уравнение для расчета доступного тока короткого замыкания выглядит следующим образом:

Подставив все известные переменные, мы рассчитали ISC следующим образом:

Тот же расчет, предполагающий бесконечную шину без полного сопротивления сети, выглядит следующим образом:

Подводя итог еще раз,

Как можно увидеть здесь, включение дополнительных деталей снижает доступный ток короткого замыкания.В этом случае ток короткого замыкания был снижен с 31 378 ампер до 26 566 ампер, примерно на 15,3%.

Рисунок 8. Сводка расчетов и сравнение с другими инструментами для расчета доступного тока короткого замыкания.

Окончательная калибровка

Итак, мы прошли через расчет доступного тока короткого замыкания для служебного входного оборудования. Мы показали, как короткие пути приводят к консервативным доступным токам короткого замыкания, которые в целях оценки отключающих характеристик и / или оценок SCCR обеспечивают коэффициент безопасности для конструкции.Мы также показали, как можно снизить доступные токи короткого замыкания с помощью более подробного анализа, но это требует больше усилий и опыта. Давайте посмотрим на приведенный выше пример и рассмотрим другие инструменты, которые могут быть доступны.

В нашем распоряжении есть различные инструменты, когда мы рассматриваем возможность расчета доступного тока короткого замыкания. Некоторые из них довольно дороги и требуют использования обученных специалистов. К ним относятся такие программные приложения, как инструменты системного анализа SKM. Эти приложения действительно являются достаточно подробными и предоставляют очень подробные отчеты.Существуют также бесплатные инструменты, такие как калькулятор короткого замыкания Eaton Bussmann FC2. Рисунок 8 суммирует то, что мы сделали выше, И дает сравнение с SKM и с приложением Bussmann FC2. Калькулятор Bussmann FC2 является бесплатным и доступен в Интернете или для любого IPHONE или ANDROID через App Store любого продукта. Посетите www.cooperbussmann.com/fc2 для получения дополнительной информации. Вы заметите, что результат программного обеспечения SKM использует как реальную, так и реактивную составляющие проводника. Значения импеданса были взяты прямо из Таблицы 9 в NEC 2014 для медных проводников в стальном трубопроводе.

Опять же, ни один из примеров, показанных выше и включенных в эту статью, не учитывает вклад двигателя. Это было упражнение, призванное дать некоторую основу для обсуждения токов короткого замыкания, и поэтому простота была нашим другом. Вклад двигателя может быть очень важным для этих расчетов. С точки зрения математики и / или системной схемы, когда вы включаете вклад двигателя, импеданс параллелен импедансу сетевого источника, импедансу трансформатора и импедансу проводника.Это снижает общий импеданс в цепи, показанной на рисунке 2, и, следовательно, увеличивает расчетный ток короткого замыкания. Сброс остается на усмотрение учащегося. (Я всегда хотел это сказать.)

Заключительное слово

Доступный ток короткого замыкания — очень важный параметр, который необходимо учитывать при проектировании, установке и проверке. На рынке доступны инструменты, которые помогают рассчитать доступный ток короткого замыкания. Используйте эти ресурсы для удовлетворения требований NEC и приложений к продукту.

Как всегда, поставьте безопасность на первое место в списке и убедитесь, что вы и окружающие доживете до следующего дня.

Расчет тока короткого замыкания любого трансформатора всего за 3 шага

Рассчитайте ток короткого замыкания любого трансформатора всего за 3 шага https://www.theelectricalguy.in/wp-content/uploads/2020/05/rt-circuit-current-of-any-transformer-in-just-3-steps-theelectricalguy-YABHOrP8mr0-1024×576.jpg 1024 576 Гаурав Дж. Гаурав Дж. https: // безопасный.gravatar.com/avatar/87a2d2e0182faacb2e003da0504ad293?s=96&d=mm&r=g

В этом руководстве я объясню три простых шага для расчета тока короткого замыкания любого трансформатора. Это также поможет вам определить номинал автоматического выключателя. Итак, начнем !

Шаг 1

Получите следующие сведения
  • Номинальная мощность трансформатора кВА / МВА (для понимания предположим, что это 100 кВА)
  • Вторичное напряжение (при условии 440 вольт)
  • % Импеданс (Вы получите его из паспортной таблички трансформатора, для нашего примера предположим, что 5% )

Шаг 2

Расчет тока полной нагрузки

Для трехфазного трансформатора используйте следующую формулу

Для однофазного трансформатора используйте следующую формулу

Рассчитаем ток полной нагрузки в нашем примере.

Шаг 3

Рассчитайте ток короткого замыкания

Теперь рассчитаем фактический ток короткого замыкания по следующей формуле.

Итак, это наш ток короткого замыкания. Это поможет вам определиться с номиналом автоматического выключателя. В этом случае вам понадобится выключатель с отключающей способностью по току короткого замыкания более 2624,1 А или 2,6 кА.

Вы также можете рассчитать первичный ток любого трансформатора всего за 2 шага, чтобы узнать больше, нажмите здесь.

4 шага для расчета номинального тока короткого замыкания в промышленных панелях управления

Номинальный ток короткого замыкания

Дэниел Лайтси
ABB Ability (TM), Smart Power

Марсело Э. Вальдес
PE, IEEE Fellow Applications Eng. Менеджер
ABB Electrification Products Industrial Solutions

Номинальные значения тока короткого замыкания (SCCR) являются важной характеристикой при проектировании промышленных панелей управления. Определение подходящего SCCR фактически не требует вычислений.Вместо этого существует простой четырехэтапный процесс.

Стандарт UL по безопасности промышленных панелей управления, UL 508A, включает инструкции по расчету номинального тока короткого замыкания панели (SCCR), но у многих людей возникают проблемы с выполнением этого процесса. Определение точного SCCR имеет важное значение для обеспечения безопасности людей, работающих на силовом оборудовании или рядом с ним. Панель с неправильно рассчитанным SCCR может выйти из строя или вызвать вспышку дуги, что может привести к серьезным травмам или смерти, а также к значительному повреждению объекта.

Люди говорят о «вычислении» SCCR панели, но на самом деле никаких вычислений не требуется. Скорее, идентификация SCCR требует только того, чтобы вы исследовали отказоустойчивость компонентов в цепи панели. Имея список этих значений под рукой, вам необходимо определить компонент с наименьшей мощностью, который буквально является самым слабым звеном в цепи. SCCR всей панели в сборе — это емкость этого компонента.

Панели

должны быть рассчитаны на доступный ток короткого замыкания на момент их установки и для будущих потенциальных потребностей, если они могут быть выше в будущем.

Что такое SCCR?
Вместо того, чтобы «рассчитывать» SCCR панели, на самом деле требуется только, чтобы вы исследовали отказоустойчивость соответствующих компонентов, а затем идентифицировали компонент с наименьшей мощностью… самое слабое звено в цепи. SCCR этого компонента является SCCR всей панели в сборе.

До 2005 года NEC требовал, чтобы электрические панели промышленного оборудования маркировались только номиналом отключения основного устройства защиты от сверхтоков.Однако это не гарантировало, что электрическая панель будет должным образом защищена от коротких замыканий. Новый стандарт включает в себя всю комбинированную силовую цепь при определении требований SCCR.

Определение SCCR панели
Как рассчитывается SCCR? Этот процесс состоит из трех этапов:
Этап 1 — Определите номинальный ток короткого замыкания (SCCR) каждого компонента или комбинации в силовой цепи. (SB4.2)
Шаг 2 — Определите, ограничивают ли компоненты цепи фидера ток повреждения (SB4.3) цепи защитных устройств, например предохранитель.
Шаг 3 — Определите общий номинальный ток короткого замыкания для промышленной панели управления (SB4.4.).
Шаг 4. Перечислите маркировку SCCR на паспортной табличке панели управления (SB5.1).

Ниже приводится более подробная информация о каждом шаге.

Шаг 1 — Определите номинальный ток короткого замыкания каждого компонента в цепи питания
Первым шагом является определение SCCR каждого компонента или комбинации компонентов, который обычно указан на этикетке компонента или в руководстве по эксплуатации.Вам не нужно включать SCCR для силовых трансформаторов.

Другой источник информации SCCR — это предполагаемый максимальный номинальный ток короткого замыкания для немаркированных компонентов, таблица SB4.1 в стандарте UL 508A. Это также называется стандартной ошибкой. Все компоненты должны иметь стандартный номинальный ток короткого замыкания, который обычно очень низкий.

Доступны ресурсы, которые предоставляют рейтинги устройств для распознанных компонентов, в том числе UL-файл компонента и инструкции производителя по установке.Кроме того, на веб-сайте UL есть таблица значений тока короткого замыкания для компонентов комбинированного контроллера двигателя. Эти компоненты обычно должны использоваться с другим компонентом, чтобы получить желаемый ратин

.

Компоненты фидерной цепи, которые изменяют ток повреждения, включают:

  • Силовые трансформаторы
  • Токоограничивающие автоматические выключатели
  • Токоограничивающие предохранители

Вам необходимо найти эти части и включить их в рассмотрение SCCR.

В ответвленной цепи необходимо учитывать номинальные параметры трансформатора. Для трансформаторов номиналом 10 кВА или менее вторичной обмотке трансформатора назначается доступный ток 5 кА, и все компоненты вторичной стороны в силовой цепи должны иметь SCCR не менее 5 кА. На первичной стороне только первичная максимальная токовая защита относится к SCCR панели в целом. Примером могут служить предохранители класса CC, используемые на первичной стороне трансформатора, с SCCR 100 кА.

Ответвительные цепи должны иметь SCCR, равный или превышающий сквозной ток фидерной цепи.В противном случае общий рейтинг панели — это нижний рейтинг панели или ответвленной цепи.

Шаг 2 — Определите, ограничивают ли компоненты фидерной цепи ток повреждения
После того, как вы определили SCCR для компонентов, следующим шагом будет определение того, ограничивают ли компоненты фидерной цепи, в частности устройства защиты цепи, такие как предохранители, ток короткого замыкания. .

Для использования SB4.3.2 автоматические выключатели должны иметь маркировку «Ограничение тока». Ток, пропускаемый через выключатель, не должен превышать определенного значения.Применяется одно из двух условий:
1. Если устройства на стороне нагрузки этого выключателя имеют более высокий SCCR, чем отключающая способность автоматического выключателя, то вы можете использовать отключающую способность автоматического выключателя. Это также может быть комбинация, которая была протестирована производителем или магазином панелей.
2. Если SCCR устройств ниже, чем отключающая способность автоматического выключателя, SCCR для этой цепи имеет меньшее значение.

Максимальный проход для автоматического выключателя определяется производителем.Для предохранителей он определяется стандартом, что позволяет использовать Таблицу SB4 «Пиковые пропускаемые токи, IP и отключение I2T для предохранителей».

При определении SCCR панели SCCR на стороне линии любого токоограничивающего автоматического выключателя не может превышать SCCR любой защиты параллельной цепи или отключающей способности автоматического выключателя. Пиковый пропускаемый ток не может превышать SCCR для любой ответвленной цепи на стороне нагрузки. Это в основном означает, что устройство на стороне нагрузки этого выключателя может выдерживать сквозную энергию и ток выключателя.

Для предохранителей используйте значения из таблицы SB4.2 «Пиковые сквозные токи, IP и отключение, I2T для предохранителей», чтобы получить I2T и IP для предохранителя, используемого в комбинированной цепи. Можно использовать любой предохранитель с меньшим значением для I2T и IP. Если размер предохранителя не указан, используйте следующее большее значение в таблице.

Шаг 3 — Определите общий номинальный ток короткого замыкания с
После завершения исследования компонентов у вас есть информация, необходимая для определения SCCR панели.Вы делаете это, определяя три разных SCCR. Самый низкий из трех — панель SCCR.

Три значения, которые необходимо определить:

  • Для каждой защищенной ответвленной цепи в панели определите наименьший SCCR для компонентов силовой цепи на стороне нагрузки устройства защиты ответвленной цепи. (SB4.4.1)
  • Определите самый низкий SCCR из всех компонентов питателя.
  • Если в цепи фидера поставляются токоограничивающие компоненты, определите модифицированный SCCR для компонента фидера и всех ответвленных цепей [из A выше], подключенных к стороне нагрузки.(SB4.3), см. Шаг 2 выше.

Сравните эти значения на этой панели. SCCR — самый низкий из трех.

Шаг 4. Перечислите маркировку SCCR на паспортной табличке панели управления (SB5.1)

Значение из шага 3 выше должно быть указано на паспортной табличке панели или паспортной табличке. Маркировка на заводской табличке должна включать симметричный SCCR в кАмпер (действующее значение) при номинальном напряжении.

Знай свою панель

Люди, которые проектируют и производят промышленные панели управления питанием, должны понимать требуемый уровень защиты от тока короткого замыкания для людей, которые владеют, эксплуатируют и обслуживают эти панели.Номинальный ток короткого замыкания дает ключевую информацию для обеспечения надлежащего уровня защиты. Производители панелей полагаются на шаги, изложенные в стандарте UL 508A, для расчета / определения SCCR своих продуктов и предоставления этой информации.

Справочные материалы
[1] 2008, Рейтинг тока короткого замыкания PanelBoard и Switchboard, Underwriters Labratories, https://legacy-uploads.ul.com/wp-content/uploads/2014/04/ul_PanelboardShortCircuitRatings.pdf
[2] UL 508A, третье издание, стандарт для промышленных панелей управления

Связанное содержимое

Автоматические выключатели в литом корпусе (MCCB) серии Tmax XT компании SACE спроектированы так, чтобы максимально упростить использование, интеграцию и возможность подключения, обеспечивая при этом надежность и качество.Подробнее, SACE Tmax XT: прорыв

границ | Расчет тока короткого замыкания в системе распределения постоянного тока на основе линеаризации MMC

Введение

С постоянным развитием общества методы производства людей становятся все более и более распространенными, и спрос на использование электроэнергии также растет. В настоящее время распределительная сеть переменного тока в некоторых крупных городах сталкивается с проблемой отсутствия коридоров электроснабжения и недостаточной мощности электроснабжения.В то же время традиционная распределительная сеть переменного тока имеет такие проблемы, как трехфазный дисбаланс и недостаточная поддержка реактивной мощности узлов, которые становятся все более заметными в связи с тенденцией значительного увеличения спроса на электроэнергию. Кроме того, рост многих высокотехнологичных отраслей выдвинул более высокие требования к надежности электроснабжения и качеству электроэнергии. Однако добиться качественного электропитания сложно из-за таких проблем, как гармоники и ударные нагрузки, вызванные преобразовательным оборудованием в сети.Эта серия проблем способствовала технологическим инновациям в распределительной сети (Feng, 2019).

Поскольку страны придают большое значение возобновляемым источникам энергии и развитию технологий силовой электроники, технология распределения энергии постоянного тока постепенно входит в поле зрения людей. В то же время распределительная сеть постоянного тока стала реальным способом решения ряда проблем в традиционной распределительной сети переменного тока с ее преимуществами большой пропускной способности, низкой стоимости линии, низких потерь в сети, высокой надежности электроснабжения и высокого качества электроэнергии. (Баран и Махаджан, 2003; Саннино и др., 2003; Старке и др., 2008). Более того, распределительная сеть постоянного тока с преобразователями и рядом силового электронного оборудования хорошо управляема и будет важной частью гибких и активных распределительных сетей. В распределительной сети постоянного тока преобразователь является одним из ключевых устройств. Как новое поколение преобразователей, преобразователь источника напряжения обладает такими преимуществами, как способность управлять направлением потока мощности, невосприимчивость к сбоям коммутации и простота подключения к многополюсной сети постоянного тока (Лю и др., 2016; Hao et al., 2019). Следовательно, преобразователь источника напряжения обеспечивает возможность для распределительной сети постоянного тока. В настоящее время, как своего рода преобразователи источника напряжения, MMC не только имеет высокое качество формы выходного сигнала, но также имеет низкую частоту переключения и низкие потери (Xu, 2013). В настоящее время это ключевой объект исследований технологии постоянного тока.

Расчет тока короткого замыкания является важной основой для обнаружения неисправностей и выбора оборудования в системе распределения постоянного тока (Li et al., 2018). В настоящее время многие исследователи изучали расчет постоянного тока короткого замыкания в распределительной сети постоянного тока, образованной MMC. Franquelo et al. (2008) провели качественный анализ различных типов неисправностей в многополюсной сети постоянного тока, состоящей из MMC. Некоторые исследователи применили методы моделирования для анализа короткого замыкания на стороне постоянного тока MMC (Bucher and Franck, 2013; Zhang, Xu, 2016; Han et al., 2018; Tünnerhoff et al., 2018). Хотя такое моделирование является точным, моделирование является сложным и требует много времени, поэтому оно не подходит для системного планирования и проектирования.Чтобы избежать этих недостатков моделирования, мы можем использовать упрощенную модель для аналитических расчетов. Чжоу и др. (2017) провели теоретический анализ распределительной сети постоянного тока, сформированной MMC, когда сторона постоянного тока не была заземлена, и исследовали эквивалентную схему разряда до блокировки MMC после короткого замыкания на выходе MMC и одиночного -полюсное замыкание на землю. На основе схемной модели эквивалентного разрядного контура получено аналитическое выражение тока разряда при коротком замыкании.Сюй (2013) проанализировал эквивалентную схему MMC до того, как MMC заблокируется при коротком замыкании на выходе MMC. В его исследованиях была решена установившаяся ситуация после блока ГМК и выявлено аналитическое выражение всего процесса разлома. Кроме того, Xu (2013) также представил модель схемы, которая применяет теорему суперпозиции для расчета при столкновении со сложной топологией многополюсной сети постоянного тока, и смоделировал расчетную модель. В (Wang et al., 2011) разрядная цепь субмодуля после межэлектродного короткого замыкания на выходе MMC была разделена на две стадии до и после блокировки MMC, и аналитическое выражение была представлена ​​максимальная токовая защита субмодуля.Gao et al. (2020) применили модель преобразователя, состоящую из последовательной цепи RLC и параллельного источника тока, и выполнили эффективный приближенный расчет короткого замыкания между полюсами. Ши и Ма (2020) проанализировали цепь повреждения при коротком замыкании с однополюсным заземлением и рассчитали ток короткого замыкания для двухполюсной системы постоянного тока.

Судя по предыдущему обсуждению, в распределительной сети постоянного тока, в которой широко применяется симметричная однополярная структура, у людей больше исследований по коротким замыканиям между полюсами на выходе MMC, но меньше по однополюсным замыканиям на землю.Кроме того, когда на линии происходит отказ, трудно получить аналитическое выражение тока короткого замыкания в сложной многополюсной системе постоянного тока, а метод расчета требует более подробных исследований.

Чтобы восполнить эти пробелы, в данной статье представлена ​​линеаризованная модель перед блоком MMC для двух типов разломов. Кроме того, для сложной модели распределительной сети постоянного тока с несколькими терминалами предлагается эффективный метод решения.

Остальная часть этого документа организована следующим образом.В Анализ и моделирование системы распределения постоянного тока представлена ​​модель системы распределения постоянного тока. В методе Model Solution Method предлагается метод решения представленной модели. В Case Studies тематические исследования проводятся для оценки эффективности и точности предложенной модели. Заключительные замечания представлены в Заключении .

Анализ и моделирование системы распределения постоянного тока

Топология MMC показана на рисунке 1.Поскольку характеристики неисправности различных субмодулей в основном одинаковы до блокировки MMC, субмодуль полумоста здесь взят в качестве представителя. MMC — это преобразователь, который полагается на постоянное переключение между субмодулями для приближения синусоидальной волны к ступенчатой, поэтому MMC — это изменяющаяся во времени схема. Однако, если мы сделаем время анализа достаточно коротким и полагаем, что входные и обходные подмодули MMC остаются неизменными, мы можем рассматривать MMC как линейную и инвариантную во времени схему и использовать теорему суперпозиции для анализа.Следующая исследовательская работа основана на этом предположении.

РИСУНОК 1 . Топология MMC.

Анализ и моделирование при межполюсных коротких замыканиях

Когда межполюсное короткое замыкание происходит в распределительной сети постоянного тока, теорема суперпозиции может использоваться в точке повреждения f , чтобы разделить межполюсное замыкание. напряжение в точке повреждения на нормальный компонент и компонент повреждения, как показано на рисунке 2. Тогда реакция, генерируемая всеми другими источниками возбуждения, за исключением напряжения компонента повреждения в точке повреждения, является реакцией нормального рабочего состояния схемы.В нормальном рабочем состоянии ток короткого замыкания в точке повреждения равен нулю, а ток, переносимый каждой линией, является током при нормальной работе. Ток при нормальных условиях эксплуатации может быть получен путем расчета расхода нагрузки или прямого измерения и не будет рассчитываться в этой статье. В этой статье будет вычислен ток компонента повреждения, который представляет собой ток срабатывания схемы в нулевом состоянии при возбуждении источника питания компонента повреждения. Если нет переходного сопротивления, источник питания неисправного компонента можно рассматривать как источник напряжения.Если в точке короткого замыкания имеется переходное сопротивление, ток составляющей короткого замыкания может быть выражен реакцией при возбуждении источника тока составляющей короткого замыкания. Этот источник тока может быть получен путем преобразования источника напряжения составляющей короткого замыкания и переходного сопротивления с помощью эквивалентного закона Нортона.

РИСУНОК 2 . Принципиальная схема теоремы суперпозиции.

При рассмотрении реакции в нулевом состоянии источника напряжения компонента неисправности в цепи, MMC может быть преобразован в эквивалентную модель схемы, как показано на рисунке 3. R , L и C в модели все рассчитываются по формуле. 1 (Сюй, 2013). Если MMC заземлена через середину конденсатора, соответствующее значение емкости может быть добавлено к C .

{R = 23R0 + 2RdcL = 23L0 + 2LdcC = 6C0N # (1)

Где R 0 и L 0 — сопротивление и индуктивность реактора плеча моста, соответственно, R dc и L dc — сопротивление и индуктивность сглаживающего реактора на выходе преобразователя соответственно, Н, — количество подмодулей в каждом плече моста, а C 0 — емкость подмодуля.

РИСУНОК 3 . Модель эквивалентной схемы с нулевым откликом MMC в частотной области.

Линия постоянного тока может быть описана как модель эквивалентной схемы π-типа. Чтобы упростить последующий расчет, параметры модели преобразуются в положительный полюс или между полюсами, как показано на рисунке 4. При расчетах с током положительного полюса и напряжением между полюсами модель до и после преобразование эквивалентно.

РИСУНОК 4 .Эквивалентная модель схемы до и после преобразования линии постоянного тока (A) До преобразования. (B) После преобразования.

На рисунке 4, R l , L l и C l — эквивалентное сопротивление, эквивалентная индуктивность и эквивалентная емкость положительной / отрицательной линии, соответственно. R , L и C на рисунке 4 — их значения после преобразования в положительный полюс или межполюсный.Параметры схемы до и после преобразования имеют следующую взаимосвязь:

Анализ и моделирование при неисправностях однополюсного заземления

При возникновении однополюсного замыкания на землю переходные характеристики распределительной сети постоянного тока сильно зависят от метода заземления. стороны переменного и постоянного тока. При разных методах заземления на сторонах переменного и постоянного тока распределительной сети постоянного тока будут возникать разные петли замыкания и механизмы замыкания. Поэтому перед моделированием необходимо классифицировать различные методы заземления сторон переменного и постоянного тока MMC.Если на стороне переменного тока MMC есть путь нулевой последовательности, сторона переменного тока считается заземленной. В противном случае считается, что сторона переменного тока не заземлена. Как показано на рисунке 5, методы заземления на стороне постоянного тока MMC делятся на три типа: незаземленные, заземленные через среднюю точку зажимного сопротивления и заземленные через среднюю точку конденсатора (Luo, 2019).

РИСУНОК 5 . Метод заземления на стороне постоянного тока MMC.

При моделировании MMC, чтобы сделать модель симметричной относительно положительного и отрицательного полюсов и облегчить последующий анализ и расчет, влияние реактора с мостовым плечом не учитывалось.Учитывая, что индуктивность реактора перемычки не слишком велика, она обычно на порядок меньше индуктивности сглаживающего реактора на выходе преобразователя, поэтому ошибка, вызванная упрощенной моделью, не будет большой, и консервативность модели также могут быть приняты во внимание.

При разных режимах заземления эквивалентная схема нулевого отклика MMC показана на рисунке 6. Пунктирная линия указывает, что соединение существует только тогда, когда стороны переменного и постоянного тока MMC заземлены соответствующим образом. L ac представляет 1/3 индуктивности нулевой последовательности на стороне переменного тока, когда сторона переменного тока заземлена (Luo, 2019). R g представляет сопротивление зажима. C g представляет собой емкость заземления. R cg представляет сопротивление заземления в средней точке конденсатора.

РИСУНОК 6 . Модель эквивалентной схемы нулевого отклика MMC при однополюсных замыканиях на землю.

Линия постоянного тока может быть описана как модель непреобразованной эквивалентной схемы на рисунке 4.

Однополюсное короткое замыкание на заземление сделает схему асимметричной. Следовательно, мы можем проанализировать это с помощью преобразования CDM. С точки зрения CDM, он будет разделен на две симметричные схемы, которые легко проанализировать. Преобразование CDM имеет следующую математическую форму (Kimbark, 1970):

[IΣIΔ] = 12 [111-1] [IpIn] # (3)

Где Σ и Δ соответственно представляют синфазную и дифференциальную составляющие.Кроме того, p и n соответственно представляют положительные и отрицательные параметры. Эта формула применима как к току, так и к напряжению.

После преобразования тока и напряжения CDM модель преобразователя примет следующий вид:

(1) Случай 1: сторона переменного тока не заземлена, а сторона постоянного тока заземлена через среднюю точку конденсатора.

В этом случае синфазная и дифференциальная модели преобразователя показаны на рисунке 7.

(2) Случай 2: Сторона переменного тока не заземлена, а сторона постоянного тока заземлена через середину зажимного резистора.

РИСУНОК 7 . Синфазная модель (слева) и дифференциальная модель (справа) преобразователя в случае 1.

В этом случае синфазная и дифференциальная модели преобразователя показаны на рисунке 8. Когда сторона постоянного тока не заземлена, это эквивалентно разомкнутой цепи на R g , поэтому он не будет отдельно перечисляться позже.

(3) Случай 3: сторона переменного тока заземлена, а сторона постоянного тока заземлена через среднюю точку конденсатора.

РИСУНОК 8 . Синфазная модель преобразователя (слева) и дифференциальная модель (справа) преобразователя в случае 2.

В этом случае синфазная и дифференциальная модели преобразователя показаны на рисунке 9.

(4) Случай 4: сторона переменного тока заземлена, а сторона постоянного тока заземлена через среднюю точку зажимного резистора.

РИСУНОК 9 . Синфазная модель (слева) и дифференциальная модель (справа) преобразователя в случае 3.

В этом случае синфазная и дифференциальная модели преобразователя показаны на рисунке 10. Когда сторона постоянного тока не заземлена, это эквивалентно обрыву цепи на R g , поэтому он не будет отдельно перечисляться позже.

РИСУНОК 10 . Синфазная (слева) и дифференциальная (справа) модели преобразователя в корпусе 4.

После преобразования тока и напряжения CDM модель линии постоянного тока показана на рисунке 11. Ее синфазная модель такая же, как и ее дифференциальная модель.

РИСУНОК 11 . Модель CDM линии постоянного тока.

С точки зрения CDM, граничные условия неисправности схемы также должны быть преобразованы. Без потери общности, если мы установим короткое замыкание заземления отрицательного полюса в точке повреждения f , граничные условия могут быть выражены как уравнение.4.

Где U f, n — отрицательное напряжение в точке повреждения, I f, p и I f, n — положительное и отрицательное токи, протекающие от точки короткого замыкания к земле, соответственно, и R f — это переходное сопротивление между точкой замыкания и землей.

Через преобразование CDM уравнения. 4, граничные условия преобразуются в уравнение.5.

{If, Σ + If, Δ = 0Uf, Σ − Uf, Δ = Rf (If, Σ − If, Δ) # (5)

Где U f, и U f, Δ — синфазное и дифференциальное напряжение в точке повреждения соответственно, I f, и I f, Δ — синфазное и ток дифференциального режима, протекающий из точки повреждения, соответственно.

Подобно асимметричному анализу неисправности сети переменного тока, распределительная сеть постоянного тока также имеет следующие отношения в точке повреждения:

{Uf, Δ (0) −Uf, Δ = ZΔIf, Δ − Uf, Σ = ZΣIf, Σ # (6)

Где

В уравнении.6, U f, Δ (0) — нормальная составляющая дифференциального напряжения в точке повреждения, Z Δ и Z — эквивалентный дифференциальный режим и синфазное сопротивление распределительной сети постоянного тока, измеренное от точки повреждения, соответственно. В формуле. 7, U dc — межполюсное напряжение в точке повреждения при нормальной работе.

Согласно формуле. 5 и уравнение. 6, может быть сформирована эквивалентная сеть CDM, показанная на фиг. 12.

РИСУНОК 12 . Эквивалентная сеть CDM при однополюсном замыкании на землю.

Метод решения модели

Решение проблемы тока компонента при межполюсном коротком замыкании

Поскольку трудно получить аналитические формулы для цепей высокого порядка, когда распределительная сеть постоянного тока имеет сложную топологию, в этом разделе вводится аналитический метод расчета подходит для компьютеров. Набор символьных математических инструментов MATLAB может помочь нам в использовании этого метода.

Перед расчетом структура схемы должна быть классифицирована, и шины должны быть классифицированы в первую очередь:

(1) Шина напряжения: напряжение компонента неисправности шины известно, в то время как ток инжекции компонента неисправности на шине неизвестен. . Этот тип автобуса, как правило, является причиной неисправности.

(2) Токовая шина: ток инжекции компонента неисправности на шине известен, в то время как напряжение компонента неисправности на шине неизвестно. Этот тип шины обычно является шиной без неисправности или в точке неисправности с известным током неисправности.

После этого необходимо классифицировать структуру соединений в цепи:

(1) Структура заземления

Структура заземления показана на рисунке 13. Заземление на рисунке не является заземлением в обычном понимании, а эталонная точка напряжения на шине. В этом расчете для межполюсного короткого замыкания для расчета используются межполюсное напряжение и положительный ток, поэтому заземление на Рисунке 13 эквивалентно преобразованной отрицательной цепи на Рисунке 4.

РИСУНОК 13 . Конструкция заземления.

Межполюсное напряжение U n и положительный ток I nn в структуре заземления имеют следующие отношения:

Где Y nn — сопротивление заземляющей конструкции.

(2) Структура шинного соединения

Структура шинного соединения показана на рисунке 14.

РИСУНОК 14 .Структура автобусного соединения.

U n и U m — межполюсные напряжения на шине n и m соответственно. Положительный ток, протекающий в структуре соединения шины I nn , и они имеют следующую взаимосвязь:

После классификации структуры распределительной сети постоянного тока, составляющая тока короткого замыкания может быть решена в рамках межполюсного короткого замыкания. неисправность цепи.Следующая матрица была определена и использована в качестве входных данных формулы расчета.

Предполагая, что в цепи имеется N b исходных шин, в цепи будет N b +1 шин после добавления неисправной шины (если неисправность возникла на исходной шине, количество автобусов не изменится).

(1) Матрица подключения F (( N b +1) × ( N b +1)): описывает подключение распределительной сети постоянного тока:

i) F nm = 1, если линия соединяет автобусы n и m.

ii) F nm = 0, если нет линии, соединяющей автобусы n и m.

(2) Матрица проводимости Y (( N b +1) × ( N b +1)): диагональный элемент Y 906 nn в матрице — проводимость на землю на шине n , а недиагональный элемент Y нм — проводимость линии постоянного тока, соединяющей шины n и м.

С входными матрицами F и Y , согласно KVL и KCL, мы можем перечислить следующие линейные уравнения для n i текущих шин.

IGn = YnnUn + ∑m = 1m ≠ nNb + 1FnmYnm (Un − Um), n∈ℝni # (10)

Где IGn — известный ток инжекции на шине n .

В наборе уравнений, показанном в Ур. 10 имеется n i текущих напряжений на шине в качестве переменных, и это число совпадает с количеством уравнений.Следовательно, выражение неизвестного напряжения в частотной области может быть решено компьютером.

После получения напряжения на каждой шине, уравнение. 11 может использоваться для определения тока составляющей короткого замыкания, вытекающей из выхода MMC на шине n .

Ic − n = −UnRc − n + sLc − n + 1sCc − n # (11)

Где R cn , L cn и C 9065 cn — сопротивление, индуктивность и емкость в эквивалентной схеме MMC на шине n , соответственно.

Ток компонента повреждения, протекающий от шины n к шине m , может быть определен по формуле. 12.

Il − nm = 12sCl − nmUn + Un − UmRl − nm + sLl − nm # (12)

Где R l-нм , L l-нм и C l-нм — это сопротивление, индуктивность и емкость в эквивалентной цепи постоянного тока между шиной n и шиной m , соответственно.

Тогда уравнение.13 можно использовать для определения тока межполюсного короткого замыкания, протекающего от положительного полюса в точке повреждения f .

If = Ic − f − ∑m = 1m ≠ fNb + 1FnmIl − nm # (13)

После расчета токов компонентов короткого замыкания повсюду, мы можем использовать компьютер для выполнения обратного преобразования Лапласа, чтобы получить соответствующее выражение во временной области.

Устранение неисправности тока компонента при коротком замыкании в однополюсном заземлении

Для решения проблемы тока компонента повреждения в этом случае сначала необходимо рассчитать токи CDM в точке повреждения.Согласно схеме, показанной на рисунке 12, синфазный ток I f , Σ и дифференциальный ток I f , Δ , протекающий из точки повреждения, можно решить с помощью уравнений . 14,15.

Если, Σ = −Uf, Δ (0) ZΔ + 2Rf + ZΣ # (14) Если, Δ = Uf, Δ (0) ZΔ + 2Rf + ZΣ # (15)

Где

ZΣ = Yff, Σ ∗ det (YΣ) # (16) ZΔ = Yff, Δ ∗ det (YΔ) # (17)

В уравнениях. 16,17, Y и Y Δ представляют собой синфазную и дифференциальную матрицы проводимости соответственно.Yff, Σ ∗ и Yff, Δ ∗ — элементы в строке f и столбце f в сопряженных матрицах общей и дифференциальной матриц проводимости соответственно. Следует отметить, что для расчета импеданса здесь необходимо сформировать Y и Y Δ по следующим правилам: Диагональный элемент Y nn , ∑ в Матрица синфазной проводимости — это собственная проводимость шины n в синфазной сети, и ее значение равно сумме проводов ветвей, подключенных к шине. Y нм , ∑ ( n m ) — это взаимная проводимость шин n и m в синфазной сети, и ее значение равно противоположному значению. вход ответвления, соединенного между двумя автобусами. Элементы в матрице проводимости дифференциального режима подчиняются тем же правилам.

После получения I f , Σ и I f , Δ , методы решения, упомянутые в расчете межполюсного короткого замыкания, могут быть применены для решения общих и дифференциальных -режимные сети соответственно.Здесь напряжения и токи CDM, возбуждаемые источником тока составляющей короткого замыкания, должны использоваться в качестве неизвестных переменных. После этого положительные и отрицательные токи компонентов короткого замыкания могут быть получены посредством обратного преобразования CDM, показанного в формуле. 18.

[IpIn] = T − 1 [IΣIΔ] = [111-1] [IΣIΔ] # (18)

Наконец, выражение во временной области тока компонента повреждения может быть получено с помощью обратного преобразования Лапласа.

Примеры из практики

В этом разделе представлены примеры из практики, которые использовались для оценки эффективности и точности предложенной линеаризованной модели.Мы сравним рассчитанное значение и моделируемое значение в системе распределения постоянного тока кольцевой сети с четырьмя выводами, показанной на рисунке 15. Это значение моделирования предоставляется PSCAD / EMTDC. В таблице 1 представлены соответствующие параметры системы. Система использует стратегию управления ведущий-ведомый. MMC1 — это главная станция, а остальные — подчиненные станции. Активные мощности в таблице — это вводимые мощности на стороне переменного тока. Вводимая реактивная мощность каждой MMC равна нулю.

РИСУНОК 15 .Четырехконтактная система распределения постоянного тока кольцевой сети.

ТАБЛИЦА 1 . Системные параметры четырехконтактной системы распределения постоянного тока кольцевой сети.

Проверка при сбоях межполюсного короткого замыкания

При проверке при сбоях межполюсного короткого замыкания все MMC на Рисунке 15 не заземлены, а переходное сопротивление равно нулю. После того, как цепь стабилизируется, установите межполюсное короткое замыкание в средней точке линии постоянного тока между MMC1 и MMC2 (пусть t = 0 с в это время).Полученные токи короткого замыкания показаны на Рисунке 16.

РИСУНОК 16 . Сравнение расчетного значения и моделируемого значения тока повреждения при межполюсном коротком замыкании (A) Ток короткого замыкания в точке повреждения. (B) Положительный ток, протекающий от MMC1 к MMC2 на линии повреждения. (C) Положительный ток на выходе MMC1.

Из сравнения на рисунке 16 видно, что по сравнению с смоделированным значением рассчитанное значение имеет небольшую ошибку (не более 2.64%), и со временем эта ошибка будет постепенно увеличиваться. Я думаю, что причина этой ошибки в том, что MMC больше не будет поддерживать исходное рабочее состояние после сбоя, установившаяся составляющая тока короткого замыкания изменится, и это изменение будет постепенно увеличиваться с течением времени. Следовательно, метод расчета с использованием теоремы суперпозиции из предыдущей статьи применим только через очень короткое время после сбоя. Однако, учитывая, что MMC будет заблокирован в течение очень короткого времени после отказа постоянного тока, результат расчета все еще будет достаточно надежным в течение этого времени.

Проверка при коротком замыкании однополюсного заземления

При проверке при коротком замыкании при однополюсном заземлении, для проверки моделей MMC с различными методами заземления, MMC на Рисунке 15 настроены с различными методами заземления. Для MMC1 сторона переменного тока заземлена ( L ac = 10 мГн), а сторона постоянного тока заземлена через среднюю точку конденсатора ( C g = 8 мФ, R cg = 0.5 Ом). Для MMC2 сторона переменного тока не заземлена, а сторона постоянного тока заземлена через среднюю точку зажимного резистора ( R g = 4 МОм). Для MMC3 сторона переменного тока не заземлена, а сторона постоянного тока заземлена через среднюю точку конденсатора ( C g = 8 мФ, R cg = 0,5 Ом). Для MMC4 сторона переменного тока заземлена ( L ac = 10 мГн), а сторона постоянного тока заземлена через среднюю точку зажимного резистора ( R g = 4 МОм).После того, как цепь стабилизируется, установите отрицательное замыкание на землю ( R f = 0) в средней точке линии постоянного тока между MMC1 и MMC2 (пусть t = 0 с в это время). Полученные токи короткого замыкания показаны на Рисунке 17.

РИСУНОК 17 . Сравнение расчетного значения и смоделированного значения тока короткого замыкания при коротком замыкании на отрицательную массу (A) Ток короткого замыкания в точке повреждения. (B) Отрицательный ток течет от MMC1 к MMC2 на линии повреждения. (C) Отрицательный ток на выходе MMC1.

Из сравнения на рисунке 17 видно, что по сравнению с смоделированным значением расчетное значение имеет небольшую ошибку (не более 4,53%), и эта ошибка будет постепенно увеличиваться с течением времени. Мало того, погрешность в этом расчете больше, чем при расчете межполюсного короткого замыкания. Думаю, ошибка в этом расчете связана не только с изменением рабочего состояния ММС, но и с пренебрежением реактором мостового плеча.Этот результат расчета не только надежен за очень короткое время, но и консервативен.

Заключение

В этой статье обобщается модель MMC для расчета межполюсного короткого замыкания и предлагается новая линеаризованная модель, основанная на преобразовании CDM для расчета короткого замыкания в однополюсном заземлении. Благодаря проверке результатов моделирования эта новая модель оказалась надежной и консервативной. Кроме того, в этой статье предлагается метод расчета в частотной области, подходящий для расчета сложных многополюсных распределительных сетей постоянного тока.Этот метод может гибко преобразовывать топологию сети и имеет гораздо более высокую скорость вычислений, чем моделирование. Модели и метод, представленные в этой статье, можно использовать в качестве справочных при планировании энергосистемы и выборе оборудования.

Заявление о доступности данных

Необработанные данные, подтверждающие выводы этой статьи, будут предоставлены авторами без излишних оговорок.

Вклад авторов

PS: анализ, моделирование, метод, проверка и написание. ZJ: консультирование, супервизия, написание-рецензирование и редактирование.HG: имитационная модель, концептуализация и методология.

Конфликт интересов

Авторы заявляют, что исследование проводилось при отсутствии каких-либо коммерческих или финансовых отношений, которые могли бы быть истолкованы как потенциальный конфликт интересов.

Ссылки

Баран М. Э. и Махаджан Н. Р. (2003). Распределение постоянного тока для возможностей и задач промышленных систем. Транзакции IEEE в отраслевых приложениях 39 (6), 1596–1601. DOI: 10.1109 / TIA.2003.818969

CrossRef Полный текст | Google Scholar

Бакер, М. К., и Франк, К. М. (2013). Вклад источников тока короткого замыкания в многополюсных кабельных сетях HVDC. Транзакции IEEE по доставке питания 28 (3), 1796–1803. doi: 10.1109 / TPWRD.2013.2260359

CrossRef Полный текст | Google Scholar

Feng, T. (2019). Исследование переходных режимов заземления и неисправностей гибкой распределительной сети постоянного тока среднего напряжения. Магистерская работа, Китай: Сианьский технологический университет.

Google Scholar

Franquelo, L. G., Rodriguez, J., Leon, J. I., Kouro, S., Portillo, R., and Prats, M. A. M. (2008). Наступает эпоха многоуровневых преобразователей. Журнал промышленной электроники IEEE 2 (2), 28–39. doi: 10.1109 / MIE.2008.923519

CrossRef Полный текст | Google Scholar

Гао, С., Е, Х. и Лю, Ю. (2020). Точная и эффективная оценка тока короткого замыкания для сетей MTDC с учетом управления MMC. IEEE Transactions on Power Delivery 35 (3), 1541–1552.doi: 10.1109 / TPWRD.2019.2946603

CrossRef Полный текст | Google Scholar

Хан, X., Sima, W., Yang, M., Li, L., Yuan, T., and Si, Y. (2018). Переходные характеристики под землей и короткое замыкание в системе HVDC на основе MMC ± 500 кВ с гибридными автоматическими выключателями постоянного тока. Транзакции IEEE по доставке питания 33 (3), 1378–1387. doi: 10.1109 / TPWRD.2018.2795800

CrossRef Полный текст | Google Scholar

Hao, Q., Li, Z., Gao, F., and Zhang, J. (2019). Малосигнальные модели модульного многоуровневого преобразователя пониженного порядка и высоковольтной сети постоянного тока на основе MMC. Транзакции IEEE по промышленной электронике 66 (3), 2257–2268. doi: 10.1109 / TIE.2018.2869358

CrossRef Полный текст | Google Scholar

Kimbark, E. W. (1970). Переходные перенапряжения, вызванные монополярным замыканием на землю в биполярной линии постоянного тока: теория и моделирование. Системы силовых аппаратов. Транзакции IEEE по PAS 89 (4), 584–592. doi: 10.1109 / TPAS.1970.292605

CrossRef Полный текст | Google Scholar

Ли К., Голе А. М. и Чжао К. (2018).Метод быстрого обнаружения повреждений постоянного тока с использованием напряжения реактора постоянного тока в сетях высокого напряжения постоянного тока. Транзакции IEEE по доставке питания 33 (5), 2254–2264. doi: 10.1109 / TPWRD.2018.2825779

CrossRef Полный текст | Google Scholar

Луо, Ф. (2019). Исследование метода заземления и стратегии защиты распределительной сети постоянного тока для электроснабжения в отдаленных районах. Степень магистра, Китай: Сианьский университет Цзяотун.

Google Scholar

Лю, Дж., Цай, X., и Молинас, М. (2016).Анализ стабильности в частотной области HVdc на основе MMC для интеграции ветряных электростанций. IEEE J. Новые и избранные темы в силовой электронике 4 (1), 141–151. doi: 10.1109 / JESTPE.2015.2498182

CrossRef Полный текст | Google Scholar

Саннино А., Постильоне Г. и Боллен М. Х. Дж. (2003). Возможность создания сети постоянного тока для коммерческих объектов. Транзакции IEEE в отраслевых приложениях . 39 (5), 1499–1507. doi: 10.1109 / TIA.2003.816517

CrossRef Полный текст | Google Scholar

Shi, X., и Ма, Дж. (2020). «Анализ однополюсного замыкания на землю на стороне постоянного тока в системе MMC-HVDC с учетом влияния стратегии управления», 12-я Азиатско-Тихоокеанская конференция по энергетике и энергетике IEEE PES в 2020 г., Нанкин, Китай, 20–23 сентября 2020 г. doi: 10.1109 / APPEEC48164.2020.9220729

CrossRef Полный текст | Google Scholar

Старке, М. Р., Толберт, Л. М., и Озпинечи, Б. (2008). «Распределение переменного и постоянного тока: сравнение потерь», на конференции и выставке Transmission and Distribution, 2008 г., Чикаго, Иллинойс, 21–24 апреля 2008 г.doi: 10.1109 / TDC.2008.4517256

CrossRef Полный текст | Google Scholar

Tünnerhoff, P., Ruffing, P., and Schnettler, A. (2018). Комплексная концепция распознавания типа повреждения для биполярных полномостовых систем MMC HVDC с выделенным металлическим возвратом. IEEE Transactions on Power Delivery 33 (1), 330–339. doi: 10.1109 / TPWRD.2017.2716113

CrossRef Полный текст | Google Scholar

Ван, С., Чжоу, X., Тан, Г., Хэ, З., Тэн, Л., и Бао, Х. (2011).Анализ сверхтока субмодуля, вызванного межполюсным замыканием постоянного тока в системе модульного многоуровневого преобразователя HVDC. Труды CSEE 31 (01), 1–7. doi: 10.13334 / j.0258-8013.pcsee.2011.01.001

CrossRef Полный текст | Google Scholar

Xu, Z. (2013). Гибкая система передачи постоянного тока . Пекин, Китай: China Machine Press.

Чжан, З., и Сюй, З. (2016). Расчет тока короткого замыкания и требования к характеристикам выключателей HVDC для систем MMC-MTDC. IEEJ Transactions по электротехнике и электронной технике 11 (2), 168–177. doi: 10.1002 / tee.22203

CrossRef Полный текст | Google Scholar

Zhou, J., Zhao, C., Li, C., Xu, J., and An, T. (2017). Схема граничной защиты многополюсной гибкой сети постоянного тока на основе напряжения реактора постоянного тока. Автоматизация электрических систем 41 (19), 89–94. doi: 10.7500 / AEPS20170331005

CrossRef Полный текст | Google Scholar

Общие сведения о номинальных токах короткого замыкания

Что такое SCCR?

Когда дело доходит до промышленного оборудования, очень важно убедиться, что электрические панели спроектированы и построены с использованием надлежащих SCCR для обслуживания системы, устранения простоев и повышения безопасности рабочих.Цель этой статьи — объяснить, почему это важно и как найти необходимые расчеты.

SCCR означает Номинальный ток короткого замыкания , который определен в Статье 100 NEC (Национальный электротехнический кодекс) 2017 года как: «Предполагаемый симметричный ток короткого замыкания при номинальном напряжении, до которого устройство или система могут быть подключенным без повреждений, превышающих определенные критерии приемки ».

Проще говоря, SCCR — это максимальный ток короткого замыкания, который электрический компонент может выдержать, не вызывая опасности поражения электрическим током или возгорания.В общем, рейтинг SCCR для электрической панели основан на понимании каждого электрического компонента SCCR в этой панели. SCCR становится все более важной темой при установке промышленного оборудования и электрических панелей на объектах клиентов.

Почему важен SCCR?

Поскольку SCCR представляет собой наивысший ток короткого замыкания, который может безопасно выдержать такое оборудование, как промышленные панели управления, превышение SCCR может вызвать катастрофические и серьезные отказы оборудования и компонентов.

2017 NEC ARTICLE 670 ПРОМЫШЛЕННЫЕ ПАНЕЛИ УПРАВЛЕНИЯ
409.22 Номинальный ток короткого замыкания.

  • Установка. Промышленный щит управления не должен устанавливаться там, где имеющееся короткое замыкание превышает его номинал короткого замыкания, отмеченный в соответствии с 409.110 (4)

. Следовательно, необходимо определить (рассчитать) максимальный ток короткого замыкания, который может быть присутствует там, где установлена ​​промышленная панель управления или другое оборудование.Доступный ток короткого замыкания должен быть меньше, чем обозначенный SCCR промышленной панели управления, чтобы соответствовать требованиям NEC.

Важно понимать номинальные значения тока короткого замыкания для промышленных панелей управления. Промышленная панель управления — это общий термин, обозначающий сборку из двух или более компонентов, которые включены в комплект. Узел может быть силовым, управляющим или и тем, и другим, но не включает управляемое оборудование.

In, и Национальный электротехнический кодекс (NEC®), стандарт требует, чтобы промышленные панели управления, содержащие компоненты силовой цепи (подающие питание от сети на нагрузки, такие как двигатели, отопление, освещение, приборы или розетки), были помечены SCCR, ранее называемый рейтингом устойчивости .

Как указано в UL 508A и NEC , промышленные панели управления, содержащие только компоненты цепи управления, не должны иметь маркировку SCCR.

Если промышленная панель управления содержит устройство защиты от перегрузки по току в ответвленной цепи силовой цепи, питающее цепь управления, то SCCR должен быть маркирован на основе номинала прерывания устройства защиты от перегрузки по току.

Силовая цепь и цепь управления

До выпуска последней редакции UL 508A, Дополнения SB от 20 декабря 2013 года, SCCR применялся только к силовой цепи панели управления.Цепь питания обеспечивает электричеством рабочих, которые выполняют тяжелую работу, например, приводя в действие большие двигатели. Обычно это где-то между 240 В ~ 600 В переменного тока, трехфазное питание. Схема управления имеет более низкую мощность, всего 5 вольт. Как следует из названия, он контролирует работу силовой цепи, но изолирован от нее. Это важно, чтобы изолировать пользователя от высоких напряжений и токов силовой цепи. Думайте о схеме управления как о мозге, а о силовой цепи как о мускуле панели управления.

Расчет номинального тока короткого замыкания (SCCR)

Сегодня большинство электрических компонентов имеют маркировку SCCR на самом компоненте производителем или комбинированный рейтинг на веб-сайте UL. Если SCCR недоступен, можно присвоить значение по умолчанию, обратившись к таблице SB4.1 в стандарте UL 508A. Принимая эти значения и время, необходимое для полного понимания используемой конструкции схемы, вы понимаете, что в основном компонент с наименьшим SCCR в определенных цепях определяет рейтинг SCCR электрической панели.

1. Определите все компоненты силовой цепи.

Сюда входят, но не ограничиваются:

2. Определите значение SCCR для всех компонентов в силовой цепи.

  • SCCR обычно указывается на компоненте, рейтинги комбинации доступны на веб-сайте UL или в инструкциях производителя.
  • Если производитель не предоставляет, значение SCCR можно определить с помощью таблицы UL SB4.1 (см. Приложение).

3.Определите SCCR для каждой ответвленной цепи.

  • Самый нижний компонент SCCR — это эквивалентная ответвленная цепь SCCR

4. Определите SCCR для фидерной цепи.

5. Принять к учету устройства защиты от перегрузки по току фидерной цепи.

6. Определите наименьшее значение для любого компонента или ответвленной цепи.

  • Это SCCR для панели управления.

Почему SCCR важен для установки

С момента выпуска NEC 2005 года электрические панели промышленного оборудования должны иметь маркировку SCCR.До этого производители панелей должны были предоставить только номинальную мощность отключения устройства защиты от перегрузки по току или силу тока, при которой главный выключатель панели будет «отключаться». Это означает, что с выпуска 2005 года NEC производители электрических панелей промышленного оборудования пришлось начать не только вычислять рейтинги SCCR для своих панелей, но и понимать доступный ток короткого замыкания, который подается на объекте заказчика, где будет проводиться установка панели.
Если доступный ток короткого замыкания, подаваемый на панель, выше, чем рейтинг SCCR, указанный на паспортной табличке панели, установка панели запрещена NEC, 670.5. Это требует, чтобы установщики электрических панелей промышленного оборудования проверяли наличие тока короткого замыкания на объектах своих клиентов.


2017 NEC ARTICLE 670 ПРОМЫШЛЕННОЕ ОБОРУДОВАНИЕ

670,5 Номинальный ток короткого замыкания (1) Промышленное оборудование не должно устанавливаться там, где имеющийся ток короткого замыкания превышает его номинальный ток короткого замыкания, указанный в соответствии с 670,3 (A) ( 4).

Соответствие SCCR

Подводя итог, при соблюдении рейтингов SCCR важно помнить три вещи.

  • SCCR для панели управления определяет наименьшее значение SCCR для любого компонента или ответвленной цепи.
  • Доступный ток короткого замыкания должен быть определен у заказчика, где будет установлен электрический щит. Это определение может сделать производитель или подрядчик по установке.
  • Рейтинг SCCR электрической панели должен быть равным или превышать установленный доступный ток короткого замыкания.

Отказ от ответственности:
Содержимое, представленное в этом техническом документе, предназначено исключительно для общих информационных целей и предоставляется при том понимании, что авторы и издатели не участвуют в предоставлении технических или других профессиональных консультаций или услуг.Инженерная практика определяется обстоятельствами конкретного объекта, уникальными для каждого проекта. Следовательно, любое использование этой информации должно осуществляться только после консультации с квалифицированным и лицензированным специалистом, который может принять во внимание все соответствующие факторы и желаемые результаты. Информация в этом техническом документе была размещена с разумной тщательностью и вниманием. Однако возможно, что некоторая информация в этих официальных документах является неполной, неверной или неприменимой к определенным обстоятельствам или условиям.Мы не несем ответственности за прямые или косвенные убытки, возникшие в результате использования информации, содержащейся в этом техническом документе, или действий на ее основе.

Пример расчета короткого замыкания постоянного тока

Аннотация: В приведенном ниже примере показано, как создать однолинейную схему шахтной энергосистемы, предварительно назначить коэффициент MVA для одного короткого замыкания каждому базовому компоненту в энергосистеме на основе импеданса, который он добавляет в систему, запрограммировать один линейную диаграмму в калькулятор короткого замыкания, проведите анализ, интерпретируйте результаты, рассчитайте значения тока короткого замыкания переменного и постоянного тока на стороне переменного и постоянного тока комбинации трансформаторного выпрямителя.

Создание однолинейной схемы распределительной системы

Составьте исчерпывающую однолинейную радиальную схему анализируемой энергосистемы. Рекомендуется использовать копию той же однолинейной схемы, которая применяется при планировании системы распределения (рисунок 1 а). 2, деленному на его полное сопротивление в Ом.2 / 0,99 = 17,5 SCMVA. Типичный импеданс комбинации трансформатора-выпрямителя 300 кВт 300 В равен 10% [1], а номинальные значения МВА при коротком замыкании будут равны 0,3 МВА / 0,1 = 3,0 SCMVA. Нагрузкам, не влияющим на ток короткого замыкания в системе, присваивается значение SC MVA, равное 0.

Разработать иерархическое дерево на основе записей базы данных

% В столбцах указаны пределы погрешности для значений из столбцов SC MVA и X / R.
p_id столбец перечисляет родительский идентификатор (идентификатор вышестоящего оборудования)

Дерево системного оборудования должно быть разбито на уровни, причем каждый уровень более сфокусирован, чем предыдущий.Дерево состоит из узлов, соединенных между собой ветвями. Обратите внимание, что узел может иметь один или несколько дочерних узлов , но может иметь только один родительский элемент . Идентификатор родительского устройства равен идентификатору вышестоящего устройства, питающего оборудование. TRSFRM 1 подается из утилиты . TRSFRM 1 назначается родительский идентификатор «1», который равен значению идентификатора утилиты . Утилита — это корень, питающий систему, ее родительскому идентификатору по умолчанию присвоено значение «0».Вам понадобится справочная таблица, аналогичная приведенной выше, для ввода системной информации, необходимой для анализа короткого замыкания переменного / постоянного тока с помощью онлайн-калькулятора короткого замыкания ARCAD.

Запускаем программу и наблюдаем за результатами

Программа выведет иерархическое дерево оборудования системы с вычисленным MVA короткого замыкания на каждом узле.

Результаты расчетов SC MVA:

  • Утилита [500 (12X / R) + 0 = 500 (12X / R)]
    • TRSFRM 1 [32.9 (12X / R) + 0 = 32,9 (12X / R)]
      • КАБЕЛЬ 1 [12,3 (1X / R) + 0 = 12,3 (1X / R)]
        • TRSF / REC [2,46 (4X / R) + 0 = 2,46 (4X / R)]
          • КАБЕЛЬ 2 [0,62 (0,8X / R) + 0,00 = 0,62 (0,8X / R)]

Короткие замыкания, вызванные восходящим (красный цвет) и нисходящим (синий цвет) оборудованием, перечислены на каждом узле. Приведенные выше значения восходящего и нисходящего потоков содержат на одну значащую цифру больше, чем требуется правилами анализа ошибок.Эта цифра опускается в окончательном результате (зеленым цветом). Таким образом эффективно предотвращается явление, известное как «ошибка округления». На рисунке 2 ниже показано расчетное значение MVA короткого замыкания, перенесенное на исходную однолинейную схему.


фигура 2

Разделите общие значения SC MVA на 1,73 * кВ LL , чтобы получить значения тока трехфазного короткого замыкания в кА на стороне переменного тока. Например, чтобы рассчитать значение тока короткого замыкания на линии трансформатора и выпрямителя, возьмите рассчитанное 12.3 значение SCMVA, разделите его на 4,160 кВ и разделите на 1,73. Результирующий переменный ток короткого замыкания равен 1,71 кА.

Разделите общее значение SC MVA на напряжение системы в кВ, чтобы получить значение тока короткого замыкания в кА на стороне постоянного тока.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *