Транзистор как работает: Эта страница ещё не существует

Содержание

Как работает PNP-транзистор на примере: поясняю простым языком | ASUTPP

Транзистор PNP для многих загадка. Но так не должно быть. Если вы хотите проектировать схемы с транзисторами, то безусловно нужно знать об этом типе транзисторов.

Пример: Хотите автоматически включить свет, когда стемнеет транзистор PNP сделает это легко для вас.

Если вы понимаете работу NPN — транзистора, то это облегчит понимание PNP-транзистора. Они работают примерно так же, с одним существенным отличием: токи в транзисторе PNP протекают в противоположных направлениях, если сравнивать с протеканием токов в транзисторе NPN.

Как работают транзисторы PNP?

Транзистор PNP имеет те же выводы, что и NPN:

  • База
  • Эмиттер
  • Коллектор

Транзистор PNP «включится», когда у вас будет небольшой ток, протекающий от эмиттера к базе. Когда я говорю «включится», я имею в виду, что транзистор откроет канал между эмиттером и коллектором. И через этот канал сможет протекать уже гораздо больший ток.

Чтобы ток протекал от эмиттера к базе, вам нужно напряжение около 0,7 В. Поскольку ток идет от эмиттера к базе, база должна иметь напряжение на 0,7 В ниже, чем напряжение на эмиттере.

Установив напряжение на базе PNP-транзистора на 0,7 В ниже, чем на эмиттере, вы «включаете транзистор» и позволяете току течь от эмиттера к коллектору.

Я знаю, что это может звучать немного запутанно, поэтому читайте дальше, чтобы увидеть, как можно спроектировать схему с транзистором PNP.

Пример: транзисторная схема PNP

Давайте посмотрим, как создать простую схему с транзистором PNP. С помощью этой схемы вы можете «зажечь» светодиод, когда стемнеет.

Шаг 1: Эмиттер

Прежде всего, чтобы включить PNP-транзистор, нужно, чтобы напряжение на базе было ниже, чем на эмиттере. Для этого подключите эмиттер к плюсу вашего источника питания. Таким образом, вы знаете, какое у вас напряжение на эмиттере.

Шаг 2: что вы хотите контролировать

Когда транзистор включается, ток течет от эмиттера к коллектору. Итак, давайте подключим то, что мы хотим контролировать: а именно светодиод.

Поскольку у светодиода всегда должен быть последовательно установлен резистор , давайте добавим и резистор.

Шаг 3: Транзисторный вход

Для включения светодиода необходимо включить транзистор, чтобы канал от эмиттера к коллектору открылся. Чтобы включить транзистор, необходимо, чтобы напряжение на базе было на 0,7 В ниже, чем на эмиттере, что составляет 9 В — 0,7 В = 8,3 В.

Например, теперь вы можете включить светодиод, когда стемнеет, используя фоторезистор и стандартный резистор, настроенный в качестве делителя напряжения.

Напряжение на базе не будет вести себя точно так, как говорит формула делителя напряжения. Это потому, что транзистор тоже влияет на напряжение.

Но в целом, когда значение сопротивления фоторезистора велико (нет света), напряжение будет близко к 8,3 В, и транзистор включен (что включает светодиод). Когда значение фоторезистора низкое (много света присутствует), напряжение будет близко к 9 В и отключит транзистор (который выключит светодиод).

Я использовал такие компоненты:

  • Транзистор PNP- BC557.
  • Фоторезистор — 10 кОм, когда светло, и 1 мОм, когда темно.
  • Резистор на базе транзистора — 100 кОм.
  • Резистор, который последовательно подключен светодиодом — 470 Ом.

Как работают транзисторы — простое объяснение

Транзистор — полезный и практичный компонент, который можно использовать для создания множества интересных проектов. В этом практическом руководстве вы узнаете, как работают транзисторы, и сможете использовать их в своих будущих схемах.

На самом деле это довольно просто, если вы изучите основы. Мы сосредоточимся на двух наиболее распространенных транзисторах: биполярных и MOSFET.

Транзистор может работать в 2 режимах:

  1. ключевой режим
  2. режиме усиления

В ключевом режиме транзистор работает как электронный переключатель. Он может включать и выключать ток. Проще всего представить себе транзистор как реле без каких-либо движущихся частей. Транзистор похож на реле в том смысле, что вы можете использовать его для включения и выключения чего-либо.

В режиме усиления транзистор может быть включен частично и это режим работы полезен при усилении слабого сигнала.

Как работают биполярные транзисторы

Начнем с классического биполярного NPN транзистора. У него три вывода:

  • База (b — base)
  • Коллектор (c — collector)
  • Эмиттер (e — emitter)

Когда транзистор включен, то через него может течь ток от коллектора к эмиттеру. Когда он выключен, ток не течет. В приведенном ниже примере транзистор выключен. Это означает, что через него не может протекать ток, поэтому светодиод не светиться.

Чтобы включить транзистор, вам необходимо подать напряжение около 0,7 В на базу относительно эмиттера. Если бы у вас была батарея 0,7 В вы могли бы подключить ее между базой и эмиттером и транзистор бы включился. Поскольку у большинства из нас нет батареи с напряжением 0,7 В, то как мы можем включить транзистор?

Тестер транзисторов / ESR-метр / генератор

Многофункциональный прибор для проверки транзисторов, диодов, тиристоров…

Легко! Переход транзистора база-эмиттер работает как диод. Диод имеет прямое напряжение, которое он «берет» из имеющегося напряжения питания. Если вы последовательно подключите резистор, то остальная часть напряжения упадет на резисторе. Таким образом, вы автоматически получите около 0,7 В, добавив всего один резистор.

Это тот же принцип используется для ограничения тока через светодиод, чтобы он не сгорел.

Если вы еще добавите кнопку, то вы можете управлять транзистором и, следовательно, светодиодом, включая и выключая его с помощью кнопки:

Выбор номиналов компонентов схемы

Чтобы выбрать необходимые номиналы компонентов, вам нужно знать еще один важный параметр транзистора — коэффициент усиления.

Когда ток течет от базы к эмиттеру, транзистор включается, так что больший ток может течь от коллектора к эмиттеру.

Между величинами этих двух токов существует связь. Это называется усилением транзистора. Для транзистора общего назначения, такого как BC547 или 2N3904 коэффициент усиления составляет в среднем около 100. Это означает, что если вы подадите ток 0,1 мА на переход база-эмиттер, то по направлению коллектор-эмиттер вы получите ток 10 мА (в 100 раз больше).

Какое должно быть сопротивление резистора R1, чтобы получить ток 0,1 мА?

Если у нас в качестве источника питания батарея 9 В и мы знаем что падение напряжения на переходе база-эмиттер составляет 0,7 В, то на резисторе останется 8,3 В. Чтобы найти сопротивление резистора вы можете использовать закон Ома:

То есть вам необходимо использовать резистор сопротивлением 83 кОм. Это не стандартное значение, поэтому из стандартного номинального ряда возьмем самое близкое значение равное 82 кОм.

Резистор R2 предназначен для ограничения тока, проходящего через светодиод. Сопротивление 1 кОм будет достаточным.

Как подобрать транзистор

NPN-транзистор является наиболее распространенным типом биполярных транзисторов. Но есть еще один тип биполярного транзистора — PNP-транзистор, который работает точно также как и NPN-транзистор, только все токи идут в противоположном направлении.

При выборе транзистора важно учитывать, какой ток транзистор может пропустить через себя без повреждения. Это называется током коллектора (Ic ).

Как работает MOSFET транзистор

MOSFET транзистор (полевой транзистор) — еще один очень распространенный тип транзистора. Он также имеет три вывода:

  • Затвор (G — gate )
  • Исток (S — source )
  • Сток (D — drain )

N-канальный MOSFET работает также как и биполярный NPN-транзистор, но с одним важным отличием:

  • В биполярном NPN транзисторе ток, протекающий через переход база-эмиттер определяет силу тока, текущего через переход коллектор-эмиттер.
  • В MOSFET транзисторе напряжение между затвором и истоком определяет, какой ток будет течь от стока к истоку.

Вот почему для MOSFET транзистора вам не нужен резистор, включенный последовательно с затвором, как в случае с NPN-транзистором. Вместо этого вам понадобится резистор, подключенный между затвором и минусом питания, чтобы надежно отключить транзистор, когда кнопка не нажата:

Поскольку напряжение на затворе определяет, сколько тока может протекать от стока к истоку, вы можете подумать о добавлении резистора последовательно с кнопкой. Таким образом, у вас получиться делитель напряжения, с помощью которого вы можете выставить точное напряжение на затворе.

Как выбрать MOSFET-транзистор

В приведенном выше примере используется N-канальный полевой транзистор. Полевые транзисторы с P-каналом работают так же, только ток течет в противоположном направлении, а напряжение затвор-исток должно быть отрицательным.

На выбор доступны тысячи различных полевых транзисторов. Но если вы хотите построить схему, приведенную выше, то вы можете применить BS170 или IRF510.

При выборе полевого транзистора следует учитывать две вещи:

  1. Пороговое напряжение затвор-исток. Для включения транзистора требуется более высокое напряжение.
  2. Непрерывный ток стока. Это максимальный ток, который может протекать через транзистор.

Есть и другие важные параметры, о которых следует помнить, в зависимости от области применения. Но это выходит за рамки данной статьи. Помните об этих двух параметрах, и у вас будет хорошая отправная точка.

Зачем нужен транзистор?

У меня часто возникает вопрос: зачем нам транзистор? Почему бы не подключить светодиод и резистор напрямую к батарее?

Преимущество транзистора заключается в том, что вы можете использовать небольшой ток или напряжение для управления гораздо большим током и напряжением.

Это очень полезно, если вы хотите управлять такими вещами, как двигатели, мощные светодиоды, динамики, реле и многое другое при помощи микроконтроллера / Raspberry Pi / Arduino. Выход микроконтроллера может обеспечить всего несколько миллиампер при напряжении 5 В. Поэтому, если вы хотите управлять, например уличным освещением 230 В, вы не можете сделать это напрямую микроконтроллером

Вместо этого вы можете использовать реле. Но даже реле обычно требует большего тока, чем может обеспечить выход микроконтроллера. Поэтому вам понадобится транзистор для управления реле:

 

Транзистор как усилитель

Транзистор также может работать в качестве усилителя слабых сигналов, то есть он может находиться в любом положении между «полностью включено» и «полностью выключено».

Это означает, что слабый сигнал может управлять транзистором и создать более сильную копию этого сигнала на переходе коллектор-эмиттер (или сток-исток). Таким образом, транзистор может усиливать слабые сигналы.

Вот простой усилитель для управления динамиком сигналом прямоугольной формы:

 

Как работает транзистор

Рассмотрим мы устройство транзисторов на примере МОП-транзисторов, также именуемых «полевыми».  

Принцип их действия прост и элегантен: в кристалле кремния создаются близлежащие зоны с разной проводимостью (если основной кристалл имеет электронную проводимость (n), то у зон создаётся «дырочная» проводимость (

p), и наоборот). Одна область принимается за входную и называется истоком, другая служит выходом (сток). 

Между ними наращивается изолирующая подложка из диоксида кремния (или другого подходящего диэлектрика) толщиной около 200 нм. На подложку наносится слой металла, который и будет управляющим электродом (затвором). Вот этот «бутерброд» со структурой «металл-оксид-полупроводник» и есть полевой транзистор.

И как всё это работает? Наша задача — контролировать протекание тока между истоком и стоком через затвор. Относительно последнего и будем рассматривать функционал транзистора.

Если затвор электрически нейтрален, то электроны не могут преодолеть перемычку между истоком и стоком, даже если приложить к ним достаточно высокое напряжение. Говоря иначе, транзистор будет закрыт, и ток через него не пойдёт. Как его открыть? Очень просто — подать на затвор «плюсовое» напряжение и зарядить электрод, который создаст сильное электрическое поле. Оно притянет электроны к затвору, и под изолирующей подложкой появится зона высокой концентрации носителей заряда — канал, по которому они смогут пройти разделительную область обратной проводимости.

Такой режим работы полевого транзистора называется обогащением. А что же происходит при обеднении? Очевидно, что отрицательный потенциал будет расталкивать электроны в разные стороны, и никакой ток через разделительную зону не пройдёт. Отсюда уже совсем недалеко до ячейки памяти, ведь полевой транзистор пропускает или не пропускает ток в зависимости от того, есть ли потенциал на затворе. А он, как мы выяснили, представляет собой проводник, изолированный со стороны стока-истока. Если же изолировать затвор и со стороны внешней электрической цепи, то проводник сможет сохранять заряд достаточно долго.

То есть полевой транзистор может выступать в роли ячейки памяти, состояние которой сохраняется и при отключении внешнего питания.

На практике затвор представляет собой изолированную пластину конденсатора. Такой тип полевых транзисторов получил название FLOTOX (Floating Gate Tunnel-OXide — плавающий затвор с туннелированием в окисле). Настоящая мистика начинается, когда требуется изменить состояние затвора. Он электрически изолирован, то есть отделён слоем диэлектрика толщиной всего в десяток атомарных слоёв. Если подать повышенное в 2–3 раза напряжение на сток и затвор (на сток «минус», на затвор и исток «плюс»), возникнет канал проводимости. Температура (то есть кинетическая энергия) некоторых электронов превысит среднюю, и часть из них сможет преодолеть слой диэлектрика. Это явление называется инжекцией «горячих» электронов (CHEI — Channel Hot Electrons Injection). В итоге заряд затвора изменится на отрицательный за счёт избытка электронов, и транзистор сможет реагировать на внешний сигнал, то есть сохранять информацию.

Снятие заряда затвора основано на методе квантово-механического туннелирования, впервые описанного физиками Ральфом Фаулером и Лотаром Нордхеймом (FNTFowler-Nordheim tunneling). Если подать повышенное напряжение на исток и затвор (на исток «плюс», на затвор «минус), то электрическое поле вытолкнет электроны в направлении изолирующей подложки, придав им дополнительную энергию. А дальше они исчезнут, чтобы возникнуть уже с другой стороны диэлектрика! Классическая механика объяснить такой эффект не может, но если учесть волновые свойства элементарных частиц и вероятностный характер их поведения… Вот такие физические сюрпризы спрятаны в самых обычных флешках.

Биполярный транзистор как ключ (БТ, BJT)

Добавлено 1 сентября 2017 в 07:00

Сохранить или поделиться

Поскольку коллекторный ток транзистора пропорционально ограничен его током базы, то транзистор можно использовать как своего рода ключ с токовым управлением. Относительно небольшой поток электронов, передаваемых через базу транзистора, обладает способностью управлять намного большим потоком электронов через коллектор.

Предположим, у нас есть лампа, которую мы хотели включать и выключать с помощью ключа. Такая схема была бы предельно простой, как на рисунке ниже (a).

Для иллюстрации, давайте вставим вместо ключа транзистор, чтобы показать, как он может управлять потоком электронов через лампу. Помните, что управляемый ток через транзистор должен проходить между коллектором и эмиттером. Поскольку мы хотим контролировать ток через лампу, то мы должны подключить коллектор и эмиттер нашего транзистора на место двух контактов ключа. Мы также должны убедиться, что поток электронов через лампу будет двигаться против направления стрелки эмиттера на условном обозначении (направление электрического тока должно совпадать с направлением стрелки), чтобы убедиться, что смещение перехода транзистора будет правильным, как показано на рисунке ниже (b).

(a) механический ключ, (b) ключ на NPN транзисторе, (c) ключ на PNP транзисторе.

Для этой работы может использоваться и PNP транзистор. Схема с ним показана на рисунке выше (c).

Выбор между NPN и PNP может быть произвольным. Всё, что имеет значение, заключается в правильных направлениях токов для правильного смещения перехода (поток электронов двигается против стрелки на обозначении транзистора).

Возвращаясь к NPN транзистору на схеме нашего примера, мы сталкиваемся с необходимостью добавить что-то еще для появления тока базы. Без подключения к выводу базы транзистора ток базы будет равен нулю, и транзистор не сможет включиться, в результате чего лампа всегда будет выключена. Помните, что для NPN транзистора ток базы должен состоять из электронов, протекающих от эмиттера к базе (против обозначения стрелки эмиттера, точно так же, как и поток электронов через лампу). Возможно, проще всего было бы подключить коммутатор между выводом базы транзистора и аккумулятором, как показано на рисунке ниже (a).

Транзистор: (a) закрыт, лампа выключена; (b) открыт, лампа включена (стрелками показано направление движения потока электронов)

Если ключ разомкнут, как показано на рисунке выше (a), вывод базы транзистора остается «висеть в воздухе» (не подключенным к чему-либо), и ток через этот вывод протекать не будет. В этом состоянии говорят, что транзистор закрыт. Если ключ замкнут, как показано на рисунке выше (b), электроны смогут перемещаться от эмиттера, через базу транзистора, через ключ, назад к положительному выводу батареи. Этот ток базы позволит протекать намного большему потоку электронов от эмиттера через коллектор, что приведет к тому, что лампа загорится. В этом состоянии максимального тока говорят, что транзистор открыт/насыщен.

Конечно, может показаться бессмысленным использование транзистора для этого способа управления лампой. В конце концов, мы всё еще используем в схеме ключ, не так ли? Если мы всё еще используем ключ для управления лампой – хотя и косвенно – тогда в чем смысл ставить транзистор для управления током? Почему бы просто не вернуться к нашей первоначальной схеме и использовать ключ напрямую для управления током лампы?

На самом деле здесь можно обратить внимание на два момента. Во-первых, тот факт, что при таком способе через контакты ключа должен проходить лишь небольшой ток базы, необходимый для открытия транзистора; транзистор сам обрабатывает большой ток лампы. Это может быть важным преимуществом, если переключатель может пропускать небольшой ток: небольшой переключатель может использоваться для управления относительно мощной нагрузкой. Что еще более важно, управляемое током поведение транзистора позволяет нам использовать что-то совершенно другое для включения и выключения лампы. Рассмотрим рисунок ниже, где пара солнечных элементов обеспечивает 1В для преодоления 0,7В напряжения база-эмиттер, что позволит протекать току через базу, который, в свою очередь, управляет лампой.

Солнечный элемент служит в качестве датчика освещенности (стрелками показано направления движения потоков электронов, электрические токи направлены в противоположную сторону)

Или мы можем использовать термопару (несколько соединенных последовательно термопар), чтобы обеспечить протекание тока базы, необходимого для открывания транзистора, как показано на рисунке ниже.

Одна термопара обеспечивает напряжение менее 40 мВ. Несколько соединенных последовательно термопар могут обеспечить напряжение, превышающее 0,7 В напряжения VБЭ транзистора, что вызовет появление тока базы и, следовательно, тока коллектора через лампу (стрелками показано направления движения потоков электронов, электрические токи направлены в противоположную сторону)

Даже микрофон (рисунок ниже) с достаточным напряжением и током (от усилителя) может открыть транзистор, если сигнал на его выходе выпрямляется из переменного напряжения в постоянное так, чтобы на PN-переход эмиттер-база транзистора подавалось прямое смещение.

Усиленный сигнал микрофона выпрямляется в постоянное напряжение для смещения базы транзистора, обеспечивающего больший ток коллектора (стрелками показано направления движения потоков электронов, электрические токи направлены в противоположную сторону)

К настоящему времени должен быть очевиден следующий момент: любой достаточный источник постоянного тока может использоваться для открывания транзистора, и от этого источника требуется лишь малая часть тока, необходимого для включения лампы. Здесь мы видим, что транзистор работает не только как коммутатор, но и как настоящий усилитель: использует относительно слабый сигнал для управления относительно большой величиной мощности. Обратите внимание, что фактическое питание для зажигания лампы исходит от батареи справа на схеме. Это не малый ток сигнала от солнечного элемента, термопары или микрофона магически трансформируется в большее количество энергии. Скорее эти маломощные источники просто контролируют мощность батареи для зажигания лампы.

Подведем итоги:

  • Транзисторы могут использоваться в качестве коммутирующих элементов для управления постоянным напряжением, поступающим на нагрузку. Переключаемый (управляемый) ток проходит между эмиттером и коллектором; управляющий ток проходит между эмиттером и базой.
  • Когда через транзистор не протекает ток, говорят, что транзистор находится в закрытом состоянии (полностью не проводит ток).
  • Когда через транзистор протекает максимальный ток, говорят, что транзистор находится в открытом состоянии, состоянии насыщения (полностью проводит ток).

Оригинал статьи:

Теги

Биполярный транзисторКоммутаторКоммутацияОбучениеТранзисторный ключЭлектроника

Сохранить или поделиться

Что такое транзистор и с чем его едят?

Смотрите также обзоры и статьи:

Транзистор — полупроводниковый триод. Это уникальный радиокомпонент, изобретение которого перевернуло мир радиоэлектроники! Именно благодаря транзисторам мы имеем всю эту цифровую технику, которая нас окружает! Транзисторы есть в любом современном цифровом устройстве, начиная от простых цифровых часов, и заканчивая сложнейшими компьютерами.

Обычно транзисторы имеют три вывода. Каждый транзистор, это полупроводниковый радиокомпонент, который позволяет входящему электрическому сигналу управлять током в электрической сети. В электрических цепях транзисторы необходимы для усиления сигнала, его изменения или же генерации.

Существует две основные группы транзисторов — биполярные и полевые. Каждая из групп имеет свои подгруппы, а каждая подгруппа и группа свою определенную область применения.

Где применяются транзисторы?

Каждая группа транзисторов имеет свою область применения. Биполярные транзисторы применяются в основном в аналоговых устройствах и необходимы для усиления поступающих сигналов. Их можно найти в современных радиоприемниках или телевизорах. В общем, во всех устройствах, где необходимо усиливать входящий сигнал.

Полевые транзисторы применяются в основном в различных цифровых устройствах. Реализация современных компьютеров и различной вычислительной техники просто невозможна без применения различных видов и типов полевых транзисторов.

Но часто встречаются и исключения — многие усилители работают на полевых транзисторах, и в то же время биполярные можно найти в схемах различных цифровых устройств. По сути, биполярные и полевые транзисторы имеют минимум отличий, основная разница лишь в способе управления этими компонентами.

Проще перечислить области радиоэлектроники, где транзисторы не применяются.

Отличия и основные характеристики транзисторов Кроме типа, все транзисторы отличаются своими основными характеристиками:
  • Максимальным рабочим напряжением;
  • Коэффициентом усиления;
  • Максимальным рабочим током;
  • Типом корпуса;
  • Ну и собственно самим типом.

Все эти параметры необходимо учитывать при проектировании своих собственных устройств или при ремонте испорченных.

Замена испорченных транзисторов

При замене испорченных транзисторов новыми, всегда нужно учитывать их основные параметры. Нельзя устанавливать транзистор в цепь, через которую протекает напряжение больше того, на которое он собственно и рассчитан. Если транзистор установить в такую цепь он просто сгорит.
Также всегда нужно учитывать конфигурацию транзистора, если вы решили заменить компонент аналогом. У аналогичного транзистора может отличатся конфигурация выводов. Если такой транзистор установить в цепь он либо сгорит, либо приведет к порче других компонентов сети чью работу он должен был регулировать.

Так что при замене транзисторов на такие же или аналоги, всегда нужно удостоверится в том, что характеристики обеих транзисторов полностью совпадают.

Биполярные транзисторы

Биполярные транзисторы — трехэлектродные полупроводниковые радиокомпоненты, которые очень широко распространены в современных аналоговых приборах и устройствах. Это разновидность транзисторов, которые состоят из трех поочередно включенных слоев проводника. Принцип работы биполярных транзисторов базируется на носителей зарядов от одного проводника к другому. В качестве носителей зарядов выступают электроны и так называемые дырки.

Средний электрод обычно называют базой. Он подключается к среднему слою проводника. Остальные два проводник называют коллектором и эмиттером. Эти слои практически неразличимы, но для улучшения электрических свойств прибора эмиттерный слой делают сильно легированным, а слой базы слабо легированным. Это позволяет значительно повысить допустимое коллекторное напряжение.

Применение биполярных транзисторов

Биполярные транзисторы в основном применяются в схемах различных аналоговых приборов. Их часто можно встретить в конструкции современных радиоприемников и радиопередатчиков. Также они часто встречаются в конструкции телевизоров. Чуть реже биполярные транзисторы применяются в различных логических схемах современных цифровых устройств. Но по большей части они были вытеснены современными полярными транзисторами, которые лучше подходят для работы в логических схемах в составе цифровых устройств.

Кроме того, биполярные транзисторы могут применяться как усилители сигнала в различных СВЧ-излучателях, а также в различных детекторах. Существует множество простых схем детекторов, в состав которых входит несколько простых, дешевых биполярных транзисторов.

Режимы работы биполярных транзисторов Есть несколько режимов работы биполярных транзисторов, которые зависят собственно от того, как они были подключен и как на них подается ток:
  1. Нормальный режим — в нем переход эмиттер-база открыт, а переход коллектор-база закрыт.
  2. Инверсный режим — наблюдается тогда, когда переходы открыты в обратном порядке — эмиттер-база закрыт, коллектор-база открыт.
  3. В режиме насыщения оба переход открыты и через транзистор проходят токи насыщения эмиттера и коллектора, которые направлены через базу.
  4. Режим отсечки — режим, в котором p-n переход смещается в обратном направлении, а на переход эмиттера подается как обратное, так и прямое смещение напряжения.
  5. Барьерный режим — в таком режиме транзистор работает как своеобразный диод. Для этого, в эмиттерную или коллекторную цепь транзистора устанавливается резистор. Такой режим работы транзистора позволяет строить эффективные схемы каскадов, с большим диапазоном рабочих температур, а также нечувствительностью к параметрам самого транзистора.
Правила безопасности при работе с биполярными транзисторами

Помните, некоторые биполярные транзисторы работают с довольно высоким напряжением! При работе с подключенными транзисторами необходимо быть осторожным, так как неосторожные действия могут повлечь за собой печальные последствия или привести к серьезной поломке устройства.

Всегда подключайте транзистор согласно схеме, так как неправильно подключение также может привести к негативным последствиям.Ну и конечно же, выбирая транзистор на замену, всегда подбирайте либо точно такой же, либо точный аналог с такими же характеристиками.

Опубликовано: 2020-04-22 Обновлено: 2021-08-30

Автор: Магазин Electronoff

ПОДХОДЯЩИЕ ТОВАРЫ

Поделиться в соцсетях

Что такое PNP-транзистор и его типы.

Определение:

PNP-транзистор — это тип транзистора, в котором один материал n-типа легирован двумя материалами p-типа. Это устройство, управляемое током. И эмиттерный, и коллекторный токи контролировались небольшим током базы. Два кристаллических диода подключены друг к другу в транзисторе PNP. Диод эмиттер-база расположен с левой стороны диода, а диод коллектор-база — с правой стороны.

Ток в отверстии состоит из большинства носителей транзисторов PNP. Ток внутри транзистора создается движением отверстий, а ток в выводах транзистора создается потоком электронов. Когда через базу PNP-транзистора протекает небольшой ток, он включается. Ток в транзисторе PNP течет от эмиттера к коллектору.

Напряжение, необходимое для эмиттера, коллектора и базы транзистора, обозначается буквой PNP-транзистора.По сравнению с эмиттером и коллектором база PNP-транзистора всегда была отрицательной. Электроны в транзисторе PNP берутся с клеммы базы. Ток, который входит в базу, усиливается до того, как достигнет конца коллектора.

Обозначение транзистора PNP:

Транзистор PNP обозначается буквами PNP. На схеме ниже изображен символ транзистора PNP. В транзисторе PNP ток течет от эмиттера к коллектору, как показано направленной внутрь стрелкой.

Конструкция транзистора PNP:

Структура транзистора PNP изображена на схеме ниже. Эмиттерный и базовый переходы смещены в прямом направлении, а коллекторный и базовый переходы — в обратном. Эмиттер с прямым смещением притягивает электроны к батарее, заставляя ток течь от эмиттера к коллектору.

Легированные полупроводники находятся в трех секциях транзистора. С одной стороны — эмиттер, а с другой — коллектор.База относится к области посередине. Три компонента транзистора подробно описаны ниже.

Эмитент:

Задача эмиттера — обеспечить приемник носителями заряда. По сравнению с базой эмиттер всегда смещен в прямом направлении, чтобы обеспечить большое количество носителей заряда.

База:

База транзистора — это часть посередине, которая образует два PN-перехода между эмиттером и коллектором. Переход база-эмиттер смещен в прямом направлении, что позволяет цепи эмиттера иметь низкое сопротивление.Из-за обратного смещения перехода база-коллектор коллекторная цепь имеет высокое сопротивление.

Коллектор:

Коллектор — это секция на противоположной стороне эмиттера, которая собирает заряды. Когда дело доходит до сбора, коллектор всегда смещен в противоположную сторону.

Транзистор эквивалентен двум диодам, поскольку имеет два PN-перехода. Диод эмиттер-база или эмиттерный диод — это название соединения между эмиттером и базой.Переход между коллектором и базой называется коллекторным диодом или коллекторным диодом.

Работа транзистора PNP:

Поскольку переходы эмиттера и базы смещены вперед, эмиттер проталкивает отверстия в области основания. Эмиттерный ток состоит из этих отверстий. Эти электроны объединяются с электронами, когда они перемещаются в полупроводниковый материал или основу N-типа. База транзистора тонкая и не имеет большого количества легирования. В результате только несколько дырок объединяются с электронами, а остальные дырки перемещаются в слой пространственного заряда коллектора.В результате развивается базовый ток.

Обратное смещение используется для соединения коллектор-база. Коллектор собирает или притягивает отверстия, которые собираются вокруг области истощения, когда они подвергаются воздействию отрицательной полярности. Вследствие этого возникает ток коллектора. Коллекторный ток IC пропускает весь ток эмиттера.

Кривые и режимы работы транзисторов:

Режимы работы, используемые для коммутации, можно разделить на четыре категории в зависимости от смещения внутренних диодов транзистора.Области отсечки, активности, насыщения и пробоя — это разные режимы работы.

Активный режим:

В этом режиме работы транзистор часто используется в качестве усилителя тока. Два диода транзистора смещены в противоположных направлениях, что означает, что один смещен в прямом направлении, а другой — в обратном. В этом режиме ток течет от эмиттера к коллектору.

Режим отсечки:

В этом режиме работы оба диода транзистора имеют обратное смещение.Говорят, что транзистор находится в выключенном состоянии, потому что в этом режиме ток не течет ни в каком направлении.

Режим насыщения:

В этом режиме работы оба диода в транзисторах смещены в прямом направлении. В этом режиме ток свободно течет от коллектора к эмиттеру. Это происходит, когда напряжение на переходе база-эмиттер высокое. Состояние ON называется этим режимом.

Режим пробоя:

Когда напряжение коллектора превышает установленные пределы, коллекторный диод выходит из строя, и ток коллектора резко возрастает до опасного уровня.В результате транзистор в области пробоя не должен работать. Например, в транзисторе 2N3904, если напряжение коллектора превышает 40 В, сразу же начинается область пробоя, вызывая повреждение схемы транзистора.

Заявки:

  1. В схемах усиления они используются.
  2. Во встраиваемых проектах транзисторы используются в качестве переключателя, а из-за быстрого переключения они также используются для генерации сигналов ШИМ.
  3. Парные схемы
  4. Дарлингтона (многотранзисторная конфигурация) используют их.
  5. В электродвигателях для управления током используются транзисторы PNP.
  6. В схемах согласованных пар транзисторы PNP используются для генерации неоднозначной и одновременной мощности.

Преимущества транзистора PNP:

Ниже приведены некоторые преимущества транзисторов PNP:

  1. Для источника тока используются транзисторы PNP.
  2. Поскольку он генерирует сигнал, относящийся к отрицательной шине питания, он упрощает конструкцию схемы.
  3. По сравнению с NPN транзисторами они производят меньше шума.
  4. Он меньше других транзисторов и может использоваться в интегральных схемах, как и другие.

Как работает транзистор?

Вопрос

Как работает транзистор?

Спрашивает: Тони Уилан Ответ

Конструкция транзистора позволяет ему работать как усилитель или переключатель. Это достигается за счет использования небольшого количества электричества для управления воротами на гораздо большем подача электричества, очень похожая на поворот клапана для управления подачей воды. Транзисторы

состоят из трех частей: базы, коллектора и эмиттера. База это устройство управления затвором для большего источника электроэнергии. Коллекционер — это большее электрическое питание, и эмиттер является выходом для этого источника. Отправив различные уровни тока от базы, количество тока, протекающего через затвор от коллектора может регулироваться.Таким образом, очень небольшое количество тока может быть используется для управления большим током, как в усилителе. Тот же процесс используется для создать двоичный код для цифровых процессоров, но в этом случае порог напряжения для открытия коллекторного затвора необходимо пять вольт. Таким образом, транзистор используется как переключатель с двоичной функцией: пять вольт ВКЛ, менее пяти вольт выключено.

Полупроводящие материалы — вот что делает возможным создание транзисторов. Большинство людей знакомы с электропроводящими и непроводящими материалами. Металлы обычно считаются как проводящие. Такие материалы, как дерево, пластик, стекло и керамика непроводящие или изоляторы. В конце 1940-х годов группа ученых, работающая в Bell Лаборатории в Нью-Джерси обнаружили, как брать определенные типы кристаллов и использовать их в качестве электронные устройства управления за счет использования их полупроводниковых свойств. неметаллические кристаллические структуры обычно считаются изоляторами.Но по заставляя кристаллы германия или кремния расти с примесями, такими как бор или фосфора кристаллы приобретают совершенно другие электропроводящие свойства. К помещая этот материал между двумя проводящими пластинами (эмиттером и коллектором), транзистор сделан. Подавая ток на полупроводниковый материал (основание), электроны собираться до тех пор, пока не будет сформирован эффективный канал, по которому проходит электричество Учеными, ответственными за изобретение транзистора, были Джон Бардин, Уолтер Браттейн и Уильям Шокли. Их патент назывался: Три Элемент электродной цепи из полупроводниковых материалов.

Артикул:



Ответил: Стивен Портц, учитель технологий, средняя школа космического побережья, Флорида


Существуют два основных типа транзисторов: переходные транзисторы и полевые транзисторы. Каждый работает по-своему. Но полезность любого транзистора заключается в его возможность управления сильным током при слабом напряжении.Например, транзисторы в система громкой связи усиливает (усиливает) слабое напряжение, возникающее, когда человек говорит в микрофон. Электричество, идущее от транзисторов, достаточно сильное, чтобы использовать громкоговоритель, который издает звуки намного громче, чем голос человека.

ПЕРЕХОДНЫЕ ТРАНЗИСТОРЫ

Соединительный транзистор состоит из тонкой детали одного типа полупроводниковый материал между двумя более толстыми слоями противоположного типа.Например, если средний слой p-типа, внешние слои должны быть n-типа. Такой транзистор — это Транзистор NPN. Один из внешних слоев называется эмиттером, а другой известен. как коллекционер. Средний слой — это основа. Места присоединения эмиттера к база и база, соединяющая коллектор, называются узлами.

Слои NPN-транзистора должны иметь правильное напряжение, подключенное к ним. В Напряжение базы должно быть положительнее, чем у эмиттера.Напряжение коллектор, в свою очередь, должен быть более положительным, чем у цоколя. Напряжения питается от батареи или другого источника постоянного тока. Эмиттер подает электроны. База оттягивает эти электроны от эмиттера, потому что он имеет более положительное напряжение, чем эмиттер. Это движение электронов создает поток электричества через транзистор.

Ток проходит от эмиттера к коллектору через базу.Изменения в напряжение, подключенное к базе, изменяет поток тока, изменяя количество электроны в базе. Таким образом, небольшие изменения в базовом напряжении могут вызвать большие изменения тока, вытекающего из коллектора.

Производители также производят соединительные транзисторы PNP. В этих устройствах эмиттер и коллектор — это полупроводниковый материал p-типа и база n-типа. Соединение PNP Транзистор работает по тому же принципу, что и транзистор NPN.Но он отличается в одном уважать. Основной поток тока в транзисторе PNP регулируется путем изменения количество дырок, а не количество электронов в основании. Также этот тип Транзистор работает правильно только в том случае, если отрицательные и положительные соединения к нему являются обратный таковым у транзистора NPN.

ТРАНЗИСТОРЫ ПОЛЕВОГО ЭФФЕКТА

Полевой транзистор имеет только два слоя полупроводника. материал, один поверх другого.Электричество проходит через один из слоев, называемый канал. Напряжение, подключенное к другому слою, называемому затвором, мешает ток, протекающий в канале. Таким образом, напряжение, подключенное к затвору, управляет сила тока в канале. Существует две основных разновидности полевого эффекта. транзисторы — полевой транзистор на стыке (JFET) и металлооксидный полупроводник полевой транзистор (MOSFET). Большинство транзисторов, содержащихся в сегодняшних интегральные схемы — это МОП-транзисторы.

Ответил: Джастин Шорс, ученик старшей школы

Основы транзисторов

Основы транзисторов

НАЖМИТЕ ЗДЕСЬ ДЛЯ УКАЗАТЕЛЬНОЙ СТРАНИЦЫ

ТРАНЗИСТОРЫ

Райан В. 2002 — 09

ФАЙЛ PDF — НАЖМИТЕ ЗДЕСЬ ДЛЯ ПЕЧАТНОЙ ВЕРСИИ РАБОЧАЯ ТАБЛИЦА НА ОСНОВЕ УПРАЖНЕНИЯ НИЖЕ

Транзисторы можно рассматривать как разновидность переключателя, так как может много электронных компонентов. Они используются в различных схемах и вы обнаружите, что схема, построенная в школе, Технологический отдел не содержит хотя бы одного транзистора. Они есть центральный в электронике и бывает двух основных типов; НПН и ПНП. Самый схемы обычно используют NPN. Существуют сотни работающих транзисторов. при разных напряжениях, но все они попадают в эти две категории.

ДВА ПРИМЕРА РАЗЛИЧНЫЕ ФОРМЫ ТРАНЗИСТОРА

Транзисторы бывают разной формы, но у них есть три отведения (ножки).
BASE — вывод, отвечающий за активацию транзистора.
КОЛЛЕКТОР — положительный вывод.
ЭМИТТЕР — это отрицательный вывод.
На схеме ниже показан символ транзистора NPN . Они не всегда располагайте так, как показано на схемах слева и справа, хотя вкладка на типе, показанном слева, обычно находится рядом с эмиттер.

Отведения на транзистор не всегда может быть в таком расположении. При покупке транзистор, в направлениях обычно четко указывается, какой вывод является БАЗА, ЭМИТТЕР или КОЛЛЕКТОР.

ПРОСТОЕ ИСПОЛЬЗОВАНИЕ ТРАНЗИСТОРА

ДИАГРАММА ‘A’

ДИАГРАММА ‘B’

На схеме A показан NPN-транзистор, который часто используется как переключатель. Небольшой ток или напряжение на база позволяет большему напряжению проходить через два других вывода (с коллектора на эмиттер ).

Схема, показанная на схеме B , основана на транзисторе NPN. При нажатии переключателя ток проходит через резистор в база транзистора. Затем транзистор пропускает ток. течет с +9 вольт на 0вс, и лампа загорается.

Транзистор должен получить напряжение на своей базе и до тех пор, пока это случается лампа не горит.

Резистор присутствует для защиты транзистора, так как они могут быть повреждены легко из-за слишком высокого напряжения / тока. Транзисторы необходимы компонент во многих схемах и иногда используется для усиления сигнала.

НАЖМИТЕ ЗДЕСЬ, ЧТОБЫ УЗНАТЬ БОЛЬШЕ ТРАНЗИСТОРЫ (ПАРЫ ДАРЛИНГТОНА)

НАЖМИТЕ ЗДЕСЬ, ЧТОБЫ ПОЛУЧИТЬ УКАЗАТЕЛЬ ЭЛЕКТРОНИКИ СТРАНИЦА

Транзистор

PNP — как он работает?

Транзистор PNP — загадка для многих.Но этого не должно быть. Если вы хотите разрабатывать схемы с транзисторами, действительно стоит знать об этом типе транзисторов.

Например: Хотите, чтобы свет автоматически включался, когда стемнеет? Транзистор PNP облегчит вам задачу.

В своей статье, как работают транзисторы, я объяснил, как работает стандартный транзистор NPN . Если вы еще этого не сделали, я действительно настоятельно рекомендую вам сначала прочитать эту статью.

Если вы разбираетесь в транзисторе NPN , вам будет легче понять транзистор PNP .Они работают примерно одинаково, с одним существенным отличием: токи в транзисторе PNP протекают в направлении, противоположном токам в транзисторе NPN.

Примечание. Этот раздел намного проще, если вы понимаете, как протекают ток и напряжение.

Как работают транзисторы PNP

Транзистор PNP имеет те же названия ножек, что и NPN:

PNP-транзистор «включается», когда у вас есть небольшой ток, идущий от эмиттера к базе транзистора.Когда я говорю «включить», я имею в виду, что транзистор открывает канал между эмиттером и коллектором. И этот канал может нести гораздо больший ток.

Чтобы обеспечить протекание тока от эмиттера к базе, вам нужна разница напряжений около 0,7 В. Поскольку ток идет от эмиттера к базе, база должна быть на 0,7 В на ниже, чем на , чем у эмиттера.

Устанавливая базовое напряжение PNP-транзистора на 0,7 В ниже, чем у эмиттера, вы «включаете транзистор» и позволяете току течь от эмиттера к коллектору.

READ Emcraft представляет систему на модуле i.MX 8M и стартовый комплект

за 349 долларов

Я знаю, что это может показаться немного запутанным, поэтому читайте дальше, чтобы узнать, как можно разработать схему с транзистором PNP.

Пример: схема транзистора PNP

Давайте посмотрим, как создать простую схему на транзисторе PNP. С помощью этой схемы вы можете использовать для включения светодиода, когда он темнеет.

Шаг 1. Излучатель

Прежде всего, чтобы включить транзистор PNP, вам необходимо, чтобы напряжение на базе было на ниже , чем на эмиттере.Для такой простой схемы обычно подключают эмиттер к плюсу источника питания. Таким образом, вы будете знать, какое напряжение у вас на эмиттере.

Шаг 2: что вы хотите контролировать

Когда транзистор включается, ток может течь от эмиттера к коллектору. Итак, давайте подключим то, что мы хотим контролировать: светодиод. Поскольку к светодиоду всегда должен быть включен резистор, давайте добавим резистор.

Подробнее: PNP-транзистор — как это работает?

Что такое транзистор и как он работает?

Транзистор — это полупроводниковый прибор, используемый для усиления или переключения электронных сигналов и электроэнергии.

Он построен из цельного полупроводникового материала и состоит из трех выводов, подключенных к внешней цепи. Если вы подаете какое-либо напряжение через один конец транзистора, это изменяет ток, протекающий через остальные клеммы.

Транзисторы — неотъемлемая часть современной электроники. Без изобретения транзисторов современная передовая электроника не достигла бы того уровня, на котором она находится сегодня.

Транзисторы

используют мощность для управления мощностью, а контролируемая мощность (выходная мощность) относительно намного больше, чем управление мощностью (выходная мощность).Итак, транзисторы обеспечивают усиление сигнала.

В настоящее время промышленность производит транзисторы по отдельности или целиком вместе в ИС (интегральной схеме).

История и открытие транзистора

Изобретатели транзистора Уолтер Браттейн, Джон Бардин и Уильям Шокли получили Нобелевскую премию по физике за свое революционное изобретение еще в 1956 году.

Трое физиков открыли «эффект транзистора » путем пересечения нескольких слоев элемента, германий (символ — « Ge ») с кремнием, а затем пересечения их с помощью тока.

Три физика, вероятно, тогда еще не осознавали важность своего открытия и помогали только в FM-радио. Но в более поздние годы изобретение транзистора проложило путь для развития микроэлектроники.

Воздействие было настолько огромным, что с момента его открытия до сегодняшнего дня мы изготовили и использовали почти секстиллион (один с двадцатью одним нулем, 1000000000000000000000) транзисторов.

Транзисторы принесли нам все, от радиоприемников до смартфонов.В течение десяти лет после изобретения Гордон Мур предсказал, что обрабатывающая способность транзисторов будет удваиваться каждые восемнадцать месяцев. Таким образом, американский ученый-компьютерщик и предприниматель сформулировал «первый закон Мура», который в последующие годы подтвердился и вошел в историю.

Однако транзисторы развивались очень быстро и использовались от радиоприемников до интегральных схем и логических вентилей.

В 1970-х годах Intel представила новые технологии, такие как литография, самый ранний в мире процессор и начальная интегрированная память.Они были основаны на кремниевых транзисторах. Но с годами с помощью ионной имплантации скорость производства и качество транзисторов быстро выросли.

Какое будущее у транзисторов?

Благодаря исследованиям и научному прогрессу у нас уже есть модель транзисторов с тремя затворами, известная как трехмерные транзисторы. Они будут намного эффективнее за счет меньших размеров, меньшего энергопотребления и меньшего энергопотребления.Следовательно, мы можем предположить, что будущее транзисторов будет за сверхпроводниками.

Как работает транзистор? Транзисторы

сконструированы таким образом, чтобы они могли работать как усилитель или переключатель. Это достигается за счет использования крошечного количества электроэнергии. С помощью этого электричества ворота контролируются и поддерживают большую подачу электроэнергии. Процесс очень похож на клапан, регулирующий скорость и подачу воды.

Транзисторы

состоят из трех частей — коллектора, базы и эмиттера.База контролирует подачу большего количества электричества, в то время как коллектор переносит его к эмиттеру. Эмиттер — это выход для большого источника электроэнергии. База регулирует и отправляет различные уровни тока и, таким образом, поддерживает количество тока, протекающего через затвор. Следовательно, небольшое количество тока необходимо только для поддержания и контроля большого количества тока.

Эта точная процедура реализуется при создании двоичного кода для использования в цифровых процессорах. Хотя в этом случае для разблокировки коллекторного затвора используется порог в пять вольт.Вот как мы используем транзистор в качестве переключателя с двоичной функцией: «Переключатель включен, если напряжение питания составляет пять вольт, и переключатель выключен, когда напряжение питания меньше пяти вольт».

Типы транзисторов

Транзисторы в основном делятся на два основных типа в зависимости от того, как они сконструированы. Эти два типа —

.
  • Биполярные переходные транзисторы (BJT) и
  • Полевые транзисторы (FET)

Есть еще несколько типов, которые мы увидим через минуту.

Независимо от того, к какой классификации относится транзистор, каждый транзистор имеет определенное расположение различных типов полупроводников. Наиболее широко используемые полупроводники для изготовления транзисторов — это германий, кремний и арсенид галлия.

BJT и FET отличаются друг от друга тем, что для работы транзисторов с биполярным переходом требуются как мажоритарные, так и неосновные носители заряда. Напротив, полевым транзисторам для работы требуется только большинство носителей заряда.

В зависимости от этих характеристик и свойств, несколько транзисторов используются для целей переключения (MOSFET), в то время как другие транзисторы используются для целей усиления (BJT).

Однако некоторые специфические типы транзисторов могут использоваться как для усиления, так и для коммутации.

Существуют сотни типов транзисторов в зависимости от их конструкции и изготовления. Так что перечислить все это практически невозможно. Вот все популярные типы транзисторов, которые сейчас используются в отрасли.

Биполярный переходной транзистор

a) схематическое обозначение PNP, (b) расположение (c) схематическое обозначение NPN, (d) расположение. Источник Биполярные переходные транзисторы

(BJT) иногда называют переходными транзисторами . Термин «биполярный», включенный в название, относится к тому факту, что этому типу транзистора необходимы как электроны, так и дырки для проведения тока, а термин «переход» в названии относится к тому факту, что он содержит PN-переход (оба перехода). Биполярные переходные транзисторы имеют три вывода или затвора, а именно.Эмиттер (E), база (B) и коллектор (C). Транзисторы BJT подразделяются на два разных типа транзисторов в зависимости от их конструкции. Эти два типа — транзисторы NPN и транзисторы PNP.

1. Транзисторы NPN
Транзистор

NPN назван так, потому что он содержит два полупроводниковых материала n-типа и один полупроводниковый материал p-типа. Слой полупроводника p-типа тонкий и разделяет два полупроводника n-типа. Следовательно, в транзисторах NPN электроны от эмиттера к коллектору несут большую часть заряда.

2. Транзисторы PNP
Транзисторы

PNP содержат один материал полупроводникового типа n-типа и два полупроводниковых материала p-типа, отсюда и название транзистора PNP. Слой полупроводника n-типа тонкий и разделяет два полупроводниковых материала p-типа. В транзисторах NPN большая часть заряда переносится дырками от эмиттера к коллектору, тогда как электроны несут небольшой заряд.

Полевой транзистор

Полевой транзистор — еще один широко используемый тип транзистора.Как и биполярные переходные транзисторы (BJT), полевые транзисторы также имеют три вывода. Они называются Воротами (G), Сливом (D) и Источником (S). Эти транзисторы относятся к категории полевых транзисторов с переходным эффектом (JFET) и полевых транзисторов с изолированным затвором (IG-FET) или металлооксидных полупроводниковых полевых транзисторов (MOSFET).

Еще один четвертый терминал также используется для подключения его к цепи, называемой базой или подложкой. Полевые транзисторы могут регулировать и изменять форму и размер канала между Источником (S) и стоком (D), и это делается путем подачи напряжения на вывод затвора (G).

Переходно-полевой транзистор

Полевые транзисторы с переходным эффектом (JFET), вероятно, являются простейшими и самыми ранними полевыми транзисторами. Они используются как усилители, резисторы и переключатели и представляют собой устройства, управляемые напряжением. Для работы JEFT не требуется базовый ток. Транзисторы с эффектом переходного поля также можно разделить на два основных подтипа, а именно. N – канал и P – канал.

N-канальные переходно-полевые транзисторы

N-Channel JEFT работают за счет потока электронов.Канал создается в транзисторе, когда напряжение подается между затвором (G) и истоком (S).

П-канальные переходно-полевые транзисторы

P-Channel JEFT работают за счет потока отверстий. Канал создается в транзисторе, когда напряжение подается между стоком (D) и источником (S).

Полевой транзистор

полупроводника оксида металла Полевой транзистор Source

Metal Oxide Semiconductor (MOSFET) — самый известный транзистор , наиболее широко используемый в современной промышленности.

Затворная часть транзистора и канал имеют между собой тонкий слой оксида металла (обычно SiO2). Следовательно, полевой МОП-транзистор также называется полевым транзистором с изолированным затвором , поскольку затвор имеет изоляцию от другой области.

Кроме того, этот транзистор имеет дополнительный вывод под названием Body или Substrate, и это самый важный полупроводник (кремний), из которого выкован полевой транзистор. Металлооксидные полупроводниковые полевые транзисторы так популярны в наши дни из-за их низкого выходного сопротивления и высокого входного сопротивления.

Мохамед М. Аталла и Давон Канг изобрели полевой МОП-транзистор в 1959 году.

Мы можем классифицировать MOSFET как транзисторы с каналом N и транзисторы с каналом P.

Применение и использование транзистора
  • Транзисторы наиболее широко используются в качестве переключателей и усилителей.
  • МОП-транзисторы с двойным затвором
  • используются в РЧ-смесителях / умножителях и РЧ-усилителях, где необходимы два управляемых затвора, и мы подключаем их последовательно.
  • Лавинные транзисторы используются для преобразования больших токов за наносекундное время перехода, а иногда и за меньшее.
  • Транзисторы, работающие как переключатели, используются для изготовления карт памяти для мобильных телефонов.
  • Биполярные транзисторы с гетеропереходом (HBT) используются в микроволновой связи, поскольку они обеспечивают высокую скорость переключения и могут улавливать сигналы различных частот.
  • Биполярные транзисторы с изолированным затвором (IGBT) используются в качестве переключателей в таких устройствах, как поезда, электромобили, холодильники, кондиционеры и многое другое.

Что будет дальше с транзисторами?

С развитием науки появилось гораздо больше транзисторов, которые широко используются во всех областях науки и техники.Мы также можем классифицировать транзисторы по функциям. Сюда входят — малосигнальные транзисторы, малые переключающие транзисторы, силовые транзисторы, высокочастотные транзисторы, фототранзисторы и однопереходные транзисторы (UJT).

Может быть, в будущем вполне можно будет делать транзисторы из титана и алюминия. Это было бы намного выгоднее, так как они в изобилии, дешевые и металлические. Таким образом, это наше небольшое объяснение транзисторов, хотя тема более глубока и разнообразна.

Мы надеемся, что это поможет вам понять, что такое транзистор, и узнать его важность.

Нравится:

Нравится Загрузка …

Связанные

Что такое транзистор NPN? — Определение, строительство и работа

Определение: Транзистор, в котором один материал p-типа помещен между двумя материалами n-типа, известен как транзистор NPN . NPN-транзистор усиливает слабый сигнал , поступающий на базу, и производит сильные сигналы усиления на конце коллектора.В транзисторе NPN направление движения электрона — от эмиттера к области коллектора , из-за чего ток составляет в транзисторе. Такой тип транзисторов чаще всего используется в схеме, потому что их основными носителями заряда являются электроны, которые имеют большую подвижность по сравнению с дырками.

Конструкция NPN-транзистора

NPN-транзистор имеет два диода, соединенных спиной друг к другу. Диод на левой стороне называется диодом эмиттер-база, а диоды на левой стороне — диодом коллектор-база.Эти имена даны согласно названиям терминалов.

NPN-транзистор имеет три вывода, а именно эмиттер, коллектор и базу. Средняя часть NPN-транзистора слегка легирована, и это наиболее важный фактор работы транзистора. Эмиттер умеренно легирован, а коллектор сильно легирован.

Схема

NPN транзистора

Принципиальная схема транзистора NPN показана на рисунке ниже. Коллектор и база соединены с обратным смещением, в то время как эмиттер и база соединены с прямым смещением.Коллектор всегда подключен к положительному источнику питания, а база — к отрицательному источнику питания для управления состояниями ВКЛ / ВЫКЛ транзистора.

Работа транзистора NPN

Принципиальная схема транзистора NPN показана на рисунке ниже. Прямое смещение применяется к переходу эмиттер-база, а обратное смещение применяется к переходу коллектор-база. Напряжение прямого смещения V EB мало по сравнению с напряжением обратного смещения V CB .

Эмиттер NPN-транзистора сильно легирован. Когда к эмиттеру прикладывается прямое смещение, основные носители заряда движутся к базе. Это вызывает ток эмиттера I E . Электроны входят в материал P-типа и соединяются с отверстиями.

База NPN-транзистора слегка легирована. Из-за чего только несколько электронов объединяются, а оставшиеся составляют базовый ток I B . Этот базовый ток входит в область коллектора.Обратный потенциал смещения области коллектора прикладывает высокую силу притяжения к электронам, достигающим коллекторного перехода. Таким образом притягивают или собирают электроны на коллекторе.

В базу вводится весь ток эмиттера. Таким образом, можно сказать, что ток эмиттера складывается из тока коллектора и базы.

Фактов о транзисторах для детей

Несколько типов транзисторов в индивидуальной упаковке

Транзистор — это электронный компонент, который можно использовать как часть усилителя или как переключатель.Он изготовлен из полупроводникового материала. Транзисторы встречаются в большинстве электронных устройств. Транзистор был большим достижением после лампового триода, с использованием гораздо меньшего количества электроэнергии и продолжительностью на много лет дольше, чтобы переключать или усиливать другой электронный ток.

Транзистор может использоваться для множества различных вещей, включая усилители и цифровые переключатели для компьютерных микропроцессоров. В цифровой работе в основном используются полевые МОП-транзисторы. Некоторые транзисторы имеют индивидуальную упаковку, в основном для того, чтобы они могли работать с большой мощностью.Большинство транзисторов находится внутри интегральных схем.

Как они работают

Когда на центральный штифт подается питание, мощность может течь. Транзисторы

имеют три вывода: затвор, сток и исток (на биполярном транзисторе провода можно назвать эмиттером, коллектором и базой). Когда источник (или эмиттер) подключен к отрицательной клемме батареи, а сток (или коллектор) — к положительной клемме, в цепи не будет течь электричество (если у вас есть только лампа, соединенная последовательно с транзистором).Но когда вы коснетесь затвора и стока вместе, транзистор пропустит электричество. Это связано с тем, что, когда затвор положительно заряжен, положительные электроны будут подталкивать другие положительные электроны в транзисторе, позволяя отрицательным электронам проходить через него. Транзистор также может работать, когда затвор просто положительно заряжен, поэтому ему не нужно касаться стока.

Визуализация

Легко представить, как работает транзистор, — это шланг с крутым изгибом, который не позволяет воде проходить через него.Вода — это электроны, и когда вы заряжаете затвор положительно, он разгибает шланг, позволяя воде течь.

Обозначение схемы транзистора Дарлингтона. «B» обозначает базу, «C» обозначает коллектор, а «E» обозначает эмиттер.

Базовая схема транзистора Дарлингтона состоит из двух биполярных транзисторов, подключенных эмиттером к базе, поэтому они действуют как один транзистор. Один из транзисторов подключен так, что контролирует ток на базе другого транзистора.Это означает, что вы можете контролировать такое же количество тока при очень небольшом токе, идущем в базу.

использует

Когда затвор P-канального MOSFET заряжен положительно, через него проходит электричество, это полезно для электроники, которая требует включения переключателя, что делает его электронным переключателем. Это конкурирует с механическим переключателем, который требует постоянного нажатия на него.

В полевом МОП-транзисторе, используемом в качестве усилителя, транзисторы принимают поток стока и истока, и, поскольку ток истока намного больше, чем ток стока, ток стока обычно возрастает до значения, равного истоку, усиливая Это.

Материалы

Транзисторы изготовлены из полупроводниковых химических элементов, обычно кремния, который относится к современной группе 14 (ранее группа IV) периодической таблицы элементов. Германий, другой элемент группы 14, используется вместе с кремнием в специализированных транзисторах. Исследователи также изучают транзисторы, сделанные из особых форм углерода. Транзисторы также могут быть изготовлены из таких соединений, как арсенид галлия.

История

Транзистор был не первым трех оконечным устройством.Триод служил той же цели, что и транзистор 50 лет назад. Электронные лампы были важны в бытовой технике до транзисторов. К сожалению, лампы были большими и хрупкими, потребляли много энергии и прослужили недолго. Транзистор решил эти проблемы.

Трем физикам приписывают изобретение транзистора в 1947 году: Уолтеру Х. Браттейну, Джону Бардину и Уильяму Шокли, которые внесли наибольший вклад.

Важность

Транзистор сегодня является очень важным компонентом.Если бы не транзистор, такие устройства, как сотовые телефоны и компьютеры, были бы совсем другими, или они могли бы вообще не быть изобретены. Транзисторы были сделаны очень маленькими (в десятки атомов в ширину), так что миллиарды их можно поместить в небольшой компьютерный чип.

Галерея

  • Периодическая таблица элементов

  • Реплика первого транзистора

  • Изобретатели транзистора

Картинки для детей

  • Различные дискретные транзисторы.Пакеты по порядку сверху вниз: ТО-3, ТО-126, ТО-92, СОТ-23.

  • Джулиус Эдгар Лилиенфельд предложил концепцию полевого транзистора в 1925 году.

  • Герберт Матаре в 1950 году. Он независимо изобрел точечный транзистор в июне 1948 года.

  • Поверхностно-барьерный транзистор Philco, разработанный и произведенный в 1953 году

  • Транзистор Дарлингтона открылся, так что внутри виден сам транзисторный чип (маленький квадрат).Транзистор Дарлингтона — это фактически два транзистора на одной микросхеме. Один транзистор намного больше другого, но оба они больше по сравнению с транзисторами в крупномасштабной интеграции, потому что этот конкретный пример предназначен для силовых приложений.

  • Работа полевого транзистора и его кривая Id-Vg. Сначала, когда напряжение на затвор не подается, в канале нет инверсионных электронов, поэтому устройство выключено. По мере увеличения напряжения затвора плотность инверсионных электронов в канале увеличивается, ток увеличивается, и, таким образом, устройство включается.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *