Трехфазный трансформатор разделительный согласующий: назначение, схема и принцип работы

Содержание

применение, расчёт и как сделать своими руками

Согласующий трансформатор — электротехническое устройство, обеспечивающее передачу или преобразование полезного гармонического сигнала различной частоты с минимальными искажениями и потерей мощности. Такой результат становится возможным только благодаря точному согласованию полного сопротивления (импеданса) источника сигнала и нагрузки или отдельных каскадов электронных схем.

Назначение

Известно, что минимизировать потери электрических сигналов при передаче потребителю можно только тогда, когда его полное сопротивление соответствует внутреннему сопротивлению источника. Это правило действует для всех схем — многокаскадных электронных устройств, при подключении нагрузки к усилителям или подаче на них сигнала, например, от звукоснимателя или микрофона.

Основное назначение согласующего трансформатора связано именно с необходимостью масштабирования сопротивления источника и нагрузки.

При этом само непосредственное изменение показателей силы тока и напряжения не имеет значения. Применяются такие приборы тогда, когда требуется подключение нагрузки, не соответствующей по сопротивлению допустимым значениям для источника сигнала.

Принцип работы

При подключении к первичной обмотке трансформатора источника переменного тока за счет сердечника магнитный поток, который охватывает и вторичную обмотку устройства. При этом индуцируется электродвижущая сила, которая и обеспечивает появление в цепи тока при подключении нагрузки. Благодаря этому осуществляется передача энергии или сигнала без непосредственной электрической связи между обмотками.

Принцип работы трансформатора

Чтобы обеспечить согласование нагрузки и источника по сопротивлению, соотношение числа витков во вторичной обмотке к первичной должно равняться квадратному корню отношения сопротивления нагрузки и источника сигнала. Только в этом случае можно обеспечить передачу без лишних потерь энергии и искажений.

Пример расчёта

Необходимо рассчитать коэффициент трансформации для согласующего трансформатора в ламповом усилителе:

Виды магнитопроводов

Виды магнитопроводов

Особенности конструкции

Передача энергии между обмотками в трансформаторах осуществляется за счет воздействия создаваемого магнитного поля. В зависимости от типа согласующего устройства оно может иметь разную конструкцию:

  1. Устройства для работы с низкочастотным электрическим сигналом обычно наматывают на броневых или стержневых сердечниках из электротехнической стали. Именно такие устройства применяются в усилителях и звуковоспроизводящей аппаратуре. Габаритные размеры зависят от передаваемой мощности, но обычно они не отличаются большими значениями.
  1. Для высокочастотных согласующих трансформаторов чаще всего применяют тороидальные сердечники из ферромагнитных веществ. Они имеют форму кольца с прямоугольным сечением.
  2. Отдельные виды ВЧ согласующих устройств могут быть выполнены по принципу воздушных трансформаторов. Простейший пример — петля из коаксиального кабеля, которая устанавливалась при подключении антенны к основному проводу. Существует вариант и распечатанных непосредственно на плате маломощных трансформаторов согласующего типа.

Для обмоток применяют изолированный медный провод круглого сечения, диаметр которого подбирается на основании расчета. Допускается и намотка проводниками прямоугольной формы, но только при сечении более 5 мм2. В качестве дополнительной изоляции применяется нанесение 2 слоев специального лака.

Основная область применения

Необходимость подобного масштабирования сопротивления существует практически во всех областях, связанных с передачей электрических сигналов и энергии. Но наибольшее применение согласующие трансформаторы получили в следующих сферах:

  1. В усилителях низкой частоты (звуковых усилителях) в качестве межкаскадных и выходных трансформаторов. Необходимость в подобных устройствах была связана с тем, что старые усилители изготавливались на ламповой компонентной базе. При этом практически все лампы отличались высоким внутренним сопротивлением и подключение к ним 4 или 8-омных динамиков напрямую к ним было невозможно. Даже с появлением транзисторов, операционных усилителей ситуация в корне не изменилась, так как без согласования сопротивлений увеличивался уровень искажений сигнала.
  2. В качестве входных согласующие трансформаторы применяются в звуковоспроизводящей аппаратуре для подключения микрофонов, звукоснимателей различных типов. Сопротивление этих устройств варьируется в пределах от десятка до сотни ом, а для подключения к усиливающей аппаратуре требуются значения, которые будут на порядок больше.
  3. Еще одна сфера связана с передачей радиосигнала. Трансформаторы этого типа используются для согласования сигнала при подключении антенн к приемным и передающим устройствам. Без их применения получить качественный сигнал не удается. Отметим, что в этих целях используются высокочастотные согласующие трансформаторы.

На этом область применения не ограничивается. Так, даже обычный сварочный трансформатор в какой-то степени можно считать согласующим, что обусловлено требованиями к величине нагрузки на электрические сети.

Виды согласующих трансформаторов

Наибольшее применение на практике получил звуковой согласующий трансформатор входного и выходного типов. Для усилителей на транзисторной элементной базе используют устройства серии ТОТ (оконечный транзисторный), а на ламповых элементах ТОЛ (оконечный ламповый).

В качестве входных получила применение серия ТВТ (входной транзисторный).

Для антенны применяют устройства тороидального типа на ферромагнитных кольцах или конусах необходимого диаметра. Отметим, что для таких трансформаторов не обязательна сплошная намотка по сечению магнитопровода. Достаточно провести через внутреннюю часть прямые проводники, что позволяет сэкономить на производстве за счет уменьшения потребности в электротехнических материалах.

Особенности в эксплуатации

Отметим, что каждая серия устройств предназначена для определенных условий эксплуатации. В большинстве случаев допустимый температурный диапазон составляет -60/+85°С, атмосферное давление не менее 5 мм рт. ст., но не более 3 атмосфер. Допускается эксплуатация при относительной влажности до 98 %.

В любом случае при выборе оборудования этого типа необходимо уточнить допустимые эксплуатационные условия.

Как сделать своими руками

Особых сложностей и отличий в изготовлении согласующих трансформаторов нет. Технология сходна со сборкой понижающих устройств. Но необходимо соблюдать следующие рекомендации:

  • Обмотки укладываются равномерно без повреждения изоляции.
  • Пластины малогабаритных устройств не нуждаются в дополнительной изоляции, лакируют только детали наборных сердечников более мощных трансформаторов.
  • При выборе типа сердечника необходимо обращать на технические характеристики трансформаторной стали или ферромагнитных колец.

Отметим, что самостоятельное изготовление устройств такого типа экономически нецелесообразно. Закупка отдельных комплектующих обойдется дороже. Согласующее устройство с требуемым коэффициентом трансформации по сопротивлению в заводском исполнении обойдется дешевле.

Трансформатор разделительный (развязывающий) назначение, для чего нужен

Разделительный трансформатор – это устройство, назначение которого для так называемого гальванического разделения потребителей электроэнергии и питающей их электрической сети, для чего отсутствуют во вторичных цепях электрические связи с землей или с источниками напряжения, выполненными в виде глухозаземленной или эффективно заземленной нейтрали на трансформаторных подстанциях.

В чем заключается защитное действие разделительного трансформатора, принцип работы

Устройство и принцип работы разделительного трансформатора ничем принципиально не отличается от принципа работы трансформатора; устройством осуществляется такое же преобразование электроэнергии.

На общем магнитопроводе устройства размещены две обмотки из одного и того же изолированного провода с одинаковыми намоточными характеристиками. Электрическая мощность синусоидальной гармоники пропускается через первичную обмотку, на основе законов электромагнитной индукции преобразуется во вторичной. Вектор напряжения в выходных цепях вторичной обмотки повторяет полностью параметры первичного. Конечно, если учесть классы точности метрологических измерений, то определенные погрешности по величине и углам существуют. Однако, это чистая теория; при эксплуатации погрешности не учитываются.

Основной задачей изолирующего трансформатора является повышение электробезопасности за счет того, что его вторичные цепи не имеют электрической связи с землей, а значит — и с заземленной нейтралью трансформаторной подстанции – источником напряжения.

как работает трансформатор безопасности

В этом случае возникновение электрического пробоя на корпус не вызывает перегрузок по току, а сам прибор остается в рабочем состоянии. При случайном прикосновении человека к части устройства, аварийно находящегося под напряжением, ток утечки не превысит жизненно опасного порога и трагедии не случится.

Исходя из назначения, разделительный трансформатор применяется во всех пространствах, входящих в группу высокой опасности. В первую очередь его используют для установки в бассейнах, саунах, ванных комнатах и помещениях, где размещены металлоизделия с неустойчивым заземлением.

Действующие нормативы и правила безопасности в России и Европе также предписывают устанавливать их в особо опасных пространствах, где присутствует мелкозернистая токопроводящая пыль, имеются стены и полы из металла, а также в подземных сооружениях, укомплектованных местным освещением, автоматикой и сигнализацией.

Поскольку вторичная электрическая цепь распределителя не связана с землей, к нему подключают оборудование, которое также не соединяется с землей. В зависимости от показателей мощности и назначения, к однофазным понижающим разделительным трансформаторам подсоединяют электроинструменты, полупроводниковые преобразователи станков и лифтов, а также другую аппаратуру. См. Трансформатор разделительный 220/220 В

Трехфазные агрегаты чаще всего используют для питания и локальной защиты систем управления и мобильных комплексов, вычислительной техники и оборудования, задействованного в медицине, химической, машиностроительной, горнодобывающей и железнодорожной промышленности.

В числе главных преимуществ применения разделительного трансформатора  можно отметить:

  • обеспечение безопасности людей;
  •  увеличение срока эксплуатации оборудования;
  •  возможность монтажа во встроенные подстанции;
  •  фильтрация высокочастотных гармоник;
  •  уменьшение замыкающих токов;
  •  малошумная эксплуатация;
  •  стойкость к воздействию влажности, грязи, плесени;
  •  минимальные затраты на обслуживание.

Важным достоинством является то, что подключение разделительного трансформатора полностью соответствует требованиям пожарной и экологической безопасности.

Условия подключения и эксплуатации разделительных трансформаторов

Оборудование, соответствующее стандартам ГОСТ 15543.1 и ГОСТ 15150, предназначено для эксплуатации в условиях умеренного и холодного климата. В зависимости от типа корпуса и назначения, его можно монтировать в закрытых пространствах с естественным воздухообменом и без искусственной регуляции внутреннего микроклимата, а также на открытом воздухе под навесом или в сухом неотапливаемом помещении, где имеется свободный доступ внешнего воздуха.

Для разных категорий установок определены соответствующие температурные условия: для стандартных агрегатов от -25ºС до +40ºС, для морозостойких приборов – от -60ºС до +40ºС. Для эффективного отведения тепла, выделяемого при работе разделительного трансформатора и обеспечения естественного охлаждения его следует устанавливать на раму или на колеса.

Во избежание механического напряжения все шины и провода должны быть закреплены. Расстояние от обмоток разделительного трансформатора до стены или другой заземленной конструкции должно составлять 300 мм. Работы по профилактическому обслуживанию распределителей напряжения проводятся два раза в год. Они включают в себя операции по очищению обмоток, системы магнитопровода и охлаждающих каналов от грязи, пыли и посторонних частиц.

Кроме того, в ходе сервисного обслуживания обязательно проводится тестирование надежности болтовых соединений, для чего используются динамометрические ключи и влажное очищение обмоток губкой, смоченной в растворителе или спиртовом растворе. Объемы и периодичность каждого вида операций напрямую зависят от условий эксплуатации. Также время от времени рекомендуется производить визуальный осмотр аппаратуры.

Читать еще:

Устройство 3-трехфазного трансформатора, схема подключения, принцип работы

 

Устройство 3 фазного трансформатора

Устроен трехфазный трансформатор преимущественно с  стержневыми сердечниками. Если использовать три однофазных трансформатора, где каждый трансформатор  имеет свою обмотку, а затем их объединить, как показано на рисунке где у них есть общий стержень, не имеющий обмоток то получится устройство трехфазного трансформатора. Принцип действия в том, что три стержня здесь объединены в общий «нуль». Через этот общий «0» будут проходить общие магнитные потоки, которые равные по величине, но по фазе сдвинутые на 1/3 периода, то сумма потоков будет равна «нулю» в произвольный момент времени. Если магнитный поток (Фа + Фb + Фс= 0), то общий стержень становиться ненужным.

Конструкция трехфазного трансформатора имеет всего три стержня расположенных в одной плоскости.

Принцип работы трёхфазного трансформатора, как и однофазного, базируется на законе электромагнитной индукции. При подключении к сети первичной обмотки, в ней начинает протекать переменный ток. Из-за него в сердечнике магнитопровода из стали появляется основной магнитный поток, который охватывает обмотки в каждой фазе.  … Ф — максимальное значение основного магнитного потока, Вб; W 1, W 2 — количество витков в первичной и вторичной обмотках соответственно.

Обмотки трехфазного трансформатора располагаются на каждом из стержней и включают для каждой фазы свои обмотки высшего и низшего напряжения. Ярмо сверху и снизу объединяет стержни трансформаторов.

Обмотки однофазных трансформаторов не чем не отличаются конструктивно  от трех фазных.

Первичные обмотки трансформатора называются обмотками высшего напряжения (ВН) и обозначаются заглавными буквами, а вторичные обмотки называются обмтками низшего напряжения (НН) и обозначаются малыми буквами.

Детальный принцип работы 3- фазного трансформатора

Трехфазный ток можно трансформировать тремя совершенно отдельными однофазными трансформаторами. В этом случае обмотки всех трех фаз магнитно не связаны друг с другом: каждая фаза имеет свою магнитную цепь. Но тот же трехфазный ток можно трансформировать и одним трехфазным трансформатором, у которого обмотки всех трех фаз магнитно связаны между собою, так как имеют общую магнитную цепь.

Чтобы уяснить себе принцип действия и устройства трехфазного трансформатора, представим себе три однофазных трансформатора, приставленных один к другому так, что три стержня их образуют один общий центральный стержень (рис. 1). На каждом из остальных трех стержней наложены первичные и вторичные обмотки (на рис. 1 вторичные обмотки не изображены).

Предположим, что первичные катушки всех стержней трансформатора совершенно одинаковы и намотаны в одном направлении (на рис. 1 первичные катушки намотаны по часовой стрелке, если смотреть на них сверху). Соединим все верхние концы катушек в нейтраль О, а нижние концы катушек подведем к трем зажимам трехфазной сети.

рис 1

Токи в катушках трансформатора создадут переменные во времени магнитные потоки, которые будут замыкаться каждый в своей магнитной цепи. В центральном составном стержне магнитные потоки сложатся и в сумме дадут ноль, ибо эти потоки создаются симметричными трехфазными токами, относительно которых мы знаем, что сумма мгновенных значений их равна нулю в любой момент времени.

Например, если бы в катушке АХ ток I, был наибольший и проходил в указанном на рис. 1 направлении, то магнитный поток был бы равен наибольшему своему значению Ф и был направлен в центральном составном стержне сверху вниз. В двух других катушках BY и CZтоки I2 и I3 в тот же момент времени равны половине наибольшего тока и имеют обратное направление по отношению к току в катушке АХ (таково свойство трехфазных токов). По этой причине в стержнях катушек BY и CZ магнитные по токи будут равны половине наибольшего потока и в центральном составном стержне будут иметь обратное направление по отношению к потоку катушки АХ. Сумма потоков в рассматриваемый момент равна нулю. То же самое имеет место и для любого другого момента.

Отсутствие потока в центральном стержне не означает отсутствия потоков в остальных стержнях. Если бы мы уничтожили центральный стержень, а верхние и нижние ярма соединили в общие ярма (см. рис. 2), то поток катушки АХ нашел бы себе путь через сердечники катушек BY и CZ, причем магнитодвижущие силы этих катушек сложились бы с магнитодвижущей силой катушки АХ. В таком случае мы получили бы трехфазный трансформатор с общей магнитною цепью всех трех фаз.

Рисунок 2.

Так как токи в катушках смещены по фазе на 1/3 периода, то и создаваемые ими магнитные потоки также смещены во времени на 1/3 периода, т. е. наибольшие значения магнитных потоков в стержнях катушек следуют друг за другом через 1/3 периода.

Следствием сдвига по фазе магнитных потоков в сердечниках на 1/3 периода является такой же сдвиг по фазе и электродвижущих сил, индуктируемых как в первичных, так и во вторичных катушках, наложенных на стержнях. Электродвижущие силы первичных катушек почти уравновешивают приложенное трехфазное напряжение. Электродвижущие силы вторичных катушек при правильном соединении концов катушек дают трехфазное вторичное напряжение, которое подается во вторичную цепь.

Как обозначаются начала первичной обмотки трехфазного трансформатора

Все начала первичных обмоток трехфазного трансформатора обозначают большими буквами: А, В, С; начала вторичных обмоток — малыми буквами: а, Ь, с. Концы обмоток обозначаются соответственно: X, У, Z и х, у, z. Зажим выведенной нулевой точки при соединении звездой обозначают буквой О.

А, В, С – обозначают начало обмоток высшего напряжения, а буквы X, Y и Z означают конец этих обмоток.

Трансформаторы с «нулевой точкой» имеют выведенный конце под клемму обозначенный большой буквой О.

Аналогично обозначают концы обмоток низшего напряжения, но используют для этого строчные  буквы х, у, z – это конец фазных обмоток, а, в, с их начало.

Звезда и треугольник – это основные способы соединения обмоток 3 -х фазного  трансформатора.

Соединяя свободные выводы трех обмоток между собой их начала, или концы образуют нейтральную точку. Остальные свободные зажимы подключаются к трехфазной нагрузке или входному напряжению, идущему на трансформатор от линии электропередач.

Соединение обмоток трансформатора в звезду

Соединение обмоток в треугольник происходит по принципу последовательного подключения, когда конец одной обмотки соединяется с началом другой, а конец второй обмотки соединяется с началом третей обмотки.

соединение в треугольник

Точки соединения обмоток подключаются внешние устройства. Обозначение выводов трехфазного трансформатора и их схемы подключения.

∆ — соединение обмоток трансформатора треугольником.

Y – соединение обмоток трансформатора звездой.

обозначение трехфазных трансформаторов

Соединение обмоток под чертой указывает на обмотки низшего напряжения, а над чертой высшего напряжения.

Цифра – указывает на угол между векторами ЭДС с 30° градусами угловых единиц.

Расшифровка обозначение указывает, что обмотки высшего в первом случае соединены звездой, низшего напряжения так же звездой. При этом обмотки низшего напряжения имеют подключенную «0» точку.

Сколько стержней должен иметь магнитопровод трехфазного трансформатора?

Трехфазные трансформаторы используются для питания трехфазных или двухфазных сетей, имеющих либо общий трехфазный магнитопровод, либо два или три отдельных магнитопровода стержневого типа.

По способу сборки в современных конструкциях как для однофазных, так и для трехфазных магнитопроводов преимущественное распространение получили шихтованные типы, как более надежные в эксплуатации, удобные в производстве, требующие менее сложного оборудования и приспособлений для сборки.

Где применяется трехфазный трансформатор

Трёхфазный трансформатор используется для преобразования напряжения и применяется как устройство в сфере электрификации промышленных предприятий и жилых помещений. Кроме того, 3 фазные трансформаторы незаменимы на судах, так как с их помощью осуществляется питание приборов различного номинала.

Видео: Принцип работы трансформатора

Трансформаторы могут получать переменный ток с одним напряжением и выдавать его с другим. Таким образом, они служат для повышения эффективности передачи электроэнергии на большие расстояния. В данном видео мы рассмотрим принцип работы и конструкцию простейшего устройства трехфазного трансформатора.

Видео: Что такое звезда и треугольник в трансформаторе

конструкция, принцип действия, технические характеристики

Напряжение 220 В небезопасно для человека. Случайное прикосновение к фазному проводу или к корпусу прибора, оказавшемуся под напряжением, может привести к летальному исходу, если человек стоит на земле или заземленной поверхности. Особую опасность представляют сетевой ток во влажных помещениях. Безопасную эксплуатацию оборудования обеспечивает разделительный трансформатор. Он применяется для развязки гальванической связи блока питания с сетевым напряжением, что сводит к нулю вероятность поражения током.

Конструкция и принцип действия

Главное отличие разделительного трансформатора – отсутствие гальванической связи между катушками, которые надежно отделены гальванической изоляцией. Обычно обмотки образующие первичную цепь трансформатора по параметрам идентичны обмоткам во вторичных цепях. В таком случае коэффициент трансформации для данного разделительного трансформатора равен 1. То есть, устройство используется исключительно для гальванической развязки. Пример разделительного аппарата смотрите на рис. 1.

Рис. 1. Разделительный трансформатор

Характерной особенностью трансформаторов этого типа является то, что цепи вторичных обмоток в разделительной трансформации не оборудуются защитным заземлением. С целью обеспечения надежности гальванической развязки применяют дополнительную изоляцию между катушками. В отдельных случаях витки первичных обмоток отделяют защитным экраном от вторичных обмоток или разносят их физически на разные части магнитопровода.

В остальном конструкция и принцип работы не отличается от трансформаторов других типов:

  • на первичную обмотку поступает напряжение от сети;
  • возникающая при этом магнитная индукция распространяется по всему магнитопроводу.
  • ЭДС индукции возбуждает электрический ток в витках вторичной катушки.

Между напряжениями в катушках и токами существует зависимость: величины вторичных напряжений прямо пропорциональны первичным напряжениям, с коэффициентом пропорциональности k=W2/W1, а выходной ток обратно пропорционален току в первичной обмотке.

Благодаря отсутствию гальванической связи между катушками и отделению от цепи заземления первичной обмотки случайное прикасание к любому выводу вторичной катушки не приводит к поражению током. Остерегаться необходимо только одновременного касания разных выводов трансформатора.

Таким образом, при электрическом контакте с токоведущими частями оборудования запитанного от разделительного трансформатора электрическая цепь с землей не образуется, что исключает возможность поражения электротоком. Разделительные трансформаторы обеспечивают также защиту подключенных электроприборов при однофазных замыканиях. Если КЗ произойдет в первичной цепи, то вторичная цепь просто обесточивается. Однако для полной защиты в первичную цепь подключайте УЗО.

Назначение

Автономные силовые обмотки в основном применяются для отделения цепей электротехнических устройств от напряжений, поставляемых электрической сетью. При этом мощность нагрузки составляет от 100 Вт до 60 кВт. Электрические приборы, отделенные от питающей сети, получают дополнительную защиту, они безопаснее в обслуживании.

Разделительные трансформаторы применяются для подключения нагрузки в помещениях с условиями. повышающими уровень опасности поражения электрическим током. Такими сооружениями являются подвалы, ванные комнаты, и другие помещения с повышенной сыростью.

В целях безопасности делают гальваническую развязку оборудования применяемого в медицинских учреждениях. Подключать разделительный трансформатор целесообразно везде, где существуют повышенные требования к безопасности, там, где нет надежной изоляции с землей.

Разновидности

В электротехнике довольно часто используют понижающий трансформатор с гальваническим разделением цепей первичной обмотки и вторичной катушки.

Такого типа разделительный понижающий аппарат позволяет решить две задачи:

  • понизить напряжение до требуемого уровня;
  • обеспечить безопасную эксплуатацию оборудования.

Семейство силовых трансформаторов включает в себя серии однофазных трансформаторов, обладающими различными номинальными мощностями. Промышленные силовые агрегаты обычно бывают внушительных размеров и устанавливаются стационарно в специальных боксах (см. рис. 2).

Рис. 2. Промышленный разделительный трансформатор

Существуют компактные переносные устройства (см. рис. 3).

Применение переносных трансформаторов удобно в тех случаях, когда электрооборудование не может быть установлено стационарно, а используется периодически. Например, при использовании электроинструмента в кабельных колодцах, в подвалах и т.п. При номинальных первичных напряжениях эти устройства стабильно работают. Они хорошо защищены от воздействия влаги и прочих влияний окружающей среды.

Рис. 3. Переносной разделительный агрегат

Во входных сигнальных блоках, а также в других цепях электронного оборудования применяются малогабаритные, высокочастотные импульсные трансформаторы.

По конструкции сердечника сетевой трансформатор чаще всего бывает стержневого типа. Встречаются также тороидальные модели.

Рис. 4. Тороидальный разделительный трансформатор

Технические характеристики

Промышленность поставляет на рынок множество моделей с различными характеристиками. Запомнить их просто невозможно. Да в этом нет необходимости. Большинство характеристик будут интересны только узким специалистам.

Для практических целей достаточно знать основные параметры трансформатора. Обычно эти параметры указаны в паспорте устройства.

При выборе разделительного трансформатора обращайте внимание на следующие основные характеристики:

  • номинальная мощность;
  • частота тока;
  • первичное напряжение;
  • выходное (вторичное) напряжение;
  • условное обозначение схемы соединения обмоток;
  • напряжение в режиме короткого замыкания;
  • тепловые потери при коротком замыкании;
  • ток в режиме холостого хода;
  • тепловые потери при работе в режиме холостого хода;
  • габаритные размеры.

Номинальная мощность должна совпадать или немного превышать мощность нагрузки. Первичное напряжение должно соответствовать параметрам первичной сети, а вторичное – напряжению питания подключаемых электроприборов. При выборе импульсных трансформаторов обращайте внимание на частоту тока.

Характеристики, выделенные курсивом важны, но для их понимания требуются более глубокие познания в сфере электротехники.

Порядок подключения

Однофазное напряжение формируется методом подключения одной из фаз к нулевому проводу через нагрузку. В нашем случае нагрузкой служит первичная обмотка. Поэтому, когда фазный ток попадает на корпус прибора, то при его касании и одновременном контакте с заземленным предметом, через тело оператора проходит электрический ток.

Применение метода гальванической развязки исключает такую возможность, так как вторичная обмотка не заземлена. Поэтому, перед подключением убедитесь, что вы действительно имеете дело с разделительным трансформатором. Для этого тестером проверьте отсутствие соединения вторичной обмотки с корпусом и с витками первичной обмотки.

В том случае, если вторичная обмотка одна, а обе катушки физически разнесены на разные части сердечника, можно обойтись визуальным осмотром. В противном случае проверка обязательна. Заметьте, что между вторичными обмотками (если их несколько) гальваническая связь может существовать, и это нормально.

Пример схемы подключения приведен на рисунке 5. Обратите внимание, что корпус подключенного оборудования в первичную цепь на этой схеме заземлен. Кроме того, того, чтобы усилить защиту применено УЗО. Если вы используете переносной или стационарный разделительный трансформатор то заземлять оборудование во вторичной цепи не нужно.

Рис. 5. Схема подключения

Разница потенциалов между фазой и землей в первичной цепи составляет 220 В, в то время, как в защищенной цепи напряжение между фазой и землей нулевое.

Подключайте нагрузки, мощность которых не превышает номинала трансформатора. Несоблюдение этого правила может привести к перегреву обмоток, что чревато разрушениями изоляции.

Использованная литература

  • Тихомиров П.М. «Расчет трансформаторов» 1976
  • И С. Таев «Основы теории электрических аппаратов» 1987
  • Г. Н. Александрова «Теория электрических аппаратов».   1985
  • Г. Н. Александрова «Теория электрических аппаратов». 1985

Разделительный трансформатор, устройство, виды, принцип действия и области применения различных типов

Если эксплуатация электрической аппаратуры осуществляется в потенциально опасных условиях внешней среды, то для снижения риска выхода из строя цепей и порчи оборудования рекомендуется применять безопасный разделительный трансформатор.

Благодаря особенностям конструкции такое устройство осуществляет гальваническое разделение питающих электроцепей и потребляющих приборов. Это практически полностью исключает вероятность поражения электрическим током.

В данной статье будут описаны основные конструкционные особенности, преимущества эксплуатации и область использования.

ПРИНЦИП ДЕЙСТВИЯ И УСТРОЙСТВО

Функционирование разделительного понижающего трансформатора низкого напряжения основано на эффекте гальванической развязки. Технически, это реализовано в виде автономного функционирования обеих катушек. Катушки устройства разделены физически, то есть не соприкасаются между собой.

Это обеспечивает безопасную эксплуатацию при условии, что контуры не будут закорочены в результате механического воздействия. Чтобы полностью исключить возможность контакта обмотки изолируют несколькими слоями высококачественной изоляции.

Проходя через первичную обмотку, ток индуцирует электроэнергию во вторичной катушке, к которой и подключаются цепи с потребляющим оборудованием.

Вторичная обмотка РТ или устройства к ней присоединенные не могут иметь контакта с землей или нейтралью. Что это даёт конечному пользователю? Значительное повышение безопасности эксплуатации даже при возникновении пробоя на корпусе. При такой схеме пробой не станет причиной перегрузки цепи по току, а само устройство останется полностью функциональным.

При контакте человека с электроприбором под аварийным напряжением, подключенным через разделительный трансформатор, не произойдет фатального поражения током утечки. Так как он не превысит опасного для жизни уровня.

Одной из эксплуатационных особенностей разделительных трансформаторов напряжения является коэффициент преобразования равный единице у большинства используемых моделей. Таким образом, как входное, так и выходное напряжение равно одной и той же величине — 220 или 380 В.

При расчетах необходимо учитывать затраты энергии на функционирование устройства, так как КПД большинства моделей находится в диапазоне 70-85%.

ВИДЫ И КОНСТРУКЦИОННЫЕ ОСОБЕННОСТИ

На данный момент в электротехнике большинство трансформаторов обеспечивают гальваническую развязку входных и выходных цепей. Несмотря на то, что «классическое» определение разделительного трансформатора подразумевает неизменность величины трансформируемого параметра (напряжения) фактически все виды и типы являются разделительными.

В зависимости от назначения различают трансформаторы:

Тока.
Чаще всего используется для подключения цепей, на которые установлены измерительных, регистрирующих приборов (электросчетчики, амперметры) и защитных реле;
Импульсные.
Преобразует получаемый сигнал в прямоугольный импульс. Используется для предотвращения высокочастотных помех;
Силовые.
Конструкция, чаще всего, состоит из нескольких вторичных обмоток, преобразующих входящий электрический импульс с одной системой напряжения в несколько исходящих с другими параметрами системы напряжения;
Пик-трансформаторы.
Используются для преобразования синусоидальной составляющей напряжения. Основное назначение — предотвращение помех в цепях с аппаратурой для оцифровки.

Некоторые источники выделяют портативные разделительные преобразователи в отдельную категорию. Следует отметить, что габаритные размеры в техническом исполнении устройства различного типа не играют ключевой роли.

Разные виды разделительных трансформаторов могут быть как стационарными, так и портативными. Чаще всего портативные устройства имеют дополнительную защиту от внешнего воздействия и используются в экстремальных условиях эксплуатации, на открытой местности.

Автоматические трансформаторы не являются разделительными, так как в их конструкции реализован иной принцип расположения первичной и вторичной обмотки. Они соединяются в одну, что образует кроме электромагнитной, прямую электрическую связь.

Разрабатываются РТ узконаправленного использования. К примеру, для больниц и лабораторий.

Так называемые медицинские разделительные трансформаторы используются для обеспечения электроснабжение с точно определенными параметрами чувствительных приборов, установленных в реанимации, операционных различных биологических, химических и медицинских лабораториях.

ПРЕИМУЩЕСТВА И ОБЛАСТЬ ПРИМЕНЕНИЯ

Изолирующие трансформаторы получили широкое применение практически во всех сферах электротехники.

Они предоставляют пользователю широкий спектр специфических преимуществ в зависимости от отрасли, где они используются:

  • устройства с коэффициентом трансформации 1:1 применяются в электросетях переменного тока без необходимости дополнительного заземления и изоляции периферийного оборудования;
  • изоляция цепей постоянного тока в линиях связи. В случае необходимости использования усилителей сигнала применение РТ дает возможность отделить постоянный ток для подключения усилителя от компонентов информационного электроимпульса;
  • повышение безопасности эксплуатации электрооборудования. Минимизирует риск фатального поражения электрическим током, отделяя пользователь или оператора от высокомощных источников;
  • при тестировании, сервисном обслуживании или ремонте оборудования дает возможность проводить работы на включённых устройствах. При этом используются разделительные трансформаторы с коэффициентом 1:1, но имеющие небольшую мощность напряжения вторичной цепи;
  • отфильтровывают (отсекают вне рабочего диапазона) искаженную синусоидальную форму напряжения, приводя ее к правильной. Снижают негативное влияние широтно-импульсных модуляций;
  • нейтрализует широкий спектр шумов, образующихся при подключении аудиоустройств (усилителей) к динамикам.

Использование разделительных трансформаторов обусловлено эксплуатационными требованиями и спецификой применения электросетей:

1. Высокая влажность или присутствие воды в помещении, наличие металлических изделий без заземления либо со слабым заземлением: ванные и душевые комнаты, силовые коммутационные шкафы, расположенные на улице, кабельные колодцы, подвалы и полуподвалы.

2. Удалённые посты слежения, измерения и контроля в медицинских учреждениях, дата и колл-центрах, а также других учреждениях, где необходимо повышение уровня защиты персонала и безопасности эксплуатации оборудования.

3. Эксплуатация электроинструмента и оборудования, относящегося к первому классу безопасности.

Согласно ПУЭ установка эксплуатации электрических приборов через разделительный трансформатор необходима в следующих случаях:

  • при подключении устройств электропотребления, не имеющих потенциала заземления;
  • в импульсных электросетях, требующих повышения показателей изоляции. В особенности в медицинском и лабораторным оборудовании;
  • при лабораторных испытаниях электрических и электронных устройств для обеспечения безопасности персонала.

При использовании разделительного трансформатора также необходимо применять для эксплуатируемой цепи устройство защитного отключения (УЗО). Несмотря на высокую надежность и безопасность возможны случаи повреждения изоляции.

При этом потенциал может быть выведен на корпус устройства и появится вероятность поражения электрическим током, если коснуться корпуса и металлического проводника связанного с землёй. Именно поэтому разделительные трансформаторы рекомендуется подключать через УЗО.

Трансформатор разделительный однофазный в зависимости от его конструкции, можно использовать в следующих случаях:

При наличии крепежных пластин и открытых клеммных колодок. Установка в монтажный шкаф. При этом может быть реализована вертикальная или горизонтальная схема установки или специальные крепежи для монтажа на din-рейку.

При отсутствии клеммных колодок — выведение вторичной обмотки через ответвление кабеля. Применяется как составная часть электрооборудования, установок любого назначения.

Переносной вариант при наличии корпуса, розетки и выключателя. Дополнительно может быть доукомплектован кабелем (удлинителем).

Трёхфазный разделительный трансформатор – фактически является тремя однофазными устройствами установленными на одной монтажной планке:

  • открытый вариант как горизонтального и вертикального расположения с соединением в звезду или треугольник;
  • расположение элементов в корпусе, в том числе герметичном.

Разделительный трансформатор является нужным и полезным устройством, особенно в домашней мастерской. Его можно использовать в режиме пониженного переменного напряжения для проверки высоковольтных устройств.

К примеру, подключение схемы на 220 V к источнику питания на 36V позволит безбоязненно прослеживать протекание в тестируемых цепях тока. При этом допускается использование любых унифицированных разделительных трансформаторов, так как современные электронные устройства не отличается большим потреблением.

  *  *  *


© 2014-2021 г.г. Все права защищены.
Материалы сайта имеют ознакомительный характер и не могут использоваться в качестве руководящих и нормативных документов.

Разделительный трансформатор: устройство и применение

Если вы планируете приобрести разделительный трансформатор, тогда помните, что это устройство предназначается для преобразования напряжения и переменного тока. Именно эти устройства могут использовать на входе и на выходе одинаковое напряжение.

В этой статье мы предоставили вашему вниманию подробную информацию. Если вы не знаете, как выглядит разделительный трансформатор, тогда в этой статье вы сможете найти эту информацию.

Разделительный трансформатор и его принцип работы

Трансформаторы напряжения необходимы для того, чтобы защитить вашу технику. Безопасный разделительный понижающий трансформатор производства АВВ не использует заземление. Если вы решите к нему прикоснуться, тогда он не принесет никакого труда. Это происходит благодаря тому, что обмотки значительно отдалены друг от друга. Единственное что вам нельзя делать, так это прикасаться к обмотке. В результате этого вас может ударить током.

Обычно это устройство используют для сети напряжение в которой составляет 120 Вольт. Минимальное напряжение в этом случае не должно быть меньшим 24 Вольт. При работе устройства будет создана гальваническая развязка сверхнизкого напряжения. Этот эффект удалось достигнуть благодаря специальному разделению обмоток. На стальной сердечник будет наматываться обмотка и между ней возникнет магнитное поле. Индуционирование тока, который получиться будет происходить во второй обмотке.

Основным преимуществом этого трансформатора считается то, что он способен предотвратить резкие перепады напряжения в электросети. Благодаря этому он также защищает вашу аппаратуру от скачков напряжения.

Применение

Специалисты знают, что применять это оборудование можно не только в быту, но и на производстве. Это объясняется тем, что использовать устройство не составляет труда. Также во время своей работы оно считается достаточно безопасным. Многие специалисты заявляют, что устройство может работать даже в условиях повышенной электробезопасности. Если вам будет интересно, тогда можете прочесть про идеальный трансформатор.

Особенно полезным устройство может стать, если вы планируете делать ремонт. Также при необходимости разделительный трансформатор можно использовать и для влажных помещений. Установку не следует выполнять самостоятельно. Если у вас нет определенных знаний, тогда лучше вызвать специалиста, который быстро выполнит установку.

Виды разделительного трансформатора

Виды разделительного трансформатора могут быть разнообразными. Их разделяют в зависимости от области применения и количества обмотки:

  1. Если первичная обмотка трансформатора подключается к источникам тока, а вторичная подключается к измерительным приборам, тогда это устройство называется трансформатором тока. Это устройство можно будет использовать в различных измерительных цепях.
  2. Импульсный трансформатор способен преобразовывать полученные сигналы и передавать электрический импульс. Чаще всего эти устройства применяются в технике.
  3. Чтобы преобразовать синусоидальное напряжение многие специалисты используют пик-трансформатор.
  4. Если первичная и вторичная обмотка соединяется напрямую, тогда это устройство можно называть автотрансформатором.
  5. В силовом трансформаторе вы можете встретить несколько видов обмоток. Они предназначаются для преобразования тока с помощью электромагнитной индукции.
  6. Разделительный трансформатор используют для обеспечения нормального тока для фонарей. Устройство представляет собою компактный прибор, который имеет изолированные обмотки. При необходимости портативный прибор можно установить на специальную подставку.

Разделительные трансформаторы могут быть достаточно разнообразными. Если устройство используется в медицине, тогда его называют индивидуальным медицинским разделительным трансформатором. Он способен работать в электрической цепи 220 Вольт. Среди отечественных производителей можно выделить компанию ОСО Электра.

Особенностью разделительного трансформатора можно считать то, что в этом устройстве практически полностью отсутствует гальваническая развязка с нейтралью и фазой. Благодаря этому вы сможете защитить себя от удара тока. При необходимости вы также можете подсоединить специальный блок, который будет управлять всеми необходимыми процессами. Для бытовых нужд обычно производители используют повышающий разделительный трансформатор. Он может быть бытовым или промышленным. При необходимости можете прочесть про намотку тороидального трансформатора.

В последнее время также могут применяться разделительные трансформаторы встроенные или специальные. Также многие устройства могут работать с номинальным первичным напряжением. Частота постоянного тока не должна превышать 50 Гц.

Подключение разделительного трансформатора к котлу отопления

Перед подключением вам необходимо отключить электропитание. Теперь вам необходимо развязать гальваническую цепь и для этого можно применить трансформатор. Предохраняющая техника должна иметь порог напряжения 10-15%. Теперь вам необходимо подключить устройства. При работе вы также можете соединить устройство с нулевым проводом.

Первую проверку можно выполнить уже после первого нагрева. При повторном подключении к сети необходимо дождаться полного охлаждения системы.

Как сделать разделительный трансформатор самому

Перед изготовлением вам необходимо изучить схему разделительного трансформатора, которая представлена вашему вниманию ниже. Это устройство способно соединять в себе два магнитных поля. Если вы планируете получить это устройство, тогда постарайтесь выбирать небольшую мощность.

Разделительный сетевой трансформатор необходимо будет подключать к сети 220 Вольт. Две обмотки необходимо соединить последовательным путем. Трогать их пока нельзя, так как они могут иметь напряжение. Теперь обмотки необходимо присоединить к каркасу. Основным моментом во время подключения считается то, что провода не должны соприкасаться между собой. Чтобы проверить устройство, вам необходимо подключить обычную лампу к контактам и включить ее в сеть. Если у вас есть желание, тогда к механизму можно подключить стабилизатор.

Если вы планируете создавать трансформаторы, тогда постарайтесь выполнять небольшие модели устройства. Электричество это раздел науки, который требует определенных навыков.

Читайте также: резервная релейная защита трансформатора.

Трехфазный трансформатор с настраиваемым подключением обмоток

Подключение обмотки 1 (клеммы ABC)

Подключение обмотки для обмотки 1. Возможны следующие варианты: Y , Yn , Yg (по умолчанию), Delta (D1) и Дельта (D3) .

Соединение обмотки 2 (клеммы abc)

Соединение обмотки для обмотки 2. Возможны следующие варианты: Y , Yn , Yg (по умолчанию), Delta (D1) и Дельта (D3) .

Тип

Выберите Три однофазных трансформатора от (по умолчанию) до реализовать трехфазный трансформатор с использованием трех моделей однофазных трансформаторов. Вы можете использовать этот тип сердечника для представления очень больших силовых трансформаторов, используемых в электрических сетях (сотни МВт).

Выберите Сердечник с тремя конечностями (стержневой тип) для реализации тройного стержня сердечник трехфазного трансформатора. В большинстве приложений трехфазные трансформаторы используют сердечник трехлепестковый (трансформатор сердечниковый).Этот тип сердечника дает точные результаты во время асимметричный отказ как для линейных, так и для нелинейных моделей (включая насыщение). В течение при асимметричном напряжении поток нулевой последовательности трансформатора с сердечником возвращается вне активной зоны через воздушный зазор, конструкционную сталь и резервуар. Таким образом, естественный Индуктивность нулевой последовательности L0 (без обмотки треугольником) такого трансформатора с сердечником составляет обычно очень низкий (обычно 0,5 о.е. 100 о.е.).Это низкое значение L0 влияет на дисбалансы напряжений, токов и магнитных потоков во время линейной и насыщенной работы.

Выберите Пятиконечное ядро ​​(оболочка) для реализации пятиконечного сердечника сердечник трехфазного трансформатора. В редких случаях очень большие трансформаторы изготавливаются с Пятилепестковое ядро ​​(три фазных и два внешних). Эта основная конфигурация, также известная в качестве оболочки выбирается в основном для уменьшения высоты трансформатора и обеспечения транспортировка проще.В условиях несимметричного напряжения, в отличие от трехлепесткового трансформатора, поток нулевой последовательности пятиконечного трансформатора остается внутри стального сердечника и возвращается через две внешние конечности. Естественная индуктивность нулевой последовательности (без дельта) очень высока (L0> 100 о.е.). За исключением небольших дисбалансов тока из-за асимметрия сердечника, поведение пятиконечного трансформатора оболочечного типа аналогично поведению трехфазный трансформатор, состоящий из трех однофазных блоков.

Simulate saturation

Если выбрано, реализует трехфазный трансформатор с насыщением. По умолчанию очищено.

Если вы хотите смоделировать трансформатор в векторном режиме Блок Powergui, вы должны очистить этот параметр.

Имитация гистерезиса

Выберите для моделирования характеристики насыщения, включая гистерезис, вместо однозначная кривая насыщения. Этот параметр отображается, только если Simulate выбран параметр насыщенность .По умолчанию очищено.

Если вы хотите смоделировать трансформатор в векторном режиме Блок Powergui, вы должны очистить этот параметр.

Файл матрицы гистерезиса

Этот параметр отображается, только если Simulate выбран параметр гистерезис .

Укажите файл .mat , содержащий данные для использования в гистерезисе. модель. Когда вы открываете Hysteresis Design Tool блока Powergui, петля гистерезиса по умолчанию и параметры, сохраненные в гистерезисе .коврик файл отображаются. Используйте кнопку Load в инструменте Hysteresis Design. для загрузки еще одного файла .mat . Используйте кнопку Сохранить на инструмент Hysteresis Design, чтобы сохранить модель в новом файле .mat .

Задайте начальные потоки

Если выбрано, начальные потоки определяются Начальные потоки на вкладке Параметры . Укажите Параметр начальных потоков виден только если Simulate выбран параметр насыщенность .По умолчанию очищено.

Когда Укажите начальные потоки Параметр не выбран при симуляторы, Simscape ™ Программное обеспечение Electrical ™ Specialized Power Systems автоматически вычисляет начальные потоки в запустить моделирование в устойчивом состоянии. Вычисленные значения сохраняются в исходном файле . Изменяет параметр и перезаписывает все предыдущие значения.

Измерения

Выберите Напряжения обмотки , чтобы измерить напряжение на клеммы обмотки.

Выберите Токи обмотки , чтобы измерить протекающий ток. через обмотки.

Выберите Потоки и токи возбуждения (Im + IRm) для измерения потокосцепление в вольт-секундах (В.с) и полный ток возбуждения, включая железо потери, моделируемые Rm.

Выберите Потоки и токи намагничивания (Im) для измерения потокосцепление в вольт-секундах (В.с) и ток намагничивания в амперах (А), а не включая потери в стали, моделируемые Rm.

Выберите Все измерения (V, I, Flux) для измерения обмотки напряжения, токи, токи намагничивания и потокосцепления.

По умолчанию Нет .

Поместите блок мультиметра в свою модель, чтобы отображать выбранные измерения во время моделирование. В списке доступных измерений Блок мультиметра, измерения обозначаются меткой, за которой следует блок имя.

Если соединение Обмотка 1 (клеммы ABC) установлено на Y , Yn , или Yg , этикетки следующие.

89

8 Magne

Измерение

Этикетка

Напряжение обмотки 1

Uan_w1:

0001

1 токи

Ian_w1:

или

Iag_w1:

Флюсы

Flux_Are0008

Токи возбуждения

Iexc_A:

Те же надписи применяются для обмотки 2, за исключением того, что 1 заменяется на 2 в этикетках.

Если соединение Обмотка 1 (клеммы ABC) установлено на Delta (D1) или Delta (D3) , этикетки являются следующими.

Измерение

Этикетка

Напряжение обмотки 1

Uab_w1:

Токи обмотки 1

Iab_w1:

Потоковые связи

Flux_A: 900_70008

Flux_A: 900_7

Токи возбуждения

Iexc_A:

Трехфазный трансформатор с настраиваемым подключением обмоток

Подключение обмотки 1 (клеммы ABC
)
Подключение обмотки
1.Возможные варианты: Y , Yn , Yg (по умолчанию), Delta (D1) и Дельта (D11) .

Соединение обмотки 2 (клеммы abc-2)

Соединение обмотки для обмотки 2. Возможны следующие варианты: Y , Yn , Yg (по умолчанию), Delta (D1) и Дельта (D11) .

Соединение обмотки 3 (клеммы abc-3)

Соединение обмотки для обмотки 3.Возможные варианты: Y , Yn , Yg (по умолчанию), Delta (D1) и Дельта (D11) .

Тип

Выберите Три однофазных трансформатора от (по умолчанию) до реализовать трехфазный трансформатор с использованием трех моделей однофазных трансформаторов. Вы можете использовать этот тип сердечника для представления очень больших силовых трансформаторов, используемых в электрических сетях (сотни МВт).

Выберите Сердечник с тремя конечностями (тип стержня) для реализации тройного стержня сердечник трехфазного трансформатора.В большинстве приложений трехфазные трансформаторы используют сердечник трехлепестковый (трансформатор сердечниковый). Этот тип сердечника дает точные результаты во время асимметричный отказ как для линейных, так и для нелинейных моделей (включая насыщение). В течение при асимметричном напряжении поток нулевой последовательности трансформатора с сердечником возвращается вне активной зоны через воздушный зазор, конструкционную сталь и резервуар. Таким образом, естественный Индуктивность нулевой последовательности L0 (без обмотки треугольником) такого трансформатора с сердечником составляет обычно очень низкий (обычно 0.5 о.е. 100 о.е.). Это низкое значение L0 влияет на дисбалансы напряжений, токов и магнитных потоков во время линейной и насыщенной работы.

Выберите Пятилепестковый сердечник (тип оболочки) для реализации пятиконечного сердечника сердечник трехфазного трансформатора. В редких случаях очень большие трансформаторы изготавливаются с Пятилепестковое ядро ​​(три фазных и два внешних). Эта основная конфигурация, также известная в качестве оболочки выбирается в основном для уменьшения высоты трансформатора и обеспечения транспортировка проще.В условиях несимметричного напряжения, в отличие от трехлепесткового трансформатора, поток нулевой последовательности пятиконечного трансформатора остается внутри стального сердечника и возвращается через две внешние конечности. Естественная индуктивность нулевой последовательности (без дельта) очень высока (L0> 100 о.е.). За исключением небольших дисбалансов тока из-за асимметрия сердечника, поведение пятиконечного трансформатора оболочечного типа аналогично поведению трехфазный трансформатор, состоящий из трех однофазных блоков.

Simulate saturation

Если выбрано, реализует трехфазный трансформатор с насыщением. См. Также Характеристика насыщения Параметр на вкладке Параметры. По умолчанию очищено.

Имитация гистерезиса

Выберите для моделирования характеристики насыщения, включая гистерезис, вместо однозначная кривая насыщения. Этот параметр отображается, только если Simulate выбран параметр насыщенность .По умолчанию очищено.

Файл матрицы гистерезиса

Этот параметр отображается, только если Simulate выбран параметр гистерезис .

Укажите файл .mat , содержащий данные, которые будут использоваться для модель гистерезиса. Когда вы открываете Hysteresis Design Tool Powergui, петля гистерезиса по умолчанию и параметры, сохраненные в hysteresis.mat Отображается файл .Используйте кнопку Load в инструменте Hysteresis Design, чтобы загрузить другой .mat файл. Используйте кнопку Save на Инструмент дизайна гистерезиса для сохранения модели в новом файле .mat .

Задайте начальные потоки

Если выбрано, начальные потоки определяются Начальные потоки параметр на вкладке Параметры. Этот параметр отображается, только если Simulate выбран параметр насыщенность .По умолчанию очищено.

Когда Укажите начальные потоки Параметр не выбран при симуляторы, Simscape ™ Программное обеспечение Electrical ™ Specialized Power Systems автоматически вычисляет начальные потоки в запустить моделирование в устойчивом состоянии. Вычисленные значения сохраняются в исходном файле . Изменяет параметр и перезаписывает все предыдущие значения.

Измерения

Выберите Напряжения обмотки , чтобы измерить напряжение на клеммы обмотки блока трехфазного трансформатора.

Выберите Токи обмотки , чтобы измерить протекающий ток. через обмотки блока трехфазного трансформатора.

Выберите Потоки и токи возбуждения (Imag + IRm) от до Измерьте потокосцепление в вольт-секундах (В.с) и полный ток возбуждения, включая потери в железе, смоделированные Rm.

Выберите Потоки и токи намагничивания (Imag) для измерения потокосцепление в вольт-секундах (В.с) и ток намагничивания в амперах (А), а не включая потери в стали, моделируемые Rm.

Выберите Все измерения (V, I, Flux) для измерения обмотки напряжения, токи, токи намагничивания и потокосцепления.

По умолчанию Нет .

Поместите блок мультиметра в свою модель, чтобы отображать выбранные измерения во время моделирование. В списке доступных измерений мультиметра блока, измерения обозначаются меткой, за которой следует имя блока.

Если соединение Обмотка 1 (клеммы ABC) установлено на Y , Yn или Yg , этикетки такие же следует.

9018

Измерение

Этикетка

Напряжение обмотки 1

Uan_w1:

0001

1 токи

Ian_w1:

или

Iag_w1:

Флюс-рычаги

Flux_A: 9018

Magne0008

Токи возбуждения

Iexc_A:

Для обмоток 2 и 3 применяются одинаковые метки, за исключением 1 заменяется на этикетках на 2 или на 3 .

Если соединение Обмотка 1 (клеммы ABC) установлено на Delta (D11) или Delta (D1) , метки такие же следует.

Измерение

Этикетка

Напряжение обмотки 1

Wab_wre1:

Wab_wre1:

Wab_wre1:

Потоковые связи

Flux_A:

Токи намагничивания

Imag_A:89

Imag_A:89

Imag_A:89

ТРЕХФАЗНЫЕ ИЗОЛЯЦИОННЫЕ ТРАНСФОРМАТОРЫ - L / C Magnetics

(Соответствующие соответствия этой категории показаны ниже)

Схема электрических соединений трехфазного разделительного трансформатора

3-х фазный разделительный трансформатор цена

415В 3-х фазный изолирующий трансформатор

Трехфазный трансформатор от 480 В до 400 В

Трехфазный трансформатор от 480 В до 208 В

Трехфазный трансформатор с 400 на 230 В

Трехфазный трансформатор 480 В

Изолирующий трансформатор 208В

230 В, трехфазный

110/220 В, трехфазный

120/240 В, трехфазный

240/480 В, трехфазный

208 В трехфазный

220/440 В, трехфазный

Трехфазные разделительные трансформаторы мощностью 1 кВА

Трехфазные разделительные трансформаторы 2 кВА

Трехфазные разделительные трансформаторы 5 кВА

Трехфазные разделительные трансформаторы 10 кВА

Трехфазные разделительные трансформаторы 15 кВА

Трехфазные разделительные трансформаторы мощностью 20 кВА

Трехфазные разделительные трансформаторы 30 кВА

Трехфазные разделительные трансформаторы мощностью 50 кВА

Трехфазные разделительные трансформаторы 75 кВА

Трехфазные разделительные трансформаторы мощностью 100 кВА

Трехфазные разделительные трансформаторы 150 кВА

Трехфазные разделительные трансформаторы 200 кВА

Трехфазные разделительные трансформаторы 500 кВА

Трехфазные разделительные трансформаторы мощностью 1000 кВА

Трехфазные разделительные трансформаторы 2000 кВА

Трехфазные разделительные трансформаторы 3000 кВА

Трехфазные разделительные трансформаторы 4000 кВА

Расчет трансформатора треугольник-звезда

Заземление нейтрали трансформатора, треугольник-звезда

Трансформатор дельта-треугольник

Трансформатор звезда звезда

Трансформатор звезды треугольник

1 кВА Delta Wye

2 кВА Delta Wye

5 кВА Delta Wye

10 кВА Delta Wye

20 кВА Delta Wye

40 кВА Delta Wye

75 кВА Delta Wye

однофазные разделительные трансформаторы для медицинских учреждений

Описание

Изолирующие трансформаторы типа ЭТ1МЕД предназначены для питания медицинских помещений (группа помещений 2), в которых существует опасность для здоровья или жизни пациентов в случае прохождения небольшого тока через тело человека.
Эти трансформаторы соответствуют требованиям стандарта PN / EN 61558-2-15: 2011. Стандартные трансформаторы имеют усиленную (двойную) изоляцию, а между первичной и вторичной обмотками находится экран, подключенный к изолированной клемме «S».
Трансформаторы снабжены датчиками двух типов для цепей контроля температуры: позисторами типа PTC120.
Трансформаторы имеют дополнительный центральный отвод «2М» для подключения реле контроля состояния изоляции.
По запросу трансформаторы могут быть собраны в корпуса со степенью защиты IP 23, IP 44 и IP 54 с возможностью ввода питающих кабелей через сальники.
Фиксирующий метод трансформаторов должно обеспечивать электрическое отделение от базовой пластины (например, с помощью пластиковой поддержки, предназначенной для номинального напряжения мин. 2,5 кВ).
Чтобы оправдать ожидания клиентов, мы также поставляем трансформаторы вместе с полной системой, которая контролирует медицинскую сеть IT
Поставляемая система автоматического переключения обеспечивает:

  • питание резерва
  • регулировка основного и резервного напряжений
  • Сигнализация нагрузки трансформатора
  • непрерывный контроль сопротивления изоляции сети IT-системы
  • Локализация и сигнализация замыкания на землю
  • Контроль непрерывности главных цепей катушек контактора

Эскиз


Стандартное исполнение


Схема подключения трансформатора


Стол с размерами

Технические характеристики однофазных разделительных трансформаторов ET1MED
Тип Мощность
[кВА]
I
[A]
ДЕЛЬТА
° P fe [Вт]
ДЕЛЬТА
° P cu [Вт]
u z
[% U n ]
i o
[% I n ]
I bezp
[A] gG
л
[мм]
B макс
[мм]
H
[мм]
d
[мм ]
e
[мм]
k
[мм]
ширина
[мм]
f
[мм]
Вес
[кг]
ЭТ1МЕД - 2,5 2,5 11,3 10 86 2,72 0,95 16 200 180 320 140 145 177 258 11 х 15 29
ЕТ1МЕД - 3,15 3,15 14,1 15 118 2,78 0,92 25 200 205 320 140 171 203 258 11 х 15 36
ЭТ1МЕД - 4,0 4,0 18 19 129 2,57 0,89 25 240 180 365 200 140 178 305 11 х 16 41
ЭТ1МЕД - 5,0 5,0 22,5 22 171 2,57 0,79 35 240 195 365 200 155 193 305 11 х 16 46
ЭТ1МЕД - 6,3 6,3 28,3 23 212 2,42 0,67 35 240 195 365 200 155 193 305 11 х 16 52
ЭТ1МЕД - 8,0 8,0 35,7 29 222 2,23 0,84 50 280 210 420 240 166 208 356 11 х 15 61
ЕТ1МЕД - 10,0 10,0 45,2 30 300 2,9 0,5 63 280 309 420 240 198 225 356 11 х 15 80

Примечание:

Производитель оставляет за собой право вносить изменения в результате постоянного совершенствования предлагаемой продукции.

По предварительному запросу возможно изготовление трансформатора в другом исполнении.

Изоляционный трансформатор

  • Ресурс исследования
  • Исследовать
    • Искусство и гуманитарные науки
    • Бизнес
    • Инженерная технология
    • Иностранный язык
    • История
    • Математика
    • Наука
    • Социальная наука
    Лучшие подкатегории
    • Продвинутая математика
    • Алгебра
    • Основы математики
    • Исчисление
    • Геометрия
    • Линейная алгебра
    • Предалгебра
    • Предварительный расчет
    • Статистика и вероятность
    • Тригонометрия
    • другое →
    Лучшие подкатегории
    • Астрономия
    • Астрофизика
    • Биология
    • Химия
    • Науки о Земле
    • Наука об окружающей среде
    • Наука о здоровье
    • Физика
    • другое →
    Лучшие подкатегории
    • Антропология
    • Закон
    • Политология
    • Психология
    • Социология
    • другое →
    Лучшие подкатегории
    • Бухгалтерский учет
    • Экономика
    • Финансы
    • Менеджмент
    • другое →
    Лучшие подкатегории
    • Аэрокосмическая техника
    • Биоинженерия
    • Химическая инженерия
    • Гражданское строительство
    • Компьютерные науки
    • Электротехника
    • Промышленное проектирование
    • Машиностроение
    • Веб-дизайн
    • другое →
    Лучшие подкатегории
    • Архитектура
    • Связь
    • Английский
    • Гендерные исследования
    • Музыка
    • Исполнительское искусство
    • Философия
    • Религиоведение
    • Письмо
    • другое →
    Лучшие подкатегории
    • Древняя история
    • История Европы
    • История США
    • Всемирная история
    • другое →
    Лучшие подкатегории
    • хорватский
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *