Какой электродвигатель лучше выбрать?
При выборе бесщеточного электродвигателя для своих разработок инженеры имеют несколько вариантов. Неправильный выбор может привести к провалу проекта не только на этапе разработки – испытания, но и после выхода на рынок, что крайне не желательно. Для облегчения работы инженеров мы сделаем краткое описание преимуществ и недостатков четырех наиболее популярных видов бесщеточных электрических машин: асинхронный электродвигатель (АД), двигатель с постоянными магнитами (ПМ), синхронные реактивные электродвигатели (СРД), вентильные реактивные электродвигатели (ВРД).
Содержание:
Асинхронные электродвигатели
Асинхронные электрические машины смело можно назвать костяком современной промышленности. Благодаря своей простоте, относительно низкой стоимости, минимальным затратам на обслуживание, а также возможности работать напрямую от промышленных сетей переменного тока, они прочно въелись в современные производственные процессы.
Сегодня существует множество различных преобразователей частоты с самыми различными алгоритмами управления, которые позволяют регулировать скорость и момент асинхронной машины в большом диапазоне с хорошей точностью. Все эти свойства позволили асинхронной машине значительно потеснить с рынка традиционные коллекторные двигатели. Вот почему регулируемые асинхронные электродвигатели (АД) легко встретить в самых различных устройствах и механизмах, таких как тяговый асинхронный электропривод, электроприводы стиральных машин, вентиляторов, компрессоров, воздуходувок, кранов, лифтов и многом другом электрооборудовании.
АД создает вращающий момент за счет взаимодействия тока статора с индуцированным током ротора. Но токи ротора нагревают его, что приводит к нагреванию подшипников и снижению их срока службы. Замена традиционной алюминиевой обмотки на медную не устраняет проблему, а приводит к удорожанию электрической машины и может накладывать ограничения на прямой ее пуск.
Статор асинхронной машины имеет довольно большую постоянную времени, что негативно сказывается на реагировании системы управления при изменении скорости или нагрузки. К сожалению, потери связанные с намагничиванием не зависят от нагрузки машины, что снижает КПД АД при работе с малыми нагрузками. Автоматическое уменьшение потока статора возможно использовать для решения данной проблемы — для этого необходим быстрый отклик системы управления на изменения нагрузки, но как показывает практика, такая коррекция не существенно увеличивает КПД.
На скоростях превышающих номинальную поле статора ослабевает из-за ограниченного напряжения питания. Вращающий момент начинает падать, так как для его поддержания будет требоваться больший ток ротора. Следовательно, управляемые АД ограничиваются диапазоном скорости для поддержания постоянной мощности примерно 2:1.
Механизмы, которые требуют более широкого диапазона регулирования, такие как: станки с ЧПУ, тяговый электропривод, могут снабжаться асинхронными электродвигателями специального исполнения, где для увеличения диапазона регулирования могут уменьшать количество витков обмотки, снижая при этом значения крутящего момента на низких скоростях. Также возможен вариант с использованием более высоких токов статора, что требует установки более дорогих и менее эффективных инверторов.
Немаловажным фактором при работе АД является качество питающего напряжения, ведь максимальный КПД электродвигатель имеет при синусоидальной форме питающего напряжения. В реальности преобразователь частоты обеспечивает импульсное напряжение и ток, похожий на синусоидальный. Проектировщикам стоит иметь ввиду, что КПД системы ПЧ-АД будет меньше, чем сумма КПД преобразователя и двигателя в отдельности. Улучшения качества выходного тока и напряжения повышают увеличением несущей частоты преобразователя, это приводит к снижению потерь в двигателе, но при этом возрастают потери в самом инверторе. Одним из популярных решений, особенно для промышленных мощных электроприводов, является установка фильтров между преобразователем частоты и асинхронной машиной. Однако это приводит к увеличению стоимости, габаритов установки, а также к дополнительным потерям мощности.
Еще одним недостатком асинхронных машин переменного тока является то, что их обмотки распределены на протяжении многих пазов в сердечнике статора. Это приводит к появлению длинных концевых поворотов, которые увеличивают габариты и потери энергии в машине. Эти вопросы исключены в стандартах IE4 или классах IE4. В настоящее время европейский стандарт (IEC60034) специально исключает любые двигатели, требующие электронного управления.
Двигатели с постоянными магнитами
Двигатели с постоянными магнитами (английский PMMS) создают крутящий момент благодаря взаимодействию токов статора с постоянными магнитами внутри или снаружи ротора. Электродвигатели с поверхностным расположением магнитов являются маломощными и используются в IT оборудовании, офисной технике, автомобильном транспорте. Электродвигатели со встроенными магнитами (IPM) распространены в мощных машинах, используемых в промышленности.
Двигатели с постоянными магнитами (ПМ) могут использовать концентрированные (с коротким шагом) обмотки, если пульсации вращающего момента не являются критичными, но распределенные обмотки являются нормой в ПМ.
Поскольку PMMS не имеют механических коммутаторов, то преобразователи играют важную роль в процессе контроля тока обмотки.
В отличии от других видов бесщеточных электродвигателей, PMMS не требуют тока возбуждения, необходимого для поддерживания магнитного потока ротора. Следовательно, они способны обеспечить максимальный крутящий момент на единицу объема и могут быть лучшим выбором, если требования к массо-габаритным показателям выходят на первый план.
К наибольшим недостаткам таких машин можно отнести их очень высокую стоимость. Высокопроизводительные электрические машины с постоянными магнитами используют такие материалы как неодим и диспрозий. Данные материалы относятся к редкоземельным и добываются в геополитически нестабильных странах, что приводит к высоким и нестабильным ценам.
Также постоянные магниты добавляют производительности при работе на низких скоростях, но являются «Ахиллесовой пятой» при работе на высоких. Например, при увеличении скорости машины с постоянными магнитами возрастет и ее ЭДС, постепенно приближаясь к напряжению питания инвертора, при этом снизить поток машины не представляется возможным. Как правило, номинальная скорость является максимальной для ПМ с поверхностно-магнитной конструкцией при номинальном напряжении питания.
На скоростях больше номинальной, для электродвигателей с постоянными магнитами типа IPM, используют подавление активного поля, что достигается путем манипуляций с током статора при помощи преобразователя. Диапазон скорости, в котором двигатель может надежно работать, ограничен примерно 4:1.
Необходимость ослабления поля в зависимости от скорости приводит к потерям независящим от вращающего момента. Это снижает КПД на высоких скоростях, и особенно при малых нагрузках. Этот эффект наиболее актуален при использовании ПМ в качестве тягового автомобильного электропривода, где высокая скорость на автостраде неизбежно влечет за собой необходимость ослабления магнитного поля. Часто разработчики выступают за применение двигателей с постоянными магнитами в качестве тяговых электроприводов электромобилей, однако их эффективность при работе в данной системе довольно сомнительна, особенно после вычислений связанных с реальными циклами вождения. Некоторые производители электромобилей сделали переход от ПМ к асинхронным электродвигателям в качестве тяговых.
Также к существенным недостаткам электродвигателей с постоянными магнитами можно отнести их трудно управляемость в условиях неисправности из-за присущей им противо-ЭДС. Ток будет протекать в обмотках, даже при выключенном преобразователе, пока вращается машина. Это может приводить к перегреву и другим неприятным последствиям. Потеря контроля над ослабленным магнитным полем, например при аварийном отключении источника питания, может привести к неподконтрольной генерации электрической энергии и, как следствие, к опасному возрастанию напряжения.
Рабочие температуры – это еще одна не самая сильная сторона ПМ, кроме машин, изготовленных из самарий-кобальта. Также большие броски тока инвертора могут привести к размагничиванию.
Максимальная скорость PMMS ограничивается механической прочностью крепления магнитов. В случае повреждения ПМ его ремонт, как правило, осуществляется на заводе изготовителе, так как извлечение и безопасная обработка ротора практически невозможна в обычных условиях. И, наконец, утилизация. Да это тоже доставляет немного хлопот после окончания срока службы машины, но наличие редкоземельных материалов в этой машине должно упростить этот процесс в ближайшем будущем.
Несмотря на перечисленные выше недостатки, электродвигатели с постоянными магнитами являются непревзойденными с точки зрения низкоскоростных мелкогабаритных механизмов и устройств.
Реактивные синхронные двигатели
Синхронные реактивные электродвигатели всегда работают только в паре с преобразователем частоты и используют тот же тип управления потоком статора, что и обычный АД. Роторы данных машин изготавливают из тонколистной электротехнической стали с пробитыми пазами таким образом, что бы они намагничивались с одной стороны меньше, чем с другой. Стремление магнитного поля ротора «соединится» с вращающимся магнитным потоком статора и создает вращающий момент.
Основным плюсом реактивных синхронных электродвигателей являются незначительные потери в роторе. Таким образом, хорошо спроектированная и работающая с правильно подобранным алгоритмом управления синхронная реактивная машина вполне способна соответствовать европейским стандартам премиум класса IE4 и NEMA, не используя при этом постоянных магнитов. Снижения тепловых потерь в роторе повышает крутящий момент и увеличивает плотность мощности, по сравнению с асинхронными машинами. Эти двигатели имеют низкий уровень шума благодаря низкому уровню пульсаций момента и вибраций.
Основным недостатком является низкий коэффициент мощности по сравнению с асинхронной машиной, что приводит к большей потребляемой мощности из сети. Это увеличивает затраты и ставит перед инженером сложную задачу, стоит ли применять реактивную машину или нет для конкретной системы?
Сложность в изготовлении ротора и его хрупкость делает невозможным применение реактивных электродвигателей для высокоскоростных операций.
Синхронные реактивные машины хорошо подходят для широкого спектра промышленных применений, которые не требуют больших перегрузок или высоких скоростей вращения, а также все чаще применяются для частотно-регулируемых насосов из-за повышенной их эффективности.
Вентильные реактивные электродвигатели
Вентильный реактивный двигатель (с английского SRM) создает вращающий момент за счет притягивания магнитных полей зубцов ротора к магнитному полю статора. Вентильные реактивные двигатели (ВРД) имеют относительно небольшое количество полюсов обмотки статора. Ротор имеет зубчатый профиль, что упрощает его конструкцию и улучшает создаваемое магнитное поле, в отличии от реактивных синхронных машин. В отличии от синхронных реактивных двигателей (СРД), ВРД используют импульсное возбуждение постоянного тока, что требует обязательное наличие специального преобразователя для их работы.
Для поддержания магнитного поля в ВРД необходимы токи возбуждения, что уменьшает плотность мощности по сравнению с электрическими машинами с постоянными магнитами (ПМ). Однако они все же имеют габаритные размеры меньшие, чем обычные АД.
Основным преимуществом вентильных реактивных машин является то, что ослабления магнитного поля происходит естественным образом при снижении тока возбуждения. Это свойство дает им большое преимущество в диапазоне регулирования при скоростях выше номинальной (диапазон устойчивой работы может достигать 10:1). Высокая эффективность присутствует у таких машин при работе на высоких скоростях и с малыми нагрузками. Также ВРД способны обеспечить удивительно постоянную эффективность в довольно широком диапазоне регулирования.
Вентильные реактивные машины обладают также довольно хорошей отказоустойчивостью. Без постоянных магнитов эти машины не генерируют неуправляемый ток и момент при неисправностях, а независимость фаз ВРД позволяет им работать с уменьшенной нагрузкой, но с повышенными пульсациями момента при выходе из строя какой-то из фаз. Это свойство может быть полезно, если проектировщики хотят повышенной надежности разрабатываемой системы.
Простая конструкция ВРД делает его прочным и недорогим в изготовлении. При его сборке не используются дорогие материалы, а ротор из нелегированной стали отлично подходит для суровых климатических условий и высоких скоростей вращения.
ВРД имеет коэффициент мощности меньший, чем ПМ или АД, но его преобразователю не нужно создавать выходное напряжение синусоидальной формы для эффективной работы машины, соответственно такие инверторы имеют меньшие частоты коммутации. Как следствие – меньшие потери в инверторе.
Основными недостатками вентильных реактивных машин являются наличие акустических шумов и вибрации. Но с этими недостатками довольно хорошо борются путем более тщательного проектирования механической части машины, улучшения электронного управления, а также механическое объединение двигатель – рабочий орган.
ВРД хорошо подходят для широкого спектра применения и их все чаще используют для обработки сверхпрочных материалов из-за большой перегрузочной способности и большого диапазона регулирования скоростей. Большая перегрузочная способность делает их все более привлекательными для использования в качестве тяговых электроприводов современных электром
Электродвигатель асинхронный трехфазный — АД, АИР, АИВ, 4А, 5А ,6А, АН, ВА
Категория: асинхронные электродвигатели
Заводы производители электродвигателей: Полесьеэлектромаш, Сибэлектромотор, Владимирский электромоторный завод
Серии двигателей: АД, АИР, АИВ, 4А, 5А ,6А, АН, ВА
При выборе электродвигателя необходимо проконсультироваться с заводом производителем.
Условное обозначение двигателей:
Технические характеристики трехфазных двигателей
Тип электродвигателя |
Мощность, кВт |
Частота вращения об./мин. |
АИР71А2 |
0,75 |
3 000 |
АИР71А4 |
0,55 |
1 500 |
АИР71А6 |
0,37 |
1 000 |
АИР71В2 |
1,1 |
3 000 |
АИР71В4 |
0,75 |
1 500 |
АИР71В6 |
0,55 |
1 000 |
АИР80А2 |
1,5 |
3 000 |
AИР80А4 |
1,1 |
1 500 |
AИР80А6 |
0,75 |
1 000 |
AИР80В2 |
2,2 |
3 000 |
АИР80В4 |
1,5 |
1 500 |
АИР80В6 |
1,1 |
1 000 |
АИР90L2 |
3 |
3 000 |
АИР90L4 |
2,2 |
1 500 |
AИР90L6 |
1,5 |
1 000 |
AИР90LA8 |
0,75 |
750 |
AИР90LB8 |
1,1 |
750 |
АИР100S2 |
4 |
3 000 |
АИР100S4 |
3 |
1 500 |
АИР100L4 |
4 |
1 500 |
АИР100L6 |
2,2 |
1 000 |
АИР112М2 |
7,5 |
3 000 |
АИР112М4 |
5,5 |
1 500 |
АИР112МА6 |
3 |
1 000 |
АИР112МВ6 |
4 |
1 000 |
АИР112МА8 |
2,2 |
750 |
АИР112МВ8 |
3 |
750 |
Общий вид трехфазного двигателя
Габариты для трехфазных электродвигателей
Серии двигателей: МТН, 4МТ, 4МТМ, 4МТН, МТКН, 4МТК, 4МТКМ
Общий вид трехфазного электродвигателя серии МТН конструктивного исполнения IM 1001, IM 1002, IM 1003, IM 1004
Габариты для трехфазных электродвигателей серии МТН конструктивного исполнения IM 1001, IM 1002, IM 1003, IM 1004
Габариты для трехфазных электродвигателей серии МТН конструктивного исполнения IM 1001, IM 1002, IM 1003, IM 1004
Общий вид трехфазного электродвигателя серии МТН конструктивного исполнения IM2003, IM2004
Габариты для трехфазных электродвигателей серии МТН конструктивного исполнения IM2003, IM2004
Как отличить трехфазный двигатель от однофазного
Однофазные электродвигатели
Зачастую основное внимание уделяется изучению трёхфазных электродвигателей, частично в связи с тем, что трёхфазные электродвигатели применяются чаще, чем однофазные. Однофазные электродвигатели имеют тот же принцип действия, что и трёхфазные электродвигатели, только с более низкими пусковыми моментами. Они подразделяются по типам в зависимости от способа пуска.
Стандартный однофазный статор имеет две обмотки, расположенные под углом 90° по отношению друг к другу. Одна из них считается главной обмоткой, другая – вспомогательной, или пусковой. В соответствии с количеством полюсов каждая обмотка может делиться не несколько секций.
На рисунке приведен пример двухполюсной однофазной обмотки с четырьмя секциями в главной обмотке и двумя секциями во вспомогательной.
Следует помнить, что использование однофазного электродвигателя – это всегда, своего рода, компромисс. Конструкция того или иного двигателя зависит, прежде всего, от поставленной задачи. Это значит, что все электродвигатели разрабатываются в соответствии с тем, что наиболее важно в каждом конкретном случае: например, КПД, вращающий момент, рабочий цикл и т.д. Из-за пульсирующего поля однофазные электродвигатели CSIR и RSIR могут иметь более высокий уровень шума по сравнению с двухфазными электродвигателями PSC и CSCR, которые работают намного тише, так как в них используется пусковой конденсатор. Конденсатор, через который производится пуск электродвигателя, способствует его плавной работе.
Основные типы однофазных индукционных электродвигателей
Бытовая техника и приборы низкой мощности работают от однофазного переменного тока, кроме того, не везде может быть обеспечено трёхфазное электропитание. Поэтому однофазные электродвигатели переменного тока получили широкое распространение, особенно в США. Очень часто электродвигателям переменного тока отдают предпочтение, так как их отличает прочная конструкция, низкая стоимость, к тому же они не требуют технического обслуживания.
Как видно из названия, однофазный индукционный электродвигатель работает по принципу индукции; тот же принцип действует и для трёхфазных электродвигателей. Однако между ними есть различия: однофазные электродвигатели, как правило, работают при переменном токе и напряжении 110 -240 В, поле статора этих двигателей не вращается. Вместо этого каждый раз при скачке синусоидального напряжения от отрицательного к положительному меняются полюса.
В однофазных электродвигателях поле статора постоянно выравнивается в одном направлении, а полюса меняют своё положение один раз в каждом цикле. Это означает, что однофазный индукционный электродвигатель не может быть пущен самостоятельно.
Теоретически, однофазный электродвигатель можно было бы запустить при помощи механического вращения двигателя с последующим немедленным подключением питания. Однако на практике пуск всех электродвигателей осуществляется автоматически.
Выделяют четыре основных типа электродвигателей:
• индукционный двигатель с пуском через конденсатор / работа через обмотку (индуктивность) (CSIR),
• индукционный двигатель с пуском через конденсатор/работа через конденсатор (CSCR),
• индукционный двигатель с реостатным пуском (RSIR) и
• двигатель с постоянным разделением емкости (PSC).
На приведённом ниже рисунке показаны типичные кривые соотношения вращающий момент/частота вращения для четырёх основных типов однофазных электродвигателей переменного тока.
Однофазный электродвигатель с пуском через конденсатор/работа через обмотку (CSIR)
Индукционные двигатели с пуском через конденсатор, которые также известны как электродвигатели CSIR, составляют самую большую группу однофазных электродвигателей.
Двигатели CSIR представлены несколькими типоразмерами: от самых маломощных до 1,1 кВт. В электродвигателях CSIR конденсатор последовательно соединён с пусковой обмоткой. Конденсатор вызывает некоторое отставание между током в пусковой обмотке и в главной обмотке.
Это способствует задержке намагничивания пусковой обмотки, что приводит к появлению вращающегося поля, которое влияет на возникновение вращающего момента. После того как электродвигатель наберёт скорость и приблизится к рабочей частоте вращения, открывается пускатель. Далее электродвигатель будет работать в обычном для индукционного электродвигателя режиме. Пускатель может быть центробежным или электронным.
Двигатели CSIR имеют относительно высокий пусковой момент, в диапазоне от 50 до 250 процентов от вращающего момента при полной нагрузке. Поэтому из всех однофазных электродвигателей эти двигатели лучше всего подходят для случаев, когда пусковые нагрузки велики, например для конвейеров, воздушных компрессоров и холодильных компрессоров.
Однофазный электродвигатель с пуском через конденсатор/ работа через конденсатор (CSCR)
Этот тип двигателей, которые коротко называются «электродвигатели CSCR», сочетает в себе лучшие свойства индукционного двигателя с пуском через конденсатор и двигателя с постоянно подключённым конденсатором. Несмотря на то, что из-за своей конструкции эти двигатели несколько дороже других однофазных электродвигателей, они остаются наилучшим вариантом для применения в сложных условиях. Пусковой конденсатор электродвигателя CSCR последовательно соединён с пусковой обмоткой, как и в электродвигателе с пуском через конденсатор. Это обеспечивает высокий пусковой момент.
Электродвигатели CSCR также имеют сходство с двигателями с постоянным разделением емкости (PSC), так как у них пуск тоже осуществляется через конденсатор, который последовательно соединён с пусковой обмоткой, если пусковой конденсатор отключен от сети. Это означает, что двигатель справляется с максимальной нагрузкой или перегрузкой.
Электродвигатели CSCR могут использоваться для работы с низким током полной нагрузки и при более высоком КПД. Это даёт некоторые преимущества, в том числе обеспечивает работу двигателя с меньшими скачками температуры, в сравнении с другими подобными однофазными электродвигателями.
Электродвигатели CSCR – самые мощные однофазные электродвигатели, которые могут использоваться в сложных условиях, например, в насосах для перекачивания воды под высоким давлением и в вакуумных насосах, а также в других высокомоментных процессах. Выходная мощность таких электродвигателей лежит в диапазоне от 1,1 до 11 кВт.
Однофазный электродвигатель с пуском через сопротивление/работа через обмотку (индуктивность) (RSIR)
Данный тип двигателей ещё известен как «электродвигатели с расщеплённой фазой». Они, как правило, дешевле однофазных электродвигателей других типов, используемых в промышленности, но у них также есть некоторые ограничения по производительности.
Пусковое устройство электродвигателей RSIR включает в себя две отдельные обмотки статора. Одна из них используется исключительно для пуска, диаметр проволоки данной обмотки меньше, а электрическое сопротивление – выше, чем у главных обмоток. Это вызывает отставание вращающегося поля, что, в свою очередь, приводит в движение двигатель. Центробежный или электронный пускатель отсоединяет пусковую обмотку, когда частота вращения двигателя достигает, приблизительно, 75% от номинальной величины. После этого электродвигатель продолжит работу в соответствии со стандартными принципами действия индукционного электродвигателя.
Как уже говорилось раньше, для электродвигателей RSIR есть некоторые ограничения. У них низкие пусковые моменты, часто в диапазоне от 50 до 150 процентов от номинальной нагрузки. Кроме того, электродвигатель создаёт высокие пусковые токи, приблизительно от 700 до 1000% от номинального тока. В результате продолжительное время пуска будет вызывать перегрев и разрушение пусковой обмотки. Это означает, что электродвигатели данного типа нельзя использовать там, где необходимы большие пусковые моменты.
Электродвигатели RSIR рассчитаны на узкий диапазон напряжения питания, что, естественно, ограничивает области их применения. Их максимальные вращающие моменты варьируются в пределах от 100 до 250% от расчетной величины. Необходимо также отметить, что дополнительной трудностью является установка тепловой защиты, так как довольно сложно найти защитное устройство, которое срабатывало бы достаточно быстро, чтобы не допустить прогорания пусковой обмотки. Электродвигатели RSIR подходят для использования в небольших приборах для рубки и перемалывания, вентиляторах, а также для применения в других областях, в которых допускается низкий пусковой момент и требуемая выходная мощность на валу от 0,06 кВт до 0,25 кВт. Они не используются там, где должны быть высокие вращающие моменты или продолжительные циклы.
Однофазный электродвигатель с постоянным разделение емкости (PSC)
Как видно из названия, двигатели с постоянным разделением емкости (PSC) оснащены конденсатором, который во время работы постоянно включен и последовательно соединён с пусковой обмоткой. Это значит, что эти двигатели не имеют пускателя или конденсатора, который используется только для пуска. Таким образом, пусковая обмотка становится вспомогательной обмоткой, когда электродвигатель достигает рабочей частоты вращения.
Конструкция электродвигателей PSC такова, что они не могут обеспечить такой же пусковой момент, как электродвигатели с пусковыми конденсаторами. Их пусковые моменты достаточно низкие: 30-90% от номинальной нагрузки, поэтому они не используются в системах с большой пусковой нагрузкой. Это компенсируется за счёт низких пусковых токов – обычно меньше 200% от номинального тока нагрузки, – что делает их наиболее подходящими двигателями для областей применения с продолжительным рабочим циклом.
Двигатели с постоянным разделением емкости имеют ряд преимуществ. Рабочие параметры и частоту вращения таких двигателей можно подбирать в соответствии с поставленными задачами, к тому же они могут быть изготовлены для оптимального КПД и высокого коэффициента мощности при номинальной нагрузке. Так как они не требуют специального устройства пуска, их можно легко реверсировать (изменить направление вращения на обратное). В дополнение ко всему вышесказанному, они являются самыми надёжными из всех однофазных электродвигателей. Вот почему Grundfos использует однофазные электродвигатели PSC в стандартном исполнении для всех областей применения с мощностями до 2,2 кВт (2-полюсные) или 1,5 кВт (4-полюсные).
Двигатели с постоянным разделением емкости могут использоваться для выполнения целого ряда различных задач в зависимости от их конструкции. Типичным примером являются низкоинерционные нагрузки, например вентиляторы и насосы.
Двухпроводные однофазные электродвигатели
Двухпроводные однофазные электродвигатели имеют две главные обмотки, пусковую обмотку и рабочий конденсатор. Они широко используются в США с однофазными источниками питания: 1 ½ 115 В / 60 Гц или 1 ½ 230 В / 60 Гц. При правильном подключении данный тип электродвигателей можно использовать для обоих видов электропитания.
Ограничения однофазных электродвигателей
В отличие от трёхфазных для однофазных электродвигателей существуют некоторые ограничения. Однофазные электродвигатели ни в коем случае не должны работать в режиме холостого хода, так как при малых нагрузках они сильно нагреваются, также рекомендуется эксплуатировать двигатель при нагрузке меньшей 25% от полной нагрузки.
Электродвигатели PSC и CSCR имеют симметричное/ круговое вращающееся поле в одной точке приложения нагрузки; это значит, что во всех остальных точках приложения нагрузки вращающееся поле асимметричное/эллиптическое. Когда электродвигатель работает с асимметричным вращающимся полем, сила тока в одной или обеих обмотках может превышать силу тока в сети. Такие избыточные токи вызывают потери, в связи с этим одна или обе обмотки (что чаще происходит при полном отсутствии нагрузки) нагреваются, даже если ток в сети относительно небольшой. Смотрите примеры.
О напряжении в однофазных электродвигателях
Важно помнить о том, что напряжение на пусковой обмотке электродвигателя может быть выше сетевого напряжения питания электродвигателя. Это относится и к симметричному режиму работы. Смотрите пример.
Изменение напряжения питания
Нужно отметить, что однофазные электродвигатели обычно не используются для больших интервалов напряжения, в отличие от трёхфазных электродвигателей. В связи с этим может возникнуть потребность в двигателях, которые могут работать с другими видами напряжения. Для этого необходимо внести некоторые конструкционные изменения, например, нужна дополнительная обмотка и конденсаторы различной ёмкости. Теоретически, ёмкость конденсатора для различного сетевого напряжения (с одной и той же частотой) должна быть равна квадрату отношения напряжений:
Таким образом, в электродвигателе, рассчитанном на питание от сети в 230 В, используется конденсатор 25µФ/400 В, для модели электродвигателя на 115 В необходим конденсатор ёмкостью 100µФ с маркировкой более низкого напряжения – например 200 В.
Иногда выбирают конденсаторы меньшей ёмкости, например 60µФ. Они дешевле и занимают меньше места. В таких случаях обмотка должна подходить для определённого конденсатора. Нужно учитывать, что производительность электродвигателя при этом будет меньше, чем с конденсатором ёмкостью 100µФ – например, пусковой момент будет ниже.
Заключение
Однофазные электродвигатели работают по тому же принципу, что и трёхфазные. Однако у них более низкие пусковые моменты и значения напряжения питания (110-240В).
Однофазные электродвигатели не должны работать в режиме холостого хода, многие из них не должны эксплуатироваться при нагрузке меньше 25 % от максимальной, так как это вызывает повышение температуры внутри электродвигателя, что может привести к его поломке.
Однофазные асинхронные двигатели – машины небольшой мощности, которые по конструктивному исполнению напоминают аналогичные трехфазные электродвигатели с короткозамкнутым ротором.
Однофазные асинхронные двигатели отличаются от трехфазных двигателей устройством статора, где в пазах магнитопровода находится двухфазная обмотка, состоящая из основной, или рабочей, фазы с фазной зоной 120 эл. град и выводами к зажимам с обозначениями С1 и С2, и вспомогательной, или пусковой, фазы с фазной зоной 60 эл. град и выводами к зажимам с обозначениями В1 и В2 (рис. 1).
Магнитные оси этих фаз обмотки смещены относительно друг друга па угол 0 = 90 эл. град. Одна рабочая фаза, присоединенная к питающей сети переменного напряжения, не может вызвать вращения ротора, так как ток ее возбуждает переменное магнитное поле с неподвижной осью симметрии, характеризуемое гармонически изменяющейся во времени магнитной индукцией.
Рис. 1. Схема включения однофазного асинхронного двигателя с короткозамкнутым ротором.
Это поле можно представить двумя составляющими – одинаковыми круговыми магнитными полями прямой и обратной последовательностей, вращающимися с магнитными индукциями, вращающимися в противоположные стороны с одной и той же скоростью. Однако при предварительном разгоне ротора в необходимом направлении он при включенной рабочей фазе продолжает вращаться в том же направлении.
По этой причине пуск однофазного двигателя начинают с разгона ротора путем нажатия пусковой кнопки, вызывающего возбуждение токов в обеих фазах обмотки статора, которые сдвинуты по фазе на величину, зависящую от параметров фазосдвигающего устройства Z, выполненного в виде резистора, индуктивной катушки или конденсатора, и элементов электрических цепей, в которые входят рабочая и пусковая фазы обмотки статора. Эти токи побуждают в машине вращающееся магнитное поле с магнитной индукцией в воздушном зазоре, которая периодически и монотонно изменяется в пределах максимального и минимального значений, а конец ее вектора описывает эллипс.
Это. эллиптическое вращающееся магнитное поле находит в проводниках короткозамкнутой обмотки ротора ЭДС и токи, которые, взаимодействуя с этим полем, обеспечивают разгон ротора однофазного двигателя в направлении вращения поля, и он в.течение нескольких секунд достигает почти номинальной скорости.
Отпускание пусковой кнопки переводит электродвигатель с двухфазного режима на однофазный, поддерживаемый в дальнейшем соответствующей составляющей переменного магнитного поля, которая при своем вращении несколько опережает вращающийся ротор из-за скольжения.
Своевременное отключение пусковой фазы обмотки статора однофазного асинхронного двигателя от питающей сети необходимо в связи с ее конструктивным исполнением, предусматривающим кратковременный режим работы – обычно до 3 с, что исключает длительное пребывание ее под нагрузкой в связи с недопустимым перегревом, сгоранием изоляции и выходом из строя.
Повышение надежности эксплуатации однофазных асинхронных двигателей обеспечивают встраиванием в корпус машин центробежного выключателя с размыкающими контактами, присоединенными к зажимам с обозначениями ВЦ и В2, и теплового реле с аналогичными контактами, имеющими выводы с обозначениями РТ и С1 (рис. 2, в, г).
Центробежный выключатель автоматически отключает пусковую фазу обмотки статора, присоединенную к зажимам с обозначениями В1 и В2 при достижении ротором скорости, близкой к номинальной, а тепловое реле — обе фазы обмотки статора от питающей сети, когда нагрев их окажется выше допустимого.
Перемена направления вращения ротора достигается изменением направления тока в одной из фаз обмотки статора при пуске путем переключения пусковой кнопки и перестановки металлической пластины на зажимах электродвигателя (рис. 2, а, б) или только перестановкой двух аналогичных пластин (рис. 2, в, г).
Рис. 2. Маркировка зажимов фаз обмотки статора однофазного асинхронного двигателя с короткозамкнутым ротором и их соединение для вращения ротора: а, в – правого, б, г – левого.
Сравнение технических характеристик однофазных и трехфазных асинхронных двигателей
Однофазные асинхронные двигатели отличаются от аналогичных по номинальной мощности трехфазных машин пониженной кратностью начального пускового момента k п = M п / M ном и повышенной кратностью пускового тока ki = Mi / M ном которые для однофазных электродвигателей с пусковой фазой обмотки статора, имеющей повышенное сопротивление постоянному току и. меньшую индуктивность, чем рабочая фаза, имеют значения k п – 1,0 – 1,5 и ki = 5 – 9.
Пусковые характеристики однофазных асинхронных двигателей хуже аналогичных характеристик трехфазных асинхронных двигателей в связи с тем, что возбуждаемое при пуске однофазных машин с пусковой фазой обмотки статора эллиптическое вращающееся магнитное поле, эквивалентное двум неодинаковым круговым вращающимся магнитным полям – прямому и обратному, вызывает появление тормозного эффекта.
Подбором параметров элементов электрических цепей рабочей и пусковой фаз обмотки статора можно обеспечить при пуске возбуждение кругового вращающегося магнитного поля, что возможно при фазосдвигающем элементе, выполненном в виде конденсатора соответствующей емкости.
Так как разгон ротора вызывает изменение параметров цепей машины, вращающееся магнитное поле из кругового переходит в эллиптическое, ухудшая этим пусковые характеристики двигателя. Поэтому при скорости около 0,8 номинальной пусковую фазу обмотки статора электродвигателя отключают вручную или автоматически, в результате чего двигатель переходит на однофазный режим работы.
Однофазные асинхронные двигатели с пусковым конденсатором имеют кратность начального пускового момента kп = 1,7 – 2,4 и кратность начального пускового тока ki = 3 – 5.
Двухфазные асинхронные двигатели
В двухфазных асинхронных двигателях обе фазы обмотки статора с фазными зонами по 90 эл. град являются рабочими. Они расположены в пазах магнитопровода статора так, что их магнитные оси образуют угол 90 эл. град. Эти фазы обмотки статора отличаются друг от друга не только числом витков, но и номинальными напряжениями и токами, хотя при номинальном режиме двигателя полные мощности их одинаковы.
В одной из фаз обмотки статора постоянно находится конденсатор Ср (рис. 3, а), который в условиях номинального режима двигателя обеспечивает возбуждение кругового вращающегося магнитного поля. Емкость этого конденсатора определяют по формуле:
C р = I1 sinφ1 / 2πfUn 2
где I1 и φ1 – соответственно ток и сдвиг фаз между напряжением и током цепи фазы обмотки статора без конденсатора при круговом вращающемся магнитном поле, I и U – соответственно частота переменного тока и напряжение питающей сети, n – коэффициент трансформации – отношение эффективных чисел витков фаз обмотки статора соответственно с конденсатором и без него, определяемое по формуле
n = k об2 w 2 / k об1 w 1
где k об2 и k об1 – обмоточные коэффициенты соответствующих фаз обмотки статора с числом витков w 2 и w1.
Напряжение на зажимах конденсатора Uc, включенного последовательно с фазой обмотки статора двухфазного асинхронного двигателя, при круговом вращающемся магнитном поле выше напряжения сети U и определяется так:
Переход к нагрузке двигателя, отличной от номинальной, сопровождается изменением вращающегося магнитного поля, которое вместо кругового становится эллиптическим. Это ухудшает рабочие свойства двигателя, а при пуске снижает начальный пусковой момент до Мп M ном, ограничивая этим применение двигателей с постоянно включенным конденсатором только в установках с легкими условиями пуска.
Для повышения начального пускового момента параллельно рабочему конденсатору Ср включают пусковой конденсатор Сп (рис. 3, б), емкость которого намного больше емкости рабочего конденсатора и зависит от кратности начального пускового момента, которая может быть доведена до двух и более.
Рис. 3. Схемы включения двухфазных асинхронных двигателей с короткозамкнутым ротором: а – спостоянно присоединенным конденсатором, б – с рабочим и пусковым конденсаторами.
После разгона ротора до скорости 0,6 – 0,7 номинальной пусковой конденсатор отключают для избежания перехода кругового вращающегося магнитного поля в эллиптическое, ухудшающее рабочие характеристики двигателя.
Пусковой режим таких конденсаторных двигателей характеризуется такими показателями: k п = 1,7 – 2,4 и k i = 4 – 6.
Конденсаторные двигатели отличаются лучшими энергетическими показателями, чем однофазные двигатели с пусковой фатой обмотки статора, я коэффициент мощности их, благодаря применению конденсаторов, выше, чем у трехфазных двигателей одинаковой мощности.
Универсальные асинхронные двигатели
В установках автоматического управления применяют универсальные асинхронные двигатели — трехфазные машины малой мощности, которые присоединяют к трехфазной или однофазной сети. При питании от однофазной сети пусковое и рабочие характеристики двигателей несколько хуже, чем при использовании их в трехфазном режиме.
Универсальные асинхронные двигатели серии УАД изготовляют двух- и четырехполюсными, которые при трехфазном режиме имеют номинальную мощность от 1,5 до 70 Вт, а при однофазном режиме – от 1 до 55 Вт и работают от сети переменного напряжения частотой 50 Гц с кпд η = 0,09 – 0.65.
Однофазные асинхронные двигатели с расщепленными или экранированными полюсами
В однофазных асинхронных двигателях с расщепленными или экранированными полюсами, каждый полюс расщеплен глубоким пазом па две неравные части и несет на себе однофазную обмотку, охватывающую весь магнитопровод полюса, и короткозамкнутые витки, расположенные на его меньшей части.
Ротор у этих двигателей имеет короткозамкнутую обмотку. Включение обмотки статора на синусоидальное напряжение сопровождается установлением в ней тока и возбуждением переменного магнитного поля с неподвижной осью симметрии, которое наводит в короткозамкнутых витках соответствующие эдс и токи.
Под влиянием токов короткозамкнутых витков соответствующая им м. д. с, возбуждает магнитное поле, препятствующее усилению и ослаблению основного магнитного поля в экранированных частых полюсов. Магнитные поля экранированных и неэкранированных частей полюсов не совпадают по фазе во времени и, будучи смещенными в пространстве, образуют результирующее эллиптическое вращающееся магнитное поле, перемещающее в направлении от магнитной оси неэранированной части полюса к магнитной оси его экранированной части.
Взаимодействие этого поля с токами, индуктированными в обмотке ротора, вызывает появление начального пускового момента Мп = (0,2 – 0,6) Мном и разгон ротора до номинальной скорости, если тормозной момент приложенный к валу двигателя, не превышает начальный пусковой момент.
С целью увеличения начального пускового и максимального моментов однофазных асинхронных двигателях с расщепленными или экранированными полюсами между их полюсами располагают магнитные шунты из листовой стали, что приближает вращающееся магнитное поле к круговому.
Двигатели с расщепленными полюсами являются нереверсивными устройствами, допускающими частые пуски, внезапную остановку и могут длительное время находиться в заторможенном состоянии. Их изготовляют двух- и четырехполюсными номинальной мощностью от 0,5 до 30 Вт, а при усовершенствованной конструкции до 300 Вт для работы от сети переменного напряжения частотой 50 Гц с кпд η ном = 0,20 – 0,40.
Читайте также: Сельсины: назначение, устройство, принцип действия
Вначале выясним тип двигателя. Не всегда решим вопрос однозначно. Внешний вид мало говорит, шильдик старого двигателя способен не соответствовать реальной начинке агрегата. Предлагаем кратко рассмотреть, какие асинхронные и коллекторные двигатели выпускает промышленность. Расскажем отличия эксплуатации, ключевых свойств, внешних и внутренних. Обсудим подключение однофазного двигателя к сети переменного тока.
Коллекторные vs асинхронные двигатели
Вопрос – коллекторный двигатель или асинхронный – решаем первоочередно. Процесс несложный. Коллектором называется барабан, разделенный медными секциями, формой близкой прямоугольной, сделанными из меди. Формирует токосъемник, в коллекторных двигателях ротор всегда питается электрическим током. Постоянным, переменным — поле создается приложенным напряжением.
Коллекторный двигатель содержит минимум две щетки. Трехфазные встретим редко. Сведения о таких агрегатах описаны литературой середины прошлого века. Применялись коллекторные трехфазные двигатели, регулируя скорость вращения вала в широких пределах. Мотор указанного типа снабжен щетками, медным барабаном, разделенным секциями. Пропустить признак и невооруженным глазом затруднительно. Примеры коллекторных двигателей:
- Пылесос, стиральная машина.
- Болгарка, дрель, электрический ручной инструмент.
Коллекторные двигатели широко используются, обеспечивая сравнительно простой реверс, реализуемый переменой коммутации обмоток. Скорость регулируется изменением угла отсечки питающего напряжения, либо амплитуды. К общим недостаткам коллекторных двигателей относятся:
- Шумность. Трение щетками барабана неспособно происходить бесшумно. При переходе секцией идет искрение. Эффект вызывает помехи радиочастотного диапазона, издается сонм посторонних звуков. Коллекторные двигатели сравнительно шумные. Потрудитесь вспомнить пылесос. Стиральная машина, выполняя режим стирки работает не так громко? Низкие обороты коллекторных двигателей хороши.
- Необходимость обслуживания обуславливается наличием трущихся деталей. Токосъемник чаще загрязнен графитом. Попросту недопустимо, может замкнуть соседние секции. Грязь повышает уровень шума, прочие негативные эффекты.
Все хорошо в меру. Коллекторные двигатели позволят получить заданную мощность (крутящий момент), на старте, после разгона. Сравнительно просто регулировать обороты. Названа причина увлечения бытовой техники коллекторными разновидностями, асинхронные двигатели выступают сердцем оборудования, обладающего повышенными требованиями к уровню звукового давления. Вентиляторы, вытяжки. Серьезные нагрузки потребуют внесения серьезных конструктивных изменений. Повышаются стоимость, размеры, сложность, делая невыгодным изготовление.
Коллекторный двигатель отличается наличием… коллектора. Даже если нельзя увидеть снаружи (скрыт кожухом), заметим непременные графитовые щетки, прижатые пружинками. Деталь требует замены со временем, поможет коллекторный двигатель от асинхронного отличить.
Однофазные и трехфазные д0вигатели асинхронного типа
Договорились — трехфазные коллекторные двигатели достать сложно, текущий раздел речь ведет касательно асинхронных машин. Разновидности перечислим:
- Трехфазные асинхронные двигатели снабжены числом выводов три-шесть рабочих обмоток за вычетом различных предохранителей, внутренних реле, разнообразных датчиков. Катушки статора внутри объединяются звездой, делая невозможным напрямую включение в однофазную сеть.
- Однофазные двигатели, снабженные пусковой обмоткой, помимо прочего снабжаются парой контактов, ведущих к концевому центробежному выключателю. Миниатюрное устройство обрывает цепь, когда вал раскручен. Пусковая обмотка катализирует начальный этап. Дальнейшим действием будет мешать, снижая КПД двигателя. Принято конструкцию называть бифилярной. Пусковая обмотка наматывается двойным проводом, снижая реактивное сопротивление. Помогает уменьшить емкость конденсатора — критично. Ярким примером однофазных двигателей асинхронного типа с пусковой обмоткой выступают компрессоры бытовых холодильников.
- Конденсаторная обмотка, отличаясь от пусковой, работает непрерывно. Двигатели найдем внутри напольных вентиляторов. Конденсатор дает сдвиг фаз 90 градусов, позволяя выбрать направление вращения, поддержать нужную форму электромагнитного поля внутри ротора. Типично на корпусе двигателя конденсатор крепится.
Трехфазные асинхронные двигатели
Научимся, как отличить однофазные двигатели асинхронного типа от трехфазных. В последнем случае внутри всегда имеется три равноценных обмотки. Поэтому можно найти три пары контактов, которые при исследовании тестером дают одинаковое сопротивление. Например, 9 Ом. Если обмотки объединены звездой внутри, выводов с одинаковым сопротивлением будет три. Из них любая пара дает идентичные показания, отображаемые экраном мультиметра. Сопротивление каждый раз равно двум обмоткам.
Поскольку ток должен выходить, иногда трехфазный двигатель имеет вывод нейтрали. Центр звезды, с каждым из трех других проводов дает идентичное сопротивление, вдвое меньшее, нежели демонстрирует попарная прозвонка. Указанные выше симптомы говорят красноречиво: двигатель трёхфазный, теме сегодняшнего разговора чуждый.
Рассматриваемые рубрикой моторы обмоток содержат две. Одна пусковая, либо конденсаторная (вспомогательная). Выводов обычно три-четыре. Отсутствуй украшающий корпус конденсатор, можно попробовать рассуждать, озадачиваясь предназначением контактов следующим образом:
- Выводов четыре штуки — нужно измерить сопротивление. Обычно звонятся попарно. Сопротивление ниже — нашли основную обмотку, подключаемую к сети 230 вольт без конденсатора. Полярность не играет роли, направление вращения задается способом включения вспомогательной обмотки, коммутацией катушек. Проще говоря, осуществите подключение однофазного электродвигателя характерного типа с одной лишь основной обмоткой — в начальный период времени вал стоит стоймя. Куда раскрутишь, туда пойдет вращение. Остерегайтесь производить старт рукой — поломает.
Устройство асинхронного двигателя
Различение типов однофазных двигателей на практике
Научимся, как отличить бифилярный двигатель от конденсаторного. Следует сказать, разница чисто номинальная. Схема подключения однофазного двигателя схожа. Бифилярная обмотка не предназначена работать постоянно. Будет мешать, снижать КПД. Поэтому обрывается после набора оборотов пускозащитным реле (присуще бытовым холодильникам), либо центробежными выключателями. Считается, пусковая обмотка работает несколько секунд. По общепринятым нормам, обеспечит запуск 30 раз в час длительностью 3 секунды каждый. Дальше витки могут перегреться (сгореть). Причина, ограничивающая нахождение пусковой обмотки под напряжением.
Разница номинальная, но профессионалы отмечают любопытную особенность, по которой судят, находится перед нами бифилярный, либо конденсаторный двигатель. Сопротивление вспомогательной обмотки. Отличается номиналом от рабочей более чем в 2 раза, скорее всего, двигатель бифилярный. Соответственно, обмотка пусковая. Конденсаторный двигатель работает, пользуясь услугами двух катушек. Обе постоянно находятся под напряжением.
Однофазный асинхронный двигатель
Тест нужно проводить осторожно, при отсутствии термопредохранителей, других средств защиты пусковая обмотка может сгореть. Придется вал раскручивать вручную, явно нелегкая задачка. Иногда целесообразно подключение однофазного асинхронного двигателя к однофазной сети выполнить, используя аналогичную схему, как сделано в предшествующем оборудовании. Рядовой холодильник снабжен пускозащитным реле, отдельная тема разговора. Параметры устройства тесно связаны с типом используемого двигателя, взаимная замена возможна далеко не в каждом случае (нарушение простого правила может вызвать поломку).
Упомянем дважды: выводов обмоток может быть три-четыре. Число неинформативно. Допустима пара контактов термопредохранителя. Плюс описанное выше, включая центробежный выключатель. В случае при прозвонке сопротивление либо мало, либо наоборот — фиксируем разрыв. Кстати, не забудьте при определении сопротивления каждый конец катушки пробовать на корпус. Изоляция стандартно не ниже 20 МОм. В противном случае стоит задуматься о наличии пробоя. Также допускаем, что трехфазный двигатель, имеющий внутреннюю коммутацию обмоток по типу звезды, может иметь выход нейтрали на корпус. В этом случае двигатель требует непременного заземления, под которую предусматривается клемма (но более вероятно, что мотор просто вышел из строя из-за пробоя изоляции).
Как подобрать конденсатор для пуска однофазного двигателя
Уже рассказывали, как подобрать конденсатор для пуска трёхфазного двигателя, но методика в нашем случае не годится. Любители рекомендуют произвести попытку входа в так называемый резонанс. При этом потребление агрегата на 9 кВт составит порядка (!) 100 Вт. Это не значит, что вал потянет полную нагрузку, но в холостом режиме потреблением станет минимальным. Как подключить электродвигатель этим способом.
Любители рекомендуют ориентироваться на потребляемый ток. При оптимальном значении емкости мощность станет минимальной. Оценить потребляемый ток можно при помощи китайского мультиметра. А так, подключение однофазного двигателя с пусковой обмоткой выполняют, руководствуясь электрической схемой, указанной на корпусе. Там приведены, например, сведения:
- Цвет кембрика определённой обмотки.
- Электрическая схема коммутации для цепи переменного тока.
- Номинал используемой емкости.
Итак, если брать однофазный асинхронный двигатель, схема подключения чаще указана на корпусе.
Характеристики трехфазного асинхронного двигателя
Используя эквивалентную схему трехфазного асинхронного двигателя и некоторую дополнительную информацию о механических потерях и потерях в сердечнике, можно рассчитать рабочие характеристики трехфазного асинхронного двигателя от холостого хода до полной нагрузки. . На рисунке 1 показан набор типовых кривых КПД, тока, коэффициента мощности и скольжения для асинхронного двигателя. Рассмотрим каждую из этих кривых.
РИСУНОК 1 Характеристики асинхронного двигателя.
КПД
КПД — это выходная мощность, деленная на входящую мощность. Очевидно, что при отсутствии нагрузки на двигатель выходная мощность и КПД равны нулю.
На холостом ходу машина потребляет электроэнергию из системы, потому что в машине все еще есть потери (вращательные, сердечник и некоторое количество меди). Когда на вал двигателя прикладывается нагрузка, из системы потребляется больше энергии, и КПД должен повышаться, потому что выходная мощность теперь больше нуля.КПД будет продолжать расти, пока выходная мощность увеличивается быстрее, чем входная.
Однако в конце концов достигается точка, при которой потери начинают расти быстрее, а эффективность снижается. Важно отметить, что КПД довольно плоский от примерно 50% до 100% от номинальной нагрузки и достигает пика где-то от 70% до 80%, поэтому указание двигателя немного завышенного размера не вызывает слишком большого снижения эффективности.
Коэффициент мощности
Коэффициент мощности — это реальная мощность, подаваемая в машину, деленная на полную мощность.Рассматривая эквивалентную схему, показанную на рисунке 2, отметим, что для легких нагрузок коэффициент R r / с становится очень большим из-за низкого значения скольжения. В частности, цепь ротора фактически является разомкнутой цепью на холостом ходу, а эквивалентная схема сокращается до сопротивления статора последовательно с реактивным сопротивлением утечки статора и реактивным сопротивлением намагничивания. Реактивное сопротивление намагничивания намного больше, чем сопротивление статора, поэтому коэффициент мощности очень низкий. Однако оно не равно нулю, потому что мощность поступает в двигатель, чтобы компенсировать потери холостого хода.
По мере увеличения нагрузки реальная мощность машины должна увеличиваться, в то время как реактивная мощность не меняется слишком сильно. Реактивная мощность поддерживает магнитное поле и практически не зависит от нагрузки. Следовательно, мы ожидаем, что коэффициент мощности увеличится по мере увеличения нагрузки на двигатель. Работа двигателя при нагрузке ниже номинальной приводит к снижению коэффициента мощности, что может усугубить проблемы с коэффициентом мощности на установке.
РИСУНОК 2 Эквивалентная схема для однофазного асинхронного двигателя.
Ток
Ток требуется для обеспечения реактивной мощности магнитного поля, а также реальной мощности для работы нагрузки. Ток холостого хода может составлять значительную часть тока полной нагрузки, поскольку воздушный зазор двигателя относительно велик. По мере увеличения нагрузки составляющая тока в фазе с напряжением увеличивается, в результате чего величина тока увеличивается, а угол коэффициента мощности уменьшается.
На рисунке 3 показана векторная диаграмма с фазовым напряжением в качестве опорного фазора.Ток I nl представляет линейный ток без нагрузки. Поскольку реальная мощность не передается, коэффициент мощности очень низкий. Ток можно разделить на две составляющие: одна синфазна с напряжением, а вторая отстает от напряжения на 90 o .
Принцип работы асинхронного двигателя — однофазный и трехфазный асинхронный двигатель
Асинхронный двигатель представляет собой электрическую машину переменного тока, которая преобразует электрическую энергию в механическую. Асинхронный двигатель широко используется в различных областях, от основных бытовых приборов до тяжелой промышленности.У машины так много применений, что трудно сосчитать, и вы можете представить масштаб, зная, что почти 30% электроэнергии, производимой во всем мире, потребляется самими асинхронными двигателями. Эта удивительная машина была изобретена великим ученым Никой Тесла, и это изобретение навсегда изменило ход человеческой цивилизации.
Вот нескольких применений однофазных и трехфазных асинхронных двигателей , которые мы можем найти в повседневной жизни.
Применения однофазных асинхронных двигателей:
- Электровентиляторы в дом
- Станки сверлильные
- Насосы
- Шлифовальные машины
- Игрушки
- Пылесос
- Вытяжные вентиляторы
- Компрессоры и электробритвы
Применение трехфазных асинхронных двигателей:
- Малые, средние и крупные производства.
- Подъемники
- Краны
- Станки токарные приводные
- Маслоэкстракционные заводы
- Роботизированное оружие
- Конвейерная ленточная система
- Тяжелые дробилки
Асинхронные двигатели бывают разных размеров и форм, имеющих соответствующие характеристики и электрические характеристики. Они различаются по размеру от нескольких сантиметров до нескольких метров и имеют номинальную мощность от 0,5 до 10000 л.с. Пользователь может выбрать наиболее подходящую из множества моделей для удовлетворения своего спроса.
Мы уже обсуждали «Основы двигателей» и их работу в предыдущей статье. Здесь мы подробно обсудим конструкцию и работу асинхронного двигателя .
Принцип работы асинхронного двигателя
Чтобы понять принцип работы асинхронного двигателя, давайте сначала рассмотрим простую установку, показанную на рисунке.
Здесь,
- Берут два железных или ферритовых сердечника одинакового размера и подвешивают в воздухе на некотором расстоянии.
- Эмалированный медный провод намотан на верхнюю жилу, затем на нижнюю и два конца отведены в сторону, как показано на рисунке.
- Сердечник здесь действует как среда для переноса и концентрации магнитного потока, генерируемого катушкой во время работы.
Теперь, , если мы подключим источник переменного напряжения к двум концам медного провода, у нас будет что-то вроде ниже.
Во время положительного цикла AC :
Здесь в течение первого полупериода , положительное напряжение в точке «А» будет постепенно повышаться от нуля до максимума, а затем возвращается к нулю.В этот период ток в обмотке можно представить как.
Здесь,
- Во время положительного цикла источника питания переменного тока ток в обеих обмотках постепенно увеличивается от нуля до максимума, а затем постепенно возвращается от максимума к нулю. Это связано с тем, что согласно закону Ома ток в проводнике прямо пропорционален напряжению на клеммах, и мы много раз обсуждали это в предыдущих статьях.
- Обмотки намотаны таким образом, что ток в обеих обмотках течет в одном направлении, и мы можем видеть то же самое, что показано на схеме.
Теперь давайте вспомним закон, называемый законом Ленца, который мы изучили ранее, прежде чем двигаться дальше. Согласно закону Ленца, « Проводник, несущий ток, будет генерировать магнитное поле вокруг своей поверхности»,
, и если мы применим этот закон в приведенном выше примере, то магнитное поле будет генерироваться каждой петлей в обеих катушках. Если добавить магнитный поток, генерируемый всей катушкой, то он получит значительную величину. Весь этот поток появится на железном сердечнике, так как катушка была намотана на корпус сердечника.
Для удобства, если мы нарисуем линии магнитного потока, сосредоточенные на железном сердечнике с обоих концов, то у нас будет что-то вроде ниже.
Здесь вы можете увидеть концентрацию магнитных линий на железных сердечниках и их движение через воздушный зазор.
Эта интенсивность потока прямо пропорциональна току, протекающему в катушках, намотанных на обоих металлических корпусах. Таким образом, во время положительного полупериода поток изменяется от нуля до максимума, а затем снижается с максимума до нуля.После того, как положительный цикл завершится, напряженность поля в воздушном зазоре также достигнет нуля, и после этого у нас будет отрицательный цикл.
Во время отрицательного цикла AC :
Во время этого отрицательного цикла синусоидального напряжения положительное напряжение в точке «B» будет постепенно повышаться от нуля до максимума, а затем возвращается к нулю. Как обычно, из-за этого напряжения будет течь ток, и мы можем видеть направление этого тока в обмотках на рисунке ниже.
Поскольку ток линейно пропорционален напряжению, его величина в обеих обмотках постепенно увеличивается от нуля до максимума, а затем уменьшается от максимума до нуля.
Если мы рассмотрим закон Ленца, то вокруг катушек появится магнитное поле из-за протекания тока, аналогичного случаю, изученному в положительном цикле. Это поле будет сосредоточено в центре ферритовых сердечников, как показано на рисунке. Поскольку интенсивность потока прямо пропорциональна току, протекающему в катушках, намотанных на обоих железных телах, этот поток также будет изменяться от нуля до максимума, а затем снижаться с максимума до нуля в зависимости от величины тока.Хотя это похоже на положительный цикл, есть разница, и это направление силовых линий магнитного поля. Вы можете наблюдать эту разницу в направлении потока на диаграммах.
После его отрицательного цикла следует положительный цикл, за которым следует другой отрицательный цикл, и так продолжается до тех пор, пока синусоидальное напряжение переменного тока не будет снято. И из-за этого цикла смены напряжения магнитное поле в центре на железных сердечниках постоянно меняется как по величине, так и по направлению.
В заключение, используя эту установку,
- Мы разработали область сосредоточения магнитного поля в центре железных сердечников.
- Напряженность магнитного поля в воздушном зазоре постоянно меняется как по величине, так и по направлению.
- Поле повторяет форму волны синусоидального переменного напряжения.
Закон электромагнитной индукции Фарадея
Эта установка, которую мы обсуждали до сих пор, лучше всего подходит для реализации закона электромагнитной индукции Фарадея.Это связано с тем, что постоянно меняющееся магнитное поле является самым основным и важным требованием для электромагнитной индукции.
Мы изучаем этот закон здесь, потому что асинхронный двигатель работает по принципу закона электромагнитной индукции Фарадея.
Теперь, чтобы изучить явление электромагнитной индукции, давайте рассмотрим установку ниже.
- Берется проводник и формируется квадрат с закороченными концами.
- Металлический стержень закреплен в центре квадрата проводника, который действует как ось установки.
- Теперь квадратный проводник может свободно вращаться вдоль оси и
Способы запуска трехфазного асинхронного двигателя
Методы пуска трехфазного асинхронного двигателя обычно включают прямой пуск, пуск при пониженном напряжении и устройство плавного пуска.
Пуск от сети
Этот вид режима пуска является самым основным и простым при пуске двигателя. Метод отличается меньшими инвестициями, простым оборудованием и небольшим количеством.Хотя время пуска невелико, крутящий момент меньше при пуске, а ток большой, что подходит для пуска двигателей небольшой мощности.
Пуск с пониженным напряжением
Метод пуска с пониженным напряжением может быть применен в асинхронных двигателях среднего и большого размера для ограничения пускового тока. Когда двигатель завершит запуск, он возобновит работу на полном давлении. Однако в результате пуска при пониженном напряжении пусковой крутящий момент снижается.Поэтому пуск при пониженном напряжении подходит только для пуска двигателя без нагрузки или с небольшой нагрузкой. Ниже приведены некоторые распространенные методы пуска при пониженном напряжении.
- Пуск последовательного сопротивления цепи статора
В цепь обмоток статора двигателя включен трехфазный электрический реактор. Электрический реактор можно рассматривать просто как катушку, которая может создавать наведенную электродвижущую силу для уменьшения прямого входного напряжения промышленной частоты. - Пуск звезда-треугольник
В нормальном режиме работы трехфазный асинхронный двигатель, обмотка статора которого должна быть соединена треугольником, может быть запущен звездой во время запуска, чтобы снизить напряжение каждой фазы двигателя и затем уменьшить пусковой ток.После завершения пуска он подключается по схеме треугольник. Пуск
звезда-треугольник широко используется благодаря своим преимуществам, включая простое пусковое оборудование, низкую стоимость, более надежную работу и простое обслуживание. - Пуск автотрансформатора
Пуск автотрансформатора с пониженным напряжением означает, что пониженное напряжение сети подается на обмотки статора двигателя до тех пор, пока скорость не приблизится к постоянному значению, а затем двигатель подключается к сети.
При запуске переключатель переводится в положение «пуск», и автотрансформатор подключается к сети с последующим подключением к обмоткам статора двигателя для достижения запуска при пониженном напряжении.Когда скорость вращения приближается к номинальному значению, переключатель будет переведен в положение «работа», и двигатель получит прямой доступ к сети при работе с полным давлением через отключение автотрансформатора.
Пуск с пониженным напряжением автотрансформатора вводится в соединение звездой для двигателя большой мощности или нормальной работы с запуском под определенной нагрузкой. В зависимости от нагрузки ответвления трансформатора выбираются по получению необходимого пускового напряжения и пускового момента.В этот момент пусковой момент все еще ослаблен, но не снижается на одну треть (по сравнению с пуском со сниженным напряжением со звездой-треугольником). Однако автотрансформатор имеет большие размеры и легкий вес, высокую цену и неудобство в обслуживании, поэтому его нельзя часто перемещать.
Устройство плавного пуска
Устройство плавного пуска — это устройство управления нового типа, основными преимуществами которого являются плавный пуск, небольшая нагрузка, экономия энергии и быстрота. Одна из наиболее важных особенностей заключается в том, что электронная схема проводится в кремниевом выпрямителе двигателя при тандемном подключении источника питания.Использование устройства плавного пуска для подключения источника питания к двигателю и различных методов управления углом проводимости в кремниевом выпрямителе может привести к постепенному увеличению входного напряжения двигателя от нуля и передаче всего напряжения на двигатель от начала до конца, что называется плавным пуском. При таком запуске крутящий момент двигателя будет постепенно увеличиваться с увеличением скорости. Фактически, устройство плавного пуска — это регулятор напряжения, который изменяет только напряжение, не изменяя частоту при запуске.
Разница между однофазным и трехфазным асинхронным двигателем
Однофазный двигатель и трехфазный асинхронный двигатель различаются по различным факторам, указанным в этой статье, таким как источник питания, от которого они работают, их пусковой момент, техническое обслуживание, характеристики, эффективность двигателя, их коэффициенты мощности и Пример использования двух двигателей.
Различия между однофазным и трехфазным асинхронным двигателем приведены ниже в виде таблицы.
BASIS | ОДНОФАЗНЫЙ ИНДУКЦИОННЫЙ ДВИГАТЕЛЬ | ТРЕХФАЗНЫЙ ИНДУКЦИОННЫЙ ДВИГАТЕЛЬ |
---|---|---|
Питание | Однофазный асинхронный двигатель использует однофазное питание для своей работы. | Трехфазный асинхронный двигатель работает от трехфазного источника питания. |
Пусковой момент | Пусковой момент низкий. | Пусковой крутящий момент высокий. |
Техническое обслуживание | Их легко ремонтировать и обслуживать. | Сложные в ремонте и обслуживании. |
Характеристики | Простой по конструкции, надежный и экономичный по сравнению с трехфазными асинхронными двигателями. | Комплекс в строительстве и дорого. |
КПД | КПД меньше | КПД высокий |
Коэффициент мощности | Коэффициент мощности низкий | Коэффициент мощности высокий |
Примеры | Они в основном используются в бытовых приборах, таких как миксеры-измельчители, вентиляторы, компрессоры и т. Д. | Трехфазные асинхронные двигатели в основном используются в промышленности. |
Асинхронный двигатель — это асинхронный двигатель, поскольку они не работают с синхронной скоростью. Однофазный асинхронный двигатель работает от однофазного источника питания и не запускается самостоятельно.
Трехфазный асинхронный двигатель работает от трехфазной сети питания и является самозапускающимся двигателем.
Различия между однофазным и трехфазным асинхронным двигателем заключаются в следующем: —
- Как видно из названия, однофазный асинхронный двигатель использует однофазное питание для своей работы, а трехфазный асинхронный двигатель использует трехфазное питание.
- Пусковой момент однофазного асинхронного двигателя низкий, тогда как пусковой момент трехфазного асинхронного двигателя высокий. Однофазные двигатели
- просты в ремонте и обслуживании, а трехфазные двигатели — сложны. Однофазные двигатели
- имеют простую конструкцию, надежны и экономичны по сравнению с трехфазными асинхронными двигателями.
- КПД однофазного двигателя низкий, тогда как КПД трехфазных асинхронных двигателей высокий.
- Коэффициент мощности однофазного асинхронного двигателя ниже, чем у трехфазного асинхронного двигателя. Однофазные двигатели
- в основном используются в бытовых приборах, таких как миксеры-измельчители, вентиляторы, компрессоры и т. Д. Трехфазные асинхронные двигатели в основном используются в промышленности.
Однофазные асинхронные двигатели различных типов
Однофазные асинхронные двигатели различных типов — MCQ с ответами
Q1. Асинхронный двигатель с разделенной фазой имеет
а.Низкий пусковой ток и высокий пусковой момент
b. Умеренный пусковой ток и средний пусковой момент
c. Низкий пусковой ток и средний пусковой момент
d. Умеренный пусковой ток и низкий пусковой крутящий момент
Посмотреть ответ / Скрыть ответ
ОТВЕТ: c. Низкий пусковой ток и средний пусковой момент
Q2. В стиральных машинах чаще всего используются моторы
a. Асинхронные двигатели с расщепленной фазой
b. Асинхронные двигатели с контактным кольцом
c.Асинхронные двигатели с конденсаторным пуском
d. Асинхронные двигатели с экранированными полюсами
Посмотреть ответ / Скрыть ответ
ОТВЕТ: a. Асинхронные двигатели с разделением фаз
Q3. Асинхронные двигатели с расщепленной фазой доступны в диапазоне
а. От 1/2 до 1/10 кВт
b. От 1/20 до 1/2 кВт
c. От 1/10 до 1/20 кВт
d. Ни один из этих
Посмотреть ответ / Скрыть ответ
ОТВЕТ: b. От 1/20 до 1/2 кВт
Q4.В конденсаторном пусковом конденсаторе запускают асинхронный двигатель, конденсатор
А. Только на старте
б. Только в рабочем состоянии
c. При запуске, а также во время работы
d. Ни один из этих
Посмотреть ответ / Скрыть ответ
ОТВЕТ: c. При запуске, а также во время работы
Q5. Конденсатор постоянно подключен к конденсаторному двигателю
a. Повышает коэффициент мощности
b. Понижает коэффициент мощности
c.Не влияет на коэффициент мощности
d. Ни один из этих
Посмотреть ответ / Скрыть ответ
ОТВЕТ: a. Повышает коэффициент мощности
Q6. В холодильниках обычно используются двигатели
a. Асинхронные двигатели с расщепленной фазой
b. Конденсаторные асинхронные двигатели
c. Асинхронные двигатели с экранированными полюсами
d. Ни один из этих
Посмотреть ответ / Скрыть ответ
ОТВЕТ: b. Конденсаторные асинхронные двигатели
Q7.В асинхронном двигателе с экранированными полюсами направление вращения магнитного поля составляет от
a. От заштрихованной опоры к незатененной опоре
b. Незаштрихованный столб к затененному столбу
c. Не зависит от полюсов
d. Ни один из этих
Посмотреть ответ / Скрыть ответ
ОТВЕТ: b. От незатененного полюса к затененному полюсу
Q8. Пусковой крутящий момент и коэффициент мощности асинхронного двигателя с экранированными полюсами
a. Высокая, низкая
б. Низкий, высокий
c. Низкий, низкий
d.Высокий, высокий
Посмотреть ответ / Скрыть ответ
Q9. В однофазном асинхронном двигателе скорость двигателя без нагрузки составляет
а. Почти равняется его синхронной скорости
b. Меньше, чем его синхронная скорость
c. Скорость выше синхронной
d. Ни один из этих
Посмотреть ответ / Скрыть ответ
ОТВЕТ: a. Почти равна его синхронной скорости
Q10. Уравнение крутящего момента однофазного асинхронного двигателя содержит постоянный член, на который наложен пульсирующий крутящий момент.Частота пульсаций
а. Равно частоте питания
b. Удвоенная частота питания
c. Половина частоты питания
d. Ни один из этих
Посмотреть ответ / Скрыть ответ
ОТВЕТ: b. Удвоение частоты питания
Q11. Статор асинхронного двигателя с расщепленной фазой имеет две обмотки: основную и вспомогательную. Эти обмотки смещены в пространстве на
а. 30 электрических градусов
б.90 электрических градусов
c. 120 электрических градусов
d. 180 электрических градусов
Посмотреть ответ / Скрыть ответ
ОТВЕТ: b. 90 электрических градусов
Q12. Поток под незатененным полюсом асинхронного двигателя с экранированными полюсами
а. Находится в равной фазе потока под заштрихованным полюсом
b. Отставляет поток под заштрихованным полюсом
c. Подводит флюс под заштрихованный полюс
d. Ни один из этих
Посмотреть ответ / Скрыть ответ
ОТВЕТ: c.