Требования к авр – что это такое, расшифровка, устройство, варианты схем АВР

Содержание

что это такое, расшифровка, устройство, варианты схем АВР

Нельзя гарантировать бесперебойную работу энергосистемы, поскольку всегда существует вероятность воздействия на нее техногенных или природных внешних факторов. Именно поэтому токоприемники, относящиеся к первой и второй категории надежности, положено подключать к двум или более независимым источникам энергоснабжения. Для переключения нагрузок между основными и резервными питаниями используются системы АВР. Подробная информация о них приведена ниже.

Что такое АВР и его назначение?

В подавляющем большинстве случаев такие системы относятся к электрощитовым вводно-коммутационным распредустройствам. Их основная цель — оперативное подключение нагрузки на резервный ввод, в случае возникновения проблем с энергоснабжением потребителя от основного источника питания. Чтобы обеспечить автоматическое переключение на работу в аварийном режиме, система должна отслеживать напряжение питающих вводов и ток нагрузки.

Типовой щит АВРТиповой щит АВР

Расшифровка аббревиатуры АВР

Данное сокращение это первые буквы полного названия системы – Автоматический Ввод Резерва, как нельзя лучше объясняющее ее назначение. Иногда можно услышать расшифровку «Автоматическое Включение Резерва», такое определение не совсем корректное, поскольку под ним подразумевается запуск генератора в качестве резервного источника, что является частным случаем.

Классификация

Вне зависимости от исполнения, блоки, шкафы или АВР принято классифицировать по следующим характеристикам:

  • Количество резервных секций. На практике чаще всего встречаются АВР на два питающих ввода, но чтобы обеспечить высокую надежность электроснабжения, может быть задействовано и больше независимых линий. Шкаф АВР на три вводаШкаф АВР на три ввода
  • Тип сети. Большинство устройств предназначено для коммутации трехфазного питания, но встречаются и однофазные блоки АВР. Они применяются в бытовых сетях электроснабжения для запуска двигателя генератора. Применение АВР в частном доме
    Применение АВР в частном доме
  • Класс напряжения. Устройства могут быть предназначены для работы в цепях до 1000 или использоваться при коммутации высоковольтных линий.
  • Мощностью коммутируемой нагрузки.
  • Время срабатывания.

Требования к АВР

В число основных требований к системам аварийного восстановления электроснабжения входит:

  • Обеспечение подачи питания потребителю электроэнергии от резервного ввода, если произошло непредвиденное прекращение работы основной линии.
  • Максимально быстрое восстановление электропитания.
  • Обязательная однократность действия. То есть, недопустимо несколько включений-отключений нагрузки из-за КЗ или по иным причинам.
  • Включение выключателя основного питания должно производиться автоматикой АВР до подачи резервного электропитания.
  • Система АВР должна контролировать цепь управления резервным оборудованием на предмет исправности.

Устройство АВР

Существует два основных типа исполнения, различающиеся приоритетом ввода:

  1. Одностороннее. В таких АВР один ввод играет роль рабочего, то есть используется, пока в линии не возникнут проблемы. Второй – является резервным, и подключается, когда в этом возникает необходимость.
  2. Двухстороннее. В этом случае нет разделения на рабочую и резервную секцию, поскольку оба ввода имеют одинаковый приоритет.

В первом случае большинство систем имеют функцию, позволяющую переключиться на рабочий режим питания, как только в главном вводе произойдет восстановление напряжения. Двухсторонние АВР в подобной функции не нуждаются, поскольку не имеет значения от какой линии запитывается нагрузка.

Примеры схем двухсторонней и односторонней реализации будут приведены ниже, в отдельном разделе.

Принцип работы автоматического ввода резерва

Вне зависимости от варианта исполнения АВР в основу работы системы заложено отслеживание параметров сети. Для этой цели могут использоваться как реле контроля напряжения, так и микропроцессорные блоки управления, но принцип работы при этом остается неизменным. Рассмотрим его на примере самой простой схеме АВР для бесперебойного электроснабжения однофазного потребителя.

Простая схема однофазной АВР
Рис. 4. Простая схема однофазной АВР

Обозначения:

  • N – Ноль.
  • A – Рабочая линия.
  • B – Резервное питание.
  • L – Лампа, играющая роль индикатора напряжения.
  • К1 – Катушка реле.
  • К1.1 – Контактная группа.

В штатном режиме работы напряжение подается на индикаторную лампу и катушку реле К1. В результате нормально-замкнутый и нормально-разомкнутый контакты меняют свое положение и на нагрузку подается питание с линии А (основной). Как только напряжение в на входе А пропадает, лампочка гаснет, катушка реле перестает насыщаться, и положение контактов возвращается в исходное (так, как показано на рисунке). Эти действия приводят к включению нагрузки в линию В.

Как только на основном вводе восстанавливается напряжение, реле К1 производит перекоммутацию на источник А. Исходя из принципа работы, данную схему можно отнести к одностороннему исполнению с наличием возвратной функции.

Представленная на рисунке 4 схема сильно упрощена, для лучшего понимания происходящих в ней процессов, не рекомендуем брать ее за основу для контроллера АВР.

Варианты схем для реализации АВР с описанием

Приведем несколько рабочих примеров, которые можно успешно применить при создании щита автоматического запуска. Начнем с простых схем для бесперебойной системы электроснабжения жилого дома.

Простые

Ниже представлен вариант схемы АВР, переключающей подачу электричества в дом с основной линии на генератор. В отличие от приведенного выше примера, здесь предусмотрена защита от короткого замыкания, а также электрическая и механическая блокировка, исключающая одновременную работу от двух вводов.

Схема АВР для домаСхема АВР для дома

Обозначения:

  • AB1 и AB2 – двухполюсные автоматические выключатели на основном и резервном вводе.
  • К1 и К2 – катушки контакторов.
  • К3 – контактор в роли реле напряжения.
  • K1.1, K2.1 и K3.1 – нормально-замкнутые контакты контакторов.
  • К1.2, К2.2, К3.2 и К2.3 – нормально-разомкнутые контакты.

После переводов автоматов АВ1 и АВ2 алгоритм работы блока АВР будет следующим:

  1. Штатный режим (питание от основной линии). Катушка К3 насыщается и реле напряжения срабатывает, замыкая контакт К3.2 и размыкая К3.1. В результате напряжение поступает на катушку пускателя К2, что приводит к замыканию К2.2 и К2.3 и размыканию К2.1. Последний играет роль электрической блокировки, не допускающей подачи напряжения на катушку К1.
  2. Аварийный режим. Как только напряжение в главной линии исчезает или «падает» ниже допустимого предела, катушка К3 перестает насыщаться и контакты реле принимают исходную позицию (так, как показано на схеме). В результате на катушку К1 начинает поступать напряжение, что приводит к изменению положения контактов К1.1 и К1.2. Первый играет роль электрической защиты, не допуская подачи напряжения на катушку К2, второй снимает блокировку подачи питания на нагрузку.
  3. Чтобы работала механическая блокировка (на схеме отображена в виде перевернутого треугольника) необходимо использовать реверсивный пускатель, где ее наличие предполагается конструкцией электромеханического прибора.

Теперь рассмотрим два варианта простых АВР для трехфазного напряжения. В одном из них энергоснабжение будет организовано по односторонней схеме, во втором применено двухстороннее исполнение.

Пример односторонней (В) и двухсторонней (А) реализации простого трехфазного АВРРисунок 6. Пример односторонней (В) и двухсторонней (А) реализации простого трехфазного АВР

Обозначения:

  • AB1 и AB2 – трехполюсные автоматы защиты;
  • МП1 и МП2 – магнитные пускатели;
  • РН – реле напряжения;
  • мп1.1 и мп2.1 – групповые нормально-разомкнутые контакты;
  • мп1.2 и мп2.2 – нормально-замкнутые контакты;
  • рн1 и рн2 – контакты РН.

Рассмотрим схему «А», у которой два равноправных ввода. Чтобы не допустить одновременное подключение линий применяется принцип взаимной блокировки, реализованный на контакторах МП1 и МП2. От какой линии будет питаться нагрузка, определяется очередностью включения автоматов АВ1 и АВ2. Если первым включается АВ1, то срабатывает пускатель МП1, при этом разрывается контакт мп1.2, блокируя поступление напряжение на катушку МП2, а также замыкается контактная группа мп1.1, обеспечивающая подключение источника 1 к нагрузке.

При отключении источника 1 контакты пускателя ПМ1 возвращаются в исходное положение, что приводит в действие контактор ПМ2, блокирующий катушку первого пускателя и включающий подачу питания от источника 2. При этом нагрузка будет оставаться подключенной к этому вводу, даже если работоспособность источника 1 пришла в норму. Переключение источников можно делать в ручном режиме манипулируя выключателями АВ1 и АВ2.

В тех случаях, когда требуется одностороння реализация, применяется схема «В». Ее отличие заключается в том, что в цепь управления добавлено реле напряжения (РН), возвращающее подключение на основной источник 1, при восстановлении его работы. В этом случае размыкается контакт рн2, отключающий пускатель МП2 и замыкается рн1, позволяя включиться МП1.

Промышленные системы

Принцип работы промышленных систем энергообеспечения остается неизменным. Приведем в качестве примера схему типового шкафа АВР.

Схема типового промышленного шкафа АВР
Схема типового промышленного шкафа АВР

Обозначения:

  • AB1, АВ2 – трехполюсные устройства защиты;
  • S1, S2 – выключатели для ручного режима;
  • КМ1, КМ2 – контакторы;
  • РКФ – реле контроля фаз;
  • L1, L2 – сигнальные лампы для индикации режима;
  • км1.1, км2.1 км1.2, км2.2 и ркф1 – нормально-разомкнутые контакты.
  • км1.3, км2.3 и ркф2 – нормально-замкнутые контакты.

Приведенная схема АВР практически идентична, той, что была представлена на рисунке 6 (А). Единственное отличие заключается в том, что в последнем случае используется специальное реле контролирующее состояние каждой фазы. Если «пропадет» одна из них или произойдет перекос напряжений, то реле переключит нагрузку на другую линию, и восстановит исходный режим при стабилизации основного источника.

АВР в высоковольтных цепях

В электрических сетях с классом напряжения более 1кВ реализация АВР более сложная, но принцип работы системы практически не меняется. Ниже в качестве примера приведен упрощенный вариант схемы понижающей ТП 110,0/10,0 киловольт.

Упрощенная схема ТП 110/10 кВУпрощенная схема ТП 110/10 кВ

Из приведенной схемы видно, в ней нет резервных трансформаторов. Это говорит о том, что каждая из шин (Ш1 и Ш2) подключена к своему питающему трансформатору (T1, T2), каждый из которых может на определенное время стать резервным, приняв на себя дополнительную нагрузку. В штатном режиме секционный выключатель СВ10 разомкнут. АВР контролирует работу ТП через ТН1 Ш и ТН2 Ш.

Когда перестает поступать питание на Ш1, АВР выполняет отключение выключателя В10Т1 и производит включение секционного выключателя СВ10. В результате такого действия обе секции работают от одного трансформатора. При восстановлении источника система ввод резерва перекоммутирует систему в исходное состояние.

Микропроцессорные бесконтакторные системы

Завершая тему нельзя не упомянуть о АВР с микропроцессорными блоками управления. В таких устройствах, как правило, используются полупроводниковые коммутаторы, которые более надежны, чем аппараты, выполняющие переключение с помощью контакторов.

Электронный блок АВРЭлектронный блок АВР

Основные преимущества бесконтакторных АВР несложно перечислить:

  • Отсутствие механических контактов и всех связанных с ними проблем (залипание, пригорание и т.д.).
  • Отпадает необходимость в механической блокировке.
  • Более широкий диапазон управления параметрами срабатывания.

К числу недостатков следует отнести сложный ремонт электронных АВР. Самостоятельно реализовать схему устройства также не просто, для этого потребуются знания электротехники, электроники и программирования.

www.asutpp.ru

49. Автоматическое включение резерва (авр). Назначение, виды, требования к авр. Схемы, принцип действия

Назначение АВР

Схемы электрических соединений энергосистем и отдельных электроустановок должны обеспечивать надежность электроснабжения потребителей. Высокую степень надежности обеспечивают схемы питания одновременно от двух и более источников (линий, трансформаторов), поскольку аварийное отключение одного из них не приводит к нарушению питания потребителей.

Несмотря на эти очевидные преимущества многостороннего питания потребителей, большое количество подстанций, имеющих два источника питания и более, работает по схеме одностороннего питания. Одностороннее питание имеют также секции собственных нужд электростанций.

Применение такой менее надежной, но более простой схемы электроснабжения во многих случаях оказывается целесообразным для снижения токов КЗ, уменьшения потерь электроэнергии в питающих трансформаторах, упрощения релейной защиты, создания необходимого режима по напряжению, перетокам мощности и т. п. При развитии электрической сети одностороннее питание часто является единственно возможным решением, так как ранее установленное оборудование и релейная защита не позволяют осуществить параллельную работу источников питания.

Используются две основные схемы одностороннего питания потребителей при наличии двух или более источников.

В первой схеме один источник включен и питает потребителей, а второй отключен и находится в резерве. Соответственно этому первый источник называется рабочим, а второй – резервным (рис, 10.9, а, б). Во второй схеме все источники включены, но работают раздельно на выделенных потребителей. Деление осуществляется на одном из выключателей (рис.10.9, в, г).

Недостатком одностороннего питания является то, что аварийное отключение рабочего источника приводит к прекращению питания потребителей. Этот недостаток может быть устранен быстрым автоматическим включением резервного источника или включением выключателя, на котором осуществлено деление сети. Для выполнения этой операции широко используется автоматическое включение резерва (АВР). При наличии АВР время перерыва питания потребителей в большинстве случаев определяется лишь временем включения выключателей резервного источника и составляет 0,3–0,8 сек. Рассмотрим принципы использования АВР на примере схем, приведенных на рисунке.

1. Питание подстанции А (рис. 10.9, а) осуществляется по рабочей линии Л1 от подстанции Б. Вторая линия Л2, приходящая с подстанции В, является резервной и находится под напряжением (выключатель ВЗ нормально отключен). При отключении линии Л1 автоматически от АВР включается выключатель ВЗ линии Л2, и таким образом вновь подается питание потребителям подстанции А.

Схемы АВР могут иметь одностороннее или двустороннее действие. При одностороннем АВР линия Л1 всегда должна быть рабочей, а линия Л2 – всегда резервной. При двустороннем АВР любая из этих линий может быть рабочей и резервной.

2. Питание электродвигателей и других потребителей собственных нужд каждого агрегата электростанции осуществляется обычно от отдельных рабочих трансформаторов (Т1 и Т2 на рис. 10.11, б). При отключении рабочего трансформатора автоматически от АВР включаются выключатель В5 и один из выключателей В6 (при отключении Т1) или В7 (при отключении Т2) резервного трансформатора ТЗ.

3. Трансформаторы Т1 и Т2 являются рабочими, но параллельно работать не могут и поэтому со стороны низшего напряжения включены на разные системы шин (рис. 10.11, в). Шиносоединительный выключатель В5 нормально отключен. При аварийном отключении любого из рабочих трансформаторов автоматически от АВР включается выключатель В5, подключая нагрузку шин, потерявших питание, к оставшемуся в работе трансформатору. Каждый трансформатор в рассматриваемом случае должен иметь мощность, достаточную для питания всей нагрузки подстанции. В случае, если мощность одного трансформатора недостаточна для питания всей нагрузки подстанции, при действии АВР должны приниматься меры для отключения части наименее ответственной нагрузки.

4. Подстанции В и Г (рис. 10.11, г) нормально питаются радиально от подстанций А и Б соответственно. Линия ЛЗ находится под напряжением со стороны подстанции В, а выключатель В5 нормально отключен. При аварийном отключении линии Л2 устройство АВР, установленное на подстанции Г, включает выключатель В5, таким образом питание подстанции Г переводится на подстанцию В по линии ЛЗ. При отключении линии Л1 подстанция В и вместе с ней линия ЛЗ остаются без напряжения. Исчезновение напряжения на трансформаторе напряжения ТН также приводит в действие устройство АВР на подстанции Г, которое включением выключателя В5 подает напряжение на подстанцию В от подстанции Г.

Принципы осуществления АВР при разных схемах питания потребителей

Опыт эксплуатации энергосистем показывает, что АВР является весьма эффективным средством повышения надежности электроснабжения. Успешность действия АВР составляет 90-95%. Простота схем и высокая эффективность обусловили широкое применение АВР на электростанциях и в электрических сетях.

Основные требования к схемам АВР

Все устройства АВР должны удовлетворять следующим основным требованиям:

1. Схема АВР должна приходить в действие в случае исчезновения напряжения на шинах потребителей по: любой причине, в том числе при аварийном, ошибочном или самопроизвольном отключении выключателей рабочего источника питания, а также при исчезновении напряжения на шинах, от которых осуществляется питание рабочего источника. Включение резервного источника питания иногда допускается также при КЗ на шинах потребителя. Однако очень часто схема АВР блокируется, например, при работе дуговой защиты в комплектных распредустройствах. При отключении от максимальной защиты трансформаторов питающих шины НН, работе АВР, предпочтительна работа АПВ. Поэтому на стороне НН (СН) понижающих трансформаторов подстанций принимается комбинация АПВ-АВР. При отключении трансформатора его защитой от внутренних повреждений, работает АВР, а при отключении ввода его защитой – АПВ. Такое распределение предотвращает посадку напряжения, а иногда и повреждение секции, от которой осуществляется резервирование.

2. Для того чтобы уменьшить длительность перерыва питания потребителей, включение резервного источника питания должно производиться возможно быстрее, сразу же после отключения рабочего источника.

3. Действие АВР должно быть однократным для того, чтобы не допускать нескольких включений резервного источника на неустранившееся КЗ.

4. Схема АВР не должна приходить в действие до отключения выключателя рабочего источника для того, чтобы избежать включения резервного источника на КЗ в неотключившемся рабочем источнике. Выполнение этого требования исключает также возможное в отдельных случаях несинхронное включение двух источников питания.

5. Для того чтобы схема АВР действовала при исчезновении напряжения на шинах, питающих рабочий источник, когда его выключатель остается включенным, схема АВР должна дополняться специальным пусковым органом минимального напряжения.

6. Для ускорения отключения резервного источника питания при его включении на неустранившееся КЗ должно предусматриваться ускорение действия защиты резервного источника после АВР. Это особенно важно в тех случаях, когда потребители, потерявшие питание, подключаются к другому источнику, несущему нагрузку. Быстрое отключение КЗ при этом необходимо, чтобы предотвратить нарушение нормальной работы потребителей, подключенных к резервному источнику питания. Ускоренная защита обычно действует по цепи ускорения без выдержки времени. В установках же собственных нужд, а также на подстанциях, питающих большое количество электродвигателей, ускорение осуществляется до 0.3-0,5 сек. Такое замедление ускоренной защиты необходимо, чтобы предотвратить ее неправильное срабатывание в случае кратковременного замыкания контактов токовых реле в момент включения выключателя под действием толчка тока, обусловленного сдвигом по фазе между напряжением энергосистемы и затухающей ЭДС тормозящихся электродвигателей, который может достигать 180°.

Принципы действия АВР

Рассмотрим принцип действия АВР на примере двухтрансформаторной подстанции, приведенной на рис. 10.12. Питание потребителей нормально осуществляется от рабочего трансформатора Т1, Резервный трансформатор Т2 отключен и находится в автоматическом резерве.

При отключении по любой причине выключателя В1 трансформатора Т1 его вспомогательный контакт БК1-2 разрывает цепь обмотки промежуточного реле РП1. В результате якорь реле РП1, подтянутый при включенном положении выключателя, при снятии напряжения отпадает с некоторой выдержкой времени и размыкает контакты.

Второй вспомогательный контакт БК1.3 выключателя В1 замкнувшись, подает плюс через еще замкнутый контакт РП1.1 на обмотку промежуточного реле РП2, которое своими контактами производит включение выключателей ВЗ и В4 резервного трансформатора, воздействуя на контакторы включения КВЗ и КВ4. По истечении установленной выдержки времени реле РП1 размыкает контакты и разрывает цепь обмотки промежуточного реле РП2. Если резервный трансформатор будет включен действием АВР на неустранившееся КЗ, и отключится релейной защитой, то его повторного включения не произойдет. Таким образом, реле РП1 обеспечивает однократность действия АВР и поэтому называется реле однократности включения. Реле РП1 вновь замкнет свои контакты и подготовит схему АВР к новому действию лишь после того, как будет восстановлена нормальная схема питания подстанции и включен выключатель В1. Выдержка времени на размыкание контакта реле РП1 должна быть больше времени включения выключателей ВЗ и В4, для того чтобы они успели надежно включиться.

С целью обеспечения действия АВР при отключении выключателя В2 от его вспомогательного контакта БК2.2 подается импульс на катушку отключения К01 выключателя В1. После отключения выключателя В1 АВР запускается и действует, как рассмотрено выше. Кроме рассмотренных случаев отключения рабочего трансформатора потребители также потеряют питание, если по какой-либо причине остаются без напряжения шины высшего напряжения подстанции Б. Схема АВР при этом не подействует, так как оба выключателя рабочего трансформатора остались включенными.

Для того чтобы обеспечить действие АВР и в этом случае, предусмотрен специальный пусковой орган минимального напряжения, включающий в себя реле PHI, РН2, РВ1 и РПЗ. При исчезновении напряжения на шинах 5, а, следовательно, и на шинах В подстанции реле минимального напряжения, подключенные к трансформатору напряжения ТН1, замкнут свои контакты и подадут плюс оперативного тока на обмотку реле времени РВ1 через контакт реле РНЗ. Реле РВ1 при этом запустится и по истечении установленной выдержки времени подаст плюс на обмотку выходного промежуточного реле РПЗ, которое производит отключение выключателей В1 и В2 рабочего трансформатора. После отключения выключателя В1, АВР действует, как рассмотрено выше.

Реле напряжения РНЗ предусмотрено для того, чтобы предотвратить отключение трансформатора Т1 от пускового органа минимального напряжения в случае отсутствия на шинах высшего напряжения А резервного трансформатора Т2, когда действие АВР будет заведомо бесполезным. Реле напряжения РНЗ, подключенное к трансформатору напряжения ТН2 шин А, при отсутствии напряжения размыкает свой контакт и разрывает цепь от контактов реле РН1 и РН2 к обмотке реле времени РВ1.

В схеме АВР предусмотрены две накладки: h2 – для отключения пускового органа минимального напряжения и Н2 — для вывода из работы всей схемы АВР. Действие АВР и пускового органа минимального напряжения сигнализируется указательными реле РУ.

Пусковые органы минимального напряжения

Пусковые органы минимального напряжения должны выполняться таким образом, чтобы они действовали только при исчезновении напряжения и не действовали при неисправностях в цепях напряжения. Так, в рассмотренной схеме на рис. 10.12 и в схеме на рис. 10.13 контакты двух реле минимального напряжения РН1 и РН2 включены последовательно, что предотвращает отключение рабочего трансформатора Т1 при отключении одного из автоматических выключателей (предохранителей) в цепях напряжения. Однако ложное отключение трансформатора все же может произойти, если повредится трансформатор напряжения ТН1 или отключатся оба автоматических выключателя в цепях напряжения. Для повышения надежности используются два реле минимального напряжения, включенные на разные трансформаторы напряжения.

Рассмотренные схемы пусковых органов минимального напряжения могут быть выполнены также с помощью двух реле времени (типа РВ-235) переменного напряжения, как показано на рис, 10.13, б. Эти реле, подключаемые непосредственно к трансформаторам напряжения, выполняют одновременно функции двух реле: реле минимального напряжения и реле времени. При исчезновении напряжения реле начинают работать и с установленной выдержкой времени замыкают цепь отключения выключателей рабочего источника питания.

Пусковой орган минимального напряжения может быть выполнен с одним реле времени РВ типа РВ-235К, которое включается через вспомогательное устройство типа ВУ-200, представляющее собой трехфазный выпрямительный мост (рис. 10.13, в). Это реле времени начинает работать лишь в том случае, если напряжение исчезнет одновременно на трех фазах. При отключении одного из автоматических выключателей в цепях напряжения реле не работает, так как на его обмотке остается напряжение от двух других фаз.

В схеме, приведенной на рис. 10.13, г, блокировка от нарушения цепей напряжения осуществляется с помощью реле минимального тока РТ, включенного в цепь трансформаторов тока рабочего источника питания. В нормальных условиях, когда рабочий источник питает нагрузку, по обмотке реле РТ проходит ток, и оно держит свои контакты разомкнутыми. В случае отключения рабочего источника или при исчезновении напряжения на питающих шинах, когда исчезает ток нагрузки, реле РТ замыкает свои контакты и совместно с реле минимального напряжения РН производит отключение рабочего источника питания.

При отключении источника, питающего шины высшего напряжения рабочего трансформатора или линии (например, шины Б на рис. 10.12), пусковой орган минимального напряжения может npийти в действие не сразу, так как в течение примерно 0,5—1,5 сек синхронные и асинхронные, электродвигатели будут поддерживать на шинах остаточное напряжение, превышающее напряжение срабатывания реле минимального напряжения. Это обстоятельство задерживает работу АВР, поскольку вначале должно затухнуть остаточное напряжение до напряжения срабатывания пускового органа, а затем должен сработать пусковой орган, который всегда имеет выдержку времени, затем должен отключиться рабочий источник, и только после этого произойдет включение резервного источника.

Для ускорения действия АВР в указанных условиях пусковой орган целесообразно дополнять реле понижения частоты, который выявляет прекращение питания раньше, чем реле минимального напряжения. В самом деле, после отключения источника питания электродвигатели начинают резко снижать частоту вращения, благодаря чему частота остаточного напряжения также быстро снижается. При уставке срабатывания реле понижения частоты 48 Гц оно сработает при снижении частоты вращения электродвигателя и синхронных компенсаторов всего на 4%, что происходит уже через 0,1–0,2 сек. Схема пускового органа АВР с двумя реле понижения частоты приведена на рис. 10.14, а.

Пусковой орган включает в себя два реле понижения частоты РЧ1 и РЧ2 и одно промежуточное реле Р (рис. 10.14, б). Реле РЧ1 подключено к трансформатору напряжения ТН1 шин низшего напряжения, к которому подключены также реле напряжения РН1 и реле времени РВ1 и РВ2. Реле РЧ2 подключено к трансформатору напряжения TН2 шин резервного источника питания, к которому подключено также реле РН2.

Пусковым органом минимального тока и напряжения.

Рассматриваемый пусковой орган работает следующим образом. При отключении источника, питающего шины высшего напряжения Б (см. рис, 10.12, а), электродвигатели, питающиеся от шин В, поддерживают на этих шинах остаточное напряжение, частота которого быстро снижается. При снижении частоты до уставки реле РЧ1 оно сработает и через контакт реле РН1, замкнутый вследствие наличия остаточного напряжения, и размыкающий контакт промежуточного реле РП1 воздействует на отключение выключателей рабочего источника питания. Благодаря наличию контакта реле напряжения РН1 предотвращается ложное срабатывание пускового органа при кратковременном снятии напряжения с обмотки реле частоты РЧ1, когда могут замкнуться его контакты. В рассмотренном случае, когда срабатывание (замыкание контакта) реле РЧ1 происходит вследствие отключения рабочего источника питания, реле РЧ2 не замыкает контакт, так как на шинах подстанции А сохраняется нормальное напряжение. Реле РЧ2 предназначено для того, чтобы предотвратить отключение рабочего источника питания при общесистемном понижении частоты. В этом случае частота напряжения будет снижаться одинаково на всех шинах (А, Б, В), но первым сработает реле РЧ2, которое настраивается на более высокую уставку, чем реле РЧ1. Сработав, реле РЧ2 воздействует на промежуточное реле РП1, которое своим контактом размыкает цепь от контакта реле РЧ1, предотвращая отключение рабочего источника питания при срабатывании реле РЧ1.

На рис. 10.14, в изображена более простая схема пускового органа с одним реле понижения частоты в сочетании с пусковым органом минимального тока. В случае отключения источника, питающего шины высшего напряжения Б, исчезнет ток в рабочем трансформаторе и понизится частота остаточного напряжения на шинах В. При этом сработают и замкнут контакты реле минимального токи РТ1 и реле частоты РЧ1, что приведет к созданию цепи на отключение рабочего трансформатора. Реле частоты РЧ1 может сработать, и при общесистемном снижении частоты, но цепи на отключение рабочего источника при этом не создастся, так как по рабочему трансформатору будет проходить ток нагрузки, и поэтому контакт реле РТ1 останется разомкнутым.

С помощью реле напряжения РН1, РН2 и реле времени РВ1 в рассматриваемой схеме осуществляется пусковой орган минимального напряжения.

studfile.net

Автоматический ввод резерва (АВР): назначение, виды, схема

Даже современная система электроснабжения не всегда отличается абсолютной надёжностью. В случаях возникновения аварийных ситуаций без энергии могут остаться потребители, у которых длительный перерыв в электроснабжении может привести к большим материальным потерям, и даже к угрозе жизни людей. Поэтому как в быту, так и на производстве имеет смысл организовать питание от двух источников электроэнергии, с переводом питания от одного. Такая система называется автоматический ввод резерва, сокращённо АВР. Её работа заключается в полностью автоматическом подключении цепей электрооборудования потребителей от резервного источника питания в случае отключения основного. В этой статье мы подробно рассмотрим назначение и принцип работы АВР различных видов.

Назначение АВР

Назначение данной системы в электрике схоже с организацией бесперебойного питания. Главная задача автоматического ввода резервного питания — это быстрое восстановление электроснабжения без участия в этом процессе человека. На больших подстанциях всегда имеется два ввода на две, разделённые секционным выключателем, секции распределительного устройства, работающие автономно друг от друга. Согласно ПУЭ (правила устройства электроустановок) автоматическое подключение резервного питания и снабжение на 2 ввода является обязательной мерой обеспечения электричеством потребителей первой категории.

Простой пример необходимости данной системы можно привести относительно освещения какого-то важного охраняемого участка. То есть при отключении основного ввода система сама включит питание от резервного источника, при этом данный важный участок останется осветлен. Максимум что может возникнуть — это непродолжительное прекращение питания, которое визуально даже отследить тяжело. Это зависит от скорости срабатывания АВР, время включения резерва должно составлять порядка 0,3–0,8 секунд.

Как работает автоматический ввод резервного питания

Принцип действия АВР основан на контроле напряжения в цепи. Это может осуществляться с помощью любых реле напряжения либо цифровых логических блоков защиты. Однако принцип работы всё рано остаётся неизменным. Рассмотрим его на самом простом примере.

Схема АВР на контакторах

Это однолинейная схема, на которой видно, что контроль наличия напряжения осуществляется контактором КМ. Оба автомата QS1 и QS2 должны быть включены, при этом катушка КМ получит питание и будет втянута, а соответственно её замыкающий контакт в цепи основного ввода тоже замкнут и размыкающий контакт в цепи резервного ввода разомкнут. Тем самым электроснабжение потребителя осуществляется от основной сети и светятся соответствующие лампы. В случае неисправности питания по линии L12 и снижения напряжения до величины, когда контактор КМ отключится, произойдёт размыкание замыкающего контакта в основной линии и одновременно с этим контакт в цепи резервного питания линии L22 перейдёт в замкнутое состояние, тем самым подав напряжение к потребителю от резервного источника. Обратная ситуация произойдёт при возобновлении основного электроснабжения по линии L12.

На видео ниже наглядно рассмотрен принцип работы АВР в сетях 6 кВ:

Требования к системе

Основными требованиями, предъявляемыми к системам АВР являются:

  • Быстродействие.
  • Надёжность включения.
  • Подача напряжения только если на участке нет короткого замыкания, то есть обязательно должна быть блокировка при КЗ.
  • Однократность срабатывания.
  • Возможность настройки порога включения резервного электроснабжения, чтобы она не срабатывала, например, при просадках напряжения во время запуска мощных электродвигателей.
  • Срабатывание только при условии, если на резервном вводе есть электроэнергия.

Естественно, что простейшая схема на контакторах не сможет реализовать все предъявляемые требования к системе АВР. Для этого в современной электронике применяются логические системы, подающие сигнал на включение резервного источника питания только при соблюдении всех правил и блокировок. Также для дополнительной надёжности даже применяется механическая блокировка.

Классификация АВР и варианты реализации

Осуществляться резервное питание и его автоматический ввод может от отдельного генератора, аккумуляторной батареи либо отдельной линии.

В свою очередь все системы АВР по своему действию делятся на:

  1. Односторонние. Одна секция или же ввод является рабочим (основным), а второй резервный. В случае исчезновения рабочего напряжения включается резерв.
  2. Двухсторонние. Когда существуют две раздельно питающиеся секции и соответственно две линии являются рабочими, и при отключении одной любой из них, другая является резервной.

Также АВР может быть с восстановлением питания по нормальной схеме и без него. Во втором случае происходит полное погашение нерабочей сети и даже при повторном возобновлении питания схема не будет работать как прежде по двум линиям.

Особенности работы с бытовыми генераторами

Для того чтобы организовать автоматический ввод резерва в доме можно в качестве источника резервного питания использовать автономный генератор. Он даст возможность длительное время обеспечить электрической энергией целый дом, а величина подключаемой нагрузки зависит от мощности самого генератора. Вот схема подключения:

Резервное питание через генератор

Введение генератора в качестве источника электроэнергии вместо сетевого напряжения можно практиковать в однофазной и трёхфазной сети с учетом модели генератора. Однако для того, чтобы этот процесс был полностью автоматизирован необходимо, чтобы генератор был оснащён стартером, а также понадобится специальный блок, состоящий из набора коммутационных устройств, включающих стартер только на время запуска и отключающих при возобновлении подачи сетевого напряжения. Выглядит он вот так:

Добавление стартера в схему

Такой блок для генератора совместим с любым типом двигателя и имеет три положения: «Стоп», «Включен, «Запуск». Правда, в зимнее время необходим прогрев двигателя внутреннего сгорания, но этот блок можно запрограммировать, учитывая и эту особенность. Крепится он на дин рейку в распределительном щитке.

На видео доходчиво объясняется схема, по которой можно сделать автоматический ввод резерва для генератора своими руками:

АВР на аккумуляторах

С развитием преобразователей, трансформирующих постоянный ток в переменный, появляется возможность использовать, например, автомобильный аккумулятор в качестве источника резервного питания. Помимо аккумулятора, понадобится приобрести современный автомобильный инвертор, преобразующий 12 Вольт постоянного напряжения в 220 Вольт переменного.

Правда, этот источник вряд ли можно использовать для силовой нагрузки, но цепи освещения он может легко обеспечить стабильным напряжением на время непродолжительной аварии на линии. При этом длительность работы будет зависеть от мощности потребителей и емкости аккумуляторов.

Для увеличения ёмкости можно параллельно подключить несколько аккумуляторных батарей. Схема соединения самой системы АВР может быть реализована с помощью пускателя.

Схема с пускателем

Пускатель включается в основную цепь, а при проблемах в сети его подвижная часть отпадает, тем самым его размыкающий блок-контакт, введённый в цепь аккумулятора, запускает систему автоматического электроснабжения. Этот способ менее затратный, нежели генераторный, но не способен выдавать длительное время ток для мощных бытовых приборов.

Применение логического контроллера

Для двух сетей электроснабжения трехфазным питанием применяются уже готовые блоки АВР с применением логического цифрового контролера, который может учитывать множество параметров, требуемых для создания идеальной системы. На нём имеется вся нужная маркировка и инструкция по управлению и подключению.

Цифровой контроллер

Правда, перед тем как подключить модуль и приобрести его, нужно задуматься, имеется ли резервный источник питания с более надёжным электроснабжением. Так как нет смысла подключать его к одной и той же системе трёхфазной сети, то есть питающейся от одного трансформатора 6/0,4 кВ.

Организация АВР в высоковольтных цепях

Для того чтобы выполнить организацию автоматического резервирования в цепях с напряжением больше 1000 Вольт, в качестве элемента, измеряющего и контролирующего сетевую энергию, служит специальный трансформатор напряжения, на вторичной обмотке которого в нормальном режиме работы 100 Вольт. Для связи его с системой АВР используется реле минимального напряжения или же реле контроля фаз. Оно реагирует не только на понижение величины сетевого напряжения, но и на исчезновение хотя бы одной фазы, например, при обрыве воздушной линии ВЛ. Здесь уже обязательно выполнение всех требований, касающихся правильному вводу АВР, а иногда даже при системе с восстановлением устанавливается выдержка времени на возврат в исходную первоначальную конфигурацию.

Также важно отметить, что в высоковольтных сетях схема автоматики АВР реализуется на электромеханических реле старого образца или современных многофункциональных микропроцессорных терминалах защиты, которые выполняют несколько функций, в том числе и АВР.

Напоследок рекомендуем просмотреть полезное видео по теме статьи:

Теперь вы знаете, что такое автоматический ввод резерва, какие бывают схемы АВР и какой принцип работы у данной системы электроснабжения. Надеемся, предоставленная информация и видео уроки были для вас полезными!

Наверняка вы не знаете:

samelectrik.ru

Автоматическое включение резерва - полное описание

АВР (автоматическое включение резерва) релейная защита, призванная предотвратить перебои в питании электроэнергией объектов электроснабжения.

Автоматическое включение резерва необходимо во всех случаях, когда в наличии имеется резервный или дополнительный источник питания. Это может быть второй трансформатор или дополнительная резервная линия, вторая секция шин. При аварийном отключении основного источника питания вся нагрузка подстанции, секции шин и т. д. переходит на дополнительный источник напряжения.

АВР используют в обязательном порядке для предотвращения ущерба от кратковременных перебоев электроснабжения и для обеспечения безаварийной подачи электроэнергии, а также для создания надежной схемы электроснабжения и достаточной производительности ТСН (трансформаторов собственных нужд) разработаны схемы АВР (автоматическое включение резерва)

АВР обязательны к установке на выключателях резервных ТСН, в стойках управления резервными маслонасосами и водяными насосами питающими парогенераторы. АВР необходимо в щитах управления 0,4 кВ питающих важные объекты и оборудование, обеспечивающее безаварийную работу потребителей и электрических станций. АВР обязательно устанавливается в ячейках секционных выключателя 2-х трансформаторных подстанций.

Основные требования, предъявляемые к АВР на оперативном постоянном токе в электроустановках высокого напряжения

  1. Быстродействие, обязательное условие при подключении к секциям шин синхронных электродвигателей. При несоблюдении этого требования произойдет выпадение агрегата из режима синхронизма после потери питания в бестоковую паузу, что недопустимо по технологии.
  2. Однократность действия, включение в работу только после отключения выключателя.
  3. Включение АВР недопустимо после отключения нагрузки при КЗ (коротком замыкании).
  4. АВР должна быть завязана и с основной МТЗ (максимальной токовой защитой), которая присутствует на действующем источнике питания, и с защитой от минимального напряжения, это действие предназначено для того чтобы АВР сработала при исчезновении напряжения питающей сети.
  5. В случае присутствия на действующем источнике питания устройства АПВ, то в случае если параллельная работа действующего и дополнительного источника питания не разрешена, из-за отсутствия синхронизма существует вариант неправильной срабатывании защиты при работе в параллель, необходимо установить блокировку от параллельной работы. Для этого нужно отделить рабочий источник от нагрузки независимо от работы устройства АПВ (все последующие переключения при успешном АПВ выполняют в ручном режиме) или необходимо выдержку времени устройства АВР выбрать больше времени полного цикла АВР.

Схема устройства автоматического включения резервной линии

Использование на промышленных объектах I, II категорий. Основные требования к схеме.

  1. Обязательно должно быть в наличии два комплекта реле, они должны предупредить ложное срабатывание, по причине неисправности сети или обрыва проводника в питающей сети, неисправности фазы на трансформаторе и прочие неполадки.
  2. Для АВР объектов категории III и прочих не ответственных групп, допускается использовать однорелейные АВР на каждом вводе .
  3. Трансформаторы напряжения устанавливают для конкретного резервного ввода, на основном вводе производится установка шинных трансформаторов.

Автоматическое включение резерва

Рис. №1. АВР резервной линии.

Назначение цепей схемы АВР (автоматического включения резерва) линии электропередач

  1. 1 – 2 – запуск АВР при срабатывании защиты минимального напряжения.
  2. 1 – 4 – блокировка АВР при потере напряжения на резервном вводе, ограничение времени импульса включения выключателя 2В
  3. 3 – 6 – питание реле отключения действующего ввода от защиты по минимальному напряжению (минималка).
  4. 5 – 6 – аналогичное питание, но при МТЗ.
  5. 6 – 7 – самоподхват реле 1П.
  6. 8 – 9 – ручное отключение выключателя 1В.
  7. 8 – 11 – отключение выключателя 1В при помощи минималки или от релейной защиты.
  8. 10 – 13 – включение контактора 2К.
  9. 12 – 15 – отключение выключателя 2В релейной защитой.
  10. 14 – 17 – включение контактора 1К.
  11. 16 – 19 – включение выключателя 1В.
  12. 18 – 21 – включение выключателя 2В.

Недостатком схемы считается возможность параллельной работы двух вводов, то есть включение основного ввода при работающем резервном вводе. Для того чтобы предотвратить параллельную работу в цепь 14 – 17 включают размыкающий контакт не допускающий включение выключателя 2В.

Характеристика аналогичных схем АВР

Схема устройства автоматического включения резервного трансформатора работает аналогично схеме включения резервной линии. Нюанс ее в том, что в ней нет блокировки АВР от отсутствия  напряжения на вводе включения резерва. АВР действует без выдержки времени, это из-за того, что при наличии второго трансформатора, для рабочего трансформатора не предусмотрено АПВ. Рабочий трансформатор может работать в параллель с резервным тр-ром. Оба трансформатора подбираются согласно условиям, действующим для двух параллельно работающих трансформаторов.

Назначение цепей
  1. 1 – 2 подача питания на реле отключения действующего тр-ра от защиты.
  2. 3 – 4 и 5 – 6 – отключение обоих выключателей от защиты.
  3. 7 – 8 – цепь, питающая реле времени, обеспечивающая выдержку времени при включении выключателей 3В и 4В.
  4. 9 – 10 – питание включающего реле трансформатора резерва.
  5. 11 – 12 и 13 – 14 – включение контакторов, включающих катушки, привода выключателей трансформатора резерва.
  6. 17 – 18 и 19 – 20 – отключение выключателей 3В и 4В от релейной защиты.
  7. 21 – 22 и 23 – 24 – включение выключателей резервного трансформатора 3В и 4В.

Работа схемы осуществляется при низком напряжении вторичных цепей до 1кВ. Для этого на стороне НН установлен автоматический выключатель с отключающей катушкой.Автоматическое включение резерва(АВР)

Рис. №2. АВР включения резервного трансформатора.

Схема устройства автоматического включения секционного выключателя. В этом случае питание секции шин осуществляется от двух действующих силовых трансформаторов. Нормальная схема, секционный выключатель отключен, ключ устройства АВР стоит в положении «вкл». При аварийном отключении одного трансформатора, должен сработать АВР, секционный выключатель включится в работу. При этом необходимо учитывать, что общая нагрузка обоих секций не должна превышать максимально допустимую нагрузку, разрешенную на одном трансформаторе.

АВР секционного выключателя.

Рис. №3. АВР секционного выключателя.

Пояснение схемы.

Выключатели 1В и 3В включены в обмотки промежуточных реле 1ПВ и 2ПВ и обтекаются током, при этом замыкающие контуры замкнуты. После отключения одного тр-ра, при срабатывании защиты или в случае неисправности, соответствующий выключатель отключается, происходит размыкание контакта в цепи электромагнита отключения 1ЭО и происходит замыкание размыкающего контакта в цепи 1ЭВ, этих цепей на схеме нет.

Реле 1ПВ обесточивается, но контакты остаются замкнутыми в течение выдержки времени. По плюсовой цепи размыкающий контакт 1В – замыкающий контакт, 1ПВ – У –контакт, работающий на размыкание. 5В – 5КВ – минус осуществляет включение выключателя 5В. В случае если КЗ не устранилось, предусмотрено ускорение защиты на СМВ. Оно выполняется контактной группой реле 1ПВ и 2ПВ, с их помощью осуществляется подача плюса на мгновенный контакт реле времени В, осуществляющий защиту секционного выключателя. Промежуточное реле П отключает выключатель 5В. Оба тр-ра подключены от одного питающего источника напряжения, то при выходе его из строя, действие АПВ нецелесообразно. Как следствие отсутствие этой схеме пускового органа защиты от минимального напряжения.

Современные устройства АВР

С развитием инновационных технологий и совершенствованием электрооборудования элекстроустановок, постепенно производство уходит от применения простых и надежных, полностью оправдавших себя релейных схем защиты. Новейшие системы АВР отличаются сверх быстродействием , называются БАВР. Устройства объединяют в себе ряд пусковых органов, которые взаимодействуют между собой благодаря специфическим алгоритмам, они могут идентифицировать аварийные режимы.

Пусковые устройства БАВР дают возможность выполнить все задачи  за минимальное время, без задания времени с устройствами РЗиА, сопутствующих  элементов сети.
 Блок БАВР.

Рис. №4. Блок БАВР.

Главные преимущества БАВР
  1. Минимальное время срабатывания при аварийном режиме от 5 до 12 сек.
  2. Переключение с основного на резервный ввод осуществляется с сохранением синфазности питающих источников.
  3. Блок действует при несимметричных КЗ в энергосистеме с напряжением 110 (220) кВ, они составляют 80% от общего числа неисправностей, осуществляется контроль направления мощности и специальное реле, следящее и осуществляющее направление тока.
  4. БАВР надежно функционирует как при наличии синхронных и асинхронных двигателей 6 (10) кВ так и при отсутствии. Функции блока как реле направления мощности позволяет за время не более 10мс определить потери питания со стороны основного источника.
  5. Работает без привязки к определенным системам РЗиА. В блоке БАВР можно осуществить защиту МТЗ, ТО, ЗМН.
  6. С его помощью определяется величина активной и реактивной мощности, производится подсчет полной мощности, осуществляется контроль напряжения в сети и током нагрузок. Производит контроль состояния дискретных сигналов.
  7. Осуществляет восстановление режима ВПР в нормальное состояние без участия обслуживающего персонала.
  8. Сохраняет происходящие события до 1000 срабатываний БАВР.
Внедрение комплекса БАВР позволяет получить определенные преимущества:
  • Обеспечения надежности и беспрерывного электроснабжения, обеспечив суточные графики за счёт достигнутого полного времени перехода на резервный за время 0,034 с.
  • Значительное повышение ресурса электродвигателей и насосов ввиду ненужности производства повторных пусков электрических машин и агрегатов.
  • Снижение электропотребления за счёт снижения потерь при повторном пуске и восстановлении нормальной скорости прокачки.
  • Снижение потерь на разогрев печей после продувки.
  • Предотвратить перерывы работы технологического оборудования, которые очень дорого обходятся предприятию.
  • Снижение рисков экологических загрязнений впоследствии аварий электроснабжения.
  • Повышение степени автоматизации производства.
  • Повышение производительности труда работников и предприятия.

Пишите комментарии,дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

elektronchic.ru

типовые схемы подключения на 2 и 3 ввода, на контакторах

Когда электричество исчезает даже на несколько минут, предприятия могут понести колоссальные убытки. А для больниц такая ситуация просто опасна. В большинстве объектах необходимо обеспечивать бесперебойное электроснабжение. Для этого его следует подключить к нескольким источникам электроэнергии. Специалисты при таком подходе используют АВР.

Типовые схемы подключения АВР - определение, принцип работы

Типовые схемы подключения АВР - определение, принцип работы

Что такое АВР и его назначение

Автоматический ввод резерва или АВР – это система, относящаяся к электрощитовым вводно-коммутационным распределительным устройствам. Основной целью АВР является быстрое подключение нагрузки на резервное оборудование. Такое подключение необходимо, когда появляются проблемы с подачей электричества от главного источника электроэнергии. Система следит за напряжением и током нагрузки и таким образом обеспечивает автоматическое переключение на функционирование в аварийном режиме.

АВР необходимо, если имеется запасной источник питания (дополнительная линия или еще один трансформатор). Если при аварийной ситуации будет отключен первый источник, вся работа перейдет на запасной. Использование АВР позволит избежать неприятностей, вызванных перебоями подачи электроэнергии.

Требования к АВР

Типовые схемы подключения АВР - определение, принцип работыТиповые схемы подключения АВР - определение, принцип работы

Основные требования к системам АВР заключаются в следующем:

  • Она должна иметь высокую скорость восстановления подачи электроэнергии.
  • В случае, когда основная линия перестает работать, установка должна обеспечить подачу электроэнергии потребителю от запасного источника.
  • Действие осуществляется один раз. Нельзя допускать несколько включений и отключений нагрузки, например, из-за короткого замыкания.
  • Выключатель основного питания должен включаться с помощью автоматики системы автоматического ввода резерва. До тех пор, пока не будет подано запасное электропитание.
  • Система АВР должна производить контроль корректного функционирования цепи управления резервным оборудованием.

Принцип работы автоматического ввода резерва

Основой работы АВР является контроль напряжения в цепи. Контроль может осуществляться как при помощи любых реле, так и при помощи микропроцессорных блоков управления.

Справка! Реле контроля напряжения (также называют вольт контроллер) отслеживает состояние электрического потенциала. В случае перенапряжения в сети вольт контроллер мгновенно обесточит сеть.

Контактная группа, контролирующая наличие электроэнергии, играет основную роль в системе АВР. В нашем случае это реле. Когда напряжение пропадает, управляющий механизм получает сигнал и переключается на питание генератора. Когда основная сеть начинает работать штатно, этот же механизм переключает питание обратно.

Типовые схемы подключения АВР - определение, принцип работыТиповые схемы подключения АВР - определение, принцип работы

Основные варианты логики функционирования АВР

Система АВР с приоритетом первого ввода

Суть работы системы АВР этого типа заключается в том, что нагрузка изначально подключается к источнику электроэнергии № 1. Когда случается перегрузка, короткое замыкание, обрыв фазы или другая аварийная ситуация, нагрузка переходит на запасной источник. Когда подача электричества на первом восстановлена до нормальных параметров, нагрузка автоматически переключается обратно.

Типовые схемы подключения АВР - определение, принцип работыТиповые схемы подключения АВР - определение, принцип работы

Система АВР с приоритетом второго ввода

Логика работы та же, что и у предыдущего типа системы. Разница в том, что нагрузку подключают к вводу 2. В случае аварии напряжение переходит на ввод 1. После того, как напряжение на втором источнике будет восстановлено, напряжение автоматом переключится на него.

Система АВР с ручным выбором приоритета

Схема системы АВР с ручным выбором приоритета является более сложной, чем рассмотренные выше. В этом случае на системе АВР будет установлен переключатель, с помощью которого можно регулировать выбор приоритета АВР.

Типовые схемы подключения АВР - определение, принцип работыТиповые схемы подключения АВР - определение, принцип работы

Система АВР без приоритета

Эта АВР функционирует от любого источника питания. В случае, когда напряжение идет на ввод 1, а на нём происходит аварийная ситуация, нагрузка переходит на ввод 2. После стабилизации работы первого ввода механизм продолжает работать на вводе 2. Когда произойдет авария на втором, напряжение автоматом переключится на первый.

Основные типы шкафов и щитов АВР

Щит АВР на два ввода на контакторах (пускателях)

Установка шкафа АВР на пускателях – это самый простой способ создать резервное питание. Этот шкаф – наиболее бюджетный вариант установки АВР. Как правило, в шкафах АВР на 2 ввода используют автоматические выключатели. Они нужны для того, чтобы защитить систему от перегрузок и замыканий. Защиту от перекоса фаз и скачков напряжения осуществляет реле напряжения. Кроме этого, реле становятся «мозгом» всей системы автоматического ввода резерва.

Шкаф АВР с двумя контакторами работает по следующему принципу. Два контактора подключены к первому и второму источнику соответственно. Первый контактор замкнут, а у второго цепь разомкнута. Электричество идет через ввод № 1.

Типовые схемы подключения АВР - определение, принцип работыТиповые схемы подключения АВР - определение, принцип работы

Внимание! В случае, когда у АВР логика приоритета второго ввода, ситуация будет обратной: цепь второго контактора замкнута, а первого – разомкнута.

Если подача тока на первом вводе пропадет, а на втором будет нормальной, то контакты второго пускателя замкнутся, и механизм переключится на него. Как только на первом вводе напряжение восстановится – схема перейдет в первоначальное состояние.

При помощи реле здесь можно отрегулировать время задержки, с которой будет осуществляться переключение с одного источника на другой. Оптимальная задержка – от 5 до 10 секунд, она позволит обезопасить систему от ложного срабатывания АВР. Ложное срабатывание может произойти, например, в случае просадки напряжения.

Справка! Для того чтобы оба контактора не могли включиться одновременно, в щитах АВР используют дополнительные механические блокировки.

Щит АВР на 2 ввода на автоматах с моторным приводом

Они лучше всего подходят для использования при номинальных токах 250-6300А. Когда ток на основном вводе пропадает, специальные электромоторы получают сигнал и взводят пружины запасного выключателя, переключая нагрузку на другой ввод.

Основные плюсы шкафов АВР на моторе:

  • Ресурс по перезагрузкам намного больше, чем у АВР с пускателями;
  • Подключить шины к такому автомату проще;
  • Щит АВР на автоматах может работать также и в ручном режиме. В таком случае включить или отключить автомат можно с помощью специальных кнопок.
Типовые схемы подключения АВР - определение, принцип работыТиповые схемы подключения АВР - определение, принцип работы

Суть функционирования этого щита заключается в следующем. Если на основном вводе случилась авария, автоматика проверяет, готов ли ввод 2 для подачи тока. Если все в порядке, то пружина автомата второго ввода взводится, и подается электроэнергия. Когда ввод № 1 снова может работать в штатном режиме, весь процесс идет в обратном порядке, подавая электроэнергию на основной ввод.

На щитах с моторным приводом, как правило, устанавливается лицевая панель, на которой можно отслеживать все изменения в АВР. А для предотвращения одновременного срабатывания двух автоматических выключателей нередко используют электрические блокировки.

Щит АВР на 3 ввода

Эти шкафы являются одними из самых надежных источников питания. Все потому, что в АВР на 3 ввода есть две запасных линии, что обеспечивает максимально низкую возможность отключения питания на объекте. Обычно такие шкафы АВР используют при взаимодействии с потребителями первой категории надежности электроснабжения. К ним относятся такие объекты, обесточивание которых влечет за собой угрозу для жизни людей или безопасности государства, а также может причинить большой материальный ущерб.

Типовые схемы подключения АВР - определение, принцип работыТиповые схемы подключения АВР - определение, принцип работы

Щиты АВР на 3 ввода работают по двум наиболее распространенным схемам.

Первая – это когда одна секция потребителей питается от трех независимых линий. Тогда можно установить приоритет для одного из вводов, а можно работать без приоритета. Нагрузка будет подключена туда, где нормализовано напряжение.

Вторая схема функционирования щита АВР на 3 ввода состоит в том, что две секции потребителей работают от двух линий, которые независимы друг от друга. Третий ввод подключается к запасному источнику питания. В случае аварийной ситуации он подключается к одной из секций.

Справка! Подобные щиты могут быть оснащены и механической блокировкой, и автоматами с электроприводами.

Вводно-распределительное устройство с АВР

Устройство используется для приема и учета электричества, а также для защиты зданий от короткого замыкания или перегрузки. Шкафы ВРУ с АВР используют в сетях переменного тока с напряжением 380/220В с частотой 50Гц.

Шкафы ВРУ с автоматическим вводом резерва представляют собой отдельную панель, где функционирует как автоматическое, так и ручное переключение, а также происходит учет электроэнергии, которая потребляется на каждой линии.

Шкафы ВРУ состоят из:

  • Блока введения и вывода кабеля.
  • Блока автоматического ввода резерва.
  • Блока, где происходит учет потребляемого электричества.

Также они могут быть многопанельными. Тогда дополнительно в них будут установлены противопожарные панели, распределительные панели и другие, в зависимости от требований к электроустановке.

Щит АВР для запуска генератора

Дополнительное питание от генератора электроэнергии позволяет почти полностью избежать полного обесточивания. Это один из самых надежных способов создать бесперебойную подачу электричества. Шкаф АВР в этом случае необходим, чтобы обеспечить автоматическое функционирование генератора по заданному алгоритму.

Типовые схемы подключения АВР - определение, принцип работыТиповые схемы подключения АВР - определение, принцип работы

Шкаф АВР для генератора может работать и в автоматическом, и в ручном режиме. Изначально в нём установлен автоматический режим, но вы можете его легко изменить.

Важно! Для корректной работы связки АВР-генератор последний должен иметь возможность запускаться автоматически.

Когда на вводе 1 прекращается подача электричества, система АВР отправит сигнал для запуска генератора. После того, как генератор начнет нормально функционировать, и напряжение на втором вводе достигнет нужного уровня, механизм переключится на резервный источник. Благодаря установленному реле времени второй ввод не будет подключен к генератору, пока он не начнет работать в штатном режиме. Как только на основном (первом) источнике будет восстановлена подача электроэнергии, генератор будет отключен, а питание переключится на ввод 1.

Типовые схемы подключения АВР - определение, принцип работыТиповые схемы подключения АВР - определение, принцип работы

В ручном режиме работы включение и отключение генератора происходит за счет нажатия специальных кнопок.

БУАВР

Блок управления автоматического включения резерва работает в составе устройств АВР и осуществляет переключение с одного источника на другой. Также он контролирует состояние линий, управляет контакторами и магнитными пускателями, моторами и запускает электрогенератор.

Типовые схемы подключения АВР - определение, принцип работыТиповые схемы подключения АВР - определение, принцип работы

БУАВР в течение определенного периода измеряет напряжение в фазах и обрабатывает результаты в реальном времени. Благодаря этому он может определять среднее значение напряжения в каждой фазе. БУАВР имеет повышенную устойчивость к перенапряжению.

АВР Zelio Logic

Система автоматического ввода резерва с релейной логикой переключения между источниками. Используется программируемое реле Zelio Logic. Одним из основных преимуществ выбора такого реле является европейское качество при относительно низкой стоимости. Также реле Zelio Logic отличается довольно простым программированием. Для корректного использования достаточно базовых знаний. Также реле имеет графический интерфейс, что серьезно упрощает взаимодействие.

Типовые схемы подключения АВР - определение, принцип работыТиповые схемы подключения АВР - определение, принцип работы

АВР ATS

АВР ATS – это шкафы АВР с интеллектуальными микропроцессорными блоками. На данный момент такой вариант шкафа АВР является самым дорогостоящим на рынке. Наиболее востребованы они на промышленных предприятиях, где важно обеспечить надежную бесперебойную работу сети и максимально быстрое переключение на альтернативный источник питания. Некоторые АВР ATS переключаются с одного ввода на другой буквально за две секунды. Также таким блокам не нужно дополнительное питание. Они работают при 480В. Можно выбрать наиболее удобный алгоритм, а также автоматический или ручной режим.

Типовые схемы подключения АВР - определение, принцип работыТиповые схемы подключения АВР - определение, принцип работы

odinelectric.ru

Автоматическое включение резерва (АВР) дома и на производстве

Автоматическое включение резерва представляет собой решение, которое реализует логику безаварийной работы схемы электроснабжения при исчезновении рабочего питания путем включения резервного источника питания взамен отключенного.

Черт, наверно не совсем понятно написал. В общем, если происходит авария, например ток на вводе становится больше уставки токовой защиты или пропадает напряжение вследствие аварии => ввод отключается => с выдержкой времени включается другой ввод и потребители секции вновь становятся запитаны. В этом и есть АВР.

АВР предназначено для бесперебойности электроснабжения. Если бы АВР не было, то происходило отключение и оперативному персоналу приходилось производить переключения вручную. Однако, длительные перерывы питания вредны для производства и могут приводить к авариям и незапланированным остановам. Никто не хочет заново растапливать котёл. Ну и естественно экономические потери от недоотпуска электро и тепловой энергии... Но экономика не мой конёк, поэтому углубимся в электрическую часть.

Расшифровка значения АВР в области электрики лежит в словах выше - это автоматическое включение резерва, в отдельных источниках эта аббревиатура может расшифровываться как аварийный ввод резерва, но сути это не меняет.

Разобравшись с определением, двинемся дальше, и рассмотрим какие бывают АВР. В зависимости от времени действия - могут быть АВР стандартные с выдержкой времени от 0,3 до 1-2 секунд и быстродействующие АВР с временем действия до пары десятых секунд (подробнее про БАВР). БАВРы в основном применяют на опасных и ответственных производствах, где нарушение электроснабжения приведет к ужасающим последствиям (нефтяные, химические заводы).

Вариантов схем снабжения, для которых реализованы АВР множество:

  • авр с явным резервом (на одной секции два питания, одно рабочее, а второе резервное)
  • авр с неявным резервом (две секции, у каждой свой рабочий ввод, а между секциями секционный выключатель. Тут следует учитывать возможность запуска механизмов и нагрузки двух секций от одного, оставшегося в работе трансформатора. Его мощность должна быть рассчитана на требуемую нагрузку. Такие схемы являются двусторонними)
  • групповое резервирование (одна резервная секция, от которой ничего не запитано, и к этой секции идут шины или кабельные линии от каждой рабочей секции)

Кроме секций распредустройств, вводов домов существует АВР различных ответственных механизмов. В данном случае уже гасится не секция, а при отказе (аварийном останове или срабатывании РЗА) механизма отключается и включается аналогичный резервный для поддержания режима работы системы. Например, есть воображаемая тэц или котельная и там есть четыре сетевых насоса => два всегда в работе => и у каждого есть по насосу на АВР.

Некоторые требования к АВР в ПУЭ

Хоть АВР и разнится по схемам применения, однако, принципы работы должны быть аналогичными. Вот некоторые требования, предъявляемые ПУЭ к устройствам автоматического включения резерва (полный список требований можно прочитать в разделах 3.3.30-3.3.42 правил устройства электроустановок):

  • следует использовать АВР, если это приведет к уменьшению токов короткого замыкания, упрощению схемы и удешевлению аппаратуры
  • может применяться на линиях, трансформаторах, ответственных механизмах, секционных выключателях
  • действие авр должно быть однократного действия
  • данная автоматика должна срабатывать и при исчезновении напряжения на защищаемом присоединении
  • Если есть несколько рабочих вводов и один резервный. Например, каждая секция от своего рабочего трансформатора, а резервный трансформатор общий. Так вот при срабатывании АВР при такой схеме должна быть обеспечена возможность срабатывания автоматики при каждом отключении рабочего ввода любой секции. Даже, если отключения идут подряд. Хотя тут спорно...
  • Кроме того, дополняя прошлый пункт, стоит отметить необходимость достаточной мощности резервного трансформатора. Если же мощности не хватает, то необходимо производить перед включением АВР отключение неответственных механизмов.
  • АВР должен быть отстроен от режима самозапуска и от снижения напряжения при удаленном коротком замыкании
  • Устройства авр должны быть обеспечены устройством пуска по снижению напряжения. А в отдельных случаях пускаться по частоте и даже действию датчиков (давления, расхода).

Это вероятно не все пункты из ПУЭ. Более подробно и возможно доходчиво можно почитать в первоисточнике.

Обозначение АВР на схеме

В зависимости от чертившего, варианты обозначения АВР на схеме электроснабжения могут разниться. Я часто работаю со схемами различных ТЭЦ, котельных и там встречаются следующие обозначения:

  • рядом с выключателем, который должен включаться при нарушении питания пишется слово АВР (иногда это слово внутри прямоугольника)
  • иногда на схеме не обозначено наличие, хотя в реальности присутствует (или сверху справа, где описание схемы, текстом прописано как происходит резервирование)
  • рядом с выключателем рисуют кружок, который и обозначает данную возможность
  • на выключателе, на котором реализована схема, сбоку или сверху (выключатель - квадратик на схеме) нарисован примыкающий треугольник и рядом написано АВР

Пусковой орган АВР может быть исполнен с пуском от

  • реле напряжения
  • реле напряжения и реле тока
  • реле тока и реле частоты

Примеры расчета уставок АВР

Уставка пускового органа реле минимального напряжения (РМН) принимается из двух условий:

где Uc.р. - напряжение срабатывания реле;

Uотс.к. - наименьшее напряжение при расчете трехфазного КЗ;

Ucам - наименьшее напряжение при самозапуске ЭД;

kотс - коэффициент отстройки равный 1,25;

ku - коэффициент трансформации ТН.

Или же по выражению Uc.р. = (0,25-0,4)*Uном

Уставка срабатывания пускового органа РМН по времени определяется также из двух условий:

tс.р.=t1+dt

tс.р.=t2+dt

где t1 - наибольшая выдержка времени защиты присоединений, отходящих от шин высокой стороны подстанции

t1 - наибольшая выдержка времени защиты присоединений, отходящих от шин низшей стороны подстанции

dt - ступень селективности. Для микропроцессорных 0,3с, а для простых реле в зависимости от шкалы.

Уставка срабатывания пускового органа минимального реле тока:

где Iнагр.мин. - минимальный ток нагрузки;

ki - коэффициент трансформации ТТ.

Уставка срабатывания реле контроля наличия напряжения на резервном источнике:

где kв - коэффициент возврата реле.

Или же по выражению Uc.р. = (0,6-0,65)*Uном

Если пуск происходит от органа минимальной частоты, то его уставка 48Гц. Подробнее можно почитать в книге - Шабад М.А. Расчеты релейной защиты и автоматики распределительных сетей.

Далее рассмотрим какие бывают схемы не на производстве.От простых до заводских схем исполнения.

Примеры схем АВР

Начнем рассмотрение схем с одного пункта, который лучше сразу обозначить. Разница между схемами АВР “автомат+пускатель” и “автомат с электроприводом” в экономичности последнего варианта на токи начиная от 200 ампер, меньшем месте в шкафу и большей устойчивости к перегрузкам, возникающим при включениях. Но в зависимости от схем, это решение должно приниматься индивидуально. А так в любой схеме вместо автомата с пускателем можно установить автомат с электроприводом.

Схема АВР для двух вводов на контакторе

Значит, тут у нас два ввода. У каждого ввода есть вводной автомат или рубильник. Также присутствует третий автомат, который отвечает за нагрузку потребителя. И главную роль в этом театре играет контактор, который я обозначил К1. У него есть обмотка и два контакта - нормально закрытый и нормально открытый. Принцип работы схемы в следующем: при пропадании напряжения пропадает питание с обмотки К1 и контакты перекидываются.

Недостатки данной схемы в том, что при моржках света питание будет кидать туда-обратно. Это конечно не даст Вам остаться без света, но сам контактор, а именно его контакты, потреплет знатно, вплоть до замены. Так как через них будет проходить весь ток. Поэтому токи при такой схеме должны быть небольшими. Да и для нагрузки такие режимы не есть хорошо.

Схема АВР с магнитными пускателями

Пускай в этой схеме пускатели будут обозначены К1 и К2. Хотя обычно пускатели обозначают КМ, даже называю их “каэм’ы”. Данная схема может быть однофазная или трехфазная. Я нарисовал её однофазной, так проще и быстрее. Значит, принцип работы в следующем: включаем “ввод №1” и тут же размыкается контакт К1 в со стороны нуля обмотки К2. Затем включаем “Ввод №2”, обмотка К2 уже разомкнута и следовательно контакт К2 в схеме нуля К1 не разомкнется и не вызовет отключение К1. Далее, если пропадает питание на вводе №1, то контакт К1 в схеме нуля К2 обратно становится замкнутым, питание доходит до обмотки с двух сторон и пускатель К2 срабатывает. Пускатель К1 у нас отключен и следовательно питание происходит от второго ввода. Если вновь появится напряжение на вводе №1, то для возврата надо будет вручную отключать второй ввод и включать первый. Это не очень то удобно.

В данной схеме получается, что рабочим вводом будет тот, который включить в первую очередь. Тоже не вызывает сильного доверия, но на первое время сойдет. Чтобы питание переключалось обратно на первый ввод можно установить реле напряжения. Значит, его обмотка будет подключена параллельно цепочке “катушкаК1 - контактК2”, а его контакт замкнутый последовательно в цепочку “катушкаК2 - контактК1”. Не забываем следить за рабочим током нагрузки и контактов пускателей.

Схема АВр на три ввода

В большинстве своем схема авр на три ввода представляет из себя два ввода плюс дизельгенератор. Суть её работы: при исчезновении питания на первом вводе, включается второй, а при исчезновении двух вводов сразу - включается ДГ. При повторном появлении электроэнергии на одном из двух вводов питание переходит от дизельгенератора на вновь включенный ввод. Данные схемы самому реализовать себе во вред, так как есть готовые решения - законфигурированные мозги, куда надо просто подключить провода и задать уставки. Нечто подобное рассматривалось в статье про БАВРы.

Если хотите более подробно ознакомиться с заводскими исполнениями схем АВР, то поисковые системы выдают множество pdf файлов различных изготовителей.

Сохраните в закладки или поделитесь с друзьями



Последние статьи


Самое популярное

как выбрать трансформатор тока

pomegerim.ru

устройство и принцип действия системы ввода резерва, применение автоматического переключения питания

Назначение, устройство и принцип работы АВРАВР — автоматическое включение резервного питания, предназначенное для восстановления электроснабжения потребителей. Происходит это за счет подключения запасного источника питания при отключении основного электрооборудования. Таким образом, если происходит перерыв в этом процессе, то АВР обеспечивает цепь электропитанием. Для моментального ввода существует источник бесперебойного электроснабжения.

Назначение оборудования

Расшифровка системы АВР — автоматический ввод резерв — наилучшим образом объясняет назначение оборудования. Иногда его называют устройством автоматического включения резерва. Это определение относится к переключению основного электрооборудования на запасной генератор, что происходит при аварийном отключении главной сети.

По своему назначению ввод резерва схож с обеспечением бесперебойного электроснабжения. Вся работа системы осуществляется полностью в автоматическом режиме без участия человека. В крупных подстанциях всегда существует два ввода на две автономные секции распределительного устройства.

Схема работы АВР

Согласно требованию правил устройства электроустановок, в этом случае обязательно присутствие АВР для снабжения резервным питанием на 2 ввода. Например, при нарушении работы основного электроснабжения дополнительное оборудование включится автоматически. Визуально такой момент очень трудно заметить, так как высока скорость переключения.

Устройство и принцип работы

Независимо от устройства автоматического включения резерва, принципиальной его задачей считается наблюдение за параметрами электрической сети. Для этого могут использоваться реле контроля напряжения или блоки, оборудованные микропроцессорами. Существуют два основных вида устройства:

  1. Правила подключения АВРОдностороннее (ОАВР) — один ввод работает в качестве основного и применяется, пока в электрической магистрали не возникнут проблемы. Другой выполняет роль запасного и включается в аварийных ситуациях.
  2. Двухстороннее (ДАВР) — оба ввода выполняют основную работу и используются, как резерв.

Сама конструкция представляет собой шкаф или щит АВР с контакторами или автоматами. Часто на практике используются конструкции с восстановлением, то есть как только в основной сети возвращается подача электроэнергии, то резервное питание отключается.

Устройство автоматического включения резерва

В случае падения напряжения на контролируемом участке цепи, реле подает сигнал на схему АВР. Отсутствие в сети одного напряжения недостаточно, чтобы сработало устройство переключения. Для этого необходимо присутствие еще ряда условий:

  1. На проверяемом участке не должно быть короткого замыкания, так как включение резервного питания будет невозможно и недопустимо.
  2. Выключатель ввода обязательно должен быть включен, чтобы при отсутствии напряжения не произошло случайного запуска АВР.
  3. На участке, от которого будет происходить питание резерва, обязательно наличие напряжения.

Когда все условия будут соблюдены, включатель резерва подает сигнал на отключение вводного выключателя обесточенной сети и на включение АВР. Алгоритм действий происходит строго в этом порядке, то есть без отключения ввода резервное питание никогда не включится.

Комплектация шкафа и щита

Как установить АВРКомплектация и правила эксплуатации шкафов ввода резервного питания типа АВР-РН, АВРПА, АВРР практически ничем не отличается друг от друга. Устройство представляет собой сварное изделие прямоугольной формы с двумя дверями.

Внутри вмонтированы две панели, на которых установлены силовые и управляющие устройства. При эксплуатации в сетях с током до 100 А применяются шкафы, изготовленные на базе пускателей ПМ 12 с серебряными контактами.

При силе тока свыше 100 А монтируются вакуумные контакторы. Все соединения входных и выходных цепей осуществляются инструментом, обеспечивающим стойкий контакт. В шкаф устанавливаются зажимы, рассчитанные на подсоединение многожильных медных и бронированных с наконечниками проводов.

Устанавливаемые пускатели должны быть рассчитаны на 300 тыс. срабатываний, а время отключения автоматов при коротком замыкания не превышает 0,05 сек. На всех приборах должны быть соответствующие обозначения, а дополнительно под ними устанавливаются бирки с пояснением.

Шкафы обычно имеют два кабельных ввода: для питающего и резервного провода, которые подключаются к штыревым колодкам. В силовую часть входят:

  • силовая колодка ввода;
  • выводные колодки, соединенные с соответствующими автоматами;
  • два контактора ввода;
  • два трансформатора напряжения.

Питание световых индикаторов осуществляется напряжением 36 В. Установленные реле времени АВР обеспечивают трансформаторы бесперебойным снабжением электроэнергией. В систему управления оборудованием входят автоматические выключатели, сигнальные лампы и реле контроля фаз. Собранный шкаф может эксплуатироваться в условиях, исключающих атмосферные осадки и при температуре от — 45 °C до + 45 °C.

Применение резервного питания

Длительное отсутствие электроэнергии доставляет много неудобств для человека, кроме того, может привести к угрозе жизни и безопасности людей. Обеспечить бесперебойное электроснабжение можно от двух независимых источников питания, что применяется для потребителей первой категории. Особая группа первой категории снабжается электроэнергией от трех взаимно резервирующих источников питания. Такие схемы имеют ряд недостатков:

  1. Система АВР в частном домеЗначение токов короткого замыкания гораздо выше, чем при раздельном электроснабжении потребителей.
  2. Происходят большие потери электроэнергии в питающих трансформаторах.
  3. Сложная защитная схема.
  4. Очень трудно вести учет перетоков мощности.
  5. Иногда тяжело осуществить параллельную работу источников питания из-за наличия ранее установленной релейной защиты.

Поэтому существует необходимость в раздельных источниках питания с наличием быстрого восстановления электроэнергии. Именно эту задачу выполняет АВР, который подключает отдельную сеть или другой источник питания (генератор, аккумуляторную батарею). Щиты резервного включения широко применяются на предприятиях транспорта, связи, при строительстве жилищных комплексов и в других областях промышленности.

Обычно на входе в здание устанавливается шкаф ВРУ с АВР, то есть электрики комплектуют вводно-распределительное устройство блоком резервного питания. Можно такое оборудование устанавливать и отдельными блоками, которые собраны в заводских условиях.

Организация АВР в загородном доме

Монтаж щитка и защитной системыДля организации АВР загородного дома или беспрерывной работы насосов в качестве запасного источника питания можно использовать генератор. Он позволит на длительный период обеспечить электроэнергией потребителей, пока не восстановят основное электроснабжение.

В зависимости от типа генератора, такое устройство используется как в однофазных, так и трехфазных сетях. Чтобы срабатывание АВР происходило в автоматическом режиме, генератор должен быть снабжен стартером.

Монтаж системы АВР

При монтаже системы необходимо подключить специальный блок автоматики, который производит запуск генератора во время отключения электроэнергии и его остановку при восстановлении электроснабжения. Блок совместим с любым видом двигателей и имеет три положения: «Запуск», «Включен», «Стоп».

Устройство снабжено подробным описанием, которое позволяет собрать АВР полностью своими руками. Правда, в зимний период двигатель внутреннего сгорания предварительно следует прогреть. Блок автоматики в своей программе подразумевает и такую функцию.

Для обустройства АВР загородного дома можно воспользоваться автомобильным аккумулятором. Помимо него, следует приобрести инвертор для преобразования 12 В постоянного напряжения в 220 В переменного.

Следует учитывать, что мощности такого устройства хватит только для освещения. Для увеличения емкости можно подключить параллельно несколько батарей. Запуск системы осуществляется с помощью специального переключателя, который устанавливается в основную сеть.

rusenergetics.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о