Транзистор и резистор: Как отличить резистор от транзистора?

Содержание

знакомство с радиодеталями

 

главная

основы

элементы

примеры расчетов

любительская технология

общая схемотехника

радиоприем

конструкции для дома и быта

связная аппаратура

телевидение

справочные данные

измерения

обзор радиолюбительских схем в журналах

обратная связь

      реклама

 

резисторы и конденсаторы     полупроводниковые приборы    акустические приборы     микросхемы     солнечные фотоэлементы      SMD компоненты    реле электромагнитные  полупроводниковые оптоприборы

                ЗНАКОМСТВО С РАДИОДЕТАЛЯМИ


Какие только детали не понадобятся для изготовления предлагаемых конструкций! Здесь и резисторы, и транзисторы, и конденсаторы, и диоды, и выключатели. .. Из многообразия радиодеталей надо уметь быстро отличить по внешнему виду нужную, расшифровать надпись на ее корпусе, определить выводы. О том, как это сделать, и будет кратко рассказано ниже. Более же подробные сведения о радиодеталях вы найдете в описании конструкций самоделок.

Резистор. Эта деталь встречается практически в каждой конструкции. Представляет собой фарфоровую трубочку (или стержень), на которую снаружи напылена тончайшая пленка металла или сажи (углерода). Резистор обладает сопротивлением и используется для того, чтобы установить нужный ток в электрической цепи. Вспомните пример с резервуаром: изменяя диаметр трубы (сопротивление нагрузки), можно получить ту или иную скорость потока воды (электрический ток различной силы). Чем тоньше пленка на фарфоровой трубочке или стержне, тем больше сопротивление току. На схемах резистор обозначается латинской буквой R (от слова Resistans — сопротивляться).


Резисторы бывают постоянные и переменные. Из постоянных чаще всего используют резисторы типа МЛТ (металлизированное лакированное теплостойкое), ВС (влагостойкое сопротивление), УЛМ (углеродистое лакированное малогабаритное), из переменных — СП (сопротивление переменное) и СПО (сопротивление переменное объемное).
Резисторы различают по сопротивлению и мощности. Сопротивление, как вы уже знаете, измеряют в омах, килоомах и мегаомах. Мощность же выражают в ваттах и обозначают эту единицу буквами Вт. Резисторы разной мощности отличаются размерами. Чем больше мощность резистора, тем больше его размеры.

 

Сопротивление резистора проставляют на схемах рядом с его условным обозначением. Если сопротивление менее 1 кОм, цифрами указывают число ом без единицы измерения. При сопротивлении 1 кОм и более — до 1 МОм указывают число килоом и ставят рядом букву «к». Сопротивление 1 МОм и выше выражают числом мегаом с добавлением буквы «М». Например, если на схеме рядом с обозначением резистора написано 510, значит, сопротивление резистора 510 Ом. Обозначениям 3,6 к и 820 к соответствует сопротивление 3,6 кОм и 820 кОм. Надпись на схеме 1 М или 4,7 М означает, что используются сопротивления 1 МОм -и 4,7 МОм.

В отличие от постоянных резисторов, имеющих два вывода, у переменных резисторов таких выводов три. На схеме указывают сопротивление между крайними выводами переменного резистора. Сопротивление же между средним выводом и крайними изменяется при вращении выступающей наружу оси резистора. Причем, когда ось поворачивают в одну сторону, сопротивление между средним выводом и одним из крайних возрастает, соответственно уменьшаясь между средним выводом и другим крайним.
Когда же ось поворачивают обратно, происходит обратное явление. Это свойство переменного резистора используется, например, для регулирования громкости звука в усилителях, приемниках, электрофонах.

К группе резисторов относятся и так называемые терморезисторы. В принципе, у любого резистора имеется определенная зависимость номинала от окружающей температуры. Эта зависимость называется Температурный Коэффициент Сопротивления — сокращенно — ТКС и носит величину в процентах на градус (как правило — градус Цельсия!). В процессе изготовления стараются снизить ТКС у резисторов до минимума…  Довольно высокий ТКС имеют некоторые металлы (например — медь). Это свойство часто используется для контроля за температурой внутри аппаратуры, а также дает возможность косвенным путем вычислить температуру, например, силового трансформатора или электродвигателя. Используя некоторые из полупроводниковых материалов можно создать терморезисторы как с положительным, так и с отрицательным ТКС.

Резисторы с положительным ТКС часто используют в цепях защиты аппаратуры от перегрева. При увеличении температуры сопротивление такого резистора увеличивается до величины иногда в несколько раз большей, чем начальная, что ограничивает ток, например в цепи пусковой обмотки электродвигателя… Терморезисторы с отрицательным ТКС часто используются для обеспечения так называемого «мягкого» пуска электродвигателей а также для продления службы обычных ламп накаливания. Такой резистор при комнатной температуре имеет некоторое начальное сопротивление, уменьшающееся в процессе нагрева. Таким образом мы имеем некоторое ограничение пускового тока… Справочные данные некоторых из отечественных терморезисторов можно скачать  по этой ссылке.

Конденсатор. Надо сказать, что эту деталь, как и резистор, можно увидеть во многих самоделках. Как правило, самый простой конденсатор — это две металлические пластинки (обкладки) и воздух между ними. Вместо воздуха может быть фарфор, слюда или другой материал, не проводящий ток. Если резистор пропускает постоянный ток, то через конденсатор он не проходит. А вот переменный ток через конденсатор проходит. Благодаря такому свойству конденсатор ставят там, где нужно отделить постоянный ток от переменного.

Как вы знаете, у резистора основной параметр — сопротивление, у конденсатора же — емкость. Конденсаторы бывают постоянной и переменной емкости. У переменных конденсаторов емкость изменяется при вращении выступающей наружу оси. Кроме этих двух типов, в наших конструкциях используется еще одна разновидность конденсаторов — подстроечный. Обычно его устанавливают в то или иное устройство для того, чтобы при налаживании точнее подобрать нужную емкость и больше конденсатор не трогать. В любительских конструкциях подстроечный конденсатор нередко используют как переменный — он дешев и доступен. На схемах конденсатор обозначается буквой С (от латинского слова Capacitor — накопитель).
Единица емкости - микрофарада (мкФ) взята за основу в радиолюбительских конструкциях и в промышленной аппаратуре. Но чаще употребляется другая единица — пикофарада (пФ), миллионная доля микрофарады. На схемах вы встретите и ту, и другую единицу. Причем емкость до 9100 пФ включительно указывают на схемах в пикофарадах, а свыше — в микрофарадах. Если, например, рядом с условным обозначением конденсатора написано «27», «510» или «6800», значит, емкость конденсатора соответственно 27, 510 или 6800 пФ. А вот цифры 0,015, 0,25 или 1,0 свидетельствуют о том, что емкость конденсатора составляет соответствующее число микрофарад.
Типов конденсаторов очень много. Они отличаются материалом между пластинами и конструкцией. Бывают конденсаторы воздушные, слюдяные, керамические и др. Одна из разновидностей постоянных конденсаторов — электролитический. Такие конденсаторы выпускают большой емкости — от 0,5 до 68000 мкФ.

 На схемах для них указывают не только емкость, но и максимальное напряжение, на которое их можно использовать . Например, надпись 5,0×10 В означает, что конденсатор емкостью 5 мкФ нужно взять на напряжение 10 В. Необходимо иметь в виду, что электролитичесие конденсаторы (за исключением специально изготовленных, так называемых «неполярных»!) не могут работать в цепях переменного тока значительной величины! Использование полярных электролитических конднсаторов в цепях переменного тока приводит к их разрушению и даже к  взрыву!!!
Для переменных или подстроечных конденсаторов на схеме указывают крайние значения емкости, которые получаются, если ось конденсатора повернуть от одного крайнего положения до другого или вращать вкруговую (как у подстроечных конденсаторов). Например, надпись 5 — 180 свидетельствует о том, что в одном крайнем положении оси емкость конденсатора составляет 5 пФ, а в другом — 180 пФ. При плавном повороте из одного положения в другое емкость конденсатора будет также плавно изменяться от 5 до 180 пФ или от 180 до 5 пФ.

Номинальные значения емкости конденсаторов и сопротивления резисторов показаны на рисунке внизу:

Цифры номиналов зависят от допустимого отклонения (получается при изготовлении и последующей отбраковки элементов) от номинального значения в процентах.

                                                     вверх 

Про резисторы для начинающих заниматься электроникой

При сборке любого устройства, даже самого простейшего, у радиолюбителей часто возникают проблемы с радиодеталями, бывает что не удается достать какой то резистор определенного номинала, конденсатор или транзистор… в данной статье я хочу рассказать про замену радиодеталей в схемах, какие радиоэлементы на что можно заменять и какие нельзя, чем они различаются, какие типы элементов в каких узлах применяют и многое другое. Большинство радиодеталей могут быть заменены на аналогичные, близкие по параметрам.

Начнем пожалуй с резисторов.

Итак, вам наверное уже известно, что резисторы являются самыми основными элементами любой схемы. Без них не может быть построена ни одна схема, но что же делать, если у вас не оказалось нужных сопротивлений для вашей схемы? Рассмотрим конкретный пример, возьмем к примеру схему светодиодной мигалки, вот она перед вами:

Для того чтобы понять, какие резисторы здесь в каких пределах можно менять, нам нужно понять, на что вообще они влияют. Начнем с резисторов R2 и R3 – они влияют (совместно с конденсаторами) на частоту мигания светодиодов, т.е.

можно догадаться, что меняя сопротивления в большую или меньшую сторону, мы будем менять частоту мигания светодиодов. Следовательно, данные резисторы в этой схеме можно заменить на близкие по номиналу, если у вас не окажется указанных на схеме. Если быть точнее, то в данной схеме можно применить резисторы ну скажем от 10кОм до 50кОм.

Что касается резисторов R1 и R4, в некоторой степени и от них тоже зависит частота работы генератора, в данной схеме их можно поставить от 250 до 470Ом.

Тут есть еще один момент, светодиоды ведь бывают на разное напряжение, если в данной схеме применяются светодиоды на напряжение 1,5вольт, а мы поставим туда светодиод на большее напряжение – они у нас будут гореть очень тускло, следовательно, резисторы R1 и R4 нам нужно будет поставить на меньшее сопротивление.

Как видите, резисторы в данной схеме можно заменить на другие, близкие номиналы.

Вообще говоря, это касается не только данной схемы, но и многих других, если у вас при сборке схемы скажем не оказалось резистора на 100кОм, вы можете заменить его на 90 или 110кОм, чем меньше будет разница – тем лучше ставить вместо 100кОм 10кОм не стоит, иначе схема будет работать некорректно или вовсе, какой либо элемент может выйти из строя. Кстати, не стоит забывать что у резисторов допустимо отклонение номинала. Прежде чем резистор менять на другой, прочитайте внимательно описание и принцип работы схемы. В точных измерительных приборах не стоит отклоняться от заданных в схеме номиналов.

  • Теперь что касается мощностей, чем мощнее резистор тем он толще, ставить вместо мощного 5 ваттного резистора 0,125 ватт никак нельзя, в лучшем случае он будет очень сильно греться, в худшем — просто сгорит.
  • А заменить маломощный резистор более мощным – всегда пожалуйста, от этого ничего не будет, только мощные резисторы они более крупные, понадобится больше места на плате, или придется его поставить вертикально.
  • Не забывайте про параллельное и последовательное соединение резисторов, если вам нужен резистор на 30кОм, вы можете его сделать из двух резисторов по 15кОм, соединив последовательно.

В схеме что я дал выше, присутствует подстроечный резистор. Его конечно же можно заменить переменным, разницы никакой нет, единственное, подстроечный придется крутить отверткой.

Можно ли подстроечные и переменные резисторы в схемах менять на близкие по номиналу? В общем то да, в нашей схеме его можно поставить почти любого номинала, хоть 10кОм, хоть 100кОм – просто изменятся пределы регулирования, если поставим 10кОм, вращая его мы быстрее будем менять частоту мигания светодиодов, а если поставим 100кОм.

, регулировка частоты мигания будет производиться плавнее и «длиннее» нежели с 10к. Иначе говоря, при 100кОм диапазон регулировки будет шире, чем при 10кОм.

А вот заменять переменные резисторы более дешевыми подстроечными не стоит. У них движок грубее и при частом использовании сильно царапается токопроводящий слой, после чего при вращении движка сопротивление резистора может меняться скачкообразно. Пример тому хрип в динамиках при изменении громкости.

Подробнее про виды и типы резисторов можно почитать .

Теперь поговорим про конденсаторы, они бывают разных видов, типов и конечно же емкостей. Все конденсаторы различаются по таким основным параметрам как номинальная ёмкость, рабочее напряжение и допуск. В радиоэлектронике применяют два типа конденсаторов, это полярные, и неполярные.

Отличие полярных конденсаторов от неполярных заключается в том, что полярные конденсаторы нужно включать в схему строго соблюдая полярность. Конденсаторы по форме бывают радиальные, аксиальные (выводы у таких конденсаторов находятся сбоку), с резьбовыми выводами (обычно это конденсаторы большой емкости или высоковольтные), плоские и так далее.

Различают импульсные, помехоподавляющие, силовые, аудио конденсаторы, общего назначения и др.

  1. Где какие конденсаторы применяют?
  2. В фильтрах блоков питания применяют обычные электролитические, иногда еще ставят керамику (служат для фильтрации и сглаживания выпрямленного напряжения), в фильтрах импульсных блоков питания применяют высокочастотные электролиты, в цепях питания — керамику, в некритичных цепях тоже керамику.
  3. На заметку!

У электролитических конденсаторов обычно большой ток утечки, а погрешность емкости может составлять 30-40%, т.е. емкость указанная на банке, в реальности может сильно отличаться.

Номинальная ёмкость таких конденсаторов уменьшается по мере их срока эксплуатации.

Самый распространённый дефект старых электролитических конденсаторов – это потеря ёмкости и повышенная утечка, такие конденсаторы не стоит эксплуатировать дальше.

Вернемся мы к нашей схеме мультивибратора (мигалки), как видите там присутствуют два электролитических полярных конденсатора, они так же влияют на частоту мигания светодиодов, чем больше емкость, тем медленнее они будут мигать, чем меньше емкость, тем быстрее будут мигать.

Во многих устройствах и приборах нельзя так «играть» емкостями конденсаторов, к примеру если в схеме стоит 470 мкФ – то надо стараться поставить 470 мкФ, или же параллельно 2 конденсатора 220 мкФ. Но опять же, смотря в каком узле стоит конденсатор и какую роль он выполняет.

Рассмотрим пример на усилителе низкой частоты:

Как видите, в схеме присутствует три конденсатора, два из которых не полярные. Начнем с конденсаторов С1 и С2, они стоят на входе усилителя, через эти конденсаторы проходит/подается источник звука. Что будет если вместо 0.22 мкФ мы поставим 0.

01 мкФ? Во первых немного ухудшится качество звучания, во вторых звук в динамиках станет заметно тише. А если мы вместо 0.

22 мкФ поставим 1 мкФ – то на больших громкостях у нас появятся хрипы в динамиках, усилитель будет перегружаться, будет сильнее нагреваться, да и качество звука снова может ухудшиться.

Если вы глянете на схему какого нибудь другого усилителя, можете заметить, что конденсатор на входе может стоять и 1 мкФ, и даже 10 мкФ. Все зависит от каждого конкретного случая. Но в нашем случае конденсаторы 0.22 мкФ можно заменять на близкие по значению, например 0.15 мкФ или лучше 0.33 мкФ.

Итак, дошли мы до третьего конденсатора, он у нас полярный, имеет плюс и минус, путать полярность при подключении таких конденсаторов нельзя, иначе они нагреются, что еще хуже, взорвутся.

А бабахают они очень и очень сильно, может уши заложить.

Конденсатор С3 емкостью 470 мкФ у нас стоит по цепи питания, если вы еще не в курсе, то скажу, что в таких цепях, и например в блоках питания чем больше емкость, тем лучше.

Сейчас у каждого дома имеются компьютерные колонки, может быть вы замечали, что если громко слушать музыку, колонки хрипят, а еще мигает светодиод в колонке.

Это обычно говорит как раз о том, что емкость конденсатора в цепи фильтра блока питания маленькая (+ трансформаторы слабенькие, но об этом я не буду). Теперь вернемся к нашему усилителю, если мы вместо 470 мкФ поставим 10 мкФ – это почти то же самое что конденсатор не поставить вообще.

Как я уже говорил, в таких цепях чем больше емкость, тем лучше, честно говоря в данной схеме 470 мкФ это очень мало, можно все 2000 мкФ поставить.

Ставить конденсатор на меньшее напряжение чем стоит в схеме нельзя, от этого он нагреется и взорвется, если схема работает от 12 вольт, то нужно ставить конденсатор на 16 вольт, если схема работает от 15-16 вольт, то конденсатор лучше поставить на 25 вольт.

Что делать, если в собираемой вами схеме стоит неполярный конденсатор? Неполярный конденсатор можно заменить двумя полярными, включив их последовательно в схему, плюсы соединяются вместе, при этом емкость конденсаторов должна быть в два раза больше чем указано на схеме.

Никогда не разряжайте конденсаторы замыкая их вывода! Всегда нужно разряжать через высокоомный резистор, при этом не касайтесь выводов конденсатора, особенно если он высоковольтный.

Практически на всех полярных электролитических конденсаторах на верхней части вдавлен крест, это своеобразная защитная насечка (часто называют клапаном).

Если на такой конденсатор подать переменное напряжение или превысить допустимое напряжение, то конденсатор начнет сильно греться, а жидкий электролит внутри него начнет расширяться, после чего конденсатор лопается.

Таким образом часто предотвращается взрыв конденсатора, при этом электролит вытекает наружу.

В связи с этим хочу дать небольшой совет, если после ремонта какой либо техники, после замены конденсаторов вы впервые включаете его в сеть (например в старых усилителях меняются все подряд электролитические конденсаторы), закрывайте крышку и держитесь на расстоянии, не дай бог что бабахнет.

Теперь вопрос на засыпку: можно ли включать в сеть 220вольт неполярный конденсатор на 230 вольт? А на 240? Только пожалуйста, сходу не хватайте такой конденсатор и не втыкайте его в розетку!

У диодов основными параметрами являются допустимый прямой ток, обратное напряжение и прямое падение напряжения, иногда еще нужно обратить внимание на обратный ток. Такие параметры заменяющих диодов должны быть не меньше, чем у заменяемых.

У маломощных германиевых диодов обратный ток значительно больше, чем у кремниевых. Прямое падение напряжения у большинства германиевых диодов примерно в два раза меньше чем у похожих кремниевых. Поэтому в цепях, где используется это напряжение для стабилизации режима работы схемы, например в некоторых оконечных усилителях звука, замена диодов на другой тип проводимости не допустима.

Для выпрямителей в блоках питания главными параметрами являются обратное напряжение и предельно допустимый ток. Например, при токах 10А можно применять диоды Д242…Д247 и похожие, для тока 1 ампер можно КД202, КД213, из импортных это диоды серии 1N4xxx. Ставить вместо 5 амперного диода 1 амперный конечно же нельзя, наоборот можно.

В некоторых схемах, например в импульсных блоках питания нередко применяют диоды Шоттки, они работают на более высоких частотах чем обычные диоды, обычными диодами такие заменять не стоит, они быстро выйдут из строя.

Во многих простеньких схемах в качестве замены можно поставить любой другой диод, единственное, не спутайте вывода, с осторожностью стоит к этому относиться, т.к. диоды так же могут лопнуть или задымиться (в тех же блоках питания) если спутать анод с катодом.

Можно ли диоды (в т.ч.

диоды Шоттки) включать параллельно? Да можно, если два диода включить параллельно, протекающий через них ток может быть увеличен, сопротивление, падение напряжения на открытом диоде и рассеиваемая мощность уменьшаются, следовательно – диоды меньше будут греться. Параллелить диоды можно только с одинаковыми параметрами, с одной коробки или партии. Для маломощных диодов рекомендую ставить так называемый «токоуравнивающий» резистор.

Транзисторы делятся на маломощные, средней мощности, мощные, низкочастотные, высокочастотные и т.д. При замене нужно учитывать максимально допустимое напряжение эмиттер-коллектор, ток коллектора, рассеиваемая мощность, ну и коэффициент усиления.

Заменяющий транзистор, во первых, должен относиться к той же группе, что и заменяемый. Например, малой мощности низкой частоты или большой мощности средней частоты.

Затем подбирают транзистор той же структуры: р-п-р или п-р-п, полевой транзистор с р-каналом или n-каналом. Далее проверяют значения предельных параметров, у заменяющего транзистора они должны быть не меньше, чем у заменяемого.

Кремниевые транзисторы рекомендуется заменять только кремниевыми, германиевые — германиевыми, биполярные – биполярными и т.д.

Давайте вернемся к схеме нашей мигалки, там применены два транзистора структуры n-p-n, а именно КТ315, данные транзисторы спокойно можно заменить на КТ3102, или даже на старенький МП37, вдруг завалялся у кого Транзисторов, способных работать в данной схеме очень и очень много.

Как вы думаете, будут ли работать в этой схеме транзисторы КТ361? Конечно же нет, транзисторы КТ361 другой структуры, p-n-p. Кстати, аналогом транзистора КТ361 является КТ3107.

В устройствах, где транзисторы используются в ключевых режимах, например в каскадах управления реле, светодиодов, в логических схемах и пр… выбор транзистора не имеет большого значения, выбирайте аналогичной мощности, и близкий по параметрам.

В некоторых схемах между собой можно заменять например КТ814, КТ816, КТ818 или КТ837. Возьмем для примера транзисторный усилитель, схема его ниже.

Выходной каскад построен на транзисторах КТ837, их можно заменить на КТ818, а вот на КТ816 уже не стоит менять, он будет очень сильно нагреваться, и быстро выйдет из строя. Кроме того, уменьшится выходная мощность усилителя. Транзистор КТ315 как вы уже наверное догадались меняется на КТ3102, а КТ361 на КТ3107.

Мощный транзистор можно заменить двумя маломощными того же типа, их соединяют параллельно.

При параллельном соединении, транзисторы должны применяться с близкими значениями коэффициента усиления, рекомендуется ставить выравнивающие резисторы в эмиттерной цепи каждого, в зависимости от тока: от десятых долей ома при больших токах, до единиц ом при малых токах и мощностях. В полевых транзисторах такие резисторы обычно не ставятся, т.к. у них положительный ТКС канала.

Про резисторы для начинающих заниматься электроникой | Инвертор, преобразователь напряжения, частотный преобразователь

Продолжение статьи о начале занятий электроникой. Для тех, кто отважился начать. Рассказ о деталях.

Радиолюбительство до сего времени является одним из часто встречающихся увлечений, хобби. Если сначала собственного славного пути радиолюбительство затрагивало в главном конструирование приемников и передатчиков, то с развитием электрической техники расширялся спектр электрических устройств и круг радиолюбительских интересов.

Естественно, такие сложные устройства, как, к примеру, видеомагнитофон, проигрыватель компакт-дисков, телек либо домашний кинозал у себя дома собирать не станет даже самый квалифицированный радиолюбитель. А вот ремонтом техники промышленного производства занимаются очень многие радиолюбители, при этом довольно удачно.

Другим направлением является конструирование электрических схем либо доработка «до класса люкс» промышленных устройств.

Спектр в данном случае довольно велик.

Это устройства для сотворения «умного дома», зарядные устройства для аккумов, регуляторы оборотов электродвигателей, частотные преобразователи для трехфазных движков, преобразователи 12…220В для питания телевизоров либо звуковоспроизводящих устройств от авто аккума, разные терморегуляторы. Также очень популярны схемы фотореле для включения освещения, охранные устройства и сигнализация, также почти все другое.

Передатчики и приемники отошли на последний план, а вся техника именуется сейчас просто электроникой. И сейчас, пожалуй, следовало бы именовать радиолюбителей как-то по другому. Но исторически сложилось так, что другого наименования просто не выдумали. Потому пусть будут радиолюбители.

Составляющие электрических схем

При всем многообразии электрических устройств они состоят из радиодеталей. Все составляющие электрических схем можно поделить на два класса: активные и пассивные элементы.

Активными числятся радиодетали, которые владеют свойством усиливать электронные сигналы, т.е. владеющие коэффициентом усиления. Несложно додуматься, что это транзисторы и все, что из их делается: операционные усилители, логические микросхемы, микроконтроллеры и почти все другое.

Одним словом все те элементы, у каких маломощный входной сигнал управляет довольно массивным выходным. В таких случаях молвят, что коэффициент усиления (Кус) у их больше единицы.

К пассивным относятся такие детали, как резисторы, конденсаторы, катушки индуктивности, диоды и т.п. Одним словом все те радиоэлементы, которые имеют Кус в границах 0…1! Единицу тоже можно считать усилением: «Однако, не ослабляет». Вот поначалу и разглядим пассивные элементы.

Резисторы

Являются самыми ординарными пассивными элементами. Основное их предназначение ограничить ток в электронной цепи. Простым примером является включение светодиода, показанное на рисунке 1. При помощи резисторов также подбирается режим работы усилительных каскадов при разных схемах включения транзисторов.

Набросок 1. Схемы включения свтодиода

Характеристики резисторов

Ранее резисторы назывались сопротивлениями, это как раз их физическое свойство. Чтоб не путать деталь с ее свойством сопротивления переименовали в резисторы.

Сопротивление, как свойство присуще всем проводникам, и характеризуется удельным сопротивлением и линейными размерами проводника. Ну, приблизительно так же, как в механике удельный вес и объем.

Формула для подсчета сопротивления проводника: R = ρ*L/S, где ρ удельное сопротивление материала, L длина в метрах, S площадь сечения в мм2. Несложно узреть, что чем длиннее и тоньше провод, тем больше сопротивление.

Можно поразмыслить, что сопротивление не наилучшее свойство проводников, ну просто препятствует прохождению тока. Но в ряде всевозможных случаев как раз это препятствие является полезным.

Дело в том, что при прохождении тока через проводник на нем выделяется термическая мощность P = I2 * R. Тут P, I, R соответственно мощность, ток и сопротивление.

Эта мощность употребляется в разных нагревательных устройствах и лампах накаливания.

Резисторы на схемах

Все детали на электронных схемах показываются при помощи УГО (условных графических обозначений). УГО резисторов показаны на рисунке 2.

Набросок 2. УГО резисторов

Черточки снутри УГО обозначают мощность рассеяния резистора. Сходу следует сказать, что если мощность будет меньше требуемой, то резистор будет нагреваться, и, в конце концов, сгорит. Для подсчета мощности обычно пользуются формулой, а поточнее даже 3-мя: P = U * I, P = I2 * R, P = U2 / R.

1-ая формула гласит о том, что мощность, выделяемая на участке электронной цепи, прямо пропорциональна произведению падения напряжения на этом участке на ток через этот участок. Если напряжение выражено в Вольтах, ток в Амперах, то мощность получится в ваттах. Таковы требования системы СИ.

Рядом с УГО указывается номинальное значение сопротивления резистора и его порядковый номер на схеме: R1 1, R2 1К, R3 1,2К, R4 1К2, R5 5М1. R1 имеет номинальное сопротивление 1Ом, R2 1КОм, R3 и R4 1,2КОм (буковка К либо М может ставиться заместо запятой), R5 — 5,1МОм.

Современная маркировка резисторов

В текущее время маркировка резисторов делается при помощи цветных полос. Самое увлекательное, что цветовая маркировка упоминалась в первом послевоенном журнальчике «Радио», вышедшем в январе 1946 года. Там же было сказано, что вот, это новенькая южноамериканская маркировка. Таблица, объясняющая принцип «полосатой» маркировки показана на рисунке 3.

Набросок 3. Маркировка резисторов

На рисунке 4 показаны резисторы для поверхностного монтажа SMD, которые также именуют «чип — резистор». Для любительских целей более подходят резисторы типоразмера 1206. Они довольно большие и имеют благопристойную мощность, целых 0,25Вт.

На этом же рисунке обозначено, что наибольшим напряжением для чип резисторов является 200В. Таковой же максимум имеют и резисторы для обыденного монтажа. Потому, когда предвидится напряжение, к примеру 500В лучше поставить два резистора, соединенных поочередно.

Набросок 4. Резисторы для поверхностного монтажа SMD

Чип резисторы самых малеханьких размеров выпускаются без маркировки, так как ее просто некуда поставить. Начиная с размера 0805 на «спине» резистора ставится маркировка из 3-х цифр.

1-ые две представляют собой номинал, а 3-я множитель, в виде показателя степени числа 10.

Потому если написано, к примеру, 100, то это будет 10 * 1Ом = 10Ом, так как хоть какое число в нулевой степени равно единице 1-ые две числа нужно множить конкретно на единицу.

Если же на резисторе написано 103, то получится 10 * 1000 = 10 КОм, а надпись 474 говорит, что пред нами резистор 47 * 10 000 Ом = 470 КОм. Чип резисторы с допуском 1% маркируются сочетанием букв и цифр, и найти номинал можно только пользуясь таблицей, которую можно найти в вебе.

Зависимо от допуска на сопротивление номиналы резисторов делятся на три ряда, E6, E12, E24. Значения номиналов соответствуют цифрам таблицы, показанной на рисунке 5.

Набросок 5.

Из таблицы видно, что чем меньше допуск на сопротивление, тем больше номиналов в соответственном ряду. Если ряд E6 имеет допуск 20%, то в нем всего только 6 номиналов, в то время как ряд E24 имеет 24 позиции. Но это все резисторы общего внедрения. Есть резисторы с допуском в один процент и меньше, потому посреди их может быть отыскать хоть какой номинал.

Не считая мощности и номинального сопротивления резисторы имеют еще несколько характеристик, но о их пока гласить не будем.

Соединение резисторов

Невзирая на то, что номиналов резисторов довольно много, время от времени приходится их соединять, чтоб получить требуемую величину.

Обстоятельств этому несколько: четкий подбор при настройке схемы либо просто отсутствие подходящего номинала. В главном употребляется две схемы соединения резисторов: последовательное и параллельное.

Схемы соединения показаны на рисунке 6. Там же приводятся и формулы для расчета общего сопротивления.

Набросок 6. Схемы соединения резисторов и формулы для расчетов общего сопротивления

В случае поочередного соединения общее сопротивление равно просто сумме 2-ух сопротивлений. Это как показано на рисунке. По сути резисторов может быть и больше. Такое включение бывает в делителях напряжения. Естественно, что общее сопротивление будет больше самого большего. Если это будут 1КОм и 10Ом, то общее сопротивление получится 1,01КОм.

При параллельном соединении все как раз напротив: общее сопротивление 2-ух (и поболее резисторов) будет меньше наименьшего.

Если оба резистора имеют однообразный номинал, то общее их сопротивление будет равно половине этого номинала. Можно так соединить и десяток резисторов, тогда общее сопротивление будет как раз десятая часть от номинала.

К примеру, соединили в параллель 10 резисторов по 100 ОМ, тогда общее сопротивление 100 / 10 = 10 Ом.

Необходимо подчеркнуть, что ток при параллельном соединении согласно закону Кирхгофа разделится на 10 резисторов. Потому мощность каждого из их будет нужно в 10 раз ниже, чем для 1-го резистора.

Продолжение читайте в последующей статье.

Борис Аладышкин

P. S. Если вам нравятся наши статьи, вы сможете подписаться на нашу рассылку и все новые статьи, размещенные на веб-сайте Электрик Инфо придут на ваш электрический почтовый ящик!

Подписаться на почтовую рассылку Вы сможете перейдя по этой ссылке: /subscribe2.htm

Про резисторы для начинающих заниматься электроникой

Радиолюбители в 21 веке занимаются не столько созданием различных передатчиков, приемников, сколько усовершенствованием уже промышленно изготовленных устройств.

Создание систем «умного дома», различных зарядных устройств, регуляторов скорости, преобразователей напряжения и других физических величин – вот основное направление в конструировании и разработке в наше время.

Основой для большинства современных схем уже служат не радиоэлектронные компоненты, а различные электронные устройства (контроллеры, датчики, преобразователи). Однако развитие радиотехники начиналось именно с простейших компонентов и термин «радиолюбитель» уже нечем не заменить.

Компоненты электронных схем

Практически все компоненты радиоэлектронных схем можно разделить на активные и пассивные элементы. Активные компоненты способны усиливать электрические сигналы, а одной из основных характеристик для них является коэффициент усиления. К элементам такого типа относятся микроконтроллеры, логические микросхемы, операционные усилители. К пассивным элементам относятся резисторы, конденсаторы, диоды, т.е. элементы с коэффициентом усиления в пределах от 0 до 1. Основные характеристики и назначение резисторов рассмотрим в данной статье.

Резисторы

Назначение резистора: ограничение максимального значения тока в электрической цепи. В простейшем случае резистор включается в цепь светодиода для ограничения максимального тока (рисунок 1). Резистор представляет собой простой проводник. Основной параметр любого резистора – его сопротивление. Сопротивление проводников определяется удельным сопротивлением (зависит от материала) и линейных размеров проводника. Для определения сопротивления применяется формула:

[size=16]R = ρ*L/S

где ρ — удельное сопротивление материала, L длина в метрах, S площадь сечения в кв. мм. Сопротивление, как физический параметр, препятствует прохождению электрического тока. При этом при прохождении тока через резистор выделяется тепловая энергия, равная произведению сопротивления на квадрат силы тока – рассеиваемая мощность резистора. Как и любой элемент электрической схемы, резистор имеет свое собственное условное графической обозначение (УГО). Внутри УГО резистора нанесены черточки, обозначающие мощность рассеяния резистора. Для буквенного обозначения резистора используется латинская буква «R» с порядковым номером резистора в схеме. Рядом с резистором может указываться его номинальное сопротивление (R3 1,2K). Для обозначения основных параметров резисторов используется маркировка с помощью цветных полос (рисунок 3). Впервые на просторах бывшего СССР о цветной маркировке резисторов было упомянуто в журнале «Радио» в 1946 году. Современные электронные схемы предъявляют определенные условия к размерам элементов. Поэтому для поверхностного монтажа SMD применяются специальные «чип-резисторы» (рисунок 4). Для маркировки SMD компонентов применяется цифровой шифр из трех цифр (первые две цифры – номинальное сопротивление, третья – множитель в виде показателя степени 10). Все резисторы выпускаются согласно номинальному ряду значений сопротивлений (Е6, Е12, Е24). Для каждого из рядов существует свой допуск (±5, ±10, ±20%), однако существуют резисторы с допуском в 1%.

Схемы соединения резисторов

Ввиду достаточно ограниченного числа номинальных значений сопротивлений для резисторов часто для настройки схем приходится подбирать необходимое сопротивление, соединяя несколько элементов. Существует два способа соединения резисторов – последовательное и параллельное. Зная зависимости при параллельном и последовательном соединении резисторов можно достаточно точно подобрать требуемое значение сопротивления. Рисунок 6 Стоит отметить, что при параллельном соединении резисторов в каждой из параллельных ветвей протекает ток, а его суммарное значение разделяется на количество ветвей. Поэтому мощность подбираемых резисторов можно занижать прямо пропорционально количеству параллельных ветвей. Добавлять комментарии могут только зарегистрированные пользователи.[ Регистрация | Вход ]

Новости сайта ukrelektrik.com

Последние статьи ukrelektrik.com

Последние ответы на форуме ukrelektrik.com

Заземление, зануление rashpilek1975 Alexzhuk / 37 Электроотопление IusCoin Multiki / 68 Всё обо всём — общение 2alpilip Наде4ка / 29

Резистор

Резисторы разных размеров, типов, мощности с проволочными выводами
Почтовая марка Германии 1994 года

Рези́стор (англ. resistor, от лат. resisto — сопротивляюсь) — пассивный элемент электрических цепей, обладающий определённым или переменным значением электрического сопротивления[1], предназначенный для линейного преобразования силы тока в напряжение и напряжения в силу тока, ограничения тока, поглощения электрической энергии и др.[2]. Весьма широко используемый компонент практически всех электрических и электронных устройств.

Схема замещения резистора чаще всего имеет вид параллельно соединённых сопротивления и ёмкости. Иногда на высоких частотах последовательно с этой цепью включают индуктивность. В схеме замещения сопротивление — основной параметр резистора, ёмкость и индуктивность — паразитные параметры.

Линейные и нелинейные резисторы

Все резисторы делятся на линейные и нелинейные.

Сопротивления линейных резисторов не зависят от приложенного напряжения или протекающего тока.

Сопротивления нелинейных резисторов изменяются в зависимости от значения приложенного напряжения или протекающего тока. Например, сопротивление осветительной лампы накаливания при отсутствии тока в 10-15 раз меньше, чем в режиме освещения. В линейных резистивных цепях форма тока совпадает с формой напряжения, вызвавшего этот ток.

Основные характеристики и параметры резисторов

  • Номинальное сопротивление — основной параметр.
  • Предельная рассеиваемая мощность.
  • Температурный коэффициент сопротивления.
  • Допустимое отклонение сопротивления от номинального значения (технологический разброс в процессе изготовления).
  • Предельное рабочее напряжение.
  • Избыточный шум.
  • Максимальная температура окружающей среды для номинальной мощности рассеивания.
  • Влагоустойчивость и термостойкость.
  • Коэффициент напряжения. Учитывает явление зависимости сопротивления некоторых видов резисторов от приложенного напряжения.

Определяется по формуле:

K

U

=

R

1

R

2

R

1


100
%

{displaystyle K_{U}={frac {R_{1}-R_{2}}{R_{1}}}*100\%}

, где

R

1

{displaystyle R_{1}}

и

R

2

{displaystyle R_{2}}

 — сопротивления, измеренные при напряжениях, соответствующих

10
%

{displaystyle 10\%}

-ной и

100
%

{displaystyle 100\%}

-ной номинальной мощности рассеяния резистора.[3]

Некоторые характеристики существенны при проектировании устройств, работающих на высоких и сверхвысоких частотах, это:

  • Паразитная ёмкость.
  • Паразитная индуктивность.

Обозначение резисторов на схемах

Как проверить резистор, конденсатор, диод и транзистор на исправность?

Эксплуатация полупроводниковых устройств

Проверка состояния и качества изготовления полупроводниковых систем автоматического управления и контроля выполняется электрогруппой судна или при ее участии. Наиболее полные проверки производятся при приемке судна после постройки или заводского ремонта. 

В процессе приемо-сдаточных испытаний проверяют конструктивное выполнение, состояние монтажа и функционирование систем. Проверка конструктивного выполнения и монтажа должна охватывать все части автоматической системы: блоки системы управления, которые монтируются в щите или панели, датчики и кабельные соединения. Проверка производится при полностью обесточенной системе.

Отдельные блоки полупроводниковых устройств собраны на платах с печатным монтажом. Сначала производят внешний осмотр щита (пульта, панели). Все поверхности, как внешние, так и внутренние, должны быть ровными, чистыми и хорошо окрашенными. Места ввода кабелей должны иметь сальниковые уплотнения; в отверстия на корпусе должны быть установлены заглушки. Не допускается, чтобы над щитом проходили трубопроводы с фланцами. 

Расположение щита должно быть удобным для обслуживания. Необходимо, чтобы дверца легко и полностью открывалась и закрывалась и имела уплотнительные прокладки, а на щите была табличка с его наименованием.

При осмотре внутренней части щита необходимо проверить, как разведены кабели, как выполнены выводные соединения, имеется ли маркировка проводов на выводных соединениях и маркировка гнезд для печатных плат. 

Если на дверце установлены какие-либо устройства (сигнальные лампы, нажимные кнопки, переключатели и др.), то надо проверить крепление этих устройств и подводку проводов к ним. Гибкие многожильные провода должны быть собраны в жгут, связанный суровой нитью, пластмассовой лентой или заключенный в гибкую трубку. Жгут должен быть такой длины, чтобы не было натяжения при крайних положениях дверцы.

Для осмотра печатных плат каждую поочередно нужно вынуть из гнезда, осмотреть обе ее стороны и установить на место. Правильно установленная плата должна прочно удерживаться в своем гнезде и не качаться при умеренном нажатии пальцем на внешнюю торцевую кромку. При извлечении платы вначале требуется значительное усилие, а после выхода штырей из штепсельного разъема плата должна легко и свободно скользить в направляющих. Если на плате нет оправки, специально предназначенной для того, чтобы держать плату в руке, рекомендуется брать плату за боковые кромки или за раму электрического соединителя.

При осмотре платы с монтажной стороны следует обратить внимание на внешний вид элементов, не допускаются потемнения, царапины и т. п. Если элементы удерживаются на плате только своими внешними выводами, то они должны быть такой длины, чтобы расстояние между элементом и платой было в пределах от 3 до 8 мм. Изгибы внешних выводов непосредственно у корпуса элемента недопустимы. Со стороны пайки проверяют качество соединений: соединения должны иметь вид небольшого конуса, без раковин и лишнего припоя, провода хорошо облужены. Токопроводящие полосы печатной платы не должны иметь отслоений. 

Поверхность платы должна быть покрыта лаком. Необходимо убедиться, что подстроечные потенциометры и переменные емкости не находятся в крайних положениях и дают возможность для регулировки. Ползунки потенциометров и переменных емкостей должны быть надежно законтрены от случайных перемещений. Проверяется качество подсоединения проводов к электрическим соединителям плат и крепление гнезд неподвижной части разъемов в каркасе щита. Соединительные провода должны быть собраны в жгуты.

При проверке монтажа датчиков следует убедиться, что места их установки выбраны правильно, т. е. исключается влияние внешней среды (температуры, вибрации, давления и т. д.). 

Следует проверить плотность в месте ввода соединительного кабеля в корпус датчика, надежное закрепление органов регулировки датчика, наличие четкой разметки положения этих органов. Необходимо следить, обеспечена ли возможность снятия датчика для замены. Каждый датчик должен иметь табличку с наименованием или условным обозначением контролируемого им параметра.

При проверке кабельных соединений между отдельными частями автоматических систем следует обратить внимание на расположение кабелей, соединяющих датчики и устройства автоматики.

Эти кабели не должны располагаться в одной трассе с силовыми кабелями, так как переменное магнитное поле силовых кабелей может наводить ложные сигналы в жилах, идущих от датчиков.

В случае неполадок в работе полупроводниковой автоматической системы необходимо прежде всего выяснить, в каком узле или блоке произошел отказ. Неисправность можно устранить в сравнительно короткое время, заменив отказавший блок исправным, взятым из судового комплекта запасных частей. Необходимо убедиться в том, что неисправность полупроводниковой автоматической системы вызвана отказом в ее логической части, а не в каком-либо периферийном устройстве — датчике или исполнительном органе. Для определения неисправности в логической части схемы необходимо с помощью технической документации выяснить, какие контуры участвуют в формировании той функции системы, которая не выполняется или выполняется неправильно. Следует проверить состояние электрических соединителей плат, так как окисление или ослабление контактов приводит к резкому возрастанию переходного сопротивления и к нарушению соединения. Контактные поверхности протирают спиртом.

Что чаще всего выходит из строя на плате?

Самые простые и наиболее распространённые поломки плат, являются вышедшие из строя конденсаторы или сгоревшие предохранители, но также встречаются и более серьёзные поломки и для этого уже нужен не только внешний осмотр, но использование специальных приборов.

При осмотре платы, на которой расположены отказавшие контуры, следует обратить внимание на обуглившиеся резисторы, вспученные конденсаторы, оплавленные концы, потемневшие участки на печатной плате, отслоение полос и т. д. Все эти признаки помогают уточнить место неисправности. 

Иногда неисправность определить внешним осмотром не удается. Простейшие измерения могут быть выполнены тестером. Для выявления отказавших элементов схемы следует разбить контур на участки так, чтобы выход одного участка являлся входом другого. На каждом выделенном участке контура измеряют выходную и входную величину (обычно напряжение), чтобы убедиться, что между этими величинами существует правильная функциональная связь, вытекающая из построения контура. Если эта связь нарушена, то участок следует считать неисправным. Дальнейшая задача заключается в поиске вышедших из строя элементов, входящих в состав данного участка контура.

Как проверить резистор на исправность?

Резисторы проверяют путем измерения сопротивления при снятом питании. Один конец резистора следует выпаять, чтобы в цепь не включались параллельные участки. Дефектные резисторы должны быть заменены новыми. Новый резистор должен иметь то же сопротивление и ту же мощность, что и вышедший из строя.

Как проверить конденсатор?

Характерные неисправности конденсаторов: пробой изоляции, внутренний обрыв, утечка заряда. В электролитических конденсаторах может произойти заметное вспучивание корпуса и даже его разрыв. Иногда можно наблюдать потеки электролита. 

Если внешних признаков неисправности конденсатора нет, его следует для проверки снять с печатной платы. 

Грубую проверку исправности конденсатора можно сделать омметром. Исправный конденсатор показывает сопротивление бесконечно большое, пробитый — порядка нескольких ом.

Как проверить диод на исправность?

Наиболее распространенные неисправности диодов: пробой, обрыв, утечка и нарушение герметичности корпуса. Эти дефекты не выявляются по внешнему виду и требуют проведения электрических измерений. 

Диоды можно проверить, измерив сопротивление в прямом и обратном направлениях. Сопротивление в прямом направлении значительно меньше, чем в обратном. Диоды можно проверять без выпаивания на плате при снятом напряжении. 

При пробое прямое и обратное сопротивления малы, при обрыве внутреннее сопротивление в обоих направлениях равно бесконечности. 

Причиной пробоя или обрыва диодов может быть короткое замыкание или увеличение температуры в месте установки диода. Пробой может быть вызван всплеском напряжения в момент включения или выключения схемы. Пробой диода является следствием других неисправностей, которые нужно найти.

При наличии утечки сопротивление диода в прямом направлении нормальное, как у исправного прибора. В обратном направлении в течение первых нескольких секунд сопротивление велико, а затем медленно уменьшается. Если есть утечка, диод должен быть заменен. При пайке диода на плате необходим теплоотвод.

Как проверить транзистор?

Транзисторы используются в усилительных и ключевых схемах. В первом случае дефектный транзистор должен быть заменен не только идентичным по параметрам, но и имеющим такие же вольт-амперные характеристики, поэтому замена транзистора в этих схемах связана с известными трудностями.

В ключевых схемах транзистор работает в режиме «открыт — закрыт», поэтому при замене достаточно подобрать транзистор того же типа. 

Припайка выводов должна производиться в такой последовательности: первым припаивается вывод базы, затем — эмиттера и последним — коллектора. При выпаивании транзистора соблюдают обратную последовательность: коллектор — эмиттер — база.

Транзистор можно проверять вольтметром непосредственно на печатной плате при включенном питании. Недопустимо проверять транзистор с помощью омметра, так как для многих транзисторов максимально допустимое напряжение между базой и эмиттером очень мало. 

Напряжение батареи прибора может оказаться выше этого значения, и произойдет пробой перехода. При проверке исправности транзистора вольтметром на базу сначала подается минимальное напряжение, предусмотренное схемой и производятся измерения 1 и 2 (рис. 1). 

Затем напряжение доводится до наибольшего значения, предусмотренного схемой, и снова производятся эти же измерения. В первом случае измерение 2 дает показание, близкое к напряжению питания (транзистор закрыт), во втором такое же измерение дает результат, близкий к нулю (транзистор открыт). 

Рис. 1. Схема проверки транзистора

Если транзистор пробит, то в обоих случаях результаты измерения 2 равны нулю. При внутреннем обрыве в обоих случаях измерение 2 дает напряжение питания. При утечке измерение 2 на закрытом транзисторе показывает постепенное уменьшение напряжения от напряжения питания до 70—80% его значения. Все эти неисправности свидетельствуют о выходе транзистора из строя и необходимости его замены, причем следует искать причины выхода транзистора из строя. 

Причинами пробоев и внутренних обрывов могут быть перегрузки транзисторов по току или высокая температура в месте установки транзистора. Перегрузка может произойти из-за короткого замыкания в цепи коллектора (зашунтировано сопротивление R3) или перенапряжения на базе.

⇓ДОБАВИТЬ В ЗАКЛАДКИ⇓

⇒ВНИМАНИЕ⇐

  • Материал на блоге⇒ Весь материал предоставляется исключительно в ознакомительных целях! При распространении материала используйте пожалуйста ссылку на наш блог!
  • Ошибки⇒ Если вы обнаружили ошибки в статье, то сообщите нам через контакты или в комментариях к статье. Мы будем очень признательны!
  • Файлообменники⇒ Если Вам не удалось скачать материал по причине нерабочих ссылок или отсутствующих файлов на файлообменниках, то сообщите нам через контакты или в комментариях к статье.
  • Правообладателям⇒ Администрация блога отрицательно относится к нарушению авторских прав на www.electroengineer.ru. Поэтому, если Вы являетесь правообладателем исключительных прав на любой материал, предоставленный на ресурсе, то сообщите нам через контакты и мы моментально примем все действия для удаления Вашего материала.

⇓ОБСУДИТЬ СТАТЬЮ⇓

Резистор в цепи затвора или как делать правильно / Хабр

Всем доброго времени суток!

Эта небольшая статья возможно станет шпаргалкой для начинающих разработчиков, которые хотят проектировать надежные и эффективные схемы управления силовыми полупроводниковыми ключами, обновит и освежит старые знания опытных специалистов или может хотя бы где-то поцарапает закрома памяти читателей.

Любому из этих случаев я буду очень рад.

В этой заметке я попробую описать наиболее распространенные вопросы выбора затворных резисторов для силовых электронных устройств. Она базируется на знаниях, почерпнутых мной из разной литературы, апноутов от TOSHIBA, Infineon, Texas Instruments а также из скромной практики. Стоит заметить, что эта информация не дает прямо универсальных рекомендаций для каждого силового ключа. Тем не менее, можно проанализировать какие предположения могут быть важны и какое влияние они могут оказать на выбор резисторов затвора для дискретных силовых транзисторов, а также для силовых модулей.

Основы


Затворный резистор расположен в цепи между драйвером силового транзистора и затвором самого транзистора, как показано на изображении в шапке статьи.

Открыт или закрыт полевой ключ (IGBT/MOSFET) зависит от приложенного к затвору напряжения. Изменение этого напряжения заряжает или разряжает затворные емкости силового устройства, которые состоят из емкостей затвора-коллектора и затвора-эмиттера и небольшой емкости самого затвора. Заряд входных емкостей ключа включит его (ток ), а разряд выключит (ток ).

Резистор в данной цепи ограничивает ток заряда/разряда входных емкостей, помимо этого, правильно подобранный резистор не даст ключу самопроизвольно открываться, что иногда может случиться, из-за быстрого изменения напряжения на силовых выводах ключа например, такое может случиться, когда в полумостовой топологии соседний ключ открывается. В таком случае емкость перезаряжается и ток, протекающий через затворный резистор вызывает на нем падение напряжения, которое и может открыть ключ. К тому же порог открывания ключа часто сильно опускается при росте температуры кристалла полупроводника.

Что нужно знать и как выбрать “правильный” резистор


1. Максимальный ток заряда/разряда выхода драйвера

Любая микросхема драйвера имеет такой параметр, как максимальный выходной ток. Если ток затвора при открытии/закрытии ключа превысит значение максимального выходного тока, то драйвер может выйти из строя, поэтому, в данном случае, затворный резистор ограничит выходной ток драйвера.

Можно составить эквивалентную модель цепи, по которой и рассчитать необходимое значение резистора:

Следуя несложным умозаключениям, можем получить формулы для расчета тока драйвера, и подобрать резистор затвора таким, чтобы не превысить максимально допустимые параметры драйвера:


2. Рассеиваемая мощность

Также одна из важных функций затворного резистора — рассеивать мощность выходного каскада микросхемы драйвера. В соответствии с моделью выше, рассеиваемую мощность можно посчитать с помощью следующих формул:


Тут — заряд затвора ключа, а — частота коммутации.
После расчета и подбора резистора важно соблюдать следующее условие:

где — собственное потребление драйвера.

Тут еще есть небольшое примечание, в большинстве даташитов на ключи указывают заряд затвора при определенных условиях, например при напряжении управления затвором +15В…-15В, если же в Вашей схеме другое напряжение управления, например +15В…0В, или же +15…-8В, то достаточно точно определить заряд затвора помогут следующие соотношения:


3. Скорость включения и электромагнитная совместимость

Давайте рассмотрим потери на переключение, как функцию от сопротивления затворного резистора. Я возьму ключ, который я недавно использовал в своем небольшом проекте — IKW40N120 от любимых Infineon:

Как можно заметить, при увеличении сопротивления затвора, скорость переключения уменьшается и потери на переключения растут. Соответственно это повлияет на эффективность системы в целом. Напротив, если применять меньшее сопротивление затвора, переключение станет более быстрым и потери уменьшаться, но при этом шум, вызванный быстрым нарастанием тока и напряжения, будет увеличиваться, что может быть критично, когда нужно отвечать требованиям электромагнитной совместимости поэтому значение сопротивления затвора нужно выбирать очень аккуратно.

4. То самое “паразитное” включение

В начале, когда я писал о функциях затворного резистора, я упоминал о возможности ключа самопроизвольно включиться. Чтобы такого не случилось, можно рассчитать напряжение, которое может появиться на затворе транзистора, посмотрим на изображение ниже и запишем две небольшие формулы:

И не стоит забывать, что напряжение открытия ключа сильно зависит от температуры кристалла, и это тоже нужно учитывать.

Заключение


Теперь у нас есть формулы для оптимального (в какой-то степени) подбора с первого взгляда такого простого элемента силовой схемы, как затворный резистор.

Вполне возможно вы не нашли тут ничего нового, но я надеюсь, что хоть кому-то эта заметка окажется полезной.

Также для расширения кругозора в том числе в области управлении силовыми ключами очень советую выделять часик-два в неделю на прочтение всяких статей и апноутов от именитых производителей силовой электроники, в особенности о применении микросхем драйверов. Уверен, найдёте там очень много интересностей. Для старта, и чтобы углубится в рассмотренную тему предлагаю вот эту.

Спасибо за прочтение!

Расчет биполярного транзистора в ключевом режиме с резистивной нагрузкой

Расчет биполярного транзистора в ключевом режиме с резистивной нагрузкой

Упрощенный расчет транзистора для работы в ключевом режиме на резистивную нагрузку.

 

Ключевой режим работы характеризуется тем, что транзистор находится в одном из двух состояний: в полностью открытом (режим насыщения), или полностью закрытом (состояние отсечки).

 

Рассмотрим пример, где в качестве нагрузки выступает контактор типа КНЕ030 на напряжение 27В с катушкой сопротивлением 150 Ом. Индуктивным характером катушки в данном примере пренебрежем, считая, что реле будет включено раз и надолго.

Рассчитываем ток коллектора:

Ik=(UccUкэнас)/Rн    , где

Ik –ток коллектора

      Ucc- напряжение питания (27В)

      Uкэнас- напряжение насыщения биполярного транзистора (типично от 0.2 до 0.8В, хотя и может прилично различаться для разных транзисторов), в нашем случае примем 0.4В

      Rн- сопротивление нагрузки (150 Ом)

Итак,

Ik= (27-0.4)/150 = 0.18A = 180мА

На практике из соображений надежности элементы всегда необходимо выбирать с запасом. Возьмем коэффициент 1.5

Таким образом, нужен транзистор с допустимым током коллектора не менее 1.5*0.18=0.27А и максимальным напряжением коллектор-эмиттер не менее 1.5*27=40В.

Открываем справочник по биполярным транзисторам .  По заданным параметрам подходит КТ815А (Ikмакс=1.5А Uкэ=40В)

      Следующим этапом рассчитываем ток базы, который нужно создать, чтобы обеспечить ток коллектора 0.18А.

      Как известно, ток коллектора связан с током базы соотношением

      Ik=Iб*h21э,

где h31э – статический коэффициент передачи тока.

 При отсутствии дополнительных данных можно взять табличное гарантированное минимальное значение для КТ815А (40). Но для КТ815 есть график зависимости h31э от тока эмиттера. В нашем случае ток эмиттера 180мА, этому значению соответствует h31э=60. Разница невелика, но для чистоты эксперимента возьмем графические данные.

Итак,

            Iб=180/60=3мА

Для расчета базового резистора R1 смотрим второй график, где приведена зависимость напряжения насыщения база-эмиттер (Uбэнас) от тока коллектора. При токе коллектора 180мА напряжение насыщения базы будет 0.78В (При отсутствии такого графика можно использовать допущение, что ВАХ перехода база-эмиттер подобна ВАХ диода и в диапазоне рабочих токов напряжение база-эмиттер находится в пределах 0.6-0.8 В)

Следовательно, сопротивление резистора R1 должно быть равно:

R1=(Uвх-Uбэнас)/Iб = (5-0.78)/0.003 = 1407 Ом = 1.407 кОм.

Из стандартного ряда сопротивлений выбираем ближайшее в меньшую сторону (1.3 кОм)

Если к базе подключен шунтирующий резистор (вводится для более быстрого выключения транзистора или для повышения помехоустойчивости) нужно учитывать, что часть входного тока уйдет в этот резистор, и тогда формула примет вид:

R1= (Uвх-Uбэнас)/(Iб+IR2) = (Uвх-Uбэнас)/(Iб+ Uбэнас/R2)

Так, если R2=1 кОм, то

R1= (5-0.78)/(0.003+0.78/1000) = 1116 Ом = 1.1 кОм

 

Рассчитываем потери мощности на транзисторе:

            P=Ik*Uкэнас

Uкэнас берем из графика: при 180мА оно составляет 0.07В

            P= 0.07*0.18= 0.013 Вт

Мощность смешная, радиатора не потребуется.

МОП-транзистор как переменный резистор в цепи высокого усилителя

Альтернативный ответ без ШИМ. (Во-первых, я абсолютно согласен с тем, что ШИМ лучше: он более энергоэффективен, что означает меньшее количество тепла, от которого избавляются, меньше нагрузка на батареи и увеличенный срок службы батареи).

Однако мощные МОП-транзисторы могут использоваться в их линейном режиме.

Как вы обнаружили, в своем линейном режиме они рассеивают много тепла. Допустим, в качестве аргумента вы используете нагрузку 0,1 Ом при полной мощности, которая будет 8 В, 80 А, (640 Вт) при полностью включенном MOSFET. Но вы хотите контролировать мощность — наихудшая ситуация — наполовину разделить мощность между пусковым напряжением MOSFET и нагрузкой, 4 В, 40 А, 160 Вт в каждом. Предполагается, что нагрузка может принять его — голый МОП-транзистор не сможет … если вы безопасно не отведете тепло в радиаторе.

Основная математика радиатора: каждая часть системы имеет «тепловое сопротивление», которое понижает температуру (не напряжение), поскольку тепловая мощность (не ток) протекает через нее. Возвращаясь к температуре окружающего воздуха, вы можете рассчитать, насколько горячим является ваш FET, и его таблица данных показывает, что он может выдержать. (Я выбрал IRF540 в качестве примера, я не знаю ваш FET.)

Первый тест: нет радиатора. Лист данных показывает: «Тепловое сопротивление: Макс. Переход к окружающей среде:: 62C / W».

Таким образом, при температуре 160 Вт и температуре воздуха 20 ° С соединение может достигать 160 * 62 + 20 = 9940 ° С. Давайте проверим абсолютную максимальную температуру в таблице: 175C, поэтому у нас проблема …

Второй тест: с радиатором. Насколько велик?

Сначала вы должны получить тепло от соединения с корпусом … Лист данных показывает: «Тепловое сопротивление: Макс. Соединение с корпусом:: 1C / W». При 160 Вт нам нужен больший MOSFET, поэтому я собираюсь уменьшить мощность до 40 Вт для этого расчета — с вашим MOSFET, YMMV. (Вы МОЖЕТЕ подключить параллельные МОП-транзисторы, но каждому из них потребуется немного отличающееся напряжение привода, так что это непросто, но вы можете использовать 4 из них на своем радиаторе).

В любом случае: давайте сохраним температуру соединения значительно ниже абсолютного максимума — скажем, 140C При 40 Вт это соответствует температуре корпуса (140 — 40 * 1C / W) = 100C. (См. Рис. 9 в спецификации — при 100 ° С ток утечки не должен превышать 20 А).

Таким образом, радиатор не должен превышать 100 ° C, а температура воздуха 20 ° C, что означает, что сопротивление радиатора должно быть меньше (100–20 ° C) / 40 Вт = 2 ° C / Вт. Стремитесь к лучшему, скажем, 1,5 ° C / Вт, потому что я упустил из виду, насколько хорошо тепло передается от корпуса к радиатору для простоты.

Теперь мы можем искать радиаторы лучше, чем 1,5C / Вт. Вот пример: это около 6 дюймов в длину и 2 дюйма в высоту. Для 40 Вт. Я позволю вам запустить цифры для вашего MOSFET и уровней мощности …

РЕДАКТИРОВАТЬ: прокомментировать вариант 555.

555, вероятно, будет работать нормально. Держите частоту переключения низкой: для нагревателя может быть достаточно 1 Гц — или 10 Гц, или 100 Гц. Это минимизирует потери при переключении (пока затвор заряжается, а MOSFET находится где-то между Вкл. И Выкл.)

Не беспокойтесь о контрольном напряжении, просто управляйте соотношением ВКЛ / ВЫКЛ непосредственно с горшком. (вы можете добавить резисторы на обоих концах, чтобы они работали со стеклоочистителем на каждом конце). Постройте и проверьте это без MOSFET, затем добавьте MOSFET и проверьте напряжение затвора с высокой нагрузкой (10 Ом), а затем, наконец, реальную нагрузку.

И используйте радиатор … хотя вы должны быть в состоянии уйти с меньшим!

Защита затвора, затворный резистор, управление затвором MOSFET и IGBT, шунтирующий конденсатор

Защита затвора, затворный резистор, управление затвором MOSFET и IGBT, шунтирующий конденсатор

Затвор, в электронике, — часть полевого транзистора.

Проектируя силовую часть импульсного преобразователя или подобного устройства, где в качестве силового ключа будет выступать мощный IGBT или MOSFET транзистор, важно правильно рассчитать цепь управления затвором, особенно если речь идет об управлении полупроводниковым ключом на высокой скорости, характерной для рабочих частот от сотен килогерц до 1 МГц.

Давайте рассмотрим методику такого расчета, а для примера возьмем не утрачивающий популярности на протяжении без малого 20 лет полевой транзистор IRFP460, обладающий, как известно, довольно «тяжелым» затвором.

Допустим, нам он нужен в качестве ключа нижнего уровня (с управлением от уровня земли), который будет управляться при помощи специализированного драйвера UCC37322, так же довольно известного и по сей день востребованного по своему прямому назначению. А напряжение управления затвором примем равным 12 вольт.

Пример расчета для рабочей частоты 1 МГц

Пусть рабочая частота проектируемого устройства составляет ровно 1 МГц, а управляющие импульсы имеют скважность 2 (коэффициент заполнения DC = 0.5). Теоретически это значит, что и рабочая длительность импульса, то есть продолжительность состояния когда ключ полностью открыт, должна на каждом цикле его работы составлять 500 нс.

Но на практике это время будет меньше, поскольку передний и задний фронты будут иметь не нулевую, а конечную длительность, обычно не более 100 нс. Это значит, что ключ будет полностью открыт в самом худшем случае на протяжении 300 нс, и здесь стоит задуматься над тем, а не уменьшить ли скважность… до 1,43, то есть может быть имеет смысл задать управляющим импульсам DC = 0,7. Однако это гипотетически худший вариант, так что на него пока опираться не станем.

На деле длительность фронтов непосредственно на затворе будет определяться возможностями драйвера и реальной емкостью затвора силового транзистора. Из документации на классический транзистор IRFP460 нам известна зависимость полного заряда, подаваемого на его затвор, от напряжения на затворе относительно истока.

Мы видим, что при 12 вольтах на затворе полный его электрический заряд находится в районе 160 нКл. Но здесь же понятно, что заряд этот накапливается емкостью затвора нелинейно, так как в районе 4-5 вольт находится так называемое плато Миллера, где на емкость затвора начинает действовать еще и емкость сток-затвор. Поэтому в самом начале общая емкость затвора минимальна и заряд накапливается затвором с наибольшей скоростью, затем заряжается динамическая емкость Миллера, и после этого заряд затвора нарастает опять линейно, но медленнее чем в самом начале.

Затворный резистор и реальный фронт при открытии

Итого, ток в процессе заряда затвора нарастает далеко не по экспоненте, значит имеет смысл просто ограничить этот ток сверху предельным значением для драйвера UCC37322 при помощи затворного резистора. Поскольку для данного драйвера максимальный пиковый ток по документации составляет 9 ампер, то при 12 вольтах питающего напряжения минимальное значение затворного резистора по Закону Ома получается 1,333 Ом. Принимаем стандартное 1,5 Ом.

Из документации на полевик IRFP460 известно, что при 7,5 вольтах между затвором и истоком, данный транзистор уже точно полностью открыт. Посчитаем усредненную емкость затвора, разделив заряд затвора при 7,5 вольтах на нем, на эти самые 7,5 вольт. Получим 110 нКл/7,5 = 14,5 нФ.

Эту емкость можно принять для оценки временных характеристик в переходном процессе заряда затвора от 12 вольтного драйвера через принятый нами затворный резистор номиналом 1,5 Ом. 7,5 вольт — это практически 63% от 12. Получается произведение R*C – есть как раз время фронта в процессе открытия нашего полевика — 22 нс. Неплохо. Резистор на 1,5 Ом в качестве затворного подходит.

Теперь выясним мощность необходимого затворного резистора. На данном резисторе при открытии и при закрытии транзистора будет рассеиваться энергия, равная энергии, накапливаемой в конденсаторе, образованным емкостью затвор — исток. То есть 14,5 нФ при 12 вольтах. Это CU2/2 = 1,044 мкДж при заряде затвора и столько же при его разряде, и так 1000000 раз в секунду (т. к. рабочая частота у нас по условию 1 МГц). Итого 2 Вт.

Выбираем резистор 1,5 Ом на 2 Вт в качестве затворного. Можно взять 2 штуки по 3 Ома в параллель, чтобы не сильно грелись. Кстати, из данного расчета получается, что и мощность, расходуемая на управление полевиком составит 2 Вт.

Шунтирующий конденсатор драйвера

Теперь нужно определиться с шунтирующим конденсатором. Данный конденсатор необходим для быстрой отдачи заряда через драйвер — на затвор полевика. Если в качестве такового использовать электролитический конденсатор большой емкости, то он создаст для импульсов тока столь высокой частоты малое сопротивление, через него будет течь слишком большой импульсный ток, что недопустимо для электролита. Поэтому параллельно электролиту всегда ставят пленочный конденсатор небольшой емкости. Он сможет легко и быстро отдавать заряд, перезаряжаться, при этом не будет перегреваться.

Допустим, колебание напряжения на этом конденсаторе не должно составлять более 1% от напряжения питания драйвера 12 В. То есть должно выполняться условие U1-U2 <= 0,12 В. Мощность потребляемая драйвером 2 Вт, значит средний ток 0,166 А. Но пиковый ток составит 9 А. Среднее значение тока 4,5 А в течение 3*RC, то есть изменение напряжения на конденсаторе при 4,5 А за 66 нс должно быть не более 0,12 В.

Известно, что I = C*(U1-U2)/t. Значит C = It/(U1-U2). U1-U2 = 0,12 В, t = 66 нс, I = 4,5 А. Отсюда находим что Сmin = 2,5 мкф. Примем емкость пленочного шунтирующего конденсатора равной 3 мкф. Параллельно ему уже можно поставить танталовый или обычный электролитический на значительно большую емкость, чтобы драйверу было комфортнее работать.

Защита затвора полевика и выходного каскада драйвера диодами Шоттки

При высоких рабочих частотах неизбежны емкостные наводки на затвор. Поэтому затвор, а также выход драйвера стоит защитить диодами Шоттки на предельное напряжение большее удвоенного напряжения питания драйвера.

Например 1N5822 – на максимальное обратное напряжение 40 вольт и ток 3А. Если напряжение на затворе в кокой-то момент превысит напряжение питания, заряд просто перетечет в шунтирующий конденсатор. В данных условиях напряжение на затворе не превысит выбранных для нашей схемы 12 вольт.

Ранее ЭлектроВести писали, что в Лас-Вегасе заработала крупнейшая выставка потребительской электроники CES 2019, а вместе с ней и украинский павильон — Ukraine Tech Pavilion. Об этом сообщила пресс-служба UVCA (Украинская ассоциация венчурного и частного капитала). С чем украинцы ездили в Лас-Вегас на крупнейшую выставку электроники.

По материалам: electrik.info.

В чем разница между резистором и транзистором?

Здесь мы очень кратко обсудим разницу между резистором и транзистором.

Транзистор означает передачу сопротивления , поэтому его название имеет значение для сопротивления. Транзистор представляет собой 3-контактный активный элемент. Может работать в 3-х регионах.

  • 1) активный
  • 2) вырезка
  • 3) насыщенность

в области отсечки, транзистор действует как разомкнутая цепь или, можно сказать, оказывает большое сопротивление протеканию тока.

В области насыщения транзистор действует как короткое замыкание или, можно сказать, оказывает незначительное сопротивление току.

Итак, транзистор — это всего лишь передача сопротивления.

Разница между транзистором и резистором по принципу работы

Транзистор: Транзистор — это электронное устройство, используемое для управления прохождением электрического тока. Это миниатюрные клетки мозга компьютера, сделанные из кремния, химического элемента, обычно содержащегося в песке.Как правило, транзисторы используются в огромном разнообразии электрических устройств, таких как портативные стереосистемы, карманные калькуляторы, компьютерные игры и т. Д. Они состоят из трех слоев полупроводникового материала, каждый из которых способен поддерживать ток.

Сопротивление: Резистор — это электронный компонент, который ограничивает или ограничивает ток и делит напряжение в электронной схеме. Его основная цель — обеспечить точное электрическое сопротивление. Это один из наиболее важных пассивных компонентов электронной промышленности, поскольку без этих компонентов активные устройства не могут обрабатывать электрические сигналы.Резисторы в основном добавляются в схемы, где они дополняют активные компоненты, такие как операционные усилители, микроконтроллеры, интегральные схемы и т. Д.

Разница в использовании транзистора и резистора

Это два компонента, которые используются в электронике. они оба эволюционировали и уменьшились в размерах. есть много типов того и другого.

Я считаю, что разница между активом и пассивами, пожалуй, самая важная, но если вы не понимаете, что такое актив и пассива, это ничего не значит.Активная функциональность транзистора позволяет другим частям схемы изменять состояние. оба компонента встречаются в большинстве электронных продуктов и во многих других.

Работа или использование резистора проще, чем транзистора.

Сопротивление с фиксированной величиной сопротивления, которое не изменяется. У него также есть только две клеммы, вход и выход, выход зависит от входа и сопротивления.

Транзистор подобен резистору, за исключением того, что резистор может управляться вторым входом, называемым базовым входом; Следует также отметить, что входом затвора транзисторов является передатчик, а выходом — коллектор (обратная причина).

, если на вход базы подается отрицательный ток, сопротивление увеличивается, предотвращая прохождение тока от эмиттера к коллектору, что позволяет транзистору действовать как переключатель. Если к базе подается положительный ток, а к передатчику подключен второй источник отрицательного тока, входной сигнал будет усилен пропорционально току базы.

Транзисторы 101

Транзисторы 101 Изучение транзисторов
(через простую схему драйвера светодиода)

Светодиод

Светодиод — это устройство, показанное выше.Кроме красные, они также могут быть желтыми, зелеными и синими. Буквы LED означают свет Излучающий диод. Что важно помнить о диодах (включая светодиоды) заключается в том, что ток может течь только в одном направлении.

Чтобы светодиод заработал, нужен источник питания и резистор. Если вы попытаетесь использовать светодиод без резистора, вы, вероятно, перегорите светодиод. Светодиод имеет очень маленькое сопротивление поэтому через него будет протекать большое количество тока, если вы не ограничите ток с резистором.Если вы попытаетесь использовать светодиод без источника питания, вы можете быть очень разочарованы.

Итак, в первую очередь сделаем наш Светодиод загорается при настройке схемы ниже.

Шаг 1.) Сначала вам нужно найти положительная нога светодиода. Самый простой способ сделать это — поискать нога, которая длиннее.

Шаг 2.) Как только вы узнаете, с какой стороны положительный, включите светодиод макет таким образом, положительный отрезок находится в одном ряду, а отрицательный — в другом. (На картинке ниже ряды вертикальные.)

Шаг 3.) Поместите одну ногу 220 резистор ом (не имеет значения, на какой ноге) в том же ряду, что и отрицательный ножка светодиода. Затем поместите другую ножку резистора в пустой ряд.

Шаг 4.) Отключите блок питания. адаптер от блока питания. Затем поместите заземляющий (черный провод) конец адаптер питания в боковом ряду с синей полосой рядом Это. Затем вставьте положительный (красный провод) конец адаптера источника питания в боковой ряд с красной полосой рядом.

Шаг 5.) Используйте короткую перемычку. (используйте красный цвет, так как он будет подключен к положительному напряжению), чтобы перейти от положительный ряд мощности (тот, рядом с которым есть красная полоса) к положительному ножка светодиода (не в том же отверстии, а в том же ряду). Использовать другой короткая перемычка (используйте черный цвет) для перехода от заземляющего ряда к резистору (нога, не подключенная к светодиоду). См. Картинку ниже если необходимо.

Макет должен выглядеть как на картинке ниже.

Теперь подключите блок питания к стену, а затем подключите другой конец к адаптеру питания и Светодиод должен загореться.Ток течет от положительной ножки светодиода. через светодиод к отрицательной ножке. Попробуйте повернуть светодиод. Должно не загорается. Ток не может течь от отрицательного полюса светодиода к положительная нога.

Люди часто думают, что резистор должен быть первым на пути от положительного к отрицательному, чтобы ограничить количество тока, протекающего через светодиод. Но ток ограничен резистор независимо от того, где находится резистор. Даже когда вы впервые включаете мощность, ток будет ограничен определенной величиной, и его можно найти используя закон Ома.

Вездесущая полезность закона Ома:
[Напряжение (вольт) = ток (амперы) X сопротивление (Ом)]

Закон Ома может использоваться с резисторами найти ток, протекающий по цепи. Закон I = V / R (где I = ток, V = напряжение на резисторе и R = сопротивление). Для В приведенной выше схеме мы можем использовать только закон Ома для резистора, поэтому мы должны использовать тот факт, что при горит светодиоде на нем падение напряжения 1,9 (Кстати: падение напряжения зависит от типа светодиода).Это означает, что если положительная нога подключена к 5 вольт, отрицательная нога будет на 3,1 вольта (т. е. 5,0–1,9 = 3,1). Теперь, когда мы знаем напряжение на обеих сторонах резистор и может использовать закон Ома для расчета тока. Текущий (5,0-1,9) / 220 = 3,6 / 2000 = 0,0014 Ампер = 14 мА

Это ток, протекающий через путь от 5В к GND. Это означает, что через оба канала проходит 14 мА. Светодиод и резистор (так как они включены последовательно). Если мы хотим изменить ток, протекающий через светодиода (таким образом, изменяя яркость) мы можем поменять резистор.Меньший резистор пропускает больше тока, а резистор большего размера пропускает меньше текущий поток. Будьте осторожны при использовании резисторов меньшего размера, потому что они будут раздражаться. Кроме того, некоторые светодиоды будут повреждены, если вы ими воспользуетесь. за пределами их максимального номинального тока … так что не используйте резистор, который настолько мал что вы будете генерировать чрезвычайно высокий ток (примечание: наш светодиод имеет максимум рабочий ток 20 мА).

Далее мы хотим иметь возможность превратить светодиод включается и выключается без изменения схемы.Для этого мы научимся использовать другой электронный компонент, транзистор.

Транзистор

Транзисторы — основные компоненты во всей современной электронике. Это просто переключатели, которые мы можем использовать для включения и выключения. Несмотря на то, что они простые, они самый важный электрический компонент. Например, транзисторы почти единственные компоненты, используемые для построения процессора Pentium. Один Pentium 4 имеет около 55 миллионов транзисторов (вот почему эти чипы так чертовски горячий).Те, что в Pentium, меньше чем те, которые мы будем использовать, но они работают одинаково.

Транзисторы (2N2222), которые мы будем использовать в наших проектах, выглядят так:

Транзистор имеет три ножки, Коллектор (C), база (B) и эмиттер (E). Иногда они помечены на плоская сторона транзистора. Транзисторы обычно имеют одну круглую сторону и одна плоская сторона. Если плоская сторона обращена к вам, ножка эмиттера Слева опорная ножка находится посередине, а коллекторная ножка находится на справа (примечание: некоторые специальные транзисторы имеют другую конфигурацию контактов, чем пакет ТО-92, описанный выше).

Обозначение транзистора

В электрические схемы (схемы) для представления NPN транзистора

Базовая схема

База (B) — переключатель включения / выключения для транзистора. Если к базе идет ток, будет путь от коллектора (C) к эмиттеру (E), где может течь ток (Переключатель включен.) Если к базе не течет ток, значит, нет ток может течь от коллектора к эмиттеру.(Переключатель выключен.)

Ниже приведена базовая схема, которую мы будем использовать для всех наших транзисторов.

Чтобы построить эту схему, нам нужно только добавить транзистор и еще один резистор к схеме, которую мы построили выше для светодиода. Перед внесением любых изменений отключите блок питания от адаптера блока питания. на макете. Чтобы вставить транзистор в макет, разъедините ножки немного и поместите его на макет так, чтобы каждая ножка находилась в отдельном ряду. В коллекторная ножка должна быть в том же ряду, что и ножка резистора, который подключен к земле (с помощью черной перемычки).Затем переместите перемычку переход от земли к резистору 220 Ом к эмиттеру транзистора.

Затем поместите одну ногу 100 кОм резистор в ряду с базой транзистора и другой ножкой в пустая строка, и ваша макетная плата должна выглядеть как на картинке ниже.

Теперь наденьте один конец желтой перемычки. провод в положительном ряду (рядом с красной линией), а другой конец — в ряд с ножкой резистора 100 кОм (конец не подключен к База).Снова подключите источник питания, транзистор включится и Загорится светодиод. Теперь переместите один конец желтой перемычки из положительный ряд к основному ряду (рядом с синей линией). Как только ты снимите желтую перемычку с плюса питания, есть ток не течет к базе. Это заставляет транзистор выключиться и ток не может течь через светодиод. Как мы увидим позже, очень через резистор 100 кОм протекает небольшой ток. Это очень важно потому что это означает, что мы можем контролировать большой ток в одной части цепи (ток, протекающий через светодиод) с небольшим током от Вход.

Вернуться к закону Ома

Мы хотим использовать закон Ома, чтобы найти ток на пути от входа к базе транзистора и ток, протекающий через светодиод. Для этого нам нужно использовать два основных факты о конкретных транзисторах, которые мы используем:

1.) Если транзистор включен, тогда базовое напряжение на 0,7 вольт выше, чем напряжение эмиттера.

2.) Если транзистор включен, напряжение коллектора на 1,6 вольт выше, чем напряжение эмиттера.

Итак, когда резистор 100 кОм подключен к 5 В постоянного тока, схема будет выглядеть так:

Таким образом, ток, протекающий через резистор 100 кОм, равен (5 — 0,7) / 100000 = 0,000043 A = 0,043 мА.

Ток, протекающий через резистор 220 Ом, равен (3,1 — 1,6) / 220 = 0,0068 А = 6,8 мА.

Если мы хотим, чтобы ток протекал больше через светодиод мы можем использовать меньший резистор (вместо 220) и мы будет получать больше тока через светодиод без изменения величины тока который идет от входной линии к базовому резистору 100 кОм.Это означает, что мы можем контролировать вещи, которые используют большая мощность (например, электродвигатели) с дешевыми транзисторными схемами малой мощности. Скоро вы узнаете, как использовать компьютер для управления событиями в реальном мире. Несмотря на то Выходы стандартного компьютера под управлением Windows не могут обеспечить достаточный ток для включения света и двигателей включения и выключения, компьютер может включать и выключать транзисторы (поскольку для этого требуется слабый ток) и Транзисторы могут управлять большим током для ламп и двигателей. Эта концепция называется усилением и представляет собой фундаментальную концепцию компьютерного интерфейса для эксперименты в реальном мире.

Примечание :
Это руководство в значительной степени основано на том, что изначально появилось на несуществующем веб-сайте www.iguanalabs.com (Посмертное спасибо ребятам из лаборатории игуаны).

Часть 2 Печатная плата и компоненты

Резисторы, диоды и транзисторы являются неотъемлемыми частями работающей печатной платы. Без них печатная плата не смогла бы выполнять свои задачи. Каждый из этих компонентов выполняет определенную функцию.

Резисторы

Резисторы являются частью печатной платы.Резистор создает сопротивление в потоке электричества. При расчете сопротивления измерения производятся в омах. Ом — это стандарт для измерения электрического сопротивления.

Резисторы имеют различное назначение. Назначение резистора заключается в делении напряжения. Резисторы делят напряжение, когда они включены последовательно друг с другом. Еще одно предназначение резисторов — это способ генерации тепла. Резистор может генерировать тепло, преобразовывая проходящую через него электрическую энергию в тепловую.Конечная цель, которую мы опишем, — это то, как резисторы согласовываются и нагружают цепи. Большая часть выходной мощности перемещается в виде тепла в случае слишком низкого сопротивления нагрузки. Однако, если сопротивление нагрузки слишком велико, ток будет слишком низким для передачи энергии нагрузке.

Вот отличное видео с ResistorGuide.com:

Диоды

Диоды позволяют току течь только в одном направлении. Также диоды имеют два электрода.Анод и катод — это два электрода внутри диода. Анод позволяет току течь из внешней цепи. В то время как катод позволяет току течь в поляризованном устройстве. Катод тоже металлический.

Диод работает правильно, только если катод заряжен отрицательно по отношению к аноду при заданном напряжении. Следовательно, когда катод заряжен положительно, диод вообще не работает. Это также произойдет, если на катоде будет такое же напряжение, что и на аноде. Это также происходит, когда его отрицательность меньше, чем у прямого размыкающего напряжения по отношению к аноду.Направление катода очень важно для функциональности диодов.

Транзисторы

Транзисторы — это трехконтактные устройства. Это трехконтактное устройство может регулировать ток или напряжение, а также действовать как переключатель для сигналов электронной разновидности. Полупроводники составляют три слоя транзистора. Следовательно, каждый из этих слоев может проводить ток. Материал полупроводника находится между материалом реального проводника и изолятора.Работа транзистора заключается в усилении или переключении электронных сигналов и электроэнергии, а также в регулировании тока или напряжения в цепи, а это возможно только благодаря полупроводникам.

Оставайтесь на связи

Скоро в продаже: продолжение нашей серии статей о печатных платах и ​​их компонентах.

Вы всегда можете посетить наш блог для получения дополнительной информации или наш сайт!

Также посетите наши Facebook, Twitter, Google+ и LinkedIn.

Транзисторные схемы | Electronics Club

Транзисторные схемы | Клуб электроники

Типы | Токи | Функциональная модель | Использовать как переключатель | Выход IC | Датчики | Инвертор | Дарлингтон пара

Следующая страница: Емкость

См. Также: Транзисторы

На этой странице объясняется работа транзисторов в простых схемах, в основном их использование в качестве переключателей.Практические вопросы, такие как тестирование, меры предосторожности при пайке и идентификация выводов, рассматриваются в страница транзисторов.

Типы транзисторов

Есть два типа стандартных (биполярных) транзисторов, NPN и PNP , с разными обозначениями схем. Буквы относятся к слоям полупроводникового материала, из которых изготовлен транзистор. Большинство используемых сегодня транзисторов являются NPN-транзисторами, потому что их проще всего сделать из кремния. Эта страница в основном посвящена транзисторам NPN, и новичкам следует сначала сосредоточиться на этом типе.

Выводы имеют маркировку база (B), коллектор (C) и эмиттер (E). Эти термины относятся к внутренней работе транзистора, но их не так много. Помогите понять, как используется транзистор, поэтому относитесь к ним как к ярлыкам.

Обозначения схем транзисторов

Пара Дарлингтона — это два транзистора, соединенные вместе. чтобы дать очень высокий коэффициент усиления по току.

Помимо стандартных (биполярный переход) транзисторов, есть полевых транзисторов , которые обычно обозначаются как FET s.У них разные символы схем и свойства, и они не рассматриваются на этой странице.

Rapid Electronics: транзисторы


Токи транзисторов

На схеме показаны два пути тока через транзистор.

Малый базовый ток управляет большим током коллектора .

Когда переключатель замкнут , небольшой ток течет в основание (B) транзистор. Этого достаточно, чтобы светодиод B тускло светился.Транзистор усиливает этот небольшой ток, чтобы позволить большему току течь через его коллектор (C) к его эмиттеру (E). Этот ток коллектора достаточно велик, чтобы светодиод C светился ярко.

При разомкнутом переключателе базовый ток не течет, поэтому транзистор отключается коллекторный ток. Оба светодиода выключены.

Вы можете построить эту схему с двумя стандартными 5-миллиметровыми красными светодиодами и любыми маломощными светодиодами общего назначения. Транзистор NPN (например, BC108, BC182 или BC548).Это хороший способ проверить транзистор и убедиться, что он работает.

Транзистор усиливает ток и может использоваться как переключатель, как описано на этой странице.

С подходящими резисторами (и конденсаторами для переменного тока) транзистор может усиливать напряжение, такое как аудиосигнал. но это еще не рассматривается на этом веб-сайте.

Режим общего эмиттера

Это устройство, в котором эмиттер (E) находится в цепи управления (базовый ток) а в управляемой цепи (коллекторный ток) называется общим эмиттерным режимом .Это наиболее широко используемая схема транзисторов, поэтому ее нужно изучить в первую очередь.



Функциональная модель транзистора NPN

Функционирование транзистора сложно объяснить и понять с точки зрения его внутренней структуры. Более полезно использовать эту функциональную модель.

  • Переход база-эмиттер ведет себя как диод.
  • A базовый ток I B протекает только при напряжении V BE через переход база-эмиттер равен 0.7В или больше.
  • Малый базовый ток I B управляет большим током коллектора Ic варьируя сопротивление R CE .
  • Ic = h FE × I B (если транзистор не открыт и не насыщен). h FE — коэффициент усиления по току (строго по постоянному току), Типичное значение для h FE равно 100 (это отношение, поэтому у него нет единиц измерения).
  • Сопротивление коллектор-эмиттер R CE регулируется током базы I B :
    I B = 0 , R CE = бесконечность, транзистор выключен
    I B малый , R CE уменьшенный, транзистор частично включен
    I B увеличено , R CE = 0, транзистор полностью открыт («насыщен»)
Дополнительные примечания:
  • Базовый ток I B должен быть ограничен, чтобы предотвратить повреждение транзистора. и резистор может быть подключен последовательно с базой.
  • Транзисторы имеют максимальный ток коллектора Ic.
  • Коэффициент усиления по току h FE может широко варьироваться , даже для однотипных транзисторов!
  • Транзистор, заполненный на на (с R CE = 0), называется « насыщенный ».
  • При насыщении транзистора напряжение коллектор-эмиттер В CE снижается почти до 0В.
  • При насыщении транзистора определяется ток коллектора Ic. напряжением питания и внешним сопротивлением в цепи коллектора, а не коэффициент усиления транзистора по току.В результате соотношение Ic / I B для насыщенного транзистора коэффициент усиления по току меньше h FE .
  • Ток эмиттера I E = Ic + I B , но Ic намного больше, чем I B , поэтому примерно I E = Ic.

Использование транзистора в качестве переключателя

Когда транзистор используется в качестве переключателя, он должен быть либо ВЫКЛ. , либо полностью ВКЛЮЧЕННЫМ . Он никогда не должен быть включен частично (со значительным сопротивлением между C и E), потому что в В этом состоянии транзистор может перегреться и выйти из строя.

В полностью открытом состоянии напряжение V CE на транзисторе почти равно нулю, и транзистор находится в считается насыщенным , потому что он больше не может пропускать ток коллектора Ic.

Устройство, переключаемое транзистором, называется нагрузкой .

При выборе транзистора для использования в качестве переключателя необходимо учитывать его максимальный ток коллектора. Ic (макс.) и его минимальное усиление по току ч FE (мин.) . Номинальное напряжение транзистора может быть проигнорировано при напряжении питания менее 15 В.

Технические данные транзистора

Большинство поставщиков предоставляют данные о транзисторах, которые они продают, например Быстрая электроника.

Мощность, развиваемая переключающим транзистором, должна быть очень маленькой

Мощность, развиваемая в транзисторе, отображается как нагрев , и транзистор будет разрушен, если станет слишком горячим. Это не должно быть проблемой для транзистора, используемого в качестве переключателя, если он был выбран и настроен правильно, потому что мощность, развиваемая внутри него, будет очень маленькой.

Мощность (тепло), развиваемая в транзисторе:

Мощность = Ic × V CE

  • Когда ВЫКЛ : Ic равен нулю, поэтому мощность равна нулю .
  • Когда полный ВКЛ : V CE почти равен нулю, поэтому мощность очень мала .
Может ли реле быть лучше транзисторного переключателя?

Транзисторы не могут переключать переменный ток или высокое напряжение (например, электросеть), и они обычно не лучший выбор для коммутации больших токов (> 5A).Реле подходят для всех этих ситуаций, но учтите, что для переключения тока катушки реле может все же потребоваться маломощный транзистор. Для получения дополнительной информации, включая преимущества и недостатки, см. страницу реле.

Защитный диод для нагрузок с катушкой, таких как реле и двигатели

Если транзистор переключает нагрузку с помощью катушки, такой как двигатель или реле, диод должен быть подключен к нагрузке, чтобы защитить транзистор от кратковременное высокое напряжение, возникающее при отключении нагрузки.

На схеме показано, как защитный диод подключен к нагрузке «в обратном направлении», в данном случае катушка реле.

Для этого подходит сигнальный диод типа 1N4148.

Зачем нужен защитный диод?

Ток, протекающий через катушку, создает магнитное поле, которое внезапно схлопывается. при отключении тока. Внезапный коллапс магнитного поля вызывает кратковременное высокое напряжение на катушке, которое может повредить транзисторы и микросхемы.Защитный диод позволяет индуцированному напряжению пропускать кратковременный ток через катушку. (и диод), поэтому магнитное поле исчезает быстро, а не мгновенно. Это предотвращает индуцированное напряжение становится достаточно высоким, чтобы вызвать повреждение транзисторов и микросхем.


Подключение транзистора к выходу включения / выключения цифровой ИС

Большинство ИС не могут обеспечивать большие выходные токи, поэтому может потребоваться использование транзистора. для переключения большего тока, необходимого для таких устройств, как лампы, двигатели и реле.Микросхема таймера 555 необычна тем, что может обеспечивать относительно большой ток до 200 мА, Достаточно для многих реле и других нагрузок без транзистора.

Базовый резистор ограничивает ток, протекающий в базу транзистора, чтобы предотвратить его повреждение. но он также должен пропускать достаточный базовый ток, чтобы транзистор был полностью насыщен. при включении.

Транзистор, который не полностью насыщен при включении, может перегреться и выйти из строя. особенно если транзистор переключает большой ток (> 100 мА).

В следующем разделе объясняется, как выбрать транзистор и базовый резистор для обеспечения полного насыщения.

Переключение нагрузки с другим напряжением питания

Транзистор может использоваться для включения ИС, подключенной к источнику низкого напряжения (например, 5 В) для переключения тока нагрузки с отдельным источником постоянного тока (например, 12 В).

Два источника питания должны быть связаны. Обычно их соединения 0 В связаны и транзистор NPN используется на выходе IC. Однако, если на выходе ИС используется транзистор PNP, положительные (+) соединения вместо этого должны быть связаны.

Выбор транзистора и базового резистора для цифрового выхода ИМС

Следуйте этому пошаговому руководству, чтобы выбрать подходящий транзистор для подключения к выходу включения / выключения. цифровой ИС (логический вентиль, счетчик, PIC, микроконтроллер и т. д.) для переключения нагрузки, такой как лампа, двигатель или реле. Данные о транзисторах можно получить у большинства поставщиков, например см. Быстрая электроника.

1. Выберите правильный тип транзистора, NPN или PNP

Вы хотите, чтобы нагрузка включалась, когда выход IC высокий? Или когда он или низкий?

  • Для включения, когда на выходе IC высокий , используйте NPN транзистор .
  • Для включения, когда на выходе IC низкий уровень , используйте PNP-транзистор .

Транзисторы NPN и PNP подключаются по-разному, как показано на схемах ниже, но Расчеты и требуемые свойства одинаковы для обоих типов транзисторов.

Транзисторный переключатель NPN
нагрузка включена, когда выход IC высокий

Транзисторный переключатель PNP
нагрузка включена, когда выход IC низкий

2.Узнайте напряжение питания и характеристики нагрузки.

Для определения требуемых свойств транзистора вам необходимо знать следующие значения:

  • Вс = напряжение питания нагрузки.
  • R L = сопротивление нагрузки (например, сопротивление катушки реле).
  • Ic = ток нагрузки (= Vs / R L ).
  • Максимальный выходной ток микросхемы — см. Техническое описание микросхемы. Если вы не можете найти эту информацию, примите низкое значение, например 5 мА.
  • Vc = напряжение питания ИС (обычно это Vs, но оно будет другим, если ИС и нагрузка имеют отдельные источники питания).

Примечание: не путайте IC (интегральная схема) с Ic (ток коллектора).

3. Определить требуемые свойства транзистора

Выберите транзистор правильного типа (NPN или PNP из шага 1), чтобы удовлетворить следующие требования:

  • Максимальный ток коллектора Ic (макс.) транзистора должен быть больше тока нагрузки:
    Ic (max)> напряжение питания Vs
    сопротивление нагрузки R L
  • Минимальный коэффициент усиления по току транзистора h FE (мин) должен быть не менее 5 умноженный на ток нагрузки Ic, деленный на максимальный выходной ток IC.
    ч FE (мин)> 5 × ток нагрузки Ic
    макс. IC current
4. Определите значение для базового резистора R
B

Базовый резистор (R B ) должен пропускать ток, достаточный для обеспечения работы транзистора. полностью насыщен при включении, и хорошо бы увеличить ток базы (I B ) примерно в пять раз значение, которое просто насыщает транзистор.Воспользуйтесь приведенной ниже формулой, чтобы найти подходящее сопротивление для R B и выбрать ближайшее стандартное значение.

R B = 0,2 × R L × h FE (см. Примечание)

Примечание: Если ИС и нагрузка имеют разные напряжения питания, например 5 В для ИС но 12 В для нагрузки используйте формулу ниже для R B :

R B = Vc × h FE , где Vc — напряжение питания микросхемы
5 × Ic
5.Проверьте, нужен ли вам защитный диод

Если включаемой и выключаемой нагрузкой является двигатель, реле или соленоид (или любое другое устройство с катушкой): диод должен быть подключен к нагрузке, чтобы защитить транзистор от короткого замыкания. высокое напряжение, возникающее при отключении нагрузки. Обратите внимание, что диод подключен «в обратном направлении», как показано на рисунке. на диаграммах выше.

Пример

Выход из КМОП-микросхемы серии 4000 необходим для работы реле с 100, включая ее, когда выход IC высокий.Напряжение питания составляет 6 В как для ИС, так и для нагрузки. ИС может обеспечивать максимальный ток 5 мА.

  • Требуется транзистор NPN , потому что катушка реле должна быть включена, когда выход IC высокий.
  • Ток нагрузки = Vs / R L = 6/100 = 0,06 A = 60 мА, поэтому транзистор должен иметь Ic (макс.)> 60 мА .
  • Максимальный ток от ИС составляет 5 мА, поэтому транзистор должен иметь ч FE (мин)> 60 (5 × 60 мА / 5 мА).
  • Выберите транзистор малой мощности общего назначения BC182 с Ic (макс.) = 100 мА и ч FE (мин) = 100 .
  • R B = 0,2 × R L × h FE = 0,2 × 100 × 100 = 2000, поэтому выберите R B = 1k8 или 2k2 .
  • Для катушки реле требуется защитный диод .

Rapid Electronics: транзисторы


Использование транзистора в качестве переключателя с датчиками

На схемах ниже показано, как подключить LDR (датчик освещенности) к транзистору, чтобы светочувствительный переключатель цепи на светодиоде. Есть две версии: одна включается в темноте, другая при ярком свете.Переменный резистор регулирует чувствительность. Для переключения светодиода можно использовать любой транзистор малой мощности общего назначения.

Если транзистор переключает нагрузку с помощью катушки (например, двигателя или реле) вместо светодиода, вы должны включить защитный диод поперек нагрузки.

Если переменный резистор находится между + Vs и базой, вы должны добавить резистор с фиксированным номиналом не менее 1к (10к в примере ниже), чтобы защитить транзистор, когда переменный резистор уменьшен до нуля, в противном случае чрезмерная база ток разрушит транзистор.

Светодиод загорается, когда LDR не горит

Светодиод загорается при яркости LDR

Обратите внимание, что переключающее действие этих простых схем не очень хорошее, потому что будет промежуточная яркость, когда транзистор будет частично на (не насыщенный). В этом состоянии транзистор может перегреться, если он не коммутирует небольшой ток. Нет проблем с малым током светодиода, но больший ток лампы, двигателя или реле может вызвать перегрев.

Другие датчики, например термистор, могут использоваться с этими схемами, но для них может потребоваться другой переменный резистор. Вы можете рассчитать приблизительное значение переменного резистора (Rv), используя мультиметр для определения минимального и максимального значений сопротивления датчика (Rmin и Rmax), а затем по этой формуле:

Значение переменного резистора:
Rv = квадратный корень из (Rmin × Rmax)

Например, LDR: Rmin = 100, Rmax = 1M, поэтому Rv = квадратный корень из (100 × 1M) = 10к.

Вы можете сделать гораздо лучшую схему переключения, подключив датчики к подходящему IC (чип). Действие переключения будет намного более резким без частичного включения.



Транзисторный инвертор (НЕ затвор)


Дарлингтон пара

Пара Дарлингтона — это два транзистора, соединенных вместе, так что ток, усиливаемый первым, усиливается. далее вторым транзистором.

Пара ведет себя как одиночный транзистор с очень высоким коэффициентом усиления по току, так что для включения пары требуется лишь крошечный базовый ток.

Коэффициент усиления по току пары Дарлингтона (h FE ) равен двум индивидуальным коэффициентам усиления (h FE1 и h FE2 ), умноженные вместе — это дает паре очень высокий коэффициент усиления по току, например 10000.

Коэффициент усиления по току пары Дарлингтона:
ч FE = h FE1 × h FE2

Обратите внимание, что для включения пары Дарлингтона должно быть 0,7 В на обоих переходах база-эмиттер, которые являются соединены последовательно так 1.Для включения требуется 4В.

Rapid Electronics: транзисторы Дарлингтона

Транзисторы Дарлингтона

пары Дарлингтона доступны в виде корпуса «транзистор Дарлингтона» с тремя выводами. (B, C и E) эквивалентно стандартному транзистору.

Вы также можете сделать свою собственную пару Дарлингтона из двух обычных транзисторов. TR1 может быть маломощным, но TR2 может потребоваться высокая мощность. Максимальный ток коллектора Ic (max) для пары такой же, как Ic (max) для TR2.

Цепь сенсорного переключателя

Пара Дарлингтона достаточно чувствительна, чтобы реагировать на небольшой ток, проходящий через ваша кожа, и его можно использовать для изготовления сенсорного переключателя , как показано на схеме.

Для этой схемы, которая просто зажигает светодиод, два транзистора могут быть любого общего назначения. транзисторы малой мощности назначения.

100к резистор защищает транзисторы, если контакты соединены куском провода.

Схема сенсорного переключателя


Rapid Electronics любезно разрешили мне использовать их изображения на этом веб-сайте, и я очень благодарен за их поддержку.У них есть широкий ассортимент компонентов, инструментов и материалов для электроники, и я рад рекомендую их как поставщика.


Следующая страница: Емкость | Исследование


Политика конфиденциальности и файлы cookie

Этот сайт не собирает личную информацию. Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно не будет передано никому. На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден.Рекламодателям не передается никакая личная информация. Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации. Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google. Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста, посетите AboutCookies.org.

клуб электроники.инфо © Джон Хьюс 2021

транзисторов — learn.sparkfun.com

Добавлено в избранное Любимый 77

Введение

Транзисторы вращают мир электроники. Они критически важны как источник управления практически в каждой современной цепи. Иногда вы их видите, но чаще всего они спрятаны глубоко внутри кристалла интегральной схемы. В этом уроке мы познакомим вас с основами самого распространенного транзистора: биполярного переходного транзистора (BJT).

В небольших дискретных количествах транзисторы могут использоваться для создания простых электронных переключателей, цифровой логики и схем усиления сигналов. В количествах тысяч, миллионов и даже миллиардов транзисторы соединены между собой и встроены в крошечные микросхемы для создания компьютерной памяти, микропроцессоров и других сложных ИС.

описано в этом учебном пособии

После прочтения этого руководства мы хотим, чтобы вы получили широкое представление о том, как работают транзисторы.Мы не будем углубляться в физику полупроводников или эквивалентные модели, но мы достаточно углубимся в предмет, чтобы вы поняли, как транзистор можно использовать в качестве переключателя или усилителя .

Это руководство разделено на несколько разделов, охватывающих:

Существует два типа базовых транзисторов: биполярный переход (BJT) и металлооксидный полевой транзистор (MOSFET). В этом уроке мы сосредоточимся на BJT , потому что его немного легче понять.Если копать еще глубже в типы транзисторов, на самом деле существует две версии BJT: NPN и PNP . Мы сфокусируемся еще больше, ограничив наше раннее обсуждение NPN. Если сузить наш фокус — получить твердое представление о NPN — будет легче понять PNP (или даже МОП-транзисторы), сравнив, чем он отличается от NPN.

и nbsp

и nbsp

Рекомендуемая литература

Перед тем, как углубиться в это руководство, мы настоятельно рекомендуем просмотреть эти руководства:

  • Напряжение, ток, сопротивление и закон Ома — Введение в основы электроники.
  • Основы электричества — Мы немного поговорим об электричестве как потоке электронов. Узнайте, как текут эти электроны, в этом уроке.
  • Electric Power — Одно из основных применений транзисторов — усиление — увеличение мощности сигнала. Увеличение мощности означает, что мы можем увеличить либо ток, либо напряжение, узнайте почему в этом руководстве.
  • Диоды — Транзистор — это полупроводниковый прибор, похожий на диод. В некотором смысле это то, что вы получили бы, если бы сложили два диода вместе и связали их аноды вместе.Понимание того, как работает диод, во многом поможет раскрыть принцип работы транзистора.

Хотите изучить транзисторы?

Символы, булавки и конструкция

Транзисторы — это в основном трехконтактные устройства. На биполярном переходном транзисторе (BJT) эти контакты обозначены как коллектор (C), база (B) и эмиттер (E). Обозначения схем как для NPN, так и для PNP BJT приведены ниже:

Единственное различие между NPN и PNP — это направление стрелки на эмиттере.Стрелка на NPN указывает, а на PNP указывает. Полезная мнемоника для запоминания:

NPN:

N ot P ointing i N

Обратная логика, но работает!

Конструкция транзистора

Транзисторы полагаются на полупроводники, чтобы творить чудеса. Полупроводник — это не совсем чистый проводник (например, медный провод), но и не изолятор (например, воздух). Проводимость полупроводника — насколько легко он позволяет электронам течь — зависит от таких переменных, как температура или наличие большего или меньшего количества электронов.Заглянем вкратце под капот транзистора. Не волнуйтесь, мы не будем углубляться в квантовую физику.

Транзистор как два диода
Транзисторы

— это своего рода продолжение другого полупроводникового компонента: диодов. В некотором смысле транзисторы — это всего лишь два диода со связанными вместе катодами (или анодами):

Диод, соединяющий базу с эмиттером, здесь важен; он совпадает с направлением стрелки на схематическом символе и показывает , в каком направлении должен проходить ток через транзистор.

Изображение диодов — хорошее место для начала, но оно далеко не точное. Не основывайте свое понимание работы транзистора на этой модели (и определенно не пытайтесь воспроизвести ее на макете, это не сработает). Существует множество странных вещей на уровне квантовой физики, управляющих взаимодействием между тремя терминалами.

(Эта модель полезна, если вам нужно проверить транзистор. Используя функцию проверки диодов (или сопротивления) на мультиметре, вы можете провести измерения на клеммах BE и BC, чтобы проверить наличие этих «диодов».)

Структура и работа транзистора
Транзисторы

состоят из трех разных слоев полупроводникового материала. В некоторые из этих слоев добавлены дополнительные электроны (процесс, называемый «легирование»), а в других электроны удалены (допирование «дырками» — отсутствие электронов). Полупроводниковый материал с дополнительными электронами называется n-типа ( n для отрицательного заряда, потому что электроны имеют отрицательный заряд), а материал с удаленными электронами называется p-типа (для положительного).Транзисторы создаются путем наложения n поверх p поверх n или p поверх n поверх p .

Упрощенная схема структуры NPN. Заметили происхождение каких-либо аббревиатур?

При некотором взмахе руки мы можем сказать, что электронов могут легко перетекать из n областей в p областей , если у них есть небольшая сила (напряжение), чтобы толкать их.Но переход из области p в область n действительно затруднен (требуется лот напряжения). Но особенность транзистора — та часть, которая делает нашу модель с двумя диодами устаревшей — это тот факт, что электронов могут легко перетекать с базы p-типа на коллектор n-типа, пока база- эмиттерный переход имеет прямое смещение (это означает, что база находится под более высоким напряжением, чем эмиттер).

NPN-транзистор предназначен для передачи электронов от эмиттера к коллектору (поэтому обычный ток течет от коллектора к эмиттеру).Эмиттер «испускает» электроны в базу, которая контролирует количество электронов, испускаемых эмиттером. Большая часть испускаемых электронов «собирается» коллектором, который отправляет их в следующую часть цепи.

PNP работает таким же, но противоположным образом. База по-прежнему контролирует ток, но этот ток течет в противоположном направлении — от эмиттера к коллектору. Вместо электронов эмиттер испускает «дырки» (концептуальное отсутствие электронов), которые собираются коллектором.

Транзистор похож на электронный клапан . Базовый штифт похож на ручку, которую вы можете отрегулировать, чтобы позволить большему или меньшему количеству электронов течь от эмиттера к коллектору. Давайте исследуем эту аналогию дальше …


Расширение аналогии с водой

Если вы в последнее время читали много руководств по концепциям электричества, вы, вероятно, привыкли к аналогиям с водой. Мы говорим, что ток аналогичен скорости потока воды, напряжение — это давление, проталкивающее воду по трубе, а сопротивление — это ширина трубы.

Неудивительно, что аналогию с водой можно распространить и на транзисторы: транзистор похож на водяной клапан — механизм, который мы можем использовать для управления скоростью потока .

Есть три состояния, в которых мы можем использовать клапан, каждое из которых по-разному влияет на скорость потока в системе.

1) Вкл — короткое замыкание

Клапан может быть полностью открыт, позволяя воде свободно течь в — проходить, как если бы клапана даже не было.

Аналогичным образом, при определенных обстоятельствах, транзистор может выглядеть как , закорачивающее между выводами коллектора и эмиттера. Ток может свободно течь через коллектор и выходить из эмиттера.

2) Выкл. — обрыв цепи

Когда он закрыт, клапан может полностью перекрыть поток воды.

Таким же образом можно использовать транзистор для создания разрыва цепи между выводами коллектора и эмиттера.

3) Линейное управление потоком

С некоторой точной настройкой клапан может быть отрегулирован для точного управления расходом до некоторой точки между полностью открытым и закрытым.

Транзистор может делать то же самое — линейно регулирует ток через цепь в какой-то момент между полностью выключенным (разомкнутая цепь) и полностью включенным (короткое замыкание).

Из нашей аналогии с водой, ширина трубы аналогична сопротивлению в цепи. Если клапан может точно регулировать ширину трубы, то транзистор может точно регулировать сопротивление между коллектором и эмиттером. Таким образом, транзистор подобен переменному регулируемому резистору .

Усилительная мощность

Есть еще одна аналогия, которую мы можем провести здесь. Представьте себе, если бы с легким поворотом клапана вы могли контролировать скорость потока затворов плотины Гувера. Ничтожное количество силы, которое вы можете приложить для поворота этой ручки, может создать силу в тысячи раз сильнее. Мы расширяем аналогию до предела, но эта идея распространяется и на транзисторы. Транзисторы особенные, потому что они могут усилить электрических сигналов, превращая сигнал малой мощности в аналогичный сигнал гораздо большей мощности.


Вид. Это еще не все, но это хорошее место для начала! В следующем разделе вы найдете более подробное объяснение работы транзистора.


Режимы работы

В отличие от резисторов, которые обеспечивают линейную зависимость между напряжением и током, транзисторы являются нелинейными устройствами. У них есть четыре различных режима работы, которые описывают протекающий через них ток. (Когда мы говорим о токе, протекающем через транзистор, мы обычно имеем в виду ток , протекающий от коллектора к эмиттеру NPN .)

Четыре режима работы транзистора:

  • Насыщение — Транзистор действует как короткое замыкание . Ток свободно течет от коллектора к эмиттеру.
  • Отсечка — Транзистор действует как разомкнутая цепь . Нет тока от коллектора к эмиттеру.
  • Активный — Ток от коллектора к эмиттеру пропорционален току, протекающему в базу.
  • Reverse-Active — Как и в активном режиме, ток пропорционален базовому току, но течет в обратном направлении.Ток течет от эмиттера к коллектору (не совсем то, для чего были предназначены транзисторы).

Чтобы определить, в каком режиме находится транзистор, нам нужно посмотреть на напряжения на каждом из трех выводов и на то, как они соотносятся друг с другом. Напряжения от базы к эмиттеру (V BE ) и от базы к коллектору (V BC ) устанавливают режим транзистора:

Упрощенный квадрантный график выше показывает, как положительное и отрицательное напряжение на этих клеммах влияет на режим.На самом деле все немного сложнее.

Давайте рассмотрим все четыре режима транзистора по отдельности; мы исследуем, как перевести устройство в этот режим и как это влияет на ток.

Примечание: Большая часть этой страницы посвящена NPN транзисторам . Чтобы понять, как работает транзистор PNP, просто поменяйте полярность или знаки> и <.

Режим насыщения

Насыщенность — это в режиме транзистора.Транзистор в режиме насыщения действует как короткое замыкание между коллектором и эмиттером.

В режиме насыщения оба «диода» в транзисторе смещены в прямом направлении. Это означает, что V BE должен быть больше 0, и , поэтому должен быть V BC . Другими словами, V B должен быть выше, чем V E и V C .

Поскольку переход от базы к эмиттеру выглядит как диод, на самом деле V BE должен быть больше, чем пороговое напряжение , чтобы войти в насыщение.Есть много сокращений для этого падения напряжения — V th , V γ и V d несколько — и фактическое значение варьируется между транзисторами (и даже больше в зависимости от температуры). Для многих транзисторов (при комнатной температуре) это падение может составить около 0,6 В.

Еще один облом реальности: между эмиттером и коллектором не будет идеальной проводимости. Между этими узлами образуется небольшое падение напряжения. В технических характеристиках транзисторов это напряжение определяется как CE напряжение насыщения, В CE (насыщение) — напряжение от коллектора к эмиттеру, необходимое для насыщения.Это значение обычно составляет 0,05-0,2 В. Это значение означает, что V C должно быть немного больше, чем V E (но оба все еще меньше, чем V B ), чтобы транзистор находился в режиме насыщения.

Режим отсечки

Режим отсечки противоположен насыщению. Транзистор в режиме отсечки выключен — нет тока коллектора, а значит, нет тока эмиттера. Это почти похоже на обрыв цепи.

Чтобы перевести транзистор в режим отсечки, базовое напряжение должно быть меньше, чем напряжения эмиттера и коллектора.Оба V BC и V BE должны быть отрицательными.

На самом деле, V BE может быть где угодно между 0 В и V th (~ 0,6 В) для достижения режима отсечки.

Активный режим

Для работы в активном режиме транзистор V BE должен быть больше нуля, а V BC должен быть отрицательным. Таким образом, базовое напряжение должно быть меньше, чем на коллекторе, но больше, чем на эмиттере. Это также означает, что коллектор должен быть больше эмиттера.

На самом деле нам нужно ненулевое прямое падение напряжения (сокращенно V th , V γ или V d ) от базы к эмиттеру (V BE ), чтобы «включить» транзистор. Обычно это напряжение обычно составляет около 0,6 В.

Усиление в активном режиме

Активный режим — это самый мощный режим транзистора, потому что он превращает устройство в усилитель . Ток, идущий на вывод базы, усиливает ток, идущий в коллектор и выходящий из эмиттера.

Наше сокращенное обозначение для усиления (коэффициент усиления) транзистора — β (вы также можете увидеть его как β F или h FE ). β линейно связывает ток коллектора ( I C ) с базовым током ( I B ):

Фактическое значение β зависит от транзистора. Обычно это около 100 , но может варьироваться от 50 до 200 … даже 2000, в зависимости от того, какой транзистор вы используете и сколько тока проходит через него.Если, например, у вашего транзистора β = 100, это будет означать, что входной ток в 1 мА на базу может производить ток 100 мА через коллектор.

Модель с активным режимом. V BE = V th и I C = βI B .

А как насчет тока эмиттера, I E ? В активном режиме токи коллектора и базы идут в устройство , и выходит I E . Чтобы связать ток эмиттера с током коллектора, у нас есть другое постоянное значение: α .α — коэффициент усиления по току общей базы, он связывает эти токи как таковые:

α обычно очень близко, но меньше 1. Это означает, что I C очень близко, но меньше I E в активном режиме.

Вы можете использовать β для вычисления α или наоборот:

Если, например, β равно 100, это означает, что α равно 0,99. Итак, если, например, I C равен 100 мА, то I E равен 101 мА.

Реверс Активный

Так же, как насыщение противоположно отсечке, обратный активный режим противоположен активному режиму.Транзистор в обратном активном режиме проводит, даже усиливает, но ток течет в обратном направлении, от эмиттера к коллектору. Обратной стороной активного режима является то, что β (β R в данном случае) на намного меньше на .

Чтобы перевести транзистор в обратный активный режим, напряжение на эмиттере должно быть больше, чем на базе, которая должна быть больше, чем на коллекторе (V BE <0 и V BC > 0).

Обратный активный режим обычно не является состоянием, в котором вы хотите управлять транзистором.Приятно знать, что он есть, но он редко превращается в приложение.

Относительно PNP

После всего, о чем мы говорили на этой странице, мы все еще покрыли только половину спектра BJT. А как насчет транзисторов PNP? Работа PNP очень похожа на работу NPN — у них те же четыре режима, но все изменилось. Чтобы узнать, в каком режиме находится PNP-транзистор, поменяйте местами все знаки <и>.

Например, чтобы перевести PNP в режим насыщения, V C и V E должны быть выше, чем V B .Вы опускаете базу ниже, чтобы включить PNP, и поднимаете ее выше, чем коллектор и эмиттер, чтобы выключить его. И, чтобы перевести PNP в активный режим, V E должен иметь более высокое напряжение, чем V B , которое должно быть выше, чем V C .

Итого:

Соотношение напряжений Режим NPN Режим PNP
В E B C Активный Обратный
V E B > V C Насыщенность Отсечка
V E > V B C Отсечка Насыщенность
V E > V B > V C Задний ход Активный

Другой противоположной характеристикой NPN и PNP является направление тока.В активном режиме и режиме насыщения ток в PNP течет от эмиттера к коллектору . Это означает, что эмиттер обычно должен иметь более высокое напряжение, чем коллектор.


Если вы перегорели концептуальными вещами, перейдите к следующему разделу. Лучший способ узнать, как работает транзистор, — это изучить его в реальных схемах. Давайте посмотрим на некоторые приложения!


Приложения I: переключатели

Одно из самых фундаментальных применений транзистора — это его использование для управления потоком энергии к другой части схемы — использование его в качестве электрического переключателя.Управляя им либо в режиме отсечки, либо в режиме насыщения, транзистор может создавать двоичный эффект включения / выключения переключателя.

Транзисторные переключатели являются важными блоками для построения схем; они используются для создания логических вентилей, которые используются для создания микроконтроллеров, микропроцессоров и других интегральных схем. Ниже приведены несколько примеров схем.

Транзисторный переключатель

Давайте посмотрим на самую фундаментальную схему транзисторного переключателя: переключатель NPN. Здесь мы используем NPN для управления мощным светодиодом:

Наш управляющий вход проходит в базу, выход привязан к коллектору, а на эмиттере поддерживается фиксированное напряжение.

В то время как для обычного переключателя требуется физическое переключение исполнительного механизма, этот переключатель управляется напряжением на базовом выводе. Вывод микроконтроллера ввода / вывода, как и на Arduino, может быть запрограммирован на высокий или низкий уровень для включения или выключения светодиода.

Когда напряжение на базе превышает 0,6 В (или какое бы там значение у вашего транзистора V th ), транзистор начинает насыщаться и выглядит как короткое замыкание между коллектором и эмиттером. Когда напряжение на базе меньше 0.6 В транзистор находится в режиме отсечки — ток не течет, потому что это похоже на разрыв цепи между C и E.

Схема, приведенная выше, называется переключателем низкого уровня , потому что переключатель — наш транзистор — находится на стороне низкого (заземления) цепи. В качестве альтернативы мы можем использовать транзистор PNP для создания переключателя верхнего плеча:

Подобно схеме NPN, база — это наш вход, а эмиттер подключен к постоянному напряжению. Однако на этот раз эмиттер подключен к высокому уровню, а нагрузка подключена к транзистору со стороны земли.

Эта схема работает так же хорошо, как и переключатель на основе NPN, но есть одно огромное отличие: чтобы включить нагрузку, база должна быть низкой. Это может вызвать осложнения, особенно если высокое напряжение нагрузки (V CC — 12 В, подключенное к эмиттеру V E на этом рисунке) выше, чем высокое напряжение нашего управляющего входа. Например, эта схема не будет работать, если вы попытаетесь использовать Arduino с напряжением 5 В для выключения двигателя 12 В. В этом случае было бы невозможно выключить выключателем , потому что V B (соединение с управляющим контактом) всегда будет меньше, чем V E .

Базовые резисторы!

Вы заметите, что каждая из этих схем использует последовательный резистор между управляющим входом и базой транзистора. Не забудьте добавить этот резистор! Транзистор без резистора на базе похож на светодиод без токоограничивающего резистора.

Напомним, что в некотором смысле транзистор — это просто пара соединенных между собой диодов. Мы смещаем в прямом направлении диод база-эмиттер, чтобы включить нагрузку. Для включения диоду требуется всего 0,6 В, большее напряжение означает больший ток.Некоторые транзисторы могут быть рассчитаны только на ток, протекающий через них не более 10–100 мА. Если вы подаете ток выше максимального номинала, транзистор может взорваться.

Последовательный резистор между нашим источником управления и базой ограничивает ток в базе . Узел база-эмиттер может получить свое счастливое падение напряжения 0,6 В, а резистор может снизить оставшееся напряжение. Значение резистора и напряжение на нем определяют ток.

Резистор должен быть достаточно большим, чтобы эффективно ограничить ток, но достаточно маленьким, чтобы питать базу достаточным током .Обычно достаточно от 1 мА до 10 мА, но чтобы убедиться в этом, проверьте техническое описание транзистора.

Цифровая логика

Транзисторы

можно комбинировать для создания всех наших основных логических вентилей: И, ИЛИ, и НЕ.

(Примечание: в наши дни полевые МОП-транзисторы с большей вероятностью будут использоваться для создания логических вентилей, чем биполярные транзисторы. Полевые МОП-транзисторы более энергоэффективны, что делает их лучшим выбором.)

Инвертор

Вот схема транзистора, которая реализует инвертор , или НЕ затвор:

Инвертор на транзисторах.

Здесь высокое напряжение на базе включает транзистор, который эффективно соединяет коллектор с эмиттером. Поскольку эмиттер напрямую подключен к земле, коллектор тоже будет (хотя он будет немного выше, где-то около V CE (sat) ~ 0,05-0,2 В). С другой стороны, если на входе низкий уровень, транзистор выглядит как разомкнутая цепь, а выход подтянут до VCC

.

(На самом деле это основная конфигурация транзистора, называемая с общим эмиттером .Подробнее об этом позже.)

И Ворота

Вот пара транзисторов, используемых для создания логического элемента И с 2 входами :

2-входной логический элемент И на транзисторах.

Если один из транзисторов выключен, то на выходе коллектора второго транзистора будет установлен низкий уровень. Если оба транзистора включены (на обоих базах высокий уровень), то выходной сигнал схемы также высокий.

OR Выход

И, наконец, логический элемент ИЛИ с двумя входами :

Логический вентиль ИЛИ с 2 входами, построенный на транзисторах.

В этой схеме, если один (или оба) A или B имеют высокий уровень, соответствующий транзистор включается и подтягивает выходной сигнал к высокому уровню. Если оба транзистора выключены, то через резистор выводится низкий уровень.

Н-образный мост

H-мост — это транзисторная схема, способная управлять двигателями как по часовой, так и против часовой стрелки . Это невероятно популярная трасса — движущая сила бесчисленных роботов, которые должны уметь двигаться как на вперед, так и на назад.

По сути, H-мост представляет собой комбинацию четырех транзисторов с двумя входными линиями и двумя выходами:

Угадайте, почему это называется H-мостом?

(Примечание: обычно у хорошо спроектированного H-моста есть нечто большее, включая обратные диоды, базовые резисторы и триггеры Шмидта.)

Если оба входа имеют одинаковое напряжение, выходы двигателя будут иметь одинаковое напряжение, и двигатель не сможет вращаться. Но если два входа противоположны, двигатель будет вращаться в одном или другом направлении.

H-мост имеет таблицу истинности, которая выглядит примерно так:

Вход A Вход B Выход A Выход B Направление двигателя
0 0 1 1 Остановлено (торможение)36 9042 1 0 По часовой стрелке
1 0 0 1 Против часовой стрелки
1 1 0
0 0 0 торможение

Генераторы

Генератор — это схема, которая генерирует периодический сигнал, который колеблется между высоким и низким напряжением.Генераторы используются во всевозможных схемах: от простого мигания светодиода до генерации тактового сигнала для управления микроконтроллером. Есть много способов создать схему генератора, включая кварцевые кристаллы, операционные усилители и, конечно же, транзисторы.

Вот пример колебательного контура, который мы называем нестабильным мультивибратором . Используя обратную связь , мы можем использовать пару транзисторов для создания двух дополняющих осциллирующих сигналов.

Помимо двух транзисторов, конденсаторы являются настоящим ключом к этой схеме.Колпачки поочередно заряжаются и разряжаются, в результате чего два транзистора поочередно включаются и выключаются.

Анализ работы этой схемы — отличное исследование работы как конденсаторов, так и транзисторов. Для начала предположим, что C1 полностью заряжен (сохраняется напряжение около V CC ), C2 разряжен, Q1 включен, а Q2 выключен. Вот что происходит после этого:

  • Если Q1 включен, то левая пластина C1 (на схеме) подключена примерно к 0 В. Это позволит C1 разряжаться через коллектор Q1.
  • Пока C1 разряжается, C2 быстро заряжается через резистор меньшего номинала — R4.
  • Как только C1 полностью разрядится, его правая пластина будет подтянута примерно до 0,6 В, что включит Q2.
  • На этом этапе мы поменяли местами состояния: C1 разряжен, C2 заряжен, Q1 выключен, а Q2 включен. Теперь танцуем в другую сторону.
  • Q2 включен, позволяет C2 разряжаться через коллектор Q2.
  • Когда Q1 выключен, C1 может относительно быстро заряжаться через R1.
  • Как только C2 полностью разрядится, Q1 снова включится, и мы вернемся в состояние, в котором начали.

Может быть трудно понять. Вы можете найти еще одну отличную демонстрацию этой схемы здесь.

Выбирая определенные значения для C1, C2, R2 и R3 (и сохраняя R1 и R4 относительно низкими), мы можем установить скорость нашей схемы мультивибратора:

Итак, при значениях для конденсаторов и резисторов, установленных на 10 мкФ и 47 кОм соответственно, частота нашего генератора будет около 1.5 Гц. Это означает, что каждый светодиод будет мигать примерно 1,5 раза в секунду.


Как вы, наверное, уже заметили, существует тонн схем, в которых используются транзисторы. Но мы почти не коснулись поверхности. Эти примеры в основном показывают, как транзистор можно использовать в режимах насыщения и отсечки в качестве переключателя, но как насчет усиления? Пришло время увидеть больше примеров!


Приложения II: Усилители

Некоторые из самых мощных транзисторных приложений включают усиление: преобразование сигнала малой мощности в сигнал большей мощности.Усилители могут увеличивать напряжение сигнала, беря что-то из диапазона мкВ и преобразовывая его в более полезный уровень в мВ или В. Или они могут усиливать ток, что полезно для превращения мкА тока, создаваемого фотодиодом, в ток гораздо большей величины. Существуют даже усилители, которые принимают ток и производят более высокое напряжение или наоборот (называемые транссопротивлением и крутизной соответственно).

Транзисторы являются ключевым компонентом многих усилительных схем. Существует бесконечное количество разнообразных транзисторных усилителей, но, к счастью, многие из них основаны на некоторых из этих более примитивных схем.Запомните эти схемы, и, надеюсь, с небольшим сопоставлением с образцом вы сможете разобраться в более сложных усилителях.

Общие конфигурации

Три основных транзисторных усилителя: общий эмиттер, общий коллектор и общая база. В каждой из трех конфигураций один из трех узлов постоянно связан с общим напряжением (обычно с землей), а два других узла являются либо входом, либо выходом усилителя.

Общий эмиттер

Общий эмиттер — одна из наиболее популярных схем транзисторов.В этой схеме эмиттер подключен к общему напряжению как для базы, так и для коллектора (обычно заземления). База становится входом сигнала, а коллектор — выходом.

Схема с общим эмиттером популярна, потому что она хорошо подходит для усиления напряжения , особенно на низких частотах. Например, они отлично подходят для усиления аудиосигналов. Если у вас небольшой входной сигнал с размахом 1,5 В, вы можете усилить его до гораздо более высокого напряжения, используя немного более сложную схему, например:

Одна особенность обычного эмиттера заключается в том, что он инвертирует входной сигнал (сравните его с инвертором с последней страницы!).

Общий коллектор (эмиттерный повторитель)

Если мы подключим коллектор к общему напряжению, используем базу как вход, а эмиттер как выход, то получится общий коллектор. Эта конфигурация также известна как эмиттерный повторитель .

Общий коллектор не усиливает напряжение (фактически, выходное напряжение будет на 0,6 В ниже входного). По этой причине эту схему иногда называют повторителем напряжения .

Эта схема имеет большой потенциал в качестве усилителя тока .В дополнение к этому, высокий коэффициент усиления по току в сочетании с коэффициентом усиления по напряжению, близким к единице, делает эту схему отличным буфером напряжения . Буфер напряжения предотвращает нежелательные помехи цепи нагрузки цепи, управляющей ею.

Например, если вы хотите подать 1 В на нагрузку, вы можете пойти простым путем и использовать делитель напряжения, или вы можете использовать эмиттерный повторитель.

По мере увеличения нагрузки (что, наоборот, означает уменьшение сопротивления) выход схемы делителя напряжения падает.Но выходное напряжение эмиттерного повторителя остается стабильным, независимо от нагрузки. Большие нагрузки не могут «загрузить» эмиттерный повторитель, как это могут быть цепи с большим выходным сопротивлением.

Общая база

Мы поговорим об общей базе, чтобы завершить этот раздел, но это наименее популярная из трех основных конфигураций. В усилителе с общей базой эмиттер является входом, а коллектор — выходом. База общая для обоих.

Общая база похожа на антиэмиттер-повторитель.Это приличный усилитель напряжения, и ток на входе примерно равен выходному току (на самом деле ток на входе немного больше, чем на выходе).

Схема с общей базой лучше всего работает как токовый буфер . Он может принимать входной ток с низким входным сопротивлением и подавать почти такой же ток на выход с более высоким сопротивлением.

Резюме

Эти три конфигурации усилителей лежат в основе многих более сложных транзисторных усилителей. У каждого из них есть приложения, где они сияют, будь то усиление тока, напряжения или буферизация.

Общий эмиттер Общий коллектор Общая база
Усиление напряжения Среднее Низкое Высокое
Усиление тока 9036 Среднее Низкое Среднее Высокое Низкое
Выходное сопротивление Среднее Низкое Высокое

Многокаскадные усилители

Мы можем продолжать говорить о большом разнообразии транзисторных усилителей.Вот несколько быстрых примеров, демонстрирующих, что происходит, когда вы комбинируете одноступенчатые усилители, указанные выше:

Дарлингтон

Усилитель Дарлингтона соединяет один общий коллектор с другим для создания усилителя с высоким коэффициентом усиления по току .

Выходное напряжение равно примерно равно входному напряжению (минус примерно 1,2–1,4 В), но коэффициент усиления по току является произведением двух коэффициентов усиления транзисторов . Это β 2 — более 10 000!

Пара Дарлингтона — отличный инструмент, если вам нужно управлять большой нагрузкой с очень малым входным током.

Дифференциальный усилитель

Дифференциальный усилитель вычитает два входных сигнала и усиливает эту разницу. Это важная часть цепей обратной связи, где вход сравнивается с выходом для получения будущего выхода.

Вот основа дифференциального усилителя:

Эта схема также называется длинной хвостовой парой . Это пара схем с общим эмиттером, которые сравниваются друг с другом для получения дифференциального выхода.Два входа подаются на базы транзисторов; выход представляет собой дифференциальное напряжение на двух коллекторах.

Двухтактный усилитель

Двухтактный усилитель является полезным «заключительным каскадом» многих многокаскадных усилителей. Это энергоэффективный усилитель мощности, часто используемый для управления громкоговорителями.

Основной двухтактный усилитель использует транзисторы NPN и PNP, оба сконфигурированы как общие коллекторы:

Двухтактный усилитель на самом деле не усиливает напряжение (выходное напряжение будет немного меньше входного), но усиливает ток.Это особенно полезно в биполярных цепях (с положительным и отрицательным питанием), потому что оно может как «проталкивать» ток в нагрузку от положительного источника питания, так и «вытягивать» ток и опускать его в отрицательный источник питания.

Если у вас биполярный источник питания (или даже если у вас его нет), двухтактный — отличный конечный каскад для усилителя, действующий как буфер для нагрузки.

Собираем их вместе (операционный усилитель)

Давайте рассмотрим классический пример многокаскадной транзисторной схемы: операционный усилитель.Умение распознавать общие транзисторные схемы и понимание их назначения может очень помочь! Вот схема внутри LM3558, действительно простого операционного усилителя:

Внутреннее устройство операционного усилителя LM358. Узнали какие-то усилители?

Здесь, безусловно, больше сложности, чем вы можете быть готовы усвоить, однако вы можете увидеть некоторые знакомые топологии:

  • Q1, Q2, Q3 и Q4 образуют входной каскад. Очень похоже на общий коллектор (Q1 и Q4) на дифференциальный усилитель , верно? Он просто выглядит перевернутым, потому что использует PNP.Эти транзисторы образуют входной дифференциальный каскад усилителя.
  • Q11 и Q12 являются частью второго этапа. Q11 — это общий коллектор, а Q12 — это общий эмиттер . Эта пара транзисторов буферизует сигнал с коллектора Q3 и обеспечивает высокий коэффициент усиления, когда сигнал поступает на конечный каскад.
  • Q6 и Q13 являются частью финальной стадии, и они тоже должны выглядеть знакомо (особенно если не обращать внимания на R SC ) — это двухтактный ! Этот этап буферизует выходной сигнал, позволяя ему управлять большими нагрузками.
  • Есть множество других распространенных конфигураций, о которых мы не говорили. Q8 и Q9 сконфигурированы как токовое зеркало , которое просто копирует величину тока, проходящего через один транзистор, в другой.

После этого ускоренного курса по транзисторам мы не ожидаем, что вы поймете, что происходит в этой схеме, но если вы можете начать определять общие схемы транзисторов, вы на правильном пути!


Покупка транзисторов

Теперь, когда вы контролируете источник управления, мы рекомендуем SparkFun Inventor’s Kit, чтобы воплотить в жизнь полученные вами новые знания.Мы также предоставили ссылки на комплект полупроводников и одиночные транзисторы для использования в ваших собственных проектах.

Наши рекомендации:

N-канальный полевой МОП-транзистор 60 В, 30 А

В наличии COM-10213

Если вы когда-нибудь задумывались, как управлять фарами автомобиля с помощью микроконтроллера, MOSFET — это то, что вам нужно.Это ве…

4

Пакет дополнений SparkFun Inventor’s Kit — v4.0

На пенсии КОМПЛЕКТ-14310

С помощью Add-On Pack вы сможете включить некоторые из старых частей, которые раньше были включены в SIK, которые были обновлены…

На пенсии

Ресурсы и дальнейшее развитие

Если вы хотите глубже изучить транзисторы, мы рекомендуем несколько ресурсов:

  • Начало работы в электронике Форрест Мимс — Мимс — мастер объяснения электроники простым для понимания и применимым образом.Обязательно ознакомьтесь с этой книгой, если вы хотите более подробно познакомиться с транзисторами.
  • LTSpice и Falstad Circuit — это бесплатные программные инструменты, которые вы можете использовать для моделирования цепей. Цифровые эксперименты со схемами — отличный способ научиться. Вы получаете все эксперименты, без боли макетирования или страха взорвать все. Попробуйте собрать воедино то, о чем мы говорили!
  • 2N3904 Техническое описание — Еще один способ узнать о транзисторах — это изучить их техническое описание.2N3904 — действительно распространенный транзистор, который мы используем постоянно (а 2N3906 — его брат по PNP). Ознакомьтесь с таблицей данных, чтобы узнать, узнаете ли вы какие-нибудь знакомые характеристики.

Кроме того, наш собственный технический директор Пит снял серию видеороликов «По словам Пита», в которых основное внимание уделяется транзисторам и транзисторным усилителям. Обязательно посмотрите его видео о диодах и транзисторах:

.

Затем вы можете перейти к: Конфигурации смещения транзисторов, часть 1 и часть 2, и, наконец, текущие зеркала.Качественный товар!

Идем дальше

Или, если вам не терпится узнать больше об электронике в целом, ознакомьтесь с некоторыми из этих руководств по SparkFun:

  • Интегральные схемы — Что вы получите, если объедините тысячи транзисторов и поместите их в черный ящик? IC!
  • Регистры сдвига
  • — регистры сдвига являются одними из наиболее распространенных интегральных схем. Узнайте, как с помощью транзистора мигать десятки светодиодов всего за несколько входов.
  • Руководство по подключению мини-полевого транзистора
  • — это действительно простой щиток Arduino, который использует 8 полевых МОП-транзисторов для управления 8 сильноточными выходами.Это хороший пример использования транзистора в качестве переключателя из реальной жизни.
  • Проектирование печатных плат с EAGLE — Выведите свои новые навыки работы с транзисторами на новый уровень. Сделайте из них печатную плату! В этом руководстве объясняется, как использовать бесплатное программное обеспечение (Eagle) для проектирования печатных плат.
  • Как паять. Если вы разрабатываете печатную плату, вам также нужно знать, как паять. Узнайте, как паять через отверстия в этом руководстве.

Или посмотрите некоторые из этих сообщений в блоге, чтобы найти идеи:

MOSFET — возможность использования транзистора в качестве резистора

Этот метод использования полевых транзисторов в качестве резисторов обычно применяется в микросхемах, потому что резисторы должны быть огромными, чтобы получить какие-либо существенные значения сопротивления.Имейте в виду, что приведенные ниже модели идеальны. В ИС, особенно в небольших технологиях, будет значительная модуляция длины канала. Это означает, что при насыщении и увеличении Vds увеличивается ток. Это фактически смягчило бы квадратичное поведение связанных по закону квадратов NMOS в вашей схеме.

Однако лучше всего работает, если вы можете смещать полевой транзистор значениями постоянного тока. Я также хотел бы отметить, что полевые транзисторы в ИС сильно отличаются от IRF530, которые моделировал другой пользователь.Это силовые полевые транзисторы и совершенно другие звери, чем полевые транзисторы на ИС.

Я приложил симуляцию, показывающую вашу установку. Полевые транзисторы — это просто идеальные модели, вам нужно будет включить фактические модели в вашу симуляцию. Я построил V-I (прямая линия подразумевает линейное сопротивление) с правой стороны, вы можете видеть, что это не совсем линейно. Это связано с тем, что при таком подключении полевой транзистор действует как устройство квадратичного закона. VGS = VDS, полевой транзистор находится в режиме насыщения и:

$$ I_d = A * (V_ {gs} -V_t) ^ 2

$

Если принять дифференциальное сопротивление как dV / dI:

$$ dI / dV = R_d = \ frac {1} {2A (V_ {gs} -V_t)}

$

Итак, довольно нелинейно.

Если вместо этого вы используете смещение с постоянным VGS, вы можете сохранить полевой транзистор в «омической» или линейной области. Я не тратил много времени, но вы можете увидеть идею из приведенных ниже симуляций.

Если вы используете источник постоянного тока, он выглядит намного лучше. Вам нужно будет получить фактические модели полевых транзисторов для фабрики, которую вы используете, и включить их в свои симуляции. Проверьте V-I в своем рабочем диапазоне и постарайтесь сделать его как можно более линейным.

Если можете, объедините PMOS / NMOS со смещением постоянного тока для получения гораздо более линейной кривой V-I, что означает почти постоянное значение R.Поскольку вы разрабатываете ИС, вы можете контролировать относительный размер NMOS / PMOS; поиграйте с этой ручкой, чтобы лучше компенсировать:

Как я думал об этом, если вы можете использовать диод, нет причин, по которым вы не можете просто создать постоянное напряжение для смещения полевого транзистора. Для крышки используйте другой затвор MOSFET с его истоком / стоком, привязанным к земле (иногда также связывают S / D / G, заземление осуществляется через подложку), проверьте свои правила проектирования, какие из них предпочтительны в вашей технологии).

И, наконец, ниже показан очень линейный резистор, смещенный генерируемым постоянным напряжением.

Для справки: вот как выглядит кривая VI для схемы, опубликованной OP. Каждое устройство действует как устройство квадратичного закона, и все это не начинает проводить до 3 * VGS + Vdiode, что очень преувеличено в силовых полевых транзисторах, поскольку их пороговые напряжения примерно в 7 раз выше, чем у полевых транзисторов IC.

Эксперимент: Проектирование схем транзисторов


Процедура

Примечание: Эта схема была разработана, когда мы только учились обучать работе транзисторов.Теперь мудрее, мы знаем, что ниже есть некоторые ошибки в математике с вычислениями фильтра. Мы перепроектируем эту схему, когда позволят время и ресурсы, но обратите внимание, что схема все еще работает (может усиливать всплески).

Все, что вам нужно, чтобы построить усилитель, — это транзистор, источник питания, резисторы и конденсаторы. Есть много способов смешать их вместе, что является искусством (Стив Джобс часто называл компоновку схем «цифровым искусством»), но мы дадим вам некоторые основные условия и предположения, с которыми можно поработать, а затем проведем вас через дизайн вашего самого первый простой био-усилитель!

Существует несколько конфигураций с использованием транзисторов NPN, но мы будем использовать «конфигурацию с общим эмиттером», потому что она позволяет получить высокий коэффициент усиления по напряжению.Почему его называют «усилителем с общим эмиттером»? — поскольку база — это вход, коллектор — это выход, а «общий» или земля — ​​это эмиттер.

Как любой прилежный инженер, давайте начнем с «требований», что является скучным способом сказать: «что мы хотим, чтобы эта машина действительно выполняла». В нашем биоусилителе мы хотим «усилить» очень слабые электрические сигналы в нервах тараканов. Давайте стремимся к «усилению» 150 или увеличению амплитуды сигнала в 150 раз. Мы также хотим ограничить то, что мы усиливаем, чтобы гарантировать, что мы обращаем внимание только на всплески (потенциалы действия), а не на другие электрические сигналы, такие как электрический шум от вашего дома.Итак, как и в реальном SpikerBox, мы хотим измерять только сигналы с компонентами выше 300 Гц (циклов в секунду). Это также называется «высокочастотным» сигналом.

Таким образом, у нас есть два требования

  1. Прирост 150.
  2. Настройка фильтра: фильтр высоких частот 300 Гц.

А теперь вернемся к искусству дизайна электроники. В основе нашего усилителя лежит превосходная книга Пола Шерца «Практическая электроника для изобретателей».

Детали
Помимо тараканов, кабеля и электрода, упомянутых выше, вам необходимо посетить местный дружественный RadioShack, чтобы получить:
  1. два NPN транзистора (2N4401) — из набора образцов транзисторов
  2. четыре 4.Резисторы 7 кОм — из набора образцов резисторов
  3. четыре резистора 1 кОм из того же набора образцов
  4. один резистор 50 Ом из того же набора образцов
  5. два конденсатора по 1 мкФ
  6. четыре конденсатора по 10 мкФ
  7. немного перемычки
  8. беспаечный макет
  9. разъем аккумулятора 9В
  10. аккумулятор 9В
  11. разъем RCA
  12. a RadioShack Speaker (мы любим эти вещи)
Вам также понадобится небольшой кусок пробки или пенопласта, на который можно положить ногу таракана.

Проектирование схемы

Эмиттерные и коллекторные резисторы

Поскольку мы будем использовать батарею на 9 В, и наши шипы имеют как положительный, так и отрицательный компонент:

Мы хотим, чтобы нейронный сигнал превышал +4,5 В, чтобы у нас было достаточно «места» для напряжения, чтобы усилить как отрицательную, так и положительную части сигнала. Таким образом, необходимо, чтобы напряжение V c или напряжение на коллекторе составляло 1/2 V cc (это сбивает с толку, но Vcc означает «общий ток» или, в более общем смысле, наш источник питания 9 В).Таким образом, нам нужно поставить резистор на V c , чтобы установить V c = 1/2 V cc , и мы используем закон Ома V = IR, который мы можем переписать как:

I c — это ток через коллектор и функция транзистора (для его расчета вы используете лист данных транзистора). Мы будем использовать значение 1 мА для I c .

4,7 кОм — стандартное значение для комплекта резисторов, поэтому мы будем использовать 4,7 кОм для R c

.

Коэффициент усиления нашей схемы, как он есть, составляет ΔV c / ΔV e , что равно отношению R c / R e .

Мы уже установили R c = 4,7 кОм, а R e уже встроен в транзистор. Его R e называется транссопротивлением, которое рассчитывается как:

I e примерно такое же, как I c , поэтому сопротивление составляет 26 Ом.

Мы можем рассчитать выигрыш следующим образом:

Однако сопротивление транзистора может быть нестабильным, поэтому нам нужно добавить собственное сопротивление R в дополнение к сопротивлению.Шерц рекомендует V e с напряжением 1 В для стабилизации нестабильности транссопротивления, поэтому согласно закону Ома:

Но обратите внимание, что добавление этого R к схеме:

У нас будет изменение в прибыли. Новое усиление:

о нет! Наше первоначальное усиление 180 исчезло! И наш выигрыш теперь намного меньше, чем нам нужно! Но не бойтесь, мы можем добавить конденсатор параллельно с резистором 1 кОм, который фактически заставит 1 кОм исчезнуть для нашего пикового сигнала.Мы все равно хотим добавить конденсатор, так как нам нужно сделать:

Фильтр высоких частот

Параллельно подключенные резистор и конденсатор действуют как фильтры верхних частот, и, как указано выше, мы хотим, чтобы наш фильтр высоких частот составлял 300 Гц. Это легко подсчитать.

У нас уже есть R = 1 кОм, а f должно быть 300 Гц, поэтому емкость конденсатора составляет 20 мкФ.

Все, что остается, — это входной конденсатор для устранения любого смещения постоянного тока на входном сигнале и поддержания стабильности нашей схемы. Давайте просто установим его на 1 мкФ.

Установка напряжений смещения

Помните из нашей теории транзисторов, что транзистор не включится без нажатия нижнего предела напряжения, а это примерно 0,6 В для схем на основе кремния. Нам нужно добавить резисторы смещения.

Мы хотим, чтобы напряжение на базе V b было на 0,6 В выше, чем напряжение на уровне V e , поэтому

Мы знаем, что V e равняется 1 В из-за падения напряжения, рассчитанного выше, поэтому V b должно быть 1.6В. Сделаем делитель напряжения!

Наш V в — это конечно 9 В, а наш V на выходе — 1,6 В, и мы используем классическое уравнение делителя напряжения:

Мы можем переставить уравнение и вычислить …

Таким образом, R1 должен быть в ~ 4,6 раза больше, чем R2. Звучит достаточно просто, но, как показывает опыт для этой конструкции транзистора:

Итак, мы просто выберем R2 = 1 кОм и R1 = 4,7 кОм в качестве значений, поскольку мы уже используем эти значения резисторов и имеем их под рукой.

Вот и все! Пришло время …

Построить схему

Вы посчитали, и теперь пришло время физически построить свою схему. Поместите батарею, транзистор, резисторы, конденсаторы и компоненты ввода / вывода на макетную плату, как показано ниже:

Присмотритесь к схеме на макетной плате:

Вставьте электроды в лапу таракана, как вы делали в предыдущих экспериментах, и подключите динамик к цепи.Полностью поверните динамик и почистите ногу таракана зубочисткой. Вы можете услышать очень слабый ответ, но он будет скрыт в шуме. Давайте еще немного усилим шипы. Вы можете создать «вторую стадию» усиления, так же, как мы делаем с нашим обычным SpikerBox, где у вас есть выход схемы, идущий на вход другой копии схемы, как показано ниже:

Однако вы обнаружите, что это «удвоение» делает схему немного нестабильной, поэтому давайте немного снизим усиление на втором этапе.Мы добавили резистор 50 Ом параллельно с R и , чтобы немного снизить усиление второй ступени, но все равно сделают более громкие всплески, когда вы подключите эту схему к ноге таракана. Смотрите видео ниже.

Теперь вы создали свой собственный усилитель на транзисторах! Поздравляю! Сообщите нам, если вы нашли способ сделать схему проще, чище и с большим усилением.

Обсуждение

Вы находитесь на пути к изобретению еще многих чудесных вещей.История науки определяется изобретением нового оборудования в руках творческих умов. Телескоп позволяет видеть вещи очень далеко. Микроскоп позволяет увидеть очень маленькое. Аппарат ПЦР позволяет измерять молекулы ДНК, а транзистор позволяет наблюдать крошечные электрические сигналы. С помощью этих инструментов мы можем видеть и пытаться понять мир, недоступный нашим невооруженным чувствам. Теперь начнем открывать.

Вопросы для обсуждения

  1. Почему выбросы от нашего простого двухтранзисторного биоусилителя «шумнее», чем SpikerBox? Что делает SpikerBox? Подсказка: SpikerBox имеет намного больше транзисторов и использует их для создания операционных усилителей, которые затем смешиваются с инструментальными усилителями.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *