Мощность трехфазной сети: расчет полной мощности формулой
В подавляющем большинстве случаев в домах и квартирах используется трехфазная сеть. Однако часто применяются приборы, которым необходимо однофазное питание. Чтобы лучше разбираться в особенностях использования трехфазной сети, нужно понимать, как она работает. В статье подробно рассмотрено, как правильно определить ее мощность и каким образом это можно использовать.
Что такое трехфазная сеть в электричестве
Многофазная электрическая сеть переменного тока была создана благодаря американскому ученому Н. Тесле. В России ученый М. Доливо-Добровольский разработал и содействовал повсеместному внедрению трехфазной электросети.
Соединение источника и потребителейПодаются три фазы переменного тока, которые равны по амплитуде и сдвинуты друг относительно друга на 120°. Фазы могут быть соединены между собой несколькими способами. Самыми распространенными из них являются «звезда» и «треугольник».
В первом случае у них имеется один общий провод. При таком варианте использования появляется возможность подавать линейное или фазовое напряжение. В квартире первое равно 380 В, второе — 220 В. Общий провод обычно соединен с землей, хотя существуют схемы подключения, в которых это не так.
К сведению! При подключении «треугольником» каждый выход фазы соединен с одним выходом другой фазы.
Трехфазная линия передачиСвойства трехфазной сети
Использование трехфазного электропитания завоевало широкую популярность по следующим причинам:
- таким способом минимизируются потери при передаче электроэнергии на большие расстояния;
- трехфазные схемы требуют для реализации меньшего количества деталей и материалов по сравнению с однофазными;
- есть возможность обеспечить в сети питание 380 В или 220 В.
Обратите внимание! Трехфазное напряжение часто используется для питания асинхронных двигателей, некоторых теплонагревательных приборов, для работы мощных устройств.
Четыре провода питанияКакая сила тока трехфазной сети
На практике часто мощность электроприбора является известной величиной. Поскольку в большинстве случаев для питания используется напряжение 220 В, то имеются все необходимые данные для расчета силы тока. Эта величина важна, чтобы сравнить ее с предельно допустимой для используемых проводов, розеток и удлинителей.
Важно! Слишком сильный ток может вызвать перегорание предохранителей или порчу используемого удлинителя.
Трехфазная система с нейтральюДля определения силы тока можно воспользоваться формулой мощности: P = кв. корень(3) * U(l) * I(l) * cos(«фи«).
Здесь можно использовать известные данные:
- P — мощность электроприбора, известная из его инструкции по эксплуатации;
- U(l). В большинстве случаев речь идет о напряжении 220 В (для устройств с трехфазным питанием эта величина будет равна 380 В).
Значение и формула для cos («фи») обычно точно неизвестны. Их берут из технического паспорта прибора или обращаются за этой информацией к справочникам. Как правило, для определенных типов приборов такая величина известна. Например, она близка к 1 у нагревательных приборов, а у электродвигателей равна 0,7-0,9.
Таким образом на основе приведенной формулы можно посчитать силу тока на основании известных данных.
Прибор для измерения мощности — ваттметрКакая стандартная потребляемая ее мощность
Чтобы рассчитать электрическую мощность, потребляемую квартирой или частным домом, нужно учесть потребление энергии всеми используемыми электроприборами. Это удобно делать в два этапа:
- Рассмотреть все те приборы, которым необходимо питание, использующее три фазы.
- Просуммировать потребляемую мощность однофазных устройств.
Искомые значения можно взять либо из техпаспорта электроприбора, либо из технического справочника. При необходимости эту величину можно рассчитывать на основе сделанных измерений. В реальной жизни устройства практически никогда не включаются одновременно.
Обратите внимание!
Знание предельной величины потребляемой энергии позволит правильно организовать электроснабжение дома или квартиры.На основе полученных данных можно, используя формулы мощности, вычислить, какова предельно допустимая сила тока в трехфазной сети, которую должна выдерживать электропроводка. Это позволит правильно подобрать предохранители и используемые во внутренней электросети провода.
Принцип действия трехфазного генератораКак правильно рассчитать мощность трехфазной сети
Если трехфазная сеть использует соединение «треугольник», то потребители могут получать однофазное напряжение фазное или линейное. При этом оно будет иметь разную величину: первое будет меньше второго примерно в 1,71 раза (точное значение равно квадратному корню из 3). Силу тока в первом и втором случаях легко рассчитать — будет одинаковой.
К сведению! Если используется вариант соединения «треугольником», то линейное и фазовое напряжения будут равны. Однако фазовый ток будет меньше линейного в 1,71 раза.
Далее рассказано, как рассчитать мощность трехфазной сети. Для этого необходимо просуммировать мощности всех трех фаз. В качестве примера соединение «треугольником». В этом случае для каждой фазы эта характеристика определяется по следующей формуле: P1 = U(f) * I(f) * cos(«фи«).
В формуле расчета мощности трехфазной сети использованы такие обозначения:
- P1 — мощность каждой из трех фаз;
- U (f) — фазовое напряжение;
- I (f) — фазовая сила тока;
- «фи» — угол, определяемый соотношением активной и реактивной мощности.
Мощность, выделяющаяся на нагрузке, включает в себя активную и реактивную компоненты. Между ними существует сдвиг фаз «фи». Его смысл состоит в том, что при помощи указанного коэффициента определяется доля реактивной мощности в ее суммарной величине.
Чтобы определить мощность трехфазной сети, нужно просуммировать мощность всех трех фаз. Формула выглядит следующим образом: P = 3 * (U (f) * I(f) * cos(«фи»)). P означает искомую величину. Эту величину при расчете можно определить с помощью линейных величин силы тока и напряжения. Поскольку U(f) = U(l) / кв. корень(3), а I(f) = I(l), то мощность можно будет вычислять таким образом.
P = 3 * (U(f) * I(f) * cos(«фи»)) = 3 * (U(l) * I(l) * cos(«фи») / кв. корень(3)) = кв. корень(3) * U(l) * I(l) * cos(«фи«).
При подключении с помощью схемы «треугольник» вычисления выполняются аналогичным образом. При расчете активной мощности в трехфазной сети нужно учитывать, что фазовое и линейное напряжения будут равны, но фазовая сила тока будет в кв. корень (3) меньше линейной.
Обратите внимание! После выполнения преобразований формула мощности трехфазного тока будет такой же, как и для соединения «звездой».
Счетчик электроэнергииИспользование трехфазных сетей имеет свои важные преимущества и является широко распространенным. Чтобы грамотно их эксплуатировать, необходимо знать характеристики и формулы для расчета напряжения.
ТОЭ Лекции- №40 Мощность трехфазной цепи и способы ее измерения
Активная и реактивная мощности трехфазной цепи, как для любой сложной цепи, равны суммам соответствующих мощностей отдельных фаз:
где IA, UA, IB, UB, IC, UC – фазные значения токов и напряжений.
В симметричном режиме мощности отдельных фаз равны, а мощность всей цепи может быть получена путем умножения фазных мощностей на число фаз:
В полученных выражениях заменим фазные величины на линейные. Для схемы звезды верны соотношения Uф/Uл/√3, Iф=Iл, тогда получим:
Для схемы треугольника верны соотношения: Uф=Uл ; Iф=Iл / √3 , тогда получим:
Следовательно, независимо от схемы соединения (звезда или треугольник) для симметричной трехфазной цепи формулы для мощностей имеют одинаковый вид:
В приведенных формулах для мощностей трехфазной цепи подразумеваются линейные значения величин U и I, но индексы при их обозначениях не ставятся.
Активная мощность в электрической цепи измеряется прибором, называемым ваттметром, показания которого определяется по формуле:
где Uw, Iw — векторы напряжения и тока, подведенные к обмоткам прибора.
Для измерения активной мощности всей трехфазной цепи в зависимости от схемы соединения фаз нагрузки и ее характера применяются различные схемы включения измерительных приборов.
Для измерения активной мощности симметричной трехфазной цепи при-меняется схема с одним ваттметром, который включается в одну из фаз и измеряет активную мощность только этой фазы (рис. 40.1). Активная мощность всей цепи получается путем умножения показания ваттметра на число фаз: P=3W=3UфIфcos(φ). Схема с одним ваттметром может быть использована только для ориентированной оценки мощности и неприменима для точных и коммерческих измерений.
Для измерения активной мощности в четырехпроводных трехфазных цепях (при на¬личии нулевого провода) применяется схема с тремя приборами (рис. 40.2), в которой произво¬дится измерение активной мощности каждой фазы в отдельности, а мощность всей цепи оп¬ределяется как сумма показаний трех ваттметров:
Для измерения активной мощности в трехпроводных трехфазных цепях (при отсутствии нулевого провода) применяется схема с двумя приборами (рис. 40.3).
При отсутствии нулевого провода линейные (фазные) ток связаны между собой урав¬нением 1-го закона Кирхгофа: IA+IB+IC=0. Сумма показаний двух ваттметров равна:Таким образом, сумма показаний двух ваттметров равна активной трехфазной мощности, при этом показание каждого прибора в отдельности зависит не только величины нагрузки но и от ее характера.
На рис. 40.4 показана векторная диаграмма токов и напряжений для сим¬метричной нагрузки. Из диаграммы следует, что показания отдельных ваттметров могут быть определены по формулам:
Анализ полученных выражений позволяет сделать следующие выводы. При активной нагрузке (φ = 0), показания ваттметров равны (W1 = W2).
При активно-индуктивной нагрузке(0 ≤ φ ≤ 90°) показание первого ватт-метра меньше, чем второго (W1 < W2), а при φ>60° показание первого ваттметра становится отрицательным (W1 < 0).
При активно-емкостной нагрузке(0 ≥ φ≥ -90°) показание второго ватт-метра меньше, чем первого (W1 больше W2), а при φ(меньше)-60 ° показание второго ватт-метра становится отрицательным.
Формула расчета мощности электрического тока
При проектировании любых электрических цепей выполняется расчет мощности. На его основе производится выбор основных элементов и вычисляется допустимая нагрузка. Если расчет для цепи постоянного тока не представляет сложности (в соответствии с законом Ома, необходимо умножить силу тока на напряжение – Р=U*I), то с вычислением мощности переменного тока – не все так просто. Для объяснения потребуется обратиться к основам электротехники, не вдаваясь в подробности, приведем краткое изложение основных тезисов.
Полная мощность и ее составляющие
В цепях переменного тока расчет мощности ведется с учетом законов синусоидальных изменений напряжения и тока. В связи с этим введено понятие полной мощности (S), которая включает в себя две составляющие: реактивную (Q) и активную (P). Графическое описание этих величин можно сделать через треугольник мощностей (см. рис.1).
Под активной составляющей (Р) подразумевается мощность полезной нагрузки (безвозвратное преобразование электроэнергии в тепло, свет и т.д.). Измеряется данная величина в ваттах (Вт), на бытовом уровне принято вести расчет в киловаттах (кВт), в производственной сфере – мегаваттах (мВт).
Реактивная составляющая (Q) описывает емкостную и индуктивную электронагрузку в цепи переменного тока, единица измерения этой величины Вар.
Рис. 1. Треугольник мощностей (А) и напряжений (В)
В соответствии с графическим представлением, соотношения в треугольнике мощностей можно описать с применением элементарных тригонометрических тождеств, что дает возможность использовать следующие формулы:
- S = √ P 2 +Q 2 , – для полной мощности;
- и Q = U*I*cos φ , и P = U*I*sin φ – для реактивной и активной составляющих.
Эти расчеты применимы для однофазной сети (например, бытовой 220 В), для вычисления мощности трехфазной сети (380 В) в формулы необходимо добавить множитель – √ 3 (при симметричной нагрузке) или суммировать мощности всех фаз (если нагрузка несимметрична).
Для лучшего понимания процесса воздействия составляющих полной мощности давайте рассмотрим «чистое» проявление нагрузки в активном, индуктивном и емкостном виде.
Активная нагрузка
Возьмем гипотетическую схему, в которой используется «чистое» активное сопротивление и соответствующий источник переменного напряжения. Графическое описание работы такой цепи продемонстрировано на рисунке 2, где отображаются основные параметры для определенного временного диапазона (t).
Емкостная нагрузка
Как видно на рисунке 3, график характеристик емкостной нагрузки несколько отличается от активной.
Индуктивная нагрузка
Представленный ниже график демонстрирует характер «чистой» индуктивной нагрузки. Как видим, изменилось только направление мощности, что касается наращения, оно равно нулю.
Негативное воздействие реактивной нагрузки
В приведенных выше примерах рассматривались варианты, где присутствует «чистая» реактивная нагрузка. Фактор воздействия активного сопротивления в расчет не принимался. В таких условиях реактивное воздействие равно нулю, а значит, можно не принимать его во внимание. Как вы понимаете, в реальных условиях такое невозможно. Даже, если гипотетически такая нагрузка бы существовала, нельзя исключать сопротивление медных или алюминиевых жил кабеля, необходимого для ее подключения к источнику питания.
Реактивная составляющая может проявляться в виде нагрева активных компонентов цепи, например, двигателя, трансформатора, соединительных проводов, питающего кабеля и т.д. На это тратится определенное количество энергии, что приводит к снижению основных характеристик.
Реактивная мощность воздействует на цепь следующим образом:
- не производит ни какой полезной работы;
- вызывает серьезные потери и нештатные нагрузки на электроприборы;
- может спровоцировать возникновение серьезной аварии.
Именно по этому, производя соответствующие вычисления для электроцепи, нельзя исключать фактор влияния индуктивной и емкостной нагрузки и, если необходимо, предусматривать использование технических систем для ее компенсации.
Расчет потребляемой мощности
В быту часто приходится сталкиваться с вычислением потребляемой мощности, например, для проверки допустимой нагрузки на проводку перед подключением ресурсоемкого электропотребителя (кондиционера, бойлера, электрической плиты и т.д.). Также в таком расчете есть необходимость при выборе защитных автоматов для распределительного щита, через который выполняется подключение квартиры к электроснабжению.
В таких случаях расчет мощности по току и напряжению делать не обязательно, достаточно просуммировать потребляемую энергию всех приборов, которые могут быть включены одновременно. Не связываясь с расчетами, узнать эту величину для каждого устройства можно тремя способами:
- обратившись к технической документации устройства;
- посмотрев это значение на наклейке задней панели; Потребляемая мощность прибора часто указывается на тыльной стороне
- воспользовавшись таблицей, где указано среднее значение потребляемой мощности для бытовых приборов.
Таблица значений средней потребляемой мощности
При расчетах следует учитывать, что пусковая мощность некоторых электроприборов может существенно отличаться от номинальной. Для бытовых устройств этот параметр практически никогда не указывается в технической документации, поэтому необходимо обратиться к соответствующей таблице, где содержатся средние значения параметров стартовой мощности для различных приборов (желательно выбирать максимальную величину).
Пожаловалась бабушка соседка снизу: подарили мне дети моющий пылесос. Он прекрасно работает, но откуда-то идет запах гари.
Пошел смотреть. Проводка у нас старая: лапша из алюминия 2,5 квадрата. А пылесос потребляет 2,5 kW. Прикинул, как работает формула расчета мощности по току и напряжению для этого случая.
Разделил 2500 ватт на 220 вольт. Получил чуть больше 11 ампер. Наши провода держат нагрузку 22 А. Имеем практически двойной резерв потоку. Другие потребители при уборке отключены.
Стали проверять и нюхать: запах около квартирного щитка. Открыл, осмотрел: шина сборки ноля в саже, на одной перемычке горелая изоляция. Винт крепления ослаблен. Вот и причина начала возгорания. Исправил.
На этом примере я показываю, что всегда надо оценивать мощность потребления электроприборов и возможности проводки с защитными устройствами. Об этом рассказываю ниже.
Что такое мощность в электричестве: просто о сложном
Вспомнилась былина об Илье Муромце, когда он приложил всю свою мощь к соловью разбойнику. У бедолаги сразу посыпались искры из глаз, как пламя с верхней картинки на проводке с неправильным монтажом.
Простыми словами: мощность в электричестве — это силовая характеристика энергии, которой оценивают, как способности генераторных установок ее вырабатывать, так возможности потребителей и транспортных магистралей.
Все эти участки должны быть точно смонтированы и налажены для обеспечения безопасной работы. Как только в любом месте возникает неисправность, так сразу развивается авария во всей схеме.
Если говорить о домашнем электрическом оборудовании, то приходится постоянно соблюдать баланс между:
- включенными в сеть приборами;
- конструкцией проводов и кабелей;
- настройкой защитных устройств.
Только комплексное решение этих трех вопросов может обеспечить безопасность проводки и жильцов.
Как рассчитать электрическую мощность в быту
Формулы расчета мощности в электричестве позволяют выполнить качественную оценку безопасности каждого из перечисленных выше пунктов.
Пользоваться ими не сложно. Я уже приводил в предыдущих статьях шпаргалку электрика, где они помещены в наглядной форме для цепей постоянного тока.
Они полностью справедливы для активной составляющей мощности переменного тока, совершающей полезную работу. Кстати, кроме нее есть еще и бесполезная — реактивная, связанная с потерями энергии. Ее описанию посвящен второй раздел.
Такие вычисления удобно делать с помощью онлайн калькулятора. Он избавляет от рутинных математических вычислений и арифметических ошибок.
При любом из способов для расчета активной мощности требуется знать две из трех электрических величин:
Как измерить электрическую мощность дома
Существует еще одна возможность оценки активной мощности: ее измерение в действующей схеме специальными приборами: ваттметрами.
Точные замеры может обеспечить промышленный лабораторный ваттметер. Он изготавливается как прибор, работающий на аналоговых сигналах,так и с помощью цифровых технологий.
В бытовой проводке точные вычисления не нужны. Для нее выпускаются различные виды более простых ваттметров.
Популярностью пользуются приборы, которые можно вставить в розетку и подключить к ним шнур питания от потребителя, включить их в работу и сразу снять показания на дисплее в ваттах.
Их так и называют: ваттметр розетка. Они измеряют чисто активную мощность переменного тока.
Такие приборы избавляют электрика от выполнения сложных операций под напряжением, когда требуется замерять:
- действующее напряжение;
- силу тока;
- угол сдвига фаз между векторами тока и напряжения.
Потом все данные дополнительно требуется вводить в формулу расчета мощности по току и напряжению, делать по ней вычисления.
Этот метод можно упростить, если внимательно наблюдать за показаниями электрического счетчика индукционной системы с вращающимся диском. Он считает совершенную работу: потребленную мощность за определенную время.
Однако скорость вращения диска как раз и характеризует величину потребления. Надо просто посчитать сколько раз он обернется за минуту и перевести в ватты по табличке, расположенной на корпусе.
Почему реактивное сопротивление схемы влияет на мощность переменного тока
Синусоидальная гармоника напряжения, поступая на резистивное сопротивление, изменяет величину тока без его отклонения на комплексной плоскости.
Такой ток совершает полезную работу с минимальными потерями энергии, вырабатывая активную мощность. Частота колебания сигнала не оказывает на нее никакого влияния.
Сопротивление конденсатора и индуктивности зависит от частоты гармоники. Его противодействие отклоняет направление тока на каждом из этих элементов в разные стороны.
Такие процессы связаны с потерей части энергии на бесполезные преобразования. На них расходуется мощность Q, которую называют реактивной.Ее влияние на полную мощность S и связь с активной P удобно представлять графически прямоугольным треугольником.
Захотелось его нарисовать на фоне оборудования из нагромождений фарфора и металла, где пришлось поработать довольно долго.Отвлекся. Не судите за это строго.
Сравните его с опубликованным мною ранее треугольником сопротивлений. Находите общие черты?
Ими являются геометрические пропорции фигуры, описывающие их формулы и угол φ, определяющий потери полной мощности. Перехожу к их более подробному рассмотрению.
Формулы расчета мощности для однофазной и трехфазной схемы питания
В идеальном теоретическом случае трехфазная схема состоит из трех одинаковых однофазных цепей. На практике всегда есть какие-то отклонения. Но, в большинстве случаев при анализах ими пренебрегают.
Поэтому рассматриваем вначале наиболее простой вопрос.
Графики и формулы под однофазное напряжение
Как работает резистор
На чисто резистивном сопротивлении синусоиды тока и напряжения совпадают по углу, направлены на каждом полупериоде одинаково.Поэтому их произведение, выражающее мощность, всегда положительно.
Его значение в произвольный момент времени t называют мгновенным, обозначая строчной буквой p.
Среднее значение мощности в течение одного периода называют активной составляющей. Ее график для переменного тока имеет фигуру симметричного всплеска с максимальным значением Pm в середине каждого полупериода Т/2.
Если взять половину его величины Pm/2 и провести прямую линию в течении одного периода Т, то получим прямоугольник с ординатой P.
Его площадь равна двум площадям графиков активной составляющих одного любого полупериода. Если посмотреть на картинку внимательнее, то можно представить, что верхняя часть всплеска отрезана,перевернута и заполнила свободное пространство внизу.
Представление этого графика помогает запомнить, что на активном сопротивлении мощность постоянного и переменного тока вычисляется по одной формуле, не меняет своего знака.
На резисторе не создается реактивных потерь.
Как работает индуктивность
Катушка с обмоткой своими витками запасает энергию магнитного поля. Благодаря процессу ее накопления индуктивное сопротивление отодвигает вперед на 90 градусов вектор тока относительно приложенного напряжения на комплексной плоскости.
Перемножая их мгновенные величины получаем значения мощности, которое за один период меняет знаки (направление) в каждом полупериоде.
Частота изменения мощности на индуктивности в два раза выше,чем у ее составляющих: синусоид тока и напряжения. Она состоит из двух частей:
- активной, обозначаемой индексом PL;
- реактивной QL.
Реактивная часть на индуктивности создается за счет постоянного обмена энергией между катушкой и приложенным источником. На ее величину влияет значение индуктивного сопротивления XL.
Как работает конденсатор
Емкость конденсатора постоянно накапливает заряд между своими обкладками. За счет этого происходит сдвиг вектора тока вперед на 90 градусов относительно приложенного напряжения.
График мгновенной мощности напоминает вид предыдущего, но начинается с отрицательной полуволны.
Реактивная составляющая, выделяемая на конденсаторе, зависит от величины емкостного сопротивления XC.
Как работает реальная схема со всеми видами сопротивлений
В чистом виде приведенные выше графики и выражения встречаются не так часто. На самом деле передача электроэнергии и ее работа на переменном токе связаны с комплексным преодолением сил электрического сопротивления резисторов, конденсаторов и индуктивностей.
Причем, какая-то из этих составляющих будет преобладать. Для таких случаев преобразования электрической энергии в мгновенную мощность могут иметь один из следующих видов.
На верхней картинке показан случай, когда вектор тока отстает от приложенного напряжения, а на нижней — опережает.
В обоих случаях величина активной составляющей уменьшается от значения полной на значение, выражаемое как cosφ. Поэтому его принято называть коэффициентом мощности.
Как работает схема трехфазного электроснабжения
На ввод распределительного щита многоэтажного здания поступает трехфазное напряжение от электроснабжающей организации, вырабатываемое промышленными генераторами.
Его же, за отдельную плату, при желании может подключить владелец частного дома, что многие и делают. При этом рабочая схема и диаграмма напряжений выглядит следующим образом.
В старой системе заземления TN-C она выполняется четырехпроводным подключением, а у новой TN-S — пятипроводным с добавлением защитного РЕ проводника. Его на этой схеме я не показываю для упрощения.
Каждую из фаз при работе необходимо стараться нагружать одинаково равными по величине токами. Тогда в домашней проводке будет создаваться наиболее благоприятный оптимальный режим без опасных перекосов энергии.
В этом случае формула расчета мощности по току и напряжению для трехфазной схемы может быть представлена простой суммой аналогичных формул для составляющих однофазных цепей.
А поскольку они все идентичные, то их просто утраивают.
Например, когда активная мощность фазы В имеет выражением Рв=Uв×Iв×cosφ, то для всей трехфазной схемы она будет выражена следующей формулой:
Если пометить фазное выражение буквой ф. например Pф, томожно записать:
Аналогично будет вычисляться реактивная составляющая
Поскольку P и Q представляют величины катетов прямоугольного треугольника, то гипотенузу или полную составляющую можно вычислить как квадратный корень из суммы их квадратов.
Как учитывается трехфазная полная мощность
В энергосистеме, да и в частном доме, требуется анализировать подключенные нагрузки, равномерно распределять их по источникам напряжений.
С этой целью работают многочисленные конструкции измерительных приборов. На щитах управления подстанций расположены щитовые ваттметры и варметры, предназначенные для работы в разных долях кратности.
Старые аналоговые приборы показаны на этой картинке.
Для того, чтобы не путаться в записях вычислений введены разные наименования единиц. Они обозначаются:
- ВА — (русское), VA (международное) вольтампер для полной величины мощности;
- Вт —(русское), var (международное) ватт —активной;
- вар (русское), var (международное) — реактивной.
Аналоговые приборы измеряют только активную или реактивную составляющую, а полную величину необходимо вычислять по формулам.
Многие современные цифровые приборы способны осуществлять эту функцию автоматически.
Видеоурок Павла Виктор дополняет мой материал. Рекомендую посмотреть.
Калькулятор мощности для своих
Здесь вы можете выполнить вычисления онлайн без использования формул и арифметических действий. Просто введите ваши исходные данные в таблицу и жмите кнопку “Рассчитать ток”.
А в заключение напоминаю, что для ваших вопросов создан раздел комментариев. Задавайте их, я отвечу.
Иногда можно услышать такой простой вопрос: «какая мощность в розетке?». Ответ, как ни странно, чаще всего такой: 10 ампер. Или – 220 вольт. Понятно, что вопрос – дурацкий. Но и объяснение не лучше – «А на розетке так написано».
Мощность и ток
Если правильно отвечать на поставленный вопрос, то для читателей, прогуливающих в детстве уроки физики, можно сказать, что мощность электричества зависит от двух величин:
- величины напряжения;
- силы тока.
В общем, эти две величины определяют величину мощности как переменного, так и постоянного тока. Память может подсказать что-то типа: для участка цепи, для полной цепи. Это отголоски того же школьного учебника физики, где говорится о законе Ома.
Да, этот знаменитый закон и позволяет рассчитать мощность электрического тока. Конечно, школьная программа представляла этот закон для цепей постоянного тока, но суть от этого не меняется. Формула вечная и неизменная: P = U х I.
Перефразируя закон ома в простой язык, получаем простой ответ на вопрос о мощности в розетке: сила тока зависит от нагрузки.
Сила тока и приложенная нагрузка
Тривиальное понятие этого тезиса позволит не производить элементарных действий, постоянно совершаемых нами, или окружающими нас людьми:
- включать один электрический удлинитель в другой, втыкая в оба все доступные вилки от разных, иногда достаточно мощных, потребителей электроэнергии;
- подключать к севшему аккумулятору автомобиля другой, соединяя их проводами от старой электропроводки;
- наращивать провода от электрического чайника кабелем с витой парой;
- устанавливать в гараже нагреватель, мощностью 5 квт, подключая его к обыкновенной розетке.
Аналогичные примеры неграмотных действий можно приводить до бесконечности. Человеческая беспечность не знает границ. Чтобы больше не допускать подобных ошибок, давайте разберем как правильно производить расчет электрической мощности.
Чайник и электрическая мощность
Не забивая головы простейшими формулами (есть дела и поважнее этого), запомним простое соотношение, достаточное для применения его в быту. Точность его не соответствует формуле расчета, но позволяет помнить, что: 1 квт электроэнергии – это приблизительно 5 ампер тока в сети 220 вольт.
Таким образом, становится понятно, что электрический чайник, включенный в кухонную розетку, потребляет около 5 ампер тока. А лампа накаливания, мощностью 100 Вт – в десять раз меньше: 0,5 ампера. Конечно, такие примитивные знания нужны для домохозяек, расчет мощности электрического тока производится по формулам.
Необходимость расчетов мощности
Человек мало сталкивается с необходимостью проведения расчетов (мощностей постоянного электрического тока) в быту. Чаще всего такая необходимость возникает при ремонте автомобиля, где источником тока служит аккумулятор. Или какой-то продвинутый пользователь начинает подбирать новый кулер для своего процессора в компьютере.
Чаще возникает необходимость провести элементарные расчеты при ремонтных работах в квартире, при подборе сгоревшего блока питания и пр.
Расчет мощности электрического тока по формулам
Существует формула расчета электрического тока для однофазной и трехфазной сети. Вряд ли кто-то захочет и сможет ими воспользоваться – разбираться что такое cosφ при замене электрической проводки в доме или квартире нецелесообразно.
Реально можно произвести все необходимые расчеты в режиме онлайн. Интернет набит разными таблицами, соответствующими графиками и калькуляторами. Для очень нуждающихся читателей можно добавить, что сечение кабеля для осветительной сети — 1,5 кв. мм. А для электропитания розеток применяется кабель сечением 2,5 кв. мм.
Остальные расчеты, требующиеся при производстве электромонтажных работ в различных областях деятельности – лучше доверить специалистам, которые в своей работе используют различные приборы: амперметры, вольтметры, индикаторы фазы, измерители сопротивления изоляции, измерители сопротивления заземления и пр.
Ремонт и строительство домов и квартир, особенности расчетов
Чтобы произвести расчет электропроводки в квартире недостаточно произвести подбор сечения электрических проводов. В электрическом щите устанавливаются и электрические автоматы, и защитные устройства и электрический счетчик. Эти установочные изделия также подбираются и рассчитываются при разработке проекта электропитания, в котором производится также расчет количества и параметров устройств защитного заземления.
Для расчетов и подбора видов электропроводки, использующейся при изготовлении удлинителей, организации временных схем электропитания, необходимо понимать, что силовые кабели для однофазной и трехфазной цепи различны по количеству жил, условиям прокладки, токовым нагрузкам и прочим параметрам.
При использовании кабелей и проводов необходимо учитывать и материал изготовления токопроводящих жил.
Наличие в загородном доме, даче трехфазных потребителей электроэнергии, таких как скважинный насос, электродвигатели, сварочное оборудование, требует при подборе кабелей электропроводки учитывать их пусковые токи. А при выборе электрического счетчика электроэнергии – активную и реактивную составляющую в потребляемой мощности, если предполагается постоянная работа трехфазного оборудования.
“>
характеристики трехфазной системы, подробный расчет
Суббота, вечер. Затеял стирку, запустил стиральную машинку. Попутно решил пропылесосить, заодно включил электрочайник, чтоб после выпить чаю. И свет погас, оставив квартиру в кромешной тьме. Знакомая картина? Чтобы такого не произошло, нужно знать, как рассчитать нагрузку на сеть, зная мощность электрического тока.
Особенности трехфазной системыДля оборудования электричеством жилых домов и квартир используют два вида схем:
- однофазная;
- трехфазная.
Электросеть от электростанций выходит с 3 фазами, попадает к домам в таком же виде, далее разветвляется на отдельные фазы.
Этот способ передачи электроэнергии считается экономичным, потому что уменьшает потери при транспортировке.
Как выяснить свою схемуУзнать количество фаз у себя в доме или квартире легко, для этого нужно открыть распределительный щиток и посчитать провода, по которым ток поступает в квартиру.
При однофазной сети количество проводов будет 2: фаза, ноль.
Иногда встречается 3 провод-заземление. В трехфазной системе проводов 4: 3 фазы, ноль. Провод заземления также может быть добавлен.
2 популярных способа соединения трехфазной системы:
- треугольник;
- звезда.
Каждая фаза соединяется с соседними. Сила тока от источника фазная, между собой-линейная.
Схема “Звезда”Фазы соединяются в одной точке. В этой точке суммарное напряжение будет равно 0. Сила тока только фазная, а напряжение может варьироваться от линейного до фазного. Что это дает пользователю? Линейное напряжение в квартире 380 В, а фазовое-220 В.
Большинство приборов работают при напряжении 220 В, но некоторые приборы нуждаются в большем напряжении: старые электроплиты, мощные обогреватели и котлы, электроинструмент промышленного назначения.
Благодаря такой схеме любой прибор будет работать без проблем.
Свойства трехфазной цепиТрехфазная сеть имеет ряд преимуществ:
- уменьшает потери при транспортировке электричества на дальние расстояния;
- кабели и оборудование имеют меньший расход чем у монофазной сети;
- энергосистема сбалансирована;
- в системе для работы присутствуют сразу 2 формы напряжения: линейное 380 В и фазное 220 В.
Вычисление мощности трехфазной системы дело затруднительное, потому что в сети ток не постоянный, а переменный.
При постоянном токе мощность рассчитывается путем умножения напряжения и силы тока. При переменном токе все величины нестабильны из-за наличия нескольких фаз. Также имеет значение способ соединения. При однофазной системе мощность рассчитывается также путем умножения напряжения и силы тока, но с учетом коэффициента мощности-cos, который характеризует сдвиг фаз при реактивной нагрузке между напряжением и током.
Вычисление происходит по следующей формуле полной расчета мощности по току в трехфазной сети:
Pобщ=Uа∙Iа∙cosа+ Ub∙Ib∙cosb+ Uc∙Ic∙cosc
где U-напряжение, I-сила тока, cos-коэффициент мощности, a, b и c-фазы.
Измерение мощности в трехфазных цепях проводят прибором-ваттметр.
При симметричной нагрузке измеряют только одну фазу и результат измерения умножают на 3. При замере сразу 3 фаз потребуется 3 прибора. При отсутствии фазы “ноль” измерение проводится 2 приборами и расчет мощности рассчитывается по 1 закону Кирхгофа:
Ia+Ib+Ic=0
Сумма показаний двух ваттметров даст показатель мощности трехфазной цепи.
Узнаем потребляемую мощность электричестваКак высчитать мощность и для чего это необходимо?
Знание предельной потребляемой мощности позволит организовать правильно электроснабжение квартиры или домовладения.
Чтобы ее вычислить, необходимо подсчитать мощность потребления у однофазных приборов и изучить устройства-трехфазники. Параметры указываются в технических паспортах изделий или в техническом справочнике. Зная эти параметры и используя формулу вычисления мощности, определяется сила тока в трехфазной системе, которая дает нагрузку на электропроводку.
С помощью полученной информации подбираются предохранители и провода, которые будут применяться при прокладке внутренней электросети.
Рассчитываем мощность трехфазной сетиДля удобства и скорых вычислений существуют онлайн сервисы с калькуляторами, в которых можно быстро посчитать мощность сети, введя известные пользователю показатели.
Полезное видео по теме:
Трехфазная мгновенная мощность линии как представительный сигнал при анализе энергетической эффективности и диагностике неисправности электрооборудования
Анализ энергетической эффективности и исправности функционирования действующих электроприемников с несинусоидальными, несимметричными и резкопеременными токами нагрузки должен базироваться на исходных данных измерений мгновенных значений трехфазных токов и напряжений, а также последующих расчетах и оценках мощностей, колебаний токов, напряжений и мощностей, показателей качества электроэнергии и т.п. При этом часто используются приемы представления процессов на составляющих прямой, обратной и нулевой последовательностей на основной частоте и частотах высших гармоник.
Современные измерительно-вычислительные приборы, оснащенные со-ответствующим программным обеспечением, приспособлены для длительного мониторинга процессов и выдачи для просмотра и анализа, как осциллограмм, так и результатов расчета всех желаемых пользователем переменных. Такими возможностями, например, обладает применяемый авторами многоканальный цифровой осциллограф — анализатор «НЕВА — ИПЭ» [1, 2].
Широкие возможности современных анализаторов позволяют привлечь для анализа эффективности работы и диагностики неисправностей исследуемых электроприемников представительный и имеющий энергетическое содержание сигнал трехфазной мгновенной мощности цепи p3ф(t):
,(1)
который может быть рассчитан в темпе выполнения измерений фазных токов и напряжений. В (1) предполагается, что фазные напряжения ua(t), ub(t) и uc(t), измерены относительно нейтрального провода четырехпроводной линии или относительно земли в трехпроводной линии.
В цепях с симметриной и линейной нагрузкой мгновенные фазные мощности pa,b,c(t) имеют одинаковые постоянные и сдвинутые на 120 эл. градусов переменные составляющие с двойной промышленной частотой. Поэтому мощность p3ф(t) является практически постоянной величиной, точнее медленно изменяющейся вследствие неизбежной нестабильности активной нагрузки. Любые отклонения от этих идеальных условий, что реально и происходит на практике, вызывают появление в мощности p3ф(t) переменных составляющих, свидетельствующих о неуравновешенности системы, вызванной высшими гармониками, несимметрией гармоник (включая первую и нулевую составляющие), быстрыми изменениями токов и напряжений под влиянием различного рода помех. Анализ формы мгновенной мощности p3ф(t) и ее спектрального состава может дать важную информацию об объекте исследования.
Мгновенная мощность p3ф(t) на выбранном цикле усреднения (обработки) Тц может быть разложена в ряд Фурье с выделением постоянной составляющей P0 и дискретного ряда гармоник с относительными частотами ? = f? / fц , кратными базовой частоте разложения fц=1/Тц. Разрешающая способность при выявлении относительных частот зависит от выбора Тц и частоты дискретизации мгновенных значений токов и напряжений. По опыту авторов, при частотах дискретизации до 20 кГц и Тц?10 с, можно достоверно выявлять частоты f? с шагом до 0.1 Гц при наибольшей достоверно определяемой гармонике с частотой до f? ? 10 кГц.
Анализ амплитудно-частотных спектров трехфазных мгновенных мощностей позволяет выявлять их аномалии, проводить диагностику оборудования и прогнозировать вероятности различного рода отказов, которые можно было бы заблаговременно устранить. В этом отношении диагностика по сигналу p3ф(t), отражающему энергетическое содержание закономерностей процессов, имеет определенные преимущества перед широко применяемым методом диагностики по аномалиям спектров тока нагрузки.
Частотный спектр мощности p3ф(t) иной по сравнению с частотными спектрами токов и напряжений в питающей сети. Например, в таблице 1 для условий симметрии и синусоидальности трехфазного напряжения и наличия в трехфазных несимметричных токах линии только разложенных на прямую и обратную последовательности целочисленных гармоник n = fn/f1, показаны номера порождаемых гармоник np = fnp/f1 в кривой p3ф(t). Нечетные и четные гармоники тока порождают соответственно четные и нечетные гармоники в трехфазной мощности. Рекуррентная формула для определения относительных частот nр может быть представлена в виде:
,(2)
где знак «+» следует применять для гармоник обратной последовательности, а знак «-» для гармоник тока прямой последовательности.
Таблица 1
В случае присутствия не только в трехфазных токах, но и напряжениях высших, промежуточных и субгармоник с составляющими прямой и обратной последовательностей спектр гармонического сигнала p3ф(t) приближается к не-прерывному.
Итак, наличие переменных составляющих в сигнале p3ф(t) свидетельствует о неуравновешенности системы, существовании обменных междуфазных потоков активной мощности. Интенсивность неуравновешенности на выбранном цикле обработки сигнала Тц можно оценить по эффективному значению переменой составляющей мгновенной мощности P~эфф, зависящей от эффективного значения полного сигнала:
и величины средней мощности Р0:
,(3)
Неуравновешенность процессов усиливается в переходных режимах работы электрооборудования.
Приведем примеры, показывающие свойства сигналов p3ф(t) для характерных нелинейных электропотребителей.
На рис. 1а на интервале времени 0.2с показана мощность p3ф(t) дуговой сталеплавильной печи (ДСП) с печным трансформатором 85 МВА. Затемненная кривая Рср(t) построена с применением процедуры усреднения мгновенной мощности на интервалах 0.02c. Как видно, мощность p3ф(t) интенсивно изменяется в пределах ±35% от среднего значения. Причем эти изменения происходят, в основном, на частоте 100 Гц, что свидетельствует о преобладающих влияниях токов обратной последовательности ДСП.
В некоторые моменты времени при больших значениях апериодических составляющих токов ДСП в сигнале p3ф(t) наблюдается частота 50 Гц. Начальная часть частотного спектра мгновенной мощности на выбранном интервале времени обработки Тц=0.2с показана на рис.1б. Здесь фиксируются дискретные гармоники с шагом fц=5Гц. Видно, что наибольшие амплитуды имеют гармоники в диапазоне частот 0 30 Гц, когда их кратность по отношению к fц составляет ?=f?/fц =0?6 и по отношению к f =50 Гц np=0?6. Эффективное значение переменной составляющей мгновенной мощности для ДСП P~эфф может составлять 15?20 % от средней величины потребляемой активной мощности.
Мгновенная трехфазная мощность p3ф(t) для нелинейных, но симметричных по фазам электроприемников с преобладающей нагрузкой вентильных преобразователей практически не содержит частоты 100Гц, однако ее пульсации также являются значительными. Об этом свидетельствуют, например, приведенные на рис.2а,б,в результаты измерений на шинах 10 кВ нагрузки мощного прокатного стана металлургического завода с 12-пульсными преобразователями. Мгновенная трехфазная мощность имеет пульсации с преобладанием четных гармоник порядков 12, 24, 36, 58, 60 и 62. Гармоники кратности выше 58 в данном случае обусловлены резонансными процессами в питающей сети. Для 12-пульсных вентильных преобразователей характерно отношение Р~эфф/Р0 равное 10?15 % и для 6-пульсных 20?25 %. Любые неисправности, обусловленные несимметричным включением вентилей, и, тем более, неисправности типа обрыва и пропусков их включения вызывают появление резких выбросов (провалов) в определенном месте на кривой p3ф(t) и, соответственно, появление выбросов отдельных гармоник в спектре мгновенной мощности.
Особенно ценна информация о сигнале p3ф(t), определенном непосредственно на зажимах электродвигателей различного рода приводов. Амплитудно-частотный спектр этого сигнала может трактоваться как частотное возмущение, воздействующее на вал электропривода. Получение и анализ таких возмущающих спектров может стать основой методик выявления дефектов и оценки надежности работы электроприводов при пусконаладочных работах. Появление анормальных выбросов на кривой p3ф(t) на цикле повторяемости в установившихся режимах при накоплении сведений о связях изменений в сигнале p3ф(t) с конкретными неисправностями может использоваться в целях диагностики повреждений. Представляется возможным получение в этом направлении новых заметных результатов.
Пример мгновенного значения мощности p3ф(t) и ее спектра на зажимах асинхронного двигателя Рном =18.5 кВт, запускаемого через устройство плавного пуска, показан на рис.3. Вследствие применения в данном случае фазового регулирования тока имеем интенсивные колебания мощности на валу двигателя, когда амплитуда 6-й гармоники (300 Гц) составляет 30% от средней активной мощности при пуске, или 54% от номинальной мощности асинхронного двигателя.
Другой пример измерения мощности p3ф(t) электродвигателя вентилятора с частотным регулированием скорости представлен на рис.4. Применены два частотных преобразователя с 6-пульсными инверторами, питающими два СД с номинальной мощностью 4.6 МВт, имеющих общий вал с вентилятором. Частота трехфазного напряжения на выходе инверторов может изменяться в пределах 0?45 Гц. За счет использования сдвига на 30 эл. градусов на трансформаторах и сдвига на 30 градусов осей валов СД 1 и СД 2 обеспечивался 12-пульсный режим нагрузки для питающей сети и снижение уровня гармонических частот колебаний мощности на валу вентилятора. На рис. 4б видно как изменяются мгновенные активные мощности на валах СД 1 и СД 2 (соответственно p1(t) и p2(t)) и суммарный сигнал мгновенной мощности p3ф(t)=p1(t) + p2(t)) при основной частоте на выходах инверторов, равной 25 Гц (длительность перио-да этой частоты равна 0.04с). Как видно, мгновенные мощности p1(t) и p2(t) интенсивно пульсируют с частотой 25 Гц, а на вал непосредственно вентилятора воздействует показанная на рисунке затемнением переменная составляющая мгновенной мощности p1(t) — p2(t).В амплитудно-частотном спектре суммарной мгновенной мощности p3ф(t) (рис.4в) присутствуют помимо имеющих большие значения четных гармоник 300 и 600 Гц также гармоники, кратные частоте 25 Гц .
Рис.1 Мгновенная трехфазная мощность ДСП (а) и еe частотный спектр (б)
Рис.2 Фрагмент мгновеной трехфазной мощности электропривода прокатного стана p3ф(t) (a) мгновенная мощность с большей разверткой во времени (б) и спектр этой мощности (в)
Рис.3 Мгновенная трехфазная мощность P3ф(t)и ее спектр при пуске асинхронного двигателя с ограничением пускового тока за счет фазового регулирования.
a)
б)
в)
Рис.4
а)- схема электропривода вентилятора;
б)- мгновенные трехфазные мощности p1(t) и p2(t) на валах синхронных двигателей СД1 и СД2, суммарная мощность p?(t)=p1(t)+p2(t), переменная составляющая мощности p1(t)–p2(t), воздействующая на вал вентилятора;
в)амплитудно-частотный спектр мгновенной трехфазной мощности р3ф(t).
Выводы:
1. При измерениях и анализе характеристик электроприемников целесо-образно получать в виде функции времени мгновенную трехфазную активную мощность и ее амплитудно-частотный спектр, которые отражают степень неуравновешенности нагрузок по фазам и эффективность преобразования энергии.
2. Сигнал мгновенной трехфазной активной мощности можно использо-вать для контроля и диагностики состояния исследуемого электрооборудова-ния, а также для оценок опасности электромеханических возмущений, созда-ваемых нелинейными и резкопеременными нагрузками в узлах с генераторами и электродвигателями.
Литература:
1. Л. А. Кучумов, А. А. Кузнецов, М. В. Сапунов. Исследователи ждут большего от современных измерительных приборов. «Новости элек-тротехники», СПб, № 4, 2004 г.
2. Л. А. Кучумов, А. А. Кузнецов, М. В. Сапунов. Вопросы измерения электрических режимов и гармонических спектров в сетях с резкопе-ременной и нелинейной нагрузкой. «Промышленная энергетика».М.: № 3, 2005г
Авторы:
Л.А.Кучумов, проф. СПбГПУ;
А.А.Кузнецов, доцент СПбГПУ;
М.В.Сапунов, инженер ЗАО «НПФ «ЭНЕРГОСОЮЗ».
Расчет мощности линейного напряжения
Мощность постоянного тока в электрической цепи определяется простым способом, путем умножения силы тока и напряжения. Эти величины являются постоянными и не подвержены изменениям во времени, поэтому и значение мощности будет постоянным, поскольку вся система находится в уравновешенном состоянии.
Переменный ток по всем параметрам отличается от постоянного, особенно наличием количества фаз. Очень часто возникают ситуации, когда нужно выполнить расчет мощности трехфазного тока, для того чтобы правильно определить характеристики подключаемой нагрузки. Проведение таких расчетов требует специальных знаний о работе трехфазной системы питания. Трехфазные сети, наряду с однофазными, получили широкое распространение в связи с низкими материальными затратами и удобством эксплуатации.
Характеристики трехфазной системы
Трехфазные цепи как правило соединяются двумя основными способами – звездой (рис. 1) и треугольником, который будет рассмотрен ниже. На всех схемах для более удобного пользования фазы обозначаются символами А, В, С или U, V, W.
При использовании схемы «звезда» (рис. 1), значение суммарного напряжения в точке пересечения фаз N является равным нулю. В этом случае трехфазный ток, по сравнению с однофазным, будет обладать постоянной мощностью. Данное положение указывает на уравновешенность трехфазной системы, а мгновенная полная мощность будет выражена в виде формулы:
Соединение звездой характеризуется двумя видами напряжения – фазным (рис. 2) и линейным (рис. 3). В первом случае напряжение определяется между одной из фаз и нулевой точной пересечения N. Линейное напряжение соответствует напряжению, существующему между самими фазами.
Таким образом, значение полной мощности для соединения звездой отображается следующей формулой:
Однако следует учитывать разницу между линейным и фазным напряжением, составляющую √3. Поэтому считать необходимо сумму мощностей всех фаз. Для расчетов активной мощности применяется формула Р = 3 х Uф х Iф х cosφ, а для реактивной – Р = √3 х Uл х Iф х cosφ.
Другим распространенным способом фазного соединения считается «треугольник».
Данный вид соединения предполагает одинаковое значение фазного (Uф) и линейного (Uл) напряжения. Соотношение между фазными и линейными токами определяется в виде формулы I = √3 х Iф, в соответствии с которой значение фазного тока составит Iф = I х √3.
Таким образом, мощности линейных величин при данном способе соединения будут выражаться с помощью следующих формул:
- Полная мощность: S = 3 х Sф = √3 х U х I;
- Активная мощность: Р = √3 х U х I х cosφ;
- Реактивная мощность: Q = √3 х U х I х sinφ.
На первый взгляд формулы мощности для каждого вида соединений кажутся одинаковыми. При отсутствии достаточных знаний и опыта, это может привести к неправильным выводам. Чтобы избежать подобных ошибок, следует рассмотреть пример типового расчета.
- Соединение электродвигателя выполнено в виде треугольника, напряжение в сети составляет 380 В, сила тока – 10 А. Поэтому значение полной мощности будет следующим: S = 1,73 х 380 х 10= 6574 В х А.
- Далее этот же электродвигатель был соединен звездой. В этом случае на каждую обмотку фазы стало поступать напряжение в 1,73 раза ниже, чем при подключении треугольником, хотя сетевое напряжение осталось прежним. Соответственно сила тока в обмотках также уменьшилась в 1,73 раза. Существует еще один важный момент: если при соединении треугольником линейный ток в 1,73 раза превышал фазный, то в дальнейшем, когда схема изменилась на звезду, их значение стало равным. В результате, уменьшение линейного тока составило: 1,73 х 1,73 = 3 раза.
- Таким образом, в одной и той же формуле используются разные значения: S = 1,73 х 380 х 10/3= 2191 В х А, следовательно при переподключении электродвигателя со схемы треугольника на звезду, происходит снижение мощности в 3 раза.
Измерение мощности ваттметром
В электрических сетях измерение мощности осуществляется специальным прибором – ваттметром. Схемы подключения могут быть разными, в зависимости от подключения нагрузки и ее характеристик. В случае симметричной нагрузки (рис. 1), для проведения измерений используется только одна фаза, а полученные результаты, затем, умножаются на три. Данный способ является наиболее экономичным, позволяя существенно снизить размеры измерительного прибора. Он используется в тех случаях, когда нет необходимости в получении точных данный по каждой фазе.
В случае несимметричной нагрузки (рис. 2) измерения будут более точными. Однако для замеров мощности каждой фазы потребуется три прибора с большими габаритными размерами. Обрабатывать показания также придется со всех трех приборов.
Расчет мощности трехфазного тока и ее измерение можно выполнить в электрической цепи при отсутствии нулевого проводника (рис. 3). В такой схеме применяется два прибора, а для расчетов используется первый закон Кирхгофа: IA+IB+IC=0. Таким образом, показания двух ваттметров в сумме дают значение трехфазной мощности для данной цепи.
Расчет мощности трехфазной сети
Трёхфазнаянагрузка называется равномерной, когда по всем фазным проводникам протекает одинаковый ток. При этом сила тока в нулевом проводнике равна нулю. Примером равномерной (симметричной) нагрузки являютсятрёхфазныеэлектродвигатели. В этом случае мощность потребителя рассчитывается по формуле
P = 3*Uф*I* cos(φ) = 1,73Uл*I* cos(φ) (1)
Когда по фазным проводникам протекают различные по величине токи, нагрузка называется неравномерной или несимметричной. В случае несимметричной нагрузки по нулевому (нейтральному) проводу протекает ток. В данном случае мощность определяется по формуле:
Pобщ = Ua*Ia* cos(φ1) + Ub*Ib* cos(φ2) + Uc*Ic* cos(φ3) (2)
Пример 1
Какой ток протекает в цепи трехфазного электродвигателя мощностью 1,45 КВт и cos(φ)=0,76? Напряжение сети Uф/Uлин = 220/380 В
Решение: 3-х фазные электродвигатели являются симметричной нагрузкой. Используя формулу (1), после преобразований, получаем:
I = P/3*Uф* cos(φ) = 1450/3*220*0,76 = 2,9 А
Пример 2
Какую мощность потребляет коттедж с трёхфазным вводом, если по фазным проводам протекают токи величиной 4,2; 5,1 и 12 А? Принять cos(φ) = 1
Решение: Используя формулу (2), имеем:
Робщ = (4,2 + 5,1+12)*220 = 21,3*220 = 4,7 КВт
Расчет величины переменного электрического тока при однофазной нагрузке.
Предположим, что нас обычный дом или квартира в которой имеется электрическая сеть переменного тока напряжением 220 вольт.
В доме имеются электроприборы:
Для освещения дома установлены 5 электролампочек по 100 ватт каждая и 8 электролампочек мощностью 60 ватт каждая. 2. Электродуховка, мощностью 2 киловатта или 2000 ватт. 3. Телевизор, мощностью 0,1 киловатт или 100 ватт. 4. Холодильник, мощностью 0,3 киловатта или 300 ватт. 5. Стиральная машина мощностью 0,6 киловатт или 600 ватт. Нас интересует, какой ток будет протекать на вводе в наш дом или квартиру при одновременной работе всех вышеперечисленных электроприборов и не повредится ли наш электросчетчик, рассчитанный на ток 20 ампер?
Расчет: 1, Определяем суммарную мощность всех приборов: 500 + 480 + 2000 + 100 + 300 + 600 = 3980 ватт 2. Ток, протекающий в проводе при такой мощности определяется по формуле:
где: I – ток в амперах (А) Р – мощность в ваттах (Вт) U – напряжение в вольтах (В) cos φ – коэффициент мощности (для бытовых электросетей можно принять 0,95) Подставим числа в формулу: І = 3980 /220 * 0,95 = 19,04 А Вывод: Счетчик выдержит, так как ток в цепи меньше 20 А. Для удобства пользователей ниже приведена форма расчета тока.
Вам следует ввести в соответствующие поля формы суммарное значения мощности в ваттах всех ваших электроприборов, напряжение в вольтах, обычно 220 и коэффициента мощности, 0,95 для бытовой нагрузки, нажать кнопку «Вычислить» и в поле «Ток» появится величина тока в амперах. Если у вас нагрузка в киловаттах, следует перевести ее в ватты, для чего умножить на 1000. Для очистки введенного значения мощности следует нажать кнопку «Очистить». Очистку введенных по умолчанию значений напряжения и косинуса следует произвести клавишей delete переместив курсор в соответствующую ячейку (при необходимости).
Форма расчета для определения тока при однофазной нагрузке.
Расчет величины переменного электрического тока при трехфазной нагрузке.
Теперь предположим, что нас обычный дом или квартира в которой имеется электрическая сеть переменного тока напряжением 380/220 вольт. Почему указываются два напряжения – 380 В и 220 В? Дело в том, что при подключении к трехфазной сети в ваш дом заходят 4 провода – 3 фазы и нейтраль (по старому – ноль).
Так вот, напряжение между фазными проводами или иначе – линейное напряжение будет 380 В, а между любой из фаз и нейтралью или иначе фазное напряжение будет 220 В. Каждая из трех фаз имеет свое обозначение латинскими литерами А, В, С. Нейтраль обозначается латинской N.
Таким образом, между фазами А и В, А и С, В и С – будет напряжение 380 В. Между А и N, В и N, С и N будет 220 В и к этим проводам можно подключать электроприборы напряжением 220 В, а значит в доме может быть как трехфазная, так и однофазная нагрузка.
Вообще-то трехфазные нагрузки принято считать в киловаттах, поэтому, если они записаны в ваттах, их следует разделить на 1000. Нас интересует, какой ток будет протекать на вводе в наш дом или квартиру при одновременной работе всех вышеперечисленных электроприборов и не повредится ли наш электросчетчик, рассчитанный на ток 20 ампер?
Расчет: Определяем суммарную мощность всех приборов: 3 кВт + 15 кВт = 18 кВт 2. Ток, протекающий в фазном проводе при такой мощности определяется по формуле:
где: I – ток в амперах (А) Р – мощность в киловаттах (кВт) U – линейное напряжение, В cos φ – коэффициент мощности (для бытовых электросетей можно принять 0,95) Подставим числа в формулу: = 28,79 А
Определить
Линейные и фазные токи
Пример расчета:.
К источнику трехфазной сети с линейным напряжением Uл=380В и частотой f=50 Гц подключена равномерная нагрузка, соединенная по схеме «звезда», с полным сопротивлением в фазе Z=90 Ом и индуктивностью L= 180 мГн, Определить активную, реактивную и полную мощности, коэффициент мощности,
Решение.
1 Фазное напряжение:
U ф = U л / √ 3=380 / √ 3 = 220 В.
Фазный ток
Линейный ток
4 Реактивное сопротивление в фазе:
5 Активное сопротивление в фазе:
6 Коэффициент мощности катушки:
sinφ=XL/z= 56,5/90=0,628
7 Мощности, потребляемые нагрузкой:
а) активная:
Или
б) реактивная:
в) Полная:
Расчет мощности трехфазной сети
Трёхфазнаянагрузка называется равномерной, когда по всем фазным проводникам протекает одинаковый ток. При этом сила тока в нулевом проводнике равна нулю. Примером равномерной (симметричной) нагрузки являютсятрёхфазныеэлектродвигатели. В этом случае мощность потребителя рассчитывается по формуле
P = 3*Uф*I* cos(φ) = 1,73Uл*I* cos(φ) (1)
Когда по фазным проводникам протекают различные по величине токи, нагрузка называется неравномерной или несимметричной. В случае несимметричной нагрузки по нулевому (нейтральному) проводу протекает ток. В данном случае мощность определяется по формуле:
Pобщ = Ua*Ia* cos(φ1) + Ub*Ib* cos(φ2) + Uc*Ic* cos(φ3) (2)
Пример 1
Какой ток протекает в цепи трехфазного электродвигателя мощностью 1,45 КВт и cos(φ)=0,76? Напряжение сети Uф/Uлин = 220/380 В
Решение: 3-х фазные электродвигатели являются симметричной нагрузкой. Используя формулу (1), после преобразований, получаем:
I = P/3*Uф* cos(φ) = 1450/3*220*0,76 = 2,9 А
Пример 2
Какую мощность потребляет коттедж с трёхфазным вводом, если по фазным проводам протекают токи величиной 4,2; 5,1 и 12 А? Принять cos(φ) = 1
Решение: Используя формулу (2), имеем:
Робщ = (4,2 + 5,1+12)*220 = 21,3*220 = 4,7 КВт
Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).
Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.
Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.
В цепи постоянного тока мощность определяется довольно просто – это произведение тока и напряжения. Они не изменяются во времени и есть постоянной величиной, соответственно и мощность является постоянной, то есть система уравновешена.
С сетями переменного напряжения все гораздо сложнее. Они бывают однофазные, двухфазные, трехфазные и т.д. Наибольшее распространение получили однофазные и трехфазные сети в силу своего удобства и наименьших затрат.
Рассмотрим трехфазную систему питания
Такие цепи, могут соединяться в звезду или в треугольник. Для удобства чтение схем и во избежание ошибок фазы принято обозначать U, V, W или А, В, С.
Схема соединения звезда:
Схема соединения фаз в звезду
Для соединения звездой суммарное напряжение в точке N равно нулю. Мощность трехфазного тока в данном случае тоже будет постоянной величиной, в отличии от однофазного. Это значит что трехфазная система уравновешена, в отличии от однофазной, то есть мощность трехфазной сети постоянна. Мгновенно значение полной трехфазной мощности будет равно:
В данном типе соединения присутствуют два вида напряжения – фазное и линейное. Фазное – это напряжение между фазой и нулевой точкой N:
Фазное напряжение в цепи
Линейное – между фазами:
Линейное напряжение
Поэтому полная мощность трехфазной сети для такого типа соединения будет равна:
Но поскольку линейное и фазное напряжение отличаются между собой в , но считается сумма фазовых мощностей. При расчете трехфазных цепей такого типа принято пользоваться формулой:
Соответственно для активной:
Для реактивной:
Схема соединения в треугольник
Как видим при таком виде соединения, фазное и линейное напряжение равны, из чего следует, что мощность для соединения в треугольник равна:
Измерение мощности
Измерение активной мощности в сетях производится с помощью ваттметра
Цифровой ваттметр Аналоговый ваттметр
В зависимости от схемы соединения нагрузки и его характера (симметричная или несимметричная) схемы подключения приборов могут разниться. Рассмотрим случай с симметричной нагрузкой:
Схема включения ваттметра при симметричной нагрузке
Здесь измерение проводится всего лишь в одной фазе и далее согласно формуле умножается на три. Этот способ позволяет сэкономить на приборах и уменьшить габариты измерительной установки. Применяется, когда не нужна большая точность измерения в каждой фазе.
Измерение при несимметричной нагрузке:
Схема включения ваттметра при несимметричной нагрузке
Этот способ более точный, так как позволяет измерить мощность каждой фазы, но это требует трех приборов, больших габаритных размеров установки и обработки показаний с трех приборов.
Измерении в цепи без нулевого проводника:
Схема включения ваттметра при отсутствии нулевого провода
Эта схема требует двух приборов. Этот способ основывается на первом законе Кирхгофа
IA+IB+IC=0. Из этого следует, что сумма показаний двух ваттметров равна трехфазной мощности этой цепи. Ниже показана векторная диаграмма для данного случая:
Векторная диаграмма включения двух ваттметров при различных видах нагрузки
Мы можем сделать вывод, что показания приборов зависят не только от величины, но еще и от характера нагрузки.
Из диаграммы следует, что мы можем определить показание приборов аналитически:
Проанализировав полученный результат можем сделать вывод что, при преобладании активной нагрузки (φ=0) результаты измерения ваттметров тождественны (W1=W2). При активной и индуктивной (R-L) показания W1 меньше чем W2 (W1 60 0 показания W1 вообще отрицательные (W1 W2, а при φ 0 показания W2 Posted in Электротехника
Комментарии к статье “ Мощность трехфазной сети ”
В формуле мощности при соединении треугольником надо дописать что Iф= КОРЕНЬ из I ЛИНЕЙНОГО, а значит окончательнаяф формула принимает вид почти ТАКОЙ ЖЕ как и для мощности при соединении звездой — Р=КОРЕНЬ из ТРЁХ * Uфазное * I линейное*соs f
При чём U фазное = U линейное. То есть в обеих случаях формула мощности одна и та же.
ПОдскажите , клещами на проводниках 3 полючного автомата померили ток, получили значения. Как считать мощность через. корень квадратный? или как для однофазки P=UI
Все зависит от того, какую мощность вы хотите посчитать. Если полную, то да, S = UI. Для других мощностей нужно использовать другие формулы.
Добавить комментарий
Отменить ответ- Автоматизация технологических процессов (121)
- Альтернативная энергетика (32)
- Интернет вещей (IoT) (90)
- Микроконтроллеры (31)
- Моделирование электромеханических систем (22)
- Новости партнеров (1)
- Новости электроники (155)
- Основы электричества (27)
- Реактивная мощность (12)
- Робототехника (26)
- Станки с ЧПУ (36)
- Схемотехника (82)
- Теория автоматического управления (14)
- Электрика в быту (60)
- Электрические машины и аппараты. Трансформаторы (69)
- Электропривод (115)
- Электроснабжение (77)
- Электротехника (102)
- Энергосбережение (81)
- Магнитные пускатели – 87 562
- Что такое активная, реактивная и полная мощность – 70 786
- Логические элементы и их схемная реализация – 70 455
- Механические характеристики при торможении синхронных машин – 55 712
- Подключение амперметров к сети – 51 284
- Соотношение между фазными и линейными напряжениями. Номинальные напряжения – 49 449
- Что такое категории надежности электроснабжения? – 45 936
- Мощность трехфазной сети – 45 426
- Ввод и распределение электроэнергии в многоквартирном доме – 44 902
- В чем разница между NPN и PNP транзисторами? – 41 871
формула, мощность, баланс – образцы и примеры
Содержание:
- Мощность трёхфазной цепи
- Трёхфазные цепи
- Получение трёхфазной системы ЭДС
- Связывание цепей трёхфазной системы
Мощность трёхфазной цепи
Мощность при несимметричной нагрузке
Каждая фаза нагрузки представляет собой отдельный элемент электрической цепи, в котором происходит преобразование энергии или её обмен с источником питания. Поэтому активная и реактивная мощности трёхфазной цепи равны суммам мощностей отдельных фаз:
— для соединения звездой;
— для соединения треугольником.
Активная и реактивная мощности каждой фазы определяются так же, как в однофазной цепи:
Полная мощность трёхфазной цепи равна:
причём
Полную мощность можно представить также в комплексной форме. Например, для соединения нагрузки звездой:
Мощность при симметричной нагрузке
При симметричной нагрузке мощности всех фаз одинаковы, поэтому её можно определить, умножив на три выражения (3.14):
Фазные токи и напряжения в (3.15) можно выразить через линейные с учётом того, что при симметричной нагрузке и соединении её звездой , а при соединении треугольником . Подставляя эти соотношения в (3.15), мы получим для обеих схем соединения одинаковые выражения для мощности:
Трёхфазные цепи
Трёхфазные цепи являются основным видом электрических цепей, используемых при производстве, передаче и распределении электрической энергии. Они представляют собой частный случай симметричной многофазной цепи. То есть набор электрических цепей с одинаковой амплитудой и частотой, а источники с синусоидальными ЭДС сдвинуты по фазе друг от друга на один и тот же угол. Другие многофазные схемы также используются в этой технике. Шестифазные и двенадцатифазные выпрямительные установки с двухфазной автоматизацией, но трехфазные энергетические системы являются наиболее распространенными. Это связано с тем, что трёхфазная система является минимально возможной симметричной системой , обеспечивающей:
• экономически эффективное производство, передачу и распределение электроэнергии;
• эффективное преобразование электрической энергии в механическую посредством машин с вращающимся магнитным полем;
• возможность использования потребителем двух различных напряжений питания без дополнительных преобразований.
Возможно вам будут полезны данные страницы:
Получение трёхфазной системы ЭДС
Для создания трёхфазной электрической цепи требуются три источника ЭДС с одинаковыми амплитудами и частотами и смещенными по фазе на 120°. Самым простым техническим устройством, которое надежно отвечает этим требованиям, является синхронный генератор. На рисунке 1 показана функциональная схема. 3.1. Ротор генератора (вращающаяся часть) представляет собой электромагнит или постоянный магнит. На статоре (неподвижной части) генератора расположены три одинаковые обмотки, смещенные в пространстве друг относительно друга на 120°. При вращении ротора его магнитное поле меняет своё положение относительно обмоток и в них наводятся синусоидальные ЭДС. Частота и амплитуда ЭДС обмоток определяется частотой вращения ротора со, которая в промышленных генераторах поддерживается строго постоянной. Равенство ЭДС обмоток обеспечивается идентичностью их конструктивных параметров, а фазовое смещение — смещением обмоток в пространстве.
Начала обмоток генератора обозначаются буквами латинского алфавита А, В, С, а их концы X, Y, Z. Последовательность, в которой фазные ЭДС проходят через одинаковые состояния, например, через нулевые значения, называется порядком чередования фаз. В электрических сетях этот порядок жёстко соблюдается, т.к. его нарушение может привести к серьёзным экономическим последствиям и к угрозе жизни и здоровью людей. В отечественной литературе принято обозначать ЭДС источников индексами, соответствующими обозначению начал обмоток, т.е. А-В-С.
Пусть начальная фаза ЭДС равна нулю, тогда мгновенные значения ЭДС обмоток генератора равны:
или в комплексной форме:
На рис. 3.2 показаны графики мгновенных значений и векторная диаграмма ЭДС. Вектор направлен по вещественной оси , вектор отстаёт от него по фазе на 120°, а вектор опережает на такой же угол.
Основным свойством симметрии многофазных систем является равенство нулю суммы мгновенных значений ЭДС, напряжений и токов, т.е.
В этом можно удостовериться, сложив комплексные числа в выражениях (3.1). Обеспечение симметрии системы является необходимым условием её эффективной работы.
Связывание цепей трёхфазной системы
Если к каждой обмотке трёхфазного генератора подключить нагрузку, то три отдельные электрические цепи (рис. 3.3, а***) образуют трёхфазную несвязанную систему. Каждая электрическая цепь, включающая источник ЭДС и нагрузку, называется фазой**** трёхфазной цепи. Напряжения между началами и концами обмоток генератора и напряжения между началами (а, b, с) и концами (х, у, z) нагрузки называются фазными напряжениями. Если сопротивлением соединительных проводов можно пренебречь, то , . Токи , протекающие в фазах называются фазными токами.
В несвязанной трёхфазной системе источники электрической энергии и нагрузка соединены шестью проводами (рис. 3.3, а) и представляют собой три независимые электрические цепи. Очевидно, что такая система ничем не отличается от трех однофазных цепей. Если обмотки генератора и фазовые нагрузки взаимосвязаны, образуется трехфазная цепь. На рис. 3.3, б показана трёхфазная цепь, в которой фазы генератора и нагрузка соединены звездой. Узлы соединений обмоток генератора и фаз нагрузки называются нейтральными (нулевыми) точками или нейтралями ( на 3.3, о), а провод, соединяющий эти точки -нейтральным (нулевым) проводом.
Проводники, соединяющие генератор и нагрузку, называются линейными проводами, а напряжения между линейными проводами ( на рис. 3.3, б) линейными напряжениями.
В связанной системе генератор и нагрузка соединены только четырьмя проводами и такая система называется четырёхпроводной. В некоторых случаях, как мы увидим далее, число проводов может быть уменьшено до трёх. Уменьшение числа проводов существенно снижает стоимость и эксплуатационные расходы линий передачи и распределения электроэнергии.
Связать отдельные цепи можно также треугольником, но обмотки генераторов обычно соединяют звездой. В этом случае с помощью второго закона Кирхгофа можно установить соотношения между комплексными фазными и линейными напряжениями генератора (рис. 3.3, б):
В симметричной трёхфазной системе фазные напряжения одинаковы
Подставляя комплексные фазные напряжения в первое уравнение (3.3), получим:
Это соотношение можно получить также геометрическими построениями в треугольнике векторов на рис. 3.4. Отсюда, с учётом равенства линейных напряжений:
Расчет одно- и трехфазных параметров
Вы можете спросить: «Что такое константа?» Пример постоянной, с которой вы очень хорошо знакомы, — это число пи (π), которое получается делением длины окружности на ее диаметр. Независимо от длины окружности и диаметра соответствующего круга, их соотношение всегда равно пи. Вы можете использовать константы, относящиеся к определенным одно- и трехфазным напряжениям, для расчета тока (I) и киловатт (кВт). Посмотрим, как это сделать.
Однофазные расчеты
Базовая электрическая теория говорит нам, что для однофазной системы
кВт = (В × I × PF) ÷ 1000.
Для простоты предположим, что коэффициент мощности (PF) равен единице. Таким образом, приведенное выше уравнение становится
.кВт = (В × I) ÷ 1000.
Решая относительно I, уравнение принимает вид
I = 1000 кВт ÷ В (Уравнение 1)
Теперь, если мы посмотрим на часть этого уравнения «1000 ÷ V», вы увидите, что, вставив соответствующее однофазное напряжение для «V» и разделив его на «1000», вы получите конкретное число (или постоянная), которую можно использовать для умножения «кВт», чтобы получить ток, потребляемый этой нагрузкой при соответствующем напряжении.
Например, константа для расчета 120 В составляет 8,33 (1000 ÷ 120). Используя эту константу, уравнение 1 становится
I = 8,33 кВт .
Итак, если у вас нагрузка 10 кВт, вы можете рассчитать потребляемый ток как 83,3 А (10 × 8,33). Если у вас есть оборудование, потребляющее 80 А, вы можете рассчитать относительный размер необходимого источника питания, который составляет 10 кВт (80 ÷ 8,33).
Таблица 1. Константы, используемые в однофазных системах
Используя ту же процедуру, но вставив соответствующее однофазное напряжение, вы получите следующие однофазные константы, как показано в Таблица 1 .
Трехфазные расчеты
Для трехфазных систем мы используем следующее уравнение:
кВт = (В × I × PF × 1,732) ÷ 1000.
Опять же, принимая единицу PF и решая это уравнение относительно «I», вы получаете:
I = 1000 кВт ÷ 1,732 В.
Таблица 2. Константы, используемые в трехфазных системах
Теперь, если вы посмотрите на часть этого уравнения «1000 4 1,732 В», вы увидите это, вставив соответствующее трехфазное напряжение для «V» и умножив его на 1.732, вы можете затем разделить это количество на «1000», чтобы получить конкретное число (или константу), которое вы можете использовать для умножения «кВт», чтобы получить ток, потребляемый этой трехфазной нагрузкой при соответствующем трехфазном напряжении. Таблица 2 перечисляет каждую 3-фазную постоянную для соответствующего 3-фазного напряжения, полученного из вышеуказанного расчета.
Как преобразовать однофазное питание в трехфазное
Обновлено 15 декабря 2018 г.
Кевин Бек
В Соединенных Штатах большая часть энергии, поступающей в дома людей, является однофазной.Однако электроэнергия, вырабатываемая на электростанции, является трехфазной. Это идея, лежащая в основе тех больших линий передачи, которые вы видите прикрепленными к высоким башням — эти линии должны передавать столько напряжения, сколько возможно, на большие расстояния, прежде чем эта мощность будет «отведена» и доставлена в районы при значительно пониженном напряжении.
Однофазного питания достаточно практически для всех бытовых приборов, в то время как промышленные установки с тяжелым оборудованием требуют трехфазного питания.Но что, если вам нужно трехфазное питание, а все, что у вас есть, — это однофазное питание, поступающее в ваш дом?
Трехфазное питание: визуальная аналогия
Представьте себя и двух своих (явно скучающих) друзей, идущих взад и вперед со скоростью 2 метра в секунду (около 4,5 миль в час) по дороге, идущей на север. юг и измеряет 60 метров от конца до конца. Каждый из вас начинает в середине этого пути, идет к северному концу, возвращается к началу, продолжает идти к противоположному концу и снова возвращается к середине, тем самым завершая один 120-метровый «круг» или цикл.Поскольку каждый из вас идёт со скоростью 2 метра в секунду, один путь туда и обратно занимает у каждого человека ровно 60 секунд.
Предположим далее, что в начальной точке «статус» каждого из вас равен нулю. Вы получаете одну единицу статуса за каждый метр, который вы идете на север, и теряете единицу статуса за каждый метр, который вы идете на юг. Таким образом, всякий раз, когда один из вас достигает северного конца пути, этот человек имеет статус 30, в то время как любой, кто делает поворот на южном конце, имеет статус -30. Вы понимаете, что трое из вас могут максимально отделиться друг от друга, начав с интервалом в 20 секунд, потому что каждая схема занимает 60 секунд, и вас трое, и 60, разделенное на 3, равно 20.Если вы выполните алгебру, вы обнаружите, что, когда один из вас максимизировал свой «статус» до значения 30, достигнув северного конца, двое других проходят друг друга на полпути вдоль южной части, один направляется на север, а другой — на север. юг, где каждый ходок имеет статус -15. Если вы сложите свои значения статуса вместе в это время, они в сумме составят 30 + (-15) + (-15) = 0. Фактически, можно показать, что это сумма всех ваших значений статуса в любое время. равно 0 до тех пор, пока вы втроем точно расставлены, как описано.
Мощность и напряжение в цепях переменного тока
Это предлагает модель того, как выглядит трехфазная электрическая мощность, за исключением того, что «напряжение» заменяется на «состояние», и вместо одного цикла, происходящего каждые 60 секунд, происходит 60 циклов напряжения каждый второй. Кроме того, вместо того, чтобы каждый человек проходил начальную точку дважды в минуту, напряжение проходит через нулевую точку 120 раз в секунду.
Из-за того, что мощность, ток и напряжение связаны математически, трехфазная мощность остается на постоянном, ненулевом уровне, даже если три отдельных напряжения складываются в ноль в любой момент.Это соотношение:
Здесь P — мощность в ваттах, V — напряжение в вольтах, а R — электрическое сопротивление в единицах, называемых омами. Вы можете видеть, что отрицательные напряжения вносят вклад в мощность, потому что возведение отрицательного числа в квадрат дает положительное значение. Полная мощность в трехфазной системе — это просто сумма мощности трех отдельных значений мощности каждой фазы.
Кроме того, если вы когда-нибудь задавались вопросом, как переменный ток (AC) получил свое название, теперь у вас есть ответ.Напряжение никогда не бывает стабильным ни в однофазных, ни в трехфазных системах, и, как следствие, нет ни тока; они связаны законом Ома: V = IR, где I означает ток в амперах («амперах»).
Однофазное питание: расширение аналогии
Чтобы расширить аналогию «приятель-ходьба-вперед-вперед» на однофазное питание, просто представьте, что двух ваших друзей зовут домой к обеду, пока вы продолжаете идти, и вот они. у тебя есть это. То есть трехфазное питание — это буквально три однофазных источника питания, взаимно смещенных на треть цикла (или, в тригонометрическом выражении, на 120 градусов).В однофазном источнике питания каждый раз, когда одно напряжение на короткое время становится равным нулю, выходная мощность также уменьшается. Возможно, теперь вы понимаете, почему небольшие приборы, на которые не сильно влияют очень короткие перебои в подаче электроэнергии, могут работать от однофазной энергии, в то время как большие машины, которые работают с высокими уровнями мощности (мощности), не могут; им требуется большой и стабильный источник питания.
Все вышесказанное легче понять, просмотрев график зависимости напряжения от времени для трехфазного источника питания (см. Ресурсы).На этом графике отдельные фазы изображены красными, пурпурными и синими линиями. Их сумма всегда равна нулю, но сумма их квадратов положительна и постоянна. Таким образом, при неизменном значении R мощность P в этих установках также постоянна благодаря соотношению P = V 2 / R.
Для однофазной сети нет напряжений для суммирования, а напряжение однофазной сети проходит через нулевую точку 120 раз в секунду. В эти моменты мощность падает до нуля, но восстанавливается достаточно быстро, так что небольшие светильники, приборы и т. Д. Не испытывают заметных перебоев.
Преобразование однофазного в трехфазное
Если у вас есть трехфазный двигатель в более крупном устройстве, таком как промышленный воздушный компрессор, и у вас нет доступа к трехфазному питанию из-за особенностей вашей местной электросети настроен, существуют обходные пути, которые вы можете использовать для правильного включения вашего оборудования. (Одно из них — просто заменить трехфазный двигатель на однофазный, но это не так умно, как другие решения.)
Доступны многочисленные типы трехфазных преобразователей.Один из них, статический преобразователь , использует тот факт, что, хотя трехфазный двигатель не может запускаться от однофазной мощности, он может продолжать работать от однофазной мощности после запуска. Статический преобразователь делает это с помощью конденсаторов (устройств, которые могут накапливать заряд), что позволяет статическому преобразователю заменять одну из фаз, хотя и неэффективным способом, который гарантированно сокращает эффективный срок службы двигателя. Вращающийся фазовый преобразователь , с другой стороны, действует как своего рода комбинация замещающего трехфазного двигателя и независимого генератора.Это устройство включает в себя холостой двигатель, который, когда он приводится в движение, не вращает движущиеся части в родительских машинах, а вместо этого вырабатывает мощность, так что вся установка может достаточно хорошо имитировать трехфазную систему питания. Наконец, частотно-регулируемый привод (VFD) использует компоненты, называемые инверторами, которые могут использоваться для создания переменного тока практически любой желаемой частоты и воспроизводить большинство условий в стандартном трехфазном двигателе.
Ни один из этих преобразователей не идеален, как и хлебный нож, который можно использовать для легкой резки мяса.Но хлебный нож лучше, чем ваши голые руки, и поэтому эти преобразователи действительно хорошо иметь под рукой, если вы часто работаете с энергоемким оборудованием и инструментами.
Что такое мощность в кВА? | Sciencing
Единица измерения кВА (киловольт-ампер) — это мера мощности в электрической цепи. Мощность зависит от напряжения и тока в данный момент времени, при этом значение KVA представляет собой мощность, генерируемую или потребляемую схемой в этот момент. Для большинства жилых помещений напряжение и ток в цепях переменного тока синфазны, а мощность в кВА равна киловаттам (кВт).КВт с течением времени дают киловатт-часы (кВтч), которые представляют собой энергию, использованную за определенный период времени.
TL; DR (слишком долго; не читал)
Когда напряжение и ток совпадают по фазе, киловольт-амперы (кВА) равны киловаттам (кВт) или мощности, используемой в электрической цепи. Когда напряжение и ток не совпадают по фазе, KVA выше, чем KW, и дает полную мощность, которую необходимо умножить на коэффициент мощности, чтобы получить KW.
Чем мощность в кВА отличается от кВт
Пока напряжение и ток растут и падают вместе, они находятся в фазе и вырабатывают реальную мощность.В таком случае мощность в кВА, полученная путем умножения напряжения и тока вместе и деления на 1000, равна мощности в кВт. Это относится к бытовой технике, для которой потребляемая мощность обычно указывается в кВт.
Для некоторых электрических нагрузок, таких как большие промышленные двигатели, напряжение и ток не совпадают по фазе. Вместо этого напряжение в типичной цепи переменного тока повышается, но ток сдерживается магнитным полем двигателя. Когда напряжение и ток не совпадают по фазе, они производят меньшую реальную мощность, хотя электрическая цепь по-прежнему содержит те же значения напряжения и тока.В результате мощность в кВА, или кажущаяся мощность, основанная на напряжении и токе, выше реальной мощности. Для компенсации мощность в кВА умножается на коэффициент мощности, выраженный десятичной дробью от нуля до единицы. Типичный коэффициент мощности для больших промышленных нагрузок составляет 0,8, что означает, что умноженная на 0,8 мощность в кВА дает реальную мощность в кВт.
Использование KVA Power
Сталелитейный завод может захотеть запустить большой двигатель для раскатки тонких листов стали. Для такого двигателя напряжение и ток в цепи двигателя не будут совпадать по фазе, и мощность в кВА будет выше, чем кВт.Например, компания может получать от двигателя 80 кВт крутящего момента, а мощность в кВА может составлять 100 кВА.
Компания должна платить за электроэнергию, которую она использует, но коммунальное предприятие обеспечивает ток и напряжение, достаточное для 100 кВА, и будет взимать плату за эту сумму, даже если компания получает только 80 кВт полезной мощности. Чтобы снизить свои затраты, компания может установить оборудование для коррекции коэффициента мощности, чтобы вернуть напряжение и ток в фазу. В зависимости от задействованных электрических цепей такое оборудование может состоять из конденсаторов или генератора.После установки напряжение и ток вернутся в фазу, и компания будет использовать только 80 кВА на 80 кВт мощности двигателя.
МощностькВА дает полную мощность, возникающую в результате несинфазности напряжения и тока, но только синфазные части напряжения и тока обеспечивают реальную мощность. Поскольку коммунальные предприятия по-прежнему должны обеспечивать полное напряжение и ток, даже если они не совпадают по фазе, они используют калькулятор мощности, который основывает свои платежи за электроэнергию на мощности в кВА.
Электроэнергия в доме
Большинство электрических нагрузок в домах не работают в противофазе.В таких приборах, как плиты, духовки, тостеры и электрические обогреватели, для производства тепла используются синфазные напряжения и токи. Для бытовых приборов с двигателями, таких как холодильники, стиральные машины и сушилки, двигатели либо слишком малы, чтобы коммунальные предприятия взимали плату за дополнительную кажущуюся мощность, либо в двигатели уже встроены компенсирующие цепи. В результате дома становятся обычно взимается только за действительную мощность в кВт, а не за мощность в кВА.
Объяснение трехфазного питания | Объяснение трехфазного питания
В этом видео подробно рассматривается трехфазное питание и объясняется, как оно работает.Трехфазную мощность можно определить как общий метод производства, передачи и распределения электроэнергии переменного тока. Это разновидность многофазной системы, которая является наиболее распространенным методом передачи электроэнергии в электрических сетях во всем мире.
Дополнительные ресурсы Raritan
Расшифровка стенограммы:
Добро пожаловать в это анимированное видео, которое быстро расскажет о трехфазном питании. Я также объясню загадку того, почему 3 линии электропередачи разнесены на 120 градусов, потому что это важный момент для понимания трехфазного питания.
Питание, которое поступает в центр обработки данных, обычно представляет собой трехфазное питание переменного тока, что означает трехфазное питание переменного тока.
Давайте посмотрим на упрощенный пример того, как генерируется трехфазная мощность.
Этот пример отличается от того, что я использовал бы для описания того, как трехфазный двигатель использует мощность. В видео с переменным током мы показали, как вращение магнита мимо одного провода заставляет ток течь вперед и назад. Теперь мы собираемся повернуть магнит мимо трех проводов и посмотреть, как он влияет на ток в каждом проводе.
В этом трехфазном примере северный положительный конец магнита направлен прямо вверх по линии один.
Чтобы облегчить объяснение концепции, давайте воспользуемся циферблатом и скажем, что первая линия находится в позиции двенадцати часов. Электроны в строке 1 будут течь к северному полюсу магнита. Что происходит, когда магнит теперь поворачивается на 90 градусов?
Как мы видели на видео с переменным током, поскольку магнит перпендикулярен линии 1, электроны в линии 1 перестанут двигаться.Затем, когда магнит поворачивается более чем на 90 градусов, южный полюс магнита приближается к линии один, и электроны меняют направление, что означает, что направление тока изменится. Это было подробно описано в видео по переменному току. Если вы нажали на это видео, не понимая, что такое переменный ток, сначала просмотрите это видео.
Глядя на график, вы можете понять, почему я выбрал аналоговый циферблат. Круг составляет 360 градусов, и часы делят круг на 12 частей, так что каждый час покрывает 30 градусов круга.Переход от 12 к 3 составляет 90 градусов, а переход от 12 к 4 — 120 градусов.
При генерации трехфазного питания медные провода расположены на расстоянии 120 градусов друг от друга. Итак, когда вы находитесь в позиции «четыре часа» в нашем примере, это 120 градусов от первой линии. А в положении «восемь часов» он находится на 120 градусах от обоих положений: «4 часа» и «12 часов». Три линии равномерно расположены по кругу.
Если северный полюс находится ближе к одному из трех проводов, электроны движутся в этом направлении.Чем ближе южный полюс подходит к каждому проводу, тем больше электроны удаляются от южного полюса. В каждой из трех линий электроны движутся вперед и назад, и они не всегда движутся в том же направлении или с той же скоростью, что и две другие линии.
Давайте еще раз посмотрим на пример. Когда магнит вращается, когда северный полюс находится в положении 1 часа, он становится перпендикулярным линии 2, поэтому, конечно, электроны перестают двигаться по линии 2. Но они все еще движутся по линии 1, привлеченные более близким северным полюсом, и они движутся по линии 3, которую отталкивает южный полюс.Когда северный полюс магнита смотрит на 2 часа, тогда на линии 1 и [линию] 2 воздействует северный полюс, но южный полюс находится прямо напротив линии 3, так что теперь у него пиковый ток. В 3 часа магнит перпендикулярен линии 1, поэтому электроны перестают двигаться, но на линию 2 влияет северный полюс, а на линию 3 — южный полюс, поэтому ток течет по линиям 2 и 3.
Надеюсь, , этот пример показывает вам, как в любое время ток всегда течет как минимум по 2 линиям. Он также показывает взаимосвязь между 3 линиями при вращении магнита по кругу.Когда магнит вращается вокруг циферблата, на каждую из трех линий будет воздействовать либо северный, либо южный полюс, за исключением случаев, когда магнит перпендикулярен линии.
Давайте сосредоточимся на линии 1. Это пик тока, когда северный полюс указывает на 12 и 6 часов. Это при нулевом токе, когда северный полюс указывает на 3 и 9 часов. Только 1 из 3 линий всегда находится на пике, но поскольку есть 3 линии, есть 3 положительных пика и 3 отрицательных пика для каждого цикла.В 6 различных положениях на циферблате одна из линий находится на пике. Позиции 12 и 6 — это чередующиеся пики линии 1, позиции 2 и 8 — чередующиеся пики линии 3, а 4 и 10 — чередующиеся пики линии 2.
Теперь давайте объясним те запутанные формы сигналов, которые часто используются для изображения трех фаз. Если вы посмотрите на пример формы сигнала, вы увидите первую строку синего цвета, которая начинается с нуля. Это означает, что магнит перпендикулярен этой линии. По мере движения магнита вы можете видеть, как ток достигает своего пика.Затем, когда положительный полюс вращается мимо этого провода, ток начинает ослабевать, пока магнит снова не станет перпендикулярным, что приводит к нулевому току. Когда отрицательный полюс начинает приближаться, ток меняет направление и движется в другом направлении к другому пику, прежде чем вернуться к нулевому току. Это завершает 1 полный цикл для этой линии.
Для того, чтобы двумерная диаграмма показывала взаимосвязь между линиями, теперь на ней отображается зазор, который означает время, за которое магнит вращается на 120 градусов.Это когда красная линия имеет нулевой ток. По мере того как магнит продолжает вращаться, красная линия будет двигаться к пиковому положительному току, затем вернется к нулю, после чего ток изменит направление. График также показывает, что третья линия начнется при нулевом токе через 120 градусов после второй строки. Итак, если вы посмотрите на эти 3 линии, вы увидите, что, когда одна линия находится на пике, другие 2 линии все еще генерируют ток, но они не на полную мощность, то есть они не на пике. Таким образом, когда электроны перетекают от положительного пика к отрицательному, ток отображается как переходящий от положительных значений к отрицательным.Помните, что положительные и отрицательные стороны не отменяют друг друга. Положительная и отрицательная коннотации используются только для описания того, как меняется ток.
В трехфазной цепи вы обычно берете одну из трех токоведущих линий и подключаете ее к другой из трех токоведущих линий. Одно исключение из этого описано в видео «Дельта-звезда».
В качестве примера возьмем трехфазную линию на 208 В. Каждая из 3 линий будет передавать 120 вольт. Если вы посмотрите на диаграмму, вы легко увидите выходную мощность любых двух линий.Если одна линия на пике, другая линия не на пике. Вот почему в трехфазной цепи неправильно умножать 120 вольт на 2, чтобы получить 240 вольт.
Итак, если вам интересно, почему у вас дома есть 110/120 вольт для обычных розеток, но у вас также есть приборы на 220/240 вольт, что дает? Что ж, это не трехфазное питание. Фактически это 2 однофазные линии.
Итак, как вы рассчитываете мощность объединения двух линий в трехфазную цепь? Формула рассчитывается как умножение вольт на квадратный корень из 3, который округляется до 1.732. Для 2 линий, каждая на 120 вольт, вычисление для этого составляет 120 вольт, умноженное на 1,732, и результат округляется до 208 вольт.
Вот почему мы называем это трехфазной цепью на 208 вольт или трехфазной линией на 208 вольт. Трехфазная цепь на 400 вольт означает, что каждая из трех линий проходит по 230 вольт.
Последняя тема, о которой я расскажу в этом видео: почему компании и центры обработки данных используют 3 фазы?
А сейчас позвольте дать вам простой обзор. Для трехфазного подключения вы подключаете линию 1 к линии 2 и получаете 208 вольт.В то же время вы [можете] подключить линию 2 к линии 3 и получить 208 вольт. И вы [можете] соединить линию 3 с линией 1 и получить 208 вольт. Если провод может выдавать 30 ампер, то передаваемая мощность составляет 208 вольт, умноженное на 30 ампер, умноженное на 1,732, при общей доступной мощности 10,8 кВА.
Для сравнения, для однофазной 30-амперной цепи с напряжением 208 В вы получите только 6,2 кВА. Обычно 3 фазы обеспечивают большую мощность.
Существуют и другие факторы, по которым гораздо лучше подавать трехфазное питание в стойку центра обработки данных, чем использовать однофазное питание, и эти факторы обсуждаются в видео в зависимости от напряжения и силы тока, а также в видео с напряжением 208 и 400 вольт.
Мощность при сбалансированной трехфазной нагрузке
Сбалансированные нагрузки в системе 3φ имеют одинаковое полное сопротивление каждой вторичной обмотки (рисунок 12). Импеданс каждой обмотки при треугольной нагрузке показан как Z ∆ (Рисунок 12a), а импеданс в тройной нагрузке показан как Z y (Рисунок 12b). Для соединения треугольником или звездой линии A, B и C подают систему напряжений 3φ.
Рисунок 12: Сбалансированные нагрузки 3φ
В сбалансированной треугольной нагрузке линейное напряжение (V L ) равно фазному напряжению (V ø ), а линейный ток (I L ) равен квадратному корню из трехкратного значения фазы. ток ( √3 I ø ).
Приведенное ниже уравнение представляет собой математическое представление V L при сбалансированной дельта-нагрузке.
V L = V ø
Приведенное ниже уравнение представляет собой математическое представление I L при сбалансированной дельта-нагрузке.
I L = √3 I ø
В сбалансированной нагрузке звездой линейное напряжение (В L ) равно квадратному корню из трехкратного фазного напряжения ( √3V ø ), а линейный ток (I L ) равен фазный ток (I ø ).
Уравнение ниже представляет собой математическое представление V L в сбалансированной звездообразной нагрузке.
В L = √3V ø
Уравнение ниже представляет собой математическое представление I L в сбалансированной звездообразной нагрузке.
I L = I ø
Поскольку полное сопротивление каждой фазы сбалансированной нагрузки по схеме треугольник или звезда имеет равный ток, фазная мощность составляет одну треть от общей мощности.
Уравнение ниже представляет собой математическое представление для фазной мощности (P ø ) при сбалансированной нагрузке по схеме треугольник или звезда.
P ø = V ø I ø cosθ
Общая мощность (P T ) равна трехкратной однофазной мощности.
Приведенное ниже уравнение является математическим представлением полной мощности при сбалансированной нагрузке по схеме треугольник или звезда.
P T = 3 В ø I ø cosθ
При подключении нагрузки по схеме треугольник,
В нагрузке, соединенной звездой,
Как видите, формулы полной мощности для нагрузок, соединенных треугольником и звездой, идентичны.
Полная полная мощность (S T ) в вольт-амперах и полная реактивная мощность (Q T ) в вольт-ампер-реактивных соотносятся с полной активной мощностью (P T ) в ваттах (рисунок 13).
Рисунок 13: Треугольник мощности 3φ
Сбалансированная трехфазная нагрузка имеет реальную, полную и реактивную мощности, определяемую по формуле:
Пример 1:
Каждая фаза соединенного треугольником генератора переменного тока 3φ обеспечивает ток полной нагрузки 200 А при 440 В с 0.6 с запаздывающим коэффициентом мощности, как показано на Рисунке 14.
Рисунок 14: Генератор трехфазного треугольника
Находят:
- V L
- I L
- П Т
- Q T
- S T
Решение:
1. Рассчитать V L
V L = V ø
В Д = 440 В
2.Рассчитать I L
I L = √3 I ø
I L = 1,73 x 200
I L = 346 ампер
3. Рассчитать P T
P T = √ 3 V L I L cosθ
P T = 1,73 x 440 x 346 x 0,6
P T = 158,2 кВт
4. Рассчитать Q T
Q T = √ 3 В L I L sinθ
Q T = 1.73 х 440 х 346 х 0,8
Q T = 210,7 KVR
5. Рассчитать S T
S T = √ 3 V L I L
S T = 263,4 кВА
Пример 2:
Каждая фаза соединенного звездой 3-фазного генератора переменного тока подает ток 100 А при фазном напряжении 240 В и коэффициенте мощности 0,9 с запаздыванием, как показано на Рисунке 15.
Рисунок 15: Трехфазный звездообразный генератор
Находят:
- V L
- П Т
- Q T
- S T
Решение:
1.Рассчитать V L
В L = √3V ø
В Д = 1,73 x 240
В L = 415,2 В
2. Рассчитать P T
P T = √ 3 V L I L cosθ
P T = 1,73 x 415,2 x 100 x 0,9
P T = 64,6 кВт
3. Рассчитать Q T
Q T = √ 3 В L I L sinθ
Q T = 1.73 х 415,2 х 100 х 0,436
Q T = 31,3 кВт
4. Рассчитать S T
S T = √ 3 V L I L
S T = 1,73 x 415,2 x 100
S T = 71,8 кВА
AC DC Формула для расчета тока полной нагрузки
Расчет тока полной нагрузки машины переменного и постоянного тока:
Ток полной нагрузки используется для разработки системы защиты электрооборудования.
Что такое ток полной нагрузки:Ток полной нагрузки — это не что иное, как максимально допустимый ток. Входной ток к машине превышает ток полной нагрузки, значит, электрическая машина может быть повреждена. Из-за чрезмерного протекания тока машина выделяет дополнительное тепло (из-за P = I 2 * R). Это может привести к повреждению изоляции или обмотки электрического оборудования. Следовательно, эксплуатация машины при токе ниже полной нагрузки увеличивает срок службы электрического оборудования.
Нагрузка на двигатель переменного тока (переменный ток):
Нагрузки переменного тока состоят из резистивных нагрузок, индуктивных нагрузок. Активные нагрузки: водонагреватель, комнатный обогреватель и т. Д. Индуктивными нагрузками являются индукционная печь, однофазный асинхронный двигатель, трехфазный двигатель и т. Д.
Расчет тока полной нагрузки 3-фазный двигатель:
В большинстве трехфазных систем потребление электроэнергии происходит по схеме звезды и треугольника. Входная мощность (P) в системе одинакова, независимо от подключения.
Мощность в кВт (киловаттах)
В = напряжение +/- 10% в вольтах
I = ток полной нагрузки в амперах
Cos pi = коэффициент мощности
Трехфазная мощность P = 3 В * I * Cos pi Следовательно, ток полной нагрузки трехфазного двигателя I = P / (3 * V * Cos pi)
кВт = выходная мощность в ваттах ……. Все данные указаны на паспортной табличке.
Посмотрите на приведенную выше формулу, трехфазный ток полной нагрузки равен мощности, деленной на 3 произведения линейного напряжения на нейтраль и коэффициента мощности.
Как мы уже говорили, ток полной нагрузки трехфазной системы зависит от типа подключения. Здесь
Iph => Фазный ток
Iline => Линейный ток
Для соединения звездой ток полной нагрузки Iline равен Iph
Iph = Iline
Для соединения треугольником ток полной нагрузки Iline в 1,732 раза больше Iph
Iph / 1,732 = Iline
Следовательно, трехфазный ток полной нагрузки I равен
I = P / (1.732 * V * Cos pi)
Здесь трехфазный ток полной нагрузки равен мощности, деленной на 1,732-кратное линейное напряжение и коэффициент мощности.
Расчет тока полной нагрузки Однофазный двигатель:Ток полной нагрузки I однофазного двигателя равен мощности P, деленной на коэффициент мощности, умноженный на напряжение между фазой и нейтралью.
P = V * I * Cos pi
Ток полной нагрузки I = P / (V x Cos pi) Ампер
В = напряжение +/- 10% в вольтах
I = ток полной нагрузки в амперах
Cos pi = коэффициент мощности
кВт = выходная мощность в ваттах …….Все данные указаны на паспортной табличке двигателя.
Расчет тока полной нагрузки Трехфазный змеевик нагревателя:
Для трехфазного тока полный ток нагрузки для резистивной нагрузки равен трехфазной мощности, деленной на 1,732-кратное напряжение. Здесь коэффициент мощности для резистивных нагрузок будет равен единице.
Как вы знаете формулу мощности,
P = 1,732 x V x I
Ток полной нагрузки I,
I = P / 1,732 * В Ампер.
В = линейное напряжение
I = ток полной нагрузки в амперах
Если рассматривать среднее линейное напряжение, формула тока полной нагрузки принимает вид
I = P / 3 * В Ампер.
кВт = выходная мощность в ваттах ……. Все данные указаны на табличке нагревателя.
Расчет тока полной нагрузки Однофазные нагреватели:
Формула мощности кВт
В = Напряжение
I = ток полной нагрузки в амперах
кВт = выходная мощность в ваттах ……. Все данные указаны на табличке нагревателя.
P = V X I А
Ток полной нагрузки для однофазного нагревателя составит,
I = P / V Ампер
Рассчитать через сопротивление:
- Измерить сопротивление R змеевика нагревателя с помощью мультиметра.2 * рэнд
См. Также : Как рассчитать падение напряжения
Расчет тока полной нагрузки Машина постоянного тока (двигатель постоянного тока и генератор постоянного тока):постоянного тока => постоянного тока
P = V X I
V = E ± Ia Ra ± Is Rsh + падение щеток (шунтирующая машина)
V = E ± Ia (Ra + Rsh) + падение щеток (серийная машина)
В = напряжение питания
E = задняя ЭДС
Ia = ток якоря
Ra = сопротивление якоря
Is = ток возбуждения
Rsh = Полевое сопротивление
Обратная ЭДС e = (pi * N * P * Z / 60 A)
Pi = Магнитный поток
N = скорость машины
P = количество полюсов
Z = количество проводников
A = количество параллельных путей
P = A для лабораторной обмотки
А = 2 для волновой обмотки
Мифы о токе полной нагрузки:
- Ток полной нагрузки Для алюминиевого кабеля — o.8 штук за квадратный метр
- для медного кабеля 1,2 за квадратный метр
- , 3 фазы, 415 В, 0,8 пФ, ток полной нагрузки двигателя 1 л.с. = 1,3 А.
- 1 фаза 230 В, 0,8 пФ, ток полной нагрузки двигателя 1 л.с. = 4 А.
Электроэнергия в трехфазных и однофазных системах ~ Изучение электротехники
Мощность в электрической цепи или системе определяется:Где:
I = ток в амперах
V = Напряжение в вольтах
Единица мощности — ватт (Вт).Мощность также может быть выражена в вольтах-амперах (ВА), как правило, в системах переменного тока.
В системе постоянного тока ток и напряжение не меняются во времени. Следовательно, произведение напряжения и тока дает нам мощность в ваттах. В системах переменного тока значения напряжения и тока постоянно изменяются синусоидальным образом, как показано ниже:Форма кривой напряжения и тока переменного тока Следовательно, в системе переменного тока произведение тока и напряжения не дает мощности в ваттах, а дает мощность в ВА (вольт-амперах).Мощность в ваттах для однофазной системы переменного тока определяется выражением:
Где:
P = мощность в ваттах
Iphase = фазный ток
Vphase = фазное напряжение
Cosф = коэффициент мощности
В трехфазной электросети:
Мощность = 3 x мощность в одной фазе:
Соединение треугольником (сеткой) и звездой в трехфазных системах переменного тока
Электроэнергия переменного тока часто подается и потребляется в трехфазных системах, которые обычно соединяются треугольником (сеткой) или звездой:
Рисунок 1: Соединения звездой и треугольником в 3-фазном A.Цепи C Соединение на рисунке 1a выше известно как соединение треугольником, потому что диаграмма очень похожа на греческую букву Δ, называемую дельта. Другой тип соединения на рисунке 1b известен как соединение звездой или звездой. Соединение звездой отличается от соединения треугольником тем, что в нем последовательно соединены две фазы. Общая точка «O» трех обмоток называется нейтралью, потому что между этой точкой и любой из трех фаз существует равное напряжение. Этот пункт обычно обоснован.Обычно трансформаторы, двигатели и генераторы можно подключать по схеме звезды или треугольника.
Соотношение напряжения и тока в системах, соединенных треугольником и звездой
(a) Система с подключением по схеме треугольника
В системе, соединенной треугольником (см. Рис. 1а выше):
Фазовое напряжение = линейное напряжение:
Линейный ток = 1,732-кратный фазный ток, т.е.
(b) Система с соединением звездой или звездой
В системе с соединением звездой (см. Рисунок 1b выше):
Линейный ток = Фазный ток
Напряжение сети = 1.732 раза Фазное напряжение
Мы видели, что мощность в 3-фазной системе определяется выражением:
Подстановка значений фазного тока и фазного напряжения для системы, соединенной треугольником и звездой, в приведенную выше формулу дает мощность в ваттах в трехфазной цепи переменного тока, подключенной либо треугольником, либо звездой, как:
Таким образом, зная линейное напряжение и линейный ток в любой трехфазной цепи переменного тока, а также коэффициент мощности, можно легко рассчитать мощность, подаваемую в систему.