Трансформатор напряжения — это… Что такое Трансформатор напряжения?
измерительный Трансформатор электрический, предназначенный для преобразования высокого напряжения в низкое в цепях измерения и контроля. Применение Т. н. позволяет изолировать цепи вольтметров, частотометров, электрических счётчиков, устройств автоматического управления и контроля и т.д. от цепи высокого напряжения и создаёт возможность стандартизации номинального напряжения контрольно-измерительной аппаратуры (чаще всего его принимают равным 100 в). Т. н. подразделяются на трансформаторы переменного напряжения (обычно их называют просто Т. н.) и трансформаторы постоянного напряжения. Первичная обмотка (ПО) трансформатора переменного напряжения (см. рис. 1, а, б) состоит из большого числа (w1) витков и подключается к цепи с измеряемым (контролируемым) напряжением U1 параллельно. К зажимам вторичной обмотки (ВО) с числом витков w2 (w2 1) подсоединяют измерительные приборы (или контрольные устройства). Так как внутреннее сопротивление последних относительно велико, Т. н. работает в условиях, близких к режиму холостого хода, что позволяет (пренебрегая потерями напряжения в обмотках) считать U1 и U2 приблизительно равными соответствующим эдс и пропорциональными w1 и w2, то есть U1w2 ≈ U2w1. Зная отношение (Трансформации коэффициент), можно по результатам измерения низкого напряжения в ВО определять высокое первичное напряжение. Приближённый характер соотношения между U1 и U2 обусловливает наличие погрешности по напряжению и угловой погрешности найденной величины U1. В компенсированных Т. н. производится компенсация этих погрешностей. Т. н. устанавливают главным образом в распределительных устройствах (См. Распределительное устройство) высокого напряжения. Их выпускают в однофазном и трёхфазном исполнении. Большинство Т. н. на напряжения свыше 6 кв — маслонаполненные. Т. н. на напряжения свыше 100 кв делают, как правило, каскадными. Лабораторные Т. н. — обычно многопредельные.Лит.: Вавин В. Н., Трансформаторы напряжения и их вторичные цепи, Л., 1967; Электрические измерения, под ред. Е. Г. Шрамкова, М., 1972.
Г. М. Вотчицев.
Измерительный трансформатор напряжения. Схема включения.
Рис. 1б. Измерительный трансформатор напряжения. Трансформатор напряжения на 400 кв.
Назначение и принцип действия трансформатора напряжения | ТТ и ТН
Трансформаторы напряжения двух- или трехобмоточные предназначены как для измерения напряжения, мощности, энергии, так и для питания цепей автоматики, сигнализации и релейной защиты линий электропередач от замыкания на землю. Трансформаторы напряжения имеют два назначения: изолировать вторичную обмотку НН и, тем самым, обезопасить обслуживающий персонал; понизить измеряемое напряжение до стандартного значения 100; 100ν3; 100/3 В.
Трансформаторы напряжения различают: по числу фаз — однофазные и трехфазные; по числу обмоток — двухобмоточные и трехобмоточные; по классу точности — 0,2; 0,5; 1,0; 3; по способу охлаждения — с масляным охлаждением, с воздушным охлаждением; по способу установки — для внутренней установки, для наружной установки и для КРУ.
На рис. 1 представлена схема включения трансформаторов напряжения с обозначениями первичной и вторичной обмоток. Однофазный двухобмоточный трансформатор напряжения применяется в установках как однофазного, так и трехфазного тока. В последнем случае он включается на линейное напряжение. Один из выводов вторичной обмотки для обеспечения безопасности при обслуживании заземляется.
номинальные напряжения обмоток, т. е. напряжения первичной и вторичной обмоток, указанные на щитке;
номинальный коэффициент трансформации, т. е. отношение номинального первичного напряжения к номинальному вторичному
погрешность по напряжению %
угловая погрешность, т. е. угол между вектором первичного напряжения и повернутым на 180° вектором вторичного напряжения, выраженный в угловых градусах (минутах).
Рис. 1. Однофазный двухобмоточный трансформатор напряжения: а — присоединение трансформатора напряжения к трехфазной сети без нулевого провода; б — расположение выводов (Л-X — выводы ВН; а-х — выводы НН)
На рис. 2 приведен пример изменения погрешности трансформатора напряжения при изменении мощности Бг вторичной нагрузки. Коррекцией напряжения называется преднамеренное изменение коэффициента трансформации в сторону повышения вторичного напряжения, выраженное в процентах. Это достигается уменьшением числа витков первичной обмотки.
Рис. 2. Погрешность по напряжению и угловая погрешность однофазного трансформатора напряжения (сплошные линии с коррекцией числа витков, штриховые линии — без коррекции)
Особо следует сказать о трансформаторах напряжения высокого и сверхвысокого напряжения. Как было отмечено, трансформаторы напряжения передают очень малую мощность, поэтому практически в таких трансформаторах напряжения определяющим является вопрос обеспечения изоляции между первичной и вторичной цепями. Поэтому при напряжениях выше 500 кВ используются так называемые емкостные трансформаторы напряжения, состоящие из емкостного делителя напряжения (двух последовательно соединенных конденсаторов С1 и С2) и понижающего трансформатора, показанных на рис. 3. В современных РУ устанавливаются колонны конденсаторов высокочастотной связи для цепей автоматики и сигнализации. Поэтому, если использовать эту колонку связи CJ и добавить некоторый конденсатор отбора мощности С2, получим емкостной делитель. К конденсатору подключается трансформатор напряжения обычно на 12-15 кВ первичного напряжения.
Рис. 3. Практическая схема емкостного трансформатора напряжения
В чем отличие трансформатора тока от трансформатора напряжения?
Трансформаторы — устройства, используемые для преобразования одного из параметров электроэнергии – напряжения или силы тока.
Они относятся к пассивным электрическим устройствам, то есть не генерируют, а потребляют энергию, поэтому мощность тока в трансформаторах не может увеличиваться.
Таким образом, все трансформаторы в зависимости от преобразуемого параметра электрической энергии делятся на 2 вида:
- трансформаторы электрического тока;
- трансформаторы электрического напряжения.
Работа любого электрического трансформатора основана на принципе электромагнитной взаимоиндукции – способности проводника с током наводить эдс в соседнем проводнике. Проводниками в трансформаторе являются первичная (входная) и вторичная (выходная) обмотки, намотанные на магнитопровод для усиления магнитной связи между ними. Магнитопровод представляет собой замкнутый или разомкнутый сердечник из железа или композитного сплава с высокой магнитной проницаемостью.
Основными показателями трансформатора являются коэффициенты трансформации по напряжению и току:
КU=U2/U1 и KI=I2/I1
где U1,2 – напряжения в первичной и вторичной обмотке, I1,2 – силы тока в первичной и вторичной обмотке. Они показывают, во сколько раз изменяется входной ток или напряжение на выходе трансформатора. В зависимости от величины коэффициента трансформации различают повышающие (К˃1) и понижающие (К<1) трансформаторы. Если магнитная связь между обмотками не изменяется, то коэффициент трансформации будет равен соотношению количества витков во вторичной и первичной обмотке
K=w2/w1.
Особенности трансформаторов тока (ТТ)
Трансформаторы тока предназначены для преобразования силы тока без изменения его мощности. В основном они применяются для понижения тока до значений, пригодных для их измерения и используются в распределительных щитах для подключения измерительных приборов, счётчиков энергии, защитных реле. По назначению они делятся на:
- измерительные;
- защитные;
- лабораторные.
В измерительных ТТ первичная обмотка может отсутствовать или представлять собой толстую шину. На шину наматывается несколько витков вторичной обмотки, в которой наводится эдс, пропорциональная силе тока в шине. Шина включается в разрыв цепи, в которой производится измерение. К вторичной обмотке ТТ подключается нагрузка и измерительный прибор.
Важно! Так как КU для ТТ имеет большие значения, то включать их в режиме холостого хода (без нагрузки) запрещается, что может повлечь высоковольтный пробой изоляции проводов и выход из строя трансформатора.
Особенности трансформаторов напряжения (ТН)
ТН предназначены для получения нужной величины напряжения от промышленной сети или другого источника переменного тока. По своему назначению они делятся на:
- силовые;
- измерительные;
- согласующие;
- лабораторные;
- высоковольтные трансформаторы.
В быту наиболее широкое применение нашли силовые трансформаторы, используемые повсеместно для подключения бытовых приборов к электросети 220В 50Гц. Конструктивно они представляют собой классический пример устройства трансформатора, состоящего из двух, а также нескольких катушек, намотанных на железный сердечник. По форме сердечника различают:
- стержневые;
- кольцевые;
- тороидальные;
- Ш-образные трансформаторы.
В отличие от трансформаторов тока благоприятным режимом работы для ТН является режим, близкий к холостому ходу, когда нагрузка на вторичную обмотку минимальна. Оптимальный режим работы достигается, когда сопротивление нагрузки равно или до полутора раз больше сопротивления выходной обмотки трансформатора.
Трансформаторы тока и напряжения
Перед тем, как рассказать об измерительных трансформаторах – немного теории. Трансформатор – элемент электрической цепи, преобразующий величину переменного напряжения. Трансформаторы могут быть:
- понижающими, выдающие на выходе меньшее напряжение, чем на входе;
- повышающими, выполняющие противоположное преобразование;
- разделительные, не изменяющие величину напряжения, применяющиеся для гальванической развязки между участками электрической сети.
Повышающие и понижающие трансформаторы обратимы: если подать номинальное выходное напряжение трансформатора на его вторичную обмотку, на первичной мы получим номинальное входное напряжение.
С токами в обмотках происходит обратная картина. Первичная обмотка рассчитывается на ток, соответствующий номинальной мощности трансформатора. Под мощность выбирается и сечение магнитопровода, и диаметр обмоточного провода первичной обмотки.
Ток вторичной обмотки понижающего трансформатора может быть больше тока в первичной во столько раз, во сколько меньше ее напряжение. Это отношение называется коэффициентом трансформации. Поэтому сечение обмоточного провода вторичной обмотки у понижающего трансформатора больше. У понижающего – все наоборот. У разделительного – все одинаково.
Зачем нужны измерительные трансформаторы напряжения
В электроустановках до 1000 В измерение напряжения производят, подключая вольтметры непосредственно к шинам или другим контролируемым участкам сети. Но в сетях 6 кВ и выше это невозможно, потому что:
- при измерении высокого напряжения требуется понизить его величину до размера, воспринимаемого рамкой стрелочного прибора или электронным преобразователем цифрового. Резистивные делители не выполнят задачу с требуемой точностью, а применение понижающего трансформатора сделает прибор громоздким;
- изоляция проводников для подключения прибора должна выдерживать номинальное напряжение электроустановки. Кроме того, должны соблюдаться междуфазные расстояния, требуемые ПУЭ. Выполнить это невозможно.
Поэтому для измерений величину напряжения понижают, и для этого нужен трансформатор напряжения
Трансформаторы напряжения и их конструкция
На какое бы напряжение не была рассчитана первичная обмотка трансформатора напряжения, напряжение на вторичной его обмотке стандартно – 100 В. Это сделано для унификации: счетчику электроэнергии без разницы, в какой электроустановке работать – 6 кВ, 10 кВ или более. Если он предназначен для эксплуатации с трансформаторами напряжения, в его технических характеристиках в графе «номинальное напряжение» указано: «3х100 В». Цифра «3» означает, что для измерений к нему подключаются три фазы.
Конструктивно трансформаторы напряжения выполняются:
- элемент преобразования одной фазы напряжения в своем корпусе, при трехфазном напряжении устанавливаются три таких трансформатора;
- один корпус содержит трансформатор для преобразования всех трех фаз.
Первичные обмотки трехфазных трансформаторов соединяются в звезду.
Вторичных обмоток у трансформаторов напряжения несколько:
- обмотка для приборов учета, имеющая класс точности 0,5s;
- обмотка для измерительных приборов – класс точности 0,5;
- обмотка для устройств релейной защиты – класс 10Р;
- обмотка для разомкнутого треугольника – класс 10Р.
Класс точности имеет значение при учете и измерениях. Но есть еще один нюанс: измерительная обмотка трансформатора работает в заявленном классе точности, если не превышена допустимая нагрузка на нее. Поэтому, вместе с классом, на бирке трансформатора указывается допустимая мощность, превышать которую нельзя.
Трансформатор напряжения НОМ-10Еще один фактор, изменяющий класс точности – сопротивление соединительных проводников. Если прибор учета или амперметр находится вдали от трансформатора напряжения и подключен контрольным кабелем с жилами недостаточного сечения, то значение напряжения на нем будет меньше, чем на трансформаторе.
Выводы вторичной обмотки трансформатора напряжения, используемого для коммерческого учета, закрывают крышкой и пломбируют.
Первичные обмотки трансформаторов напряжения защищают предохранителями. Для защиты вторичных обмоток раньше тоже применяли предохранители, но теперь их заменили автоматические выключатели.
Три однофазных трансформатора ЗНОЛ, собранные вместеА теперь – вспомним теорию в начале статьи. Основная опасность при работе на трансформаторах напряжения состоит в явлении обратной трансформации. Если по каким-то причинам на вторичную обмотку попадет напряжение 100 В, то первичная окажется под номинальным напряжением электроустановки. Работающие в ячейке люди окажутся под напряжением. Поэтому при выводе в ремонт трансформатора напряжения принимают меры. Исключающие обратную трансформацию.
Зачем нужны трансформаторы тока
Одна из причин, из-за которых в электроустановках выше 1000 В устанавливают трансформаторы тока – та же, что и для трансформаторов напряжения. Невозможно обеспечить изоляцию цепей для подключения приборов.
Но есть дополнительные факторы, вынуждающие использовать их и в электроустановках выше 1000 В:
- максимальный ток, на который рассчитаны электросчетчики прямого включения – 100 А. Токи выше 100 А требуется понизить.
- включение амперметров последовательно с нагрузкой снижает надежность электроснабжения;
- вольтметр подключается к шинам через предохранители или автоматический выключатель, выводы амперметра защитить невозможно. Ток короткого замыкания в амперметре равен току КЗ на шинах. Ошибки в эксплуатации приводят к тяжелым последствиям, а неисправности прибора выводят его из строя навсегда. Поэтому и требуется выполнить гальваническую развязку амперметра с сетью.
- Заменить амперметр прямого подключения можно, только отключив нагрузку.
Принцип действия и конструкция трансформаторов тока
Трансформатор тока тоже имеет первичную и вторичную обмотку. Но особенность его в том, что первичная обмотка имеет один или несколько витков, а в большинстве изделий представляет собой шину, проходящую через корпус трансформатора. Вариант – трансформаторы, не имеющие собственной первичной обмотки. Они надеваются на шину с измеряемым током или через них пропускается провод, жила кабеля.
Варианты конструктивного исполнения трансформаторов тока до 1000 ВВторичная обмотка у трансформатора тока на напряжение до 1000 В одна, но у высоковольтных их – минимум две, но бывает и больше. Работает он аналогично повышающему трансформатору, поэтому – все, что сказано в начале статьи о соотношении токов в них для него справедливо.
Номинальный ток вторичной обмотки трансформатора тока всегда равен 5 А, на какой бы ток не была рассчитана первичная. Классы точности обмоток для подключения аппаратуры различаются так же, как и у трансформаторов напряжения.
Но вот подключить к трансформатору тока, используемому для учета электроэнергии, ничего больше не получится. По правилам, кроме счетчика, там не должно быть ничего. И если для аппаратов выше 1000 В это требование легко выполнить (один трансформатор имеет несколько обмоток), то для электроустановок до 1000 В при необходимости устанавливают по два трансформатора на одну фазу: один – для учета, другой – для всего остального (амперметры, ваттметры, устройства защиты, компенсация реактивной мощности). Выводы вторичной обмотки для коммерческого учета у всех трансформаторов закрываются крышкой и пломбируются.
Установка трансформаторов тока в ячейке выше 1000 ВТрансформатор тока должен работать в замкнутой на нагрузку или накоротко вторичной обмоткой. Иначе на ней наводится ЭДС далеко не безопасной величины как для людей, так и для электрооборудования. При обрыве во вторичных цепях можно получить смертельный удар током, даже проведя рукой рядом с клеммами амперметра или счетчика. А электронные схемы на входе приборов выйдут из строя под действием высокого напряжения.
Поэтому для замены амперметров и электросчетчиков в токовых цепях устанавливают специальные клеммы, на которых перед демонтажем прибора обмотку трансформатора закорачивают. Для приборов учета рядом устанавливают клеммы для отключения цепей напряжения. Это функции совмещены в специальном устройстве, называющимся «колодка клеммная измерительная». Для коммерческих цепей учета эти коробки пломбируются, для чего винт, крепящий ее крышку, имеет прорезь в головке (как у винтов крепления крышки корпуса электросчетчика).
Видео про трансформаторы тока
Почему нельзя размыкать вторичную обмотку трансформатора тока и зачем ее обязательно заземлять? Попутно вы узнаете о технических характеристиках и конструкции трансформаторов тока, особенностях их применения.
Оцените качество статьи:
Обслуживание трансформаторов напряжения и их вторичных цепей
Общие сведения. Трансформаторы напряжения служат для преобразования высокого напряжения в низкое стандартных значений (100, 100/√3, 100/3 В), используемое для питания измерительных приборов и различных реле управления, защиты и автоматики. Они, так же как и трансформаторы тока, изолируют (отделяют) измерительные приборы и реле от высокого напряжения, обеспечивая безопасность их обслуживания.
На напряжении до 35 кВ трансформаторы напряжения, как правило, включаются через предохранители для того, чтобы при повреждении трансформатора напряжения он не стал причиной развития аварии. На напряжении 110 кВ и выше предохранители не устанавливаются, так как согласно имеющимся данным повреждения таких трансформаторов напряжения происходят редко.
Для защиты трансформатора напряжения от тока короткого замыкания во вторичных цепях устанавливают съемные трубчатые предохранители или автоматические выключатели максимального тока . Предохранители устанавливают в том случае, если трансформатор напряжения не питает быстродействующих защит, так как эти защиты могут ложно подействовать при недостаточно быстром перегорании плавкой вставки. Установка же автоматических выключателей обеспечивает эффективное срабатывание специальных блокировок, выводящих из действия отдельные виды защит при обрыве цепей напряжения.
Для безопасного обслуживания вторичных цепей в случае пробоя изоляции и попадания высокого напряжения на вторичную обмотку один из зажимов вторичной обмотки или нулевая точка присоединяется к заземлению. В схемах соединения вторичных обмоток в звезду чаше заземляется не нулевая точка, а начало обмотки фазы b . Это объясняется стремлением сократить на 1/3 число переключающих контактов во вторичных цепях, так как заземленная фаза может подаваться на реле помимо рубильников и вспомогательных контактов разъединителей.
Рис. 4.1. Схемы трансформаторов напряжения типов НКФ-110 (а), НКФ-220 (б):
ВН — первичная обмотка; НН — вторичные обмотки; П — выравнивающие обмотки;
Р — связующие обмотки; М — магнитопровод; U ф — фазное напряжение
При использовании трансформаторов напряжения для питания оперативных цепей переменного тока допускается заземление нулевой точки вторичных обмоток через пробивной предохранитель, что вызывается необходимостью повышения уровня изоляции оперативных цепей.
На время производства работ непосредственно на трансформаторе напряжения и его ошиновке правилами безопасности предписывается создание видимого разрыва не только со стороны ВН, но также и со стороны вторичных цепей, чтобы избежать появления напряжения на первичной обмотке за счет обратной трансформации напряжения от вторичных цепей, питающихся от какого-либо другого трансформатора напряжения. Для этого во вторичных цепях трансформатора напряжения устанавливаются рубильники или используются съемные предохранители. Отключение автоматических выключателей, а также разрыв вторичных цепей вспомогательными контактами разъединителей не обеспечивают видимого разрыва цепи и поэтому считаются недостаточными.
Особенности конструкции. На подстанциях находят применение как однофазные, так и трехфазные двух- и трехобмоточные трансформаторы напряжения. Это главным образом масляные трансформаторы напряжения, магнито-проводы и обмотки которых погружены в масло. Масляное заполнение бака или фарфорового корпуса предохраняет от увлажнения и изолирует обмотки от заземленных конструкций. Оно играет также роль охлаждающей среды.
В закрытых распределительных устройствах до 35 кВ успешно используются трансформаторы напряжения с литой эпоксидной изоляцией. Они обладают рядом существенных преимуществ по сравнению с маслонаполненными при установке в комплектных распределительных устройствах.
На подстанциях 110-500 кВ применяются каскадные трансформаторы напряжения серии НКФ. В каскадном трансформаторе напряжения обмотка ВН делится на части, размещаемые на разных стержнях одного или нескольких магнитопроводов, что облегчает ее изоляцию. Так, у трансформатора напряжения типа НКФ-110 обмотка ВН разделена на две части (ступени), каждая из которых размещается на противоположных стержнях двухстержневого магнитопровода (рис. 4.1, а ). Магнитопровод соединен с серединой обмотки ВН и находится по отношению к земле под потенциалом U ф /2, благодаря чему обмотка ВН изолируется от магнитопровода только на U ф /2 , что существенно уменьшает размеры и массу трансформатора.
Ступенчатое исполнение усложняет конструкцию трансформатора. Появляется необходимость в дополнительных обмотках. Показанная на рис. 4.1 выравнивающая обмотка П предназначена для равномерного распределения мощности, потребляемой вторичными обмотками, по обеим ступеням.
Каскадные трансформаторы напряжения на 220 кВ и выше имеют два и более магнитопровода (рис. 4.1, б ). Число магнитопроводов обычно вдвое меньше числа ступеней каскада. Для передачи мощности с обмоток одного магнитопровода на обмотки другого служат связующие обмотки Р. Вторичные обмотки у трансформаторов напряжения серии НКФ располагаются вблизи заземляемого конца X обмотки ВН, имеющего наименьший потенциал относительно земли.
Рис. 4.2. Схема включения емкостного делителя напряжения типа НДЕ-500
Наряду с обычными электромагнитными трансформаторами напряжения для питания измерительных приборов и релейной защиты применяют емкостные делители напряжения. Они получили распространение на линиях электропередачи напряжением 500 кВ и выше. Принципиальная схема емкостного делителя напряжения типа НДЕ-500 приведена на рис 4.2. Напряжение между конденсаторами распределяется обратно пропорционально емкостям U 1 / U 2 = C 2 / C 1 , где C 1 и C 2 — емкости конденсаторов; U 1 и U 2 — напряжения на них. Подбором емкостей добиваются получения на нижнем конденсаторе С2 некоторой требуемой доли общего напряжения U ф . Если теперь к конденсатору С2 подключить понижающий трансформатор Т, то он будет выполнять те же функции, что и обычный трансформатор напряжения.
Емкостный делитель напряжения типа НДЕ-500 состоит из трех конденсаторов связи тина СМР-166/√3-0,014 и одного конденсатора отбора мощности тина ОМР-15-0,017. Первичная обмотка трансформатора Т рассчитана на напряжение 15кВ. Она имеет восемь ответвлений для регулирования напряжения. Заградитель L препятствует ответвлению токов высокой частоты в трансформатор Т во время работы высокочастотной связи, аппаратура которой подключается к конденсаторам через фильтр присоединения ФП. Реактор LR улучшает электрические свойства схемы при увеличении нагрузки. Балластный фильтр или резистор R служит для гашения феррорезонансных колебаний во вторичной цепи при внезапном отключении нагрузки.
Схемы включения. Однофазные и трехфазные трансформаторы напряжения включаются по схемам, приведенным на рис. 4.3. Два двухобмоточных трансформатора напряжения могут быть включены на междуфазное напряжение по схеме открытого треугольника (рис. 4.3, а). Схема обеспечивает получение симметричных линейных напряжений Uab , Ubc , Uca и применяется в установках 6-35 кВ. Вторичные цепи защищаются двухполюсным автоматическим выключателем SF , при срабатывании которого подается сигнал о разрыве цепей напряжения. Последовательно с автоматическим выключателем установлен двухполюсный рубильник S , создающий видимый разрыв вторичной цепи. По условиям безопасности на шинках вторичного напряжения заземлена фаза b . Рубильники и автоматические выключатели размещаются в шкафах вблизи трансформаторов напряжения.
Три однофазных двухобмоточных трансформатора напряжения могут быть соединены в трехфазную группу по схеме звезда-звезда с заземлением нейтралей обмоток ВН и НН (рис. 4.3, б ). Схема позволяет включать измерительные приборы и реле на линейные напряжения и напряжения фаз по отношению к земле. В частности, такая схема используется для включения вольтметров контроля изоляции в сетях напряжением до 35 кВ, работающих с изолированной нейтралью. Рассматриваемая схема не применяется для включения счетчиков электрической энергии из-за большой погрешности в напряжении трансформаторов напряжения, работающих в нормальном режиме под напряжением, в √3 раз меньшим номинального.
Вторичные цепи трансформаторов напряжения защищены трубчатыми предохранителями F во всех трех фазах, так как заземлена не фаза, а нейтраль вторичной обмотки.
Трехфазный трехстержневой двухобмоточный трансформатор напряжения типа НТМК, включенный по схеме на рис. 4.3, в , используется для измерения линейных и фазных напряжений в сетях 6-10 кВ. Однако он непригоден для измерения напряжения по отношению к земле, так как для этого необходимо заземление нейтрали первичных обмоток, а оно отсутствует.
На рис. 4.3, г показана схема включения трехфазного трехобмоточного трансформатора напряжения типа НТМИ, предназначенного для сетей 6-10 кВ, работающих с изолированной (или компенсированной) нейтралью. Трансформаторы напряжения типа НТМИ изготовляются групповыми, т.е. состоящими из трех однофазных трансформаторов. В эксплуатации находятся также трехфазные трехобмоточные трансформаторы напряжения старой серии, которые выпускались с бронестержневыми магнитопроводами (три стержня и два боковых ярма). Основные вторичные обмотки защищены трехполюсными автоматическими выключателями SF . Вспомогательные контакты автоматических выключателей используются для сигнализации о разрыве цепей напряжения и блокирования защит минимального напряжения и АРВ. Дополнительные вторичные обмотки, соединенные в разомкнутый треугольник, обычно служат для сигнализации о замыкании фазы на землю. К зажимам этой обмотки непосредственно подключаются только реле повышения напряжения, поэтому в этой цепи отсутствует рубильник. При необходимости провод от начала дополнительной обмотки ад может заводиться через четвертый нож рубильника S . Таким же образом соединяются в трехфазные группы и однофазные трехобмоточные трансформаторы напряжения 3НОМ в сетях 6-35кВ.
Рис. 4.3. Схемы включения однофазных и трехфазных трансформаторов напряжения
Переключение питания цепей напряжения с одного трансформатора напряжения на другой предусматривается на подстанциях, имеющих две секции или системы тип и более, а также при установке трансформаторов напряжения на вводах линий. Переключение может производиться вручную при помощи рубильников (ключей) или автоматически — вспомогательными контактами разъединителей либо контактами реле повторителей, управляемых в свою очередь вспомогательными контактами разъединителей или выключателей. Обычно переключаются сразу все цепи напряжения электрической цепи, и только иногда переключающие рубильники устанавливаются на панелях отдельных комплектов защит и автоматики.
На рис. 4.4 показаны возможные схемы переключения цепей напряжения на подстанциях с двойной системой шин.
Рис. 4.4. Принципиальные схемы переключения цепей напряжения с одного трансформатора напряжения TV 1 на другой TV 2:
а — схема первичных соединений; б — переключение при помощи рубильника; в — то же вспомогательными контактами разъединителей SA 1 и SA 2; г — то же контактами реле-повторителей КСС.1 и КСТ.1; д — включение реле-повторителей
Рис. 4.5. Схема включения трансформаторов напряжения типа НКФ на 110-330 кВ:
1 — обмотка первичная; 2 — обмотка основная; 3 — обмотка дополнительная; ФИП — фиксирующий измерительный прибор (индикатор повреждений)
Однофазные трансформаторы напряжения 110-330 кВ серии НКФ чаще включают по схеме, показанной на рис. 4.5. К сборным типам указанные трансформаторы напряжения присоединяются разъединителями без предохранителей. В цепях основной и дополнительной обмоток предусмотрены рубильники S 1 и S 2 для отключения трансформатора напряжения от шин вторичного напряжения при переводе питания их от другого трансформатора напряжения. От короткого замыкания вторичные цепи защищены тремя автоматическими выключателями SF 1, SF 2 и SF 3. В проводе от зажима на шине и (3 U 0 ) автомат не установлен, поскольку в нормальном режиме работы на зажимах дополнительной обмотки отсутствует рабочее напряжение. Исправность же цепей 3 U 0 периодически контролируется измерением напряжения небаланса. При исправной цепи измеряемое напряжение равно 1-3В, а при нарушении цепи показание вольтметра пропадает. Подключение прибора производится кратковременным нажатием кнопки. Шина и используется при проверках защит от замыканий на землю, получающих питание от цепи 3 U 0 .
Схемы включения трансформаторов напряжения 500 кВ и выше независимо от их типа (каскадные или с емкостным делителем) мало отличаются от рассмотренной. Нет отличий и в оперативном обслуживании вторичных цепей
Контроль исправности вторичных цепей основной обмотки в ряде случаев производится при помощи трех реле минимального напряжения, включенных на междуфазные напряжения. При отключении автоматического выключателя (сгорании предохранителя) эти реле подают сигнал о разрыве цепи. Более совершенным является контроль с использованием комплектного реле, подключаемого к шинам вторичного напряжения (рис. 4.6). Реле KV 1 включено на три фазы фильтра напряжения обратной последовательности ZV . Оно срабатывает при нарушении симметрии линейных напряжений (обрыв одной или двух фаз). При размыкании его контактов срабатывает реле KV 2, подающее сигнал о разрыве цепи напряжения. Реле KV 2 срабатывает также и при трехфазном (симметричном КЗ), когда реле KV 1 не работает. Таким образом, обеспечивается подача сигнала во всех случаях нарушения цепей напряжения со стороны как НН, так и ВН. Устройство действует с выдержкой времени, превышающей время отключения КЗ в сети ВН, чтобы исключить подачу ложного сигнала.
Рис. 4.6. Схема включения реле для контроля исправности цепей напряжения: ZV — фильтр напряжения обратной последовательности; KV 1, KV 2 — реле напряжения
Блокировка защит при повреждениях в цепях напряжения подает сигнал о появившейся неисправности и выводит из действия (блокирует) те защиты, которые могут при этом ложно сработать, лишившись напряжения. Напряжение исчезает полностью или искажается по значению и фазе при перегорании предохранителей, срабатывании автоматических выключателей или обрыве фаз. Устройства блокировок выпускаются промышленностью в виде комплектных реле, которыми снабжаются отдельные панели релейной защиты. На линиях дальних электропередач 500 кВ и выше трансформаторы напряжения устанавливаются непосредственно на вводе линии. Питание цепей напряжения реле и приборов каждой линии производится от подключенного к ней трансформатора напряжения.
На рис. 4.7 приведена схема первичных соединений подстанции 500 кВ и схема вторичных цепей трансформаторов напряжения TV 1- TV 3. В случае выхода из строя одного из трансформаторов напряжения (допустим, TV 1) возникает необходимость переключения питания обмоток реле и приборов линии W 1 от другого трансформатора напряжения. Для этого рубильник S 1 (или S 2 ) поочередно ставят в положение «Другие Т V «, а рубильниками S3 (или S 4) соответственно подают питание от трансформатора напряжения TV 2 или TV 3 .Очередность переключения рубильников определяется местными инструкциями, так как это связано с обеспечением надежности работы блокировок линейных защит. Одновременное отключение рубильников S 1 и S 2 (основной и дополнительной обмоток) может привести к отказу некоторых видов блокировок и ложному отключению линии.
Рис. 4.7. Переключение цепей напряжения с одного трансформатора напряжения Т V 1,
подключенного к линии W1, на другие (TV2 или Т V 3):
а — схема первичных соединений подстанции 500 кВ; б — схема цепей напряжения линии
Обслуживание трансформаторов напряжения и их вторичных цепей оперативным персоналом заключается в надзоре за работой самих трансформаторов напряжения и контроле за исправностью цепей вторичного напряжения. Надзор за работой производится во время осмотров оборудования, при этом обращают внимание на общее состояние трансформаторов напряжения: наличие в них масла, отсутствие течей и состояние резиновых прокладок, отсутствие разрядов и треска внутри трансформаторов напряжения, отсутствие следов перекрытий на поверхности изоляторов и фарфоровых покрышек, степень загрязненности изоляторов, отсутствие трещин и сколов изоляции, а также состояние армировочных швов. При обнаружении трещин в фарфоре трансформатор напряжения должен быть отключен и подвергнут детальному осмотру и испытанию.
Трансформаторы напряжения 6-35 кВ с небольшим объемом масла не имеют расширителей и маслоуказателей. Масло в них не доливают до крышки на 20-30 мм. И это пространство над поверхностью масла выполняет роль расширителя. Обнаружение следов вытекания масла из таких трансформаторов напряжения требует срочного вывода их из работы, проверки уровня масла и устранения течи.
При осмотрах проверяют состояние уплотнений дверей шкафов вторичных соединений и отсутствие щелей, через которые может проникнуть снег, пыль и влага; осматривают рубильники, предохранители и автоматические выключатели, а также ряды зажимов.
В эксплуатации необходимо следить за тем, чтобы плавкие вставки предохранителей были правильно выбраны. Надежность действия предохранителей обеспечивается в том случае, если номинальный ток плавкой вставки меньше в 3-4 раза тока КЗ в наиболее отдаленной от трансформатора напряжения точке вторичных цепей. Ток КЗ должен измеряться при включении трансформатора напряжения в работу или определяться расчетом. Набор предохранителей на соответствующие токи должен всегда храниться в шкафах вторичных соединений.
На щитах управления и релейных щитах необходимо систематически контролировать наличие напряжения от трансформатора напряжения по вольтметрам и сигнальным устройствам (табло, сигнальные лампы, звонок). В нормальном режиме работы реле защиты и автоматики должны получать питание от трансформатора напряжения той системы шин, на которую включена данная электрическая цепь. При оперативных переключениях необходимо соблюдать установленную последовательность операций не только с аппаратами высокого напряжения, но и с вторичными цепями напряжения, чтобы не лишить напряжения устройства защиты и автоматики.
В случае исчезновения вторичного напряжения вследствие перегорания предохранителей НН их следует заменить, а отключившиеся автоматические выключатели включить, причем первыми должны восстанавливаться цепи основной обмотки, а потом дополнительной. Если эти операции окажутся неуспешными, должны приниматься меры к быстрейшему восстановлению питания защит и автоматики от другого трансформатора напряжения согласно указаниям местной инструкции.
К замене перегоревших предохранителей ВН приступают после выполнения необходимых в этом случае операций с устройствами тех защит, которые могут сработать на отключение электрической цепи. Без выяснения и устранения причины перегорания предохранителей ВН установка новых предохранителей не рекомендуется.
Применяются трехполюсные автоматические выключатели типа АП50-3М и двухполюсные типа АП50-2М с электромагнитным расцепителем на номинальные токи от 2,5 до 50 А, время отключения короткого замыкания t ср =0,017 с.
Высоковольтные трансформаторы напряжения и тока ZEZ Silko
Высоковольтные трансформаторы напряжения
Аппаратные трансформаторы напряжения VРТ, VTO — это однофазные трансформаторы, предназначенные для применения в сетях высокого напряжения. Они предназначаются для измеренияй и защиты распределительных устройств ВН открытого исполнения. Аппаратные трансформаторы напряжения VTS, VTD – это однофазные двухполюсные изолированные трансформаторы, предназначенные для применения в сетях высокого напряжения. Они предназначаются для измеренияй и защиты распределительных устройств ВН закрытого исполнения.
Наружные трансформаторы
Тип | Напряжение изоляции UN, [В] | Первичное напряжение UN, [A] | Вторичное напряжение UN, [A] | Мощность, [ВА] | Количество выводов | Масса, [кг] |
---|---|---|---|---|---|---|
VPT 25 | 25 | 3000-22000 | 100, 110, 120 | 10-150 | 2 | 49 |
VPT 38 | 38,5 | 3000-35000 | 100, 110, 120 | 10-150 | 2 | 62 |
VTO 15 | 17,5 | 577-8660 | 58, 63, 69 | 30-150 | 1 | 24 |
VTO 38 | 38,5 | 1732-20207 | 58, 63, 69 | 10-150 | 1 | 49 |
Тип | Напряжение изоляции UN, [В] | Первичное напряжение UN, [A] | Вторичное напряжение UN, [A] | Мощность,[ВА] | Количество выводов | Масса, [кг] |
---|---|---|---|---|---|---|
VTS 12 | 17,5 | 1730-8660 | 58, 63, 69 | 10-150 | 1 | 21 |
VTS 25 | 25 | 1730-12700 | 58, 63, 69 | 10-150 | 1 | 29 |
VTS 38 | 40,5 | 1730-20200 | 58, 63, 69 | 10-150 | 1 | 33 |
VTD 12 | 17,5 | 3000-15000 | 100, 110, 120 | 10-150 | 2 | 22 |
VTD 25 | 25 | 3000-22000 | 100, 110, 120 | 10-150 | 2 | 29 |
Инструкции по монтажу
Монтаж аппаратных трансформаторов VTS и VTD можно произвоить в любом положении. Аппараты VTO и VPT монтируются только в вертикальном положении. Трансформаторы укрепляются с помощью четырех болтов М10 (VTS 12 и VTD12) или М12 (VTS 25, VTS 38, VTD 25, VTO 38, VPT 25, VPT 38) через отверстия в опорной плите или опорных профилях. Подключение ВН на первичной стороне рекомендуем производить кабельными наконечниками с отверстием ∅10 мм. Пример системы монтажа трансформатора приведен на рис. 1 (VTS 12). Для подключения к стороне ВН трансформаторов с изоляторами для демпфирования динамических сил и вибрации в сети рекомендуем применять проводники диаметром до 6 мм2 и кабельные наконечники.
ВНИМАНИЕ! при ином способе подключения не должно происходить механическое перенапряжение изолятора в направлении от корпуса трансформатора.
При отключении трансформаторов рекомендуем очистить их от загрязнения и дотянуть соединения.
Высоковольтные трансформаторы тока
Опорные трансформаторы тока CTSO, CTO предназначен для измерений и защиты распределительных устройств ВН открытого исполнения на напряжение до 38,5 кВ. Опорные аппаратные трансформаторы тока CTS предназначены для измерений и защиты оборудования распределительных устройств ВН закрытого исполнения.
Аппаратные трансформаторы тока прошли испытания в соответствии с нормой IEC 60044-1.
Наружные трансформаторы
Тип | Напряжение изоляции UN, [В] | Первичный ток IN, [A] | Вторичный ток IN, [A] | Мощность, [ВА] | Масса, [кг] |
---|---|---|---|---|---|
CTSO 38 | 38,5 | 5-2500 | 5 (1) | 5-60 | 62 |
CTO 15 | 25 | 5-600 | 5 (1) | 5-60 | 30 |
В
нутренние трансформаторыТип | Напряжение изоляции UN, [В] | Первичный ток IN [A] | Вторичный ток IN, [A] | Мощность, [ВА] | Масса [кг] |
---|---|---|---|---|---|
CTS 12 | 17,5 | 5-3200 | 5 (1) | 5-60 | 22 |
CTS 25 | 25 | 5-3200 | 5 (1) | 5-60 | 28 |
CTS 38 | 40,5 | 5-1250 | 5 (1) | 5-60 | 40 |
Инструкции по монтажу
Монтаж аппаратных трансформаторов CTS можно производить в любом положении. Аппараты CTSO, CTO монтируются в вертикальном положении. Трансформаторы укрепляются с помощью четырех болтов М10 (CTS 12) или М12 (CTS 25, CTS 38, CTSО 38) через отверстия в опорной плите или профилях. Подключение силовой цепи к клеммам первичной обмотки производится с помощью болтов М12, см. рис. 1. с макс. подтягивающим моментом 30 Нм. Для подключения вторичных выводов рекомендуем использовать кабельные наконечники, соответствующие сечению проводника, которое не должно превышать 10 мм2. Металлические несущие части трансформатора защищены от коррозии с помощью металлизации. Клеммы первичной обмотки гальванически покрыты никелем или серебром. Клеммы вторичной обмотки гальванически покрыты никелем. Опорные плиты гальванически покрыты цинком (у трансформаторов для закрытых распределительных устройств) или воронены (у трансформаторов для открытых распределительных устройств).
При отключении трансформаторов рекомендуем очистить их от загрязнения и дотянуть соединения.
Каталог по компонентам для установок компенсации реактивной мощности PDF 2,3 Mb
Главная › Решения › Статьи › Повышающий трансформатор для дачи или частного дома | ||
Преобразование напряжения присутствует повсеместно в любой области нашей жизни и деятельности. Самые яркие и понятные примеры: зарядные устройства для аккумуляторов, блоки питания, инверторы для автономного электроснабжения и т.д. Есть много устройств, решающих эту задачу тем или иным способом, одно из них — это трансформатор напряжения. Рассмотрим его немного подробнее, не погружаясь в излишние сложности. Трансформатор напряженияВсе обмотки намотаны на общем сердечнике (магнитопроводе). Если число витков у вторичной обмотки больше, чем у первичной, то это повышающий трансформатор, если меньше — понижающий. | Трансформатор напряжения |
Повышающий трансформатор |
— обзор
IA A Краткая история
Фундамент современной передачи электроэнергии был заложен в 1882 году, когда была построена станция Томаса А. Эдисона на Перл-Стрит, генератор постоянного тока и система радиальной линии передачи, используемая в основном для освещения. Нью-Йорк. Развитие передачи переменного тока в Соединенных Штатах началось в 1885 году, когда Джордж Вестингауз купил патенты на системы переменного тока, разработанные Л. Голаром и Дж. Д. Гиббсом из Франции. Энергетические системы переменного и постоянного тока в то время состояли из коротких радиальных линий между генераторами и нагрузками и обслуживали потребителей в непосредственной близости от генерирующих станций.
Первая высоковольтная линия электропередачи переменного тока в США была построена в 1890 году и прошла 20 км между водопадом Уилламетт в городе Орегон и Портлендом, штат Орегон. Технология передачи переменного тока быстро развивалась (Таблица I), и вскоре были построены многие линии переменного тока, но в течение нескольких лет большинство из них работали как изолированные системы. По мере увеличения расстояний передачи и роста спроса на электроэнергию возникла потребность в перемещении более крупных блоков мощности, стали важны факторы надежности, и начали строиться взаимосвязанные системы (электрические сети).Взаимосвязанные системы обеспечивают значительные экономические преимущества. Меньшее количество генераторов требуется в качестве резервной мощности на период пикового спроса, что снижает затраты на строительство для коммунальных предприятий. Точно так же требуется меньше генераторов во вращающемся резерве, чтобы справиться с внезапным, неожиданным увеличением нагрузки, что еще больше снижает инвестиционные затраты. Электросети также предоставляют коммунальным предприятиям возможности для выработки электроэнергии, позволяя использовать наименее дорогие источники энергии, доступные для сети в любое время. Энергетические системы продолжают расти, и типичные региональные электрические сети сегодня включают десятки крупных генерирующих станций, сотни подстанций и тысячи километров линий электропередачи.Развитие обширных региональных сетей и сетей в 1950-х и 1960-х годах привело к большей потребности в согласовании критериев проектирования, схем защитных реле и управления потоками мощности и привело к развитию компьютеризированных систем диспетчерского управления и сбора данных (SCADA).
ТАБЛИЦА I. Исторические тенденции в высоковольтной передаче электроэнергии
Напряжение системы (кВ) | ||||
---|---|---|---|---|
Номинальное | Максимальное | Год выпуска | Типичный пропускная способность (МВт) | Стандартная ширина полосы отвода (м) |
Переменный ток | ||||
115 | 121 | 1915 | 50–200 | 15–25 |
230 | 242 | 1921 | 200–500 | 30–40 |
345 | 362 | 1952 | 400–1500 | 35–40 |
500 | 550 | 1964 | 1000–2500 | 35–45 |
765 | 800 | 1965 | 2000–5000 | 40–55 |
1100 | 1200 | Протестировано 1970-е годы | 3000–10000 | 50–75 |
Постоянный ток | ||||
50 | 1954 | 50–100 | 25–30 | |
200 | (± 100) | 1961 | 200–500 | 30–35 |
500 | (± 250) | 1965 | 750–1500 | 30–35 |
800 | (± 400) | 1970 | 1500–2000 | 35–40 |
1000 | (± 500) | 1984 | 2000–3000 | 35–40 |
1200 | (± 600) | 1985 | 3000–6000 | 40–55 |
Первое коммерческое применение высоковольтной передачи постоянного тока было разработано R.Тюри во Франции на рубеже веков. Эта система состояла из ряда генераторов постоянного тока, подключенных последовательно к источнику для получения желаемого высокого напряжения. Позже были разработаны ионные преобразователи, и в 1930-х годах в штате Нью-Йорк был установлен демонстрационный проект на 30 кВ. Первая современная коммерческая система передачи постоянного тока высокого напряжения с использованием ртутных дуговых клапанов была построена в 1954 году и соединила подводным кабелем остров Готланд и материковую часть Швеции. С тех пор за ним последовали многие другие системы передачи постоянного тока, в последнее время использующие тиристорную технологию.Проекты включают воздушные линии и подземные кабели, а также подводные кабели, чтобы полностью использовать мощность постоянного тока, чтобы снизить стоимость передачи на большие расстояния, избежать проблем с реактивной мощностью, связанных с длинными кабелями переменного тока, и служат в качестве асинхронных связей между сетями переменного тока. .
Сегодня коммерческие энергосистемы с напряжением до 800 кВ переменного тока и ± 600 кВ постоянного тока работают по всему миру. Созданы и испытаны опытные образцы систем переменного тока напряжением от 1200 до 1800 кВ. Возможности передачи электроэнергии увеличились до нескольких тысяч мегаватт на линию, а экономия на масштабе привела к повышению номинальных характеристик оборудования подстанции.Распространены блоки трансформаторов сверхвысокого напряжения (СВН) мощностью 1500 МВА и выше. Подстанции стали более компактными, так как все шире используются шины с металлической обшивкой и газовая изоляция SF 6 . Автоматическое регулирование выработки электроэнергии и потока мощности имеет важное значение для эффективной работы взаимосвязанных систем. Для этих приложений широко используются компьютеры и микропроцессоры.
IB Системные компоненты
Целью системы передачи электроэнергии является передача электроэнергии от генерирующих станций к центрам нагрузки или между регионами безопасным, надежным и экономичным способом при соблюдении применимых требований федерального, регионального и местного уровней. правила и положения.Удовлетворение этих потребностей наиболее эффективным и безопасным образом требует значительных капиталовложений в линии электропередачи, подстанции и оборудование для управления и защиты системы. Ниже приведены некоторые из основных компонентов современной системы передачи электроэнергии высокого напряжения.
Воздушные линии электропередачи передают электроэнергию от генерирующих станций и подстанций на другие подстанции, соединяющие центры нагрузки с электрической сетью, и передают блоки основной мощности на стыках между региональными сетями.Линии передачи высокого напряжения переменного тока представляют собой почти исключительно трехфазные системы (по три проводника на цепь). Для систем постоянного тока типичны биполярные линии (два проводника на цепь). Воздушные линии электропередачи рассчитаны на заданную мощность передачи при конкретном стандартизованном напряжении (например, 115 или 230 кВ). Уровни напряжения обычно основываются на экономических соображениях, и линии строятся с учетом будущего экономического развития в местности, где они заканчиваются.
Подземные кабели служат тем же целям, что и воздушные линии электропередачи.Подземные кабели требуют меньше полосы отвода, чем воздушные линии, но, поскольку они проложены под землей, их установка и обслуживание дороги. Подземная передача часто в 5–10 раз дороже, чем воздушная передача той же мощности. По этим причинам подземные кабели используются только в местах, где воздушное строительство небезопасно или технически неосуществимо, где земля для проезда недоступна или где местные власти требуют прокладки под землей.
Подстанции или коммутационные станции служат в качестве соединений и точек переключения для линий передачи, фидеров и цепей генерации, а также для преобразования напряжений до требуемых уровней.Они также служат точками для компенсации реактивной мощности и регулирования напряжения, а также для измерения электроэнергии. Подстанции имеют шинные системы с воздушной или газовой изоляцией (CGI). Основное оборудование может включать в себя трансформаторы и шунтирующие реакторы, силовые выключатели, разъединители, батареи конденсаторов, приборы для измерения тока и напряжения, измерительные приборы, разрядники для защиты от перенапряжения, реле и защитное оборудование, а также системы управления.
Преобразовательные подстанции переменного / постоянного тока — это специальные типы подстанций, на которых выполняется преобразование электроэнергии из переменного в постоянный (выпрямление) или из постоянного в переменный (инвертирующее).Эти станции содержат обычное оборудование подстанции переменного тока и, кроме того, такое оборудование, как вентили преобразователя постоянного тока (тиристоры), соответствующее оборудование управления, преобразовательные трансформаторы, сглаживающие реакторы, реактивные компенсаторы и фильтры гармоник. Они также могут содержать дополнительные средства управления демпфированием или средства контроля устойчивости при переходных процессах.
Силовые трансформаторы используются на подстанциях для повышения или понижения напряжения и для регулирования напряжений. Для получения желаемого напряжения и поддержания соотношения фазовых углов используются разные схемы обмоток.Обычно используются автотрансформаторы и многообмоточные трансформаторы. Силовые трансформаторы обычно оснащены переключателями ответвлений под нагрузкой или без нагрузки для управления напряжением и могут иметь специальные обмотки для подачи электроэнергии на станцию. Фазовращатели, заземляющие трансформаторы и измерительные трансформаторы — это специальные типы трансформаторов.
Шунтирующие реакторы используются на подстанциях для поглощения реактивной мощности для регулирования напряжения в условиях низкой нагрузки и повышения стабильности системы. Они также помогают снизить переходные перенапряжения во время переключения.Иногда используются специальные схемы шунтирующих реакторов для настройки линий передачи для гашения вторичной дуги в случае однополюсного переключения.
Силовые выключатели используются для переключения линий и оборудования, а также для отключения токов короткого замыкания во время аварийных ситуаций в системе. Срабатывание силового выключателя инициируется вручную оператором или автоматически цепями управления и защиты. В зависимости от изоляционной среды между главными контактами силовые выключатели делятся на типы с воздушной, масляной или газовой изоляцией (SF 6 ).
Выключатели-разъединители используются для отключения или обхода линий, шин и оборудования в зависимости от условий эксплуатации или технического обслуживания. Выключатели-разъединители не подходят для отключения токов нагрузки. Однако они могут быть оснащены последовательными прерывателями для прерывания токов нагрузки.
Синхронные конденсаторы — это вращающиеся машины, которые улучшают стабильность системы и регулируют напряжения при различных нагрузках, обеспечивая необходимую реактивную мощность; они не распространены в Соединенных Штатах.Иногда они используются в преобразовательных подстанциях постоянного тока для обеспечения необходимой реактивной мощности, когда пропускная способность приемной системы переменного тока мала.
Шунтирующие конденсаторы используются на подстанциях для подачи реактивной мощности для регулирования напряжения в условиях большой нагрузки. Шунтирующие конденсаторные батареи обычно переключаются группами, чтобы минимизировать скачкообразные изменения напряжения.
Статические вольт-амперные реактивные компенсаторы (ВАР) сочетают в себе функции шунтирующих реакторов и конденсаторов, а также связанного с ними управляющего оборудования. В статических компенсаторах VAR часто используются конденсаторы с тиристорным управлением или насыщающийся реактор для получения более или менее постоянного напряжения в сети путем непрерывной регулировки реактивной мощности, передаваемой в энергосистему.
Ограничители перенапряжения состоят из последовательно соединенных нелинейных резистивных блоков из оксида цинка (ZnO) или карбида кремния (SiC) и, иногда, из последовательных или шунтирующих разрядников. Ограничители перенапряжения используются для защиты трансформаторов, реакторов и другого основного оборудования от перенапряжений.
Стержневые зазоры служат той же цели, что и разрядники для защиты от перенапряжений, но с меньшими затратами, но с меньшей надежностью. В отличие от разрядников для защиты от перенапряжений, зазоры в стержнях при срабатывании вызывают короткое замыкание, что приводит к срабатыванию выключателя.
Конденсаторы сериииспользуются в линиях передачи на большие расстояния для уменьшения последовательного импеданса линии для управления напряжением.Снижение импеданса линии снижает реактивные потери в линии, увеличивает пропускную способность и улучшает стабильность системы.
Релейное и защитное оборудование устанавливается на подстанциях для защиты системы от ненормальных и потенциально опасных условий, таких как перегрузки, сверхтоки и перенапряжения, путем срабатывания силового выключателя.
Коммуникационное оборудование жизненно важно для потока информации и данных между подстанциями и центрами управления. Линия передачи, радио, микроволновая и волоконно-оптическая линии связи широко используются.
Центры управления, мозг любой электрической сети, используются для управления системой. Они состоят из сложных систем диспетчерского управления, систем сбора данных, систем связи и управляющих компьютеров.
Как работает трансформатор напряжения ~ Изучение электротехники
Функция трансформатора основана на том принципе, что электрическая энергия эффективно передается за счет магнитной индукции от одной цепи к другой. В основном трансформатор состоит из двух или более обмоток, расположенных на одном магнитном пути.Обмотка, на которую подается электрическая энергия, называется первичной обмоткой, а обмотка, к которой подключена нагрузка, называется вторичной обмоткой. Типичное действие двухобмоточного трансформатора показано ниже:Трансформатор Действие |
Когда первичная обмотка трансформатора запитана от источника переменного тока (AC), в сердечнике трансформатора создается переменное магнитное поле. Через сердечник циркулируют переменные магнитные силовые линии, называемые «потоком».Во второй (вторичной) обмотке вокруг того же сердечника напряжение индуцируется переменными магнитными линиями. Нагрузка, подключенная к выводам вторичной обмотки, вызывает протекание тока.
Детали трансформатора
Трансформатор состоит из двух основных неподвижных частей:
(а) Сердцевина из многослойного железа
(b) Обмотки (первичная и вторичная)
Сердечник из слоистого железа
Железный сердечник трансформатора состоит из листов проката.Это железо обрабатывают таким образом, чтобы оно обладало высокой магнитной проводимостью (высокой проницаемостью) по всей длине сердечника. Проницаемость — это термин, используемый для описания случая, когда материал будет проводить магнитные силовые линии.
Железо также имеет высокое омическое сопротивление на пластинах (по всей толщине сердечника). Стальные листы необходимо ламинировать, чтобы уменьшить нагрев сердечника. Существует два распространенных типа сердечников трансформаторов:
(а) Тип сердечника
(b) Корпус типа
Трансформаторы с сердечником и оболочкой |
В трансформаторе с сердечником (в форме сердечника) обмотки окружают сердечник.В трансформаторе кожухового типа стальная магнитная цепь (сердечник) образует кожух, окружающий обмотки. В форме сердечника обмотки находятся снаружи; в форме оболочки обмотки находятся внутри.
Обмотки
Трансформатор имеет две обмотки; первичная обмотка и вторичная обмотка.
Первичная обмотка — это катушка, которая получает энергию. Его формируют, наматывают и надевают на железный сердечник. Вторичная обмотка — это катушка, которая отводит энергию с преобразованным или измененным напряжением.
Типы трансформаторов
Трансформаторы классифицируются по разным критериям. Однако вот список наиболее распространенных универсальных типов трансформаторов:
(а) Однофазные трансформаторы
(б) Трехфазные трансформаторы
(c) Трансформаторы потенциала или напряжения
(г) Автотрансформаторы
(e) Трансформаторы тока
(е) Силовые трансформаторы
Коэффициент напряжения трансформатора
Напряжение на обмотках трансформатора прямо пропорционально количеству витков на катушках обмоток.Эта связь выражается формулой:
Коэффициент напряжения трансформатора |
Где:
Vp = напряжение на первичных обмотках, В
Vs = напряжение на вторичных обмотках, В
Np = количество витков первичной обмотки
Ns = количество витков на вторичных обмотках
Отношение Vp / Vs называется отношением напряжений (VR). Отношение Np / Ns называется отношением оборотов (TR).
Соотношение напряжений 1: 4 (читается как от 1 до 4) означает, что на каждый вольт на первичной обмотке трансформатора приходится 4 В на вторичной. Когда вторичное напряжение больше первичного, трансформатор называется повышающим трансформатором.
Соотношение напряжений 4: 1 означает, что на каждые 4 В первичной обмотки приходится только 1 В. Когда вторичное напряжение меньше первичного, трансформатор называется понижающим трансформатором.
Коэффициент текущей ликвидности
Ток в катушках трансформатора обратно пропорционален напряжению в катушках.Эта связь выражается уравнением:
Коэффициент тока трансформатора |
Где:
Ip = ток в первичной обмотке, А
Is = ток вторичной обмотки, А
В приведенном выше уравнении мы можем заменить Vp / Vs Np / Ns, так что мы имеем:
КПД трансформатора
КПД трансформатора равен отношению выходной мощности вторичной обмотки к мощности, потребляемой первичной обмоткой.
Идеальный трансформатор на 100 процентов эффективен, потому что он передает всю получаемую энергию.
Однако из-за потерь в сердечнике и меди КПД даже самого лучшего практичного трансформатора составляет менее 100 процентов. Выражается в виде уравнения:
КПД трансформатора |
Где:
Eff = КПД
Ps = выходная мощность из вторичной обмотки = входная мощность — потери в сердечнике — потери в меди
Pp = потребляемая мощность первичной
Эффективность хорошо спроектированных трансформаторов очень высока, в среднем более 98 процентов (%) для силовых трансформаторов.Единственные потери в трансформаторе связаны с потерями в сердечнике, которые идут на поддержание переменного магнитного поля, потерями сопротивления в катушках и мощностью, используемой для охлаждения больших трансформаторов, требующих охлаждения.
Основная причина высокого КПД трансформаторов по сравнению с другим оборудованием — отсутствие движущихся частей. Трансформаторы называются статическими машинами переменного тока.
Трансформаторы среднего напряжения: основы трансформаторов среднего напряжения
кВА: Трансформаторы указаны в киловольт-амперах (кВА).kVA используется для выражения номинальной мощности трансформатора, потому что не все нагрузки трансформатора являются чисто резистивными. Резистивный компонент потребляет мощность, измеряемую в ваттах, тогда как реактивный компонент потребляет мощность, измеренную в ВАХ. Векторная сумма этих двух нагрузок составляет общую нагрузку
ВА или кВА.Напряжение: Обозначение напряжения определяет как способ применения трансформатора в системе, так и конструкцию трансформатора. Стандарт IEEE C57.12.00 определяет номинальное напряжение одно- и трехфазных трансформаторов.
Примеры обозначения напряжения:
Трехфазный
- 12470Y / 7200 В
- 12470GY / 7200 В
- 7200 В треугольник
Однофазный
- 7200 / 12470Y В
- 12470GY / 7200 В
- 7200 В треугольник
Повышение температуры: Номинальное значение кВА основано на токе, который трансформатор может выдерживать, не превышая его номинальное значение повышения температуры. Чем более нагружен трансформатор, тем выше становится его внутренняя температура.Максимальное превышение температуры, которое трансформатор может выдержать без ненормальной потери срока службы, регулируется спецификациями заказчика или стандартами IEEE
. Жидкость : Более века в трансформаторах в качестве диэлектрической охлаждающей жидкости используется обычное минеральное масло. Он предлагает разумную стоимость при проверенной, надежной и долгосрочной работе. Процедуры технического обслуживания хорошо отработаны, и использованное минеральное масло обычно можно восстановить для использования путем фильтрации и дегазации. Точка воспламенения минерального масла составляет ок.155 o C, в то время как точка воспламенения менее воспламеняющейся жидкости выше 300 90 457 o 90 458 C. Это делает менее воспламеняющиеся жидкости, такие как Envirotemp FR3, лучшей альтернативой для установки внутри помещений, на крыше зданий или в помещениях с высокими температурами. пешеходные зоны. Использование менее воспламеняющихся жидкостей признано методом снижения пожарной опасности в помещении и на открытом воздухе Национальным законодательством по электротехнике (NFPA 70) и Национальным кодексом электробезопасности
Основы электрических трансформаторов
Что такое электрические трансформаторы?
Электрические трансформаторы — это машины, передающие электричество из одной цепи в другую с изменением уровня напряжения, но без изменения частоты.Сегодня они рассчитаны на использование источника переменного тока, а это означает, что колебания напряжения питания зависят от колебаний тока. Таким образом, увеличение тока приведет к увеличению напряжения и наоборот.
Трансформаторыпомогают повысить безопасность и эффективность энергосистем, повышая и понижая уровни напряжения по мере необходимости. Они используются в широком спектре жилых и промышленных применений, в первую очередь и, возможно, наиболее важно для распределения и регулирования мощности на большие расстояния.
Строительство электрического трансформатора
Три важных компонента электрического трансформатора — это магнитный сердечник, первичная обмотка и вторичная обмотка. Первичная обмотка — это часть, которая подключена к источнику электричества, откуда первоначально создается магнитный поток. Эти катушки изолированы друг от друга, и основной поток индуцируется в первичной обмотке, откуда он передается на магнитный сердечник и соединяется со вторичной обмоткой трансформатора через путь с низким сопротивлением.
Сердечник передает поток во вторичную обмотку, чтобы создать магнитную цепь, которая замыкает поток, а внутри сердечника размещается путь с низким сопротивлением, чтобы максимизировать потокосцепление. Вторичная обмотка помогает завершить движение потока, который начинается на первичной стороне, а с помощью сердечника достигает вторичной обмотки. Вторичная обмотка способна набирать импульс, потому что обе обмотки намотаны на один и тот же сердечник, и, следовательно, их магнитные поля помогают создавать движение. Во всех типах трансформаторов магнитный сердечник собирается из многослойных стальных листов, оставляя минимально необходимый воздушный зазор между ними для обеспечения непрерывности магнитного пути.
Как работают трансформаторы?
Электрический трансформатор для работы использует закон электромагнитной индукции Фарадея: «Скорость изменения магнитной индукции во времени прямо пропорциональна наведенной ЭДС в проводнике или катушке».
Физическая основа трансформатора заключается во взаимной индукции между двумя цепями, которые связаны общим магнитным потоком. Обычно он имеет 2 обмотки: первичную и вторичную. Эти обмотки имеют общий магнитный сердечник, который является ламинированным, и взаимная индукция, возникающая между этими цепями, помогает передавать электричество из одной точки в другую.
В зависимости от количества связанного магнитного потока между первичной и вторичной обмотками будут разные скорости изменения магнитного потока. Чтобы обеспечить максимальную потокосцепление, то есть максимальный поток, проходящий через вторичную обмотку и связанный с ней от первичной обмотки, для обеих обмоток размещен путь с низким сопротивлением. Это приводит к повышению эффективности работы и образует сердечник трансформатора.
Приложение переменного напряжения к обмоткам первичной обмотки создает переменный поток в сердечнике.Это связывает обе обмотки, чтобы навести ЭДС как на первичной, так и на вторичной стороне. ЭДС во вторичной обмотке вызывает ток, известный как ток нагрузки, если к вторичной части подключена нагрузка.
Таким образом электрические трансформаторы передают мощность переменного тока из одной цепи (первичной) в другую (вторичную) посредством преобразования электрической энергии из одного значения в другое, изменяя уровень напряжения, но не частоту.
Видео: Инженерное мышление
Как работает трансформатор — Принцип работы электротехники
Электрический трансформатор — КПД и потери
В электрическом трансформаторе не используются движущиеся части для передачи энергии, что означает отсутствие трения и, следовательно, потерь на ветер.Однако электрические трансформаторы страдают от незначительных потерь меди и железа. Потери меди возникают из-за потерь тепла при циркуляции токов по медным обмоткам, что приводит к потере электроэнергии. Это самые большие потери в работе электрического трансформатора. Потери в железе вызваны запаздыванием магнитных молекул, находящихся внутри сердечника. Это отставание происходит в ответ на изменение магнитного потока, которое приводит к трению, и это трение производит тепло, которое приводит к потере мощности в сердечнике.Эти потери можно значительно уменьшить, если сердечник изготовлен из специальных стальных сплавов.
Интенсивность потерь мощности определяет КПД электрического трансформатора и выражается в потерях мощности между первичной и вторичной обмотками. Результирующий КПД затем рассчитывается как отношение выходной мощности вторичной обмотки к мощности, потребляемой первичной обмоткой. В идеале КПД электрического трансформатора составляет от 94% до 96%
Типы трансформаторов
Электрические трансформаторы можно разделить на различные категории в зависимости от их конечного использования, конструкции, поставки и назначения.
На основе проектирования- Трансформатор с сердечником Этот трансформатор имеет две горизонтальные секции с двумя вертикальными ветвями и прямоугольный сердечник с магнитной цепью. Цилиндрические катушки (ВН и НН) размещены на центральном плече трансформатора сердечника.
- Корпус типа Трансформатор Трансформатор кожухового типа имеет двойную магнитную цепь и центральное плечо с двумя внешними краями.
- Однофазный Трансформатор Однофазный трансформатор имеет только один набор обмоток.Отдельные однофазные блоки могут дать те же результаты, что и трехфазные передачи, когда они соединены внешне.
- Трехфазный Трансформатор Трехфазный (или трехфазный) трансформатор имеет три набора первичной и вторичной обмоток, образующих группу из трех однофазных трансформаторов. Трехфазный трансформатор в основном используется для производства, передачи и распределения электроэнергии в промышленности.
- Повышающий трансформатор
Этот тип определяется количеством витков провода.Таким образом, если вторичный набор имеет большее количество витков, чем первичный, это означает, что напряжение будет соответствовать тому, которое образует базу повышающего трансформатора. - Понижающий трансформатор
Этот тип обычно используется для понижения уровня напряжения в сети передачи и распределения электроэнергии, поэтому его механизм полностью противоположен повышающему трансформатору.
- Силовой трансформатор
Обычно используется для передачи электроэнергии и имеет высокий рейтинг. - Распределение трансформатор Этот электрический трансформатор имеет сравнительно более низкие характеристики и используется для распределения электроэнергии.
- Инструмент трансформатор Этот электрический трансформатор подразделяется на трансформаторы тока и напряжения.
- Трансформатор тока
- Трансформатор потенциала
Эти трансформаторы используются для реле и защиты приборов одновременно.
На основе охлаждения- Самоохлаждающиеся масляные трансформаторы Этот тип обычно используется в небольших трансформаторах мощностью до 3 МВА и предназначен для самоохлаждения за счет окружающего воздушного потока.
- Масляные трансформаторы с водяным охлаждением В этом типе электрических трансформаторов используется теплообменник для облегчения передачи тепла от масла к охлаждающей воде.
- С воздушным охлаждением (воздушное охлаждение) Трансформаторы В трансформаторах этого типа выделяемое тепло охлаждается с помощью нагнетателей и вентиляторов, которые обеспечивают циркуляцию воздуха по обмоткам и сердечнику.
Основные характеристики трансформатора
Все трансформаторы имеют общие черты независимо от их типа:
- Частота входной и выходной мощности одинаковая
- Все трансформаторы используют законы электромагнитной индукции
- Первичная и вторичная катушки не имеют электрического соединения (за исключением автотрансформаторов). Передача мощности осуществляется посредством магнитного потока.
- Для передачи энергии не требуются движущиеся части, поэтому отсутствуют потери на трение или ветер, как в других электрических устройствах.
- Потери, которые происходят в трансформаторах, меньше, чем в других электрических устройствах, и включают:
- Потери в меди (потеря электроэнергии из-за тепла, создаваемого циркуляцией токов вокруг медных обмоток, считается самой большой потерей в трансформаторах)
- Потери в сердечнике (потери на вихревые токи и гистерезис, вызванные запаздыванием магнитных молекул в ответ на переменный магнитный поток внутри сердечника)
Большинство трансформаторов очень эффективны, вырабатывая от 94% до 96% энергии при полной нагрузке.Трансформаторы очень большой мощности могут выдавать до 98%, особенно если они работают с постоянным напряжением и частотой.
Применение электрического трансформатора
Основные области применения электрического трансформатора:
- Повышение или понижение уровня напряжения в цепи переменного тока.
- Увеличение или уменьшение значения индуктивности или конденсатора в цепи переменного тока.
- Предотвращение прохождения постоянного тока из одной цепи в другую.
- Изоляция двух электрических цепей.
- Повышение уровня напряжения на объекте выработки электроэнергии до того, как может произойти передача и распределение.
Общие применения электрического трансформатора включают насосные станции, железные дороги, промышленность, коммерческие предприятия, ветряные мельницы и энергоблоки.
Советы по поиску и устранению неисправностей электрического трансформатора
Использование мультиметра — лучший способ проверить и устранить неисправности в электрической цепи.
- Начните с проверки напряжения цепи, которую необходимо проверить.Этот шаг поможет вам определить тип лампочки, необходимой для сборки тестера цепей.
- Вырежьте 2 полосы из провода AWG 16 калибра , убедившись, что каждая из них имеет длину не менее 12 дюймов.
- Используйте инструмент для зачистки, чтобы удалить четверть внешнего пластика с обоих концов проводов и 1 дюйм внешнего пластика с двух других концов. Как только это будет сделано, скрутите оголенную проволоку, чтобы пряди соединялись.
- Присоедините два конца, с которых вы сняли 1/4 -го дюйма пластика, к клеммам патрона лампы.
- Вставьте лампочку в патрон и прикрепите два оставшихся конца провода к клеммам, которые вы хотите проверить.
D&F Liquidators обслуживает потребности в строительных материалах для электротехники более 30 лет. Это международная информационная служба площадью 180 000 квадратных метров, расположенная в Хейворде, Калифорния. В нем хранится обширный перечень электрических разъемов, кабелепроводов, автоматических выключателей, распределительных коробок, проводных кабелей, предохранительных выключателей и т. Д.Он закупает электрические материалы у ведущих компаний по всему миру. Компания также ведет обширный инвентарь взрывозащищенной электротехнической продукции и современных решений в области электрического освещения. Поскольку компания D&F закупает материалы оптом, она имеет уникальную возможность предложить конкурентоспособную структуру ценообразования. Кроме того, он может удовлетворить самые взыскательные запросы и отгрузить материал в тот же день.
Основные операции трансформатора
- Изучив этот раздел, вы сможете описать:
- • Принцип работы трансформатора.
- • Передаточное число.
- • Коэффициент мощности.
- • Коэффициент трансформации.
- • Потери в трансформаторе: медь, гистерезис и вихревые токи.
- • КПД трансформатора и ток холостого хода.
Трансформаторы.
Трансформатор использует принципы электромагнетизма для переключения одного уровня переменного напряжения на другой. Работа Фарадея в 19 веке показала, что изменяющийся ток в проводнике (например,грамм. первичная обмотка трансформатора) создает изменяющееся магнитное поле вокруг проводника. Если другой проводник (вторичная обмотка) поместить в это изменяющееся магнитное поле, в этой обмотке будет индуцироваться напряжение.
Передаточное число.
Фарадей также рассчитал, что напряжение, индуцированное во вторичной обмотке, будет иметь величину, которая зависит от ОТНОШЕНИЯ ОБОРОТОВ трансформатора. т.е. если вторичная обмотка имеет половину числа витков первичной обмотки, то вторичное напряжение будет вдвое меньше напряжения на первичной обмотке.Точно так же, если вторичная обмотка имеет вдвое больше витков первичной обмотки, вторичное напряжение будет вдвое больше первичного напряжения.
Передаточное число.
Поскольку трансформатор является пассивным компонентом (у него нет внешнего источника питания), он не может выдавать больше мощности из вторичной обмотки, чем подается на первичную обмотку. Следовательно, если вторичное напряжение больше первичного напряжения на определенную величину, вторичный ток будет меньше первичного тока на аналогичную величину, т.е.е. Если напряжение удвоить, ток уменьшится вдвое.
Рис. 11.1.1 Основные операции трансформатора.
Коэффициент трансформации.
Функционирование базового трансформатораможно описать двумя формулами, связывающими коэффициент трансформации с числом витков обмоток трансформатора.
- В P = первичное напряжение.
- I P = первичный ток.
- В S = вторичное напряжение.
- I S = вторичный ток.
- N P = количество витков в первичной обмотке.
- N S = количество витков вторичной обмотки.
Потери трансформатора.
Формулы на рис. 11.1.1 относятся к идеальному трансформатору, то есть трансформатору без потерь мощности, в котором первичный вольт-ампер = вторичный вольт-ампер.
Хотя практические трансформаторы могут быть чрезвычайно эффективными, некоторые потери будут происходить из-за того, что не весь магнитный поток, создаваемый первичной обмоткой, будет связываться со вторичной обмоткой.Потери мощности, возникающие в трансформаторе, бывают трех типов;
1. Потери меди.
Эти потери также можно назвать потерями в обмотке или потерями I2R, поскольку они могут возникать в обмотках, сделанных не из меди, а из других металлов. Потери проявляются в виде тепла, выделяемого в обмотках (медных) проводов, поскольку они рассеивают мощность из-за сопротивления провода.
Потери мощности в обмотке трансформатора можно рассчитать, используя ток в обмотке и ее сопротивление в формуле для мощности P = I 2 R.Эта формула является причиной того, что потери в меди иногда называют потерями I 2 R. Чтобы свести к минимуму потери, сопротивление обмотки должно быть низким с использованием провода подходящей площади сечения и низкого удельного сопротивления.
2. Гистерезисные потери.
Каждый раз, когда переменный ток меняет направление на противоположное (один раз в каждом цикле), крошечные «магнитные домены» в материале сердечника меняются местами. Это физические изменения в основном материале, отнимающие некоторую энергию. Количество используемой энергии зависит от «сопротивления» материала сердечника; в больших сердечниках силовых трансформаторов, где потери на гистерезис могут быть проблемой, они в значительной степени решаются за счет использования специальной стали с низким сопротивлением «ориентированной зернистостью» в качестве материала сердечника.
3. Вихретоковые потери.
Поскольку железный или стальной сердечник является электрическим проводником, а также магнитной цепью, изменяющийся ток в первичной обмотке будет иметь тенденцию создавать ЭДС внутри сердечника, а также во вторичной обмотке. Токи, индуцируемые в сердечнике, будут противодействовать изменениям магнитного поля, происходящим в сердечнике. По этой причине эти вихревые токи должны быть как можно меньше. Это достигается разделением металлического сердечника на тонкие листы или «ламинаты», каждый из которых изолирован друг от друга изолирующим слоем лака или оксида.Ламинированные сердечники значительно уменьшают образование вихревых токов, не влияя на магнитные свойства сердечника.
Ферритовые сердечники.
В высокочастотных трансформаторах потери на вихревые токи уменьшаются за счет использования сердечника из керамического материала, содержащего большую часть мельчайших металлических частиц, железной пыли или марганцево-цинкового сплава. Керамика изолирует металлические частицы друг от друга, давая аналогичный эффект ламинатам и лучше работая на высоких частотах.
Благодаря способам снижения потерь, описанным выше, практические трансформаторы по своим характеристикам почти полностью приближаются к идеальным.В мощных силовых трансформаторах может быть достигнут КПД около 98%. Поэтому для большинства практических расчетов можно предположить, что трансформатор является «идеальным», если не указаны его потери. Фактические вторичные напряжения в практическом трансформаторе будут лишь немного меньше, чем рассчитанные с использованием теоретического коэффициента трансформации.
Ток выключения.
Поскольку трансформатор работает почти идеально, мощность как в первичной, так и во вторичной обмотках одинакова, поэтому, когда на вторичную обмотку не подается нагрузка, вторичный ток не течет, а мощность во вторичной обмотке равна нулю (V x I = 0).Следовательно, хотя к первичной обмотке приложено напряжение, ток не будет течь, так как мощность в первичной обмотке также должна быть равна нулю. В практических трансформаторах «ток холостого хода» в первичной обмотке на самом деле очень низкий.
Вольт на оборот.
Трансформатор с первичной обмоткой на 1000 витков и вторичной обмоткой на 100 витков имеет соотношение витков 1000: 100 или 10: 1. Следовательно, 100 вольт, приложенное к первичной обмотке, создаст вторичное напряжение 10 вольт.
Другой способ измерения напряжения трансформатора — вольт / виток; если 100 В, приложенные к 1000 витков первичной обмотки, дают 100/1000 = 0.1 вольт на виток, тогда каждый отдельный виток 100-витковой вторичной обмотки будет производить 0,1 В, поэтому общее вторичное напряжение будет 100 × 0,1 В = 10 В.
Тот же метод можно использовать для определения значений напряжения, возникающего на отдельных ответвлениях автотрансформатора, если известно количество витков на ответвления.
Просто разделите общее напряжение всей обмотки на общее количество витков и умножьте этот результат на количество витков в конкретном ответвлении.
Трансформаторы напряжения— купите здесь безопасные и эффективные преобразователи мощности
Трансформаторы напряженияACUPWR — это самые безопасные и надежные преобразователи мощности, доступные во всем мире. Наши продукты обеспечивают совместимость с различными мировыми стандартами напряжения.
С трансформатором напряжения ACUPWR вы можете использовать свой 120-вольтовый блендер в стране, где напряжение составляет 240 вольт, или усилитель домашнего кинотеатра на 220 вольт в Японии, где 100 вольт является стандартным.ACUPWR обеспечивает безопасную энергию, куда бы вас ни забросила жизнь!
Чем отличается ACUPWR?
- Нет правила «удвоить мощность»! Известно, что трансформаторы иностранного производства взрываются до достижения предельной мощности, поэтому вам необходимо купить модель, которая может выдерживать удвоенную мощность. Трансформаторы напряжения ACUPWR будут обрабатывать мощность, указанную на устройстве. У вас есть 750-ваттный прибор? Покупайте электрический трансформатор ACUPWR на 750 ватт с уверенностью!
- Высокое качество! Наши международные силовые преобразователи собираются вручную в США.S. с компонентами премиум-класса и испытанными перед отправкой.
- Нет предохранителей! Наша схема тепловой защиты защищает от перегрузки, автоматически отключая трансформатор, если он обнаруживает перегрев.
- Все больше и больше! Продукты ACUPWR Tru-Watts ™ работают на 20% сверх заявленной мощности и предназначены для выдерживания колебаний напряжения и мощности, вызванных скачками напряжения, скачками, скачками, молниями и другими аномалиями.
- Пожизненная гарантия! Трансформаторы ACUPWR настолько хороши, что мы даем им пожизненную гарантию.Мы даже предлагаем компенсацию ущерба в размере 10 000 долларов на большинство моделей!
- Пожизненное обслуживание клиентов! Наши технические специалисты доступны в обычное рабочее время, чтобы ответить на ваши вопросы и решить ваши проблемы.
- Надежность! ACUPWR доверяют НАСА, посольства, армия США, Организация Объединенных Наций, неправительственные организации, правительственные учреждения, корпорации, компании по производству фильмов и телепрограмм и другие организации.
Что нужно знать о трансформаторах переменного напряжения.
Как можно отрегулировать диапазон напряжения трансформатора от нескольких вольт до более 100% входного напряжения?
Трансформаторыпеременного напряжения являются эффективным средством изменения напряжения, особенно если вам нужна большая степень гибкости при изменении соотношения между первичной и вторичной обмотками. Они просты в эксплуатации, и доступны элементы управления для автоматической регулировки для поддержания «постоянного» (регулируемого) выходного напряжения. Величина получаемого изменения напряжения зависит от типа используемого переменного трансформатора.
Одной из основных причин изменения вторичного напряжения является компенсация при изменении входящего линейного напряжения. При использовании автоматического оборудования вторичное напряжение, которое обслуживает нагрузку, будет оставаться в основном постоянным или регулируемым, если напряжение в сети будет колебаться. Чтобы избежать постоянного скачка напряжения, поддерживается предел допуска напряжения, обычно от полувольта до нескольких вольт.
Методы достижения переменного напряжения
Есть два основных метода, которые вы можете использовать для достижения переменного выходного напряжения (кроме использования реостата).Оба используют автотрансформаторы, но разных типов.
Как показано на рис. 1, автотрансформаторы имеют по крайней мере две обмотки с кулачковым участком. Штатный автотрансформатор имеет фиксированные клеммы. У понижающей версии есть первичные выводы на обоих концах катушки; его вторичная обмотка использует ту же катушку, но у нее будет один отвод между двумя клеммами первичной обмотки вместе с клеммой на одном конце катушки. Отношение напряжений основано на количестве витков между клеммами первичной обмотки и между клеммой вторичной обмотки и ответвлением.
Метод 1. Первый подход к достижению переменного напряжения — это конфигурация, в которой один отвод фиксируется, а другой отвод подключается к щетке, которая скользит по неизолированной части катушки. [ИЛЛЮСТРАЦИЯ К РИСУНКУ 2 ОПРЕДЕЛЕНА]. Это вместо вторичного напряжения, основанного на фиксированных выходных ответвлениях. Один из способов сделать это — обернуть катушку вокруг сердечника тороидальной формы.
Соотношение напряжений связано с положением щетки, когда она движется по катушке, и зависит от того, с какой частью катушки щетка может контактировать.
Выпускаются трансформаторы с ограниченным передаточным числом и полнодиапазонные блоки, которые могут изменять напряжение от 0% до примерно 120% входящего линейного напряжения. Когда выходное напряжение превышает входное, на катушке появляются дополнительные витки, выходящие за пределы обмоток и лежащие между входными силовыми клеммами. Фактически, блок становится повышающим трансформатором.
Номинальные параметры начинаются от менее 1 кВА для однофазного регулируемого трансформатора на 120 В. Базовые блоки подключаются параллельно и / или последовательно для получения большей мощности.Два параллельно включенных блока имеют удвоенный ток и номинальную мощность в кВА. Отдельные блоки устанавливаются друг на друга, скрепляются болтами и приводятся в действие с помощью общего вала, который вращает щетки. При работе в конфигурации, сочетающей параллельное и последовательное соединение с несколькими модулями, установленными вместе, этот тип при 480 В может иметь номинальную мощность, превышающую 200 кВА.
Вы можете указать механизм управления для автоматического достижения «постоянного» (регулируемого) выходного напряжения; он прикреплен к ротору, который вращает щетки.
Важная конструктивная характеристика этого типа трансформатора связана с контактом со щеткой и величиной тока, протекающего через угольную щетку. Рейтинг, основанный исключительно на выходной кВА, может вызвать серьезные проблемы, поскольку для данной нагрузки кВА потребляемый ток зависит от выходного напряжения. Поскольку выходное напряжение является переменным, нагрузка с заданным значением кВА может потреблять безопасный ток при напряжении 100%, в то время как при напряжении 25% ток, необходимый для обслуживания нагрузки с таким же значением кВА, потребует в четыре раза больше тока.Эта ситуация может привести к перегреву щетки, поэтому не следует превышать максимальный номинальный ток.
Метод 2. Другой формой трансформатора переменного напряжения является трансформатор индукционного типа, как показано на рис. 3, в котором не используются щетки. Обычное изменение напряжения для этого типа устройств составляет [+ или -] 10%, но может быть больше. Этот блок представляет собой автотрансформатор с регулируемым коэффициентом передачи, в котором используются две отдельные обмотки — первичная и вторичная. Статор из многослойной стали, на который намотана обмотка, служит вторичной обмоткой.Эта обмотка включена последовательно с нагрузкой. Первичная обмотка, или шунтирующая обмотка, подключена к линии питания и намотана вокруг ротора. Конструкция аналогична конструкции двигателя, за исключением того, что в этом случае ротор может поворачиваться только на 180 механических и электрических градусов.
По мере вращения первичного сердечника количество первичного потока, проходящего через вторичную обмотку, уменьшается до тех пор, пока сердечник не достигнет положения, перпендикулярного вторичной обмотке. В этом положении первичный поток не проходит через вторичные обмотки, и в результате индуцированное напряжение в этой катушке равно нулю.