Виды нейтрали в электрических сетях: Напряжение смещения нейтрали при различных типах нагрузок

Содержание

Напряжение смещения нейтрали при различных типах нагрузок

Как уже писалось (например, здесь) нейтралью называют общую точку обмоток электрических машин при соединении в схему звезда, при соединении в схему треугольник для получения нейтральной точки можно использовать схему “скользящий треугольник”.

Синонимом понятия “смещение нейтрали” является выражение “перекос фаз”. Оба эти словосочетания используются в лексиконе и профессиональной среде электриков.

В данной статье будем рассматривать смещение нейтрали у нагрузки. Для начала выведем формулу для расчета напряжения смещения нейтрали, для этого нарисуем схему замещения трехфазной сети, где в обычном режиме напряжения фаз представляют собой синусоиды, которые при равномерной нагрузке фаз сдвинуты на 1200 и в любой момент времени их сумма равна 0. В нашем же случае, нагрузка будет неравномерная, что приведет к смещению нейтрали, что можно увидеть по рисунку с векторными диаграммами.

Напряжение смещения нейтрали определяется по следующей формуле:

в формуле выше:

  • Еа, Ев, Ес - ЭДС источника питания
  • Уа, Ув, Ус - проводимости фаз потребителя, напомним, что проводимость - величина обратная полному сопротивлению, то есть У=1/Z
  • 00’ - эти точки соответствуют нулю нагрузки и нулю генератора (трансформатора), питающего данную нагрузку

Под смещением нейтрали понимают, что между нулевым проводом источника и нагрузки возникает напряжение, а по нулевому проводу течет ток. Но, это в случае, если нулевые провода соединены. Если же нулевой провод источника и нагрузки не соединен, то смещение нейтрали может вызвать нарушение магнитного равновесия в трансформаторе.

Случай 1 - нагрузка однородная равномерная по трем фазам

Идеальный случай (симметричная нагрузка), при котором смещения нейтрали не происходит, сумма напряжений в любой момент времени равна нулю, линейные трех фаз составляют ~380В, фазные ~220В. Под однородностью нагрузки понимается, что она носит либо активный, либо индуктивный, либо емкостной характер по всем трем фазам, как сказали бы электроники - элемент “или”. В нашем примере верным будет утверждение, что Xa=Xb=Xc.

Случай 2 - нагрузка однородная и неравномерная по трем фазам

При данном стечении обстоятельств, происходит смещение нейтрали, которому соответствует отрезок 00’ на рисунке сверху слева, который и создает ток в нулевом проводе. Смещения в ту или иную сторону точки 0’ от точки 0 будет зависеть от характера нагрузки. В данном примере нагрузка однородная, но неравномерная, различающаяся по величине, но не по типу.

Случай 3 - нагрузка по трем фазам разнородная

В случае с разнородной неравномерной нагрузкой нейтральная точка нагрузки (0’) вышла за пределы треугольника. Значения же фазных напряжений на нагрузке превышают это значение на источнике питания в несколько раз. Однако, не следует забывать, что это смещение происходит только на нагрузке, а не на источнике питания.

Неоднородность нагрузки будет влиять на источник питания (трансформатор или генератор), только, если относительно источника эта нагрузка будет велика. В этом случае может произойти нарушение магнитной устойчивости трансформатора.

Следует помнить, чем выше нагрузка, тем большее влияние на систему она может оказывать, аналогично, как большие двигатели серьезнее просаживают напряжение на шинах при перерывах питания на электростанциях.

Сохраните в закладки или поделитесь с друзьями

Самое популярное

это... Определение, устройство и назначение

Электроэнергетика – это сложный промышленный комплекс, который состоит из множества составных частей. Чтобы каждый элемент работал правильно и выполнял поставленные задачи, необходимо точное знание и понимание физических процессов, которые протекают в силовом оборудовании. Некоторые из них легко объяснить, поэтому предлагаем познакомиться с таким понятием, как «нейтраль».

Общее назначение нулевого провода в обмотках трансформатора

Нейтраль – это общая, нулевая точка соединение проводника в трехфазных трансформаторах или генераторах. На текущий момент существует 4 основных разновидности присоединения нулевой точки:

  1. Изолированная. Этот тип характеризуется отсутствием нейтрали. Основной схемой соединения для представленной сети является треугольник. При однофазных замыканиях на землю на рабочих фазах не чувствуют изменений в энергопотреблении. Подобная разновидность применяется в распределительных сетях 6-35 кВ.
  2. Резонансно-заземленная. Указанный вариант предполагает использование заземления нулевой точки обмоток трансформатора или генератора через дугогасящие катушки или реакторы (ДГК, ДГР). Наличие специализированного оборудования компенсирует повышающийся уровень тока, позволяя избежать более сложных, межфазных повреждений.
  3. Глухозаземленная. Самый распространенный тип нейтрали, который используется в сетях бытового потребления. Обмотка трансформаторов по низкой стороне выполняется соединением разомкнутая звезда, а нулевая точка заземляется через контур заземления трансформатора или трансформаторной подстанции. При повреждениях на линии или возникновении однофазного замыкания создается потенциал относительно земли, что приводит в действие защиту, отключающую линию.
  4. Эффективно-заземленная. Разновидность заземленной нейтрали, которая используется в высоковольтных сетях 110 кВ и выше. Нулевая точка силовых трансформаторов и потенциал замыкания выносится на землю. Для повышения эффективности работы защит используется дополнительное оборудование заземлитель нейтрали одноколонковый (ЗОН). Положение коммутационного аппарата определяется режимными указаниями. Для распределительных сетей 6-35 кВ используется заземление через низкоомный резистор.

Типы соединения обмоток силовых трансформаторов

Как отмечалось выше, нейтраль – это соединение нулевого проводника трехфазного силового трансформатора или генератора. Чтобы определить тип заземления, достаточно посмотреть на схему энергетического оборудования. Для изолированной нейтрали принципиальная схема – это треугольник.

Остальные варианты реализованы через заземление нулевого проводника на землю, ДГК, низкоомный резистор. Последние в основном используются на подстанциях, которые преобразуют электрическую энергию высокого напряжения на низкое, потребительское. Принципиальная схема – звезда.

Изолированная нейтраль в электрических сетях

Применяется в распределительных сетях 6-35 кВ. Что касается физических проявлений изолированной нейтрали, напряжение возрастает до линейного. Основное назначение подобного типа связывается со следующими моментам:

  1. Сеть не отключается, продолжает работать. Потребители на фазах без замыкания используют однофазные бытовые приборы до отключения линии. Перекос по напряжению в сетях 0,4 кВ отсутствует, в сетях 6-35 увеличивается до линейного.
  2. Реализация таких сетей в разы дешевле в обслуживании, что позволяет экономить значительные средства на распределение электрической энергии.
  3. Высокая надежность работы, особенно на воздушных линиях электропередач. Падение ветки не отключит фидер и обеспечит его работоспособность.

Главными недостатками изолированных сетей считаются:

  1. При однофазном замыкании сеть продолжает работать, защиты не срабатывают, что иногда приводит к несчастным случаям с населением.
  2. Наличие феррорезонансных процессов и возникновение реактивной мощности, которая ухудшает качество электрической энергии.

Резистор и напряжение 110 кВ и выше: как исполнена нулевая точка?

Эффективное заземление – это особый вид нулевого проводника, присоединенного к специализированному оборудования, который применяется в электроустановках выше 1 кВ. Для распределительных сетей используется вариант с заземлением через низкоомные резисторы, которые обеспечивают отключение линии при однофазном замыкании на землю без выдержки времени.

Линии высокого напряжения 110 кВ и выше также используют представленный тип нейтрали, что обеспечивает быстроту срабатывания защит. Для повышения чувствительности работы «релейки» у каждого силового трансформатора имеется специальное оборудование ЗОН. Одноколонковый заземлитель нейтрали обеспечивает также защиту от перегруза.

Заземление через низкоомные резисторы

Использование низкоомных резисторов считается идеальным решением в плане безопасности людей в распределительных сетях, а также в вопросах сохранения изоляции кабельных линий. Реализация защит предполагает выведение нулевой точки на специализированное оборудование, которое обладает меньшим омическим сопротивлением и дает сигнал на отключение линии. Фидер отключается с минимальной выдержкой времени, что является одним из достоинств. К прочим необходимо отнести:

  • Первое, это нейтраль, которая при появление «земли» точно определяет поврежденное направление и отключает требуемую линию.
  • Второе: нет необходимости в дополнительных расчетах и составлении режимных карт при ограниченных возможностях кольцевания распределительных сетей.

Важными недостатками такого типа заземления:

  1. Не эффективен при больших токах замыкания на землю, так как появляются проблемы на подстанциях, где установлены низкоомные резисторы.
  2. Низкая эффективность на ВЛ, а также на линиях большой протяженности. В первом случае малейшее приближение веток деревьев станет причиной отключения фидера. Особенно актуально с потребителями 1 особой, 1 и 2 категории.
  3. Лишние отключения, которые возникают из-за неправильного срабатывания защит (отсутствие АПВ), предполагает простои в потреблении, материальные потери энергоснабжающей организации.

Глухое заземление силовых трансформаторов на землю

Все, что связано с распределительной сетью 0,4 кВ – это нейтраль с глухим заземлением на землю. Представленному типу отводится особое место и роль в плане безопасности. При появлении короткого замыкания на землю срабатывает защита, в частности, перегорают ПН-2 или отключается автомат. Относительно такой сети разрабатываются и защиты для проводки в домах и квартирах. Ярким примером является действие УЗО, обеспечивающее выявление токов утечки.

Основными преимуществами такого типа нейтрали считаются:

  1. Идеально подходит для распределения электрической энергии, обеспечивает работоспособность бытового и специализированного однофазного/трехфазного оборудования.
  2. Схема защиты не требует специализированного и дорогого оборудования. Технические средства по типу предохранителей или автоматов легко справляются с глухим замыканием на землю.

К недостаткам относится:

  1. Защиты нечувствительны при дальнем КЗ. Необходимо точный расчет омического сопротивления петли фазы-нуль и правильный выбор автоматов или предохранителей.
  2. Срабатывания не возникает при отсутствии замыкания на землю. Это представляет опасность для человека, что корректируется через использование изолированных проводов.

Резонансно-заземленные или компенсированные нейтрали

Резонансно-заземленные нейтрали применяются в основном в распределительных сетях напряжением 6-35 кВ, где схема подключения выполняется кабельными линиями. Присоединение нулевой точки осуществляется через специальные плунжерные или регулируемые трансформаторы РУОМ. Подобная система позволяет определить индуктивность в сети при однофазном замыкании, что обеспечивает компенсацию уровня тока.

Нейтраль такого типа снижает риск развития аварии, переход однофазного замыкания в межфазное. Достоинствами для напряжения 6-35 кВ являются:

  1. Основное преимущество связывается с назначением оборудования. Высокая степень защиты изоляции кабельных линий при правильной подстройке.

Недостатками сети с таким типом нейтрали считаются:

  1. Трудность настройки. Может возникнуть недокомпенсация или перекомпенсация, что не позволит правильно использовать оборудование. Для выстраивания необходим расчет индуктивности токов в зависимости от длины линии, мощности трансформаторов. В случае изменения схемы или добавления энергооборудования, плунжерные трансформаторы не всегда справляются с поставленными задачами.
  2. Неправильно настроенное оборудование и высокий износ кабельных линий приводит к цепной реакции, которая предполагает выход из строя нескольких слабых участков сети.
  3. Повышение технических потерь, которые возникают во время работы, а также проблемы безопасности. Компенсация тока на подстанции реализовывается относительно земли.
  4. Невозможность определения линии, где произошло замыкание. Процесс выбора фидера с «землей» осуществляется через сравнение токов гармоник, что не всегда считается эффективным средством получения достоверной информации.

Нулевой проводник и дугогасящая катушка, реактор

Разница резонансно-заземленной нейтрали связывается с используемым оборудованием. Как отмечалось выше, нулевая точка может располагаться на дугогасящей катушке плунжерного типа или на регулируемом реакторе. Основные отличия связываются со следующими моментами:

  1. ДГК предполагает компенсацию через отстроенную систему плунжерных трансформаторов. Настройка реализована через расчеты реальной сети службой релейной защиты. При возникновении замыкания на землю происходит компенсация токов, основанная на индуктивности. Процесс не регулируется и не подстраивается, что является неприятным моментом в случае появления «земли» в нескольких точках разных линий.
  2. ДГР – более современное оборудование, которое предполагает использование автоматических систем определения индуктивности сети. Среди популярных вариантов считаются реакторы типа "РУОМ" с подстройкой "САМУР". Реализация опроса выполняется в реальном времени, что обеспечивает работоспособность даже при нескольких повреждениях с замыканием на землю.

Неважно глухозаземлена нейтраль или изолирована, применение каждого типа найдет место в современной электроэнергетике. А знание особенностей позволит разобраться с физической сущностью вопроса.

Режимы нейтралей электрических сетей

Стр 1 из 7Следующая ⇒

Режимы нейтралей электрических сетей

7.1 Классификация электрических сетей по способу заземления нейтрали.

7.2. Свойства сетей с глухозаземленной нейтралью. Свойства сетей с эффективно-заземленной нейтралью

7.3 Токи замыкания на землю в электрических сетях с изолированной нейтралью.Достоинства электрических сетей с изолированной нейтралью.

7.4 Недостатки электрических сетей с изолированной нейтралью.

7.5 Свойства электрических сетей с нейтралью, заземленной через дугогасящий реактор.

7.6 Свойства электрических сетей с нейтралью, заземленной через активное сопротивление

Сети с нейтралью заземленной через дугогасящий реактор

 

Сети с заземлением нейтрали через дугогасящий реактор решают одну проблему сетей с изолированной нейтралью, а именно, исключить или снизить вероятность появления опасных по величине дуговых перенапряжений. Это возможно в том случае, если ток в месте замыкания снизить. до такой величины, чтобы исключить или снизить вероятность появления перемежающейся дуги. В идеале, лучше ток в месте замыкания снизить до нуля. Тогда вообще не будет тока в месте замыкания, а следовательно, и электрической дуги.

Режим заземления нейтрали через дугогасящий реактор используется в России с начала 60 – х годов 20-го века. В соответствии с ПУЭ и ПТЭЭП с нейтралью, заземленной через дугогасящий реактор в России работают сети 6-35 кВ, в которых токи однофазного замыкания на землю превышают значения, допустимые для сетей с изолированной нейтралью. Это в основном кабельные сети больших и средних городов и крупных промышленных предприятий. Использование компенсации возможно и при токах, меньших, чем это требуется по ПУЭ и ПТЭЭП, например, в сетях насосных и компрессорных станций.

Идея сетей с нейтралью, заземленной через дугогасящий реактор – в снижении тока в месте повреждения путем компенсации емкостного тока замыкания индуктивным током от специальной катушки индуктивности. По имени разработчика ее в первые годы называли катушкой Петерсена. Для снижения токов в месте замыкания в нейтраль одного из трансформаторов сети включается реактор, который называют дугогасящим реактором (ДГР) или дугогасящей катушкой (ДГК).

Дугогасящий реактор подключают к сети с помощью специального силового трансформатора (Т-ДГР на рисунке 7.17) с соединением обмоток звезда-треугольник. Нагрузка к трансформатору не подключается.

Рисунок 7.17 – Схема подключения ДГР

В нормальном режиме при симметричной сети напряжение нейтрали трансформатора Т-ДГР по отношению к земле равно нулю и по ДГР ток не протекает. В случае повреждения изоляции одной из фаз электрической сети и возникновения замыкания на землю, образуется замкнутый контур, содержащий ДГР, фазную обмотку трансформатора, поврежденную фазу и место повреждения (рисунок 7.18).

Рисунок 7.18 – Однофазное замыкание на землю в сети с компенсированной нейтралью

 

Напряжение поврежденной фазы при однофазных замыканиях на землю во всей сети снижается до нуля (рисунок 7.15). Например, при замыкании на землю фазы А снизится до нуля напряжение UА, и исчезнет напряжение в обмотке фазы А трансформатора Т-ДГР. При этом на нейтрали трансформатора Т-ДГР появится напряжение (смещение нейтрали) равное по величине фазному напряжению фазы А и противоположно ему направленное. Напряжение нейтрали по отношению к земле становится равным UNЗ = -UА

Под действием этого напряжения через ДГР и место повреждения будет протекать ток, который носит индуктивный характер. Пренебрегая сопротивление трансформатора Т-ДГР и продольными сопротивлениями линии для тока через ДГР, вследствие их малости, можно записать:

(7.9)

В результате в месте повреждения будет протекать сумма двух токов: индуктивного IL и емкостного Ic, обусловленного суммарной емкостью всей сети. При этом ток в месте повреждения будет равен векторной сумме токов IL и Ic,

(7.10)

 

где IС - емкостной ток замыкания на землю, для которого в соответствии с выражением (7.5) можно записать:

(7.11)

Рассмотрим векторную диаграмму токов (рисунок 7.19).

 

Рисунок 7.19 – Векторная диаграмма токов при однофазном замыкании на землю в сети с компенсированной нейтралью

Ток IL отстает по фазе от напряжения UNЗ на 900. Так как токи IL и Ic сдвинуты по фазе на 180°, то ток в месте замыкания будет равен разности их абсолютных значений

(7.12)

Конструкция ДГР предусматривает возможность регулирования величины индуктивности. Регулирование выполняется либо изменением числа витков обмотки, либо изменение величины воздушного зазора в сердечнике. Так как реактор ДГР управляемый, то можно изменять величину индуктивного тока. Установив индуктивный ток равным емкостному току (IL=Ic), можно снизить ток замыкания до нуля IЗ=0. Такая настройка реактора называется резонансной. При этом сеть называют резонансно - скомпенсированной. Именно такая резонансная настройка ДГК рекомендуется в ПУЭ и ПЭЭП.

Однако компенсируется только емкостной ток частотой 50 Гц. Поэтому в месте замыкания протекают небольшой активный ток, обусловленный активным сопротивление ДГР, и могут протекать токи высших гармоник.

В процессе работы сети возможно изменение схемы вследствие включения или отключения присоединений. Такие изменения приводят к изменению емкостного тока. Поэтому в процессе работы резонансная настройка может нарушаться. Для ее поддержания необходима автоматическая настройка ДГР. Но ее реализация достаточно сложная. Чаще используют ручную настройку по расчетному значению емкостного тока. При этом возможно нарушение резонансной настройки. Степень расстройки компенсации характеризуется коэффициентом:

Правильно используемая компенсация емкостных токов в сетях имеет следующие преиму­щества:

- уменьшается ток через место повреждения до минимальных зна­чений (в пределе до активных составляющих и высших гармоник), при этом снижается вероятность появления перемежающейся дуги, повышается вероятность самопогашения дуги и «заплывания» места повреждения, снижается напряжение шага при растекании токов в земле;

- при степени расстройки компенсации до 5 % ограничиваются перенапряжения, возникающие при дуговых замы­каниях на землю, до значений (2,5—2,6) Uф, безопасных для изоляции эксплуатируемого оборудования и линий;

- за счет большой индуктивности ДГР значительно снижается скорость восстанавливающегося напряже­ния поврежденной фазы в месте повреждения после пога­сания перемежающейся дуги; вследствие этого диэлек­трические свойства места повреждения успевают восстановиться, что снижает вероятность повторных зажиганий дуги.

Перечисленные преимущества компенсации проявляются только при резонансной настройке.

Недостатки.

В сетях с резонансно-компенсированной нейтралью решаются проблема снижения токов в месте повреждения, снижение напряжения шага (но полностью не исключается) и снижения луговых перенапряжений. Другие недостатки сетей с изолированной нейтралью остаются справедливыми и для сетей с резонансно - компенсированной нейтралью, в том числе: повышение напряжения неповрежденных фаз до линейного напряжения; и проблема селективной сигнализации и поиска места повреждения.

Таким образом, у сетей с компенсированной нейтралью можно выделить следующие недостатки.

1) Напряжения неповрежденных фаз при однофазном замыкании повышаются до линейного напряжения.

2) Из-за снижения токов в месте повреждения и в поврежденной линии усложняется проблема определения поврежденной линии (селективной сигнализации) и поиска места повреждения. Более того, компенсация емкостного тока исклю­чает возможность использования про­стого принципа выявления поврежденного фидера по величине и направлению тока нулевой последовательности промышленной частоты. Это создает дополнительные проблемы селективной сигнализации и обусловливает при­менение частот, отличных от промышленной.

3) На практике резонансной настройки не получается. Связано это как со сложностью плавного регулирования индуктивного сопротивления ДГР, так и сложностью выбора критерия автоматической настройки в резонанс. Нет удобной автоматической настройки резонанса. Нет удобных способов измерения емкостных токов. Поэтому на практике часто применяют ручное переключение ДГР, основанной на расчетной величине емкостного тока. Отсутствие резонансной настройки на практике снижает положительные эффекты компенсации.

4) Резонансная компенсация требует почти идеальной симметрии сети, иначе в нормальном режиме возможны значительные смещения нейтрали. Если сеть в нормальном режиме, то по методу двух узлов напряжение на нейтрали по отношению к земле будет:

, (7.13)

где - проводимость дугогасящего реактора; .- емкостные проводимости фаз А, В и С по отношению к земле.

Если сеть симметричная, то емкости, а, следовательно, и емкостные проводимости разных фаз равны между собой:

.

При этом

=0,

и напряжение нейтрали относительно земли будет равно нулю: .

Но на практике симметрии сети может не быть. При этом числитель выражения (7.13) не будет равен нулю: .

В то же время знаменатель выражения (7.13) при резонансной настройке будет близок к нулю:

При этом напряжение на нейтрали (смещение нейтрали) может быть достаточно большим и даже больше фазного напряжения, что . Это снижает качество электрической энергии и делает неприемлемым использование ДГР в несимметричных сетях. Практически приемлемой степенью симметрии обладают только КЛ. В воздушной сети из-за естественной несимметрии проводимостей фаз относительно земли для резонансной настройки могут потребоваться мероприятия по симметрированию сети.

Рисунок 7.22 – Векторная диаграмма токов при однофазном замыкании на землю в сети с нейтралью, заземленной через активное сопротивление

Ток через активное сопротивление совпадает по фазе с напряжением смещения нейтрали UNЗ. Так как токи IR и Ic сдвинуты по фазе на 90°, то ток в месте замыкания будет равен:

 

 

При этом ток в месте замыкания всегда больше, чем емкостной ток сети: Таким образом, заземление нейтрали через резистор позволяет повысить ток замыкания на землю.

Применяются три варианта заземления нейтрали через активное сопротивление: низкоомное; высокоомное; комбинированное.

Низкоомное заземление применяется в тех случаях, когда требуется быстрое отключение поврежденной линии. Ток в нейтрали и в поврежденной линии должен быть достаточным для работы токовых защит. Рекомендуемые значения тока нейтрали от 10 до 100 А. Это позволяет обеспечить необходимую чувствительность простой токовой защиты от однофазных замыканий на землю и существенно сократить время замыкания на землю. При этом уменьшается длительностьгорения перемежающейся дуги, суще­ственно снижается длительность и вероятность перенапря­жений. На ВЛ вместо кабельной вставки появляется возможность установки третьего фазного трансформатора тока (в фазу В) и выполнения трех трансформаторного фильтра тока нулевой последовательности вместо кабельных трансформаторов тока с тороидальным сердечником..

Высокоомное заземление нейтрали применяется тогда, когда по условиям надежности электроснабжения сеть должна длительно работать при однофазном замыкании на землю без отключения поврежденной линии. При этом ток в месте замыкания должен быть такой величины, чтобы исключить появление опасных дуговых перенапряжений. Наличие активной составляющей в токе замыкания снижает величину дуговых перенапряжений. Если отношение активного тока к емкостному будет порядка 1,0, то величина перенапряжений снизится с 3,2 до 2,4 (рисунок 7.23). При этом в месте замыкания не должен превышать 10 А.

 

Рисунок 7.22 - Зависимость кратности перенапряжения ku от отношения активного тока к емкостному

 

Комбинированное заземление применяется в сетях с ДГР. При этом активное сопротивление включается параллельно ДГР.

В настоящее время режим с резистивным заземлением нейтрали в сетях 6-10 кВ выполнен на нескольких газокомпрессорных станциях магистральных газопроводов и насосных станциях нефтепроводов. На газокомпрессорных станциях сопротивление резистора выбрано так, что ток при замыканиях на землю составляет около 40 А.

Для выполнения резистивного заземления нейтрали выпускаются комплектные устройства с трансформатором и резистором для установки в РУ-10 кВ.

 

Режимы нейтралей электрических сетей

7.1 Классификация электрических сетей по способу заземления нейтрали.

7.2. Свойства сетей с глухозаземленной нейтралью. Свойства сетей с эффективно-заземленной нейтралью

7.3 Токи замыкания на землю в электрических сетях с изолированной нейтралью.Достоинства электрических сетей с изолированной нейтралью.

7.4 Недостатки электрических сетей с изолированной нейтралью.

7.5 Свойства электрических сетей с нейтралью, заземленной через дугогасящий реактор.

7.6 Свойства электрических сетей с нейтралью, заземленной через активное сопротивление



Читайте также:

 

Свойства сетей с глухо заземленной нейтралью и с эффективно заземленной нейтралью

⇐ ПредыдущаяСтр 3 из 7Следующая ⇒

С глухозаземленной нейтралью работают электрические сети напряжением 220 кВ и выше Сети напряжением 110 кВ работают с эффективно зазем­ленной нейтралью.

Рассмотрим свойства таких сетей.

В сетях напряжением 220 кВ и выше заземляют нейтрали всех трансформаторов (рисунок 7.4). Разъединители в цепи нейтралей трансформаторов класса 220 кВ и выше не устанавливаются

 

Рисунок 7.4 – Сеть с глухо заземлёнными нейтралями

 

В нормальном режиме работы заземление нейтрали на работу сети не влияет. Влияние режима заземления нейтрали проявляется только при замыканиях на землю.

Рассмотрим однофазное короткое замыкание на землю в точке К. Заземленная нейтраль, линия и место замыкания на землю образуют замкнутый контур через землю. При заземлении нейтралей двух трансформаторов, как это показано на рисунке 7,4, будет два замкнутых контура через землю, в которых протекают токи КЗ Iк1 и Iк2. В месте КЗ токи всех контуров суммируются и через место замыкания протекает суммарный ток КЗ. Величина тока КЗ определяется величиной эквивалентного сопротивления схемы замещения относительно точки КЗ. При этом суммарный ток в месте однофазного КЗ в комплексной форме определяется по выражению:

(7.1)

где Z1Σ, Z0Σ, - эквивалентные (суммарные) сопротивления, прямой и нулевой последовательности; UФ – фазное напряжение.

Ток при трехфазном коротком замыкании.

. (7.2)

 

Эквивалентные сопротивления прямой и нулевой последовательности в сетях 110 кВ и выше могут быть соизмеримы по величине. При этом токи однофазного короткого замыкания могут быть близки по величине к токам трехфазного короткого замыкания. Поэтому сети 110 кВ и выше называют сетями с большими токами замыкания на землю. Большие токи при КЗ на землю – это главное свойство сетей с глухо заземленными и эффективно заземленными нейтралями.

Это и преимущество, и недостаток таких сетей. Преимущество: при большом токе короткого замыкания можно сравнительно просто выявить поврежденную линию, сравнительно просто определить место КЗ и быстро отключить (изолировать) поврежденный элемент.

Недостаток: при большом токе короткого замыкания усложняется работа оборудования. Повышаются требования к термической и динамической стойкости.

Сети 110 кВ и сети напряжением 220 кВ и выше имеют одно важное отличие: воздушные линии напряжением 220 кВ и выше выполняются без ответвлений и не имеют промежуточных отборов мощности. Воздушные линии 110 кВ, в отличие от линий напряжением 220 кВ и выше, имеют многочисленные ответвления к подстанциям промышленных предприятий. При этом от ВЛ-110 кВ через ответвительные подстанции (ПС-3 на рисунке 7.5) получают питание потребители, территориально удаленные от узловых подстанций энергосистемы (ПС-1 и ПС-2 на рисунке 7.5). К одной ВЛ-110 кВ может быть подключено до пяти ответвительных подстанций.

Рисунок 7.5 – Сеть с эффективно заземленной нейтралью

 

При этом число трансформаторов в сети 110 кВ может быть в несколько раз больше, чем в сетях напряжением 220 кВ и выше. Если в сети 110 кВ нейтрали всех трансформаторов заземлить, то при однофазном КЗ на землю будет несколько контуров для токов КЗ. Это приведет к резкому снижению эквивалентного сопротивления нулевой последовательности Z0Σ. Если сопротивление нулевой последовательности снизится до сопротивления прямой последовательности и будет выполнено равенство Z1Σ = Z0Σ, то, в соответствии с (7.1) и (7.2), ток однофазного короткого замыкания будет равен току трехфазного короткого замыкания. Если сопротивление нулевой последовательности станет меньше сопротивления прямой последовательности Z0Σ <Z1Σ, то ток однофазного короткого замыкания в соответствии с (7.1) и (7.2) станет больше тока трехфазного короткого замыкания: Это опасно для термической и динамической стойкости сети и этого стараются не допускать. Для того, чтобы ток однофазного короткого замыкания не превышал тока трехфазного короткого замыкания, у части трансформаторов (Т3 и Т4 на рисунке 7.5) нейтрали разземляют. При этом уменьшается число параллельных контуров и увеличивается эквивалентное сопротивление Z0Σ. Для возможности разземления нейтрали в цепи нейтралей устанавливаются разъединители QS. Сети, в которых часть нейтралей изолированы от земли, а часть заземлены, называют сети с эффективно заземленной нейтралью (это допускается только в сетях 110 кВ).

Разземляют, обычно, нейтрали на ответвительных подстанциях, то есть на ГПП. Принимать решение о разземлении нейтрали на той или иной ГПП могут только диспетчеры районной энергосистемы. Число трансформаторов, нейтрали которых следует разземлить, определяется расчетом.

На рисунке 7.5 приведены векторные диаграммы напряжений в точке однофазного КЗ.

Рисунок 7.6 – Векторные диаграммы напряжений в точке КЗ

 

На рисунке 7.5, а показаны векторы фазных напряжений UА, UВ и UС по отношению к нейтрали трансформатора N. В нормальном режиме потенциал нейтрали по отношению к земле равен нулю. При КЗ на землю фаза А через землю от точки З земли (рисунок 7.4) к нейтрали трансформатора потечет ток КЗ Iк, который отстает от напряжения фазы на угол φ. От тока КЗ в сопротивлении земли между точкой в земле Зв месте замыкания и заземленной нейтралью N появится падение напряжения UЗN. При этом фазные напряжения UВЗ и UСЗ неповрежденных фаз В и С по отношению к земле будут отличаться от фазных напряжений по отношению к нейтрали: UВЗ не равно UВ и UСЗ не равно UС.

Отношение разности потенциалов между неповрежденной фазой и землей при ЗНЗ к разности потенциалов между фазой и землей в этой точке до замыканияназывается коэффициентом замыкания (ПУЭ п.1.2.4). Для электрической сети с эффективно заземленной нейтралью коэффициент замыкания на землю не должен превышать 1,4 (kз ≤ 1,4). Число трансформаторов с разземленной нейтралью выбирается так, чтобы выполнялось условие:

 

. (7.2)

 

Если разъединитель в нейтрали отключен, то при однофазном КЗ на изолированной от земли нейтрали может появиться фазное напряжение. В нормальном режиме напряжение на нейтрали трансформатора по отношению к земле равно нулю. Поэтому для удешевления трансформатора изоляция нейтралей трансформаторов класса 110 кВ выполняется обычно ослабленной. Фазное напряжение на нейтрали п отношению к земле для ослабленной изоляции нейтрали является опасным и может вызвать ее пробой. Схемы защиты нейтрали трансформаторов от перенапряжений приведены на рисунке 7.7. В качестве защитных средств FV применяются разрядники (рисунок 7.7, а) или ограничители перенапряжений (рисунок 7.7, б). Для возможности заземления нейтрали (при необходимости) параллельно разряднику устанавливаются разъединитель QS. Номинальное напряжение разрядника выбирается на класс ниже номинального напряжения сети. Например, если сеть напряжением 110 кВ, то разрядник устанавливают на 55 кВ. Для этого включают последовательно два разрядника на 20 и 35 кВ.

Рисунок 7.7 – Схемы защиты нейтрали трансформатора

 

 



Читайте также:

 

Виды нейтрали в электрических сетях

Режимы работы нейтралей трансформаторов системы электроснабжения

Трансформаторы имеют нейтрали, режим работы или способ рабочего заземления которых обусловлен:

  • требованиями техники безопасности и охраны труда персонала,
  • допустимыми токами замыкания на землю,
  • перенапряжениями, возникающими при замыканиях на землю, а также рабочим напряжением неповрежденных фаз электроустановки по отношению к земле, определяющих уровень изоляции электротехнических устройств,
  • необходимостью обеспечения надежной работы релейной защиты от замыкания на землю,
  • возможностью применения простейших схем электрических сетей.

При однофазном замыкании на землю нарушается симметрия электрической системы: изменяются напряжения фаз относительно земли, появляются токи замыкания на землю, возникают перенапряжения в сетях. Степень изменения симметрии зависит от режима нейтрали .

Режим нейтрали оказывает существенное влияние на режимы работы электроприемников, схемные решения системы электроснабжения, параметры выбираемого оборудования.

Нейтраль сети — это совокупность соединенных между собой нейтральных точек и проводников, которая может быть изолирована от сети либо соединена с землей через малые или большие сопротивления.

Используются следующие режимы нейтрали:

эффективно заземленная нейтраль.

Выбор режима нейтрали в электрических сетях определяется бесперебойностью электроснабжения потребителей, надёжностью работы, безопасностью обслуживающего персонала и экономичностью электроустановок.

Нейтрали трансформаторов трёхфазных электрических установок, к обмоткам которых подключены электрические сети, могут быть заземлены непосредственно, либо через индуктивные или активные сопротивления, либо изолированы от земли.

Если нейтраль обмотки трансформатора присоединена к заземляющему устройству непосредственно или через малое сопротивление, то такая нейтраль называется глухозаземлённой , а сети, подсоединённые к ней, соответственно, – сетями с глухозаземлённой нейтралью .

Нейтраль, не соединённая с заземляющим устройством называется изолированной нейтралью .

Сети, нейтраль которых соединена с заземляющим устройством через реактор (индуктивное сопротивление), компенсирующий ёмкостной ток сети, называются сетями с резонанснозаземлённой либо компенсированной нейтралью .

Сети, нейтраль которых заземлена через резистор (активное сопротивление) называется сеть с резистивнозаземлённой нейтралью .

Электрическая сеть, напряжением выше 1 кВ, в которой коэффициент замыкания на землю не превышает 1,4 (коэффициент замыкания на землю – отношение разности потенциалов между неповреждённой фазой и землёй в точке замыкания на землю другой или двух других фаз к разности потенциалов между фазой и землёй в этой точке до замыкания ) называется сеть с эффективнозаземлённой нейтралью .

Электроустановки в зависимости от мер электробезопасности разделяются на 4 группы:

  • электроустановки напряжением выше 1 кВ в сетях с эффективнозаземленной нейтралью (с большими токами замыкания на землю),
  • электроустановки напряжением выше 1 кВ в сетях с изолированной нейтралью (с малыми токами замыкания на землю),
  • электроустановки напряжением до 1 кВ с глухозаземленной нейтралью,
  • электроустановки напряжением до 1 кВ с изолированной нейтралью.

Режимы нейтрали трехфазных систем

Напряжение, кВРежим нейтралиПримечание
0,23Глухозаземленная нейтральТребования техники безопасности. Заземляются все корпуса электрооборудования
0,4
0,69Изолированная нейтральДля повышения надежности электроснабжения
3,3
6
10
20
35
110Эффективно заземленная нейтральДля снижения напряжения незамкнутых фаз относительно земли при замыкании одной фазы на землю и снижения расчетного напряжения изоляции
220
330
500
750
1150

Системы с глухозаземленной нейтралью – это системы с большим током короткого замыкания на землю. При коротком замыкании место замыкания отключается автоматически. В системах 0,23 кВ и 0,4 кВ это отключение диктуется требованиями техники безопасности. Одновременно заземляются все корпуса оборудования.

Системы 110 и 220 кВ и выше выполняются с эффективно заземленной нейтралью . При коротком замыкании место замыкания также отключается автоматически. Здесь заземление нейтрали приводит к снижению расчетного напряжения изоляции. Оно равно фазному напряжению неповрежденных фаз относительно земли. Для ограничения величины токов короткого замыкания на землю заземляются не все нейтрали трансформаторов (эффективное заземление).

Режимы нейтрали трехфазных систем: а – заземленная нейтраль, б – изолированная нейтраль

Изолированной нейтралью называется нейтраль, не присоединенная к заземляющему устройству или присоединенная через аппараты, компенсирующие емкостный ток в сети, трансформаторы напряжения и другие аппараты, имеющие большое сопротивление.

Система с изолированной нейтралью применяется для повышения надежности электроснабжения. Характеризуется тем, что при замыкании одной фазы на землю возрастает напряжение фазных проводов относительно земли до линейного напряжения, и симметрия напряжений нарушается. Между линией и нейтралью протекает емкостной ток. Если он меньше 5А, то допускается продолжение работы до 2 ч для турбогенераторов мощностью до 150 МВт и для гидрогенераторов – до 50 МВт. Если установлено, что замыкание произошло не в обмотке генератора, а в сети, то допускается работа в течение 6 ч.

Сети от 1 до 10 кВ — это сети генераторного напряжения электрических станций и местные распределительные сети. При замыкании на землю одной фазы в такой системе напряжение неповрежденных фаз относительно земли возрастает до величины линейного напряжения. Поэтому изоляция должна быть рассчитана на это напряжение.

Основное преимущество режима изолированной нейтрали — способность подавать энергию электроприемникам и потребителям при однофазном замыкании на землю.

Недостатком этого режима являются трудности о обнаружении места замыкания на землю.

Повышенная надежность режима (т.е. возможность нормальной работы при однофазных замыканиях на землю, которые составляют значительную часть повреждений электрооборудования) изолированной нейтрали обуславливает обязательное его применение при напряжении выше 1 кВ до 35 кВ включительно, поскольку эти сети питают большие группы электроприемников и потребителей.

С напряжения 110 кВ и выше применение режима изолированной нейтрали становится экономически невыгодным, так как повышение напряжения относительно земли с фазного до линейного требует существенного усиления фазной изоляции. Применение режима изолированной нейтрали до 1 кВ допускается и оправданно при повышенных требованиях к электробезопасности.

Режимы работы нейтрали электроустановок

Различные элементы (генераторы, трансформаторы и т. д.) энергосистем имеют нейтрали, режим работы которых существенно влияет на технико-экономические показатели электрических сетей (уровень изоляции, требования к оборудованию, защита от коротких замыканий и перенапряжений и т. д.) [1] .

Содержание

Общие положения

Случайное замыкание одного из проводов электрической сети с землей может явиться причиной появления значительного тока, протекающего через место повреждения и распространяющегося в земле. Если в сети имеется вторая заземлённая точка, например, заземлённая нейтраль энергосистемы, то ток, текущий в земле, направляется от места повреждения к этому заземлению.

При эксплуатации крупных электрических сетей время от времени возникают такие однополюсные замыкания на землю. Они могут быть вызваны обрывом провода, перекрытием или пробоем изоляции, накоплением на изоляторах грязи или пыли, а также птицами, ветвями деревьев и другими посторонними предметами. Токи однополюсного короткого замыкания распространяются на большие расстояния, как по проводам сети, так и по земле и могут стать причиной тяжёлый аварийных ситуаций в энергосистеме.

Заземление нейтрали является рабочим заземлением, то есть обусловлено режимом работы электрической сети, в отличии от защитного заземления (применяемого для обеспечения безопасной работы в электроустановках).

В Российских энергосистемах применяются следующие режимы работы нейтрали [2] :

  1. Изолированная нейтраль.
  2. Глухозаземленная нейтраль.
  3. Эффективнозаземленная нейтраль.
  4. Нейтраль, заземленная через активное сопротивление:
    • низкоомное;
    • высокоомное.
  5. Нейтраль, заземленная через дугогасящий реактор.

Изолированная нейтраль

описание типов и видов, способов подключения

Воздушные, кабельные линии на трансформаторных подстанциях работают с высоким напряжением. Его передача предполагает соблюдение мер безопасности. Высоковольтные линии аналогично энергосистемам с 380 В подсоединяются по специально установленным схемам — так обеспечивается надлежащая защита от случайного поражения током, проходящим через действующую цепь. При этом нейтральная трансформаторная точка — «нейтраль» — подлежит надежному заземлению.

Способы подсоединения

Особенность функционирования высоковольтных систем заключается в том, что при повреждении, обрыве линии происходит замыкание на землю отдельного провода. При этом токи утечки представлены внушительными величинами. Отличительными являются меры безопасности, которые применяются к подобным сетям. Они несравнимы с аналогичными действиями, проводимыми в цепях конечных потребителей. В сетях с 6 — 35 кВ стандартно задействуются следующие виды заземления нейтрали:

  1. Прямая связь с заземляющим устройством (ЗУ), которое устанавливается вблизи высоковольтной опоры, подстанции с трансформатором. Такую схему принято называть глухозаземленной нейтралью.
  2. Подключение выполняется с помощью специальных устройств — компенсаторов или реакторов дугогасящего типа.
  3. В процессе задействуется заземляющая система, предполагающая подключение описываемой нейтральной точки посредством резистора.
  4. Создание изолированной нейтрали в обход к подсоединению ЗУ в пределах обслуживаемого объекта, защищаемой высоковольтной линии.

Монтирование компенсационных деталей по сети проведения нейтрального проводника помогает снизить величины токов замыкания. Работа подобной цепи заключается в нейтрализации опасного электричества через планомерное изменение индуктивности на катушке. В последней напряжение обязательно имеет обратную фазу.

Когда достигаются определенные показатели индуктивности, ток в месте замыкания используемого заземлителя достигает нулевых значений. Более эффективное действие подобного заземления с параллельной индукцией обеспечивается за счет включения резистора. Такой прибор обеспечивает стекание активного тока, который необходим для работы высоковольтного защитного реле.

Важно! Каждая описанная система предполагает установку на принимающей стороне отдельного ЗУ. С его помощью создается эффективное заземление нейтрали, обеспечиваются надлежащие условия по использованию ВЛ.

Без подключения в цепь обозначенных устройств невозможно создание эффективных защитных функций. Если случится случайная поломка нейтрального проводника, на подстанциях силовые действующие установки будут незащищенными.

Стоит упомянуть еще вариант заземления нейтрали, включенной в сети от 6 до 35 кВ. Общая точка подводится к питающей цепи, что дает возможность эффективно использовать заземлитель. При этом создаются оптимальные условия для стекания активного тока. Существенным недостатком метода выступает его высокая стоимость, по этой причине он задействуется только на территориях питающих подстанций, у которых входные напряжения достигают 110 кВ и более.

Системы с изоляцией от земли

Работа высоковольтных сетей с эффективно заземленной нейтралью изоляционного типа является распространенной в различных регионах России. В этом случае нейтральная точка в трансформаторе или генераторе с трехфазной обмоткой не заземляется. Популярность подобного варианта включения нейтрали объясняется тем, что замыкание на землю фазы не является коротким, т. к. попросту отсутствует взаимосвязь с грунтом.

Особенность же заключается в том, что ВЛ в таком аварийном режиме работает без существенных поломок на протяжении нескольких часов. Среди достоинств такой схемы отмечено также наличие малых токов в точке замыкания ОЗЗ (одна фаза на землю). Объясняется такой принцип небольшой емкостью сети по отношению к грунту.

Важно! Подобный тип включения имеет токи ОЗЗ на порядок ниже в сравнении с межфазными замыканиями. Это очередное преимущество обозначенных сетей.

Отсутствует необходимость во включении защитных быстродействующих устройств от ОЗЗ, в результате чего снижаются затраты при эксплуатации систем. Не обойтись и без недостатков при подключении:

  1. В некоторых случаях создаются перенапряжения, имеющие дуговой эффект даже при небольших токах в месте заземления одной фазы.
  2. Существует вероятность выхода из строя высоковольтных, кабельных установок вследствие повреждения изоляционного слоя.
  3. Ведется повышенный учет напряжений (380 В). При необходимости линейная электрическая техника подвергается тщательной изоляции.
  4. Сложное нахождение и определение конкретной точки повреждения.

Выбирая описанный тип подсоединения нейтральной точки, следует учитывать все его преимущества и недостатки, тщательно продумать последствия от возможных аварийных ситуаций.

Подключение с помощью низкоомного сопротивления

Среди многих видов нейтралей часто используется заземление через резистор с незначительной номинальной величиной. Они нашли широкое применение на территории Беларуси, России. Логично в таких схемах задействовать высокоомный резистор (RB-режим), который задает низкие уровни перенапряжений при ОЗЗ.

В других случаях при заземлении нейтральной точки задействуются комбинированные способы ее подсоединения посредством применения индуктивности (RB-режим и LB).

Более подробное изучение обозначенных подходов показывает, что резисторы высокоомного типа характеризуются внушительными размерами. К тому же они отличаются значительными ценами и массой. Однако и обустройство дугогасящих реакторов отличается своими особенностями и недостатками. Поэтому при выборе режима, поддерживаемого низкоомным резистором, следует провести тщательные расчеты и исчисления с учетом обозначенных факторов.

Существует два типа проведения низкого заземления. В первом случае выполняется установка резонансного резисторного приспособления, с помощью которого срабатывает защита от токов при ОЗЗ. Что касается второго варианта, он предполагает использование заземленных схем посредством индуктивности. Они направлены на обеспечение защиты в случае фазных двойных замыканий.

При резистивном подключении стоит принимать во внимание дополнительные токи в нейтрали, которые могут стать причиной прерывания емкостных значений ОЗЗ до 3 раз и более. Индуктивные или реактивные схемы по уровню своего заземления не должны превышать общее значение электротоков, исходящих от двойных замыканий.

Исходя из ПУЭ, обозначенные выше рабочие режимы могут быть кратковременными или длительными. Последний вариант предполагает расположение заземляющих деталей в единую цепь, в которой нейтраль функционирует на постоянной основе.

Именно такой способ подключения, на что указывают правила устройства электрических установок, допустим только при выполнении качественного заземления с показателем RЗ ≤ 0,5 Ом. Подобный подход эффективен с точки зрения трудовых затрат и экономических соображений.

Влияние плавающей нейтрали в распределительной сети

Введение:

  • Если нейтральный проводник размыкается, разрывается или ослабляется на одной из сторон источника (распределительный трансформатор, генератор или на стороне нагрузки (распределительная панель потребителя), нейтральный проводник распределительной системы «плавает» или теряет свою контрольную точку заземления. Состояние нейтрали может привести к тому, что напряжения будут плавно достигать максимального значения, равного среднеквадратичному значению фазового напряжения относительно земли, в зависимости от состояния несимметричной нагрузки.
  • Состояние плавающей нейтрали в электросети имеет разное влияние в зависимости от типа источника питания, типа установки и балансировки нагрузки в распределительной сети. Обрыв нейтрали или ослабленная нейтраль могут повредить подключенную нагрузку или создать опасное напряжение прикосновения к корпусу оборудования. Здесь мы пытаемся понять состояние плавающей нейтрали в системе распределения T-T.

Что такое плавающая нейтраль?

  • Если точка звезды несимметричной нагрузки не соединена с точкой звезды ее источника питания (распределительного трансформатора или генератора), то фазное напряжение не остается одинаковым для каждой фазы, а изменяется в зависимости от несимметричной нагрузки.
  • Поскольку потенциал такой изолированной точки звезды или нейтральной точки всегда изменяется и не фиксируется, это называется плавающей нейтральной точкой.

Нормальное питание и состояние плавающей нейтрали

Нормальное состояние питания:

  • В трехфазных системах точка звезды и фазы стремятся «уравновесить» на основе отношения утечки на каждой фазе к земле. Точка звезды будет оставаться близкой к 0 В в зависимости от распределения нагрузки и последующей утечки (более высокая нагрузка на фазе обычно означает более высокую утечку).
  • Трехфазные системы могут иметь или не иметь нейтральный провод. Нейтральный провод позволяет трехфазной системе использовать более высокое напряжение, при этом поддерживая однофазные устройства с более низким напряжением. В ситуациях распределения высокого напряжения обычно не бывает нейтрального провода, так как нагрузки можно просто подключить между фазами (соединение фаза-фаза).

  • 3-фазная 3-проводная система:
  • Три фазы обладают свойствами, которые делают их очень востребованными в электроэнергетических системах.Во-первых, фазные токи имеют тенденцию гасить друг друга (суммируясь до нуля в случае линейной сбалансированной нагрузки). Это позволяет исключить нейтральный провод на некоторых линиях. Во-вторых, передача мощности в линейную сбалансированную нагрузку постоянна.
  • 3-фазная 4-проводная система для смешанной нагрузки:
  • Большинство бытовых нагрузок однофазные. Обычно трехфазное питание либо не поступает в жилые дома, либо распределяется на главном распределительном щите.
  • Текущий закон Кирхгофа гласит, что сумма со знаком токов, входящих в узел, равна нулю.Если нейтральная точка является узлом, то в сбалансированной системе одна фаза соответствует двум другим фазам, в результате чего ток через нейтраль отсутствует. Любой дисбаланс нагрузки приведет к протеканию тока по нейтрали, так что сумма будет равна нулю.
  • Например, в сбалансированной системе ток, входящий в нейтральный узел с одной стороны фазы, считается положительным, а ток, входящий (фактически выходящий) из нейтрального узла с другой стороны, считается отрицательным.
  • Это становится более сложным с трехфазным питанием, потому что теперь мы должны учитывать фазовый угол, но концепция в точности та же.Если мы соединены звездой с нейтралью, то нейтральный проводник будет иметь нулевой ток на нем только в том случае, если три фазы имеют одинаковый ток на каждой. Если мы проведем векторный анализ этого, сложив sin (x), sin (x + 120) и sin (x + 240), мы получим ноль.
  • То же самое происходит, когда мы соединены треугольником, без нейтрали, но затем возникает дисбаланс в распределительной системе за пределами сервисных трансформаторов, потому что распределительная система обычно соединяется звездой.
  • Нейтраль никогда не должна быть подключена к земле, за исключением той точки обслуживания, где нейтраль изначально заземлена (на распределительном трансформаторе). Это может настроить землю как путь, по которому ток будет возвращаться к службе. Любой разрыв в цепи заземления может привести к возникновению потенциала напряжения. Заземление нейтрали в трехфазной системе помогает стабилизировать фазные напряжения. Незаземленную нейтраль иногда называют «плавающей нейтралью», и ее применение ограничено.

Плавающее нейтральное состояние:

  • Электроэнергия поступает в помещения клиентов и выходит из распределительной сети, поступая через Фазу и покидая нейтраль.В случае обрыва нейтрального обратного пути электричество может двигаться по другому пути. Поток энергии, поступающий в одну фазу, возвращается через оставшиеся две фазы. Нейтральная точка не находится на уровне земли, но находится на уровне напряжения сети. Эта ситуация может быть очень опасной, и клиенты могут серьезно пострадать от поражения электрическим током, если они коснутся чего-либо, где присутствует электричество.

  • Обрыв нейтрали бывает трудно обнаружить, а в некоторых случаях нелегко идентифицировать.Иногда на сломанные нейтрали могут указывать мерцающие огни или покалывание. Если в вашем доме мерцает свет или постукивает по телефону, вы можете получить серьезную травму или даже смерть.

Измерение напряжения между нейтралью и землей:

  • Практическое правило, используемое многими в промышленности, заключается в том, что напряжение 2 В или менее между нейтралью и землей на розетке в порядке, а несколько вольт или более указывают на перегрузку; 5 В считается верхним пределом.
  • Низкое показание : Если напряжение нейтрали относительно земли на розетке низкое, значит, система исправна. Если оно высокое, то вам все равно необходимо определить, в основном ли проблема на уровне ответвленной цепи или на уровне панели.
  • Напряжение между нейтралью и землей существует из-за падения IR тока, проходящего через нейтраль обратно в соединение нейтрали с землей. Если система подключена правильно, не должно быть заземления нейтрали, за исключением трансформатора источника (в том, что NEC называет источником раздельно производной системы или SDS, который обычно является трансформатором). В этой ситуации в заземляющем проводе практически не должно быть тока и, следовательно, на нем не должно быть падения ИК-излучения. Фактически, заземляющий провод используется в качестве длинного тестового провода, ведущего обратно к заземлению нейтрали.
  • Высокое показание: Высокое показание может указывать на общую нейтраль ответвления, то есть нейтраль, совместно используемую более чем одной ответвленной цепью. Эта общая нейтраль просто увеличивает возможность перегрузки, а также воздействия одной цепи на другую.
  • Нулевое показание: Определенное значение напряжения нейтрали относительно земли является нормальным для нагруженной цепи. Если показание стабильно близко к 0В. Есть подозрение на незаконное соединение нейтрали с землей в розетке (часто из-за потери жилы нейтрали, касающейся какой-либо точки заземления) или на субпанели.Любые соединения нейтрали с землей, кроме тех, которые находятся у источника трансформатора (и / или главной панели), должны быть удалены, чтобы предотвратить обратные токи, протекающие через заземляющие провода.

Различные факторы, вызывающие смещение нейтрали:

  • Есть несколько факторов, которые определяют как причину смещения нейтрали. Влияние плавающей нейтрали зависит от позиции, в которой нейтраль нарушена

1) На трехфазном распределительном трансформаторе:

  • Неисправность нейтрали трансформатора - это, в основном, отказ втулки нейтрали.
  • Использование линейного ответвителя на вводе трансформатора определяется как основная причина выхода из строя нейтрального провода на вводе трансформатора. Гайка на линии со временем ослабляется из-за вибрации и разницы температур, что приводит к горячему соединению. Проводник начал плавиться и в результате оборвался нейтраль.
  • Плохая работа монтажников и технического персонала также одна из причин отказа нейтрали.
  • Обрыв нейтрали на трех фазах трансформатора приведет к скачку напряжения до линейного напряжения в зависимости от балансировки нагрузки в системе.Этот тип нейтрального положения может повредить оборудование клиента, подключенное к источнику питания.
  • В нормальных условиях ток течет от фазы к нагрузке к нагрузке обратно к источнику (распределительный трансформатор). При обрыве нейтрали ток из красной фазы вернется в синюю или желтую фазу, в результате чего между нагрузками будет напряжение между линиями.
  • У некоторых клиентов будет повышенное напряжение, а у других - низкое.

2) Обрыв провода нейтрали в линии низкого напряжения:

  • Удар обрыва провода нейтрали на воздушном распределении низкого напряжения будет аналогичен удару обрыва трансформатора.
  • Плавающее напряжение питания до линейного напряжения вместо фазного напряжения. Этот тип неисправности может повредить оборудование пользователя, подключенное к источнику питания.

3) Неисправность нейтрального провода:

  • Сломанная нейтраль сервисного проводника приведет только к отключению электропитания в точке обслуживания. Никаких повреждений клиентскому оборудованию.

4) Высокое сопротивление заземления нейтрали на распределительном трансформаторе:

  • Хорошее сопротивление заземления Заземление Нейтраль обеспечивает путь с низким сопротивлением для утечки тока нейтрали в землю.Высокое сопротивление заземления может обеспечить путь высокого сопротивления для заземления нейтрали на распределительном трансформаторе.
  • Ограничьте сопротивление заземления достаточно низким, чтобы обеспечить достаточный ток короткого замыкания для срабатывания защитных устройств во времени и уменьшить смещение нейтрали.

5) Перегрузка и разбалансировка нагрузки:

  • Распределительная сеть Перегрузка в сочетании с плохим распределением нагрузки является одной из основных причин отказа нейтрали.
  • Нейтраль должна быть правильно спроектирована так, чтобы минимальный ток проходил через нейтральный провод. Теоретически предполагается, что ток в нейтрали равен нулю из-за отмены из-за сдвига фаз фазового тока на 120 градусов.
  • IN = IR <0 + IY <120 + IB <-120.
  • В перегруженной несбалансированной сети много тока будет протекать через нейтраль, которая разрывает нейтраль в самой слабой точке.

6) Общие нейтральные

  • В некоторых зданиях разводка проводов так, что две или три фазы имеют общую нейтраль.Первоначальная идея заключалась в том, чтобы продублировать на уровне ответвления четырехпроводную (три фазы и нейтраль) разводку панелей управления. Теоретически на нейтраль вернется только несимметричный ток. Это позволяет одной нейтрали выполнять работу для трех фаз. Этот способ подключения быстро зашел в тупик с ростом однофазных нелинейных нагрузок. Проблема в том, что ток нулевой последовательности
  • От нелинейных нагрузок, в первую очередь третьей гармоники, складывается арифметически и возвращается на нейтраль.Помимо потенциальной проблемы безопасности из-за перегрева нейтрали меньшего размера, дополнительный ток нейтрали создает более высокое напряжение нейтрали относительно земли. Это напряжение нейтрали к земле вычитается из напряжения линии на нейтраль, доступного для нагрузки. Если вы начинаете чувствовать, что общие нейтралы - одна из худших идей, когда-либо воплощенных в меди.

7) Плохое качество изготовления и обслуживания:

  • Обычно обслуживающий персонал не уделяет внимания сетям низкого напряжения.Ослабленная или ненадлежащая затяжка нейтрального проводника повлияет на непрерывность нейтрали, что может вызвать плавание нейтрали.

Как определить состояние плавающей нейтрали на панели:

  • Давайте рассмотрим один пример, чтобы понять состояние нейтрального плавающего положения. У нас есть трансформатор, вторичная обмотка которого соединена звездой, фаза-нейтраль = 240 В и фаза-фаза = 440 В.

Условие (1): нейтраль не плавающая

  • Независимо от того, заземлена ли нейтраль, напряжения остаются прежними: 240 В между фазой и нейтралью и 440 В между фазами.Нейтраль не плавает.

Условие (2): нейтраль - плавающая

  • Все устройства подключены: Если нейтральный провод цепи отключается от основной панели электропитания дома, в то время как фазный провод цепи все еще остается подключенным к панели, а в цепи есть приборы, подключенные к розеткам. В этой ситуации, если вы поместите тестер напряжения с неоновой лампой на нейтральный провод, он будет светиться так же, как если бы он был под напряжением, потому что на него подается очень небольшой ток, идущий от фазового источника через подключенное устройство ( s) к нейтральному проводу.
  • Все приборы отключены: Если вы отключите все приборы, освещение и все остальное, что может быть подключено к цепи, нейтраль больше не будет казаться находящейся под напряжением, потому что от нее больше нет пути к фазовому питанию.
  • Междуфазное напряжение: Измеритель показывает 440 В переменного тока. (Не влияет на 3-фазную нагрузку)
  • Напряжение между фазой и нейтралью: Измеритель показывает от 110 В до 330 В переменного тока.
  • Напряжение нейтрали относительно земли: Счетчик показывает 110 В.
  • Напряжение между фазой и землей: Измеритель показывает 120 В.
  • Это связано с тем, что нейтраль «плавает» над потенциалом земли (110 В + 120 В = 230 В переменного тока). В результате выход изолирован от заземления системы, и полный выход 230 В устанавливается между линией и нейтралью без заземления.
  • Если внезапно отключить нейтраль от нейтрали трансформатора, но оставить цепи нагрузки такими, какие они есть, то нейтраль на стороне нагрузки станет плавающей, поскольку оборудование, подключенное между фазой и нейтралью, станет между фазой и фазой (R - Y, Y - B). , и поскольку они не имеют одинаковых номиналов, полученная в результате искусственная нейтраль будет плавающей, так что напряжения, присутствующие на различном оборудовании, больше не будут составлять 240 В, а будут где-то между 0 (не совсем) и 440 В (также не совсем). .Это означает, что на одной линии от фазы к фазе у некоторых будет меньше 240 В, а у других - почти до 415 В. Все зависит от импеданса каждого подключенного элемента.
  • В системе с дисбалансом, если нейтраль отключена от источника, нейтраль становится плавающей нейтралью и смещается в такое положение, чтобы она была ближе к фазе с более высокими нагрузками и от фазы с меньшей нагрузкой. Предположим, что несимметричная трехфазная система имеет нагрузку 3 кВт в фазе R, нагрузку 2 кВт в фазе Y и нагрузку 1 кВт в фазе B.Если нейтраль этой системы отключена от сети, плавающая нейтраль будет ближе к R-фазе и дальше от B-фазы. Таким образом, нагрузки с фазой B будут испытывать большее напряжение, чем обычно, а нагрузки с фазой R будут испытывать меньшее напряжение. Нагрузки в фазе Y будут испытывать почти одинаковое напряжение. Выключатель нейтрали для несбалансированной системы опасен для нагрузок. Из-за более высокого или более низкого напряжения наиболее вероятно повреждение оборудования.
  • Здесь мы видим, что состояние нейтрального плавающего положения не влияет на 3-фазную нагрузку, а влияет только на 1-фазную нагрузку

Как исключить нейтральное плавающее положение:

  • Есть некоторые моменты, которые необходимо учитывать, чтобы предотвратить нейтральное смещение.

a) Используйте 4-полюсный выключатель / ELCB / RCBO в распределительной панели:

  • Плавающая нейтраль может стать серьезной проблемой. Предположим, у нас есть панель выключателя с трехполюсным выключателем для трех фаз и шиной для нейтрали для трехфазных входов и нейтрали (здесь мы не использовали четырехполюсный выключатель). Напряжение между каждой фазой - 440, а напряжение между каждой фазой и нейтралью - 230. У нас есть одиночные выключатели, питающие нагрузки, требующие 230 вольт. Эти нагрузки 230 В имеют одну линию, питаемую от выключателя и нейтраль.
  • Теперь предположим, что нейтраль отсоединилась, или окислилась, или каким-то образом отсоединилась в панели или, возможно, даже отключилась от источника питания. Нагрузки 440 В не будут затронуты, однако нагрузки 230 В могут иметь серьезные проблемы. В этом состоянии «плавающая нейтраль» вы обнаружите, что одна из двух линий упадет от 230 В до 340 или 350, а другая линия упадет до 110 или 120 вольт. Половина вашего оборудования на 230 В будет повышена из-за перенапряжения, а другая половина не будет работать из-за низкого напряжения.Так что будьте осторожны с плавающими нейтралами.
  • Просто используйте ELCB, RCBO или 4-полюсный автоматический выключатель в качестве источника питания в 3-фазной системе питания, поскольку при размыкании нейтрали отключится все питание без повреждения системы.

b) Использование стабилизатора напряжения:

  • Когда нейтраль выходит из строя в трехфазной системе, подключенные нагрузки будут подключаться между фазами из-за плавающей нейтрали. Следовательно, в зависимости от сопротивления нагрузки на этих фазах, напряжение продолжает изменяться от 230 В до 400 В.Подходящий сервостабилизатор с широким диапазоном входного напряжения с отсечкой по верхнему и нижнему пределу может помочь в защите оборудования.

c) Хорошее качество изготовления и техническое обслуживание:

  • Дайте более высокий приоритет обслуживанию низковольтной сети. Затяните или примените соответствующий момент затяжки нейтрального проводника в системе низкого напряжения

Заключение:

  • Состояние неисправности «плавающая нейтраль» (отключенная нейтраль) - ОЧЕНЬ НЕ БЕЗОПАСНО , потому что, если устройство не работает, и кто-то, кто не знает о «плавающем» нейтрали, может легко прикоснуться к нейтральному проводу, чтобы узнать, почему приборы не работают, когда они подключены в цепь и получите сильный шок.Однофазные устройства спроектированы для работы с нормальным фазным напряжением, когда они получают сетевое напряжение. Устройства могут повредить. Неисправность отключенной нейтрали является очень небезопасным состоянием и должна быть устранена как можно раньше путем поиска неисправностей именно тех проводов, чтобы проверить и затем правильно подключить.

Нравится:

Нравится Загрузка ...

Связанные

Что такое электрическое заземление? - Определение, типы заземления и его значение в электрической системе

Определение: Процесс передачи немедленного разряда электрической энергии непосредственно на землю с помощью провода с низким сопротивлением известен как электрическое заземление.Электрическое заземление выполняется путем подключения нетоковедущей части оборудования или нейтрали системы питания к земле.

В основном для заземления используется оцинкованное железо. Заземление обеспечивает простой путь к току утечки . Ток короткого замыкания оборудования проходит на землю с нулевым потенциалом. Таким образом защищает систему и оборудование от повреждений.

Типы электрического заземления

Электрооборудование в основном состоит из двух нетоковедущих частей.Эти части нейтральны по отношению к системе или корпусу электрического оборудования. Заземление этих двух нетоковедущих частей электрической системы можно разделить на два типа.

  • Заземление нейтрали
  • Заземление оборудования.

Заземление нейтрали

При заземлении нейтрали нейтраль системы напрямую соединяется с землей с помощью провода GI. Заземление нейтрали также называется заземлением системы. Такой тип заземления чаще всего применяется в системах со звездообразной обмоткой.Например, заземление нейтрали предусмотрено в генераторе, трансформаторе, двигателе и т. Д.

Заземление оборудования

Такой тип заземления предусмотрен для электрооборудования. Нетоковедущая часть оборудования, такая как их металлический каркас, соединяется с землей с помощью проводящего провода. Если в аппарате возникает какая-либо неисправность, ток короткого замыкания проходит через землю с помощью провода. Таким образом уберечь систему от повреждений.

Важность заземления

Заземление необходимо по следующим причинам

  • Заземление защищает персонал от тока короткого замыкания.
  • Заземление обеспечивает самый легкий путь прохождения тока короткого замыкания даже после выхода из строя изоляции.
  • Заземление защищает оборудование и персонал от скачков высокого напряжения и разряда молнии.

Заземление может быть выполнено путем электрического соединения соответствующих частей установки с некоторой системой электрических проводов или электродов, размещенных рядом с почвой или ниже уровня земли. Заземляющий мат или электрод под уровнем земли имеют плоский железный стояк, через который подключаются все нетоковедущие металлические части оборудования.

При возникновении короткого замыкания ток замыкания от оборудования протекает через систему заземления на землю и тем самым защищает оборудование от тока замыкания. Во время короткого замыкания в проводниках заземляющего мата поднимается напряжение, равное сопротивлению заземляющего мата, умноженному на замыкание на землю.

Контактный узел называется заземляющим. Металлические проводники, соединяющие части установки с заземлением, называются электрическими соединениями.Заземление и заземляющее соединение вместе называют системой заземления.

Лучшая нейтраль в электричестве - Отличные предложения на нейтраль в электричестве от глобальной нейтрали у продавцов электрики

Отличные новости !!! Вы находитесь в правильном месте для нейтрали в электрике. К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях.Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене.Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку эта верхняя электрическая нейтраль в кратчайшие сроки станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели нейтраль в области электрики на AliExpress. Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в нейтральности электрики и думаете о выборе аналогичного товара, AliExpress - отличное место для сравнения цен и продавцов.Мы поможем вам разобраться, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь. И, если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе.Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца. Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово - просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет. Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны - и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, мы думаем, вы согласитесь, что вы получите нейтраль in electric по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы. На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *