Твердотельное реле 220в управление 5в – Твердотельное реле | Практическая электроника

Содержание

Твердотельное реле | Практическая электроника

Что такое твердотельное реле

Твердотельное реле (ТТР) или в буржуйском варианте Solid State Relay (SSR) – это особый вид реле, которые выполняют те же самые функции, что и электромагнитное реле, но имеет другую начинку, состоящую из полупроводниковых радиоэлементов, которые имеют  своем составе силовые ключи на тиристорах, симисторах или мощных транзисторах.

Виды ТТР

Выглядеть ТТР могут по-разному. Ниже на фото слаботочные реле

твердотельное реле для печатных платтвердотельное реле

Такие релe используются в печатных платах и предназначены для коммутации (переключения)  малого тока и напряжения.

На ТТР строят также сразу готовые модули входов-выходов, которые используются в промышленной автоматике

твердотельное реле ардуино

А вот так выглядят реле, используемые в силовой электронике, то есть в электронике, которая коммутирует большую силу тока. Такие реле используется в промышленности в блоках управления станков ЧПУ и других промышленных установках

твердотельное реле однофазноетрехфазное твердотельное реле

Слева однофазное реле, справа трехфазное.

Если через коммутируемые контакты силовых  реле будет проходить приличный ток, то корпус реле будет очень сильно греться. Поэтому, чтобы реле не перегревались и не выходили из строя, их ставят  на радиаторы, которые рассеивают тепло в окружающее пространство.

твердотельное реле на радиаторе

ТТР по типу управления

ТТР могут управляться с помощью:

1) Постоянного тока. Его диапазон составляет от 3 и до 32 Вольт.

2) Переменного тока. Диапазон переменного тока составляет от 90 и до 250 Вольт. То есть такими реле можно спокойно управлять с помощью сетевого напряжения 220 В.

3) С помощью переменного резистора. Значение переменного резистора может быть в диапазоне от 400 и до 600 Килоом.

 ТТР по типу переключения

С коммутацией перехода через ноль

Посмотрите внимательно на диаграмму

твердотельное реле с переходом через ноль

Такие ТТР на выходе коммутируют переменный ток. Как вы здесь можете заметить, когда мы подаем на вход такого реле постоянное напряжение, у нас коммутация на выходе происходит не сразу, а только тогда, когда переменный ток  достигнет нуля. Выключение происходит подобным образом.

Для чего это делается? Для того, чтобы уменьшить влияние помех на нагрузках и уменьшить импульсный бросок тока, который может привести к выходу нагрузки из строя, если тем более нагрузкой будет являться схема на полупроводниковых радиоэлементах.

Схема подключения и внутреннее строение такого ТТР выглядит примерно вот так:

твердотельное реле схемауправление постоянным током

Твердотельное релеуправление переменным током

Мгновенного включения

Здесь все намного проще. Такое реле сразу начинает коммутировать нагрузку при появлении на нем управляющего напряжения. На диаграмме видно, что выходное напряжение появилось сразу, как только мы подали управляющее напряжение на вход. Когда мы уже снимаем управляющее напряжение, реле выключается также, как и ТТР с контролем перехода через ноль.

твердотельное реле с мгновенным переключением

В чем минус данного ТТР? При подаче на вход управляющего напряжения, у нас на выходе могут возникнуть броски тока,  а в следствии и электромагнитные помехи. Поэтому, данный тип реле не рекомендуется использовать в радиоэлектронных устройствах, где есть шины передачи данных, так как в этом случае помехи могут существенно помешать передаче информационных сигналов.

Внутреннее строение ТТР и схема подключения нагрузки выглядят примерно вот так:

Твердотельное реле

ТТР с фазовым управлением

Здесь все намного проще. Меняя значение сопротивления, мы тем самым меняем мощность на нагрузке.

твердотельное реле с фазовым управлением

Примерная схема подключения выглядит вот так:

твердотельное реле с фазовым управлением

Работа твердотельного реле

В гостях у нас ТТР фирмы FOTEK:

Давайте разберемся с его обозначениями.  Вот небольшая табличка-подсказка для этих типов реле

Твердотельное реле

Давайте еще раз взглянем на наше ТТР

SSR – это значит однофазное твердотельное реле.

40 – это на какую максимальную силу тока она рассчитана. Измеряется в Амперах и в данном случае составляет 40 Ампер. 

D – тип управляющего сигнала. От значения Direct Current – что с буржуйского – постоянный ток. Управление ведется постоянным током от 3 и до 32 Вольт. Этого диапазона хватит самому заядлому разработчику радиоэлектронной аппаратуры. Для особо непонятливых даже написано Input, показан диапазон и фазировка напряжения. Как вы видите, на контакт №3 мы подаем “плюс”, а на №4 мы подаем “минус”.

А – тип коммутируемого напряжения. Alternative current – переменный ток. Цепляемся в этом случае к выводам №1 и №2. Можем коммутировать диапазон от 24 и  до 380 Вольт переменного напряжения.

Для опыта нам понадобится лампа  накаливания на 220 Вольт и простая вилка со шнуром. Соединяем лампу со шнуром только в одном месте:

В разрыв вставляем наше  твердотельное реле

Втыкаем вилку в розетку и…

Нет… не хочет… Чего-то не хватает…

Не хватает управляющего напряжения! Выводим напряжение от Блока питания  от 3 и до 32 Вольт постоянного напряжения. В данном случае я взял 5 Вольт. Подаю на управляющие контакты и…

О чудо! Лампочка загорелась!  Это значит, что контакт №1 замкнулся с контактом №2. О срабатывании реле нам также говорит и светодиод на корпусе самого реле. 

Интересно, какую силу тока потребляют управляющие контакты реле? Итак, имеем на блоке 5 Вольт.

А сила тока получилась 11,7 миллиампер! Можно управлять хоть микроконтроллером!

Плюсы и минусы твердотельного реле

Плюсы

  • включение  и выключение цепей без электромагнитных помех
  • высокое быстродействие
  • отсутствие шума и дребезга контактов
  • продолжительный период работы (свыше МИЛЛИАРДА срабатываний)
  • возможность работы во взрывоопасной среде, так как нет дугового разряда
  • низкое энергопотребление (на 95% (!) меньше, чем у обычных реле)
  • надёжная изоляция между входными и коммутируемыми цепями
  • компактная герметичная конструкция, стойкая к вибрации и ударным нагрузкам
  • небольшие размеры и хорошая теплоотдача (если конечно использовать термопасту и хороший радиатор)

Минусы:

Где купить твердотельное реле

Любые виды твердотельных реле вы всегда можете найти на Али по этой ссылке.

твердотельное реле купить

При написании статьи использовалась информация, взятая по этой ссылке.

www.ruselectronic.com

принцип работы, управление и схемы

В данной статье поговорим про твердотельное реле, обозначим его преимущество перед механическим реле. Рассмотрим управление и подключение твердотельного реле, принцип его работы и конструкцию, а так же разберем различные схемы.

Описание

В отличие от электромеханических реле (EMR), которые используют катушки, магнитные поля, пружины и механические контакты для управления и переключения питания, твердотельное реле или SSR не имеет движущихся частей, но вместо этого использует электрические и оптические свойства полупроводниковых полупроводников, выполняет его вход в функции изоляции и переключения выхода.

Как и обычные электромеханические реле, твердотельные реле обеспечивают полную электрическую изоляцию между их входными и выходными контактами, а его выход действует как обычный электрический переключатель в том смысле, что он имеет очень высокое, почти бесконечное сопротивление в непроводящем (разомкнутом) и очень низком сопротивлении при проведении. Твердотельные реле могут быть предназначены для переключения как переменного, так и постоянного тока с помощью SCR, триак или переключающего транзисторного выхода вместо обычных механических нормально разомкнутых контактов. Купить твердотельное реле на Алиэкспресс:

В то время как твердотельное реле и электромеханическое реле в основном схожи в том, что их низковольтный вход электрически изолирован от выхода, который переключает и контролирует нагрузку, электромеханические реле имеют ограниченный жизненный цикл контакта, могут занимать много места и имеют более низкие скорости переключения, особенно большие силовые реле и контакторы. Твердотельные реле не имеют таких ограничений.

твердотельное реле

Таким образом, основные преимущества твердотельных реле по сравнению с обычными электромеханическими реле состоят в том, что у них нет движущихся частей, изнашиваемых, и, следовательно, нет проблем с отскоком контактов, они могут переключать «ВКЛ» и «ВЫКЛ» гораздо быстрее, чем механические реле может двигаться, а также включаться при нулевом напряжении и отключаться при нулевом токе, что устраняет электрические помехи и переходные процессы.

Полупроводниковые реле можно купить в стандартных готовых комплектах, от нескольких вольт или ампер до многих сотен вольт и ампер выходной коммутационной способности. Однако твердотельные реле с очень высоким номинальным током (плюс 150 А) все еще слишком дороги для покупки из-за их требований к силовым полупроводникам и теплоотдаче, и, как таковые, все еще используются более дешевые электромеханические контакторы.

Подобно электромеханическому реле, небольшое входное напряжение, обычно от 3 до 32 вольт постоянного тока, может использоваться для управления очень большим выходным напряжением или током, например 240В, 10А. Это делает их идеальными для взаимодействия микроконтроллеров, PIC и Arduino, так как слаботочный 5-вольтный сигнал, скажем, от микроконтроллера или логического вентиля, может использоваться для управления конкретной нагрузкой цепи, и это достигается с помощью опто-изолятора.

Принцип работы и конструкция твердотельного реле

Одним из основных компонентов твердотельного реле (SSR) является оптоизолятор (также называемый оптопарой), который содержит один (или более) инфракрасный светодиод или светодиодный источник света, а также фоточувствительное устройство в один случай. Оптоизолятор изолирует вход от выхода.

Светодиодный источник света подключен к входной секции SSR и обеспечивает оптическую связь через зазор с соседним фоточувствительным транзистором, парой Дарлингтона или симистором. Когда ток проходит через светодиод, он загорается, и его свет фокусируется через зазор на фототранзистор / фототриак.

Таким образом, выход оптронного SSR включается при включении этого светодиода, как правило, с помощью низковольтного сигнала. Поскольку единственным входом между входом и выходом является луч света, высоковольтная изоляция (обычно несколько тысяч вольт) достигается с помощью этой внутренней оптоизоляции.

Оптоизолятор не только обеспечивает более высокую степень изоляции входов / выходов, он также может передавать сигналы постоянного тока и низкочастотные сигналы. Кроме того, светодиод и фоточувствительное устройство могут быть полностью отделены друг от друга и оптически связаны с помощью оптического волокна.

Входная схема SSR может состоять только из одного ограничивающего ток резистора, включенного последовательно со светодиодом оптоизолятора, или из более сложной цепи с выпрямителем, регулированием тока, защитой от обратной полярности, фильтрацией и т.д.

Чтобы активировать или включить «ВКЛ» проданное реле состояния в проводимость, на его входные клеммы должно быть приложено напряжение, превышающее его минимальное значение (обычно 3 В постоянного тока) (эквивалентно катушке электромеханического реле). Этот сигнал постоянного тока может быть получен от механического переключателя, логического вентиля или микроконтроллера, как показано ниже.

Входная цепь постоянного тока твердотельного реле

Входная цепь постоянного тока твердотельного реле

При использовании в качестве сигнала активации механических контактов, переключателей, кнопок, других контактов реле и т.д., используемое напряжение питания может быть равно минимальному значению входного напряжения SSR, тогда как при использовании твердотельных устройств, таких как транзисторы, вентили и микро-контроллеры, минимальное напряжение питания должно быть на один или два вольт выше напряжения включения SSR для учета внутреннего падения напряжения коммутационных аппаратов.

Но помимо использования напряжения постоянного тока, либо ослабления, либо источника, для переключения твердотельного реле в проводящее состояние, мы также можем использовать синусоидальную форму волны, добавив мостовой выпрямитель для двухполупериодного выпрямления и схему фильтра на вход постоянного тока.

Входная цепь переменного тока твердотельного реле

Входная цепь переменного тока твердотельного реле

Мостовые выпрямители преобразуют синусоидальное напряжение в двухполупериодные выпрямленные импульсы с удвоенной входной частотой. Проблема здесь заключается в том, что эти импульсы напряжения начинаются и заканчиваются с нуля вольт, что означает, что они упадут ниже минимальных требований к напряжению при включении порога входа SSR, в результате чего выход будет «включаться» и «выключаться» в каждом полупериоде.

Чтобы преодолеть это беспорядочное срабатывание на выходе, мы можем сгладить выпрямленную рябь, используя сглаживающий конденсатор (C1) на выходе мостового выпрямителя. Эффект зарядки и разрядки конденсатора повысит постоянную составляющую выпрямленного сигнала выше максимального значения напряжения включения на входе твердотельных реле. Тогда, даже если используется постоянно изменяющаяся синусоидальная форма волны напряжения, входной сигнал SSR видит постоянное напряжение постоянного тока.

Значения резистора падения напряжения R 1 и сглаживающего конденсатора C 1выбираются в соответствии с напряжением питания, 120 В переменного тока или 240 В переменного тока, а также входным сопротивлением твердотельного реле. Но что-то около 40 кОм и 10 мкФ подойдет.

Затем с добавлением этой мостовой выпрямителя и сглаживающей конденсаторной цепи можно управлять стандартным твердотельным реле постоянного тока, используя источник переменного или неполяризованного постоянного тока. Конечно, производители уже производят и продают входные твердотельные реле переменного тока (обычно от 90 до 280 В переменного тока).

Выход твердотельного реле

Возможности переключения выхода твердотельного реле могут быть как переменного, так и постоянного тока, аналогичными его требованиям к входному напряжению. Выходная цепь большинства стандартных твердотельных реле сконфигурирована для выполнения только одного типа переключающего действия, дающего эквивалент нормально разомкнутого однополюсного однополюсного (SPST-NO) режима работы электромеханического реле.

Для большинства твердотельных реле постоянного тока обычно используются твердотельные коммутационные устройства — силовые транзисторы, Дарлингтона и MOSFET, тогда как для твердотельного реле переменного тока, коммутационные устройства — это симисторные или двухсторонние тиристоры. Тиристоры предпочтительны из-за их высокого напряжения и тока. Один тиристор также может использоваться в схеме мостового выпрямителя, как показано на рисунке.

Выходная цепь твердотельного реле

Наиболее распространенным применением твердотельных реле является переключение нагрузки переменного тока, будь то управление мощностью переменного тока для включения / выключения, затемнение света, управление скоростью двигателя или другие подобные приложения, где необходимо управление мощностью, эти нагрузки переменного тока может легко управляться с помощью постоянного тока низкого напряжения с помощью твердотельного реле, обеспечивающего длительный срок службы и высокие скорости переключения.

Одним из самых больших преимуществ твердотельных реле по сравнению с электромеханическим реле является его способность выключать «переменные» нагрузки переменного тока в точке нулевого тока нагрузки, тем самым полностью устраняя искрение, электрический шум и отскок контактов, связанные с обычными механическими реле и индуктивными нагрузками.

Это связано с тем, что твердотельные реле переключения переменного тока используют SCR и триак в качестве выходного переключающего устройства, которое продолжает проводить после удаления входного сигнала до тех пор, пока переменный ток, протекающий через устройство, не опустится ниже своего порогового значения или не сохранит значение тока. Тогда выход SSR никогда не сможет выключиться в середине пика синусоидальной волны.

Отключение при нулевом токе является основным преимуществом использования твердотельного реле, поскольку оно уменьшает электрические помехи и обратную эдс, связанные с переключением индуктивных нагрузок, которые видятся как искрение контактами электромеханического реле. Рассмотрим диаграмму формы выходного сигнала ниже типичного твердотельного реле переменного тока.

Форма выходного сигнала твердотельного реле

Форма выходного сигнала твердотельного реле

При отсутствии входного сигнала ток нагрузки не протекает через SSR, поскольку он фактически выключен (разомкнут), а выходные клеммы видят полное напряжение питания переменного тока. При применении входного сигнала постоянного тока, независимо от того, какую часть синусоидального сигнала, положительного или отрицательного, проходит цикл, из-за характеристик переключения SSR при нулевом напряжении, выход включается только тогда, когда сигнал пересекает нулевую точку.

Когда напряжение питания увеличивается в положительном или отрицательном направлении, оно достигает минимального значения, необходимого для полного включения выходных тиристоров или симистора (обычно менее чем около 15 вольт). Падение напряжения на выходных клеммах SSR соответствует падению напряжения переключающего устройства V T (обычно менее 2 вольт). Таким образом, любые высокие пусковые токи, связанные с реактивными или ламповыми нагрузками, значительно снижаются.

Когда сигнал входного напряжения постоянного тока удаляется, выход не отключается внезапно, так как после срабатывания проводимости тиристор или триак, используемый в качестве переключающего устройства, остается включенным в течение оставшейся части полупериода, пока токи нагрузки не упадут ниже удерживающих устройств тока, в этот момент он выключается. Таким образом, высокая обратная ЭДС dv / dt, связанная с переключением индуктивных нагрузок в середине синусоиды, значительно снижается.

Тогда основными преимуществами твердотельного реле переменного тока над электромеханическим реле является его функция пересечения нуля, которая включает SSR, когда напряжение нагрузки переменного тока близко к нулю вольт, таким образом подавляя любые высокие пусковые токи, поскольку ток нагрузки всегда будет запускаться от точки, близкой к 0 В, и присущей нулевой характеристике отключения тока тиристора или симистора. Поэтому существует максимально возможная задержка выключения (между удалением входного сигнала и отключением тока нагрузки) в один полупериод.

Фазорегулирующее твердотельное реле

Хотя твердотельные реле могут выполнять прямое переключение нагрузки при пересечении нуля, они также могут выполнять гораздо более сложные функции с помощью цифровых логических схем, микропроцессоров и модулей памяти. Другое превосходное применение твердотельного реле — в устройствах с диммером ламп, будь то дома, для шоу или концерта.

Твердотельные реле с ненулевым включением (мгновенное включение) включаются сразу после подачи входного управляющего сигнала, в отличие от SSR пересечения нуля, который выше, и ожидает следующей точки пересечения нуля синусоидальной волны переменного тока. Это случайное переключение при пожаре используется в резистивных устройствах, таких как диммер ламп, и в устройствах, в которых нагрузка должна подаваться только в течение небольшой части цикла переменного тока.

Форма сигнала с произвольным переключением

Форма сигнала с произвольным переключением

Хотя это позволяет контролировать фазу сигнала нагрузки, основная проблема случайного включения SSR заключается в том, что начальный скачок тока нагрузки в момент включения реле может быть высоким из-за переключающей мощности SSR, когда напряжение питания составляет близко к своему пиковому значению (90 o ). Когда входной сигнал удаляется, он перестает проводить, когда ток нагрузки падает ниже тока тиристоров или триаков, как показано на рисунке. Очевидно, что для твердотельного реле постоянного тока действие включения-выключения является мгновенным.

Твердотельное реле идеально подходит для широкого диапазона применений ВКЛ / ВЫКЛ переключения , поскольку они не имеют подвижных частей или контактов в отличие от электромеханического реле (ЭМР). Существует много различных коммерческих типов на выбор для входных сигналов управления переменного и постоянного тока, а также для переключения выходов переменного и постоянного тока, так как они используют полупроводниковые переключающие элементы, такие как тиристоры, триаки и транзисторы.

Но используя комбинацию хорошего оптоизолятора и симистора, мы можем сделать наше собственное недорогое и простое твердотельное реле для управления нагрузкой переменного тока, такой как нагреватель, лампа или соленоид. Поскольку для работы оптоизолятора требуется только небольшое количество входной / управляющей мощности, управляющий сигнал может поступать от PIC, Arduino, Raspberry PI или любого другого такого микроконтроллера.

Пример твердотельного реле

Предположим, нам нужен микроконтроллер с сигналом порта цифрового выхода всего лишь +5 В для управления нагревательным элементом 120 В переменного тока, 600 Вт. Для этого мы могли бы использовать опто-триационный изолятор MOC 3020, но внутренний триак может пропускать только максимальный ток (I TSM ) в пике 1 А на пике источника переменного тока 120 В, поэтому необходимо также использовать дополнительный переключающий триак.

Сначала давайте рассмотрим входные характеристики оптоизолятора MOC 3020 (доступны другие опто-триаки). Спецификация оптоизоляторов говорит нам, что прямое напряжение (V F ) падения входного светодиода составляет 1,2 В, а максимальный прямой ток (I F ) составляет 50 мА.

Светодиоду требуется около 10 мА, чтобы он мог достаточно ярко светиться до максимального значения 50 мА. Однако порт цифрового выхода микроконтроллера может выдавать максимум 30 мА. Тогда значение требуемого тока лежит где-то между 10 и 30 миллиампер. Следовательно:

расчет резистора

Таким образом, можно использовать резистор для ограничения последовательного тока со значением от 126 до 380 Ом. Поскольку порт цифрового выхода всегда переключается на +5 В и для уменьшения рассеивания мощности через светодиод оптопары мы выберем предпочтительное значение сопротивления 240 Ом. Это дает светодиодный прямой ток менее 16 мА. В этом примере подойдет любое предпочтительное значение резистора между 150 Ом и 330 Ом.

Нагрузка нагревательного элемента составляет 600 Вт. Использование 120 В переменного тока даст нам ток нагрузки 5 ампер (I = P / V). Поскольку мы хотим управлять этим током нагрузки в обоих полупериодах (все 4 квадранта) формы сигнала переменного тока, нам потребуется триак переключения сети.

BTA06 — это симистор 600 В на 6 ампер (I T (RMS) ), подходящий для общего / двухпозиционного переключения нагрузок переменного тока, но подойдет любой аналогичный симистор с номинальным напряжением 6–8 ампер. Кроме того, для этого переключающего триака требуется только 50 мА привода затвора для запуска проводимости, что намного меньше максимального значения 1 А для оптоизолятора MOC 3020.

Учтите, что выходной триак оптоизолятора включился при пиковом значении (90 o ) среднеквадратичного напряжения питания 120 В переменного тока. Это пиковое напряжение имеет значение: 120 x 1,414 = 170Vpk. Если максимальный ток опто-триаков (I TSM ) составляет 1 А, то минимальное значение требуемого последовательного сопротивления составляет 170/1 = 170 Ом или 180 Ом до ближайшего предпочтительного значения. Это значение 180 Ом будет защищать выходной триак оптопары, а также затвор триака BTA06 при питании 120 В переменного тока.

Если симистор оптоизолятора включается при значении пересечения нуля (0 o ) среднеквадратичного переменного напряжения питания 120 В , то минимальное напряжение, необходимое для подачи требуемого тока возбуждения затвора 50 мА, заставляющего переключающий триак в проводимость, будет: 180 Ом х 50 мА = 9,0 вольт. Затем симистор срабатывает, когда синусоидальное напряжение Gate-to-MT1 превышает 9 вольт.

Таким образом, минимальное напряжение, требуемое после точки пересечения нуля формы сигнала переменного тока, должно составлять 9 вольт, при этом рассеяние мощности в этом последовательном затворном резисторе очень мало, поэтому можно безопасно использовать резистор номиналом 0,5 Ом с сопротивлением 0,5 Ом и номиналом 0,5 Вт. Рассмотрим схему ниже.

Схема реле переменного тока

Схема полупроводникового реле переменного тока

Этот тип конфигурации оптопары формирует основу очень простого применения твердотельного реле, которое может использоваться для управления любой нагрузкой от сети переменного тока, такой как лампы и двигатели. Здесь мы использовали MOC 3020, который является изолятором со случайным переключением. Опто-триачный изолятор MOC 3041 имеет те же характеристики, но со встроенным обнаружением пересечения нуля, позволяющим нагрузке получать полную мощность без больших пусковых токов при переключении индуктивных нагрузок.

Диод D 1 предотвращает повреждение из-за обратного подключения входного напряжения, в то время как резистор 56 Ом (R 3 ) шунтирует любые токи di / dt при отключенном симисторе, устраняя ложные срабатывания. Он также связывает терминал затвора с MT1, обеспечивая полное отключение симистора.

Если используется входной сигнал ШИМ с широтно-импульсной модуляцией, частота переключения ВКЛ / ВЫКЛ должна быть установлена ​​не более 10 Гц для нагрузки переменного тока, иначе выходное переключение этой полупроводниковой релейной цепи может не выдержать.

meanders.ru

коммутация мощных нагрузок / Unwired Devices LLC corporate blog / Habr

Привет, Geektimes!

Управление мощными нагрузками — достаточно популярная тема среди людей, так или иначе касающихся автоматизации дома, причём в общем-то независимо от платформы: будь то Arduino, Rapsberry Pi, Unwired One или иная платформа, включать-выключать ей какой-нибудь обогреватель, котёл или канальный вентилятор рано или поздно приходится.

Традиционная дилемма здесь — чем, собственно, коммутировать. Как убедились многие на своём печальном опыте, китайские реле не обладают должной надёжностью — при коммутации мощной индуктивной нагрузки контакты сильно искрят, и в один прекрасный момент могут попросту залипнуть. Приходится ставить два реле — второе для подстраховки на размыкание.

Вместо реле можно поставить симистор или твердотельное реле (по сути, тот же тиристор или полевик со схемой управления логическим сигналом и опторазвязкой в одном корпусе), но у них другой минус — они греются. Соответственно, нужен радиатор, что увеличивает габариты конструкции.

Я же хочу рассказать про простую и довольно очевидную, но при этом редко встречающуюся схему, умеющую вот такое:

  • Гальваническая развязка входа и нагрузки
  • Коммутация индуктивных нагрузок без выбросов тока и напряжения
  • Отсутствие значимого тепловыделения даже на максимальной мощности

Но сначала — чуть-чуть иллюстраций. Во всех случаях использовались реле TTI серий TRJ и TRIL, а в качестве нагрузки — пылесос мощностью 650 Вт.

Классическая схема — подключаем пылесос через обычное реле. Потом подключаем к пылесосу осциллограф (Осторожно! Либо осциллограф, либо пылесос — а лучше оба — должны быть гальванически развязаны от земли! Пальцами и яйцами в солонку не лазить! С 220 В не шутят!) и смотрим.

Включаем:

Пришлось почти на максимум сетевого напряжения (пытаться привязать электромагнитное реле к переходу через ноль — задача гиблая: оно слишком медленное). В обе стороны бабахнуло коротким выбросом с почти вертикальными фронтами, во все стороны полетели помехи. Ожидаемо.

Выключаем:

Резкое пропадание напряжения на индуктивной нагрузке не сулит ничего хорошего — ввысь полетел выброс. Кроме того, видите вот эти помехи на синусоиде за миллисекунды до собственно отключения? Это искрение начавших размыкаться контактов реле, из-за которого они однажды и прикипят.

Итак, «голым» реле коммутировать индуктивную нагрузку плохо. Что сделаем? Попробуем добавить снаббер — RC-цепочку из резистора 120 Ом и конденсатора 0,15 мкФ.

Включаем:

Лучше, но не сильно. Выброс сбавил в высоте, но в целом сохранился.

Выключаем:

Та же картина. Мусор остался, более того, осталось искрение контактов реле, хоть и сильно уменьшившееся.

Вывод: со снаббером лучше, чем без снаббера, но глобально проблемы он не решает. Тем не менее, если вы желаете коммутировать индуктивные нагрузки обычным реле — ставьте снаббер. Номиналы надо подбирать по конкретной нагрузке, но 1-Вт резистор на 100-120 Ом и конденсатор на 0,1 мкФ выглядят разумным вариантом для данного случая.

Литература по теме: Agilent — Application Note 1399, «Maximizing the Life Span of Your Relays». При работе реле на худший тип нагрузки — мотор, который, помимо индуктивности, при старте имеет ещё и очень низкое сопротивление — добрые авторы рекомендуют уменьшить паспортный ресурс реле в пять раз.

А теперь сделаем ход конём — объединим симистор, симисторный драйвер с детектированием нуля и реле в одну схему.

Что есть на этой схеме? Слева — вход. При подаче на него «1» конденсатор C2 практически мгновенно заряжается через R1 и нижнюю половину D1; оптореле VO1 включается, дожидается ближайшего перехода через ноль (MOC3063 — со встроенной схемой детектора нуля) и включает симистор D4. Нагрузка запускается.

Конденсатор C1 заряжается через цепочку из R1 и R2, на что уходит примерно t=RC ~ 100 мс. Это несколько периодов сетевого напряжения, то есть, за это время симистор успеет включиться гарантированно. Далее открывается Q1 — и включается реле K1 (а также светодиод D2, светящий приятным изумрудным светом). Контакты реле шунтируют симистор, поэтому далее — до самого выключения — он в работе участия не принимает. И не греется.

Выключение — в обратном порядке. Как только на входе появляется «0», C1 быстро разряжается через верхнее плечо D1 и R1, реле выключается. А вот симистор остаётся включённым примерно 100 мс, так как C2 разряжается через 100-килоомный R3. Более того, так как симистор удерживается в открытом состоянии током, то даже после отключения VO1 он останется открытым, пока ток нагрузки не упадёт в очередном полупериоде ниже тока удержания симистора.

Включение:

Выключение:

Красиво, не правда ли? Причём при использовании современных симисторов, устойчивых к быстрым изменениям тока и напряжения (такие модели есть у всех основных производителей — NXP, ST, Onsemi, etc., наименования начинаются с «BTA»), снаббер не нужен вообще, ни в каком виде.

Более того, если вспомнить умных людей из Agilent и посмотреть, как меняется потребляемый мотором ток, получится вот такая картинка:

Стартовый ток превышает рабочий более чем в четыре раза. За первые пять периодов — то время, на которое симистор опережает реле в нашей схеме — ток падает примерно вдвое, что также существенно смягчает требования к реле и продлевает его жизнь.

Да, схема сложнее и дороже, чем обычное реле или обычный симистор. Но часто она того стоит.

habr.com

Практическое применение и схемы подключения твердотельного реле

Классические пускатели и контакторы постепенно уходят в прошлое. Их место в автомобильной электронике, бытовой технике и промышленной автоматике занимает твердотельное реле – полупроводниковое устройство, в котором отсутствуют какие-либо подвижные части.

Приборы имеют различные конструкции и схемы подключения, от которых зависят их сферы применения. Прежде чем использовать устройство, необходимо разобраться в его принципе действия, узнать об особенностях функционирования и подключения разных видов реле. Ответы на обозначенные вопросы подробно изложены в представленной статье.

Содержание статьи:

Устройство твердотельного реле

Современные твердотельные реле (ТТР) представляют собой модульные полупроводниковые приборы, являющиеся силовыми электропереключателями.

Ключевые рабочие узлы этих устройств представлены симисторами, тиристорами или транзисторами. ТТР не имеют подвижных частей, чем отличаются от электромеханических реле.

Ключевые узлы твердотельных релеКлючевые узлы твердотельных реле

Размер твердотельного реле во многом зависит от максимально допустимой нагрузки и возможности отводить тепло путем теплопередачи и конвекции (+)

Внутреннее устройство этих приборов может сильно различаться в зависимости типа регулируемой нагрузки  и электрической схемы.

Простейшие твердотельные реле включают такие узлы:

  • входной узел с предохранителями;
  • триггерная цепь;
  • оптическая (гальваническая) развязка;
  • переключающий узел;
  • защитные цепи;
  • узел выхода на нагрузку.

Входной узел ТТР представляет собой первичную цепь с последовательно подключенным резистором. Предохранитель в эту цепь встраивается опционально. Задача узла входа – принятие управляющего сигнала и передача команды на коммутирующие нагрузку переключатели.

При переменном токе для разделения контролирующей и основной цепи применяют гальваническую развязку. От её устройства во многом зависит принцип работы реле. Ответственная за обработку входного сигнала триггерная цепь может включаться в узел оптической развязки или располагаться отдельно.

Защитный узел препятствует возникновению перегрузок и ошибок, ведь в случае поломки прибора может выйти из строя и подключенная техника.

Основное предназначение твердотельных реле – замыкание/размыкание электрической сети с помощью слабого управляющего сигнала. В отличие от электромеханических аналогов, они имеют более компактную форму и не производят в процессе работы характерных щелчков.

Принцип работы ТТР

Работа твердотельного реле довольно проста. Большинство ТТР предназначено для управления автоматикой в сетях 20-480 В.

Принципиальная схема работы твердотельного релеПринципиальная схема работы твердотельного реле

Оптическая развязка позволяет создавать управленческие сигналы минимальной мощности, что критически важно для датчиков, работающих от автономных источников питания (+)

При классическом исполнении в корпус прибора входит два контакта коммутируемой цепи и два управляющих провода. Их количество может изменяться при увеличении количества подключенных фаз. В зависимости от наличия напряжения в управляющей цепи, происходит включение или выключение основной нагрузки полупроводниковыми элементами.

Особенностью твердотельных реле является наличие небесконечного сопротивления. Если контакты в электромеханических устройствах полностью разъединяются, то в твердотельных отсутствие тока в цепи обеспечивается свойствами полупроводниковых материалов.

Поэтому при повышенных напряжениях возможно появление небольших токов утечки, которые могут негативно сказаться на работе подключенной техники.

Классификация твердотельных реле

Сферы применения реле разнообразны, поэтому и их конструктивные особенности могут сильно отличаться, в зависимости от потребностей конкретной автоматической схемы. Классифицируют ТТР по количеству подключенных фаз, виду рабочего тока, конструктивным особенностям и типу схемы управления.

По количеству подключенных фаз

Твердотельные реле используются как в составе домашних приборов, так и в промышленной автоматике с рабочим напряжением 380 В.

Поэтому эти полупроводниковые устройства, в зависимости от количества фаз, разделяются на:

  • однофазные;
  • трехфазные.

Однофазные ТТР позволяют работать с токами 10-100 или 100-500 А. Их управление производится с помощью аналогового сигнала.

Классическое трехфазное твердотельное релеКлассическое трехфазное твердотельное реле

К трехфазному реле рекомендуется подключать провода различных цветов, чтобы при монтаже оборудования можно было правильно их присоединить

Трехфазные твердотельные реле способны пропускать ток в диапазоне 10-120 А. Их устройство предполагает реверсивный принцип функционирования, который обеспечивает надежность регуляции одновременно нескольких электрических цепей.

Часто трехфазные ТТР используются для обеспечения работы асинхронного двигателя. В его электросхему управления обязательно включаются быстрые предохранители из-за высоких пусковых токов.

По виду рабочего тока

Твердотельные реле нельзя настроить или перепрограммировать, поэтому они могут нормально работать только при определенном диапазоне электропараметров сети.

В зависимости от потребностей ТТР могут управляться электроцепями с двумя видами тока:

  • постоянным;
  • переменным.

Аналогично можно классифицировать ТТР и по виду напряжения активной нагрузки. Большинство реле в бытовых приборах работают с переменными параметрами.

Твердотельное реле для постоянного токаТвердотельное реле для постоянного тока

Постоянный ток не используется в качестве основного источника электроэнергии ни в одной стране мира, поэтому реле такого типа имеют узкую сферу применения

Устройства с постоянным управляющим током характеризуются высокой надежностью и используют для регуляции напряжение 3-32 В. Они выдерживают широкий диапазон температур (-30..+70°С) без значительного изменения характеристик.

Реле, регулирующиеся переменным током, имеют управляющее напряжение 3-32 В или 70-280 В. Они отличаются низкими электромагнитными помехами и высокой скоростью срабатывания.

По конструктивным особенностям

Твердотельные реле часто устанавливают в общий электрощит квартиры, поэтому многие модели имеют монтажную колодку для крепления на DIN-рейку.

Кроме того, существуют специальные радиаторы, располагающиеся между ТТР и опорной поверхностью. Они позволяют охлаждать прибор при высоких нагрузках, сохраняя его рабочие характеристики.

Крепление ТТР на DIN-рейкуКрепление ТТР на DIN-рейку

Реле крепиться на DIN-рейку преимущественно через специальный кронштейн, который имеет и дополнительную функцию – отводит излишки тепла при работе прибора

Между реле и радиатором рекомендуется наносить слой термопасты, который увеличивает площадь соприкосновения и увеличивает теплоотдачу. Существуют и ТТР, предназначенные для крепления к стене обычными шурупами.

По типу схемы управления

Не всегда принцип работы регулируемой реле техники требует его мгновенного срабатывания.

Поэтому производители разработали несколько схем управления ТТР, которые используются в различных сферах:

  1. Контроль «через ноль». Такой вариант управления твердотельным реле предполагает срабатывание только при значении напряжения, равном 0. Используется в устройствах с емкостной, резистивной (нагреватели) и слабой индуктивной (трансформаторы) нагрузкой.
  2. Мгновенное. Используется при необходимости резкого срабатывания реле при подаче управляющего сигнала.
  3. Фазовое. Предполагает регулирование выходного напряжения методом изменения параметров управляющего тока. Применяется для плавного изменения степени нагрева или освещения.

Твердотельные реле различаются и по многим другим, менее значимым, параметрам. Поэтому при покупке ТТР важно разобраться в схеме работы подключаемой техники, чтобы приобрести максимально соответствующее ей регулировочное устройство.

Обязательно должен быть предусмотрен запас мощности, потому что реле имеет эксплуатационный ресурс, который быстро расходуется при частых перегрузках.

Преимущества и недостатки ТТР

Твердотельные реле не зря вытесняют с рынка обычные пускатели и контакторы. Эти полупроводниковые приборы обладают множеством преимуществ перед электромеханическими аналогами, которые заставляют потребителей останавливать выбор именно на них.

Твердотельное реле для печатных платТвердотельное реле для печатных плат

Реле для микросхем имеет компактные размеры и сильно ограничены по максимально пропускаемому току. Крепятся они преимущественно путем припаивания специальных ножек

К таким достоинствам относят:

  1. Низкое потребление электроэнергии (на 90% меньше).
  2. Компактные габариты, позволяющие монтировать устройства в ограниченном пространстве.
  3. Высокая скорость запуска и отключения
  4. Пониженная шумность работы, отсутствуют характерные для электромеханического реле щелчки.
  5. Не предполагается техническое обслуживание.
  6. Длительный срок службы благодаря ресурсу в сотни миллионов срабатываний.
  7. Благодаря широким возможностям по модификации электронных узлов, ТТР имеют расширенные сферы применения.
  8. Отсутствие электромагнитных помех при срабатывании.
  9. Исключается порча контактов вследствие их механического удара.
  10. Отсутствие прямого физического контакта между цепями управления и коммутации.
  11. Возможность регулирования нагрузки.
  12. Наличие в импульсных ТТР автоматических цепей, защищающих от перегрузок.
  13. Возможность использования во взрывоопасных средах.

Указанных преимуществ твердотельных реле не всегда достаточно для нормальной работы оборудования. Именно поэтому они ещё не полностью вытеснили электромеханические контакторы.

Зависимость коммутационной способности ТТР от температурыЗависимость коммутационной способности ТТР от температуры

Для стабильной работы мощных твердотельных реле важен эффективный отвод тепла, потому что при повышенных температурах резко искажается напряжение нагрузки (+)

ТТР имеют и недостатки, которые не позволяют им использоваться во многих случаях.

К минусам относят:

  1. Невозможность работы большинства устройств с напряжениями свыше 0,5 кВ.
  2. Высокая стоимость.
  3. Чувствительность к высоким токам, особенно в пусковых цепях электродвигателей.
  4. Ограничения по использованию в условиях повышенной влажности.
  5. Критическое снижение рабочих характеристик при температурах ниже 30°С мороза и выше 70°С тепла.
  6. Компактный корпус приводит к избыточному нагреву устройства при стабильно высоких нагрузках, что требует применения специальных устройств пассивного или активного охлаждения.
  7. Возможность расплавления устройства от нагрева при коротком замыкании.
  8. Микротоки в закрытом состоянии реле могут быть критическими для работы оборудования. Например, подключенные в сеть люминесцентные лампы могут периодически вспыхивать.

Таким образом, твердотельные реле имеют определенные сферы применения. В цепях высоковольтного промышленного оборудования их использование резко ограничено из-за несовершенных физических свойств полупроводниковых материалов.

Однако в бытовой технике и автомобильной промышленности ТТР занимают прочные позиции за счет своих положительных свойств.

Возможные схемы подключений

Схемы подключения твердотельных реле могут быть самые разнообразные. Каждая электрическая цепь строится, исходя из особенностей подключаемой нагрузки. В схему могут добавляться дополнительные предохранители, контроллеры и регулирующие устройства.

Простейшая схема подключения релеПростейшая схема подключения реле

Благодаря тому, что цепи управления и нагрузки в приборе не перекрываются, их электрические характеристики могут отличаться любыми параметрами (+)

Далее будут представлены наиболее простые и распространенные схемы подключения ТТР:

  • нормально-открытая;
  • со связанным контуром;
  • нормально-закрытая;
  • трехфазная;
  • реверсивная.

Нормально-открытая (разомкнутая) схема – реле, нагрузка в котором находится под напряжением при наличии управляющего сигнала. То есть подключенная техника оказывается в отключенном состоянии при обесточенных входах 3 и 4.

 

Типы однофазных схем подключения ТТРТипы однофазных схем подключения ТТР

Перед покупкой реле необходимо определиться с требуемым типом его первоначального состояния (замкнутое или разомкнутое), чтобы обеспечить правильную работу подключенной техники (+)

Нормально-замкнутая схема – подразумевается реле, нагрузка в котором находится под напряжением при отсутствии управляющего сигнала. То есть подключенная техника оказывается в рабочем состоянии при обесточенных входах 3 и 4.

Существует схема подключения твердотельного реле, в которой управляющее и нагрузочное напряжение одинаково. Такой способ можно использовать одновременно для работы в сетях постоянного и переменного тока.

Трехфазные реле подключаются несколько по иным принципам. Контакты могут соединяться в вариантах «Звезда», «Треугольник» или «Звезда с нейтралью».

Варианты подключения трехфазной нагрузкиВарианты подключения трехфазной нагрузки

Выбор трехфазной схемы подключения реле во многом зависит от особенностей работы техники, подключенной к нему в качестве нагрузки

Реверсные твердотельные реле применяются в электродвигателях в соответствующем режиме. Они изготавливаются в трехфазном варианте и включают два контура управления.

Реле с двумя контурами управленияРеле с двумя контурами управления

Если для реле важно соблюдение полярности подключения контактов, то на маркировке всегда будет указано, куда подключать фазу и ноль

Собирать электрические цепи с ТТР необходимо только после их предварительной прорисовки на бумаге, потому что неверно подключенные устройства могут выйти из строя из-за короткого замыкания.

Практическое применение устройств

Сфера использования твердотельных реле довольно обширна. Из-за высокой надежности и отсутствия потребности в регулярном обслуживании их часто устанавливают в труднодоступных местах оборудования.

Подключение температурного датчика в релеПодключение температурного датчика в реле

Во многих реле подключение проводов управляющего контура требует соблюдения полярности, что необходимо учитывать в процессе монтажа оборудования

Основными же сферами применения ТТР являются:

  • система терморегуляции с применением ТЭНов;
  • поддержание стабильной температуры в технологических процессах;
  • контроль работы трансформаторов;
  • регулировка освещения;
  • схемы датчиков движения, освещения,  и т.п.;
  • управление электродвигателями;
  • .

С увеличением автоматизации бытовой техники твердотельные реле приобретают все большее распространение, а развивающиеся полупроводниковые технологии постоянно открывают новые сферы их применения.

При желании, собрать твердотельное реле можно собственноручно. Подробная инструкция представлена в .

Выводы и полезное видео по теме

Представленные видеоролики помогут лучше понять работу твердотельных реле и ознакомиться со способами их подключения.

Практическая демонстрация работы простейшего твердотельного реле:

Разбор разновидностей и особенностей работы твердотельных реле:

Тестирование работы и степени нагрева ТТР:

Смонтировать электрическую цепь из твердотельного реле и датчика может практически каждый человек.

Однако планирование рабочей схемы требует базовых знаний в электротехнике, потому что неправильное подключение может привести к удару током или короткому замыканию. Зато в результате правильных действий можно получить массу полезных в быту приборов.

Есть, что дополнить, или возникли вопросы по теме подключения и применения твердотельных реле? Можете оставлять комментарии к публикации, участвовать в обсуждениях и делиться собственным опытом использования таких устройств. Форма для связи находится в нижнем блоке.

sovet-ingenera.com

Инструкция по сборке твердотельного реле своими руками

Твердотельное реле (ТТР) – прибор из серии электронных компонентов немеханического действия. Отсутствие механики открывает больше возможностей любителям электроники сделать твердотельное реле своими руками для личного пользования.

Рассмотрим такую возможность подробнее.

Содержание статьи:

Конструкция и принцип действия ТТР

Если большая часть подобной электроники традиционно содержит подвижные детали контактных групп, твердотельное реле таких деталей не имеет совсем. Коммутация цепи схемой устройства осуществляется по принципу электронного ключа. А роль электронных ключей обычно исполняют встроенные в тело реле полупроводники – силовые транзисторы, симисторы, тиристоры.

Прежде чем пытаться изготовить твердотельное реле самостоятельно, логично ознакомиться с базовой конструкцией подобных устройств, понять принцип их функционирования.

Твердотельные релеТвердотельные реле

Промышленным производством выпускаются реле твердотельные различной конфигурации, предназначенные под самые разные условия практического применения. Выбор модификаций обширный

В рамках плотного изучения прибора сразу же следует выделить преимущественные стороны ТТР:

  • коммутация мощной нагрузки;
  • высокая скорость переключения;
  • идеальная гальваническая развязка;
  • способность кратковременно держать высокие перегрузки.

Среди механических конструкций найти реле с подобными параметрами реально не представляется возможным. Вообще, преимущества относительно механических собратьев у твердотельных реле выражаются внушительным списком.

Твердотельное и механическое релеТвердотельное и механическое реле

Два электронных прибора, функционально обеспечивающих коммутацию цепей: слева сделан на основе твердотельной конструкции, справа – традиционная механическая система переключения

Условия эксплуатации для ТТР практически не ограничивают применение этих устройств. К тому же отсутствие подвижных механических деталей благоприятно сказывается на продолжительности службы приборов. Так что есть все основания, чтобы заняться твердотельным реле – собрать устройство своими руками.

Однако, справедливости ради, наряду с положительными моментами следует отметить свойства реле, характеризуемые как недостатки. Так, для эксплуатации мощных приборов, как правило, требуется дополнительный компонент конструкции, который предназначен отводить тепло.

Твердотельные реле на радиаторахТвердотельные реле на радиаторах

На случай коммутации мощной нагрузки реле твердотельного исполнения практически всегда дополняются мощными радиаторами охлаждения. Этот момент несколько усложняет применение ТТР

Радиаторы охлаждения твердотельных реле имеют габаритные размеры в несколько раз превосходящие габариты ТТР, что снижает удобство и рациональность монтажа.

Приборы ТТР в процессе эксплуатации (в закрытом состоянии) дают обратный ток утечки и показывают нелинейную вольт-амперную характеристику. Не все твердотельные реле допустимо использовать без ограничений в характеристиках коммутируемых напряжений.

Твердотельное реле постоянного токаТвердотельное реле постоянного тока

Конструкция для применения только в схемах, где питание осуществляется постоянным током. Обычно эти приборы отличают малые габариты и небольшая мощность коммутации

Отдельные виды устройств предназначены коммутировать только постоянный ток. Внедрение твердотельных реле в схему обычно требует обращения к дополнительным мерам, направленным на блокировку ложных срабатываний.

Твердотельные реле часто можно встретить в общем .

Как работает твердотельное реле?

Управляющий сигнал (обычно напряжение низкого уровня, исходящее, к примеру, от контроллера управления) подаётся на светодиод оптоэлектронной пары, присутствующей в схеме ТТР. Светодиод начинает излучать свет в сторону фотодиода, который в свою очередь открывается и начинает пропускать ток.

Схема твердотельного релеСхема твердотельного реле

Обобщённая схема ТТР, наглядно показывающая, каким образом функционирует электронный прибор: 1 – источник напряжения управления; 2 – оптопара внутри корпуса реле; 3 – источник тока нагрузки; 4 – нагрузка

Проходящий через фотодиод ток приходит на управляющий электрод ключевого транзистора или тиристора. Ключ открывается, замыкает цепь нагрузки.

Так работает функция коммутации прибора. Вся электроника традиционно заключена в монолитный корпус. Собственно, поэтому устройство и получило название твердотельного реле.

А о том, как подключить твердотельное реле можно прочесть в .

Разновидности твердотельных переключателей

Весь существующий ассортимент приборов условно можно разделить по группам, исходя из категории подключаемой нагрузки, особенностей контроля и коммутации напряжений.

Таким образом, в общей сложности наберётся три группы:

  1. Устройства, действующие в цепях постоянного тока.
  2. Устройства, действующие в цепях переменного тока.
  3. Универсальные конструкции.

Первая группа представлена приборами с параметрами рабочих управляющих напряжений  3 – 32 вольта. Это относительно малогабаритная электроника, наделённая светодиодной индикацией, способная функционировать без перебоев при температурах -35 / +75 ºС.

Однофазное твердотельное релеОднофазное твердотельное реле

Широко распространённое исполнение электронного прибора для применения в однофазной электрической сети. Также встречаются иные варианты конструкций, но значительно реже

Вторая группа – устройства, предназначенные под установку в сетях переменного напряжения. Здесь представлены конструкции ТТР для установки в сетях переменного тока, управляемые напряжением 24 – 250 вольт. Есть устройства, способные коммутировать нагрузку высокой мощности.

Третья группа – приборы универсального назначения. Схемотехника этого вида устройств поддерживает ручную настройку на использование в тех или иных условиях.

Если отталкиваться от характера подключаемой нагрузки, следует выделить два вида твердотельных реле переменного тока: однофазные и трёхфазные. Оба вида рассчитаны на коммутацию достаточно мощной нагрузки при токах 10 – 75 А. При этом пиковые кратковременные значения тока могут достигать величины 500 А.

Трёхфазное твердотельное релеТрёхфазное твердотельное реле

Широко распространённый вариант исполнения для применения в трёхфазной электрической сети. Часто используется в качестве линейного регулятора мощных электрических нагревателей (ТЭН)

В качестве нагрузки, коммутируемой твердотельными реле, могут выступать ёмкостные, резистивные, индукционные цепи. Конструкции переключателей позволяют без лишнего шума, плавно управлять, к примеру, нагревательными элементами, лампами накаливания, электродвигателями.

Надёжность работы в достаточной степени высока. Но во многом стабильность и долговечность твердотельных реле зависит от качества производства изделий. Так, устройства, выпускаемые под некой торговой маркой «Impuls», часто отмечаются непродолжительным сроком службы.

С другой стороны, изделия фирмы «Schneider Electric» не оставляют повода для критики.

Как сделать ТТР своими руками?

Учитывая конструкционную особенность прибора (монолит), схема собирается не на текстолитовой плате, как это принято, а навесным монтажом.

Реле ТТР своими рукамиРеле ТТР своими руками

Вот такой выглядит самодельная конструкция твердотельного реле. Сделать нечто подобное несложно. Нужны лишь базовые навыки электронщика и электрика. Материальные затраты небольшие

Схемотехнических решений в этом направлении можно отыскать множество. Конкретный вариант зависит от требуемой коммутируемой мощности и прочих параметров.

Электронные компоненты для сборки схемы

Перечень элементов простой схемы для практического освоения и построения твердотельного реле своими руками следующий:

  1. Оптопара типа МОС3083.
  2. Симистор типа ВТ139-800.
  3. Транзистор серии КТ209.
  4. Резисторы, стабилитрон, светодиод.

Все указанные электронные компоненты спаиваются навесным монтажом согласно следующей схеме:

Принципиальная схема реле ТТРПринципиальная схема реле ТТР

Принципиальная схема маломощного твердотельного реле для сборки своими руками. Небольшое количество деталей и простой навесной монтаж позволяют спаять схему без труда

Благодаря использованию оптопары МОС3083 в схеме формирования сигнала управления величина входного напряжения может изменяться от 5 до 24 вольт.

А за счёт цепочки, состоящей из стабилитрона и ограничительного резистора, снижен до минимально возможного ток, проходящий через контрольный светодиод. Такое решение обеспечивает долгий срок службы контрольного светодиода.

Проверка собранной схемы на работоспособность

Собранную схему нужно проверить на работоспособность. Подключать при этом напряжение нагрузки 220 вольт в цепь коммутации через симистор необязательно. Достаточно подключить параллельно линии коммутации симистора измерительный прибор – тестер.

Проверка реле тестеромПроверка реле тестером

Проверка работоспособности твердотельного реле с помощью измерительного прибора. Если на вход устройства подано управляющее напряжение, переход симистора должен быть открыт

Режим измерений тестера нужно выставить на «мОм» и подать питание (5-24В) на схему генерации напряжения управления. Если всё работает правильно, тестер должен показать разницу сопротивлений от «мОм» до «кОм».

Устройство монолитного корпуса

Под основание корпуса будущего твердотельного реле потребуется пластина из алюминия толщиной 3-5 мм. Размеры пластины некритичны, но должны соответствовать условиям эффективного отвода тепла от симистора при нагреве этого электронного элемента.

Изготовление корпуса релеИзготовление корпуса реле

Каркас под заливку корпуса будущего прибора. Делается из картонной полосы или других подходящих материалов. На алюминиевой подложке закрепляется универсальным клеем

Поверхность алюминиевой пластины должна быть ровной. Дополнительно необходимо обработать обе стороны – зачистить мелкой шкуркой, отполировать.

На следующем этапе подготовленная пластина оснащается «опалубкой» – по периметру приклеивается бордюр из плотного картона или пластика. Должен получиться своеобразный короб, который в дальнейшем будет залит эпоксидной смолой.

Внутрь созданного короба помещается собранная «навесом» электронная схема твердотельного реле. На поверхность алюминиевой пластины укладывается только симистор.

Посадка симистора на основаниеПосадка симистора на основание

Закрепление симистора на алюминиевой подложке. Главное условие – этот электронный компонент необходимо плотно прижать к металлическому основанию. Только так обеспечивается качественный теплоотвод и надёжность работы

Никакие другие детали и проводники схемы не должны касаться алюминиевой подложки. Симистор прикладывается к алюминию той частью корпуса, которая рассчитана под установку на радиатор.

Следует использовать теплопроводящую пасту на площади соприкосновения корпуса симистора и алюминиевой подложки. Некоторые марки симисторов с неизолированным анодом обязательно требуется ставить через слюдяную прокладку.

Крепление ключевого элементаКрепление ключевого элемента

Вариант крепления симистора к подложке при помощи клёпки. С обратной стороны клёпка расплющивается заподлицо с поверхностью подложки

Симистор нужно плотно прижать к основанию каким-то грузом и залить по периметру эпоксидным клеем либо закрепить каким-то образом без нарушения глади обратной стороны подложки (например, заклёпкой).

Приготовление компаунда и заливка корпуса

Под изготовление твёрдого тела электронного устройства потребуется изготовить компаундную смесь. Состав смеси компаунда делается на основе двух компонентов:

  1. Эпоксидная смола без отвердителя.
  2. Порошок алебастра.

Благодаря добавлению алебастра мастер решает сразу две задачи – получает исчерпывающий объём заливного компаунда при номинальном расходе эпоксидной смолы и создаёт заливку оптимальной консистенции.

Смесь нужно тщательно перемешать, после чего можно добавить отвердитель и вновь тщательно перемешать. Далее аккуратно заливают «навесной» монтаж внутри картонного короба созданным компаундом.

Залитый компаундом корпус релеЗалитый компаундом корпус реле

Так выглядит готовый экземпляр твердотельного реле, собранного своими руками. Несколько необычно и не очень презентабельно, но достаточно надёжно

Заливку делают до верхнего уровня, оставив на поверхности лишь часть головки контрольного светодиода. Первоначально поверхность компаунда может выглядеть не совсем гладкой, но спустя некоторое время картинка изменится. Останется только дождаться полного застывания литья.

По сути, применить можно любые подходящие для литья растворы. Главный критерий – состав заливки не должен быть электропроводящим, плюс должна формироваться хорошая степень жёсткости литья после застывания. Литой корпус твердотельного реле является своего рода защитой электронной схемы от случайных физических повреждений.

Выводы и полезное видео по теме

Этот ролик показывает, как и на базе каких электронных компонентов можно сделать твердотельное реле. Автор доходчиво рассказывает обо всех деталях практики изготовления, с какими он столкнулся лично в процессе производства электронного коммутатора:

Видео о проблеме, с которой можно столкнуться после приобретения однофазного ТТР у продавцов из Китая. Попутно проводит своеобразный обзор устройства прибора коммутации:

Самостоятельное изготовление твердотельных реле – вполне возможное решение, но применительно к изделиям под низковольтную нагрузку, потребляющую относительно малую мощность.

Более мощные и высоковольтные приборы сделать своими руками сложно. Да и обойдётся эта затея по финансам в такую же сумму, какой оценивается заводской экземпляр. Так что в случае надобности проще купить готовый прибор промышленного изготовления.

Если у вас появились вопросы по сборке твердотельного реле, пожалуйста, задайте их в блоке с комментариями, а мы постараемся дать на них предельно понятный ответ. Там же можно поделиться опытом самостоятельного изготовления реле или сообщить ценную информацию по теме статьи.

sovet-ingenera.com

Твердотельное реле своими руками

В последнее время набрали популярность твёрдотельные реле. Для очень многих устройств силовой электроники твёрдотельные реле стали просто необходимы. Их преимущество в несоизмеримо большем количестве срабатываний, по сравнению с электромагнитными реле и большой скоростью переключений. С возможностью подключения нагрузки в момент перехода напряжения через ноль, тем самым избегая тяжёлых пусковых токов. В некоторых случаях их герметичность тоже играет свою положительную роль, но одновременно лишая владельца такого реле преимущества в возможности ремонта с заменой некоторых деталей. Твёрдотельное реле, в случае выхода из строя, не ремонтируется и подлежит замене целиком, это его отрицательное качество. Цены на такие реле несколько кусаются, и получается расточительно.
Попробуем вместе сделать твёрдотельное реле своими руками с сохранением всех положительных качеств, но, не заливая схему смолой или герметиком, чтобы иметь возможность ремонта, в случае выхода из строя.
Твёрдотельное реле своими руками

Схема


Посмотрим схему этого очень полезного и нужного устройства.
Твёрдотельное реле своими руками
Основу схемы составляют силовой симистор Т1 — BT138-800 на 16 Ампер и управляющий им оптрон МОС3063. На схеме выделены чёрным цветом проводники, которые нужно проложить медным проводом повышенного сечения, в зависимости от планируемой нагрузки.
Управление светодиодом оптрона мне удобнее запитать от 220 Вольт, а можно от 12 или 5 Вольт, кому как нужно.
Твёрдотельное реле своими руками
Для управления от 5 Вольт, нужно гасящий резистор 630 Ом поменять на 360 Ом, остальное всё одинаково.
Номиналы деталей рассчитаны на МОС3063, если примените другой оптрон, то номиналы нужно пересчитать.
Варистор R7 защищает схему от бросков напряжения.
Цепочку индикаторного светодиода можно совсем убрать, но с ней получается нагляднее, что аппарат работает.
Резисторы R4, R5 и конденсаторы C3, C4 служат для предотвращения выхода из строя симистора, их номиналы рассчитаны на ток не выше 10 Ампер. Если потребуется реле на большую нагрузку, то номиналы нужно пересчитывать.
Радиатор охлаждения для симистора впрямую зависит от нагрузки на него. При мощности триста Ватт, радиатор не нужен вовсе, и соответственно – чем больше нагрузка, тем больше площадь радиатора. Чем меньше будет симистор перегреваться, тем дольше проработает и поэтому даже кулер охлаждения не будет лишним.
Если вы планируете управлять повышенной мощностью, то наилучшим выходом будет поставить симистор большей мощности, например, ВТА41, который рассчитан на 40 Ампер, или подобный ему. Номиналы деталей подойдут без пересчёта.

Детали и корпус


Твёрдотельное реле своими руками
Твёрдотельное реле своими руками
Нам потребуется:
  • F1 — предохранитель на 100 мА.
  • S1 — любой маломощный переключатель.
  • C1 – конденсатор 0.063 мкФ 630 Вольт.
  • C2 – 10 — 100 мкФ 25 Вольт.
  • C3 – 2.7 нФ 50 Вольт.
  • C4 – 0.047 мкФ 630 Вольт.
  • R1 – 470 кОм 0.25 Ватт.
  • R2 – 100 Ом 0.25 Ватт.
  • R3 – 330 Ом 0.5 Ватт.
  • R4 – 470 Ом 2 Ватта.
  • R5 – 47 Ом 5 Ватт.
  • R6 – 470 кОм 0.25 Ватт.
  • R7 – варистор TVR12471, или подобный.
  • R8 – нагрузка.
  • D1 – любой диодный мост на напряжение не менее 600 Вольт, или собрать из четырёх отдельных диодов, например — 1N4007.
  • D2 – стабилитрон на 6.2 Вольта.
  • D3 – диод 1N4007.
  • T1 – симистор ВТ138-800.
  • LED1 – любой сигнальный светодиод.

Изготовление твердотельного реле


Сначала намечаем размещение радиатора, макетной платы и прочих деталей в корпусе и закрепляем их на места.
Твердотельное реле своими руками
Твёрдотельное реле своими руками
Твёрдотельное реле своими руками
Симистор нужно изолировать от радиатора охлаждения специальной теплопроводной пластиной с применением теплопроводной пасты. Паста должна слегка вылезти из-под симистора при закручивании крепёжного винта.
Твёрдотельное реле своими руками
Далее размещаем следующие детали в соответствии со схемой и припаиваем их.
Твёрдотельное реле своими руками
Твёрдотельное реле своими руками
Твёрдотельное реле своими руками
Твёрдотельное реле своими руками
Твёрдотельное реле своими руками
Твёрдотельное реле своими руками
Припаиваем провода для подключения питания и нагрузки.
Твёрдотельное реле своими руками
Твёрдотельное реле своими руками
Помещаем устройство в корпус, предварительно испытав его при минимальной нагрузке.
Твёрдотельное реле своими руками
Твёрдотельное реле своими руками
Твёрдотельное реле своими руками
Твёрдотельное реле своими руками
Испытание прошло успешно.

Смотрите видео


Смотрите видео испытания устройства совместно с цифровым регулятором температуры.

sdelaysam-svoimirukami.ru

Рекомендации по выбору твердотельных реле

Перейти в каталог твердотельных реле 

 

Способы коммутации твердотельных реле:

  1. Управление с коммутаций при переходе тока через ноль

   Преимущество этого метода коммутации заключается в отсутствии помех создающихся при включении. Недостатками являются прерывание выходного сигнала и невозможность использования на высокоиндуктивные нагрузки. Основное применение данного вида коммутации подходит для резистивной нагрузки (системы контроля и управления нагревом). Также применяют на емкостные и слабоиндуктивные нагрузки.

 

2. Фазовое управление

 

    Преимущество фазового метода регулирования заключается в непрерывности и плавности регулирования. Этот метод позволяет регулировать величину напряжения на выходе (регулятор мощности). Недостатком является наличие помех при переключении. Применяется для резистивных (системы управления нагревом), переменных резистивных (инфракрасные излучатели), индуктивных нагрузок (транcформаторы) и упрвление освещением (лампы накаливания).

 

Ток и характер нагрузки

    Одним из важнейших параметров для выбора реле является ток нагрузки. Для надежной и длительной эксплуатации необходимо выбирать реле с запасом по току, но при этом надо учитывать и пусковые токи, т.к. реле способно выдерживать 10-ти кратную перегрузку по току только в течение короткого времени (10мс). Так при работе на активную нагрузку (нагреватель) номинальный ток реле должен быть на 30-40% больше номинального тока нагрузки, а при работе на индуктивную нагрузку (электродвигатель) необходимо учитывать пусковой ток, и запас по току должен быть увеличен в 6-10 раз.

Примеры запаса по току для различных типов нагрузки:

  • активная нагрузка (ТЭНы) – запас 30-40%
  • асинхронные электродвигатели – 6…10 кратный запас по току
  • лампы накаливания – 8…12 кратный запас по току
  • катушки электромагнитных реле – 4…10 кратный запас по току

 

Расчет тока реле при активной нагрузке:

Однофазная нагрузка 

Iреле = Pнагр / U
Pнагр = 5кВт, U = 220В
Iреле = 5000 / 220 = 22,7А
Учитывая необходимый запас по току
выбираем реле на 40А.

Трехфазная нагрузка 

Iреле = Pнагр /(U x 1,732)
Pнагр = 27кВт, U = 380В
Iреле = 27000 /(380 x 1,732) = 41,02А

С учетом запаса по току выбираем
реле на 60А.

 

Охлаждение

    Еще одним немаловажным фактором для надежной работы твердотельных реле является его рабочая температура. При работе твердотельного реле SSR из-за потерь на силовых элементах выделяется большое количество тепла, которое необходимо отводить с помощью радиаторов охлаждения. Заявленный номинальный ток реле способны коммутировать при его температуре не более 40°С. При увеличении температуры реле снижается его пропускная способность из расчета 20-25% на каждые 10°С. При температуре примерно 80°С его пропускная способность по току сводится к нулю, и как следствие реле выходит из строя. На температурный режим реле могут влиять многие факторы: место установки, температура окружающей среды, циркуляция воздуха, нагрузка на твердотельном реле и др. При использовании на «тяжелые» нагрузки (пуск асинхронного двигателя) необходимо применять дополнительные меры по усилению отвода тепла: устанавливать на радиатор большего размера, сделать принудительное охлаждение (установить вентилятор).

 

Защита

  • Твердотельные реле имеют встроенную RC-цепь для защиты от ложного включения при использовании на индуктивной нагрузке.
  • Для защиты от кратковременного перенапряжения со стороны нагрузки необходимо использовать варисторы. Они подбираются исходя из величины коммутируемого напряжения Uвар=1,6-2Uком. Следует отметить, что современные тв реле выдерживают значительные перенапряжения и без применения варисторов. Гораздо опаснее для тв реле перегрузка по току.

  • Для защиты от перегрузки по току необходимо использовать специальные быстродействующие полупроводниковые предохранители. Они подбираются с учетом величины номинального тока реле Iпр=1 — 1,3Iном. реле, причем само тв реле должно быть с гораздо большим запасом по току, в т.ч. учитывая пусковые токи нагрузки. Это самый эффективный способ защитить реле от перегрузки по току. Поскольку реле способно выдерживать только кратковременную (10мс) перегрузку, то использование автоматов защиты не спасет их от выхода из строя.
  • Для корректной работы твердотельного реле при маленьких токах нагрузки (соизмеримых с током утечки) необходимо устанавливать шунтирующее сопротивление параллельно нагрузке.

 

Примеры применения

  Основное применение твердотельные реле находят в системах управления нагревом. Твердотельные реле ZD3, VD, LA чаще всего применяют в технологических процессах, где требуется поддержание температуры с большой точностью (ПИД, Fuzzy режим). При этом реле VD, LA будут обеспечивать плавную регулировку за счет фазового метода управления.

   Твердотельные реле ZA2 чаще применяют в системах, где не требуется высокая точность поддержания температуры (двухпозиционный режим).

    Твердотельные реле VA (управление переменным резистором) применяют для ручной регулировки мощности на нагрузке. Таким реле можно отрегулировать мощность ТЭНа или ИК-излучателя, изменять яркость свечения лампы накаливания.

    Соблюдая определенный ряд условий, твердотельные реле можно использовать для пуска асинхронных двигателей. Необходимо учитывать пусковые токи двигателя и реле подбирать с многократным запасом по току. Применять меры по дополнительному отводу тепла (радиаторы охлаждения). Для защиты реле от кратковременных перенапряжений использовать варисторы, а для защиты от перегрузки по току быстродействующие предохранители.

   Можно организовать управление группой реле от одного источника питания. В данном случае необходимо подобрать источник с мощностью достаточной для включения всей группы реле. При этом можно оставить возможность включения – выключения отдельного реле для управления требуемой зоной.

 

Перейти в каталог твердотельных реле 

 

deltser.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *