Трансформатор для инвертора: Инвертор или трансформатор- отличия, преимущества и недостатки

Содержание

Инвертор или трансформатор- отличия, преимущества и недостатки

Можно сказать, что в недалеком прошлом веке, одним из самых заветных желаний любого мастера, вплотную связанного с ремонтом машин или любой другой металлообработкой, было иметь под рукой сварочный аппарат. Пусть это будет самодельная трансформаторная модель, но это оборудование помимо несказанной пользы, всегда вселяло гордость его владельцу. Сейчас же, при высоком темпе развития технологий, полки магазинов электрооборудования забиты различными моделями сварочных аппаратов, отличающихся назначением, функциями, ну и, конечно же, ценой. И тому, кто сталкивается с выбором сварочного аппарата РДС для бытовых нужд или на производство, наперво встает вопрос «Что выбрать сварочник инвертор или трансформатор?».

Поэтому в этой статье мы представим некоторые плюсы и минусы этих устройств, для того, что бы Вы смогли четко определить, какой из типов устройств Вам необходим- инвертор или трансформатор. Предупреждаем, что в этом материале будет идти разговор исключительно об аппаратах для ручной дуговой сварки.

Отличия процесса сварки инвертора от трансформатора

Давай те рассмотрим сам процесс сварки и отличие в этом вопросе инвертора от трансформатора. И здесь, главный недостаток привычных трансформаторов это недостаточная устойчивость дуги вместе с низкой стабильностью режима, которая полностью зависит от колебаний электро-сети. У сварочных инверторов здесь неоспоримое преимущество, так как инверторные источники обеспечивают стабилизированный постоянный сварочный ток, который не зависит от колебаний входного напряжения и обеспечивает, таким образом, более устойчивую дугу и минимальное разбрызгивание металла при сварке. Более технологически подкованный инвертор, отличает от трансформатора, как минимум наличие плавной регулировки сварочного тока, не говоря уже о наличии специальных функций, присутствующих в арсенале даже у бюджетной модели, таких как Hot-Start, Anti-Sticking, Arc-Force и др.

Помимо всего выше перечисленного, сварочный инвертор потребляет гораздо меньше электроэнергии и может работать от автономных источников питания- бензиновых и дизельных электрогенераторов (на нашем сайте Вы можете ознакомиться с актуальными моделями генераторов ). Для примера, электропотребление инвертора при работе электродом диаметром в 3мм равносильно потреблению двух электрочайников, что вполне укладывается в бытовые нормы. Исходя из всего перечисленного, сваривать инвертором гораздо более выгодно, приятней, а главное проще, чем трансформатором.

Вес и габариты

Немаловажное преимущество сварочного инвертора перед трансформатором – это его малый вес и достаточно небольшие габариты. Все это становится возможным благодаря повышению частоты напряжения: ведь при повышении частоты в 1000 раз, размер трансформатора уменьшается в десять раз. У некоторых моделей инверторов сам трансформатор имеет размеры меньше сигаретной пачки; основную же массу занимает радиатор. Неудивительно, что такой инвертор можно легко повесить на плечо и варить в труднодоступных местах: при массе меньше 4-х килограмм некоторые модели инверторов позволяют легко работать электродами диаметром даже до 3-4 мм (к примеру, инвертор отечественного бренда Сварог ARC 200 Easy).

И опять в соперничестве между 2-мя типами оборудования побеждает инвертор, как говорится, 40 килограммовый трансформатор на плече не поносишь.

Денежный вопрос

Не скроем, зачастую трансформаторы по-прежнему в два и более раза дешевле инверторов. Да и ремонт трансформаторов на пост-советском пространстве обычно обходится дешевле. Тем, не менее, из опыта Европейских коллег, можно вынести интересные данные: каждые 1000 Евро стоимости сварочных работ при ручной дуговой сварке могут быть разделены на следующие категории затрат:

  • 35% оплата труда сварщиков
  • 35% стоимость электродов
  • 28% стоимость электроэнергии
  • И всего 2% оборудование и принадлежности (стоимость св. аппарата, кабелей и пр.)

Как видно, стоимость оборудования для сварки лишь незначительно влияет на общую стоимость сварочных работ. В связи с этим становится выгодно покупать оборудование, использующее новейшие разработки: даже при большей стоимости инвертора уменьшение расходов на электроэнергию в перспективе дает суммарную экономию общей стоимости сварочных работ на 5-8% процентов!

Подведем итоги

Судя по всему, современные сварочные инверторы действительно более практичны, экономичней, а главное более выгодны в использовании в отличие от классических трансформаторов. Тем не менее, важно помнить, что залог качественной сварки в большей степени зависит не от «навороченного» оборудования, а от навыков и подготовки мастера, а именно- человека!

ТРАНСФОРМАТОР ДЛЯ СВАРОЧНОГО ИНВЕРТОРА

   Доброго времени суток, продолжаю цикл статей о правильной намотке трансформаторов. Будут рассмотрены исключительно практические вопросы, а кому необходима теоретическая часть с расчётами — просто скачайте этот документ и почитайте. Сегодня речь пойдет о намотке трансформатора для сварочного инвертора, который был недавно заказан одним знакомым. Сам инвертор должен легко тянуть тройку электрод, потому долго думал над выбором сердечника, было несколько вариантов — Е65, Е70 и R63, первые два состоят из двух половинок, третий трансформатор — кольцо с наружным диаметром 63 мм, было выбрано именно оно, так как почти вся обмотка на нём снаружи и охлаждение таким образом будет оптимальное, да и вторичную обмотку можно сделать потолще, площадь окна это позволяет, что только на руку.


   Кольцо обладает проницаемостью 2200 (НН), покупал на радиорынке за 53 гривны, не так уж и дорого.


   Прежде всего его надо разломить с зазором 0.1 мм, сделать это оказалось непросто: оно лопнуло сразу в 3-х местах, но ничего, на форуме знающие люди посоветовали обмазать его хорошенько эпоксидной смолой и обмотать изолентой, так и сделал, обмотал изолентой желтого цвета, ещё раз пропитал эпоксидной смолой.


   Первичная обмотка ферритового трансформатора намотана проводом 1.5 мм вдвое, содержит 38 витков, вторичная обмотка намотана литцендратом, а точнее петлёй размагничивания от старого кинескопного монитора, есть толстые и тонкие петли, надо найти толстую — её как раз хватило на 12 витков.


   Само собой, что лудить такую жилу очень неудобно, но есть другой, более удобный вариант — обжечь жилу над газовой плитой. После соскрести ножом лак, и посадить в медный наконечник.


   На этом пока что всё, до встречи. Колонщик.

   Форум по инверторам

   Форум по обсуждению материала ТРАНСФОРМАТОР ДЛЯ СВАРОЧНОГО ИНВЕРТОРА

Трансформатор для мощного автомобильного инвертора – Поделки для авто

В этой статье хочу рассказать о намотке трансформатора для мощного автомобильного инвертора 12-220.
Данный трансформатор был намотан для работы совместно с платой китайского автомобильного преобразователя напряжения.

Такие инверторы в последнее время находят широкую популярность из-за легкого веса, компактных размеров и небольшой цены, незаменимая вещь если нужно в автомобиле подключить сетевые нагрузки, которые нуждаются в источнике питания 220 Вольт, да еще и переменный ток с частотой 50 Гц, инвертор полностью может обеспечивать такие условия. Несколько слов о самом преобразователе, его примерная схема показана ниже.

Схема приведена только для того, чтобы показать принцип работы, а работает это дело довольно простым образом.

Два генератора, оба TL494, первый из них работает на частоте около 60кГц и предназначен для раскачки силовых транзисторов первичной цепи, которые в свою очередь раскачивают силовой импульсный трансформатор.

Второй генератор настроен на частоту порядка 100 Гц и управляет высоковольтными силовыми транзисторами.

Выпрямленное напряжение после вторичной обмотки трансформатора поступает к высоковольтным полевикам, которые срабатывая с заданной частотой превращают постоянный ток в переменный – с частотой 50 Гц. Форма выходного сигнала – прямоугольная или правильнее говоря – модифицированная синусоида.

Наш трансформатор является основным силовым компонентом инвертора и его намотка самый ответственный момент.

Первичная обмотка в виде шины (к сожалению точную длину указать не могу), ширина этой шины порядка 24мм, толщина 0.5мм.

Изначально нужно рассчитать трансформатор, но для этого нам нужно знать некоторые параметры, а точнее:

Рабочую частоту и тип задающего генератора.

Входное напряжение инвертора
Габаритные размеры и тип (марку) сердечника трансформатора

Вначале была намотана первичная обмотка. Две плечи были намотаны одной цельной лентой, кол-во витков 2х2 витка. После намотки первых двух витков был сделан отвод, затем намотаны остальные два витка.

Поверх первичной обмотки обязательно нужно ставить изоляцию, в моем случае обычная изолента. Количество слоев изоляции – 5.

Вторичная обмотка мотается в том же направлении, что и первичная, например – по часовой стрелке.

Для получения 220 Вольт выходного напряжения в моем случае обмотка содержит 42 витка, притом намотка обмотки делалась слоями – первый слой 14 витков, поверх еще два слоя, которые содержат точно такое же количество витков.
Обмотка моталась двумя параллельными жилами провода 0,8мм, пример расчета показан ниже.

После всего этого собираем трансформатор – скрепляем половинки сердечника используя любую изоленту или скотч, клей не советую, поскольку он может проникнуть между половинками феррита и образовать искусственный зазор, который приведет к повышению тока покоя схему и к сгоранию входных транзисторов инвертора, так, что нужно на этот фактор обратить большое внимание.

В работе трансформатор ведет себя очень спокойно, ток потребления без нагрузки в районе 300 мА, но это с учетом потребления высоковольтной части.

Максимальная габаритная мощность сердечника, который я использовал, составляет в районе 1000 ватт, разумеется намоточные данные будут разными в зависимости от типа используемого сердечника. К стати намотку можно делать как на Ш-образных сердечниках, так и на ферритовых кольцах.

По такой основе мотаются исключительно все трансформаторы и в промышленных и в самодельных импульсных преобразователей напряжения, к стати – конструкции самодельных инверторов очень часто повторяются радиолюбителями в проектах сабвуферных усилителей и не только, так, что думаю статья была интересной для многих.

Трансформатор для сварочного инвертора — Морской флот

Инверторная сварка широко распространена благодаря тому, что аппарат имеет небольшой вес и габариты. Работа инверторного механизма основана на использовании силовых переключателей и полевых транзисторов. Столь полезный аппарат продается в специализированных магазинах. Но деньги можно и не тратить, а взять схему инверторного сварочного аппарата и изготовить его самостоятельно. Здесь как раз и поговорим о том, как сделать сварку своими руками в домашних условиях и что понадобится для этого. Сведения пригодятся и в случае с покупным устройством, ведь благодаря информации, которую дает статья, для ремонта его не понадобится приглашать специалиста.

Особенности работы инвертора

Сварочный инверторный аппарат — это блок питания, который применяется сейчас в компьютерах. Электрическая энергия преобразовывается в инверторе следующим образом:

  • Напряжение переменное преобразуется в постоянное.
  • Ток постоянной синусоиды преобразовывается в переменный с высокой частотой.
  • Снижается значения напряжения.
  • Ток выпрямляется с сохранением требуемой частоты.

Данная схема сварочного инвертора позволяет снизить его массу и уменьшить габариты. Известно, что старые сварочные аппараты работают по принципу снижения величины напряжения и увеличения силы тока на вторичной обмотке трансформатора. Благодаря большой силе тока есть возможность сваривать металлы дуговым способом. Для увеличения силы тока и снижения напряжения на вторичной обмотке уменьшают число витков и при этом увеличивают сечение проводника. В итоге сварочный аппарат трансформаторного типа весит немало и имеет значительные размеры.

Для решения данной проблемы предложили схему сварочного инвертора. Принцип основывается на повышении частоты тока до 60 или всех 80 кГц. За счет этого снижается вес и уменьшаются габариты устройства. Для реализации задуманного потребовалось увеличение частоты в тысячи раз, что стало возможным благодаря полевым транзисторам. Между собой транзисторы обеспечивают сообщение с частотой примерно 60−80 кГц. На схему их питания идет постоянный ток, что обеспечивается выпрямителем, в качестве которого используют диодный мост. Выравнивание значения напряжения обеспечивается конденсаторами.

Переменный ток передается на понижающий трансформатор после прохождения через транзисторы. В качестве трансформатора при этом используется катушка, уменьшенная в сотни раз. Катушка используется, потому что частота тока, подающегося на трансформатор, уже увеличена в тысячу раз полевыми транзисторами. В итоге получаются аналогичные данные, как при работе трансформаторной сварки, но с большой разницей в габаритах и массе.

Сборка инвертора

Для самостоятельной сборки инверторной сварки требуется знать, что схема рассчитана первым делом на потребляющее напряжение в 220 В и тока 32 А. После преобразования энергии ток на выходе увеличится почти в восемь раз и будет достигать 250 А. Такого значения достаточно для создания прочного шва электродом на расстоянии до сантиметра. Для изготовления инверторного блока питания потребуются:

  • Трансформатор с ферритным сердечником.
  • Первичная обмотка трансформатора с сотней витков провода Ø0,3 мм.
  • Три вторичных обмотки: внутренняя с 15 витками и проводом Ø1 мм; средняя с 15 витками и проводом Ø0,2 мм; наружная с 20 оборотами и проводом Ø0,35 мм.

Также для сборки трансформатора нужны такие элементы:

  • стеклоткань;
  • медные провода;
  • хлопчатобумажный материал;
  • электротехническая сталь;
  • текстолит.

Схема инверторной сварки

Плата, где расположен блок питания, от силовой части монтируется отдельно. Разделителем между блоком питания и силовой частью выступает металлический лист, который электрически подсоединен к корпусу агрегата. Управление затворками осуществляется с помощью проводников, которые припаиваются поблизости транзисторов. Проводники между собой соединяются парно, а размер их сечения особой роли не играет. Однако важно, чтобы длина проводников не превышала 15 см.

Если навыков работы с электроникой нет, лучше обратиться к мастеру. В противном случае разобраться в схеме сварочного аппарата будет трудно.

Поэтапное описание сборки

Сборка блока питания. В качестве основы трансформатора рекомендуется брать феррит 7×7 или 8×8. Устройство первичной обмотки осуществляется намоткой проволоки по ширине сердечника. Это улучшает работу устройства при перепадах напряжения. Используются медные провода (проволока) ПЭВ-2, а при отсутствии шины провода соединяют в пучок. Первичная обмотка изолируется стеклотканью. После слоя стеклоткани сверху наматываются витки экранирующих проводов.

Корпус. Этим важным элементом может служить старый системный блок компьютера, в котором есть достаточно необходимых отверстий для вентиляции. Использоваться может старая 10-литровая канистра, в которой можно проделать отверстия и разместить кулеры. Для повышения прочности конструкции из корпуса размещают металлические уголки, закрепляющиеся болтовыми соединениями.

Силовая часть. Роль силового блока играет понижающий трансформатор. Его сердечники могут быть двух видов: Ш 20×208 2000 нм. Между обоими элементами должен быть зазор, что обеспечивается с помощью газетной бумаги. При устройстве вторичной обмотки витки наматываются в несколько слоев. На вторичную обмотку укладывается три слоя проводов, и между ними помещается прокладка из фторопласта. Между обмотками располагают усиленный слой изоляции, позволяющий избежать пробоя напряжения на вторичную обмотку. Конденсатор должен быть напряжением не менее 1000 В.

Для обеспечения циркуляции воздуха между обмотками оставляется воздушный зазор. На ферритовом сердечнике собирают трансформатор тока, включающийся в цепь к плюсовой линии. Сердечник обматывается термобумагой, в качестве которой лучше использовать кассовую ленту. Выпрямительные диоды крепят к алюминиевой пластине радиатора. Выходы диодов соединяют неизолированными проводами, сечение которых равно 4 мм.

Инверторный блок. Основным предназначением инверторной системы является преобразование постоянного тока в переменный с большой частотой. Для ее увеличения используются полевые транзисторы, работающие на закрытие и открытие с высокой частотой. Использовать рекомендуется не один мощный транзистор, а реализовать схему на основании двух менее мощных. Нужно это для стабилизации частоты тока. В схеме должны присутствовать конденсаторы, соединяющиеся последовательно.

Система охлаждения. На стенке корпуса устанавливаются вентиляторы охлаждения, для чего могут быть использованы компьютерные кулеры. Они необходимы для охлаждения рабочих элементов. Чем больше их используется, тем лучше. Обязательно устанавливается два вентилятора для обдувки вторичного трансформатора. Один кулер обдувает радиатор, благодаря чему предотвращается перегрев рабочих элементов — выпрямительных диодов.

Стоит воспользоваться вспомогательным элементом — термодатчиком, который рекомендуется устанавливать на нагревающемся элементе. Датчик срабатывает при достижении критической температуры нагрева какого-либо элемента. После его срабатывания питание устройства отключается.

В процессе работы инверторная сварка быстро нагревается, поэтому обязательно должно быть два мощных кулера. Эти кулеры или вентиляторы помещаются на корпус устройства, чтобы работали на вытяжку воздуха. Свежий воздух поступает в систему через отверстия в корпусе. В системном блоке данные отверстия уже имеются, а при использовании любого другого материала не забудьте об обеспечении притока свежего воздуха.

Пайка платы. Ключевой фактор, ведь схема основана на плате. Транзисторы и диоды на ней важно смонтировать встречно друг к другу. Монтируется плата между радиаторами охлаждения, при помощи чего и соединяется цепь электроприборов. Рассчитывается питающая цепь на 300 В напряжения. Дополнительное расположение конденсаторов 0,15 мкФ позволяет сбрасывать избыток мощности обратно в цепь. На выходе трансформатора помещаются конденсаторы и снабберы, при помощи которых гасится перенапряжение на выходе вторичной обмотки.

Настройка, отладка работы. После сборки инверторной сварки требуется еще ряд процедур, в частности, настройка функционирования. Для этого к ШИМ (широтно-импульсному модулятору) надо подключить 15 В напряжения и запитать кулер. Дополнительно в цепь включают реле через резистор R11. Реле в цепь включается во избежание скачков напряжения в сети 220 В. Важно проконтролировать включение реле, а затем подать питание на ШИМ. В итоге должна получиться картина, когда прямоугольные участки на диаграмме ШИМ должны исчезнуть.

О правильности соединения можно судить, если при настройке реле выдает 150 мА. Если сигнал слабый, значит, платы соединены неправильно. Возможно, пробита одна из обмоток. Для устранения помех укорачиваются все питающие электропроводы.

Проверка работоспособности

После сборочных и отладочных работ проверяется работоспособность сварочного аппарата. Для этого устройство надо запитать от электросети 220 В, далее задать высокие показатели силы тока и сверить показатели по осциллографу. В нижней петле напряжение должно быть в пределах 500 В и не более 550 В. Если все правильно и электроника подобрана строго, показатель напряжения не превысит величины 350 В.

Потом сварка проверяется в действии. С этой целью используются необходимые электроды, и шов раскраивается до полного выгорания электрода. Затем важно проконтролировать температуру трансформатора. Если он попросту закипает, значит, в схеме есть недочеты и работу лучше не продолжать.

После раскраивания двух-трех швов радиаторы нагреются до большой температуры, и важно дать им остыть. Для этого хватит двух-трехминутной паузы, в итоге температура выровняется до оптимальной.

Как пользоваться аппаратом

После включения самодельного аппарата в цепь контроллер автоматически задает определенную силу тока. Если напряжение провода меньше 100 В, значит, устройство неисправно. Придется аппарат разобрать и повторно проверить правильность сборки. При помощи такого вида сварочных аппаратов осуществляется спайка и черных, и цветных металлов. Для сборки сварочного аппарата потребуется владение основами электротехники и, конечно, свободное время для его изготовления.

Инверторная сварка незаменима в гараже. Если не обзавелись еще этим инструментом, сделайте его самостоятельно и пользуйтесь в свое удовольствие!

Благодаря своей мобильности сварочные инверторные аппараты получили широкое применение в быту и на производстве. Они обладают огромными преимуществами по сравнению со сварочными трансформаторными агрегатами для сварочных работ. Принцип действия, устройство и их типовые неисправности должен знать каждый. Не у всех есть возможность приобрести сварочный инвертор, поэтому радиолюбители выкладывают схемы сварочного инвертора своими руками в интернет.

Общие сведения

Трансформаторные сварочные аппараты стоят сравнительно недорого и легко ремонтируются из-за их простого устройства. Однако они обладают значительным весом и чувствительны к напряжению питания (U). При низком U производить работы невозможно, так как происходят значительные перепады U, в результате которого могут выйти из строя бытовые приборы. В частном секторе часто бывают проблемы с линиями электропередач, так как в бывших странах СНГ большинство ЛЭП требуют замены кабеля.

Электрический кабель состоит из скруток, которые часто окисляются. В результате этого окисления возникает рост сопротивления (R) этой скрутки. При значительной нагрузке они нагреваются, а это может привести к перегрузке ЛЭП и трансформаторной подстанции. Если подключать сварочный аппарат старого образца к счетчику электроэнергии, то при низком U будет срабатывать защита («выбивать» автоматы). Некоторые пытаются подключить сварочник к счетчику электроэнергии, нарушая закон.

Подобное нарушение карается штрафом: потребление электроэнергии происходит незаконно и в больших количествах. Для того чтобы сделать работу более комфортной — не зависеть от U, не поднимать тяжести, не перегружать ЛЭП и не нарушать закон — нужно использовать сварочный аппарат инверторного типа.

Устройство и принцип действия

Сварочный инвертор устроен так, что подойдет и для домашнего применения, и для работы на предприятии. Он способен при небольших габаритах обеспечить стабильное горение сварочной дуги и даже использовать ток сварки, значительно превышающий показатель обыкновенного сварочного аппарата. Он использует ток высокой частоты для генерации сварочной дуги и представляет собой обыкновенный импульсный блок питания (такой же, как и компьютерный, только с большей силой тока), что и делает схему сварочного аппарата несложной.

Основные принципы его работы следующие: выпрямление входного напряжения; преобразование выпрямленного U в высокочастотный переменный ток при помощи транзисторных ключей и дальнейшее выпрямление переменного U в постоянный ток высокой частоты (рисунок 1).

Рисунок 1 — Схематическое устройство сварочника инверторного типа.

При использовании ключевых транзисторов высокой мощности происходит преобразование постоянного тока, который выпрямляется при помощи диодного моста в высокочастотный ток (30..90 кГц), что позволяет снизить габариты трансформатора. Выпрямитель на диодах пропускает ток только в одном направлении. Происходит «отсечение» отрицательных гармоник синусоиды.

Но на выходе выпрямителя получается постоянное U с пульсирующей составляющей. Для преобразования его в допустимый постоянный ток с целью корректной работы ключевых транзисторов, работающих только от постоянного тока, используется конденсаторный фильтр. Конденсаторный фильтр представляет собой один или несколько конденсаторов большой емкости, которая позволяет заметно сгладить пульсации.

Диодный мост и фильтр составляют блок питания для инверторной схемы. Вход инверторной схемы выполнен на ключевых транзисторах, преобразовывающих постоянное U в переменное высокой частоты (40. .90 кГц). Это преобразование нужно для питания импульсного трансформатора, на выходе которого получается высокочастотный ток низкого U. От выходов трансформатора запитывается высокочастотный выпрямитель, а на выходе генерируется высокочастотный постоянный ток.

Устройство не очень сложное, и любой сварочник-инвертор поддается ремонту. Кроме того, существует множество схем, по которым можно сделать самодельный инвертор для сварочных работ.

Самодельный сварочный аппарат

Собрать инвертор для сварки просто, так как существует множество схем. Возможно сделать сварку из блока питания компьютера, сбить для него ящик, но получится сварочник низкой мощности. Подробно о создании простого инвертора из компьютерного БП для сварки можно ознакомиться в интернете. Огромной популярностью пользуется инвертор для сварки на ШИМ — контроллере типа UC3845. Микросхема прошивается при помощи программатора, который можно приобрести только в специализированном магазине.

Для прошивки нужно знать основы языка «С ++», кроме того, возможно скачать или заказать уже готовый программный код. Перед сборкой нужно определиться с основными параметрами сварочника: максимально допустимый ток питания составляет не более 35 А. При токе сварки равной, 280 А, U питающей сети составляет 220 В. Если проанализировать параметры, можно сделать вывод о том, что эта модель по характеристикам превышает некоторые заводские модели. Для сборки инвертора следует руководствоваться блок-схемой на рисунке 1.

Схема БП является несложной, и собрать ее достаточно просто (схема 1). Перед сборкой нужно определиться с трансформатором и найти подходящий корпус для инвертора. Для изготовления БП- инвертора нужен трансформатор. .

Этот трансформатор собирается на основе ферритового сердечника Ш7х7 или Ш8х8 с первичной обмоткой провода диаметром (d) 0,25..0,35 мм, количество витков 100. Несколько вторичных обмоток трансформатора должны иметь следующие параметры:

  1. 15 витков с d = 1. .1,5 мм.
  2. 15 витков с d = 0,2..0,35 мм.
  3. 20 витков с d = 0,35..0,5 мм.
  4. 20 витков с d = 0,35..0,5 мм.

Перед намоткой нужно ознакомиться с основными правилами намотки трансформаторов.

Схема 1 — Схема блока питания инвертора

Навесным монтажом детали желательно не соединять, а сделать для этих целей печатную плату. Существует много способов изготовления печатной платы, но следует остановиться на простом варианте — лазерно-утюжной технологии (ЛУТ). Основные этапы изготовления печатной платы:

  1. Приобрести в специализированном магазине односторонний гетинакс с медной фольгой и хлористое железо.
  2. Изготовить макет печатной платы, используя программное обеспечение Sprint Layout.
  3. Распечатать на глянцевой бумаге, используя только лазерный принтер на самом высоком качестве. Обыкновенный струйный принтер для этих целей не подойдет.
  4. Прислонить распечатанный рисунок к медной фольге.
  5. При помощи нагретого утюга произвести перенос рисунка на фольгу, который должен получиться отчетливым.
  6. После этого выключить утюг и опустить плату в хлористое железо для вытравливания. Главное — не передержать и постоянно контролировать процесс, длительность которого зависит от концентрации хлористого железа.
  7. По окончании вытравливания нужно достать плату и промыть под проточной водой.

После изготовления трансформатора и печатной платы нужно приступить к монтажу радиокомпонентов по схеме блока питания сварочного инвертора. Для сборки БП понадобятся радиодетали:

  • 2 регулятора LM78L15.
  • TOP224Y.
  • Интегральная микросхема TL431.
  • BYV26C.
  • 2 диода HER307.
  • 1N4148.
  • MBR20100CT.
  • P6KE200A.
  • KBPC3510.
  • Оптопара типа PC817.
  • С1, С2: 10мк 450 В, 100мк 100 В, 470мк 400 В, 50мк 25 В.
  • C4, C6, C8: 0,1мк.
  • C5: 1н 1000 В.
  • С7: 1000мк 25 В.
  • Два конденсатора 510 п.
  • C13, C14 — 10 мк.
  • VDS1 — 600 В 2А.
  • Терморезистор типа NTC1 10.
  • R1: 47k, R2: 510, R3: 200, R4: 10k.
  • Резисторы гасящие: 6,2 и 30 на 5Вт.

После сборки БП нельзя подключать и проверять, так как он рассчитан именно для инверторной схемы.

Изготовление инвертора

Перед началом изготовления высокочастотного трансформатора для инвертора нужно изготовить гетинаксовую плату, руководствуясь схемой 2. Трансформатор выполнен на магнитопроводе типа «Ш20х28 2000 НМ» с рабочей частотой 41 кГц. Для его намотки (I обмотки) необходимо использовать медную жесть толщиной 0,3..0,45 мм и шириной 35..45 мм (ширина зависит от каркаса). Нужно сделать:

  1. 12 витков (площадь поперечного сечения (S) около 10..12 кв. мм.).
  2. 4 витка для вторичной обмотки (S = 30 кв. мм.).

Высокочастотный трансформатор нельзя мотать обыкновенным проводом из-за возникновения скин-эффекта. Скин-эффект — способность высокочастотных токов вытесняться на поверхность проводника, тем самым нагревая его. Вторичные обмотки следует разделить пленкой из фторопласта. Кроме того, трансформатор должен нормально охлаждаться.

Дроссель выполнен на магнитопроводе типа «Ш20×28» из феррита 2000 НМ с S не менее 25 кв. мм.

Трансформатор тока выполняется на двух кольцах типа «К30×18×7» и мотается медным проводом. Обмотка l продевается через кольцевую часть, а II обмотка состоит из 85 витков (d = 0,5 мм).

Схема 2 — Схема инверторного сварочного аппарата своими руками (инвертор).

После успешного изготовления высокочастотного трансформатора нужно осуществить монтаж радиоэлементов на печатной плате. Перед пайкой обработать оловом медные дорожки, детали не перегревать. Перечень элементов инвертора:

  • ШИМ — контроллер: UC3845.
  • MOSFET-транзистор VT1: IRF120.
  • VD1: 1N4148.
  • VD2, VD3: 1N5819.
  • VD4: 1N4739A на 9 В.
  • VD5-VD7: 1N4007.
  • Два диодных моста VD8: KBPC3510.
  • C1: 22 н.
  • C2, C4, C8: 0,1 мкФ.
  • C3: 4,7 н и C5: 2,2 н, C15, С16, С17, C18: 6,8 н (только использовать К78−2 или СВВ- 81).
  • C6: 22 мк, С7: 200 мк, С9-С12: 3000 мк 400 В, C13, C21: 10 мк, C20, C22: 47мк на 25 В.
  • R1, R2: 33k, R4: 510, R5: 1,3 k, R7: 150, R8: 1 на 1 Вт, R9: 2 M, R10: 1,5 k, R11: 25 на 40 Вт, R12, R13, R50, R54: 1 к, R14, R15: 1,5 k, R17, R51: 10, R24, R25: 30 на 20Вт, R26: 2,2 к, R27, R28: 5 на 5Вт, R36, R46-R48, R52, R42-R44 — 5, R45, R53 — 1,5.
  • R3: 2,2 k и 10 к.
  • К1 на 12 В и 40А , К2 — РЭС-49 (1).
  • Q6-Q11: IRG4PC50W.
  • Шесть MOSFET-транзисторов IRF5305.
  • D2 и D3: 1N5819.
  • VD17 и VD18: VS-HFA30PA60CPBF; VD19-VD22: VS-HFA30PA60CPBF.
  • Двенадцать стабилитронов: 1N4744A.
  • Две оптопары: HCPL-3120.
  • Катушка индуктивности: 35 мк.

Перед проверкой схемы на работоспособность нужно еще раз визуально проверить все соединения.

Основные рекомендации

Перед сборкой нужно внимательно ознакомиться со схемой инверторной сварки и приобрести все необходимое для изготовления: купить радиодетали в специализированных радиомагазинах, найти подходящие каркасы трансформаторов, медную жесть и провод, продумать дизайн корпуса. Планирование работы значительно упрощает процесс сборки и экономит время. При пайке радиокомпонентов следует применять паяльную станцию (индукционная с феном), для исключения возможного перегрева и выхода из строя радиоэлементов. Соблюдать нужно и правила техники безопасности при работе с электричеством.

Дальнейшая настройка

Все силовые элементы схемы должны иметь качественное охлаждение. Транзисторные ключи необходимо «сажать» на термопасту и радиатор. Желательно применять радиаторы от микропроцессоров мощного типа (Athlon). Наличие вентилятора для охлаждения в корпусе обязательно. Схему БП можно доработать, поставив конденсаторный блок перед трансформатором. Нужно использовать К78−2 или СВВ-81, так как другие варианты недопустимы.

После подготовительных работ нужно приступить к настройке сварочного инвертора. Для этого нужно:

  1. Подключить 15 В к ШИМ, подав питание на ШИМ и на систему охлаждения. Реле К1 выполняет роль ключа для замыкания R11 — при времени срабатывании первого около 10 секунд. Кроме того, выполняется зарядка С9-C12, которые разряжаются через R11. Наличие R11 обязательно, так как оно обезопасит конденсаторы от взрыва из-за всплеска тока при подаче сетевого питания.
  2. При помощи осциллографа выполнить проверку платы на наличие прямоугольных импульсов, идущих к HCPL3120 после срабатывания К1 и К2. Кроме того, реле К1 должно быть подключено после зарядки конденсаторов. Во время работы инвертора без нагрузки (холостой ход) сила тока должна быть менее 100 мА.
  3. Правильность установки фаз высокочастотного трансформатора проверяется 2-лучевым осциллографом. Для этого нужно выставить частоту ШИМ 50..55 Гц и измерить значение U, которое должно быть менее 330 В. Потребление моста должно быть 120..150 мА. При работе сварочного инвертора трансформаторы не должны сильно шуметь, а если такое происходит, нужно разобраться в этом. Шум часто происходит из-за плохо зажатых пластин магнитопровода. Смотреть на осциллограф и плавно крутить ручку переменного резистора.
  4. Параметры U не должны превышать 540 В (345 В является оптимальным значением U). После измерений нужно отсоединить осциллограф и начать варить металл. Время сварки нужно начинать с 10 секунд и постепенно увеличивать его до 5 минут. Если все сделано верно, то шума не должно быть.

Существуют и более совершенные модели сварочников инверторного типа, в силовую схему которых входят тиристоры. Широкое распространение также получил инвертор «Тимвала», который можно найти на форумах радиолюбителей. Он имеет более сложную схему. Подробнее с ним можно ознакомиться в интернете.

Таким образом, зная устройство и принцип работы сварочного аппарата инверторного типа, собрать его своими руками не представляется непосильной задачей. Самодельный вариант практически не уступает заводскому и даже превосходит его некоторые характеристики.

Домашнее хозяйство требует наличия определенных инструментов. Сварочные работы производятся с использованием инвертора, который широко востребован в обиходе. Изготовить сварочный инвертор своими руками не составит особого труда и финансовых вложений, достаточно иметь небольшие познания электрики, чтения чертежей. Качественный инвертор на рынке стоит не малых денег, а более доступные аналоги могут не соответствовать требуемым параметрам.

Характеристики самодельного инвертора и материалы для его сборки

Для эффективной работы устройства понадобиться использовать качественные материалы. Некоторые части возможно применить от старых блоков питания или найти на разборках радиодеталей. Основные технические характеристики устройства:

  • Потребляемое напряжение составляет 220 Вольт.
  • На входе сила тока не менее 32 ампер.
  • Сила тока, производимая аппаратом – 250 А.

Схема сборки сварочного инвертора

Основная схема сварочного инвертора состоит из блока питания, дросселей, силового блока. Для изготовления устройства понадобятся инструменты и детали:

  • Комплект отверток для демонтажа и дальнейшей сборки.
  • Паяльник, необходим для соединения электронных элементов.
  • Нож и полотно по металлу для изготовления правильной формы конструкции.
  • Кусок металла толщиной 5-8 мм для формирования корпуса.
  • Саморезы или болты с гайками для крепления.
  • Платы для электронных схем.
  • Медные изделия в виде проводов, служат для обмотки трансформатора.
  • Стеклоткань либо текстолит.

В домашнем обиходе пользуется популярностью самодельный сварочный инвертор однофазного типа, сделанный своими руками.

Сварочный инвертор однофазного типа

Такой инвертор питается от бытовой сети 220 В, бывают случаи, когда необходимо изготовить устройство, питание которого происходит от трехфазной сети 380 В. Такие аппараты отличаются повышенной эффективностью и мощностью, используются при массовых работах.

Что нужно для сборки инвертора

Основной задачей сварочного инвертора является преобразование силы тока, достаточной для использования в хозяйстве. Работа электродом производится на расстоянии 1 см для получения прочного шва. Изготовление самодельного сварочного инвертора происходит по плану, в соответствие со схемой.

Первично изготавливается блок питания, для его составляющих понадобиться:

  • Трансформатор, имеющий сердечник из ферритного материала.
  • Обмотка трансформатора с минимальным количеством витков – 100 шт., сечением 0,3 мм.
  • Вторичная обмотка изготавливается из трех частей, внутренняя состоит из 15 витков с сечением провода 1 мм, средняя с таким же количеством витков сечением 0,2 мм, наружный слой 20 завитий диаметром не менее 0,35 мм.

Самодельный инвертор необходимо изготавливать в соответствие с требуемыми характеристиками. Для стабильной, устойчивой к перепадам напряжения работы, обмотки используются на полной ширине каркаса. Алюминиевые провода не способны обеспечить достаточную пропускную способность дуги, имеют нестабильный теплоотвод. Качественный аппарат изготавливается с медной шиной.

Изготовление трансформатора и дросселя

Основной задачей трансформатора является преобразование напряжения высокочастотного тока при достаточной его силе. Сердечники могут быть использованы модели Ш20×208, в количестве двух штук. Зазор между деталями возможно обеспечить своими руками, используя обычную бумагу. Обмотка производится своими руками, медной полосой шириной 40 мм, толщина должна быть не менее 0,2 мм. Теплоизоляция достигается с использованием термоленты кассового устройства, она демонстрирует хорошую износостойкость и прочность.

Как сделать трансформатор для инвертора

Использование медного провода при обмотке сердечника недопустимо, т.к. он вытесняет силу тока на поверхность устройства. Для отвода излишнего тепла используется вентилятор или кулер от компьютерного блока питания, а также радиатор.

Инверторный блок отвечает за пропускную способность электрической дуги путем использования транзисторов и дросселей.

Для стабильного хода процесса сварки рекомендуется использовать несколько транзисторов в параллельной цепи, чем один более мощный элемент.

За счет этого происходит стабилизация тока на выходе, при процессе инверторной сварки своими руками, устройство издает меньше шума.

Конденсаторы, соединённые последовательно отвечают за несколько функций:

  • Резонансные выбросы минимизируются.
  • Потери ампер из-за конструктивных особенностей транзисторов, которые открываются намного быстрее, чем закрываются.

Самодельный трансформатор как основа для инвертора

Трансформаторы сильно нагреваются, за счет большого объема проходящего тока. Для контроля температуры используются радиаторы и вентиляторы. Каждый элемент монтируется на радиаторе из теплоотводящего материала, если имеется возможность установить один мощный кулер, то это сократит время сборки и упростит конструкцию.

Конструкция сварочного аппарата

Основой для аппарата является корпус, возможно использовать системный блок от компьютера формата АТХ, рекомендуется поискать на разборках более старые модели, так как металл использовался толще и качественнее. Также подходит металлическая канистра, при этом случае необходимо вырезать отверстия для вентиляции, установить дополнительные крепления.

Устройство сварочного инвертора

Ферритовый материал используется для обмотки трансформатора блока питания своими руками. Намотка проволоки на сердечник производится по всей ширине, это даст возможность улучшить производительность устройства, устранить перепады напряжения. Медная проволока применяется в самодельном сварочном инверторе, марки ПЭВ-2, стеклотканью изолируется первичная обмотка.

Функция силового блока состоит в понижении силы тока.

Трансформаторы устанавливаются с зазором, между ними прокладывается газетная бумага. Витки наматываются своими руками в несколько слоев первичной обмотки, затем в три слоя накладывается вторичная обмотка. Для защиты от короткого замыкания используется прокладка, не пропускающая ток.

Для предостережения от короткого замыкая отводятся силовые проводники в разные стороны, для охлаждения используют вентилятор.

Как настраивать работу инвертора

Сборка сварочного инвертора не требует особых усилий при наличии необходимых инструментов, материалов. Расходы на изделие, выполненное своими руками минимальны за счет использования не дорогих изделий.

Настройка устройства для правильной работы зачастую требует помощи специалистов, но ее можно выполнить своими руками при соблюдении требований.

  1. Напряжение подается на инверторную плату, вентилятор охлаждения в первую очередь. Такой подход исключит перегрев системы и заблаговременный выход из строя.
  2. На зарядку силовых конденсаторов отводится немного времени, после этого производится замыкание резистора в цепи. Проверка реле происходит на выходе из резистора, напряжение должно соответствовать нулевому показателю. Токоограничивающий резистор необходим для безопасного использования инвертора, без его применения может произойти возгорание аппарата.
  3. Осциллографом измеряется поступающие импульсы тока на трансформатор, соотношение должно быть 66 к 44 процентам.
  4. Процесс сварки инвертором, сделанным своими руками проверяется вольтметром, подключенным к оптрону на выходе его усилителя.
  5. К выходному мосту подается напряжение силой 16 вольт, для этого используется подходящий блок питания. При работе на холостом ходу, потребляемый ток составляет около 100 мА.

Проверка производится с кратковременных процессов сварки. При выполнении сварки до 10 секунд необходимо контролировать температуру инвертора, если трансформаторы не сильно нагрелись, возможно постепенно увеличивать режим работы.

Проверка соединений инвертора мультиметром

Использование сварочного инвертора, изготовленным своими руками подразумевает выход устройства из строя. Для диагностики необходимо своими руками вскрыть корпус аппарата, проверить напряжение на входе. Распространённой проблемой является выход из строя блока питания, за счет недостаточного охлаждения или некачественных материалов, используемых при продолжительной работе. Также следует визуально осмотреть соединения и проверить их мультиметром. При случаях выхода из строя термодатчика либо предохранителей, необходимо заменить их на новые.

Преимущества и недостатки

Изготовленный своими руками аппарат может использоваться как при домашнем хозяйстве, так и в малых производствах. На первый взгляд конструкция состоит из множества элементов, схема представляется сложной к исполнению своими руками. При выполнении последовательности шагов, использовании качественных материалов, возможно добиться долгосрочной работы при малых затратах. Простой сварочный инвертор стоит на рынке достаточно дорого и не отличается повышенным качеством.

Простой инвертор своими руками

Недостатки заключаются в малом времени продолжительной службы самодельного инвертора. При больших объемах рекомендуется изготовить трехфазный инверторный аппарат своими руками, однако трудно найти источник питания такого типа.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Чем отличается инвертор от трансформатора

Сварочные аппараты бывают двух популярных разновидностей — трансформаторные и инверторные. В чем заключаются особенности тех и других? Чем отличается «инвертор» от «трансформатора» в контексте обозначения тех или иных разновидностей сварочной техники?

Что представляет собой «инвертор»?

«Инвертор» относится к инновационным устройствам для сварки. Принцип его работы заключается в способности преобразовывать электрический ток, поставляемый по переменным сетям (самым распространенным), в выпрямленный постоянный, а после — и переменный с нужной частотой, а также силой, достаточной для осуществления качественной сварки. Для этого используется встроенный выпрямитель «инвертора».

Исследуем более подробно принципы работы инверторного агрегата.

После выпрямления ток сглаживается специальным фильтром, который присутствует в конструкции рассматриваемого аппарата. После — посредством особых транзисторов вновь преобразуется в переменный, но с очень высокой частотой — в несколько десятков кГц. Для сравнения: по сетям электрический ток распространяется с частотой в 50 Гц. Напряжение высокочастотного тока в «инверторе» снижается примерно до 70-90 В, в то время как сила тока увеличивается — примерно до 100-200 А.

Подобная технология позволяет формировать ток для сварки посредством аппаратов с небольшими габаритами, и притом потребляющих относительно немного электроэнергии.

Современные инверторные аппараты, как правило, обеспечивают существенно более высококачественную сварку, чем агрегаты многих других типов. Более того, как считают некоторые эксперты, «инверторы» более удобны в пользовании, чем аналоги. Данные агрегаты хорошо подходят начинающим, имеющим небольшой опыт, сварщикам. Хотя, конечно, применение соответствующих аппаратов требует достаточно высокого уровня профессиональной подготовки работника.

В руки сварщика попадает агрегат с относительно небольшими габаритами и весом — порядка 4 кг. Его удобно переносить с одного места на другое, осуществлять сварку в труднодоступных участках зданий.

В числе наиболее примечательных свойств сварочных аппаратов, о которых идет речь, — способность функционировать даже при не самой стабильной сети, а при необходимости — питаться от автономных домашних электростанций.

«Инверторы» обеспечивают наиболее стабильную подачу сварочного тока. Тот факт, что на входе могут быть колебания напряжения, не играет роли. В результате формируется в достаточной мере устойчивая сварочная дуга. Кроме того, подобная технология сварки значительно уменьшает разбрасывание капель расплавленного металла.

В числе недостатков «инверторов»:

  • высокая цена;
  • возможность отказов в работе при температуре ниже минус 15 градусов.

Кроме того, особенностью многих инверторных сварочных агрегатов является необходимость задействовать кабель питания, длина которого не превышает 2,5 метров.

к содержанию ↑

Что представляет собой «трансформатор»?

Трансформаторные агрегаты для сварки функционируют на переменном токе и в общем случае не выпрямляют его перед подачей на электрод. Данная особенность предопределяет часто не самое высокое качество формирования швов во время сварки.

Для того чтобы оптимизировать результат работы, сварщик может задействовать внешний выпрямитель. Но нужно иметь в виду, что подобный агрегат стоит недешево: его цена может быть сопоставима со стоимостью «трансформатора». К тому же инсталляция выпрямителя заметно утяжеляет сварочную систему, и потому перенести ее с одного места на другое столь же легко и оперативно, как в случае с «инвертором», непросто.

«Трансформаторы» работают без сбоев и обеспечивают хорошее качество сварки при условии стабильной подачи электричества. Не все типы агрегатов, относящихся к трансформаторным, корректно функционируют при подключении к тем же автономным электростанциям. Пользование «трансформатором» требует особенно высокой квалификации сварщика, наличия у него значительного опыта работы с данным оборудованием.

Рассматриваемые агрегаты не всегда позволяют обеспечивать плавную регулировку подачи сварочного тока. Они менее экономичны, чем «инверторы». Их вес значительно больше, чем у сварочных аппаратов первого типа: он может составлять порядка 40 кг.

В числе неоспоримых достоинств «трансформатора» — простота. Данный аппарат функционирует за счет преобразования тока, подаваемого на трансформатор, — первичного — во вторичный, характеризующийся относительно невысоким напряжением и большой силой тока. В данном случае задействуется принцип электромагнитной индукции. Он предполагает формирование коэффициента преобразования за счет разницы между показателями количества витков на разных участках обмотки — первичном и вторичном.

Таким образом, рассматриваемый агрегат — очень надежный, простой в инсталляции.

«Трансформаторы» стоят относительно недорого. Для них не свойственна сильная чувствительность к морозам — как в случае с «инверторами». Поэтому во многих сферах применения сварочных аппаратов «трансформаторы» незаменимы.

к содержанию ↑

Сравнение

Есть, безусловно, не одно отличие «инвертора» от «трансформатора» в контексте сварочной техники. Разница между рассматриваемыми типами агрегата особенно очевидна при их сравнении в аспекте:

  • подаваемого на электрод тока;
  • используемых источников электроэнергии;
  • размеров;
  • веса;
  • качества сварки;
  • цены;
  • морозоустойчивости.

Более наглядно отразить то, в чем разница между «инвертором» и «трансформатором», нам поможет небольшая таблица.

к содержанию ↑

Таблица

Инверторные сварочные аппаратыТрансформаторные сварочные аппараты
Функционируют за счет преобразования переменного тока в постоянный и далее — обратно в переменный с высокой частотой и силой токаФункционируют за счет усиления тока при использовании принципа электромагнитной индукции
Предполагают выпрямление тока перед подачей на сварочный электродТребуют в этих целях задействования выпрямителя — довольно дорогого агрегата, и к тому же заметно утяжеляющего сварочный аппарат
Имеют небольшой размер и весИмеют, как правило, существенно больший размер и вес
Во многих случаях позволяют обеспечить более высокое качество сваркиНе всегда обеспечивают качество сварки, сопоставимое с тем, что достигается на «инверторах»
Стоят дорожеСтоят дешевле
Менее морозоустойчивыБолее морозоустойчивы

Сварочный инвертор своими руками: схема, видео — Asutpp

Конструктор и знаменитый ученый Юрий Негуляев в свое время изобрел практически незаменимое устройство – сварочный инвертор. Предлагаем рассмотреть, как своими руками сделать сварочный инвертор с применением импульсного трансформатора и мощных MOSFET транзисторов.

Самая важное при конструировании или ремонте покупного или самодельного инвертора — его принципиальная электрическая схема. Её мы для изготовления своего инвертора взяли именно из проекта Негуляева.

Принципиальная электрическая схема сварочного инвертора

Изготовление трансформатора и дросселя

Для работы нам понадобится следующее оборудование:

  1. Ферритовый сердечник.
  2. Каркас для трансформатора.
  3. Медная шина или провод.
  4. Скоба для фиксации двух половинок сердечника.
  5. Термостойкая изоляционная лента.

Для начала нужно запомнить простое правило: обмотки наматываются только на полную ширину каркаса, при такой конструкции трансформатор становится более устойчив к перепадам напряжения и внешним воздействиям.

Качественный импульсный трансформатор наматывается медной шиной или пучком проводов. Алюминиевые провода такого же сечения не способны выдержать достаточно большую плотность тока в инверторе.

В этом варианте исполнения трансформатора, вторичную обмотку нужно наматывать в несколько слоев, по принципу бутерброда. Пучок проводов сечением 2 мм, скрученных вместе, будет служить вторичной обмоткой. Они должны быть изолированы друг от друга, например, лаковым покрытием.

Кольца обмоток

Между первичной и вторичной обмоткой изоляции должно быть в два или три раза больше, чтобы на вторичную обмотку не попало сетевое напряжение, которое в выпрямленном виде составляет 310 вольт. Для этого лучше всего подходит фторопластовая термостойкая изоляция.

Трансформатор можно выполнить и не на стандартном сердечнике, применив для этих целей 5 трансформаторов от строчной развертки неисправных телевизоров, объединенных в один общий сердечник. Так же необходимо помнить и про воздушный зазор между обмотками и сердечником трансформатора, это облегчает его охлаждение.

Важное замечание, бесперебойная работа устройства напрямую зависит не только от величины постоянного тока, но и от толщины провода вторичной обмотки трансформатора. То есть, если намотать обмотку толще, чем 0,5 мм, мы получим скин-эффект, который не очень хорошо сказывается на режиме работы и тепловых характеристиках трансформатора.

Так же на ферритовом сердечнике изготавливается и трансформатор тока, который после будет закреплен на положительном силовом проводе, выводы с этого трансформатора приходят на плату управления для отслеживания и стабилизации выходного тока.

Для уменьшения пульсации на выходе аппарата и меньшему количеству выбросов помех в сеть питания используется дроссель. Его так же наматывают на ферритовом каркасе произвольного исполнения, проводом или шиной, толщина которого соответствует толщине провода вторичной обмотки.

Конструкция сварочного аппарата

Рассмотрим, как в домашних условиях сконструировать достаточно мощный импульсный сварочный инвертор.

Если повторять конструкцию по системе Негуляева, то транзисторы прикручиваются к радиатору специально вырезанной для этого пластиной, таким образом улучшается передача тепла от транзистора к радиатору. Между радиатором и транзисторами необходимо проложить термопроводящую, не пропускающую ток прокладку. Это обеспечивает защиту от короткого замыкания между двух транзисторов.

Выпрямительные диоды крепятся к алюминиевой пластине толщиной 6 мм, крепление осуществляется таким же способом, как и крепление транзисторов. Их выходы соединяться между собой неизолированным проводом сечением 4 мм. Следует соблюдать осторожность, провода не должны соприкасаться.

Дроссель к основанию сварочного аппарата крепится железной пластиной, размеры которой повторяют форму самого дросселя. Для уменьшения вибрации, между дросселем и корпусом прокладывают резиновый уплотнитель.

Видео: сварочный инвертор своими руками

Все силовые проводники внутри корпуса инвертора нужно развести в разные стороны, иначе существует возможность короткого замыкания. Вентилятор охлаждает несколько радиаторов одновременно, каждый из которых предназначен для своей части схемы. Такая конструкция позволяет обойтись всего одним вентилятором, установленным на задней стенке корпуса, что значительно экономит место.

Для охлаждения самодельного сварочного инвертора можно использовать вентилятор от компьютерного корпуса, он оптимально подходит как по габаритам, так и по мощности. Так как вентиляция вторичной обмотки играет большую роль, это следует учитывать при его расположении.

Схема: разобранный сварочный инвертор

Вес такого инвертора будет колебаться от 5 до 10 кг, при этом его сварочный ток может быть в пределах от 30 до 160 ампер.

Инвертор из компьютера

Как настраивать работу инвертора

Сделать самодельный сварочный инвертор, это не так уж и сложно, тем более что это почти полностью бесплатное изделие, если не считать расходы на некоторые детали и материалы. Но для настройки собранного устройства может понадобиться помощь специалистов. Как это можно сделать самому?

Инструкция облегчающая самостоятельную настройку сварочного инвертора:

  1. Для начала нужно подать сетевое напряжение на плату инвертора, после чего блок начнет издавать характерный писк импульсного трансформатора. Также напряжение подается на охлаждающий вентилятор, это не даст перегреваться конструкции и работа аппарата будет намного стабильнее.
  2. После того, как силовые конденсаторы полностью зарядились от сети, нам нужно замкнуть токоограничивающий резистор в их цепи. Для этого нужно проверить работу реле, убедившись, что напряжение на резисторе равно нулю. Помните, если провести подключение инвертора без токоограничивающего резистора, то может случиться взрыв!
  3. Применение такого резистора значительно уменьшает скачки тока во время включения сварочного аппарата в сеть 220 вольт.
  4. Наш инвертор способен вырабатывать ток свыше 100 ампер, это значение зависит от конкретной схемы, примененной в разработке. Узнать данное значение не сложно при помощи осциллографа. Нужно замерить периодичность поступающих импульсов на трансформатор, они должны составлять соотношения 44 и 66 процентов.
  5. Режим сварки, проверяется непосредственно на блоке управления, подключив вольтметр к выходу усилителя оптрона. Если инвертор маломощный, среднее амплитудное напряжение должно составлять около 15 вольт.
  6. Затем проверяется правильность сборки выходного моста, для этого на вход инвертора подается напряжение 16 вольт от любого подходящего блока питания. На холостом ходу блок потребляет ток около 100 мА, это необходимо учитывать при проведении контрольных замеров.
  7. Для сравнения можно проверить работу промышленного инвертора. При помощи осциллографа измеряют импульсы на обоих обмотках, они должны соответствовать друг другу.
  8. Теперь необходимо проконтролировать работу сварочного инвертора с подключенными силовыми конденсаторами. Меняем напряжение питания с 16 вольт на 220 вольт, подключая аппарат непосредственно к электрической сети. При помощи осциллографа, подключенного к выходным MOSFET транзисторам, контролируем форму сигнала, она должна соответствовать испытаниям на пониженном напряжении.

Видео: сварочный инвертор на ремонте.

Сварочный инвертор – это очень популярный и необходимый аппарат, в любой деятельности, как на промышленных предприятиях, так и в домашнем хозяйстве. Кроме того, за счет применения встроенного выпрямителя и регулятора тока, с помощью такого сварочного инвертора можно добиться лучших результатов сварки по сравнению с результатами, которых можно достичь при пользовании традиционными аппаратами, трансформаторы которых выполнены из электротехнической стали.

Что лучше: сварочный трансформатор или инвертор

Разнообразие сварочных аппаратов в продаже способно не только удивить начинающих сварщиков, но и усложнить процесс выбора. Есть подороже, и подешевле, есть небольшие, и наоборот габаритные, есть из серии профи, и для новичков.

По своим характеристикам и предназначению они также существенно отличаются. Одни успешно могут использоваться лишь для несложной ручной сварки, другие применяются совместно с аргоном, а третьи соединяют металлы плазмой.

Ясно, что новичку сложно сразу выбрать из всего доступного разнообразия. Поэтому для начального уровня обычно рекомендуют купить не очень дорогой прибор для ручной дуговой сварки.

Ее технология более проста для освоения начальном уровне. Вторым достойным вариантом может быть трансформатор.

Содержание статьиПоказать

Общая информация

Все они так или иначе направлены на решение одной задачи – для неразъемного слития металлических частей.

Но все же правильным будет предварительно разобраться в функциональных особенностях каждого аппарата, а уж потом оценивать финансовую сторону и размеры.

В данном материале будут освещаться именно отличительные стороны сварочного инвертора и сварочного трансформатора.

Будем надеяться, что предоставленная нами информация поможет в сложном выборе для новичков, любителей, а также окажется полезной для профессионалов.

Плюсы и минусы трансформатора

Трансформатор можно назвать классикой сварки, поскольку он используются уже более ста лет. Но нарастающий прогресс вывел на рынок его достойного конкурента – инверторный аппарат.

Трансформаторные устройства, как новые так и более устаревшие, направлены на выполнение сварных соединений путем плавки электрода.

Этот метод, несмотря на свое долговременное существование, успешно применяется и сейчас. Особенно он востребован у новичков, поскольку он понятен и прост.

Главным отличием трансформаторного сварочного аппарата от инверторного является то, что они работают на разном токе. Первый – на переменном, второй-на постоянном.

Важно, что работа с использованием переменного тока является более сложной, особенно если еще нет достаточного опыта. Сварные соединения формируются неравномерно, потому что сложно обеспечить постоянное горение дуг.

Проблемы при работе с трансформаторами могут возникать еще из-за того, что нужно постоянно подстраивать уровень сопротивления под размер побочной напряженности холостого хода.

То есть нужно следить и изменять по потребности то один, то второй показатель. У инверторного устройства с этим проще. В нем предусмотрена специальная кнопка регулировки силы тока.

Поэтому освоение трансформаторных настроек может потребовать больше времени.

Однако, трансформаторы имеют более мощные показатели и могут варить даже толстые металлические изделия. Они находятся в более низком ценовом диапазоне, не требуют особого ухода, легки и недороги в починке.

Но при всех этих достоинствах, существенным минусов является их размер. Кроме того, транспортабельность большинства трансформаторов представляет определенные сложности, поскольку вес может достигать сотни килограмм.

И даже если вы уже выбрали какой-то вариант, рекомендуем Вам узнать поподробнее об инверторах и их преимуществах.

Плюсы и минусы инвертора

Инверторный аппарат — это более продвинутый вариант для сварочных работ. Среди его преимуществ можно выделить его размер и вес (обычно до 10 килограмм), а также наличие упрощающих процессов поджигания дуги и препятствующих возникновению брака.

Сейчас выбор инверторных устройств очень велик. Они стабильно набирают свою популярность среди непрофессионалов.

Поскольку инверторные преобразователи — это целая категория аппаратов, незнающие люди могут запутаться в понятиях. Обычно профессионалы считают инверторами только те модели, которые предназначены исключительно для ручной варки с помощью дуг.

В случае, когда для варки применяют аргон или другой газ, аппарат считается полуавтоматическим. И понятие инвертор к нему обычно не применяют.

Резюмируя вышесказанное, согласимся, что будем называть инверторами только устройства для ручной дуговой сварки. Все другие виды сварок обычно выполняются полуавтоматами.

С целью облегчить выбор, о плюсах и минусах сварочного трансформатора и инвертора расскажем более детально.

Рассмотрим технологические и технические характеристики инвертора. Он чуть сложнее, чем кажется на первый взгляд, поскольку внутри содержит целый блок электро-схем.

Именно благодаря такой «начинке», даже очень компактное устройство, по тяжести не превышающее пяти килограмм, имеет большой функционал.

Очень удобными опциями инвертора будут «стабилизация горения при сложных работах с тонкими материалами» (ARC FORCE), ANTI STICK и «Горячий старт» (HOT START). Иногда они просто незаменимы для качественного и беспроблемного сварочного соединения.

Как сделать выбор

При выборе между сварочным трансформатором или сварочным инвертором, стоит обратить внимание на позитивные и негативные моменты этих видов. Они не всегда очевидны на первый взгляд, особенно для непрофессионалов.

Что эти аппараты из себя представляют в общих чертах, мы уже выяснили. Но какой их них лучше выбрать? Какой будет более подходящим? Однозначного ответа для всех дать нельзя. Есть много аспектов, о которых мы вам и расскажем.

Заметим, что оба они абсолютно разные. Это различие и по внутренней «начинке», и по механизму работы, и по функциональным регулировкам. Разные они также по своему размеру и тяжести.

Новичкам чаще более удобным кажется инвертор, потому что он оснащен дополнительным функциями, помогающим в работе. Но их мощность и надежность иногда уступают по свои показателям.

Трансформатор более сложный в использовании для новичков, но по мощности выше и возможности его шире. Но здесь все будет зависеть от опыта и, выработанных на практике, правильных настроек аппарата.

Поэтому можно советовать покупку трансформатора всем, кто планирует серьезно и регулярно заниматься сваркой без существенных трат на инверторный аппарат с необходимой мощностью.

Если у вас ограничены финансовые ресурсы, но при этом хочется иметь надежный сварочный аппарат, выбирайте трансформатор.

У него возможностей больше, чем у среднего бытового инвертора. Но придется дополнительно обучаться правильно настраивать этот аппарат.

Если же регулярная сварка-не ваша постоянная работа, и аппарат нужен вам несколько раз в год для бытовых целей (например, на даче или в гараже), удачным выбором будет инвертор.

С ним не нужно долго оттачивать мастерство. Да и перевезти этот аппарат намного проще. Но и его мощность, сравнительно с трансформатором, чуть поменьше. Или нужно потратить деньги на дорогой инвертор профессионального уровня.

Выпрямитель — отдельная история

Знающие свое дело, сварщики могут обвинить нас в том, что мы совершенно опускаем из вида еще один вид сварочного оборудования – выпрямитель. Далеко не все знают об этих аппаратах. Но не стоит их недооценивать, особенно сварщикам-новичкам.

Выпрямитель немного похож на своим характеристикам на трансформатор, особенно в части габаритов. Его мощность также не уступает. Но он отличается тем, что использует постоянный ток, как и инвертор.

И поэтому, работая с ним, не сталкиваются с проблемами горения дуги и аккуратности сварочного шва. А для новичков такой показатель очень удобен, и практическое освоение аппарата не вызывает лишних вопросом.

Большая часть выпрямителей приспособлены для ручной дуговой сварки, поэтому тоже могут применяться в этих целях. Из-за того, что они не оснащены множеством электроники, их надежность не вызывает сомнений.

Даже не стоит сравнивать выпрямитель или трансформатор с любым простым инверторным аппаратом.

Поэтому выпрямитель будет удачным вариантом и для начинающего сварщика и для его опытного коллеги. Особенно, если трудно понять среди характеристик трансформаторов и инверторов.

Подведем итог

Сомневающимся между инвертором и трансформатором, нельзя однозначно посоветовать, какой аппарат будет лучше. Справляется с ручной дуговой сваркой каждый их них.

Хотя их суть принципиально разная. В любом случаем надо учитывать потребности и задачи.

Для бытовых целей (для дачников или автолюбителей) достаточно обычного инвертора. Он станет понятным и негромоздким помощником в хозяйстве.

Тем, кто в будущем хочет освоить и применять сварочное дело, более надежным будет более мощный аппарат: трансформатор или выпрямитель.

И хотя по весу и габаритам они менее компактны, но сила выдаваемого тока даже в простых моделях достигает трехсот Ампер.

Но не стоит забытьвать, что качество сварочного шва, при работе с трансформатором или выпрямителем, зависит только от мастерства сварщика и выставленных вручную настроек аппарата. Они лишены многих вспомогательных функций.

Но это может быть положительным стимулирующим моментом. Получив навыки работы с трансформатором, просто будет работать с любым из доступных сварочных апаратов – и с трансформаторным, и с инверторным, и с полуавтоматом.

А новички успешно могут применять для бытовых и других целей аппараты-выпрямители. Желаем вам удачи в освоении вашего сварочного аппарата!

Инверторный трансформатор

: основы конструкции и принцип работы

Инверторные трансформаторы — это силовые трансформаторы с питанием от напряжения. Их часто называют электронными трансформаторами из-за их применения в маломасштабном преобразовании энергии. Эти инверторные трансформаторы используются там, где есть источник питания постоянного тока, но для силового устройства требуется вход переменного тока. Инвертор выполняет преобразование постоянного тока в переменный, и, кроме того, трансформатор можно использовать в качестве силового трансформатора для повышающих или понижающих приложений, поэтому они считаются исполнителями особого типа.Благодаря возможностям преобразования мощности и повышения-понижения эти трансформаторы с питанием от напряжения стали популярными для нескольких промышленных приложений. Однако, чтобы использовать его, нужно понимать, какие параметры конструкции и принципы работы применять в подходящем приложении. В этом посте обсуждаются эти моменты.

Краткое введение в инверторный трансформатор

Инвертор сочетает в себе концепцию инверторного трансформатора и силового трансформатора.Инвертор переключает ток с постоянного (DC) на переменный (AC), используя полевые МОП-транзисторы на основе полупроводников для переключения первичного напряжения. В зависимости от коэффициента трансформации трансформаторы могут повышать или понижать напряжение от первичной обмотки до вторичной обмотки. Как правило, эти инверторные трансформаторы подходят для входов напряжения 110 В или 220 В. Хотя их можно использовать для преобразования постоянного напряжения в переменное, их можно также использовать в приложениях при умеренных нагрузках.

Поскольку эти инверторные трансформаторы часто изготавливаются по индивидуальному заказу, конкретная конструкция не всегда очевидна. Однако общая конструкция, основные компоненты и общий принцип работы инверторного трансформатора остаются неизменными во всех конструкциях.

Основные компоненты инверторного трансформатора

Ниже приведены основные компоненты инверторного трансформатора.

  • Трансформатор
  • MOSFET
  • Выпрямители
  • Диоды
  • Автоматические выключатели
  • Операционные усилители

Конструкция инверторного трансформатора

Следующие принципы помогут вам понять конструкцию инверторного трансформатора:

  • В первую очередь, инверторный узел состоит из интегральной схемы, которая действует как генератор.В некоторых схемах интегральная схема питается от накопленной энергии конденсатора.
  • Металлооксидные полупроводниковые полевые транзисторы (MOSFET) интегрированы с генератором для переключения тока с постоянного на переменный без изменения частоты тока. МОП-транзисторы представляют собой электронные транзисторные переключатели типа ВКЛ / ВЫКЛ, которые запускают переключатель постоянного тока в переменный.
  • Кроме того, МОП-транзисторы могут быть подключены параллельно трансформатору с центральным отводом. Переменный ток проходит от полевых МОП-транзисторов к первичной обмотке трансформатора, которая в дальнейшем может быть повышена или понижена в соответствии с требованиями устройств с силовым приводом.

Хотя это общая конструкция, некоторые дополнительные компоненты, такие как диоды, автоматические выключатели, выпрямители, также могут быть интегрированы в инвертор. Автоматические выключатели могут быть добавлены для мгновенного отключения, если этого требует индивидуальная конструкция. Диоды часто используются для индикации, мониторинга и управления процессом.

Принцип работы инверторного трансформатора

Принцип работы инверторного трансформатора довольно прост, поскольку он сочетает в себе функции инвертора и трансформатора.Следующие действия происходят во время работы инверторного трансформатора.

  • Инвертор принимает входной сигнал от источника питания постоянного тока или батареи, если он хранит энергию. Серия полевых МОП-транзисторов в сборке инвертора действует как переключатель для преобразования тока из постоянного в переменный.
  • Поскольку полевые МОП-транзисторы часто подключаются параллельно центральной ленте, переменный ток достигает первичной обмотки трансформатора. Трансформатор имеет магнитопровод, на который намотаны первичная и вторичная обмотки.Из-за электромагнитного эффекта мощность передается от первичной обмотки ко вторичной. Напряжение может быть повышенным или пониженным.
  • Переменный ток вторичной обмотки трансформатора может подавать питание на нагрузку.

Общие применения инверторных трансформаторов

После обсуждения инверторных трансформаторов, их конструкции и принципа работы, давайте обсудим, где их можно использовать.

  • Центры передачи энергии ветряных мельниц
  • Электронные панели управления
  • Операционные системы лифтов
  • Фотоэлектрические сети
  • Солнечные батареи

Список областей применения инверторных трансформаторов обширен; однако качество инверторного трансформатора также очень важно.Следовательно, вы должны поставлять свой инверторный трансформатор от надежного производителя, такого как Custom Coils. Компания является одним из ведущих производителей трансформаторов по индивидуальному заказу.

Инверторный трансформатор

: основы конструкции и принцип работы были в последний раз изменены: 9 марта 2021 года, gt stepp

О gt stepp

GT Stepp — инженер-электрик с более чем 20-летним опытом, специалист в области исследований, оценки, испытаний и поддержка различных технологий.Посвящен успеху; включая сильные аналитические, организационные и технические навыки. В настоящее время работает менеджером по продажам и операциям в Custom Coils, разрабатывая стратегии продаж и маркетинга, которые увеличивают продажи, чтобы сделать Custom Coils более узнаваемыми и уважаемыми на рынке.

Дизайн

— Как выбрать готовый трансформатор для инвертора постоянного и переменного тока?

Существует больше степеней свободы для конструкции ферритового трансформатора, чем для железного, поэтому недостаточно просто иметь данные, нужно знать, что с ними делать, и делать некоторые хорошие предположения.

Сначала получите данные. По ссылке digikey, вот основные данные, а из google «N27 ferrite pdf» — данные материала.

Я никогда раньше не проектировал ферритовый трансформатор, как вы увидите из моих предположений. Но я укажу на них, и вы можете настроить их в соответствии с личными предпочтениями, и, возможно, я смогу получить образование у более опытных членов совета директоров. Я знаю, например, что Энди специализируется на ферритах, а не на железе.

Вы начинаете с того, с каким потоком работать.С железными трансформаторами это легко, 90% насыщения, поскольку насыщение — практически единственный предел. Для ферритов нагрев является пределом при повышении частоты. Итак, мы начинаем с предположения, сколько тепла мы можем потерять в ядре? С трансформатором на 150 Вт, допустим, 5 Вт ПРЕДПОЛОЖЕНИЕ . Звучит разумно и, возможно, достаточно низко для ядра такого размера без какого-либо теплового моделирования.

Чтобы перейти от рассеяния к потоку в сердечнике, нам нужны рабочая частота, объем сердечника и график потерь в сердечнике.Вы предложили 200кГц. Это больше, чем рекомендуется для N27, они предлагают от 25k до 150k, поэтому я подведу итоги для 100kHz ASSUMPTION , поскольку мне не нравится работать на крайнем конце диапазона. По данным керна, объем керна Ve равен 17800 мм3. Данные по материалам представляют собой график в нижнем левом углу страницы 5 (почему графики не нумеруются?) Потерь в сердечнике в зависимости от частоты. 5 Вт на 17800 мм3 — это 280 кВт / м3, что при измерении по оси ординат 100 кГц дает ядру Bfield чуть более 100 мТл, давайте возьмем круглые 100 мТл.Обратите внимание, что есть две строки для разных температур. Рассеивание падает с повышением температуры, и это хорошо. Это консервативная цифра, ядро ​​термически разбегаться не собирается.

Чтобы перейти от поля и частоты сердечника к вольтам на виток, нам нужна площадь сердечника. В основных данных это полезно обозначено как Ae при 173 мм2. Поскольку насыщенность не является проблемой, нам не нужен Амин, более подходящая эффективная площадь.

При 100 кГц время цикла составляет 10 мкс, поэтому полупериод составляет 5 мкс, а поле нарастает от -100 до +100 м за это время, так что это 200 мТл / 5 мкс или 40 кТ / с.Умножьте на площадь сердечника, чтобы получить поток, 40k * 173u = 6,9 вольт на виток.

При входном напряжении 12 В при 6 В / виток нам нужно 2 витка для первичной обмотки (для привода моста H) или 2×2 для двухтактной.

Область провода? Предположим, вы будете использовать указанную шпульку. Они услужливо указывают площадь обмотки на стр. 4 как \ $ A_N \ $ = 210 мм2. После неэффективности обмотки (изоляция, неправильная упаковка, неточный размер проводов) предположим, что осталось 100 мм2 для меди. Мы распределяем по половине на первичную и вторичную.Два витка в 50 мм2 означают провод 25 мм2 или 12 мм2 для двухтактного кабеля.

При входном напряжении 12 В на 150 Вт это примерно 12 А. Это дает плотность тока 0,5 А / мм2. Обычно я стремлюсь к 2-3 А / мм2 (в железных трансформаторах, в зависимости от всех видов вещей), так что это настолько мало, что я не собираюсь вычислять резистивный нагрев, он будет небольшим. Замечали ли вы, разбирая вещи, как у ферритовых трансформаторов часто бывает очень мало заполненных медных окон.

Вы можете использовать эту очень низкую плотность тока, чтобы сказать, что потери в сердечнике 5 Вт — это слишком много, стремитесь к более низкому полю и более низкому напряжению на виток с большим количеством витков.Это для более поздней версии. В широком смысле дизайн выглядит правдоподобно. А теперь перейдем к некоторым сбивающим с толку деталям.

Существенные различия между железными / сетевыми и ферритовыми трансформаторами включают глубину скин-слоя и эффект близости. Хотя плотность тока, по-видимому, очень мала, эффект глубины скин-слоя увеличит эффективное сопротивление и создаст больше тепла, чем предполагает значение постоянного тока. Обмотку 25 мм2 не только непрактично наматывать и терминировать, если она остается одним толстым проводом, но с точки зрения скин-эффекта лучше делать ее из нескольких параллельных нитей тонкой проволоки.Хотя вы можете подсчитать глубину скин-слоя НЕПРАВИЛЬНО , у меня нет опыта в отношении факторов, которые следует использовать для эффекта близости на частоте 100 кГц, но я считаю, что они относительно малы, менее чем в 2 раза ПРЕДПОЛОЖЕНИЕ , возможно, более опытные могли бы просветить меня.

С пробелами или без пропусков? Мы не вычисляли ток намагничивания. С зазором ядра у нас есть четко определенное сопротивление, и поэтому мы можем хорошо работать. С сердечником без зазоров ток намагничивания может варьироваться в более широком диапазоне, поскольку изменяется проницаемость сердечников и изменяется микроскопический остаточный воздушный зазор, , но , даже с его широким диапазоном, магнитный ток ниже, чем с зазором. (сравните \ $ A_L \ $ (индуктивность одного витка) 3300 нГн + 30% -20% без гэпа играет 862 нГн с гэпом).{-7} 407} = 195 \ $ А / м, что на длине 103 мм и на 2 витка составляет ток 10А.

По сравнению с током нагрузки 12 А, магнитный ток 10 А будет довольно много с сердечником с зазором. С ядром без пропусков можно ожидать, что он будет в районе 862/3300 раз больше, или около 2,6 А (-30% + 20%), что несколько более разумно.

Это все, что я собираюсь сказать. Выбранный вами размер сердечника выглядит немного излишним, исходя из кажущейся плотности тока, но не намного, и когда вам нужно снизить номинальные параметры радиочастотных потерь, возможно, совсем нет.Вы можете уменьшить пиковое поле, чтобы уменьшить ток намагничивания и / или рассеивание сердечника. Принимая во внимание мое предположение о рассеиваемой мощности и отсутствие расчетов на ВЧ-потери, вам нужно будет что-то построить и протестировать.

Я продемонстрировал минимум данных, которые вам нужно извлечь из таблиц данных, и способы их использования. Я указал, где мне не хватает опыта, а где вам придется копать дальше, повторять и экспериментировать.

Автотрансформатор

— Обмотка сердечника EI Повышающий трансформатор для инвертора

Я собираюсь дать вам начало проектирования первичной индуктивности и выбора сердечника, чтобы увидеть, понимаете ли вы, что происходит: —

Концептуально, инвертор мог бы повышать постоянное напряжение 12 В до более высокого постоянного напряжения, а затем использовать H-мост из полевых МОП-транзисторов для генерации синусоидального среднеквадратичного напряжения 220 В.Этот может быть выполнен (также с использованием H-моста на стороне 12 В, управляющей трансформатором) при фиксированном соотношении метки и пространства 50:50. Это означает, что через трансформатор не проходят сигналы с частотой 50 или 60 Гц, и это значительно уменьшает размер трансформатора.

Поскольку H-мосты находятся на обоих концах (вход постоянного тока и выпрямленный выход), коэффициент повышающего числа витков трансформатора составляет просто 220 к 12 = 18,333 к 1. По причинам обеспечения регулирования из-за спада батареи 12 В это значение может быть принято равным 20: 1, чтобы сократить накладные расходы.Регулировка обычно обеспечивается высоковольтным мостом MOSFET H.

Если первичная обмотка состоит из «нескольких» витков, а вторичная обмотка пока игнорируется, вы должны убедиться, что сердечник не насыщается, а для этого необходимо знать используемую частоту коммутации (скажем, 100 кГц). Насыщение будет происходить легче в ситуациях без нагрузки, поэтому разумно сначала атаковать это.

Если индуктивность первичной обмотки, скажем, 100 мкГн, пиковый ток в ней определяется как V = L di / dt, где dt — это один полупериод 100 кГц i.е. 5 мкс. V — напряжение батареи постоянного тока, приводящее в действие первичную обмотку.

di = dt x V / L = 0,6 ампер (пик)

Затем выберите ядро, чтобы увидеть, складываются ли вещи. Вот полезное руководство от Ferroxcube на странице 29 их справочника данных: —

Определите размер сердечника на основе этой таблицы и / или эквивалентов другого производителя. На странице 29 также даются некоторые рекомендации по материалам сердечника, и обычно их материал 3C90 «примерно подходит» для приложений, работающих менее 200 кГц.3F3 — лучший выбор (более низкие потери в сердечнике), если он доступен с сердечником выбранного вами размера.

Оцените, сколько витков первичной обмотки требуется для получения 100 мкГн (используйте цифру \ $ A_L \ $). Затем вычислите H (напряженность магнитного поля). H — это просто число ампер витков первичной обмотки, разделенное на эффективную длину сердечника (цифра, указанная любым производителем сердечника).

H важен, потому что, учитывая заявленную проницаемость сердечника, вы можете рассчитать пиковую плотность потока и посмотреть, есть ли значительное насыщение.{-7} \ cdot 2000 \ cdot 60 \ $ = 0,15 тесла

Это значительно ниже верхнего предела того, к чему вы стремитесь. Феррит значительно насыщается примерно при 0,4 тесла, поэтому, в зависимости от расчетной плотности потока, вы можете либо изменить материал, либо ввести небольшой воздушный зазор, либо изменить размер сердечника.

Просмотрите технический паспорт керна — они покажут кривую «BH», и это ясно покажет вам, где насыщение становится значительным.

В этом примере у меня возникнет соблазн сделать ядро ​​немного меньше, но помните, я не работаю с действительными числами — я вытаскиваю числа из воздуха, чтобы дать вам представление о процессе.

Это может быть своего рода итеративный процесс на данном этапе, увеличивающийся или уменьшающийся в размерах и, возможно, решающий оставить пробел в ядре. Зазор означает гораздо меньшее насыщение для данного количества витков в амперах, и, чтобы противостоять этому (чтобы вернуться к разумной первичной индуктивности), вам нужно намотать больше витков, чтобы поддерживать ток (и насыщение) до приемлемого предела.

Есть преимущество — вам может потребоваться удвоить индуктивность (из-за введения зазора и, возможно, уменьшения вдвое эффективной магнитной проницаемости), но вам нужно всего лишь приложить \ $ \ sqrt2 \ $ больше витков, чтобы восстановить индуктивность.2 \ $ R потери, так что имейте это в виду. При добавлении воздушного зазора следует учитывать множество факторов — иногда более выгодным является увеличение размера сердечника.

Во всяком случае, это общая идея проектирования первичной обмотки. Что касается выбора шпульки, то после выбора сердечника производитель оговорит варианты. Что касается размера проволоки, у вас ограниченное пространство на шпульке, и я не собираюсь вдаваться в подробности здесь, потому что этот «половинный» ответ слишком длинный в существующем виде!

В чем разница между трансформаторным и бестрансформаторным ИБП?

Бестрансформаторные системы ИБП были впервые разработаны в 1990-х годах и предлагали ряд преимуществ по сравнению с традиционными системами на основе трансформаторов с точки зрения более высокой эффективности, меньшего размера и веса, а также экономии средств.

Бестрансформаторные источники бесперебойного питания теперь широко распространены в центрах обработки данных и в небольших установках. Они представляют собой типичную технологию для наименьших номинальных мощностей (ниже 10 кВА) и доступны до 300 кВА в более высоком диапазоне. Линейка бестрансформаторных решений Riello UPS включает серии Sentryum, Multi Sentry и NextEnergy.

Доступные от 10 кВА и выше, трансформаторные ИБП по-прежнему популярны в промышленных процессах или установках, требующих гальванической развязки.

Трансформатор — это намотанный компонент, состоящий из обмоток вокруг сердечника с ламинатом из листового железа, который можно использовать для изменения уровней напряжения и обеспечения гальванической развязки.

Как работают ИБП с трансформатором и без трансформатора?

В традиционном ИБП на базе трансформатора мощность проходит через выпрямитель, инвертор и трансформатор на выход, а трансформатор используется для повышения уровней переменного напряжения, защиты ИБП от сбоев нагрузки и обеспечения гальванической развязки.

Бестрансформаторный ИБП работает таким же образом, за исключением одного ключевого различия. В нем используются биполярные транзисторы с изолированным затвором (IGBT), которые способны работать с высокими напряжениями, устраняя необходимость в повышающем трансформаторе после инвертора. Это повышает энергоэффективность бестрансформаторных источников бесперебойного питания.

Благодаря исследованиям и разработкам и технологическим усовершенствованиям, новейшие трансформаторные ИБП могут достичь такого же уровня эффективности, что и бестрансформаторные системы (95–96%), хотя последние по-прежнему имеют преимущество при более низких нагрузках.

Каковы преимущества ИБП на базе трансформатора?

Есть два основных преимущества ИБП на базе трансформатора. Во-первых, принято считать, что они более надежны — меньше точек отказа. Во-вторых, трансформатор обеспечивает гальваническую развязку, разделение входных и выходных источников питания, что защищает нагрузку от скачков напряжения, скачков напряжения или электрических помех.

ИБП

на базе трансформатора — это типичная технология для 100 кВА и выше, позволяющая достичь больших мощностей в кВт или обеспечить резервирование.

Основные преимущества ИБП на базе трансформатора:

  • Гальваническая развязка
  • Независимые источники питания от сети
  • Двойная защита нагрузки от постоянного напряжения
  • Обеспечивает более высокий ток короткого замыкания инвертора фаза-нейтраль, чем ток короткого замыкания фаза-фаза
  • Превосходная защита питания при проблемах с качеством электроэнергии
  • Повышенная надежность в отношении защиты от обратного хода

Каковы преимущества бестрансформаторного ИБП?

Очевидным преимуществом бестрансформаторного ИБП является отсутствие большого, громоздкого трансформатора, вырабатывающего тепло.Трансформаторы тоже дороги, поэтому их устранение снижает первоначальные капитальные затраты.

Основные преимущества ИБП Transformeless:

  • Физические характеристики: уменьшенный размер и вес (фактор для центров обработки данных с ограниченным пространством)
  • Эксплуатация: более высокая энергоэффективность (особенно при более низких нагрузках), более низкий уровень шума и меньше тепла
  • Стоимость: более низкие затраты на покупку, установку и эксплуатацию (т.е. требуется меньше кондиционирования воздуха)

Одним из основных недостатков бестрансформаторных систем ИБП является то, что они не могут устранить и изолировать внутренние неисправности, а также блок на основе трансформатора.

Решением этой проблемы является установка изолирующих трансформаторов, отражающих мощность трансформаторной системы, но это значительно увеличит стоимость и занимаемую площадь, а также создаст дополнительные точки отказа.

Еще одна проблема с бестрансформаторными источниками питания ИБП — это ограничения мощности. Для достижения большей мощности или избыточности необходимо параллельно подключить несколько бестрансформаторных модулей ИБП — чем больше модулей (и компонентов), тем выше вероятность отказа.

Дополнительная литература:

Преобразователь мощности | Трансформатор | Магнитный компонент

Преобразователи постоянного тока в постоянный

Yuan Dean является профессиональным производителем преобразователей постоянного тока в постоянный ток на Тайване и производит различные серии преобразователей постоянного тока в постоянный. Диапазон наших преобразователей постоянного тока в постоянный составляет от 0,25 Вт до 100 Вт, с размерами от 11,5 x 6,0 x 10,0 мм до 76,7 x 66,5 x 21,5 мм, мы предоставляем нашим клиентам несколько вариантов выбора на основе нашей широкой линейки продуктов, которые тем временем будут применяться в промышленность, медицина, железная дорога, IGBT промышленность.

Узнайте больше
Преобразователи переменного тока в постоянный

Юань Дин предоставляет клиентам различные спецификации для высокоэффективных преобразователей переменного тока в постоянный с экологически чистой энергией, преимуществами таких продуктов являются широкий диапазон входного напряжения, высокая эффективность, высокая надежность, низкое энергопотребление и безопасность. изоляция. Ассортимент продукции AC-DC составляет от 0,5 Вт до 300 Вт и разработан в соответствии со стандартами Energy Star, EMC, UL60950 и IEC60950 для удовлетворения требований заказчика по сертификации UL / CE / CB.

Узнайте больше
RJ45 с Magnetics

Юань Дин производит разъем RJ45 более 20 лет, с отличными способностями к проектированию и хорошему контролю качества продуктов RJ45. Существуют различные варианты внешнего вида и скорости транспортировки для продуктов RJ45, такие как как с окном на экране или без него, 1 или 2 встроенных разъема USB / RJ45, 2 встроенных разъема N, RJ45 90 ° или 180 ° RJ45, сквозное отверстие, поверхностный монтаж, 1 x 2, 1 x 4, 1 x 5 портов в наличии и т. д., мы предлагаем несколько вариантов выбора в соответствии с требованиями клиентов.Продукты RJ45 могут быть применены к PHY IC сети PoE со скоростью передачи 10Base, 10 / 100Base, 1000Base (1G), 2,5G, 5G, 10G, что обеспечивает гибкий выбор. YDS также предлагает индивидуальное обслуживание, чтобы удовлетворить потребности клиентов, если есть особые спецификации.

Узнайте больше
Продукты для фильтров LAN

Yuan Dean предлагает сетевой фильтр или сетевой фильтр для различных размеров на выбор, таких как сквозное отверстие, тип для поверхностного монтажа, 10/100 / 1G / 2.5G / 5G / 10G Base-T, нижняя заливка или без заливки, максимальное сопротивление давлению может достигать 5 кВ переменного тока. Электрические характеристики проходят испытательное оборудование, чтобы гарантировать стабильное и хорошее качество.

Узнайте больше
Ethernet / силовой трансформатор

Юань Дин является профессиональным производителем трансформаторов и специализируется на производстве ряда трансформаторов, таких как высокочастотные силовые трансформаторы, высокочастотные переключающие трансформаторы, индуктивные трансформаторы и многое другое.Поскольку для электронных продуктов требуется изоляция, соединенная с спичкой и устранение шума, потребуется использование трансформаторов. Следовательно, электрические характеристики трансформатора будут меняться вместе с общими характеристиками схемы.

Узнайте больше
Высокочастотный трансформатор

Юань Дин является профессиональным производителем высокочастотных трансформаторов и специализируется на производстве ряда трансформаторов, таких как высокочастотные силовые трансформаторы, высокочастотные переключающие трансформаторы, индуктивные трансформаторы и многие другие.Поскольку для электронных продуктов требуется изоляция, соединенная с спичкой и устранение шума, потребуется использование трансформаторов. Следовательно, электрические характеристики трансформатора будут меняться вместе с общими характеристиками схемы.

Узнайте больше
Решения POE

POE (Power Over Ethernet) широко применяется для всех видов интернет-коммуникаций, таких как промышленное управление, IP-камеры, точки доступа Wi-Fi и т. Д. Юань Дин предлагает несколько решений системы POE для продукта, индивидуальные требования также приветствуются.Между тем, мы также предлагаем решения PSE (Power Sourcing Equipment) и PD (Power Device).

Узнайте больше
Преобразователь питания для медицинского решения

Юань Дин накопил многолетний опыт и посвятил себя исследованиям и разработкам источников питания, и в этом году выпустил преобразователи постоянного тока в постоянный и переменный ток медицинского класса, отвечающие строгим требованиям медицинское оборудование и система усиленной изоляции.

Узнайте больше
Преобразователь мощности для железнодорожных решений

Преобразователи постоянного тока в постоянный ток серии Yuan Dean Railway имеют диапазон мощности от 8 до 40 Вт, наша компоновка способна удовлетворить строгие требования и испытания в суровых условиях окружающей среды, чтобы удовлетворить потребности железнодорожных приложений.Входное напряжение составляет от 40 до 160 В, что означает, что оно соответствует нормальным требованиям к потребляемой мощности (24 В / 48 В / 72 В / 110 В) и имеет множество механизмов защиты (защита от перегрузки по току, перенапряжения на выходе, защита от короткого замыкания на выходе). широко используется в железнодорожных инверторах тяги, резервных энергосистемах, мониторинге работы поездов, контроллерах ворот … и многих других железнодорожных системах.

Узнайте больше
Телекоммуникационные продукты

Трансформаторы предназначены для телекоммуникационных и сетевых трансформаторов и могут использоваться в ISDN, T1 / E1 / CEPT, T3 / DS3 / E3 / STS-1 и домашних сетях, изоляция может защитить компоненты от ненормальное повреждение под высоким давлением, согласование связи периферийных цепей и снижение шума.YDS предоставляет трансформаторы для электросвязи и сетей, включая трансформаторы для электросвязи, импульсные трансформаторы, трансформаторы SMT, трансформаторы для PoE, коммутации, аудио, линии ADSL / ISDN и т. Д. Серия телекоммуникационных трансформаторов прошла 100% испытания при изоляции 1500 В среднеквадратического значения и усиленной изоляции 3000 В среднеквадратичного значения в соответствии с BABT EN41003 / EN60950. Импульсные трансформаторы проходят 100% тестирование электрических свойств, инфракрасной печи оплавления, проверки внешнего вида и целостности упаковки. Трансформаторы SMT проходят 100% испытания с изоляцией 1500 В среднеквадратичного значения, чтобы гарантировать надежность продукции, и признаны UL 1950, что дает нашим клиентам больше гарантий качества.Электрические характеристики проходят испытательное оборудование, чтобы гарантировать стабильное и хорошее качество. Для особых требований YDS также может предоставить заказчику индивидуальный дизайн и производственные услуги, чтобы удовлетворить потребности клиентов и добиться максимальной эффективности.

Узнайте больше
Катушки индуктивности

Yuan Dean производит все виды индукторов, которые имеют сертификацию UL. Применения в энергетике, связи, компьютерном оборудовании, сетевом оборудовании, измерительном оборудовании, промышленном оборудовании, медицинском оборудовании и т. Д.Все индукторы могут быть спроектированы и изготовлены. Помимо стандартных продуктов и образцов, Yuan Dean также принимает индивидуальные услуги для удовлетворения различных потребностей клиентов. В области обеспечения качества YDS имеет сертификат ISO 9001: 2008. В соответствии со стандартом ISO9001 рабочие процессы могут гарантировать качество доступа с хорошей надежностью. Если у вас также есть особые требования к продукту, не стесняйтесь обращаться к нам. Добро пожаловать OEM / ODM сотрудничество!

Узнайте больше
Драйверы светодиодов

Полный диапазон напряжения, полный выбор, внешний вид — открытая рама, модули, водонепроницаемый блок питания IP67 для различных применений.Принять конструкцию цепи изоляции, безопасную и надежную, достигнув высокого значения коэффициента мощности (PF> 0,9). Высокая эффективность до 85%, другие стандартные функции включают защиту от обрыва / короткого замыкания / перегрузки по току / перенапряжения / перегрева. Кроме того, в ответ на фактический спрос YDS также может предложить неизолированную конструкцию для удовлетворения различных потребностей и аспектов клиентов. Сертификация, получившая сертификат CE (EN55015 и EN61547), связанный с освещением, в отношении дизайна, он также может соответствовать требованиям UL 8750, EN61347.Он идеально подходит для светодиодного внутреннего и наружного освещения.

Подробнее

Бестрансформаторные инверторы для солнечных батарей

Что такое бестрансформаторный инвертор (TL)?

Трансформаторы

Различия между стандартными или обычными инверторами и бестрансформаторными инверторами:

  1. Обычные инверторы построены с внутренним трансформатором, который синхронизирует напряжение постоянного тока с выходным переменным током.
  2. Бестрансформаторные инверторы (TL)
  3. используют компьютеризированный многоступенчатый процесс и электронные компоненты для преобразования постоянного тока в высокочастотный переменный ток, обратно в постоянный ток и, в конечном итоге, в переменный ток стандартной частоты.

Бестрансформаторные инверторы становятся все популярнее на рынках Европы и Австралии. В 2010 году SMA Solar Technology AG получила первую сертификацию UL для своих бестрансформаторных инверторов, тем самым повысив доступность продукции для бытовых потребителей в США.

Бестрансформаторный инвертор (TL) Апелляция

Бестрансформаторные инверторы

легкие, компактные и относительно недорогие. Поскольку в бестрансформаторных инверторах используется электронное переключение, а не механическое переключение, количество тепла и влажности, производимых стандартными инверторами, значительно снижается.Инверторы
TL обладают уникальной способностью использовать два устройства слежения за точками питания, что позволяет рассматривать установки как отдельные солнечные фотоэлектрические системы. Другими словами, с инверторами TL солнечные фотоэлектрические панели могут быть установлены в двух разных направлениях (т. Е. На север и запад) на одной крыше и генерировать выход постоянного тока в отдельные часы пик с оптимальным эффектом. Традиционные инверторы работают только через одну точку питания, что означает, что панели, работающие на более низких частотах, будут снижать выход постоянного тока для всей системы.

Бестрансформаторный инвертор (TL)

Бестрансформаторные инверторы не имеют гальванической развязки между цепями постоянного и переменного тока. Это может вызвать проблемы с заземлением и / или защитой от молний. Чтобы бестрансформаторные инверторы соответствовали спецификациям NEC, необходимо использовать специально разработанные и более дорогие фотоэлектрические провода.

Бестрансформаторные инверторы

были разработаны для использования с сетевыми солнечными фотоэлектрическими системами, поэтому пользователи автономных систем еще не обязательно получат те же преимущества.

КПД инвертора

КПД инвертора определяется процентным измерением конвергенции энергии (т. Е. Чем ближе к 100% конвергенция постоянного и переменного тока в течение самого длительного периода времени, тем выше эффективность инвертора). При расчете эффективности важно включать процентные показатели пиковой и внепиковой производительности в дополнение к тому, как часто ваш инвертор работает с номинальной мощностью.

Исследования показывают, что даже небольшое увеличение эффективности инвертора в процентах означает, что увеличение мощности может быть весьма значительным, если учитывать его на протяжении всего срока службы инвертора.

Рекомендации по установке инверторов TL:

  • Положительные и отрицательные цепи фотоэлектрического источника должны быть ОБЕИ переключены и защищены от перегрузки по току с помощью инверторов TL.
  • Оборудование фотоэлектрической матрицы по-прежнему должно быть заземлено, но не фотоэлектрический источник.
  • В модулях и цепях источника должны использоваться провода с номиналом PV WIRE или PV CABLE.
  • Отрицательный провод фотоэлектрической батареи не заземлен, и поэтому он больше не должен быть окрашен в белый цвет при подключении к инвертору или отключении.Обратитесь к NEC 690.35 для получения дополнительной информации об инверторах TL
  • Цепи фотоэлектрических источников
  • должны иметь маркировку со следующим предупреждением на каждой распределительной коробке, сумматоре, разъединителе и устройстве, где незаземленные цепи могут быть открыты во время обслуживания:

WARNING
ОПАСНОСТЬ ПОРАЖЕНИЯ ЭЛЕКТРИЧЕСКИМ ТОКОМ
ПРОВОДНИКИ ПОСТОЯННОГО ТОКА ЭТОЙ ФОТОЭЛЕКТРИЧЕСКОЙ СИСТЕМЫ

НЕЗЕМЛЕНЫ И МОГУТ БЫТЬ НА ПИТАНИИ

Возможные преимущества использования бестрансформаторного инвертора:

  • Обычно намного легче инверторов с трансформаторами.
  • Иметь более высокий рейтинг эффективности
  • Возможность использования двух входов MPPT, в зависимости от производителя
Инверторный трансформатор

по цене 1600 рупий за единицу | Электронные трансформаторы


О компании

Год основания 2005

Юридический статус Фирмы Физическое лицо — Собственник

Характер бизнеса Производитель

Количество сотрудников До 10 человек

Годовой оборот R.50 лакх — 1 крор

IndiaMART Участник с октября 2010 г.

GST07AKRPB7403R1ZM

Addya Electronics была основана в году 2005, и базируется в промышленной зоне Охла, Фаза-2 (Нью-Дели) . Мы возникли как один из основных производителей и оптовых продавцов высококачественного ассортимента Электронных трансформаторов и разделительных трансформаторов. В нашем предложенном диапазоне мы предлагаем эти продукты Тороидальный трансформатор, Трансформатор вуфера, Инверторный трансформатор, Ручной стабилизатор, Трансформатор ИБП, Изолирующий трансформатор, Изолирующую катушку и многое другое.Предлагаемые продукты спроектированы и разработаны на нашем хорошо оборудованном инфраструктурном объекте с использованием высокотехнологичных технологий и известны своей долговечностью и прочной конструкцией. Мы являемся производителем всех типов трансформаторов, используемых в стабилизаторе ИБП и панели управления
. Наши сотрудники работают вместе, чтобы обеспечить организованный и бесперебойный процесс производства. Постоянные усилия, прилагаемые нашей командой в их индивидуальной специализированной области, помогли нам получить признание наших уважаемых покровителей. В рамках вышеупомянутых категорий мы предлагаем эти продукты: тороидальный трансформатор, низкочастотный трансформатор, инверторный трансформатор, ручной стабилизатор, трансформатор ИБП, изолирующий трансформатор, изолирующую катушку и многое другое.Дружественная к клиентам компания помогла нам занять собственное положение на рынке. Эти продукты широко известны на рынке благодаря своим характеристикам, таким как прочная конструкция, минимальное обслуживание, более длительный срок службы, высокая производительность и низкое энергопотребление.

Видео компании

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *