Ветряной генератор: Ветряные электростанции для дома и цены на них

Содержание

Ветрогенераторы с вертикальной осью вращения

В современной жизни прекрасно функционируют высококачественные модели роторных генераторов. В их исполнении присутствуют оригинальные быстровозводимые мачты.

Роторные конструкции различаются по расположению оси вращения по отношению к поверхности земли.

Общая характеристика

Данные механизмы наделены рядом существенных особенностей перед ветряками с горизонтальной осью. У них нет как таковых узлов под ориентирование на ветровой поток. Это заметно уменьшает все гидроскопические нагрузки. Из-за своего строения, при абсолютно любом направлении ветра, конструкция располагается в абсолютно произвольном положении.

Ввиду чего, она более проста в своём исполнении. В подобных механизмах возникновение вращения создаёт подъемная сила лопастей, а также силы сопротивления.

Виды механизмов с вертикальной осью вращения:

  1. Ортогональная конструкция.
  2. Механизм Дарье.
  3. Механизм Савониуса.
  4. Конструкция на многолопастном роторе с направляющим аппаратом.
  5. Генератор с геликоидной конструкцией.

Ортогональные ветрогенераторы

Подобный генератор имеет в своём составе не одну лопасть. Лопасти расположены параллельно оси и находятся от нее на определенном расстоянии.

Рассматриваемый механизм считается наиболее эффективным и функциональным. Если же говорить о некоторых недостатках такого генератора, то при его работе создается определённый шумовой эффект. Кроме того, на поддержку его функционирования затрачивается немало усилий. При этом у конструкции, как правило, небольшой срок действия опорных узлов ввиду больших динамических нагрузок.

Генераторы с ротором Дарье

Следует отдать должное данному механизму – ему присуща большая мощность и быстроходность. Кроме того, у ротора довольно низкая себестоимость. К недостаткам можно отнести невысокую эффективность. При этом данная конструкция не в состоянии запускаться самостоятельно при равномерном набегающем потоке.

Генераторы с ротором Савониуса

Этот вид генератора имеет довольно широкое использование для качественного функционирования бытовых электростанций. По своей конструкции подобный ротор является ветроколесом с несколькими полуцилиндрами, которые непрерывно вращаются вокруг своей оси.

Основное преимущество ротора состоит в следующем: ветроколесо постоянно вращается в одну и ту же сторону и абсолютно не зависит от направления ветрового потока. Недостаток же подобного ветрогенератора в низком коэффициенте использования энергии ветрового потока.

Генераторы на многолопастном роторе с направляющим аппаратом

Этот вид генератора считается самым функциональным из вертикальных роторов. Подобная производительность достигается путём использования дополнительного ряда лопастей. Один из рядов забирает на себя ветровой поток и затем подает его на второй ряд лопастей. При этом сжимается сам поток.

Данное преобразование приводит к показательному увеличению скорости потока, а также мощности ротора в целом. За счет этого повышается производительность системы. Происходит это ввиду использования значительно большего количества лопастей конструкции.

Генераторы с геликоидным ротором

Конструкция с подобной системой наделена гораздо более спокойным роторным вращением. Подобное характерное преимущество уменьшает нагрузку на опорные узлы. В результате значительно увеличивается срок действия механизма. При этом стоимость ротора довольно немалая ввиду непростой технологии его производства.

Преимущества и недостатки механизмов с вертикальной осью

К преимуществам относится:

  1. Отсутствие, как таковой, дополнительной необходимости в затратах на специальное оборудование, действие которого было бы направлено на определение направления дуновения ветра и направляло генератор навстречу потоку воздуха;
  2. Малое количество подвижных деталей, вследствие чего затраты на производство и последующий ремонт довольно незначительны;
  3. Конструкция подобного ротора ниже и при обслуживании его не возникает необходимость в наличие специальных подъемников для размещения обслуживающего персонала на высоте;
  4. На высокую эффективность ротора не оказывает абсолютно никакого влияния ни угол, ни скорость направления потока ветра.

Тем не менее, необходимо уточнить тот факт, что постоянно проводятся дальнейшие всевозможные исследования, направленные на увеличение функциональности подобного вида ветряков. Происходит это ввиду того, что роторы с вертикальной осью имеют и свои определённые недостатки.

К ним относится:

  1. Довольно большой объем лопастей системы;
  2. КПД подобного ветряка приблизительно в три раза меньше, чем КПД механизма с горизонтальной осью.

Что следует учесть при выборе?

До того момента,как возникает решение приобрести данного вида механизм, следует всё же учесть ряд определённых условий. Например, если сильные ветровые потоки не наблюдаются на территории вашего домашнего региона, то использования подобной роторной конструкции не будет себя, в общем, окупать.

Для данной местности лучше подойдёт генератор с относительно небольшой мощностью.Как верно и обратное – в природе нередко встречаются участки местности, где воздушные массы меняют своё направление несколько раз в 24 часа. В этом конкретном варианте, наоборот, допустимым и возможным является привлечение ротора с вертикальной осью.

Изготовление своими руками

Конструкция лопастей

Для начала следует изготовить, так называемую, турбину.

Для этого нам понадобится:

  1. Изготовление верхней и нижней опор. Разметку лучше производить с помощью лобзика. Необходимо вырезать из пластика две окружности одного диаметра. В центре первой окружности следует сделать отверстие 30 см. Это станет верхней опорой.
  2. Возьмём самую обыкновенную автомобильную ступицу. Сделаем четыре отверстия одного размера на нижней опоре. Это позволит нам укрепить хаб.
  3. Изготовим подробный эскиз для наглядности месторасположения лопастей системы и пометим на нашей опоре, расположенной внизу, те участки, где будут потом крепиться заготовленные уголки. Они предназначены для соединения лопасти и опоры.
  4. Теперь складываем лопасти в стопочку, связываем их и обрезаем до необходимого размера. От длины лопастей напрямую зависит, сколько ветровой энергии они способны получать. Тем не менее имеет место быть и нестабильность при сильном ветровом потоке.
  5. Пометим лопасти для крепления уголков. Далее сверлим в этих лопастях специальные отверстия.
  6. Скрепляем опору и лопасти с помощью заготовленных уголков.

Мастерим ротор своими руками:

  1. Кладём два роторных основания один на другой, при этом как бы совмещаем два отверстия и чертим боковую пометку. Впоследствии данный шаг позволит нам их верно расположить.
  2. Теперь изготовим два небольших картонных шаблона и аккуратно приклеим их на основания наших магнитов.
  3. Промаркируем магнит. Для определения верной полярности, как правило, используется магнитик с изолентой.
  4. Далее нам понадобится эпоксидная смола с отвердителем. Наносим ее с нижней стороны магнита.
  5. Довольно аккуратно подносим магнит к краю основания ротора.
  6. Теперь можно приклеивать наши магниты собственно к ротору.
  7. Для изготовления второго ротора, магниты следует расположить в иной полярности напротив первого ротора.

Расположение магнитов на роторе

Изготавливаем статор:

Статор – агрегат, состоящий из 9 катушек. Они разделены на 3 группы. В каждой группе по три катушки. Сами катушки с проводом 24 AWG на 320 витков. Непосредственно параметры катушек разрешается менять.

Это зависит от напряжения, требуемого на выходе:

  1. Если наматывать катушки ручным методом, то это довольно трудно. Для облегчения самого процесса изготовим несложное приспособление – станок для намотки. Витки катушек наматываются в одном и том же направлении. Начало и конец катушек следует замотать изолентой и смазать эпоксидкой.
  2. Когда катушки уже будут намотаны, необходимо проверить идентичность. Для этого можно использовать обычные весы. Затем измеряем сопротивления наших катушек.
  3. Изготовленные катушки размещаются на вощеную бумагу с размеченной на ней схемой. Стеклоткань располагается вокруг самих катушек. Далее просверливаем отверстия в статоре для кронштейна.
  4. Труба для крепления оси хаба заведомо обрезается. В созданные отверстия будут вкручиваться болты для удержания непосредственно оси.

Сборка статора

Заключительная сборка:

  1. В плите верхнего ротора просверливаем 4 отверстия.
  2. Упрём четыре шпильки в пластинки и установим ротор на них. Роторы испытывают притяжение, потому и необходимо изготовить данное устройство.
  3. Выравниваем роторы по отношению их друг к другу.
  4. Аккуратно и равномерно опускаем генератор. После этого следует выкрутить шпильки и убрать все пластины. Устанавливаем хаб и прикручиваем. Колпачковые шайбы и гайки, как правило, необходимы для крепления к генератору опоры лопастей.
  5. Теперь генератор можно считать собранным. Раскручиваем ветряк и измеряем параметры.

Сборка генератора

Подобный ротор может быть реализован не только для обеспечения электричеством жилых и служебных помещений. Например, статор способен вырабатывать большое электрическое напряжение, которое вполне можно использовать для качественного нагрева бытовых приборов. При этом следует уточнить, что переменный ток преобразуется в постоянный ток. Это вполне можно использовать для зарядки аккумулятора, нагрева емкостей с холодной проточной водой, электропитания фонарей и осветительных приборов.

Рассматриваемая конструкция устанавливается на 4-х метровой высоте на краю горной кручи. Фланец, который по своему обыкновению располагается внизу, обеспечивает быструю установку ротора – необходимо прикрутить всего лишь четыре болта. Но для надежности их целесообразнее будет все же приварить.

Вертикальные ветряки могут поворачиваться за счёт флюгера. Для них не важно, по сути, направление ветрового потока.

Фактором, который обязательно следует учитывать при выборе места установки ротора, является непосредственно сила ветра. Данные по силе ветра для исследуемой и интересующей местности можно без затруднения найти в Интернете. Также поможет анемометр – специальный прибор для измерения силы ветрового потока.

Системы мировых и российских производителей

В наши дни около 75 государств мирового сообщества довольно широко используют ветряные электростанции. Ветроэнергетика по сей день остаётся очень популярной и неотъемлемой частью нашей современной жизни. Производители Южной Америки и Азии быстрыми темпами продвигают развитие данной популярной отрасли.

Китай является одним из крупнейших поставщиком ветроэнергетической отрасли на мировом рынке. В Индии насчитывается довольно большое количество производств ветряков общей мощностью, превышающей 3000 МВт.

В нашей стране ветроэнергетическая промышленность развита во многих городах и регионах.Производство ветряных роторов есть в таких городах, как: Москва, Ташкент, Астрахань, Узбекистан, Саратов, Омск, Самара, Екатеринбург, Ульяновск, Анапа и Краснодар.

К мировым производителям относятся столь известные компании, как: Vestas, GEEnergy, Goldwind, Enercon, DongfangElectric, SiemensWind, UnitedPower.

Обзор цен

Стоимость роторных систем преимущественно зависит от мощности ветроэлектростанции. Иными словами, конструкцию на 2 КВт возможно купить за 6200$. Для 10 КВт ценовая политика, на подобный ветряк, составляет 40000$. С целью подзарядить автомобильный аккумулятор или мобильный телефон можно стать владельцем относительно небольшой станции на 0,6 КВт.

Стоить такая станция будет не более 3000$. Роторы естественно имеют свои различия в цене, и зависит это, как правило, от их разновидностей и фирмы производителя. Стоимость роторов российских моделей, как правило, на 1/3 дешевле своих западных собратьев.

При этом, качественные показатели станций, в целом, не имеют, как правило, существенных и ощутимых различий. Приобрести ветрогенератор целесообразно только лишь в том случае, если есть средства для вложения большой суммы денег в долговременную инвестицию при наличии подобающих погодных условий в регионе проживания.

Статья была полезна?

0,00 (оценок: 0)

виды ветряков с вертикальной осью вращения, делаем своими руками по чертежам, российского и другого производства

Ветер имеет большую движущую силу, которую человек может использовать в своих целях. Это источник экологически чистой энергии. Используя ветрогенератор, можно получать дополнительную бесплатную мощность. В сегодняшней статье мы рассмотрим вертикальные виды ветрогенераторов, их особенности и виды.

Устройство и принцип работы

Ветрогенератор – это самый простой способ получения альтернативной энергии для нужд дома. Это устройство призвано преобразовывать силу ветра в электрический ресурс. Дополнительных приспособлений для определения направления ветра не требуется. Описываемое устройство способно работать на низкой высоте, что позволяет его обслуживать без применения снаряжения для высотных работ.

Простота конструкции и минимальный набор подвижных деталей делают это устройство надежным и долговечным. Правильная форма лопастей и оригинальное строение ротора позволяют получить от генератора высокий уровень КПД, в независимости от направления ветра. Во время работы этого генератора полностью отсутствует любой шум, поэтому он не будет мешать пользователю и его соседям.

Не имеется никаких выбросов в атмосферу, агрегат может работать много лет без обслуживания.

Принцип работы описываемого генератора заключается в магнитной левитации.

Во время вращения ротора возникают импульсные и подъемные силы и сила трения, которая тормозит ротор. Внешний вид вращающейся части представляет собой цилиндр, закрепленный на раме. Правильная форма лопастей позволяет производить вращение всегда в одну сторону, независимо от направления ветра. Вне зависимости от модели и вида подобного генератора, он будет работать только в том случае, если давление ветряного потока на одну сторону будет больше, чем на другую.

Если соблюсти эти условия, то мы получим постоянное вращение ведущей оси генератора и выработку электроэнергии. Поскольку ветер имеет воздействие на обе стороны вращающегося механизма, это значит, что для старта вертикальной конструкции потребуется больше усилий, чем для горизонтальной. Однако если в конструкции применены качественные запчасти, то возможна самораскрутка.

При минимальном ветре большой мощности получить не удастся, но если сила трения снижена всеми возможными способами, то это позволяет добиться нужного числа оборотов даже при скорости ветра 3-5 м/с.

Преимущества

Как и в случае с другими устройствами подобного типа, ветряные генераторы имеют свои преимущества:

  • не зависят от направления ветра;
  • использование этих устройств возможно при слабом ветре;
  • шум установки примерно равен 30 дБ.;
  • интересное и необычное изделие на вашем участке непременно заинтересует всех гостей и соседей.

Но, как и любого устройства, у «ветряков» имеется недостаток – это невозможность в полном объеме использовать силу ветра из-за невысокой скорости вращения ротора.

Какими бывают?

Среди вертикальных генераторов карусельного типа, которые применяются для бытовых нужд, можно выделить различные конструкции и виды. Они очень просты в обслуживании и не так сложны в плане конструкции. Основные детали, которые нуждаются в техническом обслуживании, находятся внизу, к ним имеется легкий доступ. Рассмотрим самые известные и распространенные типы ветряных генераторов с вертикальной осью вращения.

  • Ротор Савоуниса. Он состоит из 2 цилиндров, в которых скорость вращения и скорость ветра не зависят друг от друга. Даже при резких ветровых порывах агрегат продолжает вращение с заданной изначально скоростью. При таком условии можно сказать, что отсутствие связи скорости ветра со скоростью вращения генератора – это преимущество, однако, при этом воздушная сила используется лишь на 1/3. Геометрия лопастей позволяет им работать только в ¼ оборота.
  • Ротор Дарье. Конструкция может иметь 2 или 3 лопасти. Сборка и установка очень простая. Приводится в движение при помощи ручного запуска. Описываемая установка не имеет большой мощности.
  • Геликоидный ротор. Вращение этого генератора равномерное и плавное. Конструкция снимает с подшипников избыточную нагрузку, что существенно продлевает срок службы устройства. Монтаж установки такого типа очень продолжительный и трудоемкий. Сложная конструкция повлияла на увеличение конечной стоимости подобного продукта.
  • Многолопастной ротор. Подобная конструкция с лопастями разной формы и направления позволяет устройству работать даже при очень слабом ветре. Этот генератор считается мощным преобразователем электроэнергии и имеет высокий уровень КПД. Энергия из силы ветра добывается максимально. Такая конструкция, помимо того, что дорогая, имеет высокий уровень шума.
  • Ортогональный ротор. Такая установка начинает работать при скорости ветра 0.7 м/с. Конструкция состоит из 1 оси и лопастей. Уровень производимого шума минимален. Кроме всех технических характеристик, стоит отметить ее интересный и необычный внешний вид. Срок службы у такого устройства составляет несколько лет.

Стоит отметить, что тяжелые лопасти и конструкции в целом усложняют монтаж устройства на серьезной высоте. Кроме вертикальных ветряных генераторов, существуют еще горизонтальные модели. Разные варианты этих устройств имеют от 1 лопасти, их производительность больше, чем у вертикальных. Зато они имеют очень сильную привязанность к направлению движения ветра.

Обзор популярных моделей

Перед рассмотрением популярных моделей ветрогенераторов необходимо разобраться в их параметрах и критериях выбора описываемых изделий.

Основными критериями при подборе являются:

  • максимальная мощность изделия;
  • объем добываемой энергии за 1 месяц;
  • минимальная скорость движения воздуха, при которой может работать генератор;
  • условия эксплуатации;
  • наличие устройств, которые защищают установку от перегрузок;
  • срок эксплуатации;
  • цена продукта.

На сегодняшний день ветряные генераторы производятся многими странами, в число которых входит и Россия. Их производят несколько организаций:

  • ООО «СКБ Искра»;
  • ЗАО «Ветроэнергетическая компания»;
  • ЛМВ «Ветроэнергетика»;
  • ЗАО «Агрегат-привод».

Агрегаты российского производства не так известны и востребованы в других странах, как роторные модели немецкого, датского, китайского и бельгийского производства. Ведущие мировые компании по производству ветряных генераторов тратят огромные деньги на разработки новых типов лопастей, генераторов, точных расчетов по передаточным числам. Продукция этих компаний имеет большой выбор по мощностям от 1-10 КВт и дополнительное оборудование, которое можно приобрести отдельно (наборы с концентратором, инвертором, аккумуляторами). Кроме мощности, имеются различия в цене и по комплектующим элементам. Российские компании производят ветреные генераторы с различными типами роторов и максимальной мощностью устройств. Самыми продаваемыми изделиями считаются следующие модели нового поколения.

  • ВУЭ-1.5. Это компактная установка, которая может перевозиться любым транспортом. В монтаже и эксплуатации она простая и понятная. Этот маленький генератор практически бесшумный. Имеет номинальную мощность 1.5 КВт. Выходное напряжение 48 V. Скорость ветра для нормальной работы должна быть в диапазоне 2.5-25 м/с.
  • ВУЭ-3 (6). Такое устройство предназначено для автономного снабжения небольшого потребителя (частный дом). Номинальная мощность описываемой установки – 3 КВт, но при установке дополнительного оборудования (инвертора и аккумуляторов) мощность можно увеличить до 6 КВт. Напряжение на выходе 48 V. Необходимая скорость ветра для работы – от 4 до 30 м/с.
  • ВУЭ-30. Установка ориентирована на питание большого дома или нескольких домов. Ее номинальная мощность равна 30 КВт. Напряжение на выходе имеет диапазон 90-400 V. Скорость ветра для работы установки должна быть от 4-60 м/с.

Как сделать своими руками?

Ветряной генератор – это не очень сложная конструкция, которую сможет собрать практически любой человек, если он имеет начальные навыки работы с ручным инструментом и обладает знаниями в электротехнике. Рассмотрим процесс сборки самого простого ветряного генератора для пользователей, начинающих осваивать альтернативные источники энергии.

Инструменты и материалы

Чтобы не ошибиться в размерах и собрать все правильно, можно воспользоваться любым готовым чертежом из интернета или можно начертить свой собственный и проверить его на деле. Для изготовления надежной и качественной конструкции потребуется:

  • листовой металл для изготовления лопастей с толщиной 0.8-0.9 мм, он не должен быть слишком тонким и слабым, чтобы его не погнул или не порвал сильный порыв ветра, но и слишком толстый материал также нежелателен, поскольку избыточный вес конструкции приведет к быстрому износу подшипников;
  • стальная пластина 40 мм или другого диаметра;
  • стальная труба 25 мм;
  • полуось от любого автомобиля с подшипником;
  • стальной уголок;
  • 2 шкива разного размера;
  • автомобильный генератор.

Схема изготовления

Схема сборки самодельного ветряного генератора простая, в нее всегда можно добавить свои конструкторские решения. Из листового металла нужно изготовить 4 лопасти, размер которых будет составлять 1000 на 800 мм. Для скрепления лопастей между собой применяется стальная полоса. В результате конструкция должна напоминать форму барабана. Лопасти должны быть направлены от центра к наружной стороне. Такое направление позволит иметь больший парус на захват воздушного потока, а при развороте лопасти ее обтекаемая форма будет иметь минимальное сопротивление воздуху.

Из стальной трубы изготавливается вертикальный упор, который одной стороной крепится к полуоси, а на противоположную устанавливаются получившиеся лопасти.

Сама полуось на подшипниках крепится к опоре, которая выполняется в произвольном виде и из имеющихся материалов. После того как конструкция будет собрана, самое время разместить на ней генератор.

Для большей производительности нам и понадобятся шкивы разных радиусов. Тот, который побольше, крепим на мачту, а который поменьше – на сам генератор. Если на генераторе имеется свой шкив, то можно использовать его. После этого генератор готов к выработке тока, но его нужно отправить в нужное нам место. Для этого прикрепляем к контактам провода. Желательно, чтобы они были медные и сечением не менее 1.5 кв. мм.

Обслуживание

Как и любая техника, ветряные генераторы нуждаются в регулярном обслуживании. Для качественной и бесперебойной работы необходимо смазывать все движущиеся части конструкции. Эту процедуру нужно проводить не реже, чем 2 раза в год. Поскольку конструкция имеет постоянную вибрацию, во время обслуживания нужно подтягивать ослабшие гайки и крепления проводов. Слабые и провисшие троса необходимо подтянуть и осмотреть лопасти на предмет трещин и надрывов.

В подобных изделиях желательно применять подшипники закрытого типа, чтобы в них попадало меньше влаги и пыли, а гайки должны иметь самостопорящееся кольцо из пластика. Это не избавит пользователя от необходимости обслуживания механизма, только обеспечит более продолжительный срок службы. При обнаружении на металлических деталях следов коррозии необходимо вовремя принять меры по защите металла. Краска по ржавчине исправит ситуацию.

Такой уход поможет продлить срок службы агрегата и обеспечит корректную работу установки без заклинивания и затруднений поворотов.

Где установить?

Одним из важнейших условий работы ветрогенератора является выбор места его установки. Идеальный вариант для работы описываемого устройства – открытая местность и точка установки выше всех посторонних сооружений и естественных преград для ветра (дома, деревья, холмы). Если этими требованиями пренебречь, то КПД вашего генератора упадет. Если имеется возможность разместить вертикально-осевой генератор на берегу реки, то это очень хорошее решение, поскольку ветра от воды дуют особенно часто. Хороший вариант размещения вашего генератора – на искусственной или естественной возвышенности. Места в полях тоже подойдут для размещения этого приспособления. Проще говоря, ему подойдет любая местность, на которой нет преград ветру.

Размещать генератор такого типа в черте города или в районах плотной застройки можно, но только на крыше и как можно выше, только так вы сможете добиться лучшего результата. Установка этого устройства на крыше многоквартирного дома может оказаться довольно трудной. Потребуется письменное согласие всех жильцов и разрешение от управляющей компании. Кроме этого, шум агрегата может быть слышен на верхних этажах, из-за этого уже установленную конструкцию могут потребовать убрать. Разместить на территории частного дома намного проще и быстрее, поскольку не нужно брать разрешения и договариваться.

Чтобы ваш генератор никому не мешал, его нужно разместить на расстоянии в 10-15 м от жилых построек, и тогда он никому не помешает.

Вертикальный ветрогенератор с мультипликатором представлен далее.

Как сделать ветряной генератор для дома своими руками?

Вопрос с обеспечением электрической энергией объектов сегодня становится все более актуальным, цены на такой энергоноситель постоянно растут. Пока самым удачным вариантом считается ветряной генератор, использующий силу ветровых нагрузок для вырабатывания электрического тока. Такие устройства в зависимости от собственной мощности способны обеспечивать электричеством не только частные дома, но и предприятия.

Особенности конструкции и принцип работы

Основными элементами любого генератора являются:

  • башня – в высоту может достигать несколько десятков метров, считается основным опорным элементом. Для изготовления могут применяться различные материалы, не исключая железобетон, который последовательно заливается в кольца опалубочной конструкции. Башня должна отличаться прочностью, достаточной для удержания турбины и гондолы, противостоять нагрузкам, возникающим во время работы генераторного устройства, препятствуя его опрокидыванию;
  • лопасти и ротор – для изготовления лопастей используют особое композитное волокно на стальной основе. Собирают их из отдельных элементов либо изготавливают в монолитном варианте, учитывая размах. Крепление лопастей выполняется болтами или через хаб на генераторный ротор;
  • асинхронный двигатель – с его помощью осуществляется вращение турбины вокруг башенной оси. Их может быть от одного до трех – количество зависит от размера установки и ее мощности;
  • электрогенератор – раньше применяли синхронные модели, сегодня стали использовать кольцевые генераторы;
  • инвертор – постоянное напряжение передается на этот элемент, который установлен у основания. Здесь энергия преобразуется в переменный электрический ток, трансформируется и подается на линию.
Как выглядит ветряной генератор

Если рассматривать упрощенный вариант работы установки, то все происходит следующим образом. Ветер двигает лопасти, которые обеспечивают вращение ротора. Механическая энергия преобразуется в ток. От силы воздушных поток зависит скорость вращения лопастей и количество вырабатываемого электричества.

Классификация видов и их характеристика

На сегодняшний день различают два основных вида ветрогенераторных установок.

С горизонтальным расположением ротора

Ось вращения установлена горизонтально, располагается параллельно либо перпендикулярно направлениям ветровых потоков.

Такие конструкции серийными партиями не изготавливаются, потому что считаются малоэффективными. Кроме этого, их приходится дополнительно оснащать специальными системами, отвечающими за правильность ориентации.

Преимущество таких моделей перед вертикальным типом состоит в том, что они обладают большей быстроходностью и вырабатываемой мощностью.

С вертикальным ротором

Ось вращения смонтирована вертикально, располагается перпендикулярно потокам ветра.

Такие устройства способны работать при ветре, дующем в любом направлении, специальная установка, определяющая направление потока, не требуется.

Устройства могут устанавливаться на уровне земли, отличаются пониженными гигроскопическими нагрузками на лопасти и систему передачи энергии.

Если установлено несколько таких ветровых генераторов, то рабочий эффект их увеличивается – потоки ветра от одной установки создают дополнительный напор ветра на остальные.

Критерии выбора

Сегодня многие потребители стараются получить независимый источник электрической энергии и использовать экологически безопасные технологии в повседневной деятельности. Одним из вариантов для этого считается применение ветрового генератора, разнообразие которых предоставляет возможность выбора именно той установки, которая полностью ответит критериям. Единственное условие, которое может повлиять на возможность применения ветрового генератора – отсутствие ветров в месте его предполагаемой установки.

При выборе ветряного генератора нужно учитывать мощность электрической энергии, стоимость оборудования

При выборе ветряного электрогенератора пользуются следующими критериями:

  • мощностью электрической энергии;
  • ежемесячной потребностью в электричестве;
  • минимальной скоростью движения ветровых потоков;
  • эксплуатационными условиями – температурным режимом, влажностью, расположением над уровнем моря и т. д.;
  • защитной системой от перегрузок;
  • продолжительностью эксплуатационного периода;
  • стоимостью оборудования.

Нюансы расчета ветрогенератора

Выполнить точные расчеты, учитывающие все факторы, воздействующие на ветровой генератор, довольно сложно. Если человек теоретически слабо подготовлен к таким действиям, ему будет затруднительно определить все данные, для получения которых потребуются специальные измерения и расчеты.

По этой причине многие пользуются упрощенным вариантом, выдающим довольно близкие к реальности результаты. При этом большого количества исходных данных не требуется.

Для расчета ветряного генератора для дома выполняют определенные действия:

  • определяются в потребности с электричеством, для чего подсчитывается общая мощность всех потребителей;
  • полученные данные увеличивают на пятнадцать – двадцать процентов, чтобы создать определенный запас;
  • узнав требуемую мощность, можно определить требуемый тип генератора;
  • рассчитываются параметры ветрового колеса.

Изготовление своими руками

Так как устройства в готовом виде стоят достаточно дорого, а идея получать бесплатное электричество весьма привлекательна, многие стараются изготовить ветряные генераторы своими руками. Для этого потребуются минимальные познания в электротехнике и навыки исполнения определенных работ.

Инструменты и материалы

Для изготовления ветрогенератора потребуются детали для конструкции, расходные материалы и инструменты. Для начала необходимо найти наиболее подходящие составные части ветряка, которые, как правило, лежат в старых запасах:

  • автомобильный генератор с мощностью около 12 V;
  • аккумуляторные батареи на 12 V;
  • полугерметичный переключатель кнопочного типа;
  • инвентор;
  • автомобильное реле, через которое осуществляется зарядка АКБ.

В качестве расходников понадобятся:

  • болты и гайки для выполнения креплений, изолента;
  • емкость из стального или алюминиевого материала;
  • два метра провода сечением 4 мм, и один метр – 2.5 мм;
  • тренога, мачта и иные подобные элементы, придающие устойчивость;
  • прочная веревка.
Ветряной генератор своими руками

Из инструментов потребуются:

  • болгарка;
  • рулетка;
  • пассатижи;
  • набор сверел;
  • дрель электрическая;
  • острый нож;
  • ключи гаечные и набор отверток.

Чертежи

Сборка подразумевает последовательное подключение, гарантирующее правильность монтажа и работоспособность установки. Если представить себе устройство схематично, то основными узлами его будут считаться:

  • генератор;
  • лопасти;
  • хвостовик конструкции;
  • мачта;
  • мультипликатор и контроллеры.

Если сложно представить себе принципиальную схему, рекомендуем отыскать готовые чертежи в интернете, распечатать их, изучить и выбрать наиболее удобный вариант.

Изготовление лопастей

Решившись на изготовление ветрового генератора, необходимо продумать, из какого материала будут сделаны лопасти. Для этого можно воспользоваться древесиной, полипропиленом, металлом.

Первый вариант позволит подготовить облегченный тип конструкции. Но в эксплуатационный период древесина может покрыться трещинами и быстро выйти из строя. Полимерные лопасти будут достаточно стойкими, стоимость исходного сырья достаточно приемлема. Этот материал для лопастей представляет собой удачное решение для маломощных моделей.

Стальной материал не имеет конкурентов по надежности и эксплуатационному сроку. Из такого сырья изготавливают лопасти любых размеров. Рекомендуется использовать оцинкованные или дюральалюминиевые сплавы.

Флюгерная основа

Теперь рассмотрим, как сделать флюгер для ветряного генератора. В первую очередь необходимо решить два вопроса:

  • определиться с дизайном;
  • подобрать подходящий материал.

Чтобы принять решение по дизайну, лучше всего изучить готовые варианты, фотографии которых можно легко отыскать в интернете. Каждая из них может помочь наглядно представить тот или иной флюгер, подсказать возможности его самостоятельного изготовления.

Из всех материалов лидирующие позиции занимает металл, отличающийся прочностью и долговечностью, устойчивостью к воздействию внешних факторов. Кроме этого, данный материал подразумевает разные варианты обработки – резьбовую сборку, ковку, сварку. Основной недостаток – образование на поверхности стали коррозии.

Конструкции из древесины считаются более доступными, так как для их изготовления необходимы самые обычные инструменты. Кроме этого, дерево легко обрабатывается, отличается высокой степенью ремонтопригодности. Только устойчивость данного материала к воздействиям физического и механического характера значительно ниже, эксплуатационный период продолжительностью не отличается.

Основным элементом флюгера считается рабочая крыльчатка, смонтированная на траверсе с хвостовиком, размещенном на противоположном конце. Центр тяжести считается точкой установки вращающегося механизма, позволяющего флюгеру свободно оборачиваться вокруг оси, чтобы без проблем устанавливаться на направление ветра.

Наличие шарнира в точке равновесия считается важным условием, потому что именно он обеспечивает беспрепятственное вращение вокруг вертикальной оси.

Основание и шарнирная мачта

Оба элемента должны отличаться прочностью, потому что предназначены для удерживания веса все конструкции ветрового генератора. Средняя высота мачты, как правило, достигает семи – двенадцати метров, крепление выполняется системой тросовых растяжек. Мачта должна отличаться достаточной прочностью и толщиной, чтобы полностью исключить деформирование от общей массы закрепленного на ней оборудования.

Основание под установку мачты выбирается заблаговременно. Если есть необходимость – выполняются подготовительные работы по его упрочнению.

Нюансы подключения и меры безопасности при установке

Установка способна работать автономно, но лучше подключать ее комбинированным вариантом, предусматривающим сочетание ветрогенератора с солнечными батареями, централизованным электропитанием, дизельными или газовыми установками.

В случае автономной работы монтируется одна установка, улавливающая и накапливающая ветровую энергию, в дальнейшем преобразующуюся в ток.

При совмещении с солнечными батареями отсутствие ветра не окажет влияния на работоспособность установки, так как аккумуляторы будут заряжаться от солнечной энергии.

Если выполнено комбинированное подключение, то работу ветровой турбины можно будет совместить с электрическими коммуникациями. Избыток энергии будет уходить в сеть, а в случае ее недостатка можно будет пользоваться током из общей системы.

Монтируя и обслуживая ветрогенератор, необходимо соблюдать следующие требования безопасности:

  • мачта должна иметь заземление;
  • запуск с помощью генератора производить запрещается;
  • установку эксплуатировать не рекомендуется, если скорость ветра превышает пять метров в секунду;
  • роторный подшипник через каждые 400 часов работы рекомендуется смазывать. После 1 200 часов наработки он промывается керосином и смазывается вновь;
  • контактные группы генератора периодически осматриваются и подтягиваются. Если начинает искрить коллектор, его шлифуют наждачной бумагой;
  • расстояние места установки АКБ от мачты не должно превышать 25 метров. Батареи размещают в контейнерах или помещениях с температурным режимом не ниже пяти градусов тепла. В помещениях должна быть предусмотрена вентиляция для вывода взрывоопасных газов;
  • предусматривается установка щита с переключателями, с помощью которых разъединяются устройства.
Мачта ветряного генератора должна иметь заземление

Домашний ветрогенератор и схема контроллера

Контроллер, отвечающий за обслуживание АКБ, предназначен для управления зарядным процессом. Данная функция делится на несколько подфункций:

К примеру, один функционал следит за токами заряда и саморазряда. Второй реализует действия, измеряющие давление и температурный режим. С помощью третьего компенсируется разница энергетических потоков, когда одновременно с потреблением энергии осуществляется зарядка батарей.

Полным функционалом обладают промышленные приборы, а вот домашние самодельные контроллеры от совершенства далеки. Но и они нормально работают, защищая установку от перенапряжения и глубокой разрядки.

Контроллер представляет собой отдельный электронный модуль, способный быстро отключаться и сниматься.

виды, примерные цены, бытовое использование и законность установки

Россия считается энергоизбыточной страной. Это положение верно, но имеются исключения. Существуют регионы, куда линии электропередач еще не проведены. Чаще всего, это ненаселенные регионы, северные территории и прочие труднодоступные участки. Обеспечение электрическим током в этих районах является весьма насущной проблемой, для решения которой следует рассматривать все возможные варианты. Один из них — использование ветрогенераторов.

Как устроен ветрогенератор?

Ветрогенератор — это устройство, перерабатывающее энергию ветра в электричество. Воздушный поток раскручивает ротор, который приводит во вращение генератор. Производимый ток накапливается в аккумуляторных батареях, соединенных с инвертором, преобразующим полученный заряд в номинальное значение для бытовых приборов и техники. Все используемое оборудование практически одинаково для любых типов ветряка и отличается лишь величиной напряжения.

В составе ветроэнергетических комплексов используются разные конструкции вращающихся частей — роторов, которые имеют свои достоинства и недостатки, разную эффективность и возможности. На сегодня существует большое количество разработок, способных взаимодействовать с ветрами разной силы и скорости.

Основные виды и особенности конструкции

Основными типами конструкции ветряков считаются:

  • горизонтальные,
  • вертикальные.

Горизонтальные устройства имеют форму пропеллера и являются более эффективными, чем вертикальные. Это вызвано тем, что лопасти таких ветряков получают только полезное усилие, целиком использующееся для переработки во вращательное движение. При этом, особенностью горизонтальных конструкций является необходимость точной настройки на ветер.

Отклонение крыльчатки вызывает остановку и, соответственно, прекращение выработки электротока. Еще одна особенность горизонтальных ветряков — требовательность к высоте над уровнем земли. Чем выше, тем эффективнее их работа, так как с набором высоты увеличивается сила ветра и уменьшаются помехи.

Вертикальные устройства лишены недостатков горизонтальных, но имеют меньшую эффективность из-за наличия отрицательного воздействия потока на обратные стороны лопастей. В то же время, они не нуждаются в наведении на ветер и не требуют высокого основания, что делает их более удобными для обслуживания и ремонта.

В отличие от горизонтальных конструкций, имеющих практически единственный тип ротора, вертикальные устройства обладают широким перечнем вариантов. Доступность и большие возможности вызвали интерес со стороны конструкторов, разработавших множество видов ветряков с разнообразными конструктивными особенностями. Широко известны:

  • ротор Дарье;
  • конструкция Савониуса;
  • ортогональный ротор;
  • ротор Горлова;
  • геликоидный ротор;
  • устройство Третьякова и т.д.

Перечень всех типов конструкции велик и постоянно пополняется новыми разработками.

Внимание! Большинство конструкций существуют лишь в виде проектов и опытных образцов, так как промышленность создает ветрогенераторы в малых количествах и широкого распространения они пока не имеют.

Схемы работы ветрогенераторов

Существуют две основные схемы работы ветрогенераторов:

  • автономная. Устройство производит электроток и питает потребителей. Распространения е имеет, работа ведется лишь с оборудованием, подключенным напрямую.
  • работа в параллельном с электросетями режиме. Этот вариант подключения широко распространен на Западе — ветряк не только питает собственные потребители, но и отдает част энергии в сеть, за что владелец получает определенную плату.

В России на сегодня возможен только первый вариант, так как оборудования, позволяющего совмещать сетевое и генерируемое электричество, в составе магистральных комплексов не имеется. При этом, для ветряка на имеет значения, по какой схеме он подключен к системе.

Рассматриваем ветровые электростанции для дома

Если рассматривать использование ветрогенератора в качестве источника электропитания для частного дома или усадьбы, то сразу же обнаруживаются две основные проблемы, препятствующие распространению ветроэнергетики среди населения:

Такие обстоятельства вынуждают большинство делать выбор в пользу дизельных или бензиновых электростанций, которые имеют более устойчивую работу и в целом обходятся дешевле, хотя и нуждаются в топливе и оказывают отрицательное воздействие на экологию региона.

Выбор ветрогенератора: ориентировочные цены

Если рассмотреть промышленные образцы ветрогенераторов, то можно отметить, что цены на них имеют несколько категорий:

  • маломощные ветрогенераторы, самые дешевые, ценой 40-100 тыс руб;
  • комплексы средней мощности, имеющие цены порядка 100-200 тыс руб;
  • мощные системы ценой от 200 тыс руб и выше.

Наиболее доступны китайские образцы, которые заметно дешевле, чем изделия российских или западных производителей.

При выборе готового устройства надо учитывать необходимую мощность, возможность ремонта, а также накладные расходы — транспортировку, монтаж, настройку. Кроме того, понадобится дополнительное оборудование — контроллер заряда, АКБ, инвертор, коммутационное оборудование и т.д. Необходимо удостовериться, что все это входит в состав комплекса, иначе его стоимость возрастет на цену того, чего в нем не хватает.

Оправдана ли цена ветряка для частного дома?

Вопрос о том, насколько стоимость ветрогенератора оправдана, находится в плоскости возможностей владельца дома. Если доходы позволяют, то любая цена будет оправдана. Если же сравнивать стоимость с расходами на сетевую электроэнергию, то, конечно, разница окажется очень большой. Срок службы промышленного ветрогенератора, заявленный производителем, составляет около 20 лет. Учитывая суровые климатические условия, можно утверждать, что намного превысить заявленный предел оборудование не сможет.

Поэтому и распространены дизельные или бензиновые генераторы, которые более понятны рядовому пользователю, могут быть отремонтированы любым умельцем. Топливо, в котором они нуждаются, приобретается по мере необходимости, что тоже удобно для пользователей.

Если же никаких других вариантов нет, то цены на ветряки уже нет смысла обсуждать, приходится лишь подбирать вариант, оптимальный по цене и параметрам.

Действительно ли ветрогенератор выгоден?

В этом вопросе имеется некий подвох. Выгода ветрогенератора состоит в том, что он дает возможность пользоваться электроэнергией и не оказывает вредного влияния на окружающую среду. Если выбор производится между отсутствием электричества и его присутствием, то ответ очевиден. Если же сравнение производится между самым дешевым сетевым электричеством и генерируемым ветряком, то лидерство однозначно будет за сетевыми ресурсами.

При этом, надо учитывать возможность самостоятельного создания ветряка. В этом случае себестоимость энергии зависит от расходов на изготовление, которые иногда оказываются совсем мизерными. Конечный результат в данном случае зависит от наличия опыта, навыков и производственной базы, которыми располагает мастер.

Известны владельцы ветрогенераторов, полностью обеспечивающие свое жилище энергией ветра, которой им хватает на все нужды. Но наиболее распространен вариант, когда ветряки вырабатывают лишь дополнительную энергию, позволяющую экономить на освещении или водоснабжении участка.

Законность установки ветряка

Нормативных актов, напрямую регулирующих порядок установки ветрогенераторов на своем участке, в России на сегодня не имеется. Поэтому никаких разрешений получать не требуется, можно использовать ветряки на вполне законных основаниях. При этом, чиновники из администрации всегда имеют возможность придраться к различным обстоятельствам — например, жалобы соседей, уровень шума или магнитное воздействие на участке могут стать основанием для требования убрать ветряк или привести его конструкцию в соответствие с нормативами.

Если ветрогенератор установлен на участке, то проблем, скорее всего, не будет. Другое дело, если устройство установлено на балконе многоквартирного дома, но такие ситуации редки и рассматривать их незачем. Установлено, что ветрогенератор является электроприбором, поэтому пользование им разрешено так же, как использование электрокамина или утюга.

Что лучше: сделать ветрогенератор для дома своими руками или купить?

Самостоятельное изготовление ветрогенератора сулит весьма большую экономию. Даже с учетом приобретенных приборов или деталей, самодельные ветряки обходятся в десятки раз дешевле, чем купленные в магазине. Кроме прямой экономии, самодельные конструкции позволяют существенно сократить расходы на обслуживание и ремонт, так как свое изделие любой мастер разберет и соберет с завязанными глазами.

Единственной проблемой становится недоступность изготовления устройства для людей, не имеющих профильного образования, навыков или хотя бы элементарных познаний в электротехнике. В таких случаях выходом из положения будет либо приобретение готового устройства, либо использование альтернативных источников электроэнергии, не столь экологически чистых, но доступных для них.

Использование ветряных генераторов требует развития и продвижения. Возможности и перспективы такого способа выработки энергии вполне реальны, но нуждаются в определенных мерах со стороны производителей и администрации населенных пунктов. Отдельные частные генераторы проблему энергоснабжения региона не решат, но для конкретного владельца усадьбы такой вариант вполне может быть выходом из положения.

Рекомендуемые товары

виды ветряков, обслуживание, выбор лопастей и генератора, мощные модели и парусники

Возрастание потребностей населения в электроэнергии вынуждает изыскивать дополнительные возможности. Действующие электростанции обеспечивают потребителей только в пределах доступности, жители отдаленных и труднодоступных регионов зачастую лишены возможности подключения к сетевым ресурсам.

Решением проблемы становятся местные генераторы, действующие на бензине или дизельном топливе. Они требуют постоянных расходов, запаса топлива, запчастей. Альтернативой становятся ветрогенераторы, имеющие массу преимуществ перед традиционными источниками энергии.

Законность установки ветрогенератора

Частные ветрогенераторы мощностью до 1 кВт приравниваются к бытовым электроустановкам, поэтому каких-либо разрешений или документов на право использования не требуется. Однако, возможны сложности другого порядка. Например, установка, создающая шум, способна доставлять неприятные ощущения для соседей.

Возможны различные местные нормативы на использование ветроустановок, о которых следует узнать заранее, чтобы не оказаться в неприятной ситуации. Например, существуют ограничения по высоте мачты (до 15 м) или иные требования.

Какой нужен генератор?

Генератор — основное устройство комплекса, непосредственно вырабатывающее электроток. Его мощность определяет параметры всей установки. Выбор генератора производится путем подсчета мощности всех потребителей в доме или на участке. Суммарная мощность увеличивается на 15-20 %, а иногда и больше. Это необходимо на случай возникновения непредвиденных обстоятельств, появления в доме новых устройств.

Выбор по ветру

Ветер — источник энергии. Он достается бесплатно, но не всегда имеется в наличии. Прежде, чем приобретать или строить ветряк, следует подробно ознакомиться с метеорологической ситуацией в регионе. Важно выяснить направления, преобладающие скорости ветра, частоту и силу шквальных порывов, ураганных проявлений. Эти знания позволят определиться с типом ветряка, условиями работы оборудования и потребностями в защите.

Россия имеет преимущественно слабые и средние ветра в большинстве регионов, но для отдаленных или труднодоступных районов нередки более мощные атмосферные проявления, требующие от пользователя обладания полной информацией по силе и направлению потоков.

О безопасности

Вопрос безопасности использования ветрогенератора непрост. Лопасти ветряка при высоких скоростях и больших размерах способны причинить серьезные травмы, вплоть до летального исхода. Кроме того, высокие мачты опасны при возникновении сильного ветра, поскольку могут опрокинуться на жилые дома, людей, оказавшихся поблизости, причинить вред имуществу или постройкам.

При этом, большинство противников ветроэнергетики находят проблемы не там, где они есть. Существует масса утверждений о вреде устройств:

  • наличие шума
  • вибрация
  • мерцающая тень, способствующая нервно-психическим расстройствам
  • магнитный фон
  • помехи радио- и телевизионным приемникам
  • непереносимость установок животными, опасность для птиц

Большинство из этих утверждений — следствие надуманных противниками автономных источников питания аргументов. Они имеют место, но величина проблем настолько не соответствует действительности, что эти проблемы попросту не заслуживают времени на обсуждение. Если ветрогенераторы и представляют опасность, то лишь для представителей ресурсоснабжающих компаний, не желающих терять клиентов.

Тем не менее, мощные промышленные установки, использующиеся в составе крупных электростанций, способны создавать неудобства для жителей, что доказано в американском суде. Ветряки продуцировали инфразвук, вызывавший расстройства здоровья у индейцев, живших в резервации на расстоянии 200 км. Однако, учитывая размеры и мощность частного ветряка, говорить о вреде от него незачем.

Вертикалки

Ветряки с вертикальной осью вращения являются наиболее подходящей для самостоятельного изготовления группой устройств. Они имеют простую, понятную конструкцию. Не нуждаются в большом количестве узлов вращения, нетребовательны к направлению ветра. Возможности этой группы породили большое количество вариантов конструкции, некоторые из которых следует рассмотреть подробнее.

ВС

Ветрогенератор Савониуса — одна из наиболее старых разработок, увидевших свет в 20-х годах прошлого столетия. Устройство состоит из двух лопастей достаточно большой площади, изогнутых в продольном направлении. В поперечном сечении они напоминают латинскую букву S. При этом, они слегка сдвинуты друг к другу, несколько перекрывая рабочие стороны.

При воздействии потока ветра одна из лопастей получает усилие на рабочую часть, а вторая — на обратную сторону. Форма лопасти способствует рассечению потока, часть которого уходит в сторону, а другая часть соскальзывает на рабочую поверхность второй лопасти, увеличивая вращающий момент.

На основе конструкции Савониуса разработано множество моделей ветряков с увеличенным количеством лопастей, большей эффективностью и чувствительностью к слабым ветрам.

Дарье

Конструкция Дарье была предложена почти одновременно с ротором Савониуса. Ее основа — лопасти, имеющие форму крыла самолета и расположенные вертикально по касательной к окружности вращения. Требуется нечетное число лопастей, иначе возникнет чрезмерно высокое уравновешивающее усилие. Подъемная сила лопастей способствует возникновению высокой скорости вращения, превышающей этот показатель в 3-4 раза по сравнению с ротором Савониуса.

Математического описания работы устройства до сих пор не имеется, но разработки, выполненные на основе конструкции, существуют и постоянно пополняются. Существует большое количество моделей частных ветрогенераторов с мощностью, достаточной для обеспечения небольшого дома.

Ортогонал

Ортогональные конструкции являются наиболее эффективными из всех базовых моделей вертикальных ветряков. Они обладают высокими скоростями, чувствительностью, производительностью. Конструкция состоит из нескольких лопастей (обычно три и больше), расположенных на некотором расстоянии от оси параллельно ей. Рассмотренный выше ротор Дарье — один из представителей ортогональных устройств. К недостаткам можно отнести высокие нагрузки на узел вращения, способствующие быстрому выходу из строя движущихся деталей.

Геликоид

Геликоидные конструкции созданы на основе базовой модели ортогонального типа, но со значительными изменениями геометрии лопастей. Они изогнуты по окружности вращения, получив форму, приближенную к спиральной. В результате достигается значительная стабилизация вращения, снижается износ движущихся элементов, конструкция в целом приобретает долговечность, прочность и надежность.

Более плавный режим вращения обеспечивает равномерную выработку электрического тока, что позволяет использовать устройства для прямого питания некоторых потребителей (осветительных устройств, насосов и т.д.). Для самостоятельного изготовления конструкция представляет достаточно трудную задачу из-за сложной геометрической формы лопастей.

Бочка-загребушка

Это — «народное» название многолопастного карусельного (вертикального) ветрогенератора. Устройство имеет хороший баланс, эффективно захватывает поток ветра, низкий уровень шума. Для желающих попробовать силы в изготовлении ветряк своими руками этот вариант конструкции рекомендуется как один из базовых типов конструкции. Лопасти делаются из листовой оцинкованной стали, разрезанных вдоль бочек или иного подручного материала.

Каркас — сваривается из металлического профиля — уголка, трубы и т.п. Особенность устройства в его неуязвимости для сильных порывов ветра — вокруг крыльчатки при усилении потока образуется вихревой кокон, препятствующий проникновению ветра внутрь крыльчатки. Поток просто обтекает устройство, как трубу.

Ветрогенератор Ленца

Особенность конструкции Ленца состоит в использовании вместо подшипников сильных неодимовых магнитов. Они удерживают узел вращения в «подвешенном» состоянии, что обеспечивает легкость вращения. Отсутствие трения способствует высокой долговечности оборудования. Показатели весьма впечатляющие — старт вращения происходит при скорости ветра от 0,17 м/с, а на номинальную производительность ветряк выходит уже при 3,4 м/с.

Ротор Бирюкова

Изобретение Бирюкова появилось в 60-х годах прошлого века. Особенностью конструкции является устройство ротора, имеющего два «этажа» с разным строение лопастей. КПД ветряка, заявленный изобретателем, составляет 46 %, что для подобных устройств вертикального типа весьма привлекательно.

Ротор стартует как обычное устройство Савониуса, но при наборе скорости образуется воздушная подушка из завихрений, изменяющая профиль крыльчатки на более выгодный при данном режиме вращения. Усиление ветра способствует образованию вихревого кокона, который заставляет поток обтекать его словно монолитную преграду.

Лопастники

Ветряки с горизонтальной осью вращения имеют большую эффективность, так как энергия потока ветра используется только на рабочих поверхностях, не контактируя с обратными сторонами лопастей. При этом, критически важно наличие устройства, автоматически устанавливающего для ветряка направление по ветру. Обычный вариант — свободно вращающийся вокруг вертикальной оси ветряк и хвостовой стабилизатор как у самолета.

Лопасти

Лопасти горизонтального ветряка являются основным элементом крыльчатки, принимающим поток и преобразующим его во вращательное движение. Эффективность работы обусловлена конструкцией и размерами.

Аэродинамика лопастей зависит от угла наклона, конфигурации, площади соприкосновения с потоком. Чем выше площадь контакта, тем большую энергию принимает поверхность, что имеет положительные и отрицательные стороны. Возрастание получаемой энергии способствует повышению фронтального давления на ветряк, способствующего разрушению конструкции.

Генератор

Генератор — устройство, преобразующее энергию вращения в электрический ток. Наряду с ротором, генератор для ветряка является основным узлом, который обслуживается всеми остальными элементами установки. Используются готовые конструкции, входящие в состав комплекта поставки или приобретенные отдельно, а также самодельные образцы, зачастую работающие лучше заводских.

Аварийный флюгер

Так среди специалистов принято называть устройство увода крыльчатки от чрезмерно сильного ветрового потока. Вращение, имеющее скорость, превышающую расчетную, создает ток большей силы и напряжения, чем это рассчитано и не нужен для оборудования.

Для исключения таких ситуаций существуют устройства торможения, одно из которых работает на принципе авторегулирования. Перпендикулярно направлению оси устанавливается специальная лопатка, жестко соединенная с ротором.

Хвостовой стабилизатор крепится к ротору через шарнир с пружиной. Когда ветер достигает слишком высокой скорости, усилие на тормозной лопатке превышает силу пружины, ротор отворачивается от ветра и прекращает вращаться со слишком высокой скоростью.

Токосъемник

Устройство подвода или, в нашем случае, съема электроэнергии — коллектор — достаточно капризный узел, требующий регулярного ухода, смазки, замены щеток и т.д. Процедура не самая простая, так как ветряк расположен на мачте, до аппаратуры надо еще добраться, что непросто. Необходимо иметь достаточно надежный и безопасный механизм опускания мачты, иначе аппаратура долго не продержится.

Лопастной ветрогенератор + солнечная панель для электроснабжения дачи

Идея совмещать солнечные батареи с ветрогенераторами возникла практически с первых дней появления этих конструкций. Привлекают абсолютно дармовая энергия ветра и солнца, которые нуждаются только в оборудовании для захвата и преобразования. Оба комплекса вполне могут работать в связке, дополняя друг друга.

Нет ветра — используются солнечные батареи, зашло солнце — энергию дает ветряк. Для дачного домика, загородного коттеджа подобные комплексы способны обеспечить если не полноценное, то весьма обильное дополнительное электропитание, помогающее сэкономить на электроэнергии немалые суммы.

Своими руками

Приобретение готового ветрогенератора не по карману большинству пользователей. Кроме того, стремление мастерить разные механизмы и приспособления неискоренимы в народе, а если появляется еще и насущная необходимость — решение вопроса однозначно. Рассмотрим, как сделать ветрогенератор своими руками.

Простейший ветрогенератор для освещения дачи

Самые простые конструкции используются для освещения участка или питания насоса, подающего воду. В процессе участвуют, как правило приборы потребления, не боящиеся скачков напряжения. Ветряк вращает генератор, напрямую подключенный к потребителям, без промежуточного комплекта, стабилизирующего напряжение.

Ветряк своими руками из автомобильного генератора

Генератор от автомобиля является оптимальным вариантом при создании самодельного ветряка. Он нуждается в минимальной реконструкции, в основном — перемотке катушки более тонким проводом с большим числом витков. Модификация минимальна, а полученный эффект позволяет использовать ветряк для обеспечения дома. Понадобится достаточно скоростной и мощный ротор, способный вращать устройства с большим сопротивлением.

Ветрогенератор из стиральной машины

Электродвигатель от стиральной машины часто используют для создания генератора. Оптимальным вариантом является установка на ротор сильных неодимовых магнитов, обеспечивающих возбуждение обмоток. Для этого необходимо просверлить в роторе углубления, диаметром равные размеру магнитов.

Затем они устанавливаются в гнезда с чередованием полярности и заливаются эпоксидкой. Готовый генератор устанавливается на вращающуюся вокруг вертикальной оси площадку, на вал насаживается крыльчатка с обтекателем. Сзади к площадке крепится хвостовой стабилизатор, обеспечивающий наведение устройства.

Мощные модели

Самостоятельное изготовление мощных моделей ветрогенераторов требует больших усилий и теоретической подготовки. Прежде всего, требуется создание мощного генератора, требующего расчетов, правильной сборки, использования качественных материалов. Кроме того, надо сделать ротор, действующий при слабых ветрах, но способный создавать достаточное усилие для генератора. Также потребуются соответствующие устройства обработки электротока, каркас, мачта и прочие элементы конструкции и электроники.

Ветрогенератор мощностью более 1 киловатта

Ветряки подобной мощности имеются в продаже. Покупка установки позволяет получить готовое устройство с заранее известными параметрами, изготовленное из соответствующих материалов. Цены на такое оборудование начинаются от 30000 руб, что доступно не каждому пользователю.

Кроме того, потребуется сопутствующая электроника, аккумуляторы и прочая аппаратура, что увеличит расходы примерно вдвое. Дороговизна установок является основной причиной распространения моделей ветряков, сделанных своими руками.

Вертикальный ветряк своими руками (5 квт)

Существует несколько вариантов изготовления устройство такой мощности:

  • роторная конструкция
  • цепочка парусных крыльчаток, установленных последовательно
  • использование аксиального генератора на неодимовых магнитах

Выбор наиболее удобного варианта зависит от степени подготовки и технической базы пользователя.  Рекомендуются вертикальные конструкции, независимые от направления ветра и не нуждающиеся в установке на высокие мачты.

Наиболее удачно отвечают требованиям карусельные многолопастные конструкции на основе ротора Савониуса. Существуют и промышленные установки такого класса, приобретение которых ускорит решение вопроса и позволит получить профессионально изготовленный комплекс с гарантированными параметрами.

Парусники

Парусные ветряки существуют с незапамятных времен. Они представляют собой устройства с большой площадью контакта лопастей и потока ветра, но с малой массой крыльчатки. Это дает существенное уменьшение инерции покоя, позволяющие стартовать при слабых ветрах.

Промышленные ветряки, качающие воду, известны уже более 100 лет. Они имели парусные лопасти с жестким заполнением, обладавшие низким КПД. Со временем были разработаны конструкции с мягким парусом, представляющие собой жесткую рамку с натянутой плотной тканью, одна сторона которой свободна и образует естественным образом специфический профиль. В результате получается крыльчатка с большой площадью, малым весом, простая в изготовлении и удобная в эксплуатации. Парусные конструкции успешно используются в разных условиях и обеспечивают энергией различные типы потребителей.

Самодельный генератор

Изготовление самодельного генератора — часто встречающаяся задача, возникающая при сборке ветряка. При создании используются разные методы:

  • использование готового генератора или магнето с внесением некоторых конструктивных изменений
  • создание генератора «с нуля» из подручных материалов

Оба варианта имеют свои плюсы и минусы, выбор делается на основе своих возможностей или предпочтений.

Мотор для ветряка своими руками

Создание генератора с нуля требует обладания определенными познаниями, навыками работы со слесарными инструментами и опыта изготовления электротехнических устройств. Процесс создания генератора состоит из двух этапов:

  • изготовление ротора. На пластину из фанеры или иного листового материала наклеиваются неодимовые магниты в одинаковом удалении от центра. Полярность магнитов чередуется
  • изготовление статора. Наматываются обмотки числом, кратным 3 (три фазы). Они располагаются на фанерной пластине подобно магнитам ротора и соединяются определенным образом, образуя равномерный сдвиг фазы. Готовый статор заливают эпоксидкой для защиты от влаги, пыли и т.д.
  • производится сборка устройства. На оси укрепляется ротор, ось устанавливается на статор, вся конструкция закрепляется и накрывается защитным кожухом.

Расчеты мощности генератора производятся заранее. Проверка работоспособности проходит обычно сразу после сборки, вращение обеспечивается при помощи подручного устройства (чаще всего, электродрель).

Обслуживание ветрогенератора

Ветряки — довольно надежные устройства, не требующие ежедневного ухода и обслуживания. Многие пользователи свидетельствуют, что их комплекты работают практически без вмешательства человека по 2-3 года. Тем не менее, вращающиеся части изнашиваются, требуют смазки, замены подшипников.

Лопасти крыльчатки выходят из строя и требуют замены. Эти действия выполняются по мере необходимости, владелец учитывает пробег деталей и меняет их по достижении определенного срока наработки. Для промышленных моделей существуют свои режимы обслуживания, указанные в паспорте комплекта.

Рекомендуемые товары

Ветрогенератор для дома — 100 фото самодельных и фирменных устройств

Ветрогенератор – хорошая задумка для загородного дома. Он экономит элекроэнергию и не вредит окружающей среде. Раньше ветряной генератор для жилого коттеджа был диковинкой, инновацией, но сейчас встречается довольно часто.

Для выбора ветрогенератора необходимо понять, что это вообще такое, каких видов встречается и что нужно для их окупаемости и правильной работы. Наверняка вы уже видели сюрреалистичные фото ветрогенератора в интернете или кадры из фильма и заинтересовались этим прекрасным источником альтернативной энергии.

Давайте рассмотрим, как работает ветрогенератор. Воздушный поток вращает лопасти ротора, зафиксированного на валу самого ветрогенератора. В его обмотке и происходит генерация электрического тока. Электроэнергия скапливается в аккумуляторах и затем подается в обслуживаемый частный дом.

Краткое содержимое статьи:

Устройство ветрогенератора

Контроллер, который находится после генератора, преобразует трехфазный переменный ток в постоянный. Контроллер отвечает за управление током во всей электрической цепи, может переключать его для зарядки аккумуляторов.

Затем ток попадает на инвертор, где из постоянного преобразуется в переменный. Все это приводит к незначительным энергопотерям – около 20%

Комплектация ветрогенераторов для дома

  • Ротор. Делятся на двух-, трех- и многолопастные;
  • Редуктор. Регулирует с какой скоростью вращается ротор;
  • Аккумулятор. Сбор или расход энергии;
  • Инвертор. Преобразует ток из постоянного в переменный;
  • Кожух. Защищает ветряк от негативных природных факторов;
  • «Хвост». Необходим, чтобы поворачивать ветрогенератор в сторону движения ветра;

Как рассчитать эффективность ветрогенератора

Ветер – переменчивое явление и зависит от природных условий и особенностей климата. Иногда он дует очень сильно, а в другой момент практически нулевой. Поэтому сначала стоит понять, нужен ли вообще ветряк в данном месте, рентабелен ли он.

Необходимо знать среднюю за год скорость ветра в изучаемом месте. Если она окажется меньше 4 м/с, то покупать ветроэлектростанцию не стоит, это не окупит своих вложений. Если же ветра достаточно, необходимо правильно выбрать мощность установки.


Посчитаем среднее потребление электроэнергии для одной семьи. Примерное значение будет 100-300 киловатт за месяц. При среднегодовой скорости ветра в регионе 5-8 метров в секунду нужен ветрогенератор мощность до 3 кВт. Зимой, когда ветер будет сильнее, производство электроэнергии усилится.

От мощности и КПД ветрогенераторов будет зависеть их стоимость. Она колеблется от 2000 до 8000 долларов за 1кВ электроэнергии. В эксплуатации ветряк экономичнее бензинового генератора.

Ветрогенераторы с горизонтальной осью вращения оптимально размещать на уровне 25 – 35 метров над землей. Вертикальные ветрогенераторы можно размещать на поверхности земли.

Вертикальные ветряные установки размещать достаточно легко, чего нельзя сказать о горизонтальных. Эти установки нуждаются в специальных мачтах, которые крепятся растяжками и стоят на фундаменте.

Установка мощного ветрогенератора осуществляется с помощью крана. Это достаточно трудоемкий процесс, поэтому ветряки для жилых домов предпочитают делать без мачт. Дешевле всего обходятся ветрогенераторы с вертикальной осью вращения. Они хорошо функционируют даже если ветер слабый.

Эти установки относительно новые и пока можно говорить только о низкой стоимости, низком уровне шума и, к сожалению, низкой эффективности.

Мачта для ветрогенератора легко изготавливается самостоятельно. Но остальное оборудование должно быть фабричным. Конечно, есть мастера с «золотыми руками», которые делают ветряки из старой техники.

Материалом служат и электродвигатели, и генераторы от автомобилей, и даже колеса от электровелосипедов. Но такие установки всегда получаются менее эффективными, чем заводские. И это ненадежно.


И еще следует знать, что чем больше лопасти и чем мощнее генератор, тем больше электроэнергии может производить установка. Это было бы хорошо, если бы не увеличивало стоимость. Поэтому прежде, чем начать разбираться в том, как выбрать ветрогенератор для дома, необходимо точно знать необходимую мощность.

Размещение и эксплуатация

Неизбежно возникнет вопрос: где же ветряк будет установлен? Вот пункты, которые необходимо учесть:

  • В идеале ветрогенератор следует устанавливать выше уровня земли
  • Поблизости не должно быть сооружений, деревьев и всего, что снижает производительность
  • Хорошо, если ветроустановка будет отдалена от жилых домов на несколько десятков метров. Ветрогенераторы не просто шумные, они еще и издают инфразвук, что ощущается как низкий гул.

Как подключить ветрогенератор к сети

В России, с ее долгой зимой и постоянными ветрами, отдают предпочтения вертикальному ветрогенератору. Схема подключения ветрогенератора достаточно простая: его устанавливают на земле или низкой мачте.

Ветрогенератор можно и сразу подключить к бойлеру, минуя инвертор и аккумуляторы. Все это легко выполнить самостоятельно.

Минусы ветрогенераторов

  • Проблемы в эксплуатации
  • Ветрогенераторы довольно шумные
  • Порывистый ветер и обледенение могут повредить детали ветрогенератора
  • Ветрогенератор требует регулярного обслуживания и замены деталей
  • Мачту обязательно нужно заземлить и поставить на нее молниеотвод
  • На ней также обязательно необходима сигнальная лампочка для малой авиации

Преимущества ветряных установок

  • Не требуют платы за используемые источники энергии;
  • Достаточно автономны;
  • Ветряная установка может эксплуатироваться в большинстве регионов;
  • Долговечны, не требуют частых замен и ремонта;

Альтернативная энергетика активно развивается и уже сейчас понятно, что у ветрогенераторов большое будущее. Они полностью автономны, не требуют невозобновляемых источников энергии и не загрязняют окружающую среду. Когда-нибудь частный жилой дом с ветряной установкой и солнечными панелями будет выглядеть вполне обыденно.

Фото ветрогенераторов для дома

Ветрогенератор — Википедия

Ein Windgenerator , auch Kleinwindenergieanlage (KWEA), ist eine meist industrial hergestellte Windkraftanlage kleiner Leistung zur Gewinnung elektrischer Energie. Einsatzbereiche sind unter anderem autarke Eigenversorgungen in entlegenen Gegenden und im Bereich der nachhaltigen Energiegewinnung.

Windgeneratoren auf einem Haus Kleinwindgenerator auf Hausdach

Die Abgrenzung zu größeren Windkraftanlagen (WKA) ist fließend und es gibt unterschiedliche Definitionen für Kleinwindenergieanlagen von wenigen Киловатт до максимума 500 кВт Nennleistung. [1] Der Bundesverband Kleinwindanlagen strebt eine in Europa abgestimmte Определение nach folgender Einteilung an:

«KWEA sind windgetriebene Anlagen mit einer Windangriffsfläche von bis zu 200 m²», без границ в Норменентвурфе EN 61400-2. [2] Dies entspricht einem Rotordurchmesser von etwa 16 Metern.

Die Normung umfasst Hausanlagen auf dem Dach oder direkt mit dem Haus verbunden als Nebengebäude ohne Größenbeschränkungen dem Gebäude angepasst.Sie dienen zur Selbstversorgung bis einschließlich 6 kW Nennleistung. Weiters sind in der Norm noch Micro-Windturbinen с максимальной мощностью 1,5 кВт Nennleistung bzw. 6 м² Windangriffsfläche klassifiziert.

Das Baurecht spricht von «Hauswindnebenanlage», wenn die Anlage in unmittelbarer Nähe eines Gebäudes steht und dessen Eigenversorgung dient.

Allgemeine Unterscheidungsmerkmale zu größeren Windkraftanlagen sind vor allem:

  • in vielen Fällen keine Anbindung an ein öffentliches Stromnetz und Inselbetrieb.
  • bei kleinen Anlagen of an Kleinspannungs- oder Bordnetzen, z. Б. 12 В
  • и часто в Kombination mit Energiespeichern wie Akkumulatoren, Warmwasserspeichern, Wasserhochbehältern
  • geringere Größe (wenige Meter Durchmesser, wenige Kilowatt Nennleistung)
  • Nabenhöhe oberhalb naher Strömungshindernisse, aber selten über 20 Meter
  • vergleichsweise einfacher Aufbau (Verzicht auf aufwändige Regelungstechnik)
  • bei Horizontaler Achse meist eine Windfahne zur Windnachführung

Bei Windgeneratoren finden sich auch häufiger von Windkraftanlagen abweichende Bauformen mit mehr Rotorblättern (leiser durchien geringere Schnelllaufzahl.

Im Hinblick auf die Versorgungssicherheit können Windgeneratoren auch mit anderen Energiequellen wie Photovoltaikanlagen или Dieselgeneratoren gekoppelt werden. Mit Hilfe von Wechselrichtern kann der erzeugte Strom auch ins öffentliche Netz eingespeist werden, Allerdings sieht in Deutschland das Erneuerbare-Energien-Gesetz (EEG) keinen erhöhten Vergütungssatus Korlein australis für.

Typen von WindgeneratorenBearbeiten

Es gibt verschiedene Methoden, Windenergie zu nutzen, um damit elektrische Energie zu erzeugen.Die dabei genutzten Prinzipien werden in der Aerodynamik erklärt. Am Häufigsten werden Propeller verwendet, meist zweiflüglige oder dreiflüglige.

Besondere Typen sind:

Auch auf Segelyachten kommen gelegentlich kleine Windgeneratoren zum Einsatz, um elektrische Energie für Licht, Funkanlage und andere elektrische Geräte an Bord zur Verfügung zu stellen.

An Bord des Luftschiffes LZ 127 «Graf Zeppelin» stellte ein Windgenerator an der Gondel elektrische Energie für die Funkanlage bereit, denn elektrische Leitungen von den Motorgondeln wären riskant gewesen (Wasserstoff).Eine ähnliche Verwendung gibt es als Notfallsystem auch für Strahlflugzeuge, die über eine ausstellbare Ram Air Turbine verfügen, die durch den Fahrtwind angetrieben wird.

Drehstrom- und GleichstromgeneratorenBearbeiten

Grundsätzlich sind zwei Arten von Generatoren für Klein- oder auch Mikrowindanlagen auf dem Markt vertreten. Drehstromgeneratoren sind überwiegend wartungsfrei, demgegenüber sind в Gleichstromgeneratoren в regelmäßigen Abständen die Kohlebürsten zu tauschen.Dabei haben Drehstromgeneratoren den weiteren Vorteil, die Windanlage zusätzlich einfach steuern zu können, z. B. Bremsen zu Wartungszwecken. Wechselrichter mit integriertem Energiemanagementsystem zur Steuerung der Energieerzeugung, sowie Energieverteilung steuern einen oder mehrere Windgeneratoren.

  • Пол Гип: Основы ветроэнергетики — руководство по ветроэнергетическим системам домашнего и общественного масштаба . Chelsea Green Publisher, 2009, ISBN 978-1-60358-030-4.
  • Winfried Halbhuber: Gesamtsystem Kleinwindkraft: Anlagenkonzepte — Ertragsoptimierung — Netzeinspeisung. Diplomica-Verl., Гамбург 2014, ISBN 978-3-8428-7259-2.
  1. ↑ Kleinwindanlagen im Glossar Bundesverband WindEnergie wind-energie.de, abgerufen am 1. Juni 2015
  2. ↑ EN 61400-2: Windenergieanlagen — Часть 2: Anforderungen für kleine Windenergieanlagen (IEC 88/399 / CD: 2011) , Norm-Entwurf, 2012

Windkraftanlage — Википедия

Moderne (2013) Windkraftanlage der 3-MW-Klasse Zur Inspektion abmontierte Rotorblätter; человек beachte zum Größenvergleich den Pkw unten links Drei Phasen des Anlagenbaus (август 2017 г.) Схема einer Windkraftanlage

Eine Windkraftanlage (Abk.: WKA) или Windenergieanlage (Abk .: WEA) wandelt die Energie des Windes in elektrische Energie, um sie dann in ein Stromnetz einzuspeisen. Umgangssprachlich werden auch die Bezeichnungen Windkraftwerk oder Windrad oder auch Windkraftkonverter verwendet. Windkraftanlagen sind heute mit Abstand die wichtigste Form der Nutzung der Windenergie. Die mit großem Abstand Dominierende Bauform ist der dreiblättrige Auftriebsläufer mit Horizontaler Achse und Rotor auf der Luvseite, dessen Maschinenhaus auf einem Turm montiert ist und der Windrichtung aktiv nachgeführt wird.Eine Reihe weiterer Konstruktionsformen, insbesondere mit anderer Bauweise des Rotors, haben sich bisher nicht durchgesetzt.

Windkraftanlagen können in allen Klimazonen genutzt werden. Sie werden an Land (onshore) und in Offshore-Windparks im Küstenvorfeld der Meere installiert. Heutige Anlagen werden fast ausschließlich mit Netzanschluss betrieben und weisen durch Einspeisung über Leistungselektronik im Gegensatz zu älteren Anlagen mit direkt netzgekoppeltem Asynchrongenerator eine sehr gute Netzverträglichke.Die mittlere Nennleistung der in 2018 neu installierten Onshore-Anlagen lag bei 3,34 MW (Deutschland). [1] Die durchschnittliche Nennleistungaller installierten Offshore-Anlagen lag Ende 2018 weltweit bei 3,94 MW, in deutschen Projekten bei 4,83 MW. [2]

Als Windgenerator bezeichnet man Kleinanlagen im Leistungsbereich von wenigen 100 Watt bis zu mehreren kW. Sie können auch als einzelne Anlage wirtschaftlich sein.

Als Windpark bezeichnet man Gruppen jeweils mehrerer Windkraftanlagen.

Weitere Anwendungen sowie energiepolitische Aspekte siehe auch: Windenergie, Erneuerbare Energien, Energiewende und Energiewende nach Staaten.

Geschichte der Windkraftanlagen

Анлаге фон Чарльз Ф. Браш фон 1888 г.

Windmotoren, Testanlagen und gescheiterte Großprojekte

Die erste belegte windbetriebene Anlage zur Stromerzeugung errichtete 1887 der Schotte Джеймс Блит, um Akkumulatoren für die Beleuchtung seines Ferienhäuschens aufzuladen. [3] Seine einfache, robuste Konstruktion mit einer vertikalen Achse von zehn Metern Höhe und vier auf einem Kreis von acht Metern Durchmesser angeordneten Segeln hatte eine bescheidene Effizienz. Nahezu zeitgleich orientierte sich Charles Francis Brush в Кливленде, штат Огайо, с 20-метровой возвышенностью и плотинами, расположенными в американском Windpumpen. Bei Pumpen kommt es eher auf das Drehmoment als auf die Drehzahl an; Brush verwendete eine zweistufige Übersetzung mit Riementrieben, um einen 12-kW-Generator anzutreiben.

Der Däne Poul la Cour kam um 1900 durch systematische Versuche — unter anderem an aerodynamisch geformten Flügelprofilen in Windkanälen — zum Konzept des Schnellläufers , bei dem nur wenige Rotorblätter Enerziegung derürzeus der. Während des Ersten Weltkrieges waren über 250 Anlagen dieses Typs в Денемарк в Бетрибе. [4] Auch in anderen Staaten wurden im frühen 20. Jahrhundert Windmotoren zur dezentralen Stromerzeugung errichtet.Mit der flächendeckenden Elektrifizierung in der Zwischenkriegszeit verschwanden viele dieser Anlagen wieder, [5] zumal die mit Gleichstromgeneratoren und Akkuspeichern ausgerüsteten Windmotoren nicht mit Wechromnetstrom-kz.

Nach dem Zweiten Weltkrieg wurde in verschiedenen Staaten die Windenergieforschung vorangetrieben. Staaten wie Frankreich und Großbritannien investierten bis ca. 1965 Große Summen in die Windkraftforschung. [6] Die durch die Luftfahrt vorangetriebene Verbesserung der Profilgeometrien in den 1950er und 1960er Jahren auf Gleitzahlen weit über 50 erlaubte extreme Schnellläufer mit nur noch einem einzigen Rotorblatt.Rotoren mit mehr als zwei Blättern galten als rückständig. Angesichts niedriger Energiepreise wurden mit Ausnahme von wenigen Prototypen aber kaum Anlagen errichtet.

Zu einer Renaissance der Windenergienutzung kam es ab den 1970er Jahren unter anderem infolge der Umwelt- und Energiedebatte und zweier Ölkrisen. В 1970-х и 1980-х годах Jahren wurden eine Vielzahl verschiedener Konstruktionen erprobt, wobei sich letztlich Turbinen mit Horizontaler Achse durchsetzten. [7] In einigen Staaten (wie unter anderem Deutschland und USA) setzte man zunächst auf anspruchsvolle Industrielle Großprojekte wie den zweiflügeligen GROWIAN; Diese Hatten Aber Große Technische Probleme und erwiesen sich als Fehlschläge.Ausgehend von Dänemark, wo es außer den Kenntnissen zum Bau von Kleinanlagen auch eine idealistische Kundschaft für derartige Anlagen gab, setzte sich das Dänische Konzept zahlreicher robuster zum Anlagen kleingesänder leistung défütung. [8]

Die in den 1980er Jahren auch zu Tausenden in die USA exportierten Anlagen hatten drei starre Rotorblätter (starr = keine Blattwinkelverstellung) и его время Frequenzumrichter и Netz gekoppelte Drei zu Tausenden zein.Die Leistung wurde durch beabsichtigten Strömungsabriss beginzt. Archetyp dieses sehr erfolgreichen Konzeptes war die von Johannes Juul konstruierte und 1957 in Betrieb genommene Gedser-Windkraftanlage. [9] Sie arbeitete bis zu ihrer vorläufigen Stilllegung 1966 und wurde 1977 für ein gemeinsames Testprogramm von dänischen Wissenschaftlern und NASA für einige Jahre wieder in Betrieb genommen. [10]

Auf Basis dieser nach heutigen Maßstäben kleinen Anlagen fand dann in den 1990er und 2000er Jahren die weitere Entwicklung hin zu Großturbinen mit variabler Drehzahl und Verstellbaren Rotorblättern statt.Seither ist Dänemark das Land mit dem größten Windkraftanteil an der Stromerzeugung.

Technische Entwicklung seit den 1990er Jahren bis heute

Der Umriss einiger Windkraftanlagenmodelle der Firma Enercon aufgetragen gegen den Zeitpunkt ihrer Einführung.

Mit dem Stromeinspeisungsgesetz von 1991 началось в немецком регионе Aufschwung der Windenergie auch; er setzte sich mit dem Erneuerbare-Energien-Gesetz (in Kraft seit dem 1. April 2000) fort. Diese politischen Rahmenbedingungen trugen dazu bei, dass deutsche Windkraftanlagenhersteller heute weltweit zu den Technologie- und Weltmarktführern zählen.

Im Bestreben nach immer niedrigeren Stromgestehungskosten wurden die Windkraftanlagen im Laufe der Entwicklung sukzessive größer. [11] Die mittlere Nennleistung der in Deutschland neu installierten Windkraftanlagen между 164 кВт в январе 1990 г., в январе 2000 г., меньше 1 МВт, в январе 2009 г., меньше 2 МВт. Im Jahr 2011 lag sie bei über 2,2 MW, wobei Anlagen mit einer installierten leistung von 2,1 до 2,9 MW mit einem Anteil von 54% dominierten. Ein weiterer Anstieg der durchschnittlichen Nennleistung ist absehbar: bei Onshore-Windkraftanlagen wird die 3-MW-Klasse eingeführt, in den zunehmend gebauten Offshore-Windparks werden hauptsächlich Großtanlagen 3-MW.

Zur Leistungserhöhung wurde u. а. der Rotordurchmesser größer. Eine Verdopplung der Rotorblattlänge bewirkt gemäß der Kreisformel eine Vervierfachung der Rotorfläche. Noch bis Ende der 1990er Jahre lag der Durchmesser neu errichteter Anlagen meist unter 50 Meter, nach etwa 2003 meist zwischen 60 und 90 Meter. [12] Bis 2018 wuchs der durchschnittliche Rotordurchmesser auf 118 m, die durchschnittliche Nabenhöhe auf 132 m und die Nennleistung auf 3233 MW, mit deutlichen Unterschieden aufgrund regionaler Windhöffigkeit. [13] Weltweit überstieg die Durchschnittsleistung neu installierter Anlagen im Jahr 2017 erstmals die 2,5-MW-Marke. [14]

Moderne Schwachwindanlagen haben mittlerweile Rotordurchmesser до 140 метров и Nabenhöhen до 160 метров. Im Offshore-Bereich sind neue Baureihen mit Rotordurchmessern von 160 bis 170 Metern und bis etwa 9 MW Nennleistung erhältlich. Enercon setzt seit ca. 1995 auf getriebelose Anlagen und war zunächst lange der einzige Hersteller mit Direktantrieb; mittlerweile nutzen jedoch deutlich mehr Hersteller ein getriebeloses Design, das inzwischen als «zweite Standardbauweise» позолота. [15] Im Jahr 2013 Betrug der Weltweite Marktanteil der getriebelosen Anlagen 28,1%. [16]

Windkraftanlagen wurden bis etwa 2010 Stationär per Dockmontage gefertigt. Seitdem setzen Hersteller aus Kostengründen zunehmend auf Serienfertigung im Fließbandverfahren und auf eine Industrialisierung und Standardisierung ihrer Produkte. Parallel dazu setzen sich — wie im Automobilbau seit langem Standard — modulare Plattformstrategien durch, bei denen auf der gleichen technischen Basis Anlagentypen bzw.-varianten für verschiedene Windklassen entwickelt werden, z. B. durch unterschiedliche Rotorgrößen bei weitgehend identityischem Triebstrang oder unterschiedlichen Generatorkonzepten bei gleichem Rotordurchmesser. [17]

Nicht all neu installierten Anlagen stehen an neuen Standorten: Teilweise werden alte Anlagen abgebaut und durch leistungsstärkere ersetzt, также был Repowering bezeichnet wird. Innerhalb von Windparksinkt dabei in der Regel die Anzahl der Einzelanlagen, während die installierte Leistung und Ertrag steigen.{3}},

im Beispiel также 320 Вт / м².

Aufgrund dieses starken Anstiegs der Leistungsdichte mit der Windgeschwindigkeit sind windreiche Standorte besonders interessant. Die Turmhöhe spielt dabei eine große Rolle, besonders im Binnenland, wo Bodenrauigkeit (Bebauung und Vegetation) die Windgeschwindigkeit verringert und den Turbulenzgrad erhöht.

Verlustloser Leistungsbeiwert

Durch das Abbremsen des Windes weicht ein Teil der Strömung der Rotorfläche aus.

Die Leistungsfähigkeit eines Windrotors wird üblicherweise ausgedrückt, indem seine an die abgegebene Leistung auf die Rotorfläche und auf die Leistungsdichte des Windes bezogen wird. Dieser Bruchteil wird nach Albert Betz als Leistungsbeiwert c P bezeichnet, umgangssprachlich auch als Erntegrad . Er leitete 1920 aus grundlegenden Physikalischen Prinzipien einen maximal erreichbaren Leistungsbeiwert ab. Der Grund ist, dass durch die Leistungsentnahme die Strömungsgeschwindigkeitinkt, die Luftpakete in Strömungsrichtung kürzer werden und die Stromlinien ihre Abstände zueinander vergrößern, siehe Abbildung.Je stärker der Wind abgebremst wird, desto mehr strömt ungenutzt am Rotor vorbei. Das Optimum von 16/27 = 59,3% würde durch einen verlustlosen Rotor erreicht, der die Strömung durch einen Staudruck von 8/9 der Energiedichte des Windes auf 1/3 der Windgeschwindigkeit abbremst. [18] Der Rest dieser Leistung befindet sich noch in der Strömung: 1/3 = 9/27 in den Stromfäden, die dem Rotor ausgewichen sind, 1/9 von 2/3 = 2/27 in der abgebremsten Luftmasse.

Leistungsgrenzen und Verluste

Wie alle Maschinen erreichen auch reale Windkraftanlagen das Theoretische Maximum nicht.Aerodynamische Verluste ergeben sich durch Luftreibung an den Blättern, durch Wirbelschleppen an den Blattspitzen und durch Drall im Nachlauf des Rotors. Bei modernen Anlagen reduzieren diese Verluste den Leistungsbeiwert von c P, Betz ≈ 0,593 auf c P = 0,4 до 0,5. Von den genannten 320 Вт / м² и ниже 160 Вт / м². Ein Rotor mit 113 m Durchmesser (10.000 m² Fläche) gibt dann 1,6 Megawatt an die Welle ab. Zur Berechnung der Leistung am Netzanschluss müssen zusätzlich noch die Wirkungsgrade Aller Mechanischen und Elektrischen Maschinenteile berücksichtigt werden.

Der Leistungsbeiwert des Rotors wird beim Vergleich verschiedener Bauarten oft überbewertet. Ein um zehn Prozent niedrigerer Leistungsbeiwert kann durch eine fünfprozentige Erhöhung des Rotordurchmessers ausgeglichen werden. Für den wirtschaftlichen Erfolg ist es von höherer Bedeutung, mit gegebenem Materialeinsatz eine möglichst große Rotorfläche abzudecken. In Dieser Hinsicht ist die heute übliche Bauform mit Horizontaler Drehachse und wenigen schlanken Rotorblättern anderen Bauformen überlegen. [19]

Эртраг

Zur Abschätzung des Jahresertrages wird für den Standort der Windkraftanlage die sogenannte mittlere Windgeschwindigkeit angegeben. Sie ist ein Durchschnittswert der über das Jahr auftretenden Windgeschwindigkeiten. Die untere Grenze für den wirtschaftlichen Betrieb einer Anlage liegt, abhängig von der Einspeisevergütung, bei einer mittleren Windgeschwindigkeit von etwa 5–6 m / s auf Nabenhöhe. Dabei sind jedoch noch weitere Faktoren zu berücksichtigen.

Ein Windgutachten auf Basis der Häufigkeitsverteilung der Windgeschwindigkeit für einen Standort dient der optimalen Wahl der Nennwindgeschwindigkeit (meist das 1,4- bis 2fache der mittleren Windgeschwindigkeit) bei gegebenen Anlagendaten der Abschätzung der pro Jahr erzeugten Energie, branchenüblich als Volllaststunden angegeben. Abhängig von verschiedenen Faktoren wie z. B. Standortgüte und Anlagenauslegung erreichen Windkraftanlagen etwa zwischen 1400 und 5000 Volllaststunden. [20] Das entspricht einem Nutzungsgrad von 16 bis 57 Prozent.

Uber Rechenprogramme [21] im Internet lässt sich der Ertrag bestimmter Anlagen unter zu wählenden Bedingungen näherungsweise bestimmen. Aufschluss über die tatsächlichen Erträge eines Standortes können jedoch nur auf Windmessungen basierende Windgutachten geben. Dabei ist der Turbulenzgrad aufgrund topografischer Gegebenheiten, Vegetation, höherer Bauten oder benachbarter Windkraftanlagen zu berücksichtigen. [22] Die Ertragsminderung durch verminderte Windgeschwindigkeit und Turbulenz hinter anderen Windkraftanlagen wird as Wake- oder Nachlaufverlust bezeichnet.

Da das Leistungsangebot mit der dritten Potenz der Windgeschwindigkeit steigt, ist es sinnvoll, die Anlage für eine deutlich höhere als die mittlere Windgeschwindigkeit auszulegen. Ihre Nennleistung, manchmal als installierte Leistung bezeichnet, erreicht eine Windkraftanlage bei der Nennwindgeschwindigkeit .Darüber wird die Leistung der Anlage konstant gehalten, um Überlastungen zu vermeiden. Bei sehr großen Windgeschwindig

Ветрогенератор, используемый для выработки энергии ветра

Генератор ветровой турбины, используемый для выработки энергии ветра Статья Учебники по альтернативной энергии 19.06.2010 27.07.2020 Учебники по альтернативной энергии

Поделитесь / добавьте в закладки с:

Типы ветряных генераторов

Ветряная турбина состоит из двух основных компонентов, и, рассмотрев один из них, конструкцию лопастей ротора в предыдущем уроке, мы теперь можем взглянуть на другой, ветрогенератор или WTG , который является электрическая машина, используемая для выработки электроэнергии.Электрический генератор с низкой частотой вращения используется для преобразования механической вращательной мощности, производимой энергией ветра, в электричество, пригодное для использования в наших домах, и является сердцем любой ветроэнергетической системы.

Преобразование вращательной механической энергии, генерируемой лопастями ротора (известной как первичный двигатель), в полезную электрическую мощность для использования в бытовых системах электроснабжения и освещения или для зарядки батарей может быть выполнено с помощью любого из следующих основных типов вращательных электрических машины, обычно используемые в ветроэнергетических установках:

  • 1.Машина постоянного тока (DC), также известная как Dynamo
  • 2. Синхронная машина переменного тока (AC), также известная как генератор переменного тока
  • 3. Индукционная машина переменного тока, также известная как генератор переменного тока

Все эти электрические машины представляют собой электромеханические устройства, работающие по закону электромагнитной индукции Фарадея. То есть они действуют за счет взаимодействия магнитного потока и электрического тока или потока заряда.Поскольку этот процесс обратим, та же машина может использоваться как обычный электродвигатель для преобразования электроэнергии в механическую энергию или как генератор, преобразующий механическую энергию обратно в электрическую.

Индукционный генератор ветряной турбины

Электрические машины, которые чаще всего используются для ветряных турбин, работают как генераторы, при этом синхронные генераторы и индукционные генераторы (как показано) обычно используются в более крупных системах ветрогенераторов.Обычно небольшие или самодельные ветряные турбины, как правило, используют низкоскоростной генератор постоянного тока или динамо, поскольку они маленькие, дешевые и их намного проще подключить.

Имеет ли значение, какой тип электрического генератора мы можем использовать для производства энергии ветра. Простой ответ — и да, и нет, поскольку все зависит от типа системы и приложения, которое вы хотите. Низковольтный выход постоянного тока от генератора или динамо-машины старого типа может использоваться для зарядки батарей, в то время как более высокий синусоидальный выход переменного тока от генератора переменного тока может быть подключен непосредственно к местной сети.

Кроме того, выходное напряжение и потребляемая мощность полностью зависят от имеющихся у вас приборов и от того, как вы хотите их использовать. Кроме того, расположение ветряного генератора, будет ли ветровой ресурс поддерживать его постоянное вращение в течение длительных периодов времени, или скорость генератора и, следовательно, его мощность будут изменяться вверх и вниз в зависимости от изменения имеющегося ветра.

Производство электроэнергии

A Ветрогенератор — это то, что производит ваше электричество, преобразовывая механическую энергию в электрическую.Давайте проясним здесь, что они не создают энергии и не производят больше электрической энергии, чем количество механической энергии, используемой для вращения лопастей ротора. Чем больше «нагрузка» или электрическая нагрузка на генератор, тем больше механической силы требуется для вращения ротора. Вот почему генераторы бывают разных размеров и производят разное количество электроэнергии.

В случае «ветряного генератора» ветер давит прямо на лопасти турбины, что преобразует линейное движение ветра во вращательное движение, необходимое для вращения ротора генератора, и чем сильнее ветер толкает, тем больше электрическая энергия может быть произведена.Тогда важно иметь хорошую конструкцию лопастей ветряной турбины, чтобы извлекать как можно больше энергии из ветра.

Все электрические турбогенераторы работают из-за эффектов движения магнитного поля мимо электрической катушки. Когда электроны проходят через электрическую катушку, вокруг нее создается магнитное поле. Точно так же, когда магнитное поле движется мимо катушки с проволокой, в катушке индуцируется напряжение, как определено законом магнитной индукции Фарадея, заставляя электроны течь.

Простой генератор с использованием магнитной индукции

Тогда мы можем видеть, что при перемещении магнита мимо одиночной проволочной петли, напряжение, известное как и ЭДС (электродвижущая сила), индуцируется внутри проволочной петли из-за магнитного поля магнита. Когда напряжение индуцируется через проволочную петлю, электрический ток в форме электронного потока начинает течь по петле, генерируя электричество.

Но что, если бы вместо одной отдельной проволочной петли, как показано, у нас было бы много петель, намотанных вместе на одном и том же каркасе, чтобы сформировать катушку из проволоки, гораздо большее напряжение и, следовательно, можно было бы генерировать при том же количестве магнитного потока.

Это связано с тем, что магнитный поток проходит через большее количество проводов, создавая большую ЭДС, и это основной принцип закона электромагнитной индукции Фарадея, и генератор переменного тока использует этот принцип для преобразования механической энергии, такой как вращение ветряной турбины или гидротурбины. , в электрическую энергию, создающую синусоидальную форму волны.

Итак, мы видим, что есть три основных требования к производству электроэнергии, а именно:

  • Катушка или набор проводников
  • Система магнитного поля
  • Относительное движение между проводниками и полем

Тогда, чем быстрее вращается катушка с проволокой, тем больше скорость изменения магнитного потока, отсекаемого катушкой, и тем больше индуцированная ЭДС внутри катушки.Точно так же, если магнитное поле становится сильнее, наведенная ЭДС увеличится при той же скорости вращения. Таким образом: Индуцированная ЭДС Φ * n. Где: «Φ» — это поток магнитного поля, а «n» — скорость вращения. Также полярность генерируемого напряжения зависит от направления магнитных линий потока и направления движения проводника.

Существует два основных типа электрического генератора и генератора переменного тока: генератор с постоянным магнитом и генератор с возбужденным полем , причем оба типа состоят из двух основных частей: статора и ротора .

Статор — это «неподвижная» (отсюда и название) часть машины, и в его конструкции может быть либо набор электрических обмоток, образующих электромагнит, либо набор постоянных магнитов. Ротор — это часть машины, которая «вращается». Опять же, ротор может иметь вращающиеся выходные катушки или постоянные магниты. Как правило, генераторы и генераторы переменного тока, используемые для генераторов ветряных турбин, определяются тем, как они создают свой магнетизм, будь то электромагниты или постоянные магниты.

Нет реальных преимуществ и недостатков обоих типов. Большинство бытовых ветряных генераторов на рынке используют постоянные магниты в конструкции своего турбогенератора, что создает необходимое магнитное поле при вращении машины, хотя некоторые действительно используют электромагнитные катушки.

Эти высокопрочные магниты обычно изготавливаются из редкоземельных материалов, таких материалов, как неодимовое железо (NdFe) или самарий-кобальт (SmCo), что устраняет необходимость в обмотках возбуждения для обеспечения постоянного магнитного поля, что приводит к более простой и прочной конструкции .Обмотки намотки поля имеют то преимущество, что их магнетизм (и, следовательно, мощность) согласовывается с изменяющейся скоростью ветра, но для создания необходимого магнитного поля требуется внешний источник энергии.

Теперь мы знаем, что электрический генератор обеспечивает средство преобразования энергии между механическим крутящим моментом, создаваемым лопастями ротора, называемым первичным двигателем, и некоторой электрической нагрузкой. Механическое соединение генератора ветровой турбины с лопастями ротора осуществляется через главный вал, который может быть либо простым прямым приводом, либо с помощью редуктора для увеличения или уменьшения скорости генератора относительно скорости вращения лопастей.

Использование редуктора позволяет лучше согласовать скорость генератора со скоростью турбины, но недостатком использования редуктора является то, что как механический компонент он подвержен износу, что снижает эффективность системы. Однако прямой привод может быть более простым и эффективным, но вал и подшипники ротора генератора подвергаются действию полного веса и вращательной силы лопастей ротора.

Кривая выходной мощности ветряного генератора

Таким образом, тип ветряного генератора, необходимый для конкретного местоположения, зависит от энергии, содержащейся в ветре, и характеристик самой электрической машины.Все ветряные турбины имеют определенные характеристики, связанные со скоростью ветра.

Генератор (или генератор переменного тока) не будет производить выходную мощность до тех пор, пока его скорость вращения не превысит заданную скорость ветра, когда сила ветра на лопасти ротора достаточна для преодоления трения, а лопасти ротора разгоняются достаточно для запуска генератора. производя полезную мощность.

Выше этой скорости включения генератор должен вырабатывать мощность, пропорциональную кубу скорости ветра (K.V 3 ), пока не достигнет максимальной номинальной выходной мощности, как показано.

Выше этой номинальной скорости ветровые нагрузки на лопасти ротора будут приближаться к максимальной прочности электрической машины, и генератор будет вырабатывать максимальную или номинальную выходную мощность, когда будет достигнуто окно номинальной скорости ветра. Если скорость ветра продолжит увеличиваться, генератор ветряной турбины остановится в точке отключения, чтобы предотвратить механическое и электрическое повреждение, что приведет к нулевой выработке электроэнергии. Тормозом для остановки генератора и его повреждения может быть либо механический регулятор, либо электрический датчик скорости.

Купить ветрогенератор, такой как ECO-WORTHY 400 Watt Wind Turbine Generator, для зарядки аккумулятора непросто, и необходимо учитывать множество факторов. Цена только одна из них. Обязательно выберите электрическую машину, соответствующую вашим потребностям. Если вы устанавливаете систему, подключенную к сети, выберите генератор сетевого напряжения переменного тока. Если вы устанавливаете систему на батарейках, ищите генератор постоянного тока для зарядки батарей. Также учитывайте механическую конструкцию генератора, такую ​​как размер и вес, рабочая скорость и защита от окружающей среды, поскольку он будет проводить весь свой срок, установленный на вершине столба или башни.

В следующем руководстве по ветряным генераторам мы рассмотрим машины постоянного тока и то, как мы можем использовать генератор постоянного тока для производства электроэнергии из энергии ветра. Чтобы узнать больше о «Генераторах ветряных турбин» или получить дополнительную информацию о ветровой энергии о различных доступных ветроэнергетических системах, или изучить преимущества и недостатки ветровой энергии, нажмите здесь, чтобы получить копию одного из лучших «Ветряных турбин» Гиды »прямо сейчас с Amazon.

Ветряная турбина и ветряные генераторы

Продукты Цена Сумма Информация
Ветряная турбина Tornado 700S 589.00EUR
[вкл. 19% НДС не вкл. Доставка ]

Поставка:
нет в наличии

Ветряная турбина Tornado 700S Высокая эффективность даже при низкой ветровой энергии Более высокий заработок при более низкой скорости ветра. Это возможно? Да, это ответ на этот вопрос. Не максимальная мощность ветра …

Ветряная турбина Air30 1 042.00EUR
[вкл. 19% НДС не вкл. Доставка ]

Поставка:
нет в наличии

Ветрогенератор Air 30 AIR 30: получение удовольствия от возобновляемых источников энергии AIR 30 — лучший выбор для надежного источника энергии для небольших домиков, домов на колесах, кемпинга, садового освещения и хобби. Программное обеспечение, оптимизированное для AIR 30s …

Ветрогенератор AIR40 1,199.00EUR
[вкл. 19% НДС не вкл. Доставка ]

Доставка:
Между Пн, 18 января и Ср, 20. Январь с сегодняшним платежом.

AIR 40 Ветряная турбина AIR 40: тихая и надежная автономная энергия AIR 40 — лучший выбор для обеспечения энергией автономных домов, водоснабжения, освещения, телекоммуникаций и любого другого места, где требуется электричество и …

Air Breeze — Земля 769.00EUR
[вкл. 19% НДС не вкл. Доставка ]

Поставка:
нет в наличии

Air Breeze — Земля ЭФФЕКТИВНОСТЬ = ЭНЕРГИЯ Самый мощный ветрогенератор в своем классе. Совершенно новый Air Breeze . Тише, эффективнее и точнее, чтобы обеспечить больше …

Air Breeze — морской 1559.00EUR
[вкл. 19% НДС не вкл. Доставка ]

Поставка:
нет в наличии

Air Breeze — морской ЭФФЕКТИВНОСТЬ = ЭНЕРГИЯ Самый мощный ветрогенератор в своем классе. Совершенно новый Air Breeze . Тише, эффективнее и точнее, чтобы обеспечить больше …

Ветрогенератор Air-X Marine 1559.00EUR
[вкл. 19% НДС не вкл. Доставка ]

Доставка:
Между Вт, 26. Янв. И Чт, 28. Янв. с сегодняшним платежом.

Морская ветряная турбина Air-X включает выключатель остановки Морской …

Ветряная турбина Air-X Land 769,00EUR
[вкл.19% НДС не вкл. Доставка ]

Поставка:
нет в наличии

Air-X Land Представляем последнюю эволюцию в малых ветряках. AIR-X основан на том, что …

Ветряная мельница Rutland WG914i 899,00EUR
[вкл. 19% НДС не вкл. Доставка ]

Доставка:
Между Пн, 18.Январь и Ср, 20. Январь с сегодняшней оплатой.

Ветряная турбина Rutland WG 914i Ветряная турбина Rutland WG914i — популярное зрелище в маринах, тысячи из них находятся в используется во всем мире, владельцы лодок любят его чистые, аэродинамические линии и бесшумность …

Ветряная турбина Rutland WG 504 499,00EUR
[вкл.19% НДС не вкл. Доставка ]

Доставка:
Между Пн, 18 января и Ср, 20. Январь с сегодняшним платежом.

Ветряная турбина Rutland 504 Маленькая ветряная мельница для ветроэнергетики Ветряные турбины Rutland просто преобразуют свободную и избыточную энергию ветра в энергию, хранящуюся в вашем батареи. Питание 12В готово …

Ветряная турбина Skystream 3.7 6,400,06EUR
[вкл. 19% НДС не вкл. Доставка ]

Поставка:
нет в наличии

Ветряная турбина Skystream 3,7 Возьмите на себя ответственность за потребности вашего дома в энергии Возьмите под свой контроль энергетические потребности вашего дома, используя бесплатный ресурс — ветер. Как? С жилым …

Ветряная турбина Boily 400 639.00EUR
[вкл. 19% НДС не вкл. Доставка ]

Поставка:
нет в наличии

ВЕТРОВАЯ ТУРБИНА КАРПЕЙНОГО ВОЗДУХА 400 Вт . Малая ветряная турбина большой мощности. Очень похоже на Air X. Boily AIR оснащен микропроцессорной технологией, увеличивающей производительность. Тихо …

Кабель ветряной турбины Xtrem 3×6.5 мм 3,20EUR
[вкл. 19% НДС не вкл. Доставка ]

Доставка:
Между ср, 13 января и пятница, 15 января с сегодняшним платежом.

Солнечный кабель Прочность и гибкость Xtrem до предела Благодаря исключительной гибкости и механической прочности Xtrem …

Воздушные лезвия Air Breeze 149.00EUR
[вкл. 19% НДС не вкл. Доставка ]

Поставка:
нет в наличии

Набор лезвий Air Breeze Land / Marine В запасной комплект входит набор из трех сбалансированных ножей.

Wind Baldes Air-X / Air 403 149,90EUR
[вкл. 19% НДС не вкл. Доставка ]

Поставка:
нет в наличии

Wind Blade Air-X / Air 403 Вы можете заказать комплект лезвий (состоящий из трех лезвий) для Air-X или Air 403 со сменным носиком.

Лопасти ветра 69,00EUR
[вкл. 19% НДС не вкл. Доставка ]

Поставка:
нет в наличии

Виндфлгель Fr den Eigenbau von Windgeneratoren Lnge des eines einzelnen Flgels 59cm all 3 geben einen Rotordurchmesser von 120cm. Lieferumfang: 1 набор из 3 дополнительных предметов…

Главный выключатель 50A 20,50EUR
[вкл. 19% НДС не вкл. Доставка ]

Поставка:
нет в наличии

Главный выключатель 50А для ветряных турбин Air-X Главный выключатель для отключения аккумулятора Air-X.

Пневматический выключатель остановки X 403 29.90EUR
[вкл. 19% НДС не вкл. Доставка ]

Доставка:
Между ср, 13 января и пятница, 15 января с сегодняшним платежом.

Stop Schalter AIR-X / AIR403 50 А Mit diesem 50A DC Schalter knnen Sie Ihren Air-X bzw. Air403 Ветрогенератор jederzeit anhalten. Einige Installationen der AIR-X marine knnen einen …

Анализатор мощности ваттметра 69.90EUR
[вкл. 19% НДС не вкл. Доставка ]

Поставка:
нет в наличии

НОВЫЙ ваттметр и анализатор мощности ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ Работает от 4,8 — 60 В (до 0 В с вспомогательной батареей). Измерения: 0 — 130 А, разрешение 0,01 А 0 — 60 В, разрешение 0,01 В 0 — 6554 Вт, разрешение 0,1 Вт 0 ..

Windkraft — Ja Bitte! 5.00EUR
[вкл. 7% НДС не вкл. Доставка ]

Доставка:
Между ср, 13 января и пятница, 15 января с сегодняшним платежом.

Dieses Bauheft hat beinhaltet 4 тел .: Fachkunde от Windradbastler

Windkraft — Ganz einfach! 4.00EUR
[вкл. 7% НДС не вкл. Доставка ]

Доставка:
Между ср, 13 января и пятница, 15 января с сегодняшним платежом.

Zwei Bauanleitungen fr kleine Windrder Dieses Heft beinhaltet die Bauanleitung fr zwei kleine, besonders einfache Windrder. Die Plne sind …

Windkraft — Echt stark! 4.00EUR
[вкл. 7% НДС не вкл. Доставка ]

Доставка:
Между ср, 13 января и пятница, 15 января с сегодняшним платежом.

Inhalt des Heftes Windkraft 3 Windkraft echt stark! 1 Zur Bauweise dieses Windrades Planung: Был принесен Soll das Windrad? 4 Standort, Repeller Gre и …

Beaufort-Skala mit Windart und Beschreibung Позвоните, чтобы узнать цену

Поставка:
нет в наличии

Beaufort-Skala mit Windart und Beschreibung Windstrke

Ветряная турбина Rutland WG 503 399.00EUR
[вкл. 19% НДС не вкл. Доставка ]

Поставка:
нет в наличии

Ветряная турбина Rutland WG 503 Совершенно уникальная мини-ветряная зарядка, разработанная для моряков выходного дня. Rutland 503 идеально подходит для капельной зарядки аккумуляторов на борту судов длиной менее 10 м …

Ветряная турбина 400 Вт, 12 В 469.90EUR
[вкл. 19% НДС не вкл. Доставка ]

Поставка:
нет в наличии

Благодаря своей компактной конструкции, запатентованным лопастям ротора и недавно разработанному генератору, этот ветрогенератор подходит для лодок, коттеджей, мобильных домов и освещения, просто гениально применимо ….

Ветряная турбина, 600 Вт, 24/48 В 639.00EUR
[вкл. 19% НДС не вкл. Доставка ]

Поставка:
нет в наличии

Благодаря своей плавности, наш ветрогенератор мощностью 600 Вт также можно использовать в домах для экономии энергии. При высокой скорости ветра лопасти ротора специальной конструкции динамически деформируются, поэтому скорость ветра низкая ….

1 кВт ветряная турбина 24 В 1 095.00EUR
[вкл. 19% НДС не вкл. Доставка ]

Поставка:
нет в наличии

Мы поставляем ветрогенератор мощностью 1000 Вт в комплекте с крепежными материалами: мачта 6 м, стальной трос и контроллер заряда 24 В. Оценка мощности 1кВт Максимум. номинальная мощность 1,2кВт …

Ветряная турбина 2 кВт, 48 В 1850.00EUR
[вкл. 19% НДС не вкл. Доставка ]

Поставка:
нет в наличии

Мы поставляем ветрогенератор мощностью 2000 Вт с полным комплектом крепежных материалов: мачтой 9 м, стальным тросом и контроллером заряда 48 В. Оценка мощности 2кВт Максимум. номинальная мощность 2,5кВт …

Ветряная турбина 5 кВт, 48 В 6 080.Мачта 9 м, стальной трос и контроллер заряда 48 В. Оценка мощности 5кВт Максимум. номинальная мощность 5,5кВт …

Ветряная турбина мощностью 10 кВт 240 В 13 600,00EUR
[вкл. 19% НДС не вкл. Доставка ]

Поставка:
нет в наличии

Мы поставляем наш ветрогенератор мощностью 10000 Вт с полным комплектом крепежных материалов: мачтой 16 м, стальным тросом и многоступенчатым инвертором 240 В.Оценка мощности 10кВт Максимум. номинальная мощность …

Ветряная турбина мощностью 20 кВт, 480 Вольт 29 600,00EUR
[вкл. 19% НДС не вкл. Доставка ]

Поставка:
нет в наличии

Мы поставляем ветрогенератор мощностью 20000 Вт с полным комплектом крепежных материалов: мачта 18 м, фундамент и многоступенчатый инвертор 480 В.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *