Транзистор принцип действия – простым языком для чайников, схемы

Содержание

Биполярный транзистор — принцип работы для чайников!

Приветствую вас дорогие друзья! Сегодня речь пойдет о биполярных транзисторах и информация будет полезна прежде всего новичкам. Так что, если вам интересно что такое транзистор, его принцип работы  и вообще с чем его едят, то берем  стул по удобнее и подходим поближе.

Продолжим, и у нас тут есть содержание,  будет удобнее ориентироваться в статье 🙂

[contents]

Виды транзисторов

Транзисторы бывают в основном двух видов: биполярные транзисторы и полевые транзисторы.  Конечно можно было рассмотреть все виды транзисторов в одной статье, но мне не хочется варить кашу  у вас в голове. Поэтому в этой статье мы рассмотрим исключительно биполярные транзисторы а о полевых транзисторах я расскажу в одной из следующих статей. Не будем все мешать в одну кучу  а уделим внимание каждому, индивидуально.

Биполярный транзистор

Биполярный транзистор это потомок ламповых триодов, тех что стояли в телевизорах 20 -го века. Триоды ушли в небытие и уступили дорогу более функциональным собратьям — транзисторам, а точнее биполярным транзисторам.

Триоды за редким исключением применяют в аппаратуре для меломанов.

Биполярные транзисторы выглядеть могут  так.

Как вы можете видеть биполярные транзисторы имеют три вывода и конструктивно они могут выглядеть совершенно по разному. Но на электрических схемах они выглядят простенько и всегда одинаково. И все это графическое великолепие,  выглядит как-то так.

Это изображение транзисторов еще называют УГО (Условное графическое обозначение).

Причем биполярные транзисторы могут иметь различный тип проводимости. Есть транзисторы NPN типа и PNP типа.

Отличие n-p-n транзистора от p-n-p транзистора состоит лишь в том что является «переносчиком» электрического заряда (электроны или «дырки» ). Т.е. для p-n-p транзистора электроны перемещаются от эмиттера к коллектору и управляются базой. Для n-p-n транзистора электроны идут уже от коллектора к эмиттеру и управляются базой.    В итоге приходим к тому, что для того чтобы в схеме заменить транзистор одного типа проводимости на другой достаточно изменить полярность приложенного напряжения. Или тупо поменять полярность источника питания.

У биполярных транзисторов есть три вывода: коллектор, эмиттер и база. Думаю, что по УГО будет сложно запутаться, а вот в реальном транзисторе запутаться проще простого.

Обычно где какой вывод определяют по справочнику, но можно просто  прозвонить транзистор мультиметром. Выводы транзистора звонятся как два диода, соединенные в общей точке (в области базы транзистора).

Слева изображена картинка для транзистора p-n-p типа,  при прозвонке  создается ощущение (посредством показаний мультиметра ), что перед вами два диода которые соединены в одной точке своими катодами. Для транзистора  n-p-n типа  диоды в точке базы соединены своими анодами. Думаю после экспериментов с мультиметром будет более понятно.

 

 Принцип работы биполярного транзистора

А сейчас мы попробуем разобраться как работает транзистор. Я не буду вдаваться в подробности внутреннего устройства транзисторов так как эта информация только запутывает. Лучше взгляните на этот рисунок.

Это изображение лучше всего объясняет принцип работы  транзистора. На этом изображении человек посредством реостата управляет током коллектора. Он смотрит на ток базы, если ток базы растет то человек так же увеличивает ток коллектора с учетом коэффициента усиления транзистора h31Э. Если ток базы падает, то ток коллектора также будет снижаться — человек подкорректирует его посредством реостата.

Эта аналогия не имеет ничего общего с реальной работой транзистора, но она облегчает понимание принципов его работы.

Для транзисторов можно отметить правила, которые призваны помочь облегчить понимание. (Эти правила взяты из книги П. Хоровица У.Хилла «Искусство схемотехники»).

  1. Коллектор имеет более положительный потенциал , чем эмиттер
  2. Как я уже говорил цепи база — коллектор и база -эмиттер работают как диоды
  3. Каждый транзистор характеризуется предельными значениями, такими как ток коллектора, ток базы и напряжение коллектор-эмиттер.
  4. В том случае если правила 1-3 соблюдены то ток коллектора Iк прямо пропорционален току базы Iб. Такое соотношение можно записать в виде формулы.

Из этой формулы можно выразить основное свойство транзистора — небольшой ток базы управляет большим током коллектора.

-коэффициент усиления по току.

Его также обозначают как 

Исходы из выше сказанного транзистор может работать в четырех режимах:

  1. Режим отсечки транзистора — в этом режиме переход база-эмиттер закрыт, такое может произойти когда напряжение база-эмиттер недостаточное. В результате  ток базы  отсутствует и следовательно ток коллектора тоже будет отсутствовать.
  2. Активный режим транзистора — это нормальный режим работы транзистора.  В этом режиме напряжение база-эмиттер достаточное для того, чтобы переход база-эмиттер открылся. Ток базы достаточен и ток коллектора тоже имеется. Ток коллектора равняется току базы умноженному на коэффициент усиления.
  3. Режим насыщения транзистора — в этот режим транзистор переходит тогда, когда ток базы становится настолько большим, что мощности источника питания просто не хватает для дальнейшего увеличения тока коллектора. В этом режиме ток коллектора не может увеличиваться вслед за увеличением тока базы.
  4. Инверсный режим транзистора — этот режим используется крайне редко. В этом режиме коллектор и эмиттер транзистора меняют местами. В результате таких манипуляций коэффициент усиления транзистора очень сильно страдает. Транзистор изначально проектировался не для того, чтобы он работал в таком особенном режиме.

Для понимания того как работает транзистор нужно рассматривать конкретные схемные примеры, поэтому давайте рассмотрим некоторые из них.

Транзистор в ключевом режиме

Транзистор в ключевом режиме это один из случаев транзисторных схем с общим эмиттером. Схема транзистора в ключевом режиме применяется очень часто. К этой транзисторной схеме прибегают к примеру когда нужно управлять мощной нагрузкой посредством микроконтроллера. Ножка контроллера не способна тянуть мощную нагрузку, а транзистор может. Получается контроллер управляет транзистором, а транзистор мощной нагрузкой. Ну а обо всем по порядку.

Основная суть этого режима заключается в том, что ток базы управляет током коллектора. Причем ток коллектора гораздо больше тока базы. Здесь невооруженным взглядом видно, что происходит усиление сигнала по току. Это усиление осуществляется за счет энергии источника питания.

На рисунке изображена схема работы транзистора в ключевом режиме.

Для транзисторных схем напряжения не играют большой роли, важны лишь токи.  Поэтому, если отношение тока коллектора к току базы меньше коэффициента усиления транзистора то все окей.

В этом случае даже если к базе у нас приложено напряжение в 5 вольт а в цепи коллектора 500 вольт, то ничего страшного не произойдет, транзистор будет покорно переключать высоковольтную нагрузку.

Главное чтобы  эти напряжения не превышали предельные значения для конкретного транзистора (задается в характеристиках транзистора).

Чтож, теперь давайте попробуем рассчитать значение базового резистора.

На сколько мы знаем, что значение тока это характеристика нагрузки.

Т.е. I=U/R

Мы не знаем сопротивления лампочки, но мы знаем рабочий ток лампочки 100 мА. Чтобы транзистор открылся и обеспечил протекание такого тока, нужно подобрать соответствующий ток базы. Ток базы мы можем корректировать меняя номинал базового резистора.

Так как минимальное значение коэффициента усиления транзистора равно 10, то для открытия транзистора ток базы должен стать 10 мА.

Ток который нам нужен известен. Напряжение на базовом резисторе будет Такое значение напряжения на резисторе получилось из-зи  того, что на переходе база-эмиттер высаживается 0,6В-0,7В и это надо не забывать учитывать.

В результате  мы вполне можем найти сопротивление резистора

Осталось выбрать из ряда резисторов конкретное значение и дело в шляпе.

Теперь вы наверное думаете, что транзисторный ключ будет работать так как нужно? Что когда базовый резистор подключается к +5 В лампочка загорается, когда отключается -лампочка гаснет? Ответ может быть да а может и нет.

Все дело в том, что здесь есть небольшой нюанс.

Лампочка в том случае погаснет, когда потенциал резистора будет равен потенциалу земли. Если же резистор просто отключен от источника напряжения, то здесь не все так однозначно. Напряжение на базовом резисторе  может возникнуть чудесным образом в результате наводок или еще какой потусторонней нечисти 🙂

Чтобы такого эффекта не происходило делают следующее. Между базой и эмиттером подключают еще один резистор  Rбэ. Этот резистор выбирают номиналом как минимум в 10 раз больше базового резистора Rб (В нашем случае  мы взяли резистор 4,3кОм).

Когда база подключена к какому-либо напряжению, то транзистор работает как надо, резистор Rбэ ему не мешает. На этот резистор расходуется лишь малая часть базового тока.

В случае, когда напряжение к базе не приложено, происходит подтяжка базы к потенциалу земли, что избавляет нас от всяческих наводок.

Вот в принципе мы разобрались с работой транзистора в ключевом режиме, причем как вы могли убедиться ключевой режим работы это своего рода усиление сигнала по напряжению. Ведь мы с помощью малого напряжения в 5В управляли напряжением в 12 В.

Эмиттерный повторитель

Эмиттерный повторитель является частным случаем транзисторных схем с общим коллектором.

Отличительной чертой схемы с общим коллектором от схемы с общим эмиттером (вариант с транзисторным ключем) является то, что эта схема не усиливает сигнал по напряжению. Что вошло через базу, то и вышло через эмиттер, с тем же самым напряжением.

Действительно допустим приложили к базе мы 10 вольт, при этом мы знаем что на переходе база-эмиттер высаживается где-то 0,6-0,7В. Выходит что на выходе (на эмиттере, на нагрузке Rн) будет напряжение базы минус 0,6В.

Получилось 9,4В, одним словом почти сколько вошло столько и вышло. Убедились, что по напряжению эта схема нам сигнал не увеличит.

«В чем же смысл тогда таком включении транзистора?»- спросите вы. А вот оказывается эта схема обладает другим очень важным свойством.  Схема включения транзистора с общим коллектором усиливает сигнал по мощности. Мощность это произведение тока на напряжение, но так как напряжение не меняется то мощность увеличивается только за счет тока! Ток в нагрузке складывается из тока базы плюс ток коллектора. Но если сравнивать ток базы и ток коллектора то ток базы очень мал по сравнению с током коллектора. Получается ток нагрузки равен току коллектора.  И в результате получилась вот такая формула.

Теперь я думаю понятно в чем суть  схемы эмиттерного повторителя, только это еще не все.

Эмиттерный повторитель обладает еще одним очень ценным качеством — высоким входным сопротивлением. Это означает, что эта транзисторная схема почти не потребляет ток входного сигнала и не создает нагрузки для схемы -источника сигнала.

Для понимания принципа работы транзистора этих двух транзисторных схем будет вполне достаточно. А если вы еще поэкспериментируете с паяльником в руках то прозрение просто не заставит себя ждать, ведь теория теорией а практика и личный опыт ценнее в сотни раз!

Где транзисторы купить?

Как и все другие радиокомпоненты транзисторы можно купить в  любом ближайшем  магазине радиодеталей. Если вы живете где-нибудь на окраине и о подобных магазинах не слышали (как я раньше) то остается последний вариант — заказать транзисторы в интернет- магазине. Я сам частенько заказываю радиодетали через интернет-магазины ведь в обычном оффлайн магазине может чего-нибудь просто не оказаться.

Впрочем если вы собираете устройство чисто для себя то можно не париться а добыть из старой, отслужившей свое техники и так сказать вдохнуть в старый радиокомпонет новую жизнь.

Чтож друзья, а на этом у меня все. Все, что планировал я сегодня вам рассказал. Если остались какие-либо вопросы, то задавайте их в комментариях, если вопросов нет то все равно пишите комментарии, мне всегда важно ваше мнение. Кстати не забывайте, что каждый кто впервые оставит комментарий получит подарок.

Также обязательно подпишитесь на новые статьи, потому что дальше вас ждет много интересного и полезного.

Желаю вам удачи, успехов  и солнечного настроения!

С н/п Владимир Васильев

P.S. Друзья, обязательно подписывайтесь на обновления! Подписавшись вы будете получать новые материалы себе прямо на почту! И кстати каждый подписавшийся получит полезный подарок!

popayaem.ru

устройство, классификация и работа простым языком

С каждым годом появляется все больше и больше электронных средств, а они часто ломаются. На ремонт уходит немало средств, порой, достигая до 50 процентов от стоимости аппарата. И что досадно, некоторые из этих поломок можно было устранить самому, имея начальные знания о том, как работает транзистор. Почему он? Именно транзисторы чаще всего выходят из строя.

Виды транзистора

Чтобы легче разобраться в работе транзистора, необходимо иметь представление о нем. Он является полупроводником, что указывает на его способность проводить ток в одном направлении и не пропускать в другом. Чтобы достичь таких характеристик используются разные способы изготовления. Все эти приборы по своему характеру работы делятся на две группы:

  1. биполярные
  2. полярные

Хотя и те и другие относятся к одному классу — транзисторы, происходящие в них процессы сильно отличаются.

Биполярный

Движение электронов по замкнутой цепи называется электрическим током. Грубо говоря, чем больше электронов, тем больше ток. Если атом отдает электроны, он становится положительно заряженным и, наоборот, притягивая лишние электроны, он становится отрицательно заряженным.

При добавлении в кремний и германий примесей они становятся необходимым материалом, из которых и изготавливаются биполярные транзисторы.

Биполярными называются электронные приборы, состоящие из двух, имеющие разные заряды слоев. Причем два крайних имеют одинаковый заряд. Тот слой, который имеет положительный заряд, называется «p», а отрицательный — «n». В связи с этим различают следующие типы:

Граница между этими слоями называется переход. Внутреннюю область, разделенную двумя переходами, называют базой. Две внешние области называют эмиттер и коллектор. Монокристалл изготовлен таким образом, что одна внешняя область передает в базу носители энергии и называется эмиттером. Другая внешняя область забирает эти носители и называется коллектором.

На электрической схеме биполярный транзистор обозначается в виде круга, внутри которого нарисована черточка, а к ней подходят три прямые. Одна подходит под углом в 90 градусов и обозначает базу, две другие под наклоном. Та из них что имеет стрелку обозначает эмиттер, другая — коллектор. Сам прибор, как правило, имеет три вывода, соответствующих этим областям.

Полевой

Другой вид называется полевой или униполярный. В отличие от биполярного p-n переход работает иначе. Его монокристалл имеет однородный состав. Канал, по которому движутся энергоносители, может быть дырочным или электронным. В дырочном носителем являются положительно заряженные неподвижные ионы, в электронном — отрицательно заряженные. Эти каналы также обозначаются буквами «p» и «n» соответственно.

Вокруг и почти по всей длине этого канала впрыскиваются, вживляются ионы противоположной полярности. Эта область называется затвором, она-то и регулирует проводимость канала. Тот край канала, через который заряженные частицы входят в кристалл, называется исток, а через который выходят — стоком.

Для улучшения электрических характеристик между металлическим каналом и затвором стали добавлять диэлектрик. Если классифицировать транзисторы по структуре, то можно выделить два семейства:

  • МДП (к ним можно отнести и МОП — металл-оксид-проводник)
  • JGBT

МДП расшифровывается как металл-диэлектрик-проводник. Это полевой. Новый JGBT транзистор сочетает в себе достоинства биполярного, но имеет изолированный затвор.

Принцип действия

Один из сложных радиоэлементов — транзистор. Принцип работы его сводится к следующему:

  • регулировка
  • усиление
  • генерация

Биполярные обладают большей мощностью и могут работать с большими частотами. Однако, если нужен широкий спектр усиления, то без полевого не обойтись.

Работа полевого

Рассмотрим, как работает транзистор. Для начинающих радиолюбителей трудно разобраться во всех этих переходах. Чтобы показать принцип работы транзистора простым языком, обратим внимание на следующий пример.

Водопроводный кран вентильного типа способен очень плавно менять напор воды. Это достигается благодаря постепенному изменению пропускного отверстия. На этом же принципе основана работа и полевого транзистора.

Затвор окружает пропускной канал. При подаче на него запирающего напряжения, электрическое поле как бы сдавливает проход, тем самым уменьшая поток заряженных частиц. Как и при закрывании крана необходимо прилагать небольшое усилие, так и мощность затвора, по сравнению с основным каналом, очень мала. Сходство также и в том, что при небольших изменениях напряжения на затворе, сечение прохода также меняется незначительно.

Как работает биполярный

Работа биполярного прибора несколько отличается от работы полевого. В первую очередь отличается способ управления движением заряженных частиц. В полевом используется электрическое поле, в биполярном — ток между базой и эмиттером.

В зависимости от типа прибора стрелочка эмиттера на схеме будет либо направлена к базе, тогда это тип p-n-p, либо от базы, тогда это n-p-n. При подключении к этим зажимам одноименного напряжения («p» подключается к «+», а «n» подключается к «-«) в цепи эмиттер — база возникает ток. В базе появляется больше носителей заряда и их становится тем больше, чем больше ток в этой цепи.

К коллектору подводится обратное напряжение, т. е. к «p» подключается «-«, а к «n» — «+». Поскольку между эмиттером и коллектором возникает разность потенциалов, между этими выводами появляется ток. Он будет тем больше, чем больше носителей заряда имеется в базе.

Когда к эмиттеру и базе подключают источник питания противоположного знака, ток прекращается, транзистор закрывается. Что поможет лучше понять работу транзистора? Для чайников важно понять одну истину. Если открыт переход эмиттер — база (подается прямое напряжение), то открыт и сам прибор, в противном случае он закрыт.

Меры предосторожности

Полевые транзисторы очень чувствительны к повышенному напряжению. При работе с ними необходимо предотвратить возможность попадания на них статистического напряжения. Этого можно достичь надев заземленный браслет. При подборе аналога важно учитывать не только рабочее напряжение, но и допустимый ток. А если прибор работает в частотном режиме, то и его частоту.


220v.guru

9 Принцип действия транзисторов

13.
Устройство и принцип действия транзисторов

В
зависимости от принципа действия и
конструктивных признаков
транзисторы подразделяются на два
больших класса: биполярные
и полевые.

Биполярными
транзисторами называют полупроводни­ковые
приборы с двумя или несколькими
взаимодействующими электрическими
p-n-переходами
и тремя выводами или более, усилительные
свойства которых обусловлены явлениями
инжекции и экстракции неосновных
носителей заряда.

В
настоящее время широко используют
биполярные тран­зисторы
с двумя p-n
-переходами, к которым чаще всего и
относят этот термин. Они состоят из
чередующихся областей (слоев)
полупроводника, имеющих электропроводности
раз­личных
типов. В зависимости от типа
электропроводности наружных
слоев различают транзисторы р-п-р
и
n-p-n
-типов.

Транзисторы,
в которых p-n-переходы
создаются у повер­хностей
соприкосновения полупроводниковых
слоев, называют плоскостными

Биполярный
транзистор
представляет
собой кристалл
полупроводника, состоящий из трех слоев
с че­редующейся
проводимостью и снабженный тремя
вывода­ми
(электродами) для подключения к внешней
цепи.

На
рис. 1.5, а и б
показано
схемное обозначение двух типов
транзисторов р-п-р-типа
и
п-р-п-типа.
Крайние
слои называют эмиттером
(Э)
и коллектором
(К),
между ними находится база
(Б).
В трехслойной структуре имеются два
p-n
перехода: эмиттерный
переход
между
эмитте­ром
и базой и коллекторный
переход
между
базой и кол­лектором. В качестве
исходного материала транзисторов
используют
германий или кремний.

При
изготовлении транзистора обязательно
должны быть
выполнены два условия:

  1. толщина базы
    (расстояние между эмиттерным и кол-

лекторным переходами)
должна быть малой по сравнению с длиной
свободного пробега носителей заряда;

2)
концентрация примесей (и основных
носителей) за­ряда в эмиттере должна
быть значительно больше, чем в базе
(Na>>NД
в
р-п-р
транзисторе).

Рассмотрим
принцип действия р-п-р
транзистора.

Транзистор
включают последовательно с сопротивлением
нагрузки Rк
в цепь источника коллекторного напряжения
Ек.
На
вход транзистора подается управляющая
ЭДС ЕБ‘,
как
показано на рис. 1.6, а. Такое включение
транзистора, когда входная (ЕБ,
RБ)
и
выходная
(ЕК,
RК)
цепи
имеют общую точку — эмиттер, является
наиболее рас-пространенным и называется
включением с
общим эмит-тером
(ОЭ).

При
отсутствии напряжений Б=0,
Е
К=0)
эмиттер-ный и коллекторный переход
находятся в состоянии рав-новесия, токи
через них равны нулю. Оба перехода имеют
двойной электрический слой, состоящий
из ионов примесей, и потенциальный
барьер о,
различный на каждом из переходов.
Распределение потенциалов в транзисторе
при отсутствии напряже­ний показано
на рис. 1.6,б штриховой линией.

Полярность
внешних источников ЕБ
и
Е
К
выбирается
такой, чтобы на эмиттерном переходе
было прямое напряжение (минус источника
ЕБ
подан
на базу, плюс — на эмиттер), а на
коллекторном переходе — обратное
напряжение (минус источника ЕК

на коллектор, плюс — на эмиттер), причем
напряжение |Uкэ|>
|Uбэ|
(напряже­ние
на коллекторном переходе Uкб
=
Uкэ-Uбэ)

При таком включении источников ЕБ
и
Е
К
распределение
потенциалов в транзисторе имеет вид,
показанный на рис. .1.6, б
сплошной
линией. Потенциальный барьер эмиттерного
перехода,смещенного в прямом направлении,
снижается, на коллекторном переходе
потенциальный барьер увеличивается. В
результате приложения к эмиттерному
переходу прямого напряжения начинается
усиленная диффузия (инжекция) дырок из
эмиттера в базу. Электронной составляющей
диффузионного тока через эмиттерный
переход можно пренебречь, так как рр>>пп,
поскольку
выше оговаривалось условие NА>>NД.
Таким
образом, ток эмиттера IЭ=
IЭдифр.
Под воздействием сил диффузии в результате
перепада концентрации вдоль базы дырки
продвигаются от эмиттера к коллектору.
Поскольку база в транзисторе выполняется
тонкой,
основная
часть дырок, инжектирован­ных эмиттером,
достигает коллекторного перехода, не
по­падая в центры рекомбинации. Эти
дырки захватываются полем коллекторного
перехода, смещенного в обратном
на­правлении, так как это поле является
ускоряющим для неосновных носителей —
дырок в базе n-типа.
Ток дырок, попавших из эмиттера в
коллектор, замыкается через внешнюю
цепь, источник ЕК.
При
увеличении тока эмитте­ра на величину
IЭ
ток коллектора возрастет на IК
= IЭ.
Вследствие малой вероятности рекомбинации
в тонкой базе коэффициент передачи тока
эмиттера 
=IК
/IЭ
=0,9-0,99.

Небольшая
часть дырок, инжектированных эмиттером,
попадает в центры рекомбинации и
исчезает, рекомбинируя с электронами.
Заряд этих дырок остается в базе, и для
восстановления зарядной нейтральности
базы из внешней цепи за счет источника
Ев
в
базу поступают элек­троны. Поэтому
ток базы представляет собой ток
реком­бинации Iрек=IЭ(1-)
Помимо
указанных основных составляющих тока
тран­зистора надо учесть возможность
перехода неосновных но­сителей,
возникающих в базе и коллекторе в
результате генерации носителей, через
коллекторный переход, к кото­рому
приложено обратное напряжение. Этот
малый ток (переход дырок из базы в
коллектор и электронов из кол­лектора
в базу) аналогичен обратному току р-п
перехода,
он также называется обратным
током коллекторного пере­хода
или
тепловым
током
и
обозначается Iкбо
(рис.
1.6, а)

полевые
транзисторы

полупроводни­ковые
приборы, которые практически не потребляют
ток из входной
цепи.

Полевые
транзисторы подразделяются на два типа,
от­личающихся
друг от друга принципом действия: а) с
р-п
переходом;
б) МДП-типа.

.
1.6.1.
Полевые транзисторы с
р-п
переходом
имеют структуру,
разрез которой приведен на рис. 1.9, а.
Слой с
проводимостью р-типа называется каналом,
он
имеет два вывода
во внешнюю цепь: С

сток
и
И

исток.
Слои
с
проводимостью типа п,
окружающие
канал, соединены между
собой и имеют вывод во внешнюю цепь,
называемый затвором
3.
Подключение
источников напряжения к прибо­ру
показано на рис. 1.9, а, на рис. 1.9,6 показано
схемное обозначение
полевого транзистора с р-п
переходом
и кана­лом
р-типа. Существуют также полевые
транзисторы с ка­налом
n-типа,
их обозначение приведено на рис. 1.9, в,
принцип
действия аналогичен, но направления
токов и поляр­ность приложенных
напряжений противоположны.

Рассмотрим
принцип действия полевого транзистора
с каналом р-типа. На рис. 1.9, г
приведено
семейство стоко­вых (выходных)
характеристик этого прибора Iс=f(Uси)
при Uзи=const.

При
управляющем напряжении Uзи
= 0 и подключении источника напряжения
между стоком и истоком Uси
по
каналу течет ток, который зависит от
сопротивления канала. Напряжение Uси
равномерно
приложено по длине канала, это напряжение
вызывает обратное смещение р-п
перехода
между каналом р-типа и n-слоем,
причем наибольшее об­ратное напряжение
на р-п
переходе
существует в области, прилегающей к
стоку, а вблизи истока р-п
переход
нахо­дится в равновесном состоянии.
При увеличении напряже­ния Uси
область
двойного электрического слоя р-п
пере­хода,
обедненная подвижными носителями
заряда, будет расширяться, как показано
на рис. 1.10, а.
Особенно
сильно расширение перехода проявляется
вблизи стока, где больше обратное
напряжение на переходе. Расширение р-п
пе­рехода
приводит к сужению проводящего ток
канала тран­зистора, и сопротивление
канала возрастает. Из-за увели­чения
сопротивления канала при росте Uси
стоковая характеристика полевого
транзистора имеет нелинейный ха­рактер
(рис. 1.9,г). При некотором напряжении Uси
гра­ницы
р-п
перехода
смыкаются (пунктир на рис. 1.10, а), и рост
тока Iс
при увеличении Ucb
прекращается.

При
приложении положительного напряжения
к затво­ру Uзи>0
р-п
переход
еще сильнее смещается в область обратного
напряжения, ширина перехода увеличивается,
как показано на рис. 1.10,6. В результате
канал, проводя­щий ток, сужается и ток

уменьшается. Таким образом, увеличивая
напряжение Uзи.
можно уменьшить Iс
что видно из рассмотрения рис. 1.9, г.
При
определенном Uзи
называемом напряжением
отсечки,
ток
стока практически не протекает. Отношение
изменения тока стока IC
к вы­звавшему его изменению напряжения
между затвором и ис­током Uзи
при Uси
=const
называется крутизной:
S
=
IC/Uзи
при Uси
= const

В
отличие от биполярных транзисторов
полевые транзи­сторы управляются
напряжением, и через цепь затвора
протекает только малый тепловой ток Iз
р-п
перехода,
на­ходящегося под действием обратного
напряжения.

studfiles.net

в чём заключается функция, как работает, классификация и определение для чайников

Любое электронное устройство состоит из радиоэлементов. Они могут быть пассивными, не требующими источника питания, и активными, работа которых возможна только при подаче напряжения. Активными элементами называют полупроводники. Одним из важнейших полупроводниковых приборов является транзистор. Этот радиоэлемент пришёл на смену ламповым приборам и полностью изменил схемотехнику устройств. Вся микроэлектроника и работа любой микросхемы базируется именно на нём.

Общие сведения

Название «транзистор» произошло от слияния двух английских слов: transfer — переносимый, и resistor — сопротивление. В общепринятом понятии это полупроводниковый элемент с тремя выводами. В нём величина тока на двух выводах зависит от третьего, при изменении на котором тока или напряжения происходит управление значением тока выходной цепи. Вариацией тока управляются биполярные приборы, а напряжением — полевые.

Первые разработки транзистора были начаты в XX веке. В Германии учёный Юлий Эдгар Лилиенфельд описал принцип работы транзистора, а уже в 1934 году физиком Оскаром Хейл был зарегистрирован прибор, названный позже транзистором. Такое устройство работало на электростатическом эффекте поля.

Физики Уильям Шокли, Уолтер Браттейн вместе с учёным Джоном Бардином в конце 40-х годов изготовили первый макет точечного транзистора. С открытием n-p перехода выпуск точечного транзистора прекратился, а вместо него начались разработки плоскостных устройств из германия. Официально представлен был действующий прототип транзистора в декабре 1947 года. В этот день появился первый биполярный транзистор. Летом 1948 года начались продаваться устройства, выполненные на транзисторной основе. С этого момента распространённые на тот момент электронные лампы (триоды) начали уходить в прошлое.

В середине 50-х годов первый плоскостной транзистор был выпущен в серию компанией Texas Instruments, в качестве материала для его изготовления послужил кремний. На тот момент при производстве радиоэлемента выходило много брака, но это не помешало технологическому развитию прибора. В 1953 году на транзисторах была изготовлена схема, использующаяся в слуховых аппаратах, а годом позже американские физики получили за своё открытие Нобелевскую премию.

Март 1959 года ознаменовался созданием первого кремниевого планарного прибора, его разработчиком был физик из Швейцарии Жан Эрни. Пара транзисторов была успешно размещена на одном кристалле кремния. С этого момента и началось развитие интегральной схемотехники. На сегодняшний день в одном кристалле размещается более миллиарда транзисторов. Например, на популярном 8-ядерном компьютерном процессоре Core i7−5960X их количество составляет 2,6 миллиарда штук.

Параллельно с усовершенствованиями биполярного транзистора в 60-х годах начались разработки прибора на основе соединения металла с полупроводником. Такой радиоэлемент получил название МОП (металл-оксид-полупроводник) транзистор, сегодня более известный под обозначением «мосфет».

Изначально понятие «транзистор» относилось к сопротивлению, величина которого управлялась напряжением, поскольку транзистор можно представить как некий резистор, регулируемый приложенным потенциалом на одном выводе. Для полевых транзисторов, сравнение с которыми более верно, — потенциалом на затворе, а для биполярных транзисторов — потенциалом на базе или током базы.

Электронно-дырочный переход

Основа работы прибора заключается в способности n-p перехода пропускать ток в одну сторону. При подаче напряжения на одном переходе возникает его прямое падение, а на другом обратное. Зона перехода с прямым напряжением обладает малым сопротивлением, а с обратным — большим. Между базой и эмиттером протекает небольшой ток управления. От значения этого тока изменяется сопротивление между коллектором и эмиттером. Биполярный прибор бывает двух типов:

Отличие заключается лишь в основных носителях заряда, т. е. направлении тока.

Если соединить два полупроводника разного типа между собой, то на границе соединения возникает область или, как принято называть, p-n переход. Тип проводимости зависит от атомного строения материала, а именно насколько прочны связи в материале. Атомы в полупроводнике располагаются в виде решётки, и сам по себе такой материал не является проводником. Но если в решётку добавить атомы другого материала, то физические свойства полупроводника изменяются. Примешанные атомы образовывают, в зависимости от своей природы, свободные электроны или дырки.

Образованные свободные электроны формируют отрицательный заряд, а дырки — положительный. В области перехода существует потенциальный барьер. Он образуется контактной разностью потенциалов, и его высота не превышает десятые доли вольта, препятствуя протеканию носителей заряда вглубь материала. Если переход находится под прямым напряжением, то величина потенциального барьера уменьшается, а величина проходящего через него тока увеличивается. При прикладывании обратного напряжения, величина барьера увеличивается и сопротивление барьера прохождению тока возрастает. Понимая работу p-n перехода, можно разобраться, как устроен транзистор.

Классификация устройств

В первую очередь такие приборы разделяются на одиночные и составные. Существуют и так называемые комплексные радиоэлементы. Они имеют три вывода и выполненны, как единое целое. Такие сборки содержат как однотипные, так и разные по своему типу транзисторы. Основное разделение приборов происходит по следующим признакам:

  1. Канальность. В зависимости от того, какие носители зарядов являются основными бывают p-типа и n-типа.
  2. Технологии изготовления. Выпускаются биполярными, полевыми, комбинированными.
  3. По типу полупроводника. В качестве материала для изготовления применяется кремний, германий и арсенид-галлия. В последнее время начали выпускаться транзисторы, использующие в качестве основы прозрачные полупроводники. Например, для построения дисплейных матриц. А также использующие в качестве материалов полимеры и углеродные нанотрубки.
  4. По рассеиваемой мощности. Разделяются на три типа: маломощные, средней мощности и мощные. Первые не превышают значения 0,1 Вт, вторые находятся в диапазоне 0,1−1 Вт, а к мощным относят все те, что превышают 1 Вт.
  5. По виду исполнению. Выделяют дискретные транзисторы, которые могут быть как корпусными, так и нет, и транзисторы, входящие в состав интегральных схем.

Общее определение для радиоэлемента можно сформулировать следующим образом: транзистор — это полупроводниковый элемент, предназначенный для преобразования электрических величин. Основное его применение заключается в усилении сигнала или работе в ключевом режиме.

Биполярный прибор

Принцип работы транзистора для «чайника» проще описать по аналогии с водопроводом. Сам элемент можно представить в виде вентиля. Кран небольшим поворотом позволяет регулировать поток воды (силу тока). Если немного повернуть рукоятку, вода потечёт по трубе (проводнику), если приоткрыть кран ещё сильнее, поток воды также увеличится. Таким образом, выход потока воды пропорционален её входу, умноженному на определённую величину. Этой величиной называется коэффициент усиления.

Биполярный транзистор имеет три вывода: эмиттер, база, коллектор. Эмиттер и коллектор имеют одинаковый тип проводимости, который отличный от базы. Дырочного типа транзисторы состоят из двух областей p -типа проводимости, и одной n -типа. Электронного типа наоборот. Каждая область имеет свой вывод.

При подаче на эмиттер сигнала нужной проводимости ток в области базы увеличивается. Основные носители заряда перемещаются в зону базы, что приводит к возрастанию тока и в обратной области подключения. Возникает объёмный заряд. Электрическое поле начинает втягивать в зону обратного подключения носители другого знака. В базе происходит частичная рекомбинация (уничтожение) зарядов противоположного знака, благодаря чему и возникает ток базы.

Эмиттером называют область прибора, служащую для передачи носителей заряда в базу. Коллектором называют зону, предназначенную для извлечения носителей заряда из базы. А база — это область для передачи эмиттером противоположной величины заряда. Основной характеристикой прибора является вольт-амперная характеристика, функция которой описывает зависимость между током и напряжением.

На схеме устройство подписывается латинскими буквами VT или Q. Выглядит как круг со стрелкой внутри, где стрелка указывает направление протекания тока. Для PNP (прямая проводимость) — стрелка внутрь, а NPN (обратная проводимость) — стрелка наружу. Для того чтобы сделать транзистор, используется германий или кремний. Отличаются эти материалы рабочей областью напряжения базового перехода. Для германиевых он лежит в диапазоне 0,1−0,4 В, а для кремниевых от 0,4 до 1,2 В. Обычно используется кремний.

Полевой транзистор

Отличие полевого транзистора от биполярного в том, что в нём за прохождение тока отвечает величина напряжения, приложенная к управляемому контакту.

Основное назначение мосфетов связывают с их хорошей скоростью переключения при весьма небольшой мощности, приложенной к выводу управления. Полевой элемент имеет три вывода: затвор, сток, исток. При работе мосфета с управляющим n-p переходом потенциал на затворе либо равен нулю (прибор открыт), или имеет определённое значение, превышающее ноль (прибор закрыт). Когда обратное напряжения достигает определённого уровня, то открывается запирающий слой, и устройство переходит в режим отсечки.

В мосфете с p-n переходом управляющим электродом (затвором) служит слой полупроводника, имеющий проводимость р-типа, а противоположной проводимости — канал n-типа.

Изображение его на схеме сходно биполярному устройству, только все линии выполняются прямыми, а стрелка внутри подчёркивает разновидность прибора. В основе принципа действия МОП приборов лежит эффект изменения проводимости полупроводника на границе области с диэлектриком при воздействии электрического поля. Полевые устройства в зависимости от управляемого p-n перехода могут быть:

  1. Со встроенным каналом. Работают в двух режимах: обеднения и обогащения. В первом режиме величина потенциала на затворе превышает значение на истоке, что приводит к снижению значения тока на нём. Если приложенный потенциал больше напряжения отсечки, то ток между выводами стока и истока отсутствует. При обогащении, наоборот, чем больше величина потенциала между выводами затвор-исток, тем больше ток стока.
  2. С индуцированным (наведённым) каналом. Для p-канального устройства при отсутствии потенциала на выводе затвор-исток ток стока близок к нулю. Такой тип работает только в режиме обогащения. При этом напряжение на выводах исток-затвор должно быть больше нуля. Когда это напряжение превысит значение порогового, то между стоком и истоком возникнет проводимость p-типа. Связано это с тем, что количество дырок под затвором увеличится. Это явление называется инверсией.

Каждый вид может иметь проводимость как p-типа, так и n-типа. В общем понимании принцип работы не зависит от проводимости, меняется только полярность источника напряжения.

Принцип действия для чайников

Транзистор — это сложный прибор, физические процессы проходящие в котором сложны для понимания начинающим радиолюбителям (чайникам). Как работает транзистор, можно объяснить следующим образом: транзистор — это электронный ключ, степень открывания которого зависит от уровня тока или напряжения, приложенного к его управляемому выводу (база или затвор).

Зачем нужен транзистор, можно описать в обобщённой форме. Например, база (затвор) прибора — это дверь. Она открывается внешним воздействием, т. е. напряжением той же полярности, что и коллектор (исток). Чем больше напряжение, тем дверь больше откроется. Перед дверью стоит очередь людей (носители заряда), которые хотят пробежать через неё (коллектор-эмиттер или исток-сток). Чем больше воздействие на дверь, тем больше она открыта, а значит, и больше пробежит людей.

Поэтому, представляя дверь в виде сопротивления перехода, можно сделать вывод: чем больше воздействие на базу (затвор), тем меньше сопротивление основным носителям заряда (людям) в случае прямой полярности. Если полярность поменяется (дверь закроется на замок), то никакого движения зарядов (людей) не будет.

pochini.guru

Что такое транзистор? (принцип действия, назначение и применение, как выглядит)

Радиоэлектронный элемент из полупроводникового материала с помощью входного сигнала создает, усиливает, изменяет импульсы в интегральных микросхемах и системах для хранения, обработки и передачи информации. Транзистор – это сопротивление, функции которого регулируются напряжением между эмиттером и базой или истоком и затвором в зависимости от типа модуля.

Виды транзисторов

Преобразователи широко применяются в производстве цифровых и аналоговых микросхем для обнуления статического потребительского тока и получения улучшенной линейности. Типы транзисторов различаются тем, что одни управляются изменением напряжения, вторые регулируются отклонением тока.

Полевые модули работают при повышенном сопротивлении постоянного тока, трансформация на высокой частоте не увеличивает энергетические затраты. Если говорить, что такое транзистор простыми словами, то это модуль с высокой границей усиления. Эта характеристика у полевых видов больше, чем у биполярных типов. У первых нет рассасывания носителей заряда , что ускоряет работу.

Полевые полупроводники применяются чаще из-за преимуществ перед биполярными видами:

  • мощного сопротивления на входе при постоянном токе и высокой частоте, это уменьшает потери энергии на управление;
  • отсутствия накопления неосновных электронов, из-за чего ускоряется работа транзистора;
  • переноса подвижных частиц;
  • стабильности при отклонениях температуры;
  • небольших шумов из-за отсутствия инжекции;
  • потребления малой мощности при работе.

Виды транзисторов и их свойства определяют назначение. Нагревание преобразователя биполярного типа увеличивает ток по пути от коллектора к эмиттеру. У них коэффициент сопротивления отрицательный, а подвижные носители текут к собирающему устройству от эмиттера. Тонкая база отделена p-n-переходами, а ток возникает только при накоплении подвижных частиц и их инжекции в базу. Некоторые носители заряда захватываются соседним p-n-переходом и ускоряются, так рассчитаны параметры транзисторов.

Полевые транзисторы имеют еще один вид преимущества, о котором нужно упомянуть для чайников. Их соединяют параллельно без выравнивания сопротивления. Резисторы для этой цели не применяются, так как показатель растет автоматически при изменении нагрузки. Для получения высокого значения коммутационного тока набирается комплекс модулей, что используется в инверторах или других устройствах.

Нельзя соединять параллельно биполярный транзистор, определение функциональных параметров ведет к тому, что выявляется тепловой пробой необратимого характера. Эти свойства связаны с техническими качествами простых p-n каналов. Модули соединяются параллельно с применением резисторов для выравнивания тока в эмиттерных цепях. В зависимости от функциональных черт и индивидуальной специфики в классификации транзисторов выделяют биполярные и полевые виды.

Биполярные транзисторы

Биполярные конструкции производятся в виде полупроводниковых приборов с тремя проводниками. В каждом из электродов предусмотрены слои с дырочной p-проводимостью или примесной n-проводимостью. Выбор комплектации слоев определяет выпуск p-n-p или n-p-n типов приборов. В момент включения устройства разнотипные заряды одновременно переносятся дырками и электронами, задействуется 2 вида частиц.

Носители движутся за счет механизма диффузии. Атомы и молекулы вещества проникают в межмолекулярную решетку соседнего материала, после чего их концентрация выравнивается по всему объему. Перенос совершается из областей с высоким уплотнением в места с низким содержанием.

Электроны распространяются и под действием силового поля вокруг частиц при неравномерном включении легирующих добавок в массе базы. Чтобы ускорить действие прибора, электрод, соединенный со средним слоем, делают тонким. Крайние проводники называют эмиттером и коллектором. Обратное напряжение, характерное для перехода, неважно.

Полевые транзисторы

Полевой транзистор управляет сопротивлением с помощью электрического поперечного поля, возникающего от приложенного напряжения. Место, из которого электроны движутся в канал, называется истоком, а сток выглядит как конечная точка вхождения зарядов. Управляющее напряжение проходит по проводнику, именуемому затвором. Устройства делят на 2 вида:

  • с управляющим p-n-переходом;
  • транзисторы МДП с изолированным затвором.

Приборы первого типа содержат в конструкции полупроводниковую пластину, подключаемую в управляемую схему с помощью электродов на противоположных сторонах (сток и исток). Место с другим видом проводимости возникает после подсоединения пластины к затвору. Вставленный во входной контур источник постоянного смещения продуцирует на переходе запирающее напряжение.

Источник усиливаемого импульса также находится во входной цепи. После перемены напряжения на входе трансформируется соответствующий показатель на p-n-переходе. Модифицируется толщина слоя и площадь поперечного сечения канального перехода в кристалле, пропускающем поток заряженных электронов. Ширина канала зависит от пространства между обедненной областью (под затвором) и подложкой. Управляющий ток в начальной и конечной точках регулируется изменением ширины обедненной области.

Транзистор МДП характеризуется тем, что его затвор отделен изоляцией от канального слоя. В полупроводниковом кристалле, называемом подложкой, создаются легированные места с противоположным знаком. На них установлены проводники – сток и исток, между которыми на расстоянии меньше микрона расположен диэлектрик. На изоляторе нанесен электрод из металла – затвор. Из-за полученной структуры, содержащей металл, диэлектрический слой и полупроводник транзисторам присвоена аббревиатура МДП.

Устройство и принцип работы для начинающих

Технологии оперируют не только зарядом электричества, но и магнитным полем, световыми квантами и фотонами. Принцип действия транзистора заключается в состояниях, между которыми переключается устройство. Противоположный малый и большой сигнал, открытое и закрытое состояние – в этом заключается двойная работа приборов.

Вместе с полупроводниковым материалом в составе, используемого в виде монокристалла, легированного в некоторых местах, транзистор имеет в конструкции:

  • выводы из металла;
  • диэлектрические изоляторы;
  • корпус транзисторов из стекла, металла, пластика, металлокерамики.

До изобретения биполярных или полярных устройств использовались электронные вакуумные лампы в виде активных элементов. Схемы, разработанные для них, после модификации применяются при производстве полупроводниковых устройств. Их можно было подключить как транзистор и применять, т. к. многие функциональные характеристики ламп годятся при описании работы полевых видов.

Преимущества и недостатки замены ламп транзисторами

Изобретение транзисторов является стимулирующим фактором для внедрения инновационных технологий в электронике. В сети используются современные полупроводниковые элементы, по сравнению со старыми ламповыми схемами такие разработки имеют преимущества:

  • небольшие габариты и малый вес, что важно для миниатюрной электроники;
  • возможность применить автоматизированные процессы в производстве приборов и сгруппировать этапы, что снижает себестоимость;
  • использование малогабаритных источников тока из-за потребности в низком напряжении;
  • мгновенное включение, разогревание катода не требуется;
  • повышенная энергетическая эффективность из-за снижения рассеиваемой мощности;
  • прочность и надежность;
  • слаженное взаимодействие с дополнительными элементами в сети;
  • стойкость к вибрации и ударам.

Недостатки проявляются в следующих положениях:

  • кремниевые транзисторы не функционируют при напряжении больше 1 кВт, лампы эффективны при показателях свыше 1-2 кВт;
  • при использовании транзисторов в мощных сетях радиовещания или передатчиках СВЧ требуется согласование маломощных усилителей, подключенных параллельно;
  • уязвимость полупроводниковых элементов к воздействию электромагнитного сигнала;
  • чувствительная реакция на космические лучи и радиацию, требующая разработки стойких в этом плане радиационных микросхем.

Схемы включения

Чтобы работать в единой цепи транзистору требуется 2 вывода на входе и выходе. Почти все виды полупроводниковых приборов имеют только 3 места подсоединения. Чтобы выйти из трудного положения, один из концов назначается общим. Отсюда вытекают 3 распространенные схемы подключения:

  • для биполярного транзистора;
  • полярного устройства;
  • с открытым стоком (коллектором).

Биполярный модуль подключается с общим эмиттером для усиления как по напряжению, так и по току (ОЭ). В других случаях он согласовывает выводы цифровой микросхемы, когда существует большой вольтаж между внешним контуром и внутренним планом подключения. Так работает подсоединение с общим коллектором, и наблюдается только рост тока (ОК). Если нужно повышение напряжения, то элемент вводится с общей базой (ОБ). Вариант хорошо работает в составных каскадных схемах, но в однотранзисторных проектах ставится редко.

Полевые полупроводниковые приборы разновидностей МДП и с использованием p-n-перехода включаются в контур:

  • с общим эмиттером (ОИ) – соединение, аналогичное ОЭ модуля биполярного типа
  • с единым выходом (ОС) – план по типу ОК;
  • с совместным затвором (ОЗ) – похожее описание ОБ.

В планах с открытым стоком транзистор включается с общим эмиттером в составе микросхемы. Коллекторный вывод не подсоединяется к другим деталям модуля, а нагрузка уходит на наружный разъем. Выбор интенсивности вольтажа и силы тока коллектора производится после монтажа проекта. Приборы с открытым стоком работают в контурах с мощными выходными каскадами, шинных драйверах, логических схемах ТТЛ.

Для чего нужны транзисторы?

Область применение разграничена в зависимости от типа прибора – биполярный модуль или полевой. Зачем нужны транзисторы? Если необходима малая сила тока, например, в цифровых планах, используют полевые виды. Аналоговые схемы достигают показателей высокой линейности усиления при различном диапазоне питающего вольтажа и выходных параметров.

Областями установки биполярных транзисторов являются усилители, их сочетания, детекторы, модуляторы, схемы транзисторной логистики и инверторы логического типа.

Места применения транзисторов зависят от их характеристик. Они работают в 2 режимах:

  • в усилительном порядке, изменяя выходной импульс при небольших отклонениях управляющего сигнала;
  • в ключевом регламенте, управляя питанием нагрузок при слабом входном токе, транзистор полностью закрыт или открыт.

Вид полупроводникового модуля не изменяет условия его работы. Источник подсоединяется к нагрузке, например, переключатель, усилитель звука, осветительный прибор, это может быть электронный датчик или мощный соседний транзистор. С помощью тока начинается работа нагрузочного прибора, а транзистор подсоединяется в цепь между установкой и источником. Полупроводниковый модуль ограничивает силу энергии, поступающей к агрегату.

Сопротивление на выходе транзистора трансформируется в зависимости от вольтажа на управляющем проводнике. Сила тока и напряжение в начале и конечной точке цепи изменяются и увеличиваются или уменьшаются и зависят от типа транзистора и способа его подсоединения. Контроль управляемого источника питания ведет к усилению тока, импульса мощности или увеличению напряжения.

Транзисторы обоих видов используются в следующих случаях:

  1. В цифровом регламенте. Разработаны экспериментальные проекты цифровых усилительных схем на основе цифроаналоговых преобразователей (ЦАП).
  2. В генераторах импульсов. В зависимости от типа агрегата транзистор работает в ключевом или линейном порядке для воспроизведения прямоугольных или произвольных сигналов, соответственно.
  3. В электронных аппаратных приборах. Для защиты сведений и программ от воровства, нелегального взлома и использования. Работа проходит в ключевом режиме, сила тока управляется в аналоговом виде и регулируется с помощью ширины импульса. Транзисторы ставят в приводы электрических двигателей, импульсные стабилизаторы напряжения.

Монокристаллические полупроводники и модули для размыкания и замыкания контура увеличивают мощность, но функционируют только как переключатели. В цифровых устройствах применяют транзисторы полевого типа в качестве экономичных модулей. Технологии изготовления в концепции интегральных экспериментов предусматривают производство транзисторов на едином чипе из кремния.

Миниатюризация кристаллов ведет к ускорению действия компьютеров, снижению количества энергии и уменьшению выделения тепла.

odinelectric.ru

Транзистор — принцип работы.Основные параметры.

Как устроен транзистор.

Вне зависимости от принципа работы,
полупроводниковый транзистор содержит в себе монокристалл из основного полупроводникового материала,
чаще всего это — кремний, германий, арсенид галлия.
В основной материал добавлены, легирующие добавки для формирования p-n перехода(переходов),
металлические выводы.

Кристалл помещается в металлический, пластиковый или керамический корпус, для защиты от
внешних воздействий.
Однако, существуют также и бескорпусные транзисторы.

Принцип работы биполярного транзистора.

Биполярный транзистор может быть либо p-n-p, либо n-p-n в зависимости от чередования слоев полупроводника
в кристалле. В любом случае выводы называются — база, коллектор и эмиттер.
Слой полупроводника, соответствующий базе заключен между слоями эмиттера и коллектора.
Он имеет принципиально очень малую ширину.
Носители заряда движутся от эмиттера через базу — к коллектору.
Условием возникновения тока между коллектором и эмиттером является наличие свободных носителей
в области базы. Эти носители проникают туда при возникновении тока эмиттер-база. причиной которого
может являться разность напряжения между этими электродами.

Т.е. — для нормальной работы биполярного транзистора в качестве усилителя сигнала
всегда необходимо присутствие напряжения некого минимального уровня, для смещения перехода эмиттер-база в
прямом направлении.
Прямое смещение перехода база-эмиттер приоткрывая транзистор, задает
так называемую — рабочую точку режима. Для гармоничного усиления сигнала по напряжению и току используют
режим — А. В этом режиме напряжение между коллектором
и нагрузкой, примерно равно половине питающего напряжения — т. е выходное сопротивление транзистора
и нагрузки примерно равны . Если подавать теперь на переход база — эмиттер
сигнал переменного тока, СОПРОТИВЛЕНИЕ эмиттер — коллектор будет изменяться, графически повторяя
форму входного сигнала. Соответственно, то же будет происходить и с током через эмиттер к коллектору
протекающим. Причем амплитуда тока будет большей, нежели амплитуда
входного сигнала — будет происходить усиление сигнала.

Если увеличивать напряжение смещения база — эмиттер дальше, это приведет к росту
тока в этой цепи, и как результат — еще большему росту тока эмиттер — коллектор.
В конце, концов ток перестает расти — транзистор переходит в полностью открытое
состояние(насыщения). Если затем убрать напряжение смещения — транзистор закроется,
ток эмиттер — коллектор уменьшится, почти исчезнет. Так транзистор может работать
в качестве электронного ключа. Этот режим наиболее эффективен в отношении
управления мощностями, при протекании тока через полностью открытый транзистор величина падения напряжения
минимальна. Соответственно малы потери тока и нагрев переходов транзистора.

Существует три вида подключения биполярного транзистора.
С общим эмиттером (ОЭ) — осуществляется усиление как по току, так и по напряжению — наиболее
часто применяемая схема.
Усилительные каскады построенные подобным образом, легче согласуются между собой,
так как значения их входного и выходного сопротивления относительно близки, если
сравнивать с двумя остальными видами включения (хотя иногда и отличаются в десятки раз).

С общим коллектором (ОК) осуществляется усиление только по току — применяется для согласования
источников сигнала с высоким внутренним сопротивлением(импендансом) и низкоомными сопротивлениями нагрузок.
Например, в выходных каскадах усилителей и контроллеров.

С общей базой (ОБ) осуществляется усиление только по напряжению. Имеет низкое входное и высокое
выходное сопротивление и более широкий частотный диапазон. Это позволяет использовать подобное включение для согласования
источников сигнала с низким внутренним сопротивлением(импендансом) с последующим каскадом
усиления. Например — в входных цепях радиоприемных устройств.

Принцип работы полевого транзистора.

Полевой транзистор, как и биполярный имеет три электрода.
Они носят названия — сток, исток и затвор.
Если на затворе отсутствует напряжение, а на сток подано положительное напряжение
относительно истока, то между истоком и стоком через канал течет максимальный
ток.

Т. е. — транзистор полностью открыт.
Для того, что бы его изменить, на затвор подают отрицательное напряжение, относительно истока.
Под действием электрического поля (отсюда и название транзистора) канал сужается,
его сопротивление растет, а ток через него уменьшается.
При определенном значении напряжения канал сужается до такой степени, что ток
практически исчезает — транзистор закрывается.

На рисунке изображено устройство полевого транзистора с изолированным затвором(МДП).

Если на затвор этого прибора не подано положительное напряжение, то канал между
истоком и стоком отсутствует и ток равен нулю.
Транзистор полностью закрыт.
Канал возникает при некотором минимальном напряжении на затворе(напряжение порога).
Затем сопротивление канала уменьшается, до полного открывания транзистора.

Полевые транзисторы, как с p-n переходом (канальные), так и МОП (МДП) имеют следующие схемы включения:
с общим истоком (ОИ) — аналог ОЭ биполярного транзистора;
с общим стоком (ОС) — аналог ОК биполярного транзистора;
с общим затвором (ОЗ) — аналог ОБ биполярного транзистора.

По рассеиваемой в виде тепла мощности различают:
маломощные транзисторы — до 100 мВт ;
транзисторы средней мощности — от 0,1 до 1 Вт;
мощные транзисторы — больше 1 Вт.

Важные параметры биполярных транзисторов.

1. Коэффициент передачи тока(коэффициент усиления) —
от 1 до 1000 при постоянном токе. С увеличением частоты постепенно снижается.
2. Максимальное напряжение между коллектором и эмиттером(при разомкнутой базе)
У специальных высоковольтных транзисторов, достигает десятков тысяч вольт.
3.Предельная частота, до которой коэффициент передачи тока выше 1.
До 100000 гц. у низкочастотных транзисторов, свыше 100000 гц. — у высокочастотных.
4.Напряжение насыщения эмиттер-коллектор — величина падения напряжения между этими
электродами у полностью открытого транзистора.

Важные параметры полевых транзисторов.

Усилительные свойства полевого транзистора определяются отношением приращения тока стока к вызвавшему
его приращению напряжения затвор — исток, т. е.

ΔId /ΔUGS

Это отношение принято называть крутизной прибора, а по сути дела оно является передаточной проводимостью и
измеряется в миллиамперах на вольт(мА /В).

Другие важнейшие параметры полевых транзисторов приведены ниже:
1. IDmax — максимальный ток стока.

2.UDSmax — максимальное напряжение сток-исток.

3.UGSmax — максимальное напряжение затвор-исток.

4.РDmax — максимальна мощность, которая может выделяться на приборе.

5.ton — типовое время нарастания тока стока при идеально прямоугольной форме входного
сигнала.

6.toff — типовое время спада тока стока при идеально прямоугольной форме входного
сигнала.

7.RDS(on)max — максимальное значение сопротивления исток — сток в включенном(открытом) состоянии.

На главную страницу

Использование каких — либо материалов этой страницы,
допускается при наличии ссылки на сайт «Электрика это просто».

elektrikaetoprosto.ru

Биполярный транзистор, принцип работы для чайников

Что такое биполярный транзистор – элементарное полупроводниковое устройство, функциональность которого охватывает изменение либо усиление выходного сигнала от заряженных частиц.

Это один из типов транзисторов, состоящий из 3-х слоев, которые обеспечивают 2 «зарядных» или «дырочных» перехода (би — два перехода). Соответственно, данное устройство может быть представлено как два диодных элемента, включенных противоположно друг другу.

В простонародье биполярный транзистор пришел на смену морально и физически устаревшим транзисторам лампового вида, которые эксплуатировались очень длительное время в конструкциях телевизоров прошлого столетия.

Рисунок 1 – Биполярный транзистор

Как видно из изображения 1 устройства данного вида имеют 3 выхода, однако, по конструктивному исполнению внешний вид отличается друг от друга. Но в схемах электрических цепей они одинаковы во всех случаях.

В зависимости от проводимости биполярные устройства разделяются на P→N→P и N→P→N устройства, которые отличаются что переносит заряженные частицы — электроны или посредством «дырок».

Рисунок 2 – Разновидность биполярных аппаратов

Устройство биполярного транзистора

Согласно типовых схем, буквой «Б» называется «База» — внутренний слой аппарата, его фундамент, который приводит преобразование или изменение токового сигнала. Стрелка в кругу показывает движение токовых зарядов в «Э».

«Э» — «Эмиттер» — внутренняя основная составляющая транзистора, предназначенный для переноса заряженных элементарных частиц в «Б».

«К» — «Коллектор» — вторая составляющая транзисторного устройства, которая производит сбор тех же зарядов, которые проходят через «Б».

Пласт «Базы» конструктивно выполняют очень тоненьким в связи с рекомбинированием заряженных частиц, которые идут через базовый слой, с составными частицами данного пласта. В то же время пласт «Коллектора» конструируют как можно шире для качественного сбора зарядов.

Принцип работы биполярного транзистора

Принцип работы биполярного транзистора для чайников опишем на образце P→N→P транзисторного аппарата на рисунке 3. Принцип работы биполярного транзистора N→P→N вида сходен переходу в прямом направлении, только в этом случае заряды — электрические частицы движутся от «К» до «Э». Для выполнения данного условия необходимо всего на всего изменить полярность подключенного напряжения.

Рисунок 3 — Принцип работы P→N→P транзистора

При отсутствии внешних возмущений, внутри биполярника между его слоями будет существовать разность зарядов. На границах раздела будут установлены единые барьерные мосты, так как в это время доля «дырок» в коллекторе соответствует их численности в эмиттере.

Для точной работы биполярного транзистора переход в коллекторном пласте необходимо сместить в противоположном курсе, в то же время в эмиттере направленность перехода должна быть прямым. В этом случае режим функционирования будет активным.

Для выполнения вышеуказанных условий необходимо применить два питания, один из которых с положительным знаком соединяем с концом эмиттера, «минус» подключаем к базовому слою. Второй источник напряжения соединяем в следующем порядке: «плюс» к базовому концу, «минус» — к концу коллектора. Изобразим подключение на рисунке 4.

Рисунок 4 — Принципиальная схема подключения транзистора

Под воздействием напряжения Uэ, Uк через барьеры совершается переход дырок в эмиттере №1-5 и в базовом слое электрически заряженных частиц №7,8. В данном случае величина тока в эмиттере будет зависеть от количества переходов дырок, так как их больше.

Дырки, которые перешли в базовый слой собираются у барьерного перехода. Тем самым у границы с эмиттерным слоем будет собираться массовое количество дырок, в то же время у границы с «К», концентрация их существенно ниже. В связи с этим начнется диффузия дырок к «К» и близи границы произойдет их ускорение поля «Б» и переход в «К».

При перемещении через средний слой базы дырки рекомбинируют, заряженный электрон 6 замещает дырку 5. Такое перемещение будет совершаться с увеличением плюсового заряда при переходе дырок, соответственно движение зарядов в обратном направлении будет создавать ток определенной величины, а база остается электрически нейтральной.

Число дырок, которые перешли в коллектор будет меньше числа, которые покинули эмиттер. Это значит, что электрический ток «К» будет отличаться от значения тока «Э».

Обратный переход дырок из коллектора нежелателен и снижает эффективность транзистора, потому что переход осуществляется не основными, а вспомогательными носителями энергии и зависит данный переход сугубо от величины температуры. Данный ток носит название тока тепла. По значению теплового тока судят о качестве биполярного транзистора.

На рисунке 5 схематически изобразим направление движения заряженных частиц — токов транзистора.

Рисунок 5 — Направление токов в биполярном транзисторе

На основании выше изложенного напрашивается вывод: любое изменение тока в структуре слоев эмиттер — база сопровождается изменением величины тока коллектора, причем самое малое изменение «базового» тока приведет к значимой коррекции выходного коллекторного тока.

Режим работы биполярных устройств

В зависимости от величины напряжения на выводах транзистора существует 4 режима его функционирования:

  • отсечка — переходов дырки — электроды не происходит;
  • активный режим — приведен в описании;
  • насыщение — ток базы очень велик и ток коллектора будет иметь максимальное значение и абсолютно не зависеть от тока базы, соответственно усиления сигнала не будет;
  • инверсия — использование устройства с обратными ролями эмиттера и коллектора.

Достоинства и недостатки биполярных транзисторов

К достоинствам биполярных транзисторов в сравнении с аналогами относятся:

  • управление электрическими зарядами;
  • надежность в работе;
  • устойчивость к частотным помехам;
  • малые шумовые характеристики;

К недостаткам можно отнести:

  • обладает малым значением входного сопротивления, из-за которого ухудшаются характеристики по усилению сигналов;
  • резкая чувствительность к статике зарядов;
  • схема включения предполагает присутствие 2-х питаний;
  • при высоких значениях температуры возможно повреждение транзистора.

Понравилась статья? Расскажите друзьям:

Оцените статью, для нас это очень важно:

Проголосовавших: 3 чел.
Средний рейтинг: 2.7 из 5.

principraboty.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о