Устройство защиты от перенапряжения: Устройства защиты от скачков напряжения УЗМ-51М, УЗМ-16

Содержание

Устройства защиты от скачков напряжения УЗМ-51М, УЗМ-16

Параметр

Ед.изм.

УЗМ-51М, УЗМ-51МТ

УЗМ-16

Параметры защиты

 

Уровень ограничения напряжения при токе помехи 100А, не более

кВ

1,2

 

Максимальная энергия поглощения (одиночный импульс 10/1000мкс)

Дж

200

42

Максимальный ток поглощения, одиночный импульс 8/20мкс / повторяющиеся импульсы 8/20мкс

А

6000

1200

Время срабатывания импульсной защиты

нс

<25

Порог отключения нагрузки при повышении напряжения, Uверх

В

240, 250, 255, 260, 265, 270, 275, 280, 285, 290

Верхний порог ускоренного отключения нагрузки при повышении напряжения выше верхнего критического порога, Uверх. кр.

В

300 ± 15В

Порог отключения нагрузки при снижении напряжения, Uниз

В

210, 190, 175, 160, 150, 140, 130, 120, 110, 100

210, 200, 190, 180, 175, 160, 150, 140, 130, 120

Порог ускоренного отключения нагрузки при снижении напряжения ниже нижнего критического порога, U

низ.кр

В

80± 10В

100± 10

Гистерезис возврата верхнего и нижнего порога от установленного значения

%

3

2

Питание

 

Номинальное напряжение питания

В

230

Частота напряжения питания

Гц

50

50/60

Максимальное напряжение питания

В

440

400
Электроэрозионная стойкость контактов, не менее циклов   100000

Потребляемая мощность, не более

Вт

1,5

2

Коммутирующая способность контактов

Номинальный ток нагрузки (при сечении подключаемых проводов не менее 16мм2,медь), нагрузка АС1 (активная, резистивная)

А

63

16
Номинальный ток нагрузки (при сечении подключаемых проводов не менее 16мм2,медь), нагрузка АС3 (индуктивная, реактивная) А 25 4,5
Максимальный ток нагрузки, (не более30мин) А 80 16

Номинальная мощность нагрузки (при AC230В)

кВт

14,5

3,6

Максимальная мощность нагрузки (не более30мин)

кВт

18,4

3,6
Ток перегрузки/время воздействия, мс  без сваривания контактов А/мс 2000/10  

Задержка включения /повторного включения, выбирается пользователем

 

6мин/10с

Пороги напряжения верхний > 300 ± 15В верхний 240 — 290
нижний 210 — 100 нижний <80 ± 15В
Время отключения нагрузки 0,02 сек. 0,1 сек. 10 сек. 0,5 сек.

Сечение подключаемых проводников

мм²

0,5-33 (20-2AWG)

 
Момент затяжки винтового соединения клеммы Hm 2,8 0,4

Диапазон рабочих температур (по исполнениям)

°С

-25…+55 (УХЛ4)

-40…+55 (УХЛ2)

Температура хранения °С -40…+70
Помехоустойчивость от пачек импульсов в соответствии с
ГОСТ Р 51317.4.4-99 (IEC/EN 61000-4-4)
  уровень 3 (2кВ/5кГц)
Помехоустойчивость от перенапряжения в соответствии с
ГОСТ Р 51317. 4.5-99 (IEC/EN 61000-4-5)
  уровень 3 (2кВ А1-А2)
Климатическое исполнение и категория размещения по ГОСТ 15150-69 (без образования конденсата)   УХЛ4 или УХЛ2
Степень защиты реле по корпусу / по клеммам по ГОСТ 14254-96   IP40/IP0 IP40/IP20
Степень загрязнения в соответствии с ГОСТ 9920-89   2
Виброустойчивость g 4
Ударопрочность g 6
Максимальная механическая износостойкость   1*106
Максимальная электрическая износостойкость   1*105
Габаритные размеры мм 83х35х63 18х93х62

Масса, не более

кг

0,16

0,07

Срок службы, не менее (на изделия выпущенные после 2015 г.

)

лет

10

Устройства защиты от скачков напряжения УЗМ-50Ц

При подаче питания устройство начинает контроль сетевого напряжения. Если напряжение сети находится между заданными в настройках значениями верхнего Umax и нижнего Umin порогов срабатывания начинается отсчет времени автоматического повторного включения (АПВ). При этом на индикаторе отображается время в секундах до подключения нагрузки (оборудования) к сети. В процессе отсчета времени АПВ на дисплее периодически появляется индикация «ton». Если до окончания отсчета времени АПВ напряжение сети не выйдет за установленные пороги срабатывания, то по окончании отсчета произойдет подключение нагрузки к сети.

Затем устройство переходит в режим отображения текущего значения напряжения сети, а на индикаторе отобразится знак «U» в течение 1с, затем устройство отобразит текущее значение напряжения сети.

Для перехода в режим индикации тока нагрузки необходимо однократно нажать кнопку «-», на индикаторе появится знак «А» в течение 1с, затем устройство отобразит текущее значение тока. Для перехода в режим индикации потребляемой мощности необходимо однократно нажать кнопку «-», на индикаторе отобразится знак «Р» в течение 1с, затем устройство отобразит текущее значение мощности. При нахождении в режиме отображения напряжения, тока или мощности на дисплей с периодичностью 10 секунд на 1 секунду выводится символ выбранного режима отображения (U, A или P).

Кнопка «+» используется для включения или отключения нагрузки без выдержки времени. При нажатии на кнопку «+» изменится состояние контакта реле включено/выключено. Если реле выключено вручную, то сброс и повторная подача питание не приведут к автоматическому включению нагрузки к сети. При выключенном реле на индикаторе с периодичностью в 10 сек. отображается «OFF» в течение 1секунды, и текущее значение входного напряжения.

При работе Устройство осуществляет непрерывный контроль сетевого напряжения и значения мощности потребляемой нагрузкой.

При выходе напряжения сети за установленные пороги срабатывания, устройство отсчитывает задержку срабатывания (табл.1). Если длительность аварии по напряжению сохраняется более соответствующей задержки срабатывания, происходит отключение нагрузки от сети. На дисплее отображается «U.Er» на время 1сек., устройство автоматически переходит в режим отображения измеряемого напряжения. После нормализации напряжения устройство подключает нагрузку, после отсчета времени АПВ. Если в процессе отсчета времени АПВ напряжение сети повторно выйдет за заданные пороги срабатывания, отсчет времени АПВ сбросится.

При напряжении сети ниже 80В, на индикаторе отображается .

Если в процессе работы устройства мощность, потребляемая нагрузкой, превысит установленный порог срабатывания, устройство перейдет в режим отображения мощности «Р» и начнет отсчёт времени отключения нагрузки. В процессе отсчета времени отключения нагрузки светодиод «норма/авария» горит красным и дважды мигает зелёным. Если превышение допустимой мощности сохранится до окончания отсчета времени, устройство отключит нагрузку от сети и начнет отсчет времени включения равный значению времени отключения («t. P», устанавливается в настройках устройства). В процессе отсчета СД «норма/авария» горит зелёным и дважды мигает красным, при этом на индикаторе на 1сек. отображается «ton». Если после включения реле превышение потребляемой мощности сохраняется, повторно начинается отсчёт времени «t. P», при этом время включения «t. P» в следующем цикле увеличивается на это же время «t. P».

С целью уменьшения пусковых токов при включении ёмкостных нагрузок включение встроенного силового реле происходит при нулевом сетевом напряжении (переходе сетевого напряжения  через ноль).

При работе Устройство осуществляет запись в энергонезависимую память значений минимального и максимального напряжения сети, максимальной мощности потребляемой нагрузкой, а также количества отключений нагрузки по каждому типу аварии.

Устройства защиты от скачков напряжения УЗМ-3-63К

Параметр Ед.изм. УЗМ-3-63К

Параметры защиты

Порог отключения нагрузки при повышении напряжения, Umax (tоткл=0,5с) В 243, 249, 255, 261, 267, 273, 279, 285, 291, 297±3
Порог отключения нагрузки при снижении напряжения, Umin (tоткл=10с) В 217, 211, 205, 199, 193, 187, 181, 175, 169, 163±3
Порог ускоренного отключения нагрузки при скачке напряжения (tоткл=30мс) В 300
Порог отключения нагрузки при провале напряжения (tоткл=100мс) В 110
Допустимый разброс напряжений по фазам, не более % 25
Ширина зоны «гистерезиса» порога срабатывания % Uном ± 2,5
Порог срабатывания по частоте Гц 45/55 ±0,5

Уровень ограничения напряжения при токе помехи 100А, не более

кВ

1,2

Максимальная энергия поглощения (одиночный импульс 10/1000мкс)

Дж

200

Максимальный ток поглощения, одиночный  импульс 8/20мкс/повторяющиеся импульсы 8/20мкс

А

6500/4500

Время срабатывания импульсной защиты

нс

<25

Питание

Номинальное напряжение питания

В

230

Частота напряжения питания

Гц

50

Максимальное напряжение питания

В

440

Потребляемая мощность

ВА

2,2

Коммутирующая способность контактов

Номинальный ток нагрузки (при сечении подключаемых проводов не менее 16мм2,медь), нагрузка АС1 (активная, резистивная)

А

63

Номинальный ток нагрузки (при сечении подключаемых проводов не менее 16мм2,медь), нагрузка АС3 (индуктивная, реактивная) А 25

Номинальная мощность нагрузки (АС250В) по каждой из фаз

кВт

14,5

Максимальное коммутируемое напряжение

В

400

Максимальный пропускаемый ток короткого замыкания (не более 10мс)

А

4500

Технические данные

Задержка включения/повторного включения, переключается пользователем

 

2с, 5с, 10с, 15с, 20с, 30с, 1мин, 2мин, 4мин, 8мин

Задержка отключения при повышении напряжения выше верхнего порога

с

0,2

Время ускоренного отключения нагрузки при скачке напряжения, tоткл мс 30

Задержка отключения при снижении напряжения ниже нижнего порога

с

10

Время отключения нагрузки при провале напряжения, tоткл мс 100

Сечение подключаемых проводников не менее

мм²

0,5-25 (20-4 AWG)

Диапазон рабочих температур (по исполнениям)

0С

-25…+55 (УХЛ4)

-40…+55 (УХЛ2)

Температура хранения 0С –40. ..+70
Помехоустойчивость от пачек импульсов в соответствии с
ГОСТ Р 51317.4.4-99 (IEC/EN 61000-4-4)
  уровень 3 (2кВ/5кГц)
Помехоустойчивость от перенапряжения в соответствии с
ГОСТ Р 51317.4.5-99 (IEC/EN 61000-4-5)
  уровень 3 (2кВ А1-А2)
Климатическое исполнение и категория размещения по ГОСТ 15150-69 (без образования конденсата)   УХЛ4 и УХЛ2
Степень защиты реле корпус/клеммы   IP40/IP20
Степень загрязнения в соответствии с ГОСТ 9920-89   2
Влажность % до 80 (при 25°С)
Высота над уровнем моря м до 2000
Рабочее положение в пространстве   произвольное
Режим работы   круглосуточный
Габаритные размеры мм 105х63х94
Масса, не более кг 0,45

Срок службы, не менее

лет

10

Устройства защиты от импульсных перенапряжений

Принцип действия УЗИП

Устройства УЗИП защищают электрические сети и электрооборудование от повышенного напряжения, вызванного прямым или удаленным разрядом молнии. Непрямой разряд молнии выводит из строя работу не только пораженного объекта, но и соседних объектов, если они объединены между собой кабельными коммуникациями, водопроводными трубами и др.Распространенным видом импульсного перенапряжения являются индуктированные перенапряжения, связанные с распространением помех через электромагнитное поле.

Импульсные перенапряжения могут возникать и по другим причинам, например, когда электросеть не выдерживает работы мощного электрического оборудования.Поэтому для бесперебойной работы обязательно требуется защита от импульсных перенапряжений.

Принцип действия всех УЗИП заключается в ограничении переходных перенапряжений и отводе импульсов тока. Устройство содержит по крайне мере один нелинейный элемент — варистор, диод и др.

УЗИП защищает участок сети определенной длины, обусловленной параметрами волны воздействующего перенапряжения, а также типом кабельной линии.

Типы и область применения УЗИП

Чтобы правильно выбрать и купить устройство защиты от импульсных перенапряжений, нужно знать, в какой сфере оно будет применяться.

Существует три типа УЗИП — коммутирующие, ограничивающие и комбинированные. К коммутирующим относятся искровые разрядники, газоразрядные трубки, тиристоры. В качестве нелинейных устройств в УЗИП ограничивающего типа используются варисторы и диоды. Комбинированные представляют синтез элементов двух предыдущих типов — они могут и коммутировать, и ограничивать напряжение.

Существуют устройства защиты от импульсных перенапряжений для бесперебойной работы систем электроснабжения. Это  мощные УЗИП классов I, I+II, класса II, класса II для систем постоянного тока, класса III и УЗИП в защитной оболочке.

УЗИП I класса предназначены для защиты от прямых ударов молнии в сеть или в те места, где объекты находятся на небольшом расстоянии от молниеотвода. Устанавливаются на вводе питания в объект (ГРЩ, ВРУ).

УЗИП класса II предназначены для защиты токораспределительной сети объекта от коммутаторных помех или используются в качестве второй ступени защиты при ударе молнии. Устанавливаются в распределительных щитах.

Устройства защиты от импульсных перенапряжений (УЗИП) класса II для систем постоянного тока применяются для защиты полюсов в системах постоянного тока. Они представляют собой двухполюсное УЗИП класса II комбинированного типа. 

УЗИП класса III предназначены для защиты потребителей от остаточных перенапряжений после срабатывания УЗИП первой и второй ступени защиты, от наводок во внутренней информационно-распределительной сети объекта.

Для информационных систем есть следующие виды устройств защиты от импульсных перенапряжений, цена которых отличается от первого вида. 

Это УЗИП комбинированного типа для защиты оборудования слаботочных цепей, предназначенные для сохранения систем передачи данных, управления, контроля и измерения, а также передачи информации с помощью различных видов интерфейсов. Также мы предлагаем универсальные УЗИП для промышленного Ethernet.

В зависимости от типа защиты от импульсных перенапряжений различается и цена оборудования.

Не знаете какой УЗИП выбрать?
Воспользуйтесь алгоритмом выбора УЗИП 


Устройства защиты от перенапряжения

Перенапряжение, амплитуда которого может в 20 раз превысить номинальное напряжение, как правило, возникает в результате атмосферных разрядов, коммутационных процессов в распределительных электрических сетях и коммутационных процессов силовых элементов и устройств в технологических цепях.

Без устройства защиты повышенное напряжение достигает электрооборудование. Импульс тока протекает через оборудование и выводит его из строя.

Устройства защиты от перенапряжений ограничивают импульсные перенапряжения и отводят импульсы тока в землю. Они также ограничивают перенапряжения до значений, совместимых с характеристиками подсоединенных устройств или оборудования.

Устойчивость к перенапряжениям является составной частью электромагнитной совместимости, т.е. способности электрооборудования нормально работать при наличии электромагнитных помех. Вот почему защита от перенапряжения является актуальной задачей.

Устройства защиты от перенапряжения (УЗИП) обладают очень большим сопротивлением при номинальном напряжении и, следовательно, не проводят электрический ток.

Устройство защиты от перенапряжений содержит, как минимум, один нелинейный компонент:
– при нормальной работе устройства защиты от перенапряжения действуют как разомкнутая цепь.
– при возникновении перенапряжения устройство ведет себя, как замкнутая цепь.

Основными параметрами устройства защиты от перенапряжений являются его способность замыкать большие токи на землю (т.е. рассеивать значительное количество энергии) и ограничивать напряжение на минимально возможном уровне.

Требования к внутренней защите с использованием концепции зон молниезащиты приводятся в стандарте IEC 1312-1. В международной норме IEC 61643-1 приводится классификация ограничителей перенапряжения (I – B, II – C и III – D).

УЗИП класса I (B) – тип 1 предназначены для защиты от перенапряжений категории III согласно стан- дарту ГОСТ P. 51 992-2002, в котором установлено максимальное перенапряжение 4 кВ за счет координации изоляции для сетей 230/400 В. Эти УЗИП служат для выравнивания потенциалов при прямом попадании молнии. Они устанавливаются в месте ввода электроэнергии в главном распределительном щите.

УЗИП класса II (C) – тип 2 предназначены для защиты от перенапряжений категории II, для которой установлено максимальное перенапряжение 2,5 кВ за счет координации изоляции для сетей 230/400 В. Эти УЗИП служат для отвода энергии импульсов перенапряжения в распределительной электросети объекта. Они устанавливаются в основном во второстепенных распределительных щитах. Их также можно устанавливать в главном распределительном щите вместе с УЗИП класса I, однако, в этом случае между ограничителями следует установить импульсный разделительный дроссель.

УЗИП класса III (D) – тип 3 предназначены для защиты от перенапряжений категории I, для которой установлено максимальное перенапряжение 1,5 кВ за счет координации изоляции для сетей 230/400 В. Эти УЗИП служат для отвода энергии импульсов перенапряжения в конце цепи с розетками или в распределительных щитках электрооборудования.

Устройства защиты от перенапряжений

Обычно в любых электрических сетях напряжение находится в пределах, определяемых техническими нормативами, но иногда оно отклоняется от допустимых значений. Предельно допустимое напряжение находится в пределах ±10 % от номинального значения напряжения, т. е. для однофазной сети в диапазоне 198—242 В, а для трехфазной — 342—418 В. Отклонения от указанных значений называются перенапряжениями. Перенапряжения имеют различную природу и в зависимости от этого отличаются длительностью и величиной. Длительные перенапряжения (свыше 0,01 с) обычно возникают из-за неисправности понижающего трансформатора на подстанции или обрыва нулевого провода в питающей сети.

Такие перенапряжения имеют сравнительно небольшие значения (от 230 В до величины междуфазного напряжения — 380 В), но действуют длительное время и представляют вполне реальную угрозу и для человека, и для оборудования. Длительное повышение напряжения может произойти и в случае неравномерного распределения нагрузок по фазам во внешней сети. Тогда возникает перекос фаз, при котором на самой загруженной фазе напряжение становится ниже, а на незагруженной — выше номинального. Кратковременные всплески напряжения могут произойти и в результате переключений в энергосети или во время включения мощных реактивных нагрузок.

Для надежной защиты домашней электропроводки от перенапряжений рекомендуется создание многоуровневой (по крайней мере, трехступенчатой) системы защиты из УЗИП разных классов. УЗИП класса В (тип 1) рассчитано на номинальный разрядный ток 30— 60 кА, УЗИП класса С (тип 2) — на ток 20—40 кА. УЗИП класса D (тип 3) на ток 5—10 кА. При создании многоступенчатой системы защиты от перенапряжений следует обеспечить соответствие мощности каждой ступени, т. е. максимальный ток, протекающий через них, не должен превышать их номинальных характеристик. Но в первую очередь необходимо создать эффективную систему заземления.

Мощные импульсные перенапряжения (с токами до 100 кА) могут возникать при воздействии грозовых разрядов. При этом напряжение может достигать десятков киловольт. Такие импульсы длятся в течение максимум сотни микросекунд, и защитные автоматы не успевают на них среагировать, так как самые современные типы автоматов имеют время срабатывания единицы миллисекунд, что может стать причиной пробоя и повреждения изоляции между фазой и нейтралью или между фазой и землей. Как правило, это не приводит к короткому замыканию и не нарушает работу сети, но в месте повреждения изоляции возникает небольшой ток утечки. И если он проходит между фазой и нейтралью, то не фиксируется УЗО и автоматами защиты, но зато приводит к повышенному нагреву изоляции и ускорению процесса ее старения. С течением времени сопротивление изоляции на этом участке уменьшается, а ток утечки возрастает.

Последствия воздействия этих негативных факторов на электронное оборудование и электропроводку могут быть фатальными, поэтому домашняя сеть требует комплексной защиты от перенапряжений с использованием различных типов устройств (УЗИП, ОП, PH и т. д.).

Возможность использования различных УЗИП для выполнения конкретных защитных функций определяется по техническим характеристикам, отраженным в маркировке прибора.

Уровень напряжения защиты U является важнейшим параметром, характеризующим УЗИП. Он определяет значение остаточного напряжения, появляющегося на выводах УЗИП вследствие прохождения разрядного тока. Для УЗИП 1-го класса Up не должен превышать 4 кВ, для устройств 2-го класса — 2,5 кВ, для 3-го класса УЗИП устанавливается Up не более 1,5 кВ — тот уровень микросекундных импульсных перенапряжений, который должна выдерживать бытовая техника.

Максимальный разрядный ток Imax — величина импульса тока, которую должно выдержать УЗИП однократно, сохранив при этом работоспособность.

Номинальный разрядный ток 1n — величина импульса тока, которую УЗИП должно выдержать многократно при условии его остывания до комнатной температуры в промежутке между импульсами.

Максимальное длительное рабочее напряжение Uc — действующее значение напряжения переменного или постоянного тока, которое длительно подается на выводы УЗИП. Оно равно номинальному напряжению с учетом возможного завышения напряжения при различных нештатных режимах работы сети. Номинальный ток нагрузки Ii( — максимальный длительный переменный (действующее значение) или постоянный ток, который может подаваться к нагрузке, защищаемой УЗИП. Данный параметр важен для УЗИП, подключаемых в сеть последовательно с защищаемым оборудованием. Так как большинство УЗИП подключаются параллельно цепи, то данный параметр у них не указывается.

При необходимости дополнительной защиты конкретных приборов используются устройства, выполненные в виде вставок и удлинителей, — сетевые фильтры. В их конструкцию включены варисторы, подавляющие импульсные скачки напряжения.

Варисторы — это полупроводниковые резисторы, в работе которых используется эффект уменьшения сопротивления полупроводникового материала при увеличении приложенного напряжения, за счет чего они являются наиболее эффективным (и дешевым) средством защиты от импульсных напряжений любого вида. Варистор включается параллельно защищаемому оборудованию и при нормальной эксплуатации находится под действием рабочего напряжения защищаемого устройства. В рабочем режиме ток через варистор пренебрежимо мал, и он в этих условиях представляет собой изолятор. При возникновении импульса напряжения сопротивление варистора резко уменьшается до долей ома. В этом случае через него кратковременно может протекать ток, достигающий нескольких тысяч ампер. После гашения импульса напряжения он вновь приобретает очень большое сопротивление.

Выбор УЗИП производится в соответствии с принятой системой защиты. При этом обязательно учитываются технические характеристики устройств, которые должны быть приведены в каталоге и нанесены на лицевой части корпуса прибора.

При установке УЗИП необходимо, чтобы расстояние между соседними ступенями защиты было не менее 10 м по кабелю электропитания. Выполнение этого требования очень важно для правильной последовательности срабатывания защитных устройств. Первая ступень защиты класса В монтируется за пределами дома во входном щите.

УЗ-6/220, УЗ-18/380 предназначены для защиты сети от кратковременных (до 12 кВ) и длительных перенапряжений, вызванных коммутационными, индуктивными и грозовыми процессами. Устройства относятся к УЗИП 2-го и 3-го классов и выполнены на варисторах. Для надежной защиты от длительных перенапряжений, вызванных авариями в сети, прибор нужно подключать после УЗО и заземлять. Только при таком подключении создается ток утечки и обеспечивается срабатывание УЗО.

Устройство защиты от импульсных перенапряжений (УЗИП) предназначено для предотвращения возможных повреждений бытовой техники от мощных импульсных перенапряжений, вызванных авариями в питающей сети или грозовыми разрядами. Устройства такого типа могут называться ограничителями перенапряжений (ОП). Они, как правило, изготовлены на базе разрядников или варисторов и часто имеют индикаторные устройства, сигнализирующие о выходе их из строя. Обычно УЗИП на базе варисторов изготавливаются с креплением на DIN-рейку. Сгоревший варистор можно заменить простым извлечением модуля из корпуса УЗИП и установкой нового.

В зависимости от защищаемой зоны ограничители перенапряжений подразделяются на классы или типы. Приборы класса В (тип 1) защищают объекты от атмосферных и коммутационных перенапряжений, прошедших через разрядники класса А внешних сетей. Они устанавливаются на вводном устройстве дома и ограничивают величину перенапряжений до 4,0 кВ, защищая вводные счетчики и электрическое оборудование распределительного щита.

Ограничители класса С (тип 2) защищают электрооборудование от перенапряжений, прошедших через ограничители класса В, и ограничивают величину перенапряжения до 2,5 кВ. Они устанавливаются в распределительных щитках внутри дома или квартиры и осуществляют защиту автоматических и дифференциальных выключателей, внутренней проводки, контакторов, выключателей, розеток и др. Ограничители класса D (тип 3) являются защитой от перенапряжений, прошедших через приборы класса С, и ограничивают их величину до 13 кВ. Такие ограничители устанавливаются в распределительные коробки, розетки и могут встраиваться в само оборудование. Ограничители этого класса осуществляют защиту электрического оборудования с электронными приборами, а также переносных электрических устройств.

Ограничитель перенапряжений серии 0П-101 на основе варистора предназначен для защиты электрооборудования от импульсных перенапряжений, вызванных ударами молнии или коммутационными перенапряжениями. При возникновении скачка перенапряжения варисторы прибора переходят в проводящее состояние, ток возрастает на несколько порядков, достигая сотен и тысяч ампер и ограничивая при этом дальнейшее нарастание напряжения на выводах. После прохождения волны перенапряжения ограничитель возвращается в непроводящее состояние. Время срабатывания прибора составляет около 25 нс.

Ограничители перенапряжений серии 0П-101 бывают однофазными или трехфазными. Трехфазные устройства класса В устанавливаются на трехфазном вводе. Однофазные (класса D) используются для защиты отдельных потребителей или групп.

В распределительном щите внутри дома устанавливаются варисторные УЗИП класса С или D (тип 2 и 3). Недостатком УЗИП на базе варисторов является то, что после срабатывания оно нуждается в охлаждении, чтобы снова прийти в рабочее состояние. Это ухудшает защиту при многократных разрядах. Безусловно, использование УЗИП снижает вероятность выхода из строя оборудования или поражения людей, но лучше всего во время грозы отключать наиболее важные приборы.

Устройство защиты многофункциональное (УЗМ) предназначено для защиты оборудования (в доме, квартире или офисе и пр.) от разрушающего воздействия мощных импульсных скачков напряжения, а также для отключения оборудования при выходе сетевого напряжения за допустимые пределы (170—270 В) в однофазных сетях. Включение напряжения происходит автоматически при восстановлении его до нормального по истечении задержки повторного включения. Устройство представляет собой реле контроля напряжения с мощным электромагнитным реле на выходе, дополненное защитой на варисторах.

Реле напряжения (PH) — это прибор, сочетающий в себе электронное устройство контроля напряжения и электромагнитный расцепитель, собранные в одном корпусе. Реле напряжения серии PH — весьма эффективное устройство для защиты оборудования при возникновении длительных перенапряжений. Оно предназначено для отключения бытовой и промышленной однофазной нагрузки 220 В, 50 ГЦ при недопустимых колебаниях напряжения в сети с последующим автоматическим включением после восстановления ее параметров. Реле может быть изготовлено на базе микропроцессора или простого компаратора и оснащено устройством регулировки верхнего и нижнего порога срабатывания.

Реле напряжения могут быть как однофазными, так и трехфазными. Трехфазные реле напряжения используются на трехфазном вводе для защиты трехфазного оборудования. Они, как правит, отключают сеть не напрямую, а через электромагнитный контактор. При отсутствии трехфазных потребителей лучше всего будет поставить на каждую фазу по однофазному реле напряжения.

В зависимости от способа подключения реле напряжения могут быть выполнены в виде переносного устройства типа «вилка—розетка» или для установки в распределительном шкафу на DIN-рейку. Обычно такие реле имеют широкий диапазон регулировок и могут работать в нескольких независимых режимах: как реле напряжения, как реле минимального напряжения, как реле максимального напряжения или как реле времени с задержкой на включение.

Реле напряжения работают в диапазоне 100—400 В и делятся на устройства, имеющие свою контактную группу и управляющие нагрузкой самостоятельно, а также реле, которые управляют нагрузкой через более мощные контакторы.

Некоторые типы реле напряжения могут использоваться для самостоятельного отключения электрической сети при возникновении аварийного напряжения. Они обладают большей коммутационной способностью и управляют сетью с нагрузкой до 13 кВт, что вполне достаточно для квартиры или частного дома. Приборы устанавливаются на вводе после электросчетчика и УЗО на DIN-рейку.

Реле напряжения не имеет встроенной защиты от высоких токов, поэтому его нужно устанавливать после автоматического выключателя. При этом номинальный ток реле должен быть на 20—30 % выше номинального тока автомата. Реле напряжения также не защищают от высокого напряжения остаточных токов грозовых разрядов.

Датчик превышения напряжения ДПН 260 предназначен для ограничения максимально допустимого напряжения на нагрузке. Он работает совместно с УЗО или дифференциальным автоматом с током утечки 30—300 мА Напряжение срабатывания ДПН 260 устанавливается в пределах 255—260 В, время срабатывания — 0,01 с. Он выполнен в стандартном модуле на базе обычного варистора и предназначен для установки на DlN-рейку 35 мм. Следует отметить, что датчик создает ток утечки и вызывает срабатывание УЗО, которое не может включиться самостоятельно, что является его основным недостатком.

Контактор — это коммутационный аппарат дистанционного действия, коммутирующий нагрузки переменного или постоянного тока, который предназначен для частых включений и отключений. Они могут управлять осветительными, обогревательными и другими устройствами в силовых цепях постоянного и переменного тока с напряжением до 380 В и частотой 50 Гц.

Контакторы не обладают защитными функциями, но эффективно работают совместно с реле напряжения, обеспечивая своевременное отключение сети. Достоинством этих устройств является надежная контактная группа, способная выдержать большое число включений и отключений при значительной мощности управляемой нагрузки.

Контакторы могут использоваться, например, для управления режимом работы системы обогрева полов, когда мощность нагревательных кабелей превышает допустимую мощность терморегулятора.

Контактор, управляемый выключателем, импульсным реле, таймером или другим датчиком, позволяет включить (выключить) необходимую нагрузку, с которой электронные реле, рассчитанные на сравнительно небольшие токи, самостоятельно справиться не могут. Контакторы являются незаменимым элементом многофункциональной системы типа «Умный дам».

Контакторы могут быть как однофазными, так и трехфазными. Основными параметрами, по которым осуществляют выбор контакторов, являются следующие:

  • Номинальное рабочее напряжение сети
  • Номинальный рабочий ток
  • Напряжение катушки управления
  • Каличество/вид дополнительных контактов

Смотрите также:

Защита частного дома от перенапряжений

Защита сети низковольтного питания*

1. Дом оснащен системой внешней молниезащиты

В данном случае следует учитывать максимальное возможное воздействие — удар молнии в саму систему внешней молниезащиты. Расчетный ток молнии через УЗИП – 100 кА (форма импульса 10/350 мкс).

Для защиты от данного вида угрозы, необходимо разместить во вводном электрическом щите (на стене здания) устройство, способное выдержать и отвести столь мощный импульс. Мы предлагаем уникальное решение – комбинированное УЗИП класса 1+2+3**. Одного такого устройства достаточно чтобы защитить все электрооборудование в доме***.

В зависимости от того, каким образом у Вас выполнено заземление защитного проводника (схема TN-C-S или TT), Вы можете выбрать одно из подходящих для Вас устройств:

 

2. Дом получает питание по воздушной линии (система внешней молниезащиты отсутствует)

Максимальное возможное воздействие – удар молнии в воздушную линию электропередач. Расчетный ток молнии через УЗИП – 100 кА (форма импульса 10/350 мкс).

Для защиты электрооборудования от данного вида угрозы, необходимо разместить во вводном электрическом щите (на столбе у ответвления линии в дом или на стене здания) устройство, способное выдержать и отвести столь мощный импульс.

Если УЗИП устанавливается в распределительный щит на стене здания, схема защиты аналогична случаю 1.

Если ограничитель устанавливается в щит на столбе, УЗИП класса 1+2+3 применять не целесообразно, т.к. на пути от места установки до защищаемого дома в кабеле могут возникнуть повторные (наведенные) перенапряжения. Мы предлагаем использовать УЗИП класса 1+2**. Если расстояние от места установки УЗИП 1+2 до дома превышает 60 м, в расположенном в доме главном щите должен быть установлен дополнительный УЗИП класса 2***.

В зависимости от того, каким образом у Вас выполнено заземление защитного проводника (схема TN-C-S или TT), Вы можете выбрать одну из подходящих для Вас защитных схем:

3. Дом получает питание по подземному кабелю (система внешней молниезащиты отсутствует)

Максимальное возможное воздействие – наведенные импульсные перенапряжения, попадание частичного тока молнии в сеть исключено****. Расчетный импульсный ток через УЗИП – до 40 кА (форма импульса 8/20 мкс).

Для защиты электрооборудования от данного вида угрозы, необходимо разместить во вводном электрическом щите (на стене здания) устройство, способное выдержать и отвести данный импульс — УЗИП класса 2***.

В зависимости от того, каким образом у Вас выполнено заземление защитного проводника (схема TN-C-S или TT), Вы можете выбрать одно из подходящих для Вас устройств:

Примечания

Ограничитель перенапряжения, перенапряжения и защита от перегрузки по току

Некоторые файлы cookie необходимы для безопасного входа в систему, но другие необязательны для функциональной деятельности. Сбор наших данных используется для улучшения наших продуктов и услуг. Мы рекомендуем вам принять наши файлы cookie, чтобы обеспечить максимальную производительность и функциональность нашего сайта. Для получения дополнительной информации вы можете просмотреть сведения о файлах cookie. Узнайте больше о нашей политике конфиденциальности.

Принять и продолжить Принять и продолжить

Файлы cookie, которые мы используем, можно разделить на следующие категории:

Строго необходимые файлы cookie:
Это файлы cookie, которые необходимы для работы аналога.com или предлагаемые конкретные функции. Они либо служат единственной цели передачи данных по сети, либо строго необходимы для предоставления онлайн-услуг, явно запрошенных вами.
Аналитические / рабочие файлы cookie:
Эти файлы cookie позволяют нам выполнять веб-аналитику или другие формы измерения аудитории, такие как распознавание и подсчет количества посетителей и наблюдение за тем, как посетители перемещаются по нашему веб-сайту. Это помогает нам улучшить работу веб-сайта, например, за счет того, что пользователи легко находят то, что ищут.
Функциональные файлы cookie:
Эти файлы cookie используются для распознавания вас, когда вы возвращаетесь на наш веб-сайт. Это позволяет нам персонализировать наш контент для вас, приветствовать вас по имени и запоминать ваши предпочтения (например, ваш выбор языка или региона). Потеря информации в этих файлах cookie может сделать наши службы менее функциональными, но не помешает работе веб-сайта.
Файлы cookie для таргетинга / профилирования:
Эти файлы cookie записывают ваше посещение нашего веб-сайта и / или использование вами услуг, страницы, которые вы посетили, и ссылки, по которым вы переходили.Мы будем использовать эту информацию, чтобы сделать веб-сайт и отображаемую на нем рекламу более соответствующими вашим интересам. Мы также можем передавать эту информацию третьим лицам с этой целью.
Отклонить куки

Как защитить технику от скачков напряжения

Скачки напряжения (например, во время грозы) могут быть очень опасными для устройств, оставленных подключенными к розетке, даже если они выключены. Здесь мы покажем вам, как обеспечить правильную защиту от перенапряжения.

Что такое перенапряжение?

Термин «перенапряжение». означает напряжение в электрической системе, которое настолько велико, что превышает допустимый диапазон ее номинального напряжения.

В Европе используется напряжение сети 230 В (плюс / минус 23 В). Сильный ток, обычно необходимый на кухне для подключения бытовой техники, составляет 400 вольт.

A Удар молнии приведет к перенапряжению и повреждению этих устройств и установок.

Причины и опасности перенапряжения

Во время грозы между отрицательными зарядами в нижней части грозового облака и положительными зарядами на земле электрические напряжения часто могут превышать десять миллионов вольт. Если он достигает «переполнения» , то через него протекает ток около 300 000 ампер. В лучшем случае это приведет к перегоранию предохранителя.

В зависимости от степени серьезности молния также может повредить конструкцию здания и сооружения в доме.Высокая температура может даже вызвать возгорание.

Подключенные к розетке устройства, такие как компьютеры, бытовые приборы или электронные обогреватели, могут стать жертвами скачков напряжения. В худшем случае это приводит к потере данных или полной поломке устройства.

Могу ли я получить страховку для компенсации этих убытков?

Вы можете застраховаться от повреждения вашего дома и ваших электрических устройств грозой. Стандартное страхование жилого дома покрывает ущерб от пожара, урагана и молнии.В контрактах часто оговаривается, какой именно тип защиты от перенапряжения должен присутствовать; например, внешний молниеотвод.

Страхование домашнего хозяйства покрывает ущерб всему содержимому вашего дома, например, мебели, коврам, сантехнике и электроприборам. Новые правила иногда включают в себя защиту от скачков напряжения, однако обязательно проверьте, так как это не входит в стандартную комплектацию. Страхование домашнего имущества обычно не несет ответственности за потерю данных.

Итак, если ударит молния и жесткий диск компьютера сломается, страховка может оплатить новый жесткий диск.Однако они не будут покрывать расходы на восстановление данных или восстановление программного обеспечения, документов или фотографий.

Наш главный совет: обязательно сделайте резервную копию своих данных и сохраните квитанции на все оборудование и программное обеспечение.

Виды защиты от перенапряжения

Существует разница между внешней и внутренней защитой от перенапряжения.

  • Внешние разрядники тока молнии («разрядники молнии»): В ЕС эта молниезащита определяется стандартом EN 62305.Внешняя молниезащита должна соответствовать внутренней молниезащите здания.
  • Ограничитель перенапряжения (устройство защиты от перенапряжения, тип 2): Эта защита обычно используется в напольных распределителях в зданиях. Он ограничивает остаточные перенапряжения при ударе молнии до менее 600–2000 В.
  • Специальное оборудование, например Сетевой фильтр (устройство защиты от перенапряжения типа 3): Защищает розетки и штекерные соединения. Он снижает остаточные перенапряжения примерно до 230 В.

Защита от перенапряжения: продукты для дооснащения

Большое количество встроенных токопроводящих деталей в домах и постоянно увеличивающееся количество технического оборудования означают, что молния может быть очень опасной. Коммутаторы, маршрутизаторы, межсетевые экраны, модемы xDSL, ISDN, ноутбуки, ПК, телевизоры и мультимедийные устройства; все нуждается в защите.

Это начинается с розетки. 8-контактная розетка Super-Solid от BRENNSTUHL предлагает восемь подключений и обеспечивает защиту ваших устройств от перенапряжения и молнии до 4500 ампер.Он чрезвычайно прочный, изготовлен из небьющегося поликарбоната.

Практичный адаптер защиты от перенапряжения SURGE PROT 2 обеспечивает защиту от перенапряжения до 13 500 А и имеет встроенное устройство защиты от детей.

Сетевые кабели особенно опасны, потому что они являются идеальными проводниками. Устройство защиты от перенапряжения ALLNET может здесь помочь. Поместите его между сетевым кабелем или соединением xDSL / ISDN и защищаемым устройством.

APC SurgePlus 325 предлагает четыре розетки с защитой от перенапряжения высокого напряжения, две из которых имеют резервную батарею.

Для оптических сетей HWU OLD6000 представляет собой соединитель Ethernet для защиты от скачков напряжения. При использовании в существующих сетях с обычной проводкой интерфейс соединен оптическим мостом и гальванически изолирован. Оптическая передача также невосприимчива к паразитным электромагнитным помехам.

Если вы склонны подключать USB-устройства к компьютеру, вам также следует подумать о защите от молний. Например, если молния попадает в высокий прожектор во время вечеринки в саду, это может вывести из строя подключенный к сети ноутбук ди-джея.

При управлении освещением, электрическими системами или машинами через USB гальваническая развязка обеспечивает необходимую защиту компьютера.


Другие интересные статьи:

Сравнение Powerbank: Ansmann PB 10.8 и Intenso Slim S10000

Электрические переходные процессы могут быть защищены перенапряжением

21.10.2015

Защита от перенапряжения

Raycap — ведущий разработчик и производитель устройств и систем защиты от электрического перенапряжения для использования на промышленных объектах.В системах защиты, разработанных Raycap, используются компоненты промышленного класса, такие как запатентованная технология Strikesorb SPD, которая обеспечивает непревзойденный уровень защиты критически важного и чувствительного оборудования на промышленной площадке. Это уязвимое оборудование, такое как компьютеры, микропроцессоры и другие устройства, питаемые через электрическую сеть, может быть повреждено ударами молнии и другими событиями перенапряжения, которые вызывают скачки напряжения, исходящие из электрической сети или внутри самого промышленного объекта.Технология защиты внутри продуктов Raycap предотвращает повреждения, возникающие из-за различных причин перенапряжения и перенапряжения, и предназначена для предотвращения контакта любых электрических скачков с оборудованием.

Перенапряжения на промышленных объектах встречаются чаще, чем удары молнии. Само перенапряжение определяется как ток электричества к конкретному компоненту, превышающий критический, определенный порог, который, как известно, потенциально может повредить компоненты в присоединенной системе.Устройства защиты от перенапряжения (OVP) постоянно контролируют уровень потока электроэнергии и активируются при превышении этого уровня. Превосходная защита OVP, предлагаемая Strikesorb, имеет высокий номинальный ток короткого замыкания, что обеспечивает гибкость установки и интеграции. Технология обеспечивает низкое сквозное напряжение и оптимальный уровень защиты, обеспечивающий безопасность чувствительного оборудования. Установка этого локализованного OVP или удаленного OVP обеспечивает лучшую защиту от повреждения цепи и потери данных.

Причины перенапряжения многочисленны. Сбои в источнике питания могут вызвать кратковременные и опасные всплески тока. Эти всплески должны распознаваться мгновенно и опускаться или отклоняться от оборудования, чтобы избежать пожаров, потери оборудования и сбоев данных. Другие формы электрических событий включают переходные процессы и отказы источника питания, такие как ошибки пользователя, вызванные неправильным программированием, короткими замыканиями и ошибками переключения. Во всех этих случаях кратковременное повышение электрических уровней выше порога безопасности вызвано искажениями синусоидальной волны, которая меняет свою форму, вызывая проблемы с оборудованием.Этот тип электрического перенапряжения может оказывать долгосрочное негативное влияние на надежность электроники, вызывая отказ критически важного оборудования, включая ИБП и другие системы резервного питания. Поэтому подавление переходных перенапряжений (TVSS) следует рассматривать как часть полного решения по защите от перенапряжения .

События перенапряжения, вызванные ударами молнии, являются наиболее серьезными, и их трудно предотвратить, поскольку этот тип удара необходимо предотвращать с помощью различных систем.Перенапряжение в результате скачков напряжения, связанных с прямыми ударами молнии по линиям электропередач, или связанное с ударами в конструкцию, вызовет серьезные скачки напряжения, которые могут быть обнаружены и отведены от оборудования с помощью устройств, установленных между линиями и самим оборудованием. . Защита от прямого удара по оборудованию осуществляется путем установки накладных экранов, установленных между молнией и оборудованием, чтобы предотвратить удар по самому оборудованию, который может вызвать необратимые повреждения и потенциально возгорание.

Системы защиты от перенапряжения, предлагаемые Raycap, являются одними из самых сложных решений в области электрической защиты в мире и обеспечат промышленные установки наилучшей доступной электрической защитой. Для получения дополнительной информации о продуктах и ​​решениях Raycap OVP свяжитесь с нашими представителями.

Защита от перенапряжения | UL

Чтобы помочь вам узнать больше о том, как требования к защите от перенапряжений от молнии и коммутационных перенапряжений цепей безопасности были пересмотрены в соответствии с изданием 2021 года Национальной ассоциации противопожарной защиты (NFPA) 79, UL и экспертов подразделения Eaton Bussmann. объединились, чтобы ответить на следующие часто задаваемые вопросы нашего веб-семинара.

Требуется ли дополнительная защита от перенапряжения, если она включена в оборудование, обеспечивающее функцию безопасности?

Как правило, большая часть оборудования, в котором используются чувствительные электронные схемы, снабжена каким-либо типом защиты от перенапряжения. Эта защита от перенапряжения обычно представляет собой сборку компонентов типа 5 или 4. Тип защиты от перенапряжения, используемый в оборудовании, может не обеспечивать желаемый уровень защиты. Необходимая защита может варьироваться в зависимости от условий подачи питания на оборудование, а также от расположения оборудования в цепи и расстояния от источника питания.Если известно, что источник питания чувствителен к скачкам напряжения в сети, а скачки напряжения из-за ударов молнии являются распространенной проблемой, защита от перенапряжения, поставляемая с оборудованием, может не обеспечить подходящей защиты. Если источник питания не соответствует этим условиям или оборудование расположено значительно ниже по потоку от того места, где находится источник питания, защита от перенапряжения, поставляемая с оборудованием, может обеспечить подходящую защиту. При разработке схемы, включающей чувствительное электронное оборудование, особенно схемы для промышленной панели управления, лучше всего проконсультироваться с производителем оборудования, чтобы определить, обеспечивает ли защита от перенапряжения, входящая в состав оборудования, требуемую защиту.

Должно ли устройство защиты от перенапряжения (SPD) подключаться к сети переменного тока (В переменного тока) 120 В или к системе постоянного тока 24 В (В постоянного тока), которая питает цепь безопасности?

Как правило, SPD следует устанавливать как можно ближе к устройству, которое необходимо защитить. Таким образом, если устройство, выполняющее функцию безопасности, находится на стороне 24 В постоянного тока, то именно там должно быть установлено УЗИП. Однако нередко применять SPD перед этим SPD для обеспечения повышенной защиты.

Требуется ли защита от перенапряжения для всех промышленных панелей управления промышленного оборудования?

Нет, защита от перенапряжения требуется только для промышленных панелей управления, которые питают цепи безопасности промышленного оборудования. Устройства защиты от перенапряжения могут быть установлены в цепи управления и / или силовой цепи в зависимости от конкретной конструкции и конструкции цепи безопасности.

Если SPD поставляется с проводниками для фазных и нейтральных проводов, следует ли уменьшить длину этих проводов, если это возможно?

Да, для обеспечения наилучших характеристик и защиты SPD очень важно, чтобы проводники от SPD были как можно короче и по возможности избегали изгибов под углом 90 градусов.

Какой самый важный рейтинг для СПД?

Для SPD существует несколько важных рейтингов. С точки зрения безопасности очень важно, чтобы номинальное напряжение системы и номинальный ток короткого замыкания (SCCR) были правильно выбраны для применяемой системы. С точки зрения производительности и защиты наиболее важными параметрами являются номинальный ток разряда (In), максимальное непрерывное рабочее напряжение (MCOV) и номинальное напряжение защиты (VPR).

Что такое защита от перенапряжения? — Устройства защиты от перенапряжения

Когда напряжение в системе превышает номинальное, это называется перенапряжением.Это перенапряжение может быть кратковременным или постоянным. Основную причину, из-за которой возникает перенапряжение в энергосистеме, можно удобно разделить на две категории: внутреннюю и внешнюю. Внутреннее перенапряжение возникает внутри самой системы, тогда как внешнее перенапряжение возникает из-за молнии на линиях.

Это перенапряжение может вызвать повреждение изоляторов и оборудования подстанции. Следовательно, необходимо обеспечить средства защиты изоляторов и других устройств от вредного воздействия перенапряжения.Доступны некоторые устройства для уменьшения амплитуды и крутизны фронта выбросов. Следующее будет описано здесь

  1. Зазор стержня
  2. Перенапряжение
  3. Воздушный провод заземления

Воздушный провод заземления

Воздушный заземляющий провод или заземляющий провод — одно из наиболее распространенных устройств, используемых для защиты линий от молнии. Это провод, который проходит через опоры линии и проходит по фазным проводам. Заземляющий провод предназначен для защиты от прямых ударов молнии, которые в противном случае могут ударить по фазным проводам.Волны молний достигают соседних башен, которые безопасно спускают их на землю.

В случае, если сопротивление электрической опоры или заземления мало, освещение будет повышено до очень высокого напряжения, что вызовет мигание от опоры к одному или нескольким фазным проводам. Такая вспышка известна как черная вспышка. Обратную вспышку на линии можно свести к минимуму, уменьшив сопротивление опоры опоры с помощью приводных штанг и противовеса, если удельное сопротивление грунта велико.

Зазор тяги

Штанговый зазор — одна из самых распространенных рам защитных устройств.Это воздушный зазор между концами двух стержней. Настройка зазора должна быть такой, чтобы он разрывался при любых условиях до того, как будет повреждено защищаемое оборудование. Основные достоинства этого устройства — простота, надежность и дешевизна.

Зазор стержня имеет некоторые ограничения, например, они не могут предотвратить поток энергии, который течет в зазоре после пробоя. Применяется там, где бесперебойность электроснабжения не имеет большого значения. В таких случаях (когда важна непрерывность) используются автоматические выключатели с повторным включением.

Устройства защиты от перенапряжения

Ограничители перенапряжения или грозозащитный разрядник — это устройство, используемое для отвода аномально высокого напряжения на землю без нарушения непрерывности электроснабжения. Делители перенапряжения бывают трех типов

  1. Переключатель перенапряжения вытеснительного типа
  2. Клапанный переключатель перенапряжения
  3. Металлооксидный переключатель перенапряжения

Название устройства защиты от перенапряжения кажется более правильным, чем грозозащитный разрядник.

УСТРОЙСТВА ЗАЩИТЫ ОТ НАПРЯЖЕНИЯ

В связи с распространением электроэнергии в современном мире, электроэнергетические системы подвергаются множеству критических условий, таких как перенапряжения и скачки напряжения из-за ударов молнии или условий резкого переключения.Основное беспокойство вызывает состояние перенапряжения, которое может вызвать серьезное повреждение оборудования системы. Поэтому необходимо установить устройство, гарантирующее защиту от повышенного или пониженного напряжения.

Устройство защиты от перенапряжения — это защитное устройство, которое подключается для защиты системы от перенапряжения. Он является компонентом системы электрической защиты и используется для защиты оборудования в системах передачи и распределения электроэнергии. Эти устройства, как правило, защищают электрооборудование от скачков напряжения.

Мы только что выпустили нашу серию Power Systems Engineering Vlog , и в этой серии мы поговорим о всевозможных различных исследованиях и комментариях по энергетической системе. Мы рассмотрим различные блоги, написанные AllumiaX. Это весело, это весело, по сути, это видеоблог, и мы надеемся, что вы, , присоединитесь к нам, , и получите от этого пользу.

Устройство защиты от перенапряжения:

Устройства защиты от перенапряжения

— это устройства, которые используются для защиты системы от скачков напряжения.Это общий термин, который используется для обозначения любого защитного устройства, используемого для защиты от перенапряжения. УЗИП предназначен для ограничения переходных перенапряжений и отвода волн тока на землю, чтобы ограничить амплитуду этого перенапряжения до значения, не опасного для электрических установок и распределительных устройств.

Термин устройство защиты от перенапряжения (SPD) используется для описания электрических устройств, обычно устанавливаемых в распределительных щитах, системах управления технологическими процессами, системах связи и других промышленных системах, работающих в тяжелых условиях, для защиты от скачков и скачков напряжения, в том числе вызванных молнией. .

Устройства защиты от перенапряжения относятся к следующим категориям:

  • Ограничители перенапряжения
  • Сетевые фильтры

Принцип:

В соответствии с Национальным электротехническим кодексом (NEC) разрядник для защиты от перенапряжений определяется как: «Защитное устройство для ограничения перенапряжения путем разряда или обхода импульсного тока, а также предотвращает протекание тока, сохраняя при этом способность повторять эти функции. «.

Ограничители перенапряжения VS Устройства защиты от перенапряжения:

Устройства защиты от перенапряжений и разрядники для защиты от перенапряжений используются для одной и той же работы, т. Е. Для защиты оборудования от скачков напряжения. Однако многие люди не понимают своих приложений. Эта проблема возникает особенно на промышленных объектах, водоочистных сооружениях и некоторых других важных областях.

Ограничители перенапряжения:

Ограничители перенапряжения обычно устанавливаются на подстанциях для защиты оборудования путем устранения воздействия молнии и коммутационных перенапряжений.

Сетевые фильтры:

Основная задача системы защиты от перенапряжения — защита электронных устройств от «скачков напряжения». Устройство защиты от перенапряжения пытается ограничить напряжение, подаваемое на электрическое устройство, путем блокировки или замыкания тока, чтобы снизить напряжение до безопасного порога.

Как работает сетевой фильтр?

Устройство защиты от перенапряжения позволяет электрическому току течь от розетки к ряду электрических и электронных устройств, подключенных к удлинителю.Если напряжение в розетке повышается или превышает допустимый уровень, устройство защиты от перенапряжения направляет лишнее электричество в заземляющий провод.

В большинстве устройств защиты от перенапряжения M etal O xide V aristor (MOV) используются для отвода дополнительного напряжения.

Типы устройств защиты от перенапряжения:

Согласно стандартам устройства защиты от импульсных перенапряжений подразделяются на три различных типа:

  • УЗИП высокого напряжения
  • SPD среднего напряжения
  • Низковольтный SPD

УЗИП низкого напряжения не ограничивают напряжение, как УЗИП высокого и среднего напряжения.Устройства защиты от импульсных перенапряжений делятся на три класса:

Тип 1: Этот тип УЗИП используется в промышленных зданиях для защиты уровней изоляции от внешних скачков напряжения, вызванных молнией. Их можно установить между вторичной обмоткой сетевого трансформатора и стороной линии основного устройства защиты от перегрузки по току, а также стороной нагрузки основного вспомогательного оборудования. Защищает систему от прямых ударов молнии.

Тип 2: Низковольтные УЗИП второго типа обычно устанавливаются на стороне нагрузки устройства защиты от перегрузки по току основного сервисного оборудования.Эти устройства защиты от перенапряжения также могут быть установлены на входе обслуживания, но должны быть установлены на стороне нагрузки основного устройства защиты от перегрузки по току. Эти типы УЗИП предотвращают распространение перенапряжения на установки и защищают систему от повреждений.

Тип 3: Эти типы УЗИП обычно устанавливаются после главного выключателя и используются в качестве дополнения к типу 2.

Электрические скачки напряжения: как они возникают?

Самая повторяющаяся причина перенапряжения — молния.Во время грозы он может ударить где-нибудь рядом с источником питания и повлиять на проходящее через него напряжение. Когда удар молнии поражает электрическую систему, он повреждает устройства, подключенные к системе, что приводит к потере эффективности.

Электрические устройства работают в определенном диапазоне напряжений. Когда эти устройства получают напряжение выше указанного напряжения, необходимого для их работы, они повреждаются. Однако электрические системы, защищенные разрядником для защиты от перенапряжения, не повреждаются, поскольку разрядник гарантирует безопасность электрической системы, передавая чрезмерное напряжение на землю.

Ограничитель перенапряжения не поглощает все проходящее через него высокое напряжение, но отводит его на землю, чтобы минимизировать влияние напряжения. Он работает с металлооксидным варистором (MOV). MOV — это в основном полупроводник, который чрезвычайно чувствителен к напряжению. MOV действует как изолятор при нормальном напряжении. При высоком напряжении он работает как проводник, а также как переключатель, который остается разомкнутым при нормальном напряжении переменного тока и замыкается при прохождении высокого напряжения.

Как работает ограничитель перенапряжения?

Ограничитель перенапряжения подключается параллельно оборудованию, которое необходимо защитить.Эти разрядники ограничивают перенапряжения, возникающие в оборудовании. Энергия, связанная с перенапряжением, передается на землю разрядником, в конечном итоге защищая оборудование.

Сильно нелинейная характеристика разрядника позволяет ему ограничивать напряжение на его выводе почти постоянным значением в широком диапазоне токов разрядника. Напряжение на защищаемом оборудовании почти такое же, как и на ОПН.

Ограничитель перенапряжения обычно содержит клемму заземления, а также клемму высокого напряжения.Когда происходит скачок напряжения, разрядник направляет ток высокого напряжения непосредственно на изоляцию или землю, чтобы предотвратить повреждение системы.

Чтобы исключить нарушение изоляции, разрядник должен быть установлен правильно, чтобы изоляция оборудования не подвергалась перенапряжениям. Важно правильно подобрать параметры ОПН, чтобы избежать проблем в системе.

Значение ограничителей перенапряжения:

Разрядник для защиты от перенапряжения защищает оборудование от скачков или переходных напряжений в системах электроснабжения, возникающих в результате молнии или импульсного перенапряжения.Он не только передает дополнительное напряжение на заземляющий провод, но также позволяет нормальному напряжению продолжать свой путь.

Устройства защиты от повышенного и пониженного напряжения — TAIXI Electric

Область применения

Устройство защиты от перенапряжения

TXOUVRD-63 также известно как устройство защиты от перенапряжения с автоматическим сбросом и устройство защиты от пониженного напряжения . Применимо к току или нагрузке для однофазного переменного напряжения 220 В, частоты 50 Гц, номинального тока 60 А и ниже.Поскольку однофазное пониженное напряжение в линии, вызванное замыканием в нейтральной линии, используется для защиты однофазного силового оборудования, оно в основном используется для защиты жилого дома в линии или распределительной линии однофазного силового оборудования.

Устройство защиты от перенапряжения

TXOUVRD-63 (устройство защиты от перенапряжения и устройство защиты от пониженного напряжения ) имеет ширину 36 мм, очень удобно для установки в распределительную коробку, плата управления выбирает импортные компоненты, продукты с модульным стандартным продуктом, отлично производительность и надежность.Он может работать в условиях аномального напряжения. Когда напряжение сети превышает значение рабочего напряжения перенапряжения, установленное для устройства защиты от перенапряжения , меньше значения напряжения действия пониженного напряжения устройства защиты от пониженного напряжения , устройство защиты от перенапряжения и устройство защиты от пониженного напряжения может отключите цепь быстро и надежно, чтобы обеспечить безопасность защиты. Когда сетевое напряжение возвращается в норму, устройство защиты от перенапряжения и устройство защиты от пониженного напряжения может автоматически задерживать включение, восстанавливать подачу питания, все функции могут быть реализованы автоматически без ручного управления.Светодиоды на панели могут указывать на состояние защиты. Индикаторный зеленый свет указывает на рабочую мощность, когда красный свет не горит, он обеспечивает нормальную мощность, когда красный свет горит, функция защиты начинает отключать питание.
Устройство защиты от перенапряжения и устройство защиты от пониженного напряжения имеют компактную конструкцию и красивый внешний вид, могут быть установлены на рейку DZ47 (C45).

Преимущества:

1, TXOUVRD-63 Voltage Protector (устройство защиты от перенапряжения и устройство защиты от пониженного напряжения ) имеет 2-летнюю гарантию и прошел национальный отчет о проверке качества
2, Печатная плата для лучшего процесса распыления олова, это красивый и прочный
3, импорт чипов из TEXAS
4, чип резисторы из UNIOHM
5, чип конденсаторы из SAMSUNG
6, FILM CAP высокая цена и высокое качество, не такое плохое, как накопитель товаров малой емкости
7, номинальный ток 40A для защиты реле с 50A, для обеспечения сильноточной работы переключателя
8, оболочка из огнестойкого материала и белого цвета
9, стабильная работа, пониженное напряжение между 165-175, перенапряжение между 265-275

Принципы проектирования

Автоматический сброс Устройство защиты от перенапряжения и устройство защиты от пониженного напряжения использует высокоскоростной микропроцессор с низким энергопотреблением в качестве сердечника, магнитное реле фиксации в качестве основной цепи, модульная конструкция стандарта, когда цепь питания находится в перенапряжения или пониженного напряжения, протектор может быстро и безопасно отключить цепь при непрерывном высоковольтном ударе, чтобы избежать аномального напряжения на клемме, вызванного электрическими авариями, когда напряжение вернется в норму, протектор автоматически включит цепь в течение указанного времени, чтобы обеспечить нормальную работу терминала без присмотра.

Характеристика продукта

◆ Когда однофазная линия находится под пониженным напряжением, устройство защиты от пониженного напряжения отключает линию, после того как однофазное линейное напряжение возвращается в норму в результате задержки, оно будет сброшено и подключено к линии без ручного управления.
◆ Когда цепь находится в переходном или переходном перенапряжении, устройство защиты от перенапряжения не вызывает неисправности.
◆ Когда цепь ненастоящая, например, нестабильность контактного напряжения, например, сбой или внезапный сбой питания и внезапный вызов, устройство защиты не подключено к линии.
◆ Когда напряжение замыкания цепи является самым высоким, само устройство защиты не будет повреждено.
◆ Протектор имеет обратнозависимую характеристику срабатывания, время срабатывания ≤ 1 с.
◆ диапазон защиты по напряжению: 40A ниже: 0 ~ 450V, 50 / 60A: 0 ~ 600V.
◆ Выдерживаемое импульсное напряжение: 4 кВ (в соответствии со стандартами безопасности электроприборов Ⅲ класса).
◆ Устройство защиты имеет двухцветные светодиоды, индицирующие рабочее состояние, зеленый цвет — индикация нормального напряжения; красный — индикация пониженного напряжения или задержки.
◆ Установка: установка рельса 35 мм, внешний вид модульной конструкции.
◆ Емкость проводки: 1P + N: 25 мм ² и ниже изолированный провод, 3P + N: 35 мм ² и ниже следующий изолированный провод
◆ Стандарт: «Нормы проектирования гражданского здания» JGJ-242 2011
◆ Температура окружающей среды: -5 ℃ ~ 40 ℃;
◆ Перепад высот: не более 2000м;
◆ Влажность: максимальная температура в месте установки составляет 40 ℃, относительная влажность не более 50%, при более низких температурах может допускаться более высокая относительная влажность, например от 20 ℃ до 90%.Особые меры должны быть приняты в отношении конденсата, который иногда образуется из-за перепадов температуры.

Основные технические параметры

Рабочее напряжение AC220V
Номинальный ток ln (A) 20A, 32A, 40A, 50A, 60A
Частота работы 50 Гц
Мощность нагрузки (кВА) 4.4、6,6、8,8、11、13,2
Значение отключения срабатывания при перенапряжении AC270 ± 5 В
Значение восстановления перенапряжения AC255 ± 5 В
Значение отключения срабатывания при пониженном напряжении AC170 ± 5 В
Значение восстановления пониженного напряжения AC185 ± 5 В
Задержка мощности после сбоя питания 30 ± 10 с
Время задержки срабатывания ≤1 с
Собственное энергопотребление ≤ 2 Вт
Электромеханический ресурс ≥10 миллионов раз
Размеры (Д × Ш × В) 85.5 × 36 × 66 мм

TX45GQ-63 Устройство защиты от напряжения (устройство защиты от перенапряжения , и устройство защиты от пониженного напряжения ), пример схемы [Пример TX45GQ-63-40SX (снизу вверх и вниз)]

Прямое управление проводкой: электрическое управление — это однофазный источник питания, его потребляемая мощность не превышает номинальную мощность контроллера, им можно управлять напрямую, способ подключения показан ниже.

Габаритные и установочные размеры (мм)

Инструкции

1, Правильная проводка в соответствии с входом (IN) и выходом (OUT), указанными на продукте (мощность нагрузки должна быть меньше номинальной мощности продукта).
2, состояние двухцветного светодиода нижней схемы подключения на панели самодуплексной защиты от перенапряжения: после подключения продукта к источнику питания горит красный свет, выход не выводит мощность, после защиты от задержки 1 мин ~ 2 мин зеленый светится, выходная мощность OUT в норме.
3, состояние двухцветного светодиода верхнего рисунка проводки на панели самодуплексной защиты от перенапряжения: после подключения продукта к источнику питания горит красный свет, выход не выводит мощность, после защиты от задержки 1 мин ~ 2 мин , выход показывает зеленый свет, выходная мощность OUT нормально.
4, при перенапряжении или пониженном напряжении, продукт в состоянии защиты, красный свет, автоматически отключает мощность нагрузки; Когда напряжение возвращается в норму, задержка 1 мин ~ 2 мин, горит зеленый свет, продукт автоматически подключается к источнику питания нагрузки и возвращается в нормальное выходное состояние.

Объявления

1. Когда входной конец продукта подключается к источнику питания в первый раз, для подачи питания на нагрузку требуется задержка на 1–2 минуты.
2, Подключение: N означает нулевую линию, L означает линию огня, не поймите неправильно.
3, После подключения продукта к источнику питания не прикасайтесь к токоведущим частям, чтобы избежать поражения электрическим током.
4, Чтобы предотвратить нагрев контактов при сильном токе, необходимо затянуть винты клемм проводки, в противном случае контакт будет нагреваться и повредить изделие или вызвать другие несчастные случаи из-за слишком большого контактного сопротивления.

Способ установки

Примечание: перед установкой или снятием необходимо отключить питание главной цепи.

Ключевые слова: устройства защиты от перенапряжения , устройства защиты от пониженного напряжения

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *