Чувствительность электромагнитных расцепителей регламентируется параметром, называемым характеристикой срабатывания. Это важный параметр, и на нем стоит немного задержаться. Характеристика, иногда ее называют группой, обозначается одной латинской буквой, на корпусе автомата ее пишут прямо перед его номиналом, например надпись C16 означает, что номинальный ток автомата 16А, характеристика С (наиболее, кстати, распространенная). Менее популярны автоматы с характеристиками B и D, в основном на этих трех группах и строится токовая защита бытовых сетей. Но есть автоматы и с другими характеристиками. Согласно википедии, автоматические выключатели делятся на следующие типы (классы) по току мгновенного расцепления:
При этом википедия ссылается на ГОСТ Р 50345-2010. Я специально перечитал весь этот стандарт, но ни о каких типах L, Z, K в нем ни разу не упоминается. В другом месте ссылались на уже не действующий ГОСТ Р 50030.2-94 — но я и в нем упоминания о них не нашел. Да и в продаже я что-то не наблюдаю таких автоматов. У европейских производителей классификация может несколько отличаться. В частности, имеется дополнительный тип A (свыше 2·In до 3·In). У отдельных производителей существуют дополнительные кривые отключения. Например, у АВВ имеются автоматические выключатели с кривыми K (8 — 14·In) и Z (2 — 4·In), соответствующие стандарту МЭК 60947-2. В общем, будем иметь в виду, что, кроме B, C и D существуют и иные кривые, но в данной статье будем рассматривать только эти. Сами по себе кривые отключения одинаковы — они вообще показывают зависимость времени срабатывания теплового расцепителя от тока. Разница лишь в том, до какой отметки доходит кривая, после чего она резко обрывается до значения, близкого к нулю. Посмотрите на следующую картинку, обратите внимание на разброс параметров тепловой защиты автоматических выключателей. Видите два числа сверху графика? Это очень важные числа. 1.13 — это та кратность, ниже которой никакой исправный автомат никогда не сработает. 1.45 — это та кратность, при которой любой исправный автомат гарантированно сработает. Что они означают на деле? Рассмотрим на примере. Возьмем автомат на 10А. Если мы пропустим через него ток 11.3А или меньше, он не отключится никогда. Если мы увеличим ток до 12, 13 или 14 А — наш автомат может через какое-то время отключиться, а может и не отключиться вовсе. И только когда ток превысит значение 14.5А, мы можем гарантировать, что автомат отключится. Насколько быстро — зависит от конкретного экземпляра. Например, при токе 15А время срабатывания может составлять от 40 секунд до 5 минут. Поэтому, когда кто-то жалуется, что у него 16-амперный автомат не срабатывает на 20 амперах, он это делает напрасно — автомат совершенно не обязан срабатывать при такой кратности. Для характеристик k, l, z кривые несколько другие: кратность гарантированного несрабатывания 1.05, а срабатывания 1.3. Извините, более красивого графика не нашел: Что нам следует иметь в виду, выбирая характеристику отключения? Здесь на первый план выходят пусковые токи того оборудования, которое мы собираемся включать через данный автомат. Нам важно, чтобы пусковой ток в сумме с другими токами в этой цепи не оказался выше тока срабатывания электромагнитного расцепителя (тока отсечки). Проще тогда, когда мы точно знаем, что будет подключаться к нашему автомату, но когда автомат защищает группу розеток, тогда мы только можем предполагать, что и когда туда будет включено. Конечно, мы можем взять с запасом — поставить автоматы группы D. Но далеко не факт, что ток короткого замыкания в нашей цепи где-нибудь на дальней розетке будет достаточен для срабатывания отсечки. Существует разница в токе срабатывания электромагнитного расцепителя (отсечки) в зависимости от того, переменный или постоянный ток проходит через автомат. Если мы знаем значение переменного тока, при котором срабатывает отсечка, то при постоянном токе срабатывание произойдет при значении, равном амплитудному значению переменного тока. То есть ток нужно умножить примерно на 1.4. Часто приводят вот такие графики (по-моему, не очень верные, но подтверждающие то, что разница между пременным и постоянным током есть):Все написанное выше относится к обычным модульным автоматическим выключателям. У автоматов других типов характеристики несколько другие. Например, кривые срабатывания для автоматов АП-50 — в частности, можно заметить одно существенное отличие: кратности токов гарантийного срабатывания и несрабатывания у них другие. Характеристики срабатывания селективных автоматовДругие кратности и у селективных автоматов (специальные автоматы, применяемые в качестве групповых). Главное отличие селективных автоматов — их срабатывание происходит с небольшой задержкой, для того, чтобы не отключать всю группу, если авария произошла на одной из линий, защищенной нижестоящим автоматом. Ниже приведены характеристики E и K для селективных автоматических выключателей серии S750DR фирмы ABB: Усенко К. А., инженер-электрик, |
Описание параметра «Поддерживаемые расцепителем защиты»
Электромеханические расцепители типа Т, М, ТМ, ТМД обеспечивают следующие типы защит:
- Т — Ir — защита от перегрузок — тепловая защита.
- M — Im — защита от коротких замыканий — электромагнитная защита
- TM — Ir, Im — защита от перегрузок и коротких замыканий — комбинированная защита
- TMД — Ir, Im, IΔn — защита от перегрузок и коротких замыканий, а также от токов утечек
Ir — защита от перегрузок — тепловая защита.
Механизм, реализующий Ir, представляет собой биметаллическую пластину, нагреваемую протекающим током. При протекании тока выше допустимого значения биметаллическая пластина изгибается и приводит в действие механизм расцепления. Время срабатывания зависит от тока (времятоковая характеристика) и может изменяться от секунд до часа.
Примечание: ΔIr — тоже что и Ir, только с возможностью регулировки порога срабатывания потребителем (на рисунке верхняя синяя стрелка) — данное обозначение установлено только на портале Profsector.com
Im — защита от коротких замыканий — (электромагнитная защита, электромагнитный расцепитель).
Механизм, реализующий Im, представляет собой соленоид, подвижный сердечник которого также может приводить в действие механизм расцепления. Ток, проходящий через выключатель, течет по обмотке соленоида и вызывает втягивание сердечника при превышении заданного порога тока. Защита от коротких замыканий, в отличие от защиты от перегрузок, срабатывает очень быстро (доли секунды), но при значительно большем превышении тока: в 2÷20 раз от номинала, в зависимости от типа автоматического выключателя.
Примечание: ΔIm — тоже, что и Im, только с возможностью регулировки порога срабатывания потребителем (на рисунке синяя стрелочка) — данное обозначение установлено только на портале Profsector. com.
IΔn — дифференциальная защита — это защита от токов утечек. Она защищает персонал от повреждения током и оборудование от возможных возгараний. Обычно реализуется специальными блоками, тороидальные трансформаторы которых обнаруживают непосредственно слабые токи замыкания на землю, возникающие в результате повреждения изоляции.
IN — защита нейтрали (только для 4-х полюсных автоматов) — это защита от перегрузок и коротких замыканий в нейтральном проводе.
Электронные расцепители типа ЭР в зависимости от исполнения могут обесепчивать следующие типы защит:
- Ir — защита от перегрузок — тепловая защита, обозначается L
- tr — настраиваемое потребителем время выдержки для включения защиты Ir
- Im — защита от коротких замыканий — очень редко реализуемая защита в электронных расцепителях. Её обычно заменяют защиты выполняющие теже функции Isd и Ii.
- Isd — селективная токовая отсечка, обозначается S (Short delay = короткая выдержка времени). Дополняет тепловую защиту. Отличается очень малым временем срабатывания, но при этом имеет небольшую задержку включения, обеспечивающую селективность с нижестоящим аппаратом. Уставка Isd может настраиваться пользователями.
- tsd — настраиваемое потребителем время выдержки для включения защиты Isd
- Ii — мгновенная токовая отсечка (I) — эта защита дополняет Isd. Она вызывает мгновенное отключение аппарата. Уставка по току может быть регулируемой или постоянной (встроенной).
- Ig — защита от замыканий на землю, обозначается G (Ground). Электронные расцепители могут рассчитывать дифференциальные токи утечки на землю с высоким порогом (порядка десятков ампер) на основе измерений фазных токов.
- tg — настраиваемое потребителем время выдержки для включения защиты Ig
- IΔn — дифференциальная защита — это защита от токов утечек. Она защищает персонал от повреждения током и оборудование от возможных возгараний.
- tΔn — настраиваемое потребителем время выдержки для параметра IΔn
- IN — защита нейтрали (только для 4-х полюсных автоматов) — это защита от перегрузок и коротких замыканий в нейтральном проводе. Может использоваться настройка для фаз или собственная настройка для нейтрали: пониженная уставка (0,5 фазной уставки) или OSN – защита нейтрали с уставкой, превышающей в 1,6 раза уставку фазной защиты. В случае защиты OSN максимальная настройка аппарата ограничена до 0,63 х In.
Реализация защит у электронных расцепителей следующая. Измерительное устройство, с помощью датчиков тока и напряжения, производит необходимые измерения характеристик протекающих по силовой цепи автомата токов и в случае аварийной ситуации, через исполнительный соленоид, отключает автоматический выключатель.
В большинстве случаев, защиты обеспечиваемые электронными расцепителями, имеют возможность настройки пользователями. Поэтому, при указании типов защит для электронных расцепителей, не применяется символ Δ.
53.Защита электрических сетей напряжением до 1 кВ автоматическими выключателями. Чувствительность и селективность автоматических выключателей. Карта селективности.
Автоматические выключатели снабжают специальными устройствами токовой релейной защиты, которые в зависимости от типа выключателя выполняют в виде токовой отсечки, максимальной токовой защиты с зависимой и независимой выдержкой времени или в виде двухступенчатой и трехступенчатой токовой защиты. Для этого используют электромагнитные, тепловые и полупроводниковые устройства защиты, которые называют расцепителями .
Автоматические выключатели, защита которых содержит все три ступени защиты или вторую и третью называются селективными.
Основными характеристиками автоматических выключателей являются номинальный ток Iа. ном, номинальное напряжение Uа.ном и номинальный ток отключения Ιа.откл.
Номинальным током отключения называется наибольший ток, который выключатель способен отключить.
Расцепитель характеризуется номинальным током Iрц.ном, током срабатывания Iс.з. и выдержкой времени tс.з. каждой ступени. Номинальным током расцепителя называется наибольший ток, длительное прохождение которого не вызывает срабатывания расцепителя.
РАСЦЕПИТЕЛИ АВТОМАТИЧЕСКИХ ВЫКЛЮЧАТЕЛЕЙ
С помощью тепловых расцепителей выполняется максимальная токовая защита. Сочетание теплового расцепителя с электромагнитным мгновенного действия позволяет выполнить двухступенчатую токовую защиту, содержащую первую и третью ступени. При перегрузках защита действует с зависимой выдержкой времени, а при коротких замыканиях — без выдержки времени. Такое устройство защиты можно назвать комбинированным расцепителем. Комбинированными расцепителями снабжены автоматических выключатели А3110.
Биметаллический элемент реле 1 имеет форму полукольца с выступом, на котором расположен установочный винт 2. Элемент соединен заклепками с токоведущими шинами 5 и 6. Параллельно биметаллическому элементу подключен нагреватель 4. Наличие нагревателя позволяет увеличить выдержки времени реле при перегрузках. Принцип действия расцепителя. При перегрузке термобиметаллический элемент прогибается под действием теплоты, выделяемой непосредственно в нем и в нагревателе. Установочный винт 2 воздействует на рейку 3, которая, поворачиваясь, освобождает удерживающие рычаги механизма свободного расцепления и под действием пружин автоматический выключатель отключается
ВЫБОР ПАРАМЕТРОВ РАСЦЕПИТЕЛЕЙ АВТОМАТИЧЕСКИХ ВЫКЛЮЧАТЕЛЕЙ
Основные принципы выбора параметров токовой защиты сохраняются и при выполнении защиты расцепителями автоматических выключателей.
Общим для всех автоматических выключателей является соблюдение следующих требований:
1. Номинальное напряжение Uа.ном должно быть не ниже напряжения сети.
2. Номинальный ток отключения должен быть больше максимального тока КЗ.
3. Номинальный ток расцепителя Iрц.ном выбирается больше максимального рабочего тока Iраб.max
Iрц.ном >= Iраб.max
Первая ступень защиты — токовая отсечка без выдержки времени. Ток срабатывания отстраивается от максимального тока внешнего короткого замыкания
Выполнить это условие иногда бывает невозможно, так как у многих селективных автоматических выключателей, снабженных трехступенчатой токовой защитой, уставка тока срабатывания первой ступени не регулируется.
Вторая ступень защиты — токовая отсечка с выдержкой времени.
Токовая отсечка с выдержкой времени не должна срабатывать при КЗ в начале следующего участка и при перегрузках.
Требуется ток срабатывания и выдержку времени второй ступени защиты выключателя QF1 отстроить от тока срабатывания выдержки времени первой ступени защиты выключателя QF2, по условиям:
,
где =1,3… 1,5;
— ступень селективности: для выключателей ВА55, ВА75 = 0,1 с; для выключателя А3790С = 0,15 с и для выключателя «Электрон» = 0,2…0,25 с. Для исключения срабатывания при кратковременных перегрузках необходимо выполнить условие
Третья ступень защиты — максимальная токовая защита.
Ток срабатывания третьей ступени не определяют. Он связан с номинальным током расцепителя Iрц ном. Поэтому, выбрав Iрц ном, мы уже тем самым выбрали ток срабатывания . Таким образом, задача может сводиться только к проверке чувствительности защиты. Время срабатывания третьей ступени выбирается на ступень селективности больше, чем время действиия защит на смежных элементах.
Время срабатывания для полупроводниковых расцепителей устанавливается при токе 6 Iрц ном.
Чувствительность и селективность расцепителей автоматических выключателей
Чувствительность.
В сетях, защищаемых только от токов КЗ, для обеспечения чувствительности расцепителей должны выполняться следующие условия:
1. Минимальный ток КЗ Iк.min в наиболее удаленной точке защищаемой линии должен быть больше номинального тока расцепителя Iрц ном в три и более раза;
2. Для автоматических выключателей, имеющих только расцепители мгновенного срабатывания, должны выполняться соотношения:
— Iк. min > 1,4 , для выключателей с I ном < 100 А
— Iк.min > l,25 для всех других выключателей.
Для сетей, защищаемых и от перегрузки, должны выполняться следующие условия:
1. < (0,8…1) Iдл.доп. для выключателей, имеющих только мгновенно действующий расцепитель;
2. Iрц.ном < Iдл.доп. для ненастраиваемого расцепителя.
3. < (1…1,25) Iдл.доп. для расцепителя с регулируемой обратно зависимой от тока характеристикой.
Селективность.
Для обеспечения селективного отключения последовательно установленных автоматических выключателей защитные характеристики их расцепителей не должны пересекаться. При этом ток срабатывания расцепителя выключателя, расположенного ближе к источнику питания, должен быть больше, чем у расцепителя автоматического выключателя, более удаленного от источника питания сети.
Для графического определения селективности строится карта селективности.
Если характеристика расцепителя не удовлетворяет требованиям селективности, его уставки принимаются выше расчетных.
При этом не всегда удается получить селективно действующую защиту во всем диапазоне токов КЗ.
Селективного действия добиться нельзя, если < .
При согласовании защитных характеристик среднюю погрешность действия расцепителей принимают равной = ±20% для всех типов выключателей. В этом случае селективность обеспечивается, если 0,8 tсз1 > 1,2 tсз2 или tсз1 > 1,5 tсз2.
В сетях напряжением до 1 кВ необходимо обеспечивать селективность при совместной работе автоматических выключателей и плавких предохранителей. При этом ближе к источнику питания может находиться как выключатель, так и предохранитель.
Если ближе к источнику автоматический выключатель, селективного действия можно достичь, используя селективный автоматический выключатель. Селективность обеспечивается и при неселективном выключателе, если ток наибольшей уставки отсечки выше, чем ток КЗ при повреждении за предохранителем.
Если ближе к источнику находится предохранитель, требования к селективности такие же, как и при согласовании между собой защитных характеристик предохранителей.
Для графического определения селективности строится карта селективности.
Характеристики срабатывания автоматов. Принцип выбора
Автоматические выключатели: характеристики срабатывания и ситуации применения
Автоматический выключатель (автомат) — коммутационное устройство, проводящее ток в нормальном режиме и блокирующее подачу электроэнергии в случаи аварии: перегрузки или короткого замыкания.
Для размыкания электрической цепи автоматические выключатели оборудованы специальными устройствами – расцепителями.
В современных модульных автоматах используется два типа расцепителей:
1) Тепловой – служит для защиты от перегрузкиБиметаллическая пластина, которая изгибается при нагреве, проходящим через нее током, тем самым размыкая контакт. Чем больше перегрузка, тем быстрее нагревается биметаллическая пластинка и быстрее срабатывает расцепитель.
Нормируемые параметры – следующие:
- 1,13 (In) – тепловой расцепитель не срабатывает в течение 1 ч.
- 1,45 (In) – расцепитель срабатывает в течение < 1 ч.
2) Электромагнитный (отсечка) – предназначен для защиты от короткого замыкания
Соленоид с подвижным сердечником, который втягивается при превышении заданного порога тока, мгновенно размыкая электрическую цепь. Отсечка срабатывает при существенном превышении номинального тока (2÷10 In) в зависимости от характеристики срабатывания. Рассмотрим наиболее распространенные автоматы с характеристиками: (B, C, D, K, Z).
1) Характеристика В (3-5 In)
Электромагнитный расцепитель срабатывает при токе, превышающем номинальный в 5 раз. Время отключения <1с. При токе, превышающим номинальный в 3 раза, в течение 4-5 с. сработает тепловой расцепитель. (Обращаем ваше внимание, что для постоянного тока (DC) граница срабатывания будет немного сдвинута (х1,5).
Автоматические выключатели «В» применяются в осветительных сетях с небольшими пусковыми токами (или полным их отсутствием).
2) Характеристика С (5-10 In)
Наиболее распространённые автоматические выключатели. Минимальный ток срабатывания составляет 5 In. При этом значении через 1,5 с сработает тепловой расцепитель, а при 10 кратном превышении номинала, электромагнитный разомкнет цепь меньше, чем за 0,1 с.
Автоматические выключатели «С» подходят для сетей со смешанной нагрузкой (освещение, бытовые электроприборы)
3) Характеристика D (10-20 In)
Характеризуются большой устойчивостью к перегрузке. Тепловой расцепитель разомкнет цепь за 0,4 при превышении порога в 10 In. Срабатывание соленоида произойдет при двадцатикратном превышении номинального тока.
Автоматические выключатели «D» используются для подключения электродвигателей с кратковременными большими токами (пусковые токи)
4) Характеристика K (8-15 In)
Для автоматов этой категории характерна большая разница в показателях для постоянного и переменного токов. Например, электромагнитный расцепитель гарантировано разомкнет цепь за 0,02 с. при достижении значения в 12 In в цепи переменного тока, а для постоянного это значения увеличивается до 18 In. При превышении номинального тока в 1,5 раза в течение 2 мин. сработает тепловой расцепитель.
Автоматы с характеристикой «K» применяются для подключения преимущественно индуктивной нагрузки.
5) Характеристика Z (2-3 In)
Автоматы этой категории также имеют различия в параметрах срабатывания для переменного и постоянного токов.
Электромагнитный расцепитель разомкнет цепь при трёхкратном превышении номинальных параметров в цепи переменного тока и 4,5 In в цепях постоянного тока. Тепловой расцепитель сработает при токе в 1,2 от номинального в течение часа.
Вследствие небольших значений по превышению номинальных параметров, Автоматы «Z» применяются только для защиты высокочувствительной электронной аппаратуры.
Подытоживая вышесказанное отметим, что для бытового использования подходят автоматы с характеристиками: «В» и «С», при возможном подключении электродвигателей с высокими пусковыми токами имеет смысл использовать автоматы категории «Е» (во избежание ложного срабатывания). Категория «К» подходит при работе с индуктивными нагрузками, а «Z» для электронного оборудования, чувствительного к небольшим перегрузкам.
И последнее: если вы сомневаетесь в правильности выбора — обратитесь к профессиональному электрику, не гадайте!
В нашем магазине представлены автоматы всех перечисленных серий, при отсутствии того или иного оборудования его можно легко заказать.
Чтобы узнать подробности и заказать электротехническую продукцию звоните по телефону
(495) 777-05-30Или оставьте сообщение через форму обратной связи в разделе «Контакты».
защитная характеристика автоматического выключателя — это… Что такое защитная характеристика автоматического выключателя?
- защитная характеристика автоматического выключателя
Автоматические выключателит могут иметь следующие защитные характеристики:
Зависимая от тока характеристика времени срабатывания.
Такие выключатели имеют только тепловой расцепитель, применяются редко вследствие недостаточной предельной коммутационной способности и быстродействия.Независимая от тока характеристика времени срабатывания.
Такие выключатели имеют только токовую отсечку, выполненную с помощью электромагнитного или полупроводникового расцепителя1), действующего без выдержки или с выдержкой времени.Ограниченно зависимая от тока двухступенчатая характеристика времени срабатывания.
В зоне токов перегрузки выключатель отключается с зависимой от тока выдержкой времени. В зоне токов КЗ выключатель отключается токовой отсечкой с не зависимой от тока заранее установленной выдержкой времени (для селективных выключателей) или без выдержки времени для неселективных выключателей). Выключатель имеет либо тепловой и электромагнитный (комбинированный2)) расцепитель, либо двухступенчатый электромагнитный (выключатель АВМ), либо полупроводниковый расцепитель1).Трехступенчатая защитная характеристика.
В зоне токов перегрузки выключатель отключается с зависимой от тока выдержкой времени. В зоне токов КЗ — с независимой от тока, заранее установленной выдержкой времени (зона селективной отсечки), а при близких КЗ — без выдержки времени (зона мгновенного срабатывания).
Зона мгновенного срабатывания предназначена для уменьшения длительности воздействия токов при близких КЗ. Такие выключатели имеют полупроводниковый расцепитель1) и применяются для защиты вводов в КТП 3) и отходящих линий.Iс.о — ток срабатывания отсечки;
t с.о — время срабатывания отсечки;
1 — с выдержкой времени при КЗ;
2 — без выдержки времени при КЗ[А.В.Беляев. Выбор аппаратуры, защит и кабелей в сетях 0,4 кВ. — Л.: Энергоатомиздат. 1988.]
Примечания [Интент].
1) Полупроводниковый расцепитель — в настоящее время электронный или микропроцессорный расцепитель
2) Комбинированный расцепитель — в настоящее время теплоэлектромагнитный расцепитель.
3) КТП — комплектная трансформаторная подстанция.Тематики
- выключатель автоматический
EN
- protection characteristic of the circuit-breaker
Справочник технического переводчика. – Интент. 2009-2013.
- защитная футеровка
- защитная шайба
время-токовая характеристика — Кривая, отражающая взаимосвязь времени, например преддугового или рабочего, и ожидаемого тока в указанных условиях эксплуатации. МЭК 60050 (441 17 13). [ГОСТ Р 50030.1 2000 (МЭК 60947 1 99)] EN time current characteristic a curve giving the time … Справочник технического переводчика
ток мгновенного расцепления — Ii Значение тока, выше которого автоматический выключатель для электрооборудования должен автоматически сработать (без намеренной выдержки времени) в течение менее 0,1 с. [ГОСТ Р 50031 99 (МЭК 60934 93)] ток мгновенного расцепления Минимальное… … Справочник технического переводчика
ток отсечки — Максимальное мгновенное значение тока, достигаемое в процессе отключения тока коммутационным аппаратом или плавким предохранителем. МЭК 60050 (441 17 12). Примечание. Понятие особенно важно, когда коммутационный аппарат или плавкий предохранитель … Справочник технического переводчика
время — 3.3.4 время tE (time tE): время нагрева начальным пусковым переменным током IА обмотки ротора или статора от температуры, достигаемой в номинальном режиме работы, до допустимой температуры при максимальной температуре окружающей среды. Источник … Словарь-справочник терминов нормативно-технической документации
1: — Терминология 1: : dw Номер дня недели. «1» соответствует понедельнику Определения термина из разных документов: dw DUT Разность между московским и всемирным координированным временем, выраженная целым количеством часов Определения термина из… … Словарь-справочник терминов нормативно-технической документации
Полезное
Смотреть что такое «защитная характеристика автоматического выключателя» в других словарях:
Выбор максимальной токовой защиты линий
Решение
Так как температура воздуха в помещении равна +25° С, то поправочный коэффициент Кп=1 и при выборе сечений проводов и кабелей по условию нагревания следует руководствоваться (4-17) и (4-18).
Линия к электродвигателю 1.
Выбираем комбинированный расцепитель автоматического выключателя А3124 по условию длительного тока линии, равного в данном случае номинальному току электродвигателя 1 ((см. табл. 4-51).
При выборе расцепителя, встроенного в закрытый шкаф автоматического выключателя, необходимо учесть поправочный коэффициент порядка 0,85. Учитывая сказанное, выбираем расцепитель автоматического выключателя по условию длительного тока линии из соотношения
По паспортным данным выбираем комбинированный расцепитель с номинальным током 100 а и током мгновенного срабатывания 800 а.
Проверяем невозможность ложного срабатывания автоматического выключателя при пуске двигателя 1 по (4-13):
Для линии к электродвигателю в невзрывоопасном помещении сечение выбирается по номинальному току двигателя из (4-17) с последующей проверкой по (4-18), исходя из условия защиты сети только от к. з.
Расчетное значение допустимого тока линии получается равным:
По таблице подбираем трехжильный провод с алюминиевыми жилами марки АПРТО сечением 35 мм2, для которого допустимая нагрузка равна 75 а.
Проверяем соответствие выбранного сечения провода аппарату токовой защиты. Так как автоматические выключатели серии А3100 не имеют регулирования тока уставки, кратность допустимого тока линии должна определяться по отношению к номинальному току расцепителя, равному в нашем случае Iз=100 а. По табл. 4-50 находим значение Кз для сетей, не требующих защиты от перегрузки для номинального тока расцепителя автоматического выключателя с нерегулируемой обратно зависимой от тока характеристикой
Подставив числовые значения в соотношение (4-18)
видим, что требуемое условие не выполняется.
Останавливаемся на сечении провода 50 мм2, для которого условие (4-18) выполняется:
105 а>100 а.
Для остальных линий результаты расчета сведены в табл. 4-52 и ниже даются пояснения, связанные с особенностями каждой из них.
Линии к электродвигателю 3.
Линия к электродвигателю 3 имеет следующие особенности. Двигатель 3 установлен во взрывоопасном помещении класса ВIа, в связи с чем:
1)за расчетный ток при выборе сечения линии принимается номинальный ток двигателя, увеличенный в 1,25 раза;
2)во взрывоопасном помещении класса ВIа не разрешается применение проводов и кабелей с алюминиевыми жилами, следовательно линия от магнитного пускателя до электродвигателя должна быть выполнена проводом с медными жилами (марки ПРТО).
Линия к электродвигателю 4.
Сечение провода ПРТО от магнитного пускателя до двигателя 4 принято равным 2,5 мм2, так как меньшее сечение для силовых сетей во взрывоопасных помещениях не допускается.
Линия к электродвигателям 5 и 6.
Расчетный ток линии определяется суммой токов двигателей 5 и 6.
Магистральная линия.
Длительная расчетная токовая нагрузка линии по условию примера определяется суммой токов всех электродвигателей, за исключением тока одного из электродвигателей 1 или 2:
Кратковременная токовая нагрузка определяется по (4-9) из условия пуска двигателя 3, у которого толчок пускового тока наибольший:
Выбираем электромагнитный расцепитель автоматического выключателя АВ-4С по условию длительного тока линии:
Выбираем максимальный расцепитель с номинальным током 200 а. Уставку тока срабатывания принимаем на шкале зависимой от тока характеристики 250 а и на шкале не зависимой от тока характеристики (отсечка с выдержкой времени) 1600 а.
Проверяем невозможность ложного срабатывания автоматического выключателя при пуске электродвигателя 3 по (4-13):
Определяем табличное значение допустимого длительного тока для кабеля:
Подбираем трехжильный кабель с алюминиевыми жилами до 3 кв сечением 95 мм2, для которого допустимая нагрузка равна 190 а.
Проверяем соответствие выбранного сечения кабеля аппарату токовой защиты. Так как автоматические выключатели серии АВ имеют регулирование тока уставки на шкале обратно зависимой от тока характеристики, кратность допустимого тока линии должна определяться по отношению к току срабатывания расцепителя в этой части характеристики, равному в нашем случае Iз=250 а. По табл. 4-50 находим значение Кз для сетей, не требующих защиты от перегрузки, для тока срабатывания расцепителя автоматического выключателя с регулируемой обратно зависимой от тока характеристикой:
Кз = 0,66
Подставив числовые значения в (4-18):
найдем, что требуемое условие выполняется.
Испытание автоматических выключателей. Как мы это делаем?
Автоматические выключатели, применяемые в народном хозяйстве, должны проходить испытания на соответствие: ГОСТам, ТУ и параметрам, заявляемым производителем. Часть испытаний можно проводить «собственным силами» при пуско-наладочных работах: проверка времятоковых характеристик, кратность электромагнитных отсечек и т.д. то есть, те штатные испытания, которые должен пройти каждый выключатель при вводе в эксплуатацию. Для таких испытаний достаточно иметь квалифицированных специалистов и минимально-необходимое (достаточно простое) оборудование. Но есть испытания, проведение которых возможно даже далеко не в каждой специализированной лаборатории. К таким испытаниям, например, относится проверка на предельную коммутационную стойкость (ПКС) аппарата. Важный параметр для автоматического выключателя, определяющий его предельную способность защитить в критических ситуациях подключённых к нему потребителей и распределительные сети. И здесь уже «простыми» средствами не обойтись. Однако, в интернете гуляют видео с испытаний, проводимых в, очевидно, кустарных условиях с массой технических нарушений, начиная с питающих кабелей с сечением, равным толщине обычного карандаша, и заканчивая использованием «хлопушек» и петард для получения визуального эффекта.
При проведении испытаний по ПКС, необходимо вывести аппарат в заданные режимы по току и напряжению, соответствующие заявляемым параметрам и проверить его коммутационную способность по полученным результатам испытаний или же определить его реальную коммутационную способность. Для этого необходимо иметь лабораторное оборудование, позволяющее получить такие испытательные условия и режимы. Задача трудная, но решаемая. Она состоит из двух частей: обеспечить заданное напряжение на выводах выключателя в течении всего периода проведения испытаний и получить соответствующую величину тока в силовой цепи выключателя.
Начнём с токов. Для получения необходимых значений токов, проходящих через силовые цепи выключателя, согласно закону Ома, требуется соблюсти «простое» условие: I=U/R. При этом, напряжение Uном (испытательное), должно строго соответствовать паспортным данным, а оно для трёхфазных аппаратов равно 380 В (или 690 В) 50 Гц. То есть в формуле с одним параметром определились и оно допустим равно: Uном(исп)=380В (50 Гц)=const. Осталось получить необходимый ток, равный заявленной величине ПКС. Допустим, 20 кА. Согласно формуле, такой ток возможен лишь при строго определенной величине сопротивления цепи Rц. Значит, чтобы добиться требуемых значений тока, необходимо подобрать следующее сопротивления цепи, через которую будет протекать ток: Rц=Uисп/Iисп=380/20000=0,019 Ом.
Как обеспечить заданное сопротивление цепи и за счёт чего? Сопротивление цепи Rц определяется внутренним или собственным сопротивлением Rвн, испытываемого автоматического выключателя и внешним сопротивлением питающих кабелей от источника напряжения: Rц=Rвн+Rвнеш. Внутреннее сопротивление есть величина постоянная Rвн=const и на неё повлиять невозможно, да и, согласно условиям процедуры, этого и делать нельзя. Это сопротивление Rвн состоит из сопротивления токоведущих силовых цепей автомата и переходного сопротивления замыкающегося силового контакта…определяется параметрами самого выключателя и его конструктивными особенностями. Остается одна возможность: подобрать сопротивление питающих кабелей от источника напряжения до испытательного образца и снизить переходные значения сопротивлений в местах подключения этого кабеля: Rвнеш=var. Вот за счёт чего можно получить заданные токи при заданном напряжении. Как это сделать? Удельное сопротивление, как физическая величина от нас не зависит, а зависит от материала (Cu, Al). Значит, необходимо взять питающие кабели из материала с наименьшим удельным электрическим сопротивлением, лучше всего медные (Rcu=0,0171 Ом на мм2/м), увеличить их поперечное сечение (закон Ома для параллельных цепей) и уменьшить длину. Вот тут-то и возникает проблема: при напряжении 380В и 20кА полное сопротивление цени Rц должно быть 0,019 Ом, а если оттуда вычесть внутреннее сопротивление автоматического выключателя, то задача становится нетривиальной. Питающий кабель должен быть весьма внушительных размеров, но точно не размером с карандаш.
Одним из важнейших признаков проведения реальных испытаний является визуальная оценка подключённых кабелей по сечению. И если питающие кабели больше похожи на провода, то вас обманывают.
Следующее требование для проведения таких испытаний — мощность питающего источника напряжения должна быть предельно высокой, чтобы удержать необходимые параметры испытаний по току и напряжению. В серьёзных испытательных лабораториях, как правило, используют собственный генератор, находящийся рядом с лабораторией, система возбуждения которого позволит по первой или второй производной удержать заданные параметры, так как процесс испытаний весьма быстротечен.
И ещё один примечательный момент, который нужно знать и понимать — при возникновении больших токов короткого замыкания на уровне предельных коммутационных токов, задача автоматического выключателя заключается только в одном: ОТКЛЮЧИТЬ питаемую цепь с нагрузкой. При этом аппарат считается ВЫПОЛНИВШИМ свою задачу, даже если в процессе он разрушился, и его дальнейшее использование после ПКС стало невозможным. В лучшем случае, можно провести ревизию и ремонт выключателя. Оптимальным же считается замена выключателя. Пусть вас не вводят в заблуждение «страшные» картинки «сгоревших» автоматов! Ситуация, как с автомобилем. Что делать, если он попал в аварию, но все пассажиры целы: жалеть машину или все же радоваться, что она выполнила свою функцию безопасности по сохранению здоровья и жизни? Принцип ПКС — сродни автомобильной аварии. Если нельзя предотвратить, необходимо снизить ущерб и избежать трагических последствий. А зная техническую стойкость аппарата стараться не использовать его в таких условиях.
При возникновении режимов коротких замыканий на аппарат действуют электродинамические силы, которые могут привести к механическим повреждениям и разрушениям устройства или его деталей, что является вполне закономерным и естественным результатом. Ничего удивительного здесь нет, это все укладывается в рамки нашего физического мира и описано в ТОЭ. Чем тяжелее режим, тем тяжелее и последствия. Важна конструктивная стойкость автоматического выключателя, но она тоже, имеет свои пределы. И оценивать надо способность аппарата выполнить свою задачу и предназначение, а не его внешний вид после возникновения таких режимов.
Компания МФК ТЕХЭНЕРГО для проведения описанных выше испытаний выбрала международную корпорацию DEKRA. При этом, у DEKRA имеются всего две лаборатории в нашей досягаемости: в Голландии и в Китае. Китай был ближе. Конечно-же, результатам испытаний, полученным от такой компании как DEKRA, можно доверять на все сто, так как эта корпорация является безусловным лидером и авторитетом в области проведения испытаний электротехнического оборудования. Лаборатории DEKRA обладают беспрецедентными техническими возможностями, квалифицированным персоналом и безупречным имиджем. Этим мы и руководствовались для получения объективных результатов испытаний и предоставления потребителям достоверной информации о продукте. Уверенность в качестве и уровне разрабатываемых и производимых нами аппаратов, позволяет компании МФК ТЕХЭНЕРГО проводить испытания в соответствии с наивысшими стандартами в передовых лабораториях мирового уровня. А набраться смелости и решительности на проведение испытаний такого уровня и пройти их — не одно и тоже! Мы это сделали.
Все результаты проведённых испытаний вместе с протоколами и осциллограммами доступны на нашем сайте в карточках соответствующих товаров. А если вы проведёте хотя бы элементарную «экспертизу» наших видеофайлов с испытаниями автоматических выключателей (например, прокрутите в замедленном режиме), то нигде на обнаружите никакого фотомонтажа, так как это реальные съемки, не подвергавшиеся какого-либо рода обработке. У нас все по-честному! Наша компания строго соблюдает деловые и моральные нормы корпоративного этикета. И не забывайте о том, что Вы всегда можете рассчитывать на нас – Вашего надежного партнера!
Протокол испытаний МАШПРОМЭКСПЕРТ
Протокол испытания автоматов ВА5735 и ВА57Ф35 в лаборатории DEKRA
Протокол испытаний Dekra ВА5731 на 25А
Протокол испытаний Dekra ВА5731 на 100А
PS: в этой статье мы постарались дать ответ на достаточно часто задаваемые вопросы: каким испытаниям из тех, что можно найти в сети интернет можно верить? Как неспециалисту отличить реальные испытания от постановочных? Что такое ПКС? И еще множество других вопросов.
Мы постарались достаточно простым языком и доходчиво описать требования к проведению испытаний и просим отнестись к этому с пониманием: статья написана не для специалистов высокого уровня с глубокими познаниями в области электротехники. К примеру, мы не рассматривали переходные электромагнитные процессы, законы Ома для полной цепи и т.д.
Если у вас будут замечания или вопросы, то присылайте их на почту компании ([email protected]) и мы вам ответим.
Что такое прерыватель цепи остаточного тока?
Автоматический выключатель остаточного тока (RCCB) — это переключатель, который может срабатывать автоматически, когда ток утечки в цепи превышает заданное значение. Обычные выключатели дифференциального тока делятся на тип напряжения и тип тока, в то время как тип тока делится на электромагнитный тип и электронный тип. Автоматические выключатели дифференциального тока используются для предотвращения поражения электрическим током и должны выбираться в соответствии с различными требованиями к защите от прямого и непрямого прикосновения.
Выключатели остаточного тока (RCCB) Nader
Выключатели остаточного тока напряжения используются в низковольтных электрических сетях, где нейтральная точка трансформатора не заземлена. Когда человек получает удар электрическим током, между нейтральным проводом и землей появляется относительно высокое напряжение, которое вызывает срабатывание реле и срабатывание переключателя питания. Автоматический выключатель остаточного тока в основном используется в низковольтных распределительных сетях, где нейтраль трансформатора заземлена.Когда человек получает удар электрическим током, ток утечки обнаруживается трансформатором тока нулевой последовательности, который заставляет реле срабатывать, а выключатель питания отключаться.
Зачем нужны автоматические выключатели остаточного тока
Если ток, проходящий через человеческое тело, составляет всего 20-30 мА, он, как правило, не может напрямую вызвать фибрилляцию желудочков или остановку сердечных сокращений. Но если на это уходит много времени, сердце все равно может перестать биться.
Выключатели остаточного тока используются в качестве защитных устройств от поражения электрическим током и электрического пожара в случае короткого замыкания на землю из-за повреждения цепи или электрической изоляции.Как правило, они устанавливаются в розетке каждой бытовой распределительной коробки и на линии электропитания общей распределительной коробки во всем здании. Последний специально разработан для предотвращения электрических пожаров.
Принцип работы прерывателя цепи остаточного тока
Прерыватель цепи остаточного тока в основном состоит из трех частей: элемента обнаружения, промежуточного звена усиления и исполнительного механизма. Элемент обнаружения состоит из трансформатора нулевой последовательности для обнаружения тока утечки и отправки сигнала.Промежуточное звено усиления усиливает слабый сигнал утечки, а компонент усиления может быть механическим или электронным. Когда исполнительный механизм получает сигнал, главный выключатель переключается из закрытого положения в отключенное положение, чтобы отключить электропитание.
При утечке электрооборудования возникают два аномальных явления: нарушается баланс трехфазного тока и появляется ток нулевой последовательности; Обычно незаряженный металлический корпус имеет напряжение заземления (обычно металлический корпус имеет нулевой потенциал относительно земли).Основным компонентом выключателя дифференциального тока является кольцевой магнитный индуктор. Огневой провод и нейтральный провод намотаны несколько раз на магнитное кольцо методом параллельной намотки, а на магнитном кольце есть вторичная катушка. Когда один и тот же провод зажигания фазы и нейтральный провод работают правильно, магнитный поток, создаваемый током, нейтрализуется, и во вторичной катушке не возникает напряжения. Если в проводе протекает утечка или он не подсоединен к нейтральному проводу, токи в токоведущем и нейтральном проводах, проходящих через магнитное кольцо, будут несбалансированы, в результате чего магнитный поток будет проходить через магнитное кольцо, а во вторичной катушке будет индуцировано напряжение. через электромагнитное железо сработало спусковое устройство.
Принцип выбора прерывателя цепи остаточного тока
1. Выберите в соответствии с целью использования и расположением электрического оборудования
(1) Защита от прямого контакта с электрическим током
Поскольку прямой контакт с электрическим током опасен и имеет серьезные последствия. В связи с этим следует выбирать автоматические выключатели дифференциального тока с высокой чувствительностью. Для электроинструментов, мобильного электрооборудования и временных линий, выключателей дифференциального тока с током срабатывания 30 мА и временем срабатывания 0.В схему следует установить 1с.
Если поражение электрическим током может вызвать вторичные повреждения (например, при работе на большой высоте), в цепи должен быть установлен выключатель дифференциального тока с рабочим током 15 мА. Для электрического медицинского оборудования в больницах следует установить автоматический выключатель дифференциального тока с рабочим током 6 мА.
(2) Защита от поражения электрическим током при непрямом контакте
Поражение электрическим током при непрямом контакте в разных местах может привести к травмам различной степени тяжести.Следовательно, в разных местах следует устанавливать разные выключатели дифференциального тока. Выключатели остаточного тока с высокой чувствительностью требуются в местах с высокой опасностью поражения электрическим током. Поражение электрическим током во влажных местах намного опаснее, чем в сухих. Как правило, следует устанавливать автоматические выключатели дифференциального тока с током срабатывания 15-30 мА и временем срабатывания 0,1 с. Для электрооборудования в воде необходимо установить автоматический выключатель дифференциального тока с током срабатывания 6-10 мА и временем срабатывания ступени US.Для электрооборудования, которое оператор должен стоять на металлических предметах или в металлических контейнерах, при напряжении выше 24 В должны быть установлены автоматические выключатели остаточного тока с током срабатывания ниже 15 мА и временем срабатывания на уровне США. Для стационарного электрооборудования с напряжением 220 В или 380 В, когда сопротивление заземления корпуса ниже 500 кГц, на одной машине может быть установлен автоматический выключатель дифференциального тока с током срабатывания 30 мА и временем срабатывания 0,19 с. Для крупногабаритного электрооборудования с номинальным током более 100 А или цепи питания с несколькими электрооборудованием может быть установлен выключатель дифференциального тока с током срабатывания 50-100 мА.Для сопротивления заземления электрооборудования ниже 1000fZ может быть установлен выключатель дифференциального тока с током срабатывания 200-500mA.
2. Выбирайте на основе нормального тока утечки цепи и оборудования
(1) Ток срабатывания выключателя дифференциального тока, используемого одной машиной, должен быть в 4 раза выше, чем ток утечки при нормальной работе оборудование.
(2) Для выключателя дифференциального тока, используемого в ответвленной линии, ток срабатывания должен быть равен 2.В 5 раз выше, чем ток утечки при нормальной работе цепи, и в 4 раза выше, чем ток утечки электрооборудования с наибольшим током утечки в цепи.
(3) Ток срабатывания выключателя дифференциального тока для основной линии или общей защиты всей сети должен быть в 2,5 раза выше, чем ток утечки при нормальной работе электросети.
Меры предосторожности при использовании автоматических выключателей остаточного тока
Установить
1.Перед установкой проверьте данные на паспортной табличке выключателя дифференциального тока на соответствие требованиям.
2. Не устанавливайте слишком близко к сильноточной шине и контактору переменного тока.
3. Когда ток срабатывания выключателя дифференциального тока превышает 15 мА, корпус оборудования, защищенный выключателем дифференциального тока, должен быть надежно заземлен.
4. Следует полностью учитывать режим питания цепи питания, напряжение цепи питания и режим заземления системы.
5. При установке выключателя остаточного тока с защитой от короткого замыкания необходимо обеспечить достаточное расстояние прохождения дуги.
6. Для контуров управления, подключенных извне к комбинированным выключателям дифференциального тока, должны использоваться медные провода сечением не менее 1,5 м².
7. После установки выключателя остаточного тока исходные меры защиты от заземления линии или оборудования низкого напряжения не могут быть удалены. В то же время нейтральный провод на стороне нагрузки автоматического выключателя нельзя использовать совместно с другими контурами, чтобы избежать неправильного срабатывания.
8. Нулевой провод во время установки должен быть строго отделен от провода защитного заземления. Нейтральные провода трехполюсных, четырехпроводных и четырехполюсных автоматов защитного отключения должны быть подключены к автоматическим выключателям, а нейтральные провода, проходящие через автоматические выключатели, больше не должны использоваться в качестве проводов защитного заземления, и они не должны быть повторно заземленным или подключенным к корпусам электрооборудования. Провод защитного заземления нельзя подключать к автомату защитного отключения.
9. Автоматические выключатели дифференциального тока должны быть защищены отдельными шлейфами и не должны электрически подключаться к другим шлейфам. Автоматические выключатели дифференциального тока нельзя использовать параллельно для защиты одной и той же линии или электрического оборудования.
10. После установки нажмите кнопку тестирования, чтобы проверить, может ли выключатель остаточного тока работать надежно.
Электропроводка
1. Электромонтаж должен выполняться в соответствии со знаком питания и нагрузки на выключателе дифференциального тока, и их нельзя менять местами.
2. Защитная линия не должна проходить через трансформатор тока нулевой последовательности. При использовании трехфазной пятипроводной системы или однофазной трехпроводной системы защитная линия должна быть подключена к магистрали защиты на входе выключателя дифференциального тока и не должна проходить через трансформатор тока нулевой последовательности на середине пути. .
3. Однофазная цепь освещения, трехфазная четырехпроводная распределительная линия и другие линии или оборудование, использующие рабочую нулевую линию, должны проходить через трансформатор тока нулевой последовательности.
4. В системе, где нейтральная точка трансформатора напрямую заземлена, после установки выключателя дифференциального тока рабочий нейтральный провод можно использовать в качестве рабочего нейтрального провода только после прохождения через трансформатор тока нулевой последовательности. Он не может быть повторно заземлен и не может быть подключен к рабочему нейтральному проводу другой линии.
5. Электрооборудование можно подключать только к стороне нагрузки выключателя дифференциального тока. Один конец не может быть подключен к стороне нагрузки, в то время как другой конец подключен к стороне питания.
6. В трехфазной четырехпроводной системе или трехфазной пятипроводной системе, где однофазные и трехфазные нагрузки смешиваются, трехфазные нагрузки должны быть сбалансированы, насколько это возможно.
Общие неисправности выключателя дифференциального тока
Отключение при вводе в эксплуатацию
1. Трехфазная линия электропитания, включая нейтральный провод, не проходит через трансформатор тока нулевой последовательности в одном направлении, поэтому достаточно исправить проводку.
2.Установленный выключатель дифференциального тока электрически подключен к линии неустановленного выключателя дифференциального тока, и этого достаточно для разделения двух цепей.
3. Повторное заземление происходит на нейтральном проводе, проходящем через трансформатор тока нулевой последовательности, поэтому его следует исключить.
4. сам автоматический выключатель остаточного тока неисправен и подлежит замене.
Неправильное действие
1. Вызвано перенапряжением. Если автоматический выключатель срабатывает при возникновении коммутационного перенапряжения в линии, можно выбрать автоматический выключатель остаточного тока с задержкой или импульсным напряжением без срабатывания, или между контактами может быть установлена цепь поглощения емкостного сопротивления для подавления перенапряжения, или Устройство поглощения перенапряжения может быть включено в линию.
2. Электромагнитные помехи. Если поблизости находится магнитное оборудование или электрическое оборудование большой мощности, положение установки выключателя дифференциального тока должно быть отрегулировано так, чтобы он находился вдали от таких электрических компонентов.
3. Затронутые тиражом. Если два трансформатора работают параллельно, и каждый имеет свой заземляющий провод. Поскольку импеданс двух трансформаторов не может быть полностью одинаковым, в заземляющем проводе будет генерироваться циркулирующий ток, вызывающий срабатывание автоматического выключателя.Следовательно, можно удалить один заземляющий провод. Кроме того, один и тот же трансформатор подает питание на одну и ту же нагрузку по двум параллельным цепям. Ток в двух цепях не может быть абсолютно одинаковым, также может быть циркулирующий ток. Следовательно, два контура должны работать отдельно.
4. Снижается сопротивление изоляции рабочего нулевого провода. Когда сопротивление изоляции рабочего нейтрального провода уменьшается, если трехфазная нагрузка несимметрична, относительно большой рабочий ток появится на нейтральном проводе и потечет к другим ответвлениям через землю, так что ток утечки может появиться на каждом остаточном проводе. токовый выключатель и вывести автоматический выключатель из строя.
5. Неправильное заземление. Если нейтральный провод повторно заземлить, прерыватель цепи остаточного тока выйдет из строя.
6. Влияние перегрузки или короткого замыкания. Если автоматический выключатель дифференциального тока имеет защиту от короткого замыкания и защиту от перегрузки по току одновременно, когда ток уставки расцепителя защиты от перегрузки по току не подходит, произойдет неправильное действие. В это время можно изменить текущее значение настройки.
Ограничение тока — журнал IAEI
Время чтения: 8 минутНекоторые из самых страшных кривых для меня, молодого инженера, закончившего колледж, были кривые пропускания, опубликованные производителями предохранителей и автоматических выключателей.Я понял кривые время-токовой характеристики (TCC), потому что я проводил выборочные исследования координации, но эти кривые пропускания были загадкой. Итак, моя сегодняшняя статья очень проста, чтобы пролить свет на эту информацию, которую легко получить в отрасли предохранителей и в меньшей степени в отрасли автоматических выключателей. Я надеюсь, что это поможет вам понять эту информацию и то, что она вам говорит.
Ток короткого замыкания
Первым шагом в этом обсуждении является понимание того, как выглядит форма волны тока во время короткого замыкания.Первые несколько циклов тока во время короткого замыкания будут асимметричными относительно оси x. Разница между симметричными усилителями и асимметричными усилителями показана на рисунке 1.
Рисунок 1. Семь циклов формы волны тока короткого замыкания, показывающие 5 циклов асимметричной формы волны, которые становятся симметричными относительно оси x. На рисунке 1 показаны два крайних состояния поведения тока короткого замыкания в нормальной низковольтной цепи. Термины «симметричный» и «асимметричный» используются для описания симметрии формы сигнала относительно горизонтальной нулевой оси.Асимметричная форма волны имеет первый полупериод с большей амплитудой, чем второй полупериод, отсюда асимметрия относительно оси x. Этот первый полупериод представляет собой самый высокий пиковый ток во время короткого замыкания, пик которого зависит от отношения X / R в цепи во время короткого замыкания. Обсуждение соотношения X / R отложим на другой день. Эта асимметричная форма волны — это то, что система распределения электроэнергии будет испытывать без устройства защиты от сверхтока. Как показано на этом изображении, первые несколько циклов во время короткого замыкания асимметричны, но, если их оставить, в конечном итоге становятся симметричными.Помните, что есть силовые выключатели, которые могут удерживать свои контакты в замкнутом состоянии более 30 циклов. Причина спада формы сигнала с асимметричной на симметричную связана с факторами вклада в ток короткого замыкания. Причины короткого замыкания — это генераторы и двигатели. Эти участники присутствуют не все время; они разлагаются. Например, когда вы снижаете напряжение на двигателе, приводящем в движение нагрузку, инерция нагрузки будет продолжать вращать ротор двигателя, который затем через обратную ЭДС генерирует ток в статоре, в основном превращая двигатель в генератор.Но эта инерция не будет длиться вечно, со временем она замедляется и уходит. Это очень простое объяснение, но я думаю, что это эффективный способ объяснить распад асимметричного тока на симметричный ток. Это намного сложнее, но я надеюсь, что вы уловили суть.
Как отмечалось выше, пиковое значение будет варьироваться в зависимости от отношения X / R системы. Для отношения X / R 6,6 (коэффициент мощности 15%) пиковое значение в 2,3 раза больше симметричного среднеквадратичного тока. По мере уменьшения отношения X / R значение пикового тока также будет уменьшаться.Например, для отношения X / R 1,98 (45% PF) пиковый ток в 1,75 раза больше симметричного среднеквадратичного тока. Наихудший сценарий и сценарий, на котором основаны кривые пропускания, — это система с коэффициентом мощности 15% или отношением X / R 6,6 во время короткого замыкания.
Пиковый ток, показанный на рисунке выше, является важной точкой данных. Магнитные силы в системе распределения мощности будут изменяться пропорционально квадрату пикового тока, а тепловая энергия — квадрату среднеквадратичного значения тока.
Чтобы проиллюстрировать силу, которую магнитные силы воздействуют на систему распределения мощности во время первого цикла тока короткого замыкания, весьма показательной является видеодемонстрация проводника 2/0, испытывающего 1 цикл тока короткого замыкания. На видео показан 1 цикл 26000 ампер, протекающих через 90 футов проводника 2/0. Пиковая пропускная способность для этого примера оказалась 48 100 А. Время очистки составляло 0,0167 секунды. (1 цикл = 0,016 секунды.)
http://bcove.me/rv1gunk0
Теперь, когда у нас есть представление о том, как выглядит форма волны во время неисправности, а также о том, что это означает на практике, давайте рассмотрим некоторые более подробные сведения о текущих ограничениях и диаграммах пропускания.
Пиковое значение сквозного тока и время очистки
UL 248, Низковольтные предохранители, является стандартом и разделен на различные части, которые относятся к различным классам существующих предохранителей. Я сосредоточусь на части 8, чтобы не усложнять ее, которая касается предохранителя класса J. Я выбираю предохранитель для этого обсуждения, поскольку, когда дело доходит до ограничения тока, предохранитель светится. Возможно, вы слышали, как я задавал этот вопрос на некоторых из моих обучающих семинаров по защите от сверхтоков, но я задам его снова: «Вы знаете, что предохранитель ест на завтрак, обед и ужин и никогда не набирает вес?» Ответ на этот вопрос — «актуальный».«Эти устройства любят усилители. Чем больше, тем лучше, и они их съедят. Думаю, вы поймете, что я имею в виду, когда мы говорим об ограничении тока и кривых пропускания.
СтандартыUL обеспечивают критерии эффективности, которые должны соответствовать перечисленным решениям, чтобы получить этот знак. UL 248 обеспечивает максимальный сквозной пиковый ток и значения отключения I2t для различных классов предохранителей. Конструкции предохранителей не должны превышать этих значений. Давайте сосредоточимся на предохранителе на 600 А класса J, который имеет максимальные пиковые сквозные токи в соответствии с UL 248, как показано в таблице выше:
Предположим, что имеющийся симметричный действующий ток короткого замыкания составляет 100000 А.Пиковое значение этого тока без устройства защиты от сверхтока, показанного на рисунке, будет в 2,3 раза больше, чем ток короткого замыкания в 100 000 RMS ампер или 230 000 ампер. Чтобы называться устройством ограничения тока, одно из требований — ограничить этот пиковый ток до 45 000 ампер или меньше (см. Таблицу 1). На рис. 2 представлено общее изображение, на котором показана разница между пиковым током без ограничения тока и пиковым сквозным током из-за устройства ограничения тока. Когда пиковый ток ограничивается предохранителем, продолжительность протекания тока также уменьшается.Таким образом, ограничивая ток, мы уменьшаем не только магнитные силы, но и тепловой нагрев, вызываемый током короткого замыкания.
Таблица 1. Рисунок 2. Первый полупериод несимметричного тока короткого замыкания. На этом изображении показан эффект до и после использования токоограничивающего предохранителя, уменьшающего пиковый ток.Это приводит к гораздо меньшей магнитной силе и меньшей энергии в целом. Практическое влияние на систему распределения энергии видно на видео того же применения, показанного ранее (провод 2/0 и 26 000 ампер) с небольшим изменением, заключающимся в том, что теперь перед этим проводом установлен токоограничивающий предохранитель.Токоограничивающий предохранитель снизил максимальный сквозной ток с 48 100 до 10 200 ампер. Видео представляет собой наглядную иллюстрацию воздействия пониженных магнитных сил на систему распределения электроэнергии. В этом примере проводник практически не двигается.
http://bcove.me/vzz7k8q6
Ограничение тока уменьшает пропускную способность пикового значения и время, в течение которого ток может протекать. Общее время отключения тока короткого замыкания составляет менее 1/2 цикла.Две приведенные выше видеолинии иллюстрируют влияние ограничения тока по сравнению с отсутствием ограничения тока на систему распределения электроэнергии.
Кривые ограничения тока
Теперь, когда мы понимаем форму волны короткого замыкания и то, что устройства ограничения тока делают с этой формой волны, чтобы уменьшить механическую и тепловую нагрузку на систему распределения энергии, давайте посмотрим, как опубликованные кривые пропускания через ток связаны с этим обсуждением.
Рисунок 3. Это кривая ограничения тока для двухэлементного предохранителя с выдержкой времени класса JНа рисунке 3 показана кривая ограничения тока для двухэлементного предохранителя с выдержкой времени класса J конкретного производителя.Эти кривые могут отличаться в зависимости от производителя; всегда убедитесь, что просматриваемый документ относится к продукту, который вы применяете.
Эта кривая дает много информации о форме волны тока короткого замыкания. Фактически, это относится только к первому полупериоду этой формы волны. Давайте сначала разберемся с анатомией этого графика со ссылкой на рисунок 3. Вот что мы знаем.
- По горизонтальной оси отложены симметричные среднеквадратичные значения ампер, а по вертикальной оси — пиковые значения.
- Линия AB соответствует коэффициенту мощности короткого замыкания 15%, который связан с отношением X / R, равным 6.6. Это будет представлять собой пиковый ток наихудшего случая, который устройство должно было бы прервать. Для отношения X / R, равного 6,6, уравнение для этой линейной линии составляет
I пик = 2,3 × I RMS
Это уравнение позволяет нам рассчитать пиковый ток для любого среднеквадратичного значения тока короткого замыкания при условии, что на изображении нет токоограничивающего устройства перегрузки по току. Например, для симметричного тока короткого замыкания при действующем значении 20 000 ампер асимметричный пиковый ток рассчитывается следующим образом:
Пик I = 2.3 × 20 000 ампер = 46 000 ампер
Для цепи с отношением X / R 6,6 и 20 000 ампер среднеквадратичного тока короткого замыкания ожидаемый пиковый ток составляет 46 кА.
Чтобы получить это из кривой, мы находим 20000 ампер по горизонтали и прослеживаем это до момента, когда мы достигаем линии AB. Когда мы попадаем на линию AB, мы следуем за ней влево по оси Y и читаем число. См. Этот пример на рисунке 4.
Рисунок 4. На этом изображении показано, как графически определить для симметричного среднеквадратичного короткого замыкания 20 кА пик первого полупериода формы волны асимметричного тока короткого замыкания.- Остальные линии на этой кривой соответствуют каждому отдельному предохранителю, рассчитанному на ток. Это помогает нам понять способность конкретного предохранителя ограничивать ток. В нашем примере мы работали с предохранителем на 600 А. Чтобы определить пиковый ток при подключении предохранителя на 600 А к этой цепи с отношением X / R 6,6 и доступным среднеквадратичным значением 20 000 ампер, мы выполняем аналогичный процесс, который мы проделали на шаге 2 выше, но вместо этого мы останавливаемся на диагональной линии для предохранителя на 600 А и проведите горизонтальную линию к вертикальной оси, чтобы отсчитать приведенный пиковый ток.См. Рисунок 5 для этого примера, где мы можем оценить пиковый ток в 24 000 ампер. Это значительное снижение пикового тока с 46 кА до 24 кА. Это важно, когда мы понимаем, что магнитные силы рассчитываются как квадрат пикового тока. Эффекты ограничения тока этого OCPD почти вдвое сокращают пик.
- Там, где кривая предохранителя конкретного усилителя пересекается с линией AB, предохранитель входит в область ограничения тока.
Расставание
Условия короткого замыкания создают магнитные силы и выделяют тепло в системе распределения электроэнергии, когда это разрешено. Когда устройства работают в области ограничения тока, нагрузка на систему значительно снижается. Уменьшение пикового тока и времени, в течение которого допускается протекание короткого замыкания в цепи, упрощает удержание оборудования вместе под действием сил, которые эти экстремальные условия накладывают на все компоненты, несущие мощность.Правильное применение электрораспределительного оборудования зависит от нашего понимания этих концепций.
В этой статье мы говорили только о пропускаемом пиковом токе; вверх и снова по кривой. В моей следующей статье мы поговорим о сквозном RMS; вверх, вниз и вверх по кривой.
Как всегда, поставьте безопасность на первое место в списке и убедитесь, что вы и окружающие доживете до следующего дня.
Почему ваш выключатель продолжает отключаться? | Home Matters
Общие причины срабатывания автоматического выключателя связаны либо с перегрузкой цепи, либо с коротким замыканием, либо с замыканием на землю.Вот некоторая информация о различиях между перегрузкой цепи, коротким замыканием и замыканием на землю, которая поможет вам решить проблемы с автоматическим выключателем и электрическими системами.
Вы идете, чтобы что-то воткнуть, или тянетесь, чтобы щелкнуть выключателем и. . .ничего такого. Ваш автоматический выключатель снова сработал. Конечно, вы можете просто сбрасывать автоматический выключатель каждый раз, когда он срабатывает. Или вы можете выяснить, что вызывает проблему, чтобы исправить ее раз и навсегда. Вот некоторая информация о различиях между перегрузкой цепи, коротким замыканием и замыканием на землю, которая поможет вам решить проблемы с автоматическим выключателем и электрическими системами.
Как работает автоматический выключатель?
Автоматический выключатель — важное защитное устройство, которое срабатывает, перекрывая поток электричества в цепи, когда он становится слишком сильным. Пожары, сотрясения и другие несчастные случаи были бы гораздо более частым явлением, если бы современные дома не были оснащены автоматическими выключателями и их альтернативой — предохранителями.
Чтобы понять, как работает автоматический выключатель, вы должны разбираться в электричестве. Электричество имеет три основных качества: сопротивление, напряжение и ток.
Напряжение действует как давление, заставляя электрический заряд двигаться по проводнику. Ток — это скорость, с которой он течет. И сопротивление возникает, когда электрический ток взаимодействует с проводником — разные типы проводников имеют разные уровни сопротивления, поэтому одни материалы проводят электричество лучше, чем другие.
Электропроводка в вашем доме должна состоять из трех разных типов проводов: горячего провода, проводящего электрический ток, нейтрального провода и заземляющего провода.Обычно горячий и нейтральный провода никогда не соприкасаются друг с другом, и ток проходит через прибор, который обеспечивает высокий уровень сопротивления току, чтобы поддерживать напряжение на безопасном уровне.
Если что-то вызывает соприкосновение горячего и нейтрального проводов, ток внезапно столкнется с резко пониженным сопротивлением, и это может привести к тому, что уровни напряжения и тока станут достаточно высокими, чтобы вызвать пожар. Когда уровни тока и напряжения в цепи слишком высоки, срабатывает автоматический выключатель, отключая электричество в цепи до тех пор, пока проблема не будет решена.
Как узнать, сработал ли автоматический выключатель?
Если электричество отключилось в определенной части вашего дома, а не во всем доме, или у вас не работает несколько розеток в комнате, проблема может заключаться в сработавшем автоматическом выключателе.
Электрические цепи вашего дома защищены автоматическими выключателями или предохранителями. Все домовладельцы должны знать расположение своей электрической панели или блока предохранителей, а отверстие должно быть легко доступно и не заблокировано стеллажами, ящиками или мебелью.Если каждый автоматический выключатель или предохранитель еще не промаркирован, найдите время, чтобы определить каждый переключатель или предохранитель и определенную область, которую они контролируют. Это сэкономит ваше время и усилия в случае срабатывания / срабатывания цепи или предохранителя. Если есть два выключателя или предохранителя для одной зоны, например кухни, постарайтесь детально определить, какой частью кухни управляет каждый из двух переключателей. Например, вы можете обозначить один переключатель «кухонными приборами», а другой — «выходами кухонной стойки» или другими соответствующими обозначениями.
Если автоматический выключатель срабатывает из-за превышения максимальной силы тока (так измеряется ток в амперах), ручка переключателя перемещается между положениями включения и выключения и может отображать красную область, предупреждающую вас о срабатывании. В зависимости от вашей электрической панели, иногда «срабатывание» вызывает лишь небольшое движение ручки, и вам придется внимательно присмотреться к переключателям, чтобы определить, какой из них сработал.
Как сбросить сработавший автоматический выключатель?
Чтобы сбросить сработавший автоматический выключатель, выключите прерыватель, переместив переключатель или ручку в положение выключения, а затем снова включите его.В целях безопасности рекомендуется отойти назад или сбоку от панели на случай, если при перемещении выключателя возникнут искры, или надеть защитные очки.
Также разумно держать фонарик и батарейки рядом с электрической панелью, чтобы освещать территорию, если питание отключено. Перезагрузите автоматический выключатель на несколько минут перед отключением и включением элементов, чтобы определить, что могло вызвать перегрузку цепи или вызвать отключение.
Что такое перегрузка цепи?
Цепь может быть перегружена, когда электрический провод / цепь получает больше силы тока, чем она предназначена для работы, или это может быть вызвано ослабленными или корродированными проводами или соединениями.
Однако часто перегруженная цепь возникает просто из-за того, что к ней подключено слишком много вещей. Например, если ваша микроволновая печь продолжает отключать автоматический выключатель каждый раз, когда вы ее включаете, это может быть связано с тем, что она подключена к той же цепи, что и одна или несколько крупных бытовых приборов, и в этой цепи просто нет дополнительной силы тока, необходимой для микроволновой печи. Если цепь отключается из-за перегрузки, вы можете попробовать отключить что-нибудь от цепи и вместо этого использовать другую цепь для подачи электроэнергии.
Чтобы определить причину проблемы, отключите все элементы цепи перед сбросом автоматического выключателя. После перезагрузки и отдыха в течение нескольких минут включите или подключите элементы по одному, чтобы определить, что могло вызвать перегрузку. Если перегрузки цепи продолжают происходить в вашем доме на регулярной основе, вам может потребоваться установить новую выделенную цепь и розетку для того, чтобы выдержать нагрузку по току.
Чтобы предотвратить перегрузку цепей, поместите большие приборы и домашние системы, такие как HVAC, в отдельные выделенные цепи.
Что такое короткое замыкание?
Короткое замыкание происходит, когда горячий или активный электрический провод и нейтральный провод соприкасаются, вызывая протекание большого количества тока и перегрузку цепи. Короткое замыкание всегда должно вызывать срабатывание прерывателя или перегорание предохранителя, а также может вызывать искры, хлопки и, возможно, дым. Это также может быть вызвано такими проблемами, как неплотное соединение, проскальзывание провода или даже повреждение, вызванное животными, пережевывающими провода. Короткое замыкание может быть вызвано неисправным электрическим выключателем, розеткой, приспособлением, прибором, вилкой или шнуром.Вы можете попробовать отследить короткое замыкание самостоятельно или вызвать на помощь квалифицированного электрика.
Короткие замыкания могут быть опасны из-за высоких температур протекающего тока, которые могут создать опасность возгорания, поэтому будьте осторожны, если считаете, что в вашем доме возникла проблема, и обратитесь за профессиональной помощью, особенно если вы не можете найти источник.
Что такое замыкание на землю?
Короткое замыкание на землю может произойти, когда горячий или активный провод контактирует с заземляющим проводом, заземленной частью распределительной коробки или заземленной областью прибора (горячие провода обычно черные, нейтральные провода обычно белые, а заземляющие провода обычно зеленый).Когда происходит контакт между горячим и заземляющим проводом, через автоматический выключатель проходит большой ток, что может вызвать его срабатывание. Национальный электротехнический кодекс (NEC) требует, чтобы многие зоны в доме были защищены прерывателями замыкания на землю (GFCI) для предотвращения поражения электрическим током и пожаров, в том числе на кухнях, в ванных комнатах, на открытых площадках и в других жилых помещениях. Замыкания на землю обычно происходят, когда оборудование повреждено или неисправно, и могут представлять опасность, поскольку токоведущие электрические части больше не могут быть должным образом защищены от непреднамеренного контакта.
Имейте в виду, что автоматические выключатели и предохранители на самом деле являются защитными устройствами для нашей защиты при возникновении электрических неисправностей. Хотя может быть неприятно, когда срабатывает автоматический выключатель или перегорает предохранитель, на самом деле это действие помогло защитить нас и нашу собственность. При поиске и устранении неисправностей или при ремонте домашней электротехники всегда очень серьезно относитесь к безопасности и никогда не пытайтесь проверить или отремонтировать что-либо, в безопасности которого вы не уверены. Всегда следуйте этим советам по электробезопасности от Управления по охране труда (OSHA), в том числе:
Запрещается ремонтировать электрические шнуры или оборудование без квалификации и разрешения.
Поручите квалифицированному электрику осмотреть намокшее электрооборудование перед подачей напряжения.
При работе во влажных помещениях осмотрите электрические шнуры и оборудование, чтобы убедиться, что они находятся в хорошем состоянии и не имеют дефектов, и используйте прерыватель цепи замыкания на землю (GFCI).
Всегда соблюдайте осторожность при работе рядом с электричеством.
Опасность короткого замыкания заключается в том, что высокий уровень электричества может нагреть проводку или компоненты приспособления или прибора и вызвать возгорание.Но опасность замыкания на землю может вызвать у кого-то неприятный шок, особенно если тело человека предлагает путь наименьшего сопротивления к земле.
В таких местах, как кухни и ванные комнаты, или на открытом воздухе, где пол может быть влажным, опасность гораздо более очевидна. Итак, если вы думаете, что у вас может быть замыкание на землю, вам следует немедленно отремонтировать его, чтобы предотвратить травмы вам или вашей семье.
Это тоже не работа для обычного домашнего разнорабочего.Ремонт электрооборудования может быть опасным, если вы не знаете, что делаете. Более крупные работы, такие как обновление старой проводки, установка электроприборов или замена автоматического выключателя, который продолжает срабатывать или не сбрасывается, обычно слишком опасны для среднего домашнего мастера.
Если у вас есть домашняя гарантия с покрытием системы, вы можете отправить запрос на обслуживание.
Почему мой автоматический выключатель продолжает отключаться?
Что вызывает частое срабатывание автоматического выключателя? Если ваш автоматический выключатель продолжает срабатывать, это обычно является признаком неисправности в цепи.Возможно короткое замыкание в одном из приборов или где-то в проводке. Возможно замыкание на землю, из-за которого выключатель продолжает отключаться. Возможна перегрузка цепи. Или это может быть признаком того, что ваша коробка автоматического выключателя выходит из строя или что автоматический выключатель не рассчитан на силу тока, которая действительно проходит через него.
Как узнать, вышел ли из строя автоматический выключатель?
Как и все остальное в вашем доме, автоматические выключатели могут выйти из строя. К предупреждающим знакам неисправного автоматического выключателя относятся:
Выключатель, который не сбрасывается
Запах гари в распределительной коробке
Автоматический выключатель, который постоянно срабатывает
Признаки повреждения выключателя, например ожоги
Если ваши автоматические выключатели стареют или ваша электрическая панель не обслуживалась по крайней мере последние десять лет, есть большая вероятность, что по крайней мере некоторые из ваших выключателей достигли конца своего срока службы и их необходимо заменить на новые.
Если у вас постоянно срабатывает автоматический выключатель, рекомендуется обратиться к профессиональному электрику. Электрик может проверить наличие короткого замыкания и замыкания на землю и безопасно устранить их. Он или она также будет лучше всего подготовлен для обслуживания вашей электрической панели и замены любых выключателей, которые малоразмерны, повреждены, стареют или иным образом готовы выйти из строя.
Хотя иногда вы можете сузить причину короткого замыкания или перегрузки цепи до конкретного прибора или приспособления — особенно если из него выходит дым — вам понадобится опыт профессионала, чтобы устранить причину неисправности автоматического выключателя, будь то замыкание на землю в вашей проводке, недостаточный выключатель или перегрузка цепи где-то в доме.
Если вы когда-нибудь окажетесь в ситуации, когда у вас возникнут проблемы с электрическими системами, найдите время, чтобы просмотреть возможные варианты. Это может быть хорошей возможностью пересмотреть условия гарантии на электрооборудование. Когда электрическая система вашего дома выходит из строя, вам нужна помощь специалиста.
Наслаждайтесь надежностью и безопасностью гарантии American Home Shield Home Warranty, которая может включать покрытие основных компонентов электрической системы вашего дома. Подпишитесь на домашнюю гарантию онлайн или изучите варианты плана.
Если вы уже являетесь участником American Home Shield, мы всегда готовы помочь вам. Вы можете запросить услугу в MyAccount 24/7.
Каковы рабочие параметры высоковольтных выключателей?
Выключатель высокого напряжения (или выключатель высокого напряжения) может не только отключать или замыкать ток холостого хода и ток нагрузки в цепи высокого напряжения, но также отключать ток перегрузки и ток короткого замыкания с помощью функции устройства релейной защиты при отказе системы.Идеальную структуру гашения дуги и достаточную способность к прерыванию тока можно разделить на: масляный автоматический выключатель (больше масляный выключатель, меньше масляный выключатель), автоматический выключатель с гексафторидом серы (автоматический выключатель SF6), вакуумный выключатель и т. Д.
Номинальное напряжение (номинальное напряжение): Это параметр, характеризующий прочность изоляции автоматического выключателя, и это стандартное напряжение для длительной эксплуатации автоматического выключателя. Для соответствия требованиям энергосистемы автоматический выключатель также определяет максимальное рабочее напряжение, соответствующее номинальному напряжению каждого уровня.Для всех уровней 3–220 кВ максимальное рабочее напряжение примерно на 15% выше номинального напряжения; для 330 кВ и выше максимальное рабочее напряжение примерно на 10% выше номинального напряжения. Автоматический выключатель должен надежно работать в течение длительного времени при максимальном рабочем напряжении.
Номинальный ток: Это параметр, который характеризует способность автоматического выключателя пропускать длительный ток, то есть максимальный ток, который автоматический выключатель позволяет непрерывно пропускать в течение длительного времени.
Номинальный ток отключения: Это параметр, характеризующий отключающую способность автоматического выключателя. При номинальном напряжении максимальный ток, который автоматический выключатель может гарантировать надежное отключение, называется номинальным током отключения, и его единица выражается в килоамперах эффективного значения периодической составляющей тока короткого замыкания в момент размыкания контактов. выключателя. Когда автоматический выключатель работает в электросети, напряжение которой ниже его номинального напряжения, его ток отключения может увеличиваться.Однако, ограниченный механической прочностью камеры гашения дуги, ток отключения имеет максимальное значение, которое называется предельным током отключения.
Ток динамической стабильности: Это параметр, который характеризует кратковременную токовую нагрузку автоматического выключателя и отражает способность автоматического выключателя противостоять электродинамическим эффектам тока короткого замыкания. Максимальное пиковое значение тока, которое автоматический выключатель может пропускать в состоянии включения или в момент включения, называется стабильным электрическим током, также называемым предельным током прохождения.Когда автоматический выключатель пропускает динамический и стабильный ток, он не может быть поврежден электродвижущей силой.
Ток включения: Это параметр, который характеризует ток включения автоматического выключателя. Потому что, когда автоматический выключатель включен, может произойти короткое замыкание в цепи, и автоматический выключатель сработает с большим током короткого замыкания. Таким образом, с одной стороны, электродвижущая сила тока короткого замыкания ослабляет рабочую силу замыкания, а с другой стороны, дуга возникает из-за пробоя контактов до их соприкосновения, что может вызвать сваривание контактов и повреждение автоматического выключателя.Максимальный пиковый ток, который автоматический выключатель может надежно замкнуть, называется номинальным током включения. Номинальный ток включения и ток динамической устойчивости равны по величине, и оба они равны 2,55-кратному номинальному току отключения.
Термостабильный ток и продолжительность термически стабильного тока: Стабильный ток также является параметром, который характеризует кратковременную токовую нагрузку автоматического выключателя, но он отражает способность автоматического выключателя противостоять тепловому эффекту короткого замыкания. ток цепи.Термически стабильный ток относится к действующему значению максимальной периодической составляющей допустимого тока через автоматический выключатель в замкнутом состоянии в течение определенного времени. В это время не следует повреждать автоматический выключатель из-за кратковременного нагрева. Согласно национальному стандарту номинальный ток термической устойчивости автоматического выключателя равен номинальному току отключения. Продолжительность номинального тока термостабильности составляет 2S, когда она должна быть больше 2S, рекомендуется 4S.
Время включения и время отключения: Это параметр, который характеризует рабочие характеристики автоматического выключателя. У разных типов автоматических выключателей разное время размыкания и замыкания, но все они требуют быстрого срабатывания. Время включения относится к времени от замыкающей катушки рабочего механизма автоматического выключателя до контакта главного контакта. Время отключения автоматического выключателя включает две части: собственное время отключения и время гашения дуги.Собственное время размыкания относится к периоду от включения размыкающей катушки рабочего механизма до разъединения контактов. Время гашения дуги относится к периоду от разъединения контактов до гашения дуги каждой фазы. Поэтому время открытия еще называют временем полного открытия.
Рабочий цикл: Это также индикатор рабочих характеристик автоматического выключателя. Большинство коротких замыканий воздушных линий являются временными, и короткое замыкание быстро исчезает после отключения тока короткого замыкания.Следовательно, чтобы повысить надежность источника питания и стабильность работы системы, автоматический выключатель должен выдерживать одно или несколько включений, размыканий или размыканий сразу после включения. Такой тип операции многократного открытия и закрытия через определенный промежуток времени называется рабочим циклом.
Определение значений короткого замыкания для автоматических выключателей
Автоматические выключатели защищают электрооборудование от повреждений, которые могут возникнуть в результате токов короткого замыкания.Однако «ток короткого замыкания» может варьироваться в зависимости от приложения. Как стандарты IEC и EN помогают разработчикам правильно определять защиту от сверхтоков в электрическом оборудовании?
Иоахим Беккер ABB Stotz-Kontakt GmbH, Гейдельберг, Германия, [email protected]
В любом современном обществе постоянное наличие электроэнергии жизненно важно. Без электроэнергии будет парализовано большинство жилых домов, коммерческих предприятий и промышленных предприятий.Эта электроэнергия должна быть доставлена конечному пользователю безопасно и надежно, и именно здесь распределительные устройства играют важную роль. Из-за очевидных опасностей такое распределительное устройство или местный распределительный щит должны быть спроектированы так, чтобы защищать установку от неисправностей путем отключения неисправной цепи и, одновременно, обеспечения непрерывной работы незатронутых цепей.
Типы выключателей
Короткое замыкание подвергает оборудование большой нагрузке.Следовательно, при проектировании распределительного устройства или распределительного щита необходимо учитывать тепловые и динамические нагрузки, вызванные максимальным током короткого замыкания в точке подключения на месте. Для предотвращения повреждения установки (или персонала) используются устройства защиты от короткого замыкания для отключения тока короткого замыкания в точке подключения → 1.
Чаще всего для этой задачи переключения используются автоматические выключатели в литом корпусе (MCCB) → 2, миниатюрные автоматические выключатели (MCB), автоматические выключатели, работающие от остаточного тока (RCCB), и автоматические выключатели, работающие от остаточного тока, с максимальной токовой защитой (RCBO). Эти устройства имеют маркировку с указанием их максимальной способности к короткому замыканию, чтобы производитель панелей мог выбрать правильный продукт для применения. Такие выключатели подходят для разъединения, но обычно также устанавливаются выключатели-разъединители, чтобы оборудование можно было полностью обесточить для обслуживания или ремонта.
02 Низковольтный автоматический выключатель в литом корпусе ABB A1 (соответствует IEC / EN 60947-2). Непрерывный ток короткого замыкания
Низковольтные установки обычно питаются от трансформаторов. В такой низковольтной сети непрерывный ток короткого замыкания (I k ) рассчитывается исходя из номинального напряжения и сопротивления переменного тока (импеданса) короткого замыкания. Также существует наложенная постоянная составляющая, которая медленно спадает до нуля → 3. Пиковое значение I k является важным значением для определения короткого замыкания в стандартах.
Стандарты, касающиеся автоматических выключателей
В зависимости от конкретного применения, когда проектировщик определяет автоматические выключатели или соответствующее оборудование для защиты силовых сетей, могут использоваться различные стандарты:
• Стандарт IEC / EN 60898-1 применяется к автоматическим выключателям для максимальной токовой защиты в домашних условиях и аналогичных установках — например, в магазинах, офисах, школах и небольших коммерческих зданиях.Эти выключатели предназначены для использования людьми, не прошедшими инструктаж, и без необходимости обслуживания.
• Стандарт IEC / EN 60947-2 применяется к автоматическим выключателям, используемым в основном в промышленных приложениях, к которым имеют доступ только проинструктированные люди.
• Выключатели-разъединители испытаны на соответствие стандарту IEC / EN 60947-3.
• КРУЭ или распределительные щиты проверены на соответствие стандарту IEC / EN 61439.
Из-за разной области применения стандартов в некоторых случаях для одного и того же электрического процесса используются разные определения.Следовательно, инженер должен убедиться, что он полностью понимает, какое конкретное определение, например, способности к короткому замыканию, применимо к конструкции, над которой он работает.
Автоматические выключатели и IEC / EN 60898-1
IEC / EN 60898-1 определяет номинальную стойкость к короткому замыканию (I cn ) как отключающую способность в соответствии с заданной последовательностью испытаний. Эта последовательность испытаний не включает способность автоматического выключателя выдерживать 85 процентов своего неотключающего тока в течение определенного условного времени.Служебная отключающая способность при коротком замыкании (I cs ) — это отключающая способность в соответствии с указанной последовательностью испытаний, которая включает способность автоматического выключателя выдерживать 85 процентов своего неотключающего тока в течение определенного времени.
IEC / EN 60898-1 определяет фиксированные значения отношения I cs к I cn . Значения I cs и I cn выражены как среднеквадратические значения предполагаемых токов короткого замыкания.
Чтобы соответствовать требованиям стандарта для обеих этих характеристик короткого замыкания, необходимо проверить операции включения / выключения каждого из трех автоматических выключателей.Для разомкнутого режима ток короткого замыкания инициируется под определенным фазовым углом по отношению к форме волны напряжения. Три автоматических выключателя испытываются под разными углами. Последовательность испытаний для I cn : «O — t — CO», где «O» — это размыкание, а «CO» — операция замыкания-размыкания, что означает, что проверяемый автоматический выключатель включается и испытывает короткое замыкание. — ток цепи в течение определенного времени. Время «t» между операциями — 3 мин. Для I cs последовательность испытаний: «O — t — O — t — CO» для однополюсных и двухполюсных автоматических выключателей и «O — t — CO — t — CO» для трехполюсных и четырехполюсных выключателей. -полюсные выключатели.Способ возникновения тока короткого замыкания, указанный в стандарте, означает, что по крайней мере один испытуемый автоматический выключатель должен отключиться при наиболее значительном фазовом угле напряжения.
Автоматические выключатели и IEC / EN 60947-2
IEC / EN 60947-2 определяет предельную отключающую способность при коротком замыкании (I cu ), также известную как отключающая способность, в соответствии с указанной последовательностью испытаний. Эта последовательность испытаний включает проверку расцепителя перегрузки автоматического выключателя.В IEC / EN 60947-2 I cs — это отключающая способность в соответствии с заданной последовательностью испытаний, которая включает проверку работоспособности выключателя при номинальном токе, испытание на превышение температуры и проверку расцепителя перегрузки. IEC / EN 60947-2 определяет значения от 25 до 100 процентов для отношения I cs к I cn . Опять же, значения I cs и I cn выражены как среднеквадратические значения предполагаемых токов короткого замыкания.Чтобы соответствовать требованиям стандарта, для обеих мощностей короткого замыкания необходимо испытать каждый из двух автоматических выключателей. Подобно МЭК / EN 60898-1, ток короткого замыкания инициируется под определенным фазовым углом по отношению к форме волны напряжения для разомкнутого режима, но здесь два автоматических выключателя испытываются под одним и тем же углом. Последовательность испытаний для I cu : «O — t — CO» и «O — t — CO — t — CO» для I cs . Время «t» между операциями снова составляет 3 мин, и для размыкания ток короткого замыкания инициируется при определенном фазовом угле напряжения, определяемом как угол, при котором достигается пиковый ток.Этот пиковый ток одновременно является номинальной включающей способностью при коротком замыкании (I см ) и выражается как номинальная предельная отключающая способность при коротком замыкании, умноженная на коэффициент, определенный в МЭК 60947-2.
Выключатели-разъединители и IEC / EN 60947-3
Когда выключатели, разъединители, выключатели-разъединители или блоки с предохранителями включены в конструкцию, используется стандарт IEC / EN 60947-3. Выключатель-разъединитель способен включать и выключать ток при определенных условиях.В разомкнутом положении выключатель нагрузки обеспечивает функцию отключения.
Поскольку выключатель нагрузки не оборудован расцепителем максимального тока, он должен быть защищен автоматическим выключателем, автоматическим выключателем или предохранителем. Способность к короткому замыканию комбинации переключателя и автоматического выключателя определяется как номинальный условный ток короткого замыкания. Он выражается как значение предполагаемого тока короткого замыкания, который может выдержать выключатель нагрузки, защищенный устройством защиты от короткого замыкания (SCPD).Важно помнить, что выключатель нагрузки должен выдерживать ток, ограниченный SCPD.
Этот подход также применим для ВДТ — т. Е. Ток короткого замыкания, указанный на устройстве, является номинальным условным током короткого замыкания комбинации ВДТ с SCPD.
Еще одним значением короткого замыкания, определенным как в IEC / EN 60947-3, так и в IEC / EN 60947-2, является номинальный выдерживаемый кратковременный ток (I cw ). Это значение может применяться к выключателям (например, выключателю-разъединителю), автоматическим выключателям, таким как MCCB или воздушный автоматический выключатель (ACB), и сборным шинам.I cw — значение тока, которое оборудование может выдержать в течение определенного времени без повреждений. IEC / EN 60947-2 определяет предпочтительные значения этого времени 0,05, 0,1, 0,25, 0,5 и 1 с; IEC / EN 60947-3 определяет 1 с. Для переменного тока I cw — это среднеквадратичное значение тока.
Значение I cw важно для распределительного устройства с оборудованием, подключенным последовательно, где селективность между защитными устройствами реализуется с помощью временной задержки. Например, если фидерная цепь оборудована автоматическим выключателем, а последующие ответвленные цепи защищены автоматическими выключателями, то для достижения селективности устанавливается временная задержка для отключения автоматического выключателя.Установка между ACB и MCCB должна выдерживать указанный ток короткого замыкания в течение времени задержки ACB.
Низковольтное распределительное устройство и IEC / EN 61439-1
IEC / EN 61439-1 распространяется на низковольтные распределительные устройства и устройства управления. Для сборок с SCPD во входном блоке производитель должен указать максимальный предполагаемый ток короткого замыкания на входной клемме сборки. Для защиты сборки I cu или I cn SCPD должны быть равны или выше предполагаемого тока короткого замыкания.Если в качестве SCPD используется автоматический выключатель с выдержкой времени, или если SCPD не встроен в сборку, необходимо указать I cw с максимальной выдержкой времени.
Пример применения: завод меди и медных сплавов
Предположим, что медный завод питается от электросети среднего напряжения 20 кВ с помощью понижающего трансформатора 20 кВ / 400 В. Номинальная мощность трансформатора S r составляет 1600 кВА, а номинальное полное сопротивление u kr составляет 6 процентов.Для распределительных трансформаторов мощностью до 3150 кВА полное сопротивление сети обычно можно не принимать во внимание. Полное сопротивление короткого замыкания трансформатора ограничивает ток короткого замыкания, который выражается как:
→ 4 показана принципиальная схема блока питания.
04 Пример конфигурации защитного устройства для такого приложения, как медеплавильный завод.Для входящего питания используется прерыватель ABB Emax E2 с номинальным током 2 500 А. Уровень распределения защищен автоматическим выключателем ABB 250 A Tmax XT4S.Конечные цепи оснащены автоматическими выключателями ABB S800C и S200P.
Чтобы добиться правильного каскадирования, выполняется следующий расчет: I cw Emax E2 (версия B) составляет 42 кА. Задержка установлена на 0,1 с. Следовательно, Emax может выдерживать ток короткого замыкания. На уровне распределения I cu Tmax XT4S составляет 50 кА. Кабель между Tmax и шиной для вспомогательного распределения имеет поперечное сечение 95 мм 2 и длину 15 м.Сопротивление кабеля, указанное в технических справочниках, составляет 0,246 Ом / км.
Сопротивление трансформатора 0,00597 Ом. Таким образом, ток короткого замыкания в распределительной сети составляет:
.При использовании автоматических выключателей S800C и S200P резервная защита не требуется, поскольку предельная мощность короткого замыкания этих устройств составляет 25 кА. Приведена полная селективность между Tmax XT4S и S800C, S200P.
Пример применения: распределение электроэнергии в большом офисном здании
Если офисное здание питается от электросети среднего напряжения 20 кВ с помощью трансформатора 20 кВ / 400 В, с S r 630 кВА и а.е. крон из 4 процентов, полное сопротивление короткого замыкания трансформатора снова ограничивает ток короткого замыкания, который составляет:
→ 5 показана принципиальная схема блока питания.
05 Пример схемы защиты для большого офисного здания.I cu выключателя Tmax XT4 (версия N) составляет 36 кА. I cu селективного главного выключателя ABB S750DR составляет 25 кА. Следовательно, Tmax и S750DR могут отключать ток короткого замыкания. Кабель между S750DR и вспомогательной распределительной сетью имеет поперечное сечение 16 мм2 и длину 10 м. Сопротивление кабеля, указанное в технических справочниках, составляет 1,32 Ом / км.Сопротивление трансформатора 0,01012 Ом.
Ток короткого замыкания на промежуточном уровне распределения можно рассчитать как:
При использовании MCB S200M резервная защита не требуется, поскольку максимальная допустимая нагрузка при коротком замыкании составляет 15 кА. Приведена полная селективность между S750DR и S200M.
Для MCB SD200, показанного на → 5, важен номинальный условный ток короткого замыкания. Значение для комбинации SD200 / S750DR составляет 10 кА. Следовательно, SD200 защищен S750DR, так как максимальный ток короткого замыкания в этот момент равен 9.9 кА.
Приведенные выше примеры показывают, что правильная конфигурация защитных устройств может обеспечить безопасную и надежную работу распределительного устройства в условиях короткого замыкания. Упомянутые различные стандарты IEC / EN помогают разработчикам выбрать правильные характеристики для используемых ими продуктов и, таким образом, гарантировать, что электрическая мощность продолжает поступать в приложение независимо от того, какие условия электрического сбоя возникают.
FAQ: Как выбрать автоматический выключатель? | Техническая информация.
При выборе автоматического выключателя для защиты входной цепи импульсного источника питания имейте в виду следующее.
1. Число полюсов
при однофазном электроснабжении
Существуют линии электропитания переменного (L) и переменного (N) тока, а переменный ток (N) — это электрический потенциал земли.
Если переменный ток (L) и переменный ток (N) могут быть четко определены, для отключения линии питания переменного тока (L) можно использовать однополюсный выключатель. Но если нельзя точно определить переменный ток (L) и переменный ток (N), вам нужно выбрать двухполюсный размыкающий выключатель, чтобы отключить их оба.
При трехфазном электроснабжении
Трехполюсный размыкающий выключатель необходим для отключения всех фаз.
2. Характеристики срабатывания и рейтинг
Обычно входная цепь импульсного источника питания представляет собой конденсаторный вход, поэтому при включении питания в цепи мгновенно возникает сильный импульсный ток, называемый пусковым током. Кроме того, пусковой ток проходит через цепь всего за несколько миллисекунд [мСм], но становится в 10 раз больше, чем нормальный входной ток.Автоматический выключатель может отключаться пусковым током в зависимости от его характеристик. Поэтому следует выбирать автоматический выключатель таким образом, чтобы он не срабатывал кратковременным пусковым током. Обычно его называют выключателем с медленным срабатыванием.
Рис.1 Пример пускового тока
Рис.2 Пример срабатывания выключателя на 5А
Область, обведенная двумя кривыми, представляет собой рабочий диапазон автоматического выключателя.Предположим, что время броска тока составляет 2 мс, согласно приведенным выше графикам, это вне рабочего диапазона автоматического выключателя.
С учетом входных характеристик импульсного источника питания, когда фаза входного напряжения составляет 90˚ или 270˚, пиковый пусковой ток будет возникать и течь по цепи, однако он вернется к 0A максимум за 5 мс.
На основании значения пускового тока, указанного в нашем каталоге, следует выбрать выключатель, который не сработает в течение 5 мсек.Кроме того, значения пускового тока измеряются только тогда, когда входное напряжение установлено на номинальное входное напряжение, в основном 100 и 200 В переменного тока. Если вы хотите использовать источник питания с более высоким входным напряжением, чем номинальное входное напряжение, определите кратное входное напряжение (100 В / 200 В) и умножьте его на значение пускового тока, указанное в нашем каталоге. (Например, если [входное напряжение = 220 В], [кратное = 220/200 = 1,1]).
Помимо вышеперечисленных соображений, необходимо также принять во внимание рабочую температуру, чтобы выбрать прерыватель, который не сработает, даже если источник питания используется в своем максимальном рабочем диапазоне.
И, наконец, обратите внимание на предохранитель блока питания, потому что автоматический выключатель может не сработать при выходе из строя блока питания из-за перегорания предохранителя.
Может ли автоматический выключатель выйти из строя без отключения?
Может ли автоматический выключатель выйти из строя без отключения?
Представьте, что вы отдыхаете у себя дома в теплый летний день и наслаждаетесь игрой на своем новом телевизоре сверхвысокой четкости. Почти идеально синхронизировано с основным ходом игры, питание ваших светильников, телевизора и кондиционера отключается.Электричество по-прежнему работает в других частях вашего дома, поэтому вы быстро бежите к своему автомату, чтобы включить питание. К вашему ужасу, автоматический выключатель даже не сработал. Когда вы начинаете потеть от разочарования, вы начинаете задаваться вопросом, что не так с вашим автоматическим выключателем.
Автоматический выключатель может выйти из строя без отключения, и это означает, что его необходимо заменить. Это также может означать, что в самой цепи есть проблемы с проводкой, такие как оголенная / неплотная проводка, перегрев и нерегулируемое напряжение.Проблема также может быть полностью механической, то есть физический переключатель может застрять в положении «включено». Определить точную проблему сложно и во всех случаях требуется диагностика у сертифицированного электрика.
Каждый раз, когда в вашем доме отключается электричество, это разочаровывает. Особенно в жаркие летние месяцы, когда для комфорта в доме нужен кондиционер. Если ваш автоматический выключатель вышел из строя, но не отключился, поиск и устранение неисправностей может помочь вам определить, почему автоматический выключатель вышел из строя.В этом подробном руководстве рассказывается, почему автоматические выключатели выходят из строя и как определить, вышел ли из строя ваш.
Признаки неисправности автоматического выключателя
Есть общие признаки того, что автоматический выключатель выходит из строя. Некоторые из них очевидны, другие более тонкие и требуют устранения неполадок. Мы рассмотрим типичные симптомы неисправности автоматического выключателя.
Автоматический выключатель часто срабатываетКогда выключатель часто отключается без видимой причины, это обычно указывает на его отказ или просто на перегрузку.Если снижение электрической нагрузки схемы путем отключения электроники не останавливает частые отключения, почти наверняка неисправен выключатель.
Если вы определили, что перегружаете автоматический выключатель, поговорите со своим электриком об увеличении размера автоматического выключателя, чтобы он мог питать больше электроники и приборов без отключения.
Выключатель выглядит поврежденным или обгоревшимЕсли автоматический выключатель в вашей коробке выключателя выглядит обгоревшим или каким-либо образом поврежденным, это явный признак электрической проблемы.Ожоги и другие повреждения могут быть вызваны неисправным автоматическим выключателем или другими проблемами с питанием, для устранения которых и ремонта требуются глаза и опыт электрика.
Выключатель на ощупь горячийАвтоматический выключатель никогда не должен нагреваться при нормальной работе. Если в вашем доме холодно, выключатель может казаться немного теплее, но никогда не будет горячим на ощупь. Если ваш выключатель горячий на ощупь, полностью отключите питание с помощью главного выключателя и немедленно вызовите электрика для обслуживания.Горячий выключатель может вызвать пожар; немедленно осмотреть и отремонтировать его.
Если из вашего выключателя выходит дым, всем жильцам следует немедленно покинуть дом и вызвать скорую помощь.
Запах гари почти всегда означает — вы, надеюсь, догадались — что-то сгорело или горит в данный момент. От короткого замыкания проводов до отказа автоматических выключателей без срабатывания, они могут загореться, сжечь изоляцию проводов и расплавить пластик вокруг них.
Изоляция проводов и пластмассовые компоненты автоматических выключателей всегда изготавливаются из самозатухающих материалов. Однако если вы почувствуете запах гари, всегда есть риск возгорания. Поэтому каждый раз, когда вы чувствуете запах гари от автоматического выключателя (особенно если он выходит из строя без срабатывания), обратитесь за помощью к электрику. Кроме того, будьте готовы покинуть свой дом и позвонить в службу 911, если увидите дым или огонь.
Выключатель выходит из строя в положении «включено»Когда прерыватель выходит из строя, но не срабатывает, вы можете попытаться выключить его, а затем снова включить.Однако это не решает полностью проблему неисправного автоматического выключателя. Вышел из строя прерыватель или неисправна проводка.
Какие причины срабатывания автоматического выключателя? Автоматические выключателипредназначены для защиты вашего дома от скачков напряжения и других проблем. Три наиболее распространенных причины срабатывания автоматических выключателей — это замыкание на землю, перегрузка цепи и короткое замыкание.
Замыкания на землюКороткое замыкание на землю происходит, когда оголенный провод контактирует с заземленным компонентом.Когда это происходит, через провод на землю протекает большой ток (в амперах). Когда на землю течет большой ток, через автоматический выключатель будет проходить больше ампер, чем его максимальное значение, что приведет к его срабатыванию.
Считайте замыкания на землю защитным механизмом для вашего дома. Заземление большого количества тока через заземляющий провод, распределительную коробку или заземленную раму прибора может привести к возгоранию электрического тока, если автоматический выключатель не сработает.
В соответствии с Национальным электротехническим кодексом (NEC) все розетки, расположенные рядом с источниками воды (кухня, ванные комнаты, раковины, подвалы и внешние розетки), должны иметь встроенные прерыватели замыкания на землю (GFCI). Розетки GFCI имеют собственные встроенные автоматические выключатели, которые немедленно срабатывают при замыкании на землю.
Неоднократные замыкания на землю на вашем автоматическом выключателе редко приводят к его размыканию при отказе. Однако это опасная возможность.Если вы подозреваете это, вызовите электрика.
Перегрузка цепиПерегрузка цепи является наиболее частой причиной срабатывания выключателей домовладельцами. Как и при замыкании на землю, повторяющаяся перегрузка цепи может привести к размыканию автоматического выключателя. Если вы часто перегружаете свою цепь, наймите электрика, чтобы он заменил выключатель на больший размер, или не используйте все свои приборы сразу.
Короткое замыканиеКороткое замыкание происходит с горячим (активным) проводом и касанием нейтрального провода.Этот контакт может возникнуть, если оба провода имеют изношенную изоляцию, обнажающую внутреннюю медь, или неправильно подключены к клеммам. Когда оголенный нейтральный провод соприкасается с горячим проводом, они создают искры и дым с хлопком и перегружают выключатель, вызывая его срабатывание.
Устранение короткого замыкания включает устранение неисправностей проводов, которые должны выполняться только сертифицированным электриком.
Что может вызвать перегрузку автоматического выключателя?
Если вы замечаете срабатывание автоматического выключателя при одновременном включении микроволновой печи, пылесоса и других крупных приборов, это происходит из-за перегрузки цепи.Другими словами, ваши устройства потребляют в цепи больше ампер, чем рассчитано, что приводит к срабатыванию выключателя.
Перегрузка выключателя также может быть вызвана отказом устройства и потреблением слишком большого тока. Чтобы точно определить, что перегрузило ваш выключатель, вызвав его срабатывание, отключите или выключите все ваши устройства перед повторным включением выключателя.
Если ваш автоматический выключатель перегружен и не срабатывает, это может привести к опасным последствиям, например к возгоранию электрического тока.Если вы слышите, видите или чувствуете запах пожара, выйдите из дома и позвоните по номеру 911.
Как плохие соединения могут повредить прерывательКороткое замыкание, перегрузка и замыкание на землю могут повредить автоматический выключатель. Автоматические выключатели рассчитаны на отключение. Однако есть небольшая вероятность того, что они могут выйти из строя без отключения, что приведет к дальнейшему электрическому повреждению коробки выключателя или бытовой техники в вашем доме.
Как проверить автоматический выключатель, который не срабатывает
Проверка автоматического выключателя, который, как вы подозреваете, вышел из строя без отключения, требует использования цифрового мультиметра.Мультиметр — это портативное испытательное устройство, которое может измерять ток (в амперах), напряжение, сопротивление и многие другие электрические параметры.
Поиск и устранение неисправностей автоматического выключателя лучше всего доверить профессиональному электрику. Если у вас нет опыта в обеспечении надлежащей электробезопасности, не делайте этого самостоятельно. Если вы должным образом обучены, вот как проверить выключатель:
- Отключите все устройства от тестируемой цепи.
- Снимите панель коробки выключателя, открутив все винты, чтобы получить доступ к автоматическим выключателям с помощью мультиметра.
- Установите мультиметр на настройку напряжения и подключите черный провод к общему порту, а красный провод к порту «V» на выключателе, который вы проверяете.
- На выключателе, который вы проверяете, возьмите красный щуп мультиметра, прикоснитесь им к клеммному винту и одновременно удерживайте черный щуп на нейтральной полосе (с белыми винтами).
- Стандартный однополюсный выключатель будет считывать значения в пределах нескольких вольт от 120 В, а двухполюсный выключатель — от 220 до 250 В.
Если показания мультиметра нигде не близки к правильному напряжению или 0 В, значит, автоматический выключатель неисправен и его необходимо заменить.
Заключение
Автоматический выключатель может выйти из строя без отключения. Если автоматический выключатель выходит из строя таким образом, его необходимо заменить. Неисправный выключатель может вызвать дополнительные проблемы с электричеством в вашем доме или потенциально вызвать пожар. Каждый раз, когда вы подозреваете, что выключатель вышел из строя, вызывайте сертифицированного электрика для ремонта.
Часто задаваемые вопросы
- Может просто выключатель перестать работать? Да, автоматический выключатель может перестать работать. Обычно они выходят из строя.
- Что произойдет, если автоматический выключатель не сработает? Если автоматический выключатель не срабатывает, это может привести к отключению главного выключателя или, что еще хуже, к обширному электрическому повреждению или пожару.