Виды полупроводниковых приборов: Полупроводниковые приборы

Содержание

Полупроводниковые приборы

Действие полупроводниковых приборов основано на электронных процессах, протекающих в кристаллах полупроводников. Основным полупроводниковым материалом в настоящее время является кристаллический кремний.

Кристаллы кремния в обычных условиях являются диэлектриками. Однако, если в них ввести небольшое количество пятивалентных элементов (сурьма, мышьяк), в их кристаллической решетке образуются свободные электроны и кристаллы становятся проводниками. Такая проводимость кристаллов называется электронной, или отрицательной, или негативной (negative), или проводимостью n-типа.

Введение в кристалл кремния трехвалентных примесей (индий, бор) приводит к тому, что в кристалле возникает дефицит электронов — так называемые дырки, которые также могут переносить электрические заряды. Такая проводимость называется дырочной, или положительной (positive), или проводимостью р-типа.

Полупроводниковые приборы подразделяются по своей структуре на дискретные и интегральные. К дискретным полупроводниковым приборам относятся диоды, транзисторы, фотоэлементы, а также полупроводниковые приборы, управляемые внешними факторами, — фоторезисторы, фотодиоды, фототранзисторы, терморезисторы, варисторы, варикапы, которые используются в качестве датчиков физических параметров. К интегральным приборам относятся интегральные микросхемы и микропроцессоры.

Диоды. Различают выпрямительные и излучающие диоды, фотодиоды.

Выпрямительные диоды представляют собой полупроводниковые приборы, состоящие из двух слоев полупроводникового материала с электропроводностью типа n и p. Граница между этими слоями обладает способностью пропускать электрический ток только в одном направлении. Такие диоды предназначены для преобразования переменного тока в постоянный.

Излучающие диоды представляют собой диоды, способные излучать свет определенного спектрального состава при прохождении через них тока.

Излучающие диоды применяют в качестве индикаторов режимов работы аппаратуры, часов, микрокалькуляторов.

Фотодиоды обладают свойством пропускать или не пропускать электрический ток в зависимости от уровня освещения. Используются для автоматического отключения уличного освещения, для подсчета деталей на конвейере, а также в турникетах.

Транзисторы — это полупроводниковые приборы, предназначенные для усиления, генерирования и преобразования электрических колебаний.

Транзисторы в отличие от диодов состоят из трех кристаллов типа р-n-р или n-р-n и имеют три вывода.

Интегральные микросхемы представляют собой изделия электронной техники, содержащие совокупность резисторов, конденсаторов, диодов и транзисторов, электрически связанных по определенной схеме. Интегральные микросхемы являются элементной базой современной электронной аппаратуры третьего поколения и предназначены для преобразования, обработки и хранения информации.

В зависимости от количества входящих в их состав элементов, интегральные микросхемы условно подразделяются на малые интегральные схемы (МИС — до 102 элементов на полупроводниковый кристалл), средние (СИС — до 103), большие (БИС — до 104), сверхбольшие (СБИС — до 106), гига-большие (ГБИС — более 109 элементов на кристалл).

По функциональному назначению выделяют аналоговые, цифровые и преобразовательные интегральные микросхемы.

Аналоговая интегральная схема — это микросхема, в которой прием, преобразование и выдача сигналов осуществляется посредством плавного (непрерывного) изменения напряжения. Эти микросхемы широко применяются в аудиоаппаратуре.

Цифровая интегральная схема — это микросхема, в которой происходит преобразование дискретных сигналов («О», «1»). Цифровые интегральные схемы применяются в микропроцессорах, в ЭВМ, аппаратуре с цифровым программным управлением (пульты дистанционного управления).

Аналого-цифровые преобразователи (АЦП) и цифро-аналоговые преобразователи (ЦАП) представляют собой устройства, осуществляющие автоматическое преобразование непрерывно изменяющейся аналоговой величины в цифровой код и наоборот. АЦП и ЦАП широко применяются в аппаратуре цифровой записи и воспроизведения информации (CD-плееры, компьютеры).

Микропроцессоры представляют собой самостоятельные устройства, выполненные, как правило, в виде одной интегральной микросхемы, осуществляющие обработку информации по хранимой в их памяти программе. Микропроцессор может осуществлять включение и выключение аппаратуры в определенное время, автоматический поиск радиостанций, запоминать значения выбранных параметров и выводить их на экран.

Микропроцессор в компьютере предназначен для управления работой всех устройств ЭВМ и для выполнения всех арифметических и логических операций над информацией, т. е. — это мозг компьютера.

Применение полупроводниковых приборов

Название: Применение полупроводниковых приборов

Вид работы: реферат

Рубрика: Коммуникации и связь

Размер файла: 45,16 Kb

Скачать файл: referat.me-168654.docx

Краткое описание работы: Рассмотрение принципов работы полупроводников, биполярных и полевых транзисторов, полупроводниковых и туннельных диодов, стабилитронов, варикапов, варисторов, оптронов, тиристоров, фототиристоров, терморезисторов, полупроводниковых светодиодов.

Министерство Науки и Образования

Украины

Реферат на тему:

Применение полупроводниковых приборов

Выполнил:

ученик 10-В класса

Средней Общеобразовательной

Школы №94

Гладков Евгений

Проверила:

Иванова

Ольга Петровна

г. Харьков, 2004.

Полупроводниковые приборы – различные по конструкции, технологии изготовления и функциональному назначению электронные приборы, основанные на использовании свойств полупроводников. К полупроводниковым приборам относят также полупроводниковые микросхемы, которые представляют собой монолитные законченные функциональные узлы (усилитель, триггер, набор элементов), все компоненты которых изготавливаются в едином технологическом процессе.

Полупроводники – вещества, электронная проводимость которых имеет промежуточное значение между проводимостью проводников и диэлектриков. К полупроводникам относится обширная группа естественных и синтетических веществ различной химической природы, твердых и жидких, с разными механизмами проводимости. Наиболее перспективными полупроводниками в современной технике являются так называемые электронные полупроводники, проводимость которых обусловлена движением электронов. Однако в отличие от металлических проводников концентрация свободных электронов в полупроводниках очень мала и возрастает с повышением температуры, чем объясняется их пониженная проводимость и специфическая зависимость от удельного сопротивления и температуры: если у металлических проводников при нагревании электрическое сопротивление повышается, то у полупроводников оно понижается. Увеличение концентрации свободных электронов с повышением температуры объясняется тем, что с увеличением интенсивности тепловых колебаний атомов полупроводников все большее количество электронов срывается с внешних оболочек этих атомов и получает возможность перемещаться по объему полупроводника. В переносе электричества через полупроводники, помимо свободных электронов могут принимать участие места, освободившиеся от перешедших в свободное состояние электронов – так называемые дырки.

Поэтому и свободные электроны и дырки называют носителями электрического заряда, причём дырке приписывают положительный заряд, равный заряду электрона. В идеальном полупроводнике образование свободных электронов и дырок происходит одновременно, парами, а потому концентрации электронов и дырок одинаковы. Введение же в полупроводник определенных примесей способно привести к увеличению концентрации носителей одного знака и сильно повысить проводимость. Это происходит при условии, что на внешней оболочке атомов примеси находится на один электрон больше (донорные примеси) или на один электрон меньше (акцепторные примеси), чем у атомов исходного полупроводника.

В первом случае примесные атомы (доноры) легко отдают лишний электрон, а во втором (акцепторы)– забирают недостающий электрон от атомов полупроводника, создавая дырку. Для наиболее распространённых полупроводников (кремния и германия), являющихся четырёхвалентными химическими элементами, донорами служат пятивалентные вещества (фосфор, мышьяк, сурьма), а акцепторами – трехвалентные (бор, алюминий, индий). В зависимости от преобладающего типа носителей примесные полупроводники делят на полупроводники электронного (п-типа) и дырочного (р-типа).

Зависимость электропроводимости полупроводника от различных внешних воздействий служит основой разнообразных технических приборов. Так, уменьшение сопротивления используется в термисторах, уменьшение сопротивления при освещении– в фоторезисторах. Появление ЭДС при прохождении тока через полупроводник, помещённый в магнитное поле (эффект Холла) применяется для измерения магнитных полей, мощности и т.д. Особенно ценными свойствами обладают неоднородные полупроводники (с изменяющейся от одной части объёма к другой проводимостью), а также контакты разных полупроводников между собой и полупроводников с металлами. Возникающие в таких системах эффекты наиболее ярко проявляются у электронно-дырочных переходов (р-п-переходом). Использование р-п-переходов лежит в основе действия многих полупроводниковых приборов: транзистора, полупроводникового диода, полупроводникового фотоэлемента, термоэлектрического генератора, солнечной батареи.

60-е – 70-е годы составляют эпоху полупроводниковой техники и собственно электроники. Электроника внедряется во все отрасли науки, техники и народного хозяйства. Являясь комплексом наук, электроника тесно связана с радиофизикой, радиолокацией, радионавигацией, радиоастрономией, радиометеорологией, радиоспектроскопией, электронной вычислительной и управляющей техникой, радиоуправлением на расстоянии, телеизмерениями, квантовой радиоэлектроникой.

В этот период продолжалось дальнейшее усовершенствование электровакуумных приборов. Большое внимание уделяется повышению их прочности, надёжности, долговечности. Разрабатывались пальчиковые и сверхминиатюрные лампы, что давало возможность снизить габариты установок, насчитывающих большое количество радиоламп.

Продолжались интенсивные работы в области физики твёрдого тела и теории полупроводников, разрабатывались способы получения монокристаллов полупроводников, методы их очистки и введения примесей. Большой вклад в развитие физики полупроводников внесла советская школа академика А.Ф.Иоффе.

Полупроводниковые приборы быстро и широко распространились за 50-е-70-е годы во все области народного хозяйства. В 1926 г. был предложен полупроводниковый выпрямитель переменного тока из закиси меди. Позднее появились выпрямители из селена и сернистой меди. Бурное развитие радиотехники (особенно радиолокации) в период второй мировой войны дало новый толчок к исследованиям в области полупроводников. Были разработаны точечные выпрямители переменных токов СВЧ на основе кремния и германия, а позднее появились плоскостные германиевые диоды. В 1948 г. американские учёные Бардин и Браттейн создали германиевый точечный триод (транзистор), пригодный для усиления и генерирования электрических колебаний. Позднее был разработан кремниевый точечный триод. В начале 70-х годов точечные транзисторы практически не применялись, а основным типом транзистора являлся плоскостной, впервые изготовленный в 1951 г. К концу 1952 г. были предложены плоскостной высокочастотный тетрод, полевой транзистор и другие типы полупроводниковых приборов. В 1953 г. был разработан дрейфовый транзистор. В эти годы широко разрабатывались и исследовались новые технологические процессы обработки полупроводниковых материалов, способы изготовления p-n- переходов и самих полупроводниковых приборов. В начале 70-х годов, кроме плоскостных и дрейфовых германиевых и кремниевых транзисторов, находили широкое распространение и другие приборы, использующие свойства полупроводниковых материалов: туннельные диоды, управляемые и неуправляемые четырёхслойные переключающие приборы, фотодиоды и фототранзисторы, варикапы, терморезисторы и т. д.

Развитие и совершенствование полупроводниковых приборов характеризуется повышением рабочих частот и увеличением допустимой мощности. Первые транзисторы обладали ограниченными возможностями (предельные рабочие частоты порядка сотни килогерц и мощности рассеяния порядка 100 — 200 МВт) и могли выполнять лишь некоторые функции электронных ламп. Для того же диапазона частот были созданы транзисторы с мощностью в десятки ватт. Позднее были созданы транзисторы, способные работать на частотах до 5 МГц и рассеивать мощность порядка 5 Вт, а уже в 1972 г. были созданы образцы транзисторов на рабочие частоты 20 — 70 МГц с мощностями рассеивания, достигающими 100 Вт и более. Маломощные же транзисторы (до 0,5 — 0,7 Вт) могут работать на частотах свыше 500 МГц. Позже появились транзисторы, работающие на частотах порядка 1000 МГц. Одновременно велись работы по расширению диапазона рабочих температур. Транзисторы, изготовленные на основе германия, имели первоначально рабочие температуры не выше +55 ¸ 70 °С, а на основе кремния — не выше +100 ¸ 120 °С. Созданные позже образцы транзисторов на арсениде галлия оказались работоспособными при температурах до +250 °С, и их рабочие частоты в итоге увеличились до 1000 МГц. Есть транзисторы на карбиде, работающие при температурах до 350 °С. Транзисторы и полупроводниковые диоды по многим показателям в 70-е годы превосходили электронные лампы и в итоге полностью вытеснили их из областей электроники. В интегральной электронике МДП-структуры широко используются для создания транзисторов и на их основе различных интегральных микросхем.

Перед проектировщиками сложных электронных систем, насчитывающих десятки тысяч активных и пассивных компонентов, стоят задачи уменьшения габаритов, веса, потребляемой мощности и стоимости электронных устройств, улучшения их рабочих характеристик и, что самое главное, достижения высокой надёжности работы. Эти задачи успешно решает микроэлектроника — направление электроники, охватывающее широкий комплекс проблем и методов, связанных с проектированием и изготовлением электронной аппаратуры в микроминиатюрном исполнении за счёт полного или частичного исключения дискретных компонентов.

Основной тенденцией микроминиатюризации является «интеграция» электронных схем, т.е. стремление к одновременному изготовлению большого количества элементов и узлов электронных схем, неразрывно связанных между собой. Поэтому из различных областей микроэлектроники наиболее эффективной оказалась интегральная микроэлектроника, которая является одним из главных направлений современной электронной техники. Сейчас широко используются сверхбольшие интегральные схемы, на них построено всё современное электронное оборудование, в частности ЭВМ и т.д.

Срок службы полупроводниковых триодов и их экономичность во много раз больше, чем у электронных ламп. За счёт чего транзисторы нашли широкое применение в микроэлектронике — теле-, видео-, аудио-, радиоаппаратуре и, конечно же, в компьютерах. Они заменяют электронные лампы во многих электрических цепях научной, промышленной и бытовой аппаратуры.

Биполярный транзистор – универсальный полупроводниковый усилительный прибор, выполняющий те же функции, что и электронная лампа с управляющей сеткой. По аналогии с лампой, биполярный транзистор называют полупроводниковым триодом. Его действие основано на использовании особых свойств неоднородных полупроводников. Особенность транзистора состоит в том, что между электронно-дырочными переходами существует взаимодействие – ток одного из переходов может управлять током другого.

Помимо усиления электрических колебаний, биполярные транзисторы широко используются как бесконтактные коммутационные устройства, в разнообразных генераторных схемах, для преобразования и детектирования колебаний, причём от соответствующих ламповых устройств схемы с биполярными транзисторами отличаются миниатюрностью, высокой экономичностью питания, большой механической прочностью, мгновенной скоростью к действию, большой долговечностью. Максимальные рабочие частоты самых высокочастотных биполярных транзисторов превышают 10000 МГц, наибольшие мощности – примерно 200-250 Вт. К недостаткам биполярных транзисторов относится существенная температурная зависимость их характеристик.

Основные материалы, из которых изготовляют транзисторы — кремний и германий, перспективные – арсенид галлия, сульфид цинка и широкозонные проводники.

Полевой транзистор – полупроводниковый прибор, в котором ток изменяется в результате действия перпендикулярного току электрического поля, создаваемого сигналом. Полевой транзистор отличается от биполярного тем, что используемый в нём механизм усиления обусловлен носителями заряда только одного знака (электронами или дырками). Полевой транзистор называют также канальным и униполярным транзистором.

Полевые транзисторы имеют ВАХ (вольт-амперные характеристики), подобные ламповым, и обладают всеми принципиальными преимуществами транзисторов. Это позволяет применять их в схемах, в большинстве случаев использовались электронные лампы, например, в усилителях постоянного тока с высокоомным входом, в истоковых повторителях с особо высокоомным входом, в электрометрических усилителях, различных реле времени, RS — генераторах синусоидальных колебаний низких и инфранизких частот, в генераторах пилообразных колебаний, усилителях низкой частоты, работающих от источников с большим внутренним сопротивлением, в активных RC — фильтрах низких частот. Полевые транзисторы с изолированным затвором используют в высокочастотных усилителях, смесителях, ключевых устройствах.

Полевые транзисторы имеют вольт-амперные характеристики, подобные ламповым, и обладают всеми принципиальными преимуществами транзисторов.

Полупроводниковый диод – двухэлектродный полупроводниковый прибор, действие которого основано на использовании свойств электронно-дырочного перехода. Основное свойство полупроводникового диода – односторонняя проводимость, позволяющая применять полупроводниковые диоды в качестве выпрямителей переменного тока. Прообразом современных полупроводниковых диодов был кристаллический детектор, состоящий из кристалла (карборунда, цинкита) и металлической пружинки, острие которой прижималось к поверхности кристалла. Эффект выпрямления у таких детекторов зависел от выбранной точки соприкосновения пружинки с кристаллом и отличался большой неустойчивостью, что требовало периодических поисков «чувствительной» точки. В современных точечных полупроводниковых диодах используются пластинки из кристаллов кремния или германия, а контакт металлической иглы с полупроводником подвергается особой электрической формовке. Эти меры наряду с применением герметической оболочки обеспечивают большую стабильность и долговечность точечных полупроводниковых диодов. Помимо детектирования радиосигналов всех частот вплоть до сотен тысяч МГц, точечные полупроводниковые диоды применяются для преобразования частоты, в измерительной радиоаппаратуре и т.д. и т.п. Наиболее обширную группу полупроводниковых диодов образуют плоскостные диоды, в которых электронно-дырочный переход создается теми же методами, что и в плоскостных транзисторах: вплавлением примесей, путем диффузии примесных веществ в объем исходной пластинки. Полупроводниковые диоды применяются также для многих других целей, в том числе для селекции импульсов определенной полярности, для стабилизации напряжения, в качестве управляемого конденсатора и др. Особыми разновидностями полупроводникового диода являются переключающие диоды с тремя р-п-переходами, двухбазовый диод (применяют главным образом в импульсных пусковых схемах) и туннельный диод, фотодиод и обращенный диод.

Туннельный диод – двухэлектродный диод полупроводниковый прибор, который применяется для усиления и генерирования высокочастотных электрических колебаний и в качестве быстродействующего переключателя в импульсных и электронных логических устройствах. Принцип работы туннельных диодов основан на явлении квантовомеханического туннельного эффекта. Туннельные диоды применяются в широкополосных усилителях, для усиления и генерирования высокочастотных электрических колебаний и в качестве быстродействующего переключателя в импульсных и электронных логических устройствах.

Фотодиод – полупроводниковый фотоэлектрический прибор с внутренним фотоэффектом, отображающим процесс преобразования световой энергии в электрическую. Внутренний фотоэффект заключается в том, что под воздействием энергии светового излучения в области р-п-перехода происходит ионизация атомов основного вещества и смеси, в результате чего генерируются пары носителей заряда – электрон и дырка. Во внешней цепи, присоединенной к р-п-переходу, возникает ток, вызванный движением этих носителей. Промышленность выпускает германиевые и кремниевые фотодиоды. Разновидность фотодиода, используемого для силового преобразования лучистой энергии, – солнечная батарея, которая является важным источником питания в космической технике, но находит применение для питания аппаратуры и в земных условиях.

Полупроводниковый стабилизатор напряжения (стабилитрон) – это кремниевый плоскостной полупроводниковый диод, напряжение на котором сохраняется с определенной точностью при протекании через него тока в заданном диапазоне. Т.е., если стабилитрон рассчитан на прибивное напряжение 4,5в и напряжение до стабилитрона было, предположим, 5в, то после него его значение будет не больше 4,5в. Если напряжение, на которое рассчитан стабилитрон, в несколько раз меньше напряжения на участке до него, то он будет сильно греться, не исключена и его порча (он сгорит). Стабилитроны изготовляются для стабилизации напряжений от 3 до сотен вольт, благодаря чему находят большое применение в радиотехнике для стабилизации напряжения. Во избежание порчи стабилитрона последовательно с ним включается ограничивающий ток резистор.

Варикап – специально сконструированный полупроводниковый диод, применяемый в качестве конденсатора переменной емкости. Значение емкости варикапа определяется емкостью р-п-перехода и изменяется при изменении приложенного к переходу (к диоду) напряжения. С электрической цепи с варикапом, появляются составляющие тока новых частот. Это явление используется в радиотехнике для умножения и деления частоты, для параметрического усиления. Варикап может также использоваться для настройки колебательного контура, для автоматической подстройки частоты и частотной модуляции.

Варистор – полупроводниковый прибор, сопротивление которого изменяется по нелинейному закону при изменении приложенного напряжения. К варисторам относятся большинство полупроводниковых, электронных и ионных приборов. Чаще всего варисторы применяются для защиты элементов электрических схем от перенапряжений и контактов реле от разрушения, а также в стабилизаторах амплитуды в качестве элементов, снижающих нелинейные искажения, в схемах преобразования частоты.

Оптрон – полупроводниковый прибор, содержащий источник и приёмник светового излучения, которые оптически и конструктивно связаны между собой. Элементами оптрона являются источник света и фотоприёмник, но существуют оптроны, состоящие из большого количества электросветовых и фотоэлектрических преобразователей. Оптрон представляет собой сочетание в одном корпусе электросветового преобразователя (лампочки накаливания, светодиода) с фотоэлектрическим (фоторезистором, фотодиодом). Такой оптрон позволяет, например, при полной электрической изоляции двух цепей осуществлять управление током в одной цепи путем изменения тока в другой (дистанционное включение, регулирование громкости, АРУ и т.п.). Наряду с элементарным оптроном создаются сложные конструкции, включающие в себя большое число электросветовых и фотоэлектрических преобразователей. Такие оптроны аналогичны интегральным микросхемам. Они позволяют выполнять логическую обработку большого числа сигналов, воспроизводить сложные функции усиления, генерации и преобразования электрических сигналов.

Тиристор – электропреобразовательный полупроводниковый прибор, содержащий три или более р-п-перехода. По числу внешних электродов тиристоры делятся на: двухэлектродные – динисторы и трехэлектродные – тринисторы. Те и другие представляют собой четырёхслойную структуру полупроводника с разного вида проводимостями. Крайние слои являются анодом и катодом, а третий электрод у тринисторов служит управляющим электродом. Поэтому динисторы являются переключающими диодами, а тринисторы – управляемыми. Если такой прибор включить в цепь переменного тока, то он открывается, пропуская ток в нагрузку лишь тогда, когда мгновенное значение напряжения достигает определенного уровня, либо при подаче отпирающего напряжения на специальный управляющий электрод. Маломощные тиристоры находят применение в импульсной технике. Выпускаются мощные тиристоры для применения в устройствах управления электроприводом и в мощных выпрямителях.

Фототиристор отличается от обычного тем, что в его корпусе имеется окно для облучения структуры световым потоком. Поэтому Фототиристор можно отпирать как воздействием светового потока, так и подачей на управляющий электрод электрического импульса управления. Уровень излучения, необходимый для запуска фототиристора, зависит от температуры и анодного напряжения. Для точного запуска фототиристора используют излучения лазеров и светодиодов. Применяются фототиристоры в тех областях, где необходима электрическая изоляция между управляющим сигналом силовой цепью.

Терморезистор – полупроводниковый прибор, электрическое сопротивление которого изменяется при изменении температуры. Основой терморезисторов являются поликристаллические полупроводниковые материалы с электронной проводимостью – окислы так называемых переходных металлов (от титана до цинка), а также сульфиды, карбиды и нитриды некоторых металлов.

Используются терморезисторы в качестве датчиков устройств противопожарной сигнализации, тепловой защиты, для стабилизации токов и температурной компенсации в транзисторной аппаратуре.

Полупроводниковый светодиод – это излучающий полупроводниковый прибор с одним или несколькими электрическими переходами, предназначенный для непосредственного преобразования электрической энергии в энергию некогерентного светового излучения. Конструкцией светодиода предусмотрена возможность вывода светового излучения из области перехода сквозь прозрачное стекло в корпусе.

Светодиоды используются как световые индикаторы, источники излучения в оптоэлектронных парах, при работе с кино- и фототехникой, в устройствах автоматики, вычислительной и измерительной технике.

Условные обозначения полупроводниковых приборов:

Литература

1). Виноградов Ю.В. «Основы электронной и полупроводниковой техники». Изд. 2-е, доп. М., «Энергия», 1972 г.

2). Журнал «Радио», номер 12, 1978 г.

3). Терещук Р.М. Полупроводниковые приемно-усилительные устройства: Справочник радиолюбителя / 4-е издание, стер. — Киев: Наук. Думка 1989.

4). Бочаров Л.Н. Полевые транзисторы. — М.: Радио и связь, 1984.

5). Полупроводниковые приборы: транзисторы: Справочник / Н.Н.Горюнова. М.; Энергоатомиздат, 1985.

6). Справочник » Полупроводниковые приборы: диоды, тиристоры, оптоэлектронные приборы»; М.: Энергоатомиздат, 1987г.

Применение полупроводниковых приборов (Реферат) — TopRef.ru

Министерство Науки и Образования

Украины

Реферат на тему:

Применение полупроводниковых приборов

Выполнил:

ученик 10-В класса

Средней Общеобразовательной

Школы №94

Гладков Евгений

Проверила:

Иванова

Ольга Петровна

г. Харьков, 2004.

Полупроводниковые приборы – различные по конструкции, технологии изготовления и функциональному назначению электронные приборы, основанные на использовании свойств полупроводников. К полупроводниковым приборам относят также полупроводниковые микросхемы, которые представляют собой монолитные законченные функциональные узлы (усилитель, триггер, набор элементов), все компоненты которых изготавливаются в едином технологическом процессе.

Полупроводники – вещества, электронная проводимость которых имеет промежуточное значение между проводимостью проводников и диэлектриков. К полупроводникам относится обширная группа естественных и синтетических веществ различной химической природы, твердых и жидких, с разными механизмами проводимости. Наиболее перспективными полупроводниками в современной технике являются так называемые электронные полупроводники, проводимость которых обусловлена движением электронов. Однако в отличие от металлических проводников концентрация свободных электронов в полупроводниках очень мала и возрастает с повышением температуры, чем объясняется их пониженная проводимость и специфическая зависимость от удельного сопротивления и температуры: если у металлических проводников при нагревании электрическое сопротивление повышается, то у полупроводников оно понижается. Увеличение концентрации свободных электронов с повышением температуры объясняется тем, что с увеличением интенсивности тепловых колебаний атомов полупроводников все большее количество электронов срывается с внешних оболочек этих атомов и получает возможность перемещаться по объему полупроводника. В переносе электричества через полупроводники, помимо свободных электронов могут принимать участие места, освободившиеся от перешедших в свободное состояние электронов – так называемые дырки.

Поэтому и свободные электроны и дырки называют носителями электрического заряда, причём дырке приписывают положительный заряд, равный заряду электрона. В идеальном полупроводнике образование свободных электронов и дырок происходит одновременно, парами, а потому концентрации электронов и дырок одинаковы. Введение же в полупроводник определенных примесей способно привести к увеличению концентрации носителей одного знака и сильно повысить проводимость. Это происходит при условии, что на внешней оболочке атомов примеси находится на один электрон больше (донорные примеси) или на один электрон меньше (акцепторные примеси), чем у атомов исходного полупроводника. В первом случае примесные атомы (доноры) легко отдают лишний электрон, а во втором (акцепторы)– забирают недостающий электрон от атомов полупроводника, создавая дырку. Для наиболее распространённых полупроводников (кремния и германия), являющихся четырёхвалентными химическими элементами, донорами служат пятивалентные вещества (фосфор, мышьяк, сурьма), а акцепторами – трехвалентные (бор, алюминий, индий). В зависимости от преобладающего типа носителей примесные полупроводники делят на полупроводники электронного (п-типа) и дырочного (р-типа).

Зависимость электропроводимости полупроводника от различных внешних воздействий служит основой разнообразных технических приборов. Так, уменьшение сопротивления используется в термисторах, уменьшение сопротивления при освещении– в фоторезисторах. Появление ЭДС при прохождении тока через полупроводник, помещённый в магнитное поле (эффект Холла) применяется для измерения магнитных полей, мощности и т.д. Особенно ценными свойствами обладают неоднородные полупроводники (с изменяющейся от одной части объёма к другой проводимостью), а также контакты разных полупроводников между собой и полупроводников с металлами. Возникающие в таких системах эффекты наиболее ярко проявляются у электронно-дырочных переходов (р-п-переходом). Использование р-п-переходов лежит в основе действия многих полупроводниковых приборов: транзистора, полупроводникового диода, полупроводникового фотоэлемента, термоэлектрического генератора, солнечной батареи.

60-е – 70-е годы составляют эпоху полупроводниковой техники и собственно электроники. Электроника внедряется во все отрасли науки, техники и народного хозяйства. Являясь комплексом наук, электроника тесно связана с радиофизикой, радиолокацией, радионавигацией, радиоастрономией, радиометеорологией, радиоспектроскопией, электронной вычислительной и управляющей техникой, радиоуправлением на расстоянии, телеизмерениями, квантовой радиоэлектроникой.

В этот период продолжалось дальнейшее усовершенствование электровакуумных приборов. Большое внимание уделяется повышению их прочности, надёжности, долговечности. Разрабатывались пальчиковые и сверхминиатюрные лампы, что давало возможность снизить габариты установок, насчитывающих большое количество радиоламп.

Продолжались интенсивные работы в области физики твёрдого тела и теории полупроводников, разрабатывались способы получения монокристаллов полупроводников, методы их очистки и введения примесей. Большой вклад в развитие физики полупроводников внесла советская школа академика А.Ф.Иоффе.

Полупроводниковые приборы быстро и широко распространились за 50-е-70-е годы во все области народного хозяйства. В 1926 г. был предложен полупроводниковый выпрямитель переменного тока из закиси меди. Позднее появились выпрямители из селена и сернистой меди. Бурное развитие радиотехники (особенно радиолокации) в период второй мировой войны дало новый толчок к исследованиям в области полупроводников. Были разработаны точечные выпрямители переменных токов СВЧ на основе кремния и германия, а позднее появились плоскостные германиевые диоды. В 1948 г. американские учёные Бардин и Браттейн создали германиевый точечный триод (транзистор), пригодный для усиления и генерирования электрических колебаний. Позднее был разработан кремниевый точечный триод. В начале 70-х годов точечные транзисторы практически не применялись, а основным типом транзистора являлся плоскостной, впервые изготовленный в 1951 г. К концу 1952 г. были предложены плоскостной высокочастотный тетрод, полевой транзистор и другие типы полупроводниковых приборов. В 1953 г. был разработан дрейфовый транзистор. В эти годы широко разрабатывались и исследовались новые технологические процессы обработки полупроводниковых материалов, способы изготовления p-n- переходов и самих полупроводниковых приборов. В начале 70-х годов, кроме плоскостных и дрейфовых германиевых и кремниевых транзисторов, находили широкое распространение и другие приборы, использующие свойства полупроводниковых материалов: туннельные диоды, управляемые и неуправляемые четырёхслойные переключающие приборы, фотодиоды и фототранзисторы, варикапы, терморезисторы и т.д.

Развитие и совершенствование полупроводниковых приборов характеризуется повышением рабочих частот и увеличением допустимой мощности. Первые транзисторы обладали ограниченными возможностями (предельные рабочие частоты порядка сотни килогерц и мощности рассеяния порядка 100 — 200 МВт) и могли выполнять лишь некоторые функции электронных ламп. Для того же диапазона частот были созданы транзисторы с мощностью в десятки ватт. Позднее были созданы транзисторы, способные работать на частотах до 5 МГц и рассеивать мощность порядка 5 Вт, а уже в 1972 г. были созданы образцы транзисторов на рабочие частоты 20 — 70 МГц с мощностями рассеивания, достигающими 100 Вт и более. Маломощные же транзисторы (до 0,5 — 0,7 Вт) могут работать на частотах свыше 500 МГц. Позже появились транзисторы, работающие на частотах порядка 1000 МГц. Одновременно велись работы по расширению диапазона рабочих температур. Транзисторы, изготовленные на основе германия, имели первоначально рабочие температуры не выше +55  70 С, а на основе кремния — не выше +100  120 С. Созданные позже образцы транзисторов на арсениде галлия оказались работоспособными при температурах до +250 С, и их рабочие частоты в итоге увеличились до 1000 МГц. Есть транзисторы на карбиде, работающие при температурах до 350 С. Транзисторы и полупроводниковые диоды по многим показателям в 70-е годы превосходили электронные лампы и в итоге полностью вытеснили их из областей электроники. В интегральной электронике МДП-структуры широко используются для создания транзисторов и на их основе различных интегральных микросхем.

Перед проектировщиками сложных электронных систем, насчитывающих десятки тысяч активных и пассивных компонентов, стоят задачи уменьшения габаритов, веса, потребляемой мощности и стоимости электронных устройств, улучшения их рабочих характеристик и, что самое главное, достижения высокой надёжности работы. Эти задачи успешно решает микроэлектроника — направление электроники, охватывающее широкий комплекс проблем и методов, связанных с проектированием и изготовлением электронной аппаратуры в микроминиатюрном исполнении за счёт полного или частичного исключения дискретных компонентов.

Электровакуумные и полупроводниковые приборы презентация. Презентация на тему «полупроводниковые приборы и принцип их работы «

Представлена презентация, которую можно использовать на уроках физики, а также на занятиях по электротехнике и основам электроники в средних профессиональных образовательных учреждениях. В работе изложена тема “полупроводниковые приборы”.

Полупроводниковыми или электропреобразовательными называются приборы, действие которых основано на использовании свойств полупроводников.

K полупроводникам относятся элементы четвертой группы таблицы Менделеева, имеющих кристаллическую структуру. Наиболее распространенными являются германий, кремний, селен.

K полупроводникам также относятся окислы металлов — оксиды, соединения с серой — сульфиды, соединения с селеном – селениды.

Виды полупроводников и их проводимостей. Собственный полупроводник — это беспримесный полупроводник.

Процесс возникновения свободных электронов и дырок называется генерацией носителей заряда.

B полупроводнике возможен процесс, обратный процессу генерации — рекомбинация. При рекомбинации происходит уничтожение пары зарядов электрон-дыркаКонцентрация носителей заряда, а следовательно, и электропроводность в полупроводнике возрастает с увеличением температуры. При температуре концентрация носителей заряда для чистого Ge равна 10 13 см -3 , для Si – 10 11 см -3 .

Этот полупроводник обладает собственной проводимостью, которая складывается из электронов и дырок в равных количествах

3 слайд:

Виды полупроводников и их проводимостей

Электронный полупроводник

Проводимость такого типа называется электронной или n-типа (от negative — отрицательный).

Примесь, дающая избыток электронов называется донорной (дающей электроны — основные носители зарядов, а дырки — неосновные.

Дырочный полупроводник

Дырочным (p-типа) называется примесный полупроводник, валентность атомов примеси которого меньше валентности атомов чистого полупроводника. Например, германий с примесью индия. Проводимость такого полупроводника будет определяться дырками и называется дырочной или р -типа (от positive – положительный).

Примесь, дающая избыток дырок, называется акцепторной (принимающей).

Дырки — основные носители зарядов, а электроны — неосновные.

5 слайд:

Полупроводниковые диоды

1. Случай отсутствия напряжения.

Область, в которой образуется двойной электрический слой и электрическое поле называется электронно-дырочным n-p — переходом.

Основные носители заряда, перемещаясь через n-p – переход, создают ток диффузии. Движение неосновных носителей заряда создает ток проводимости.

B состоянии равновесия эти токи равны по величине и противоположны по направлению. Тогда результирующий ток через переход равен нулю.

2. Случай прямого напряжения.

Такой полярности напряжение называется прямым.

При прямом напряжении внешнее поле ослабляет поле n-p – перехода.

Переход основных носителей заряда будет преобладать над переходом неосновных носителей заряда. Через переход пойдет прямой ток. Этот ток велик, т.к. определяется основными носителями заряда.

3. Случай обратного напряжения.

Через n-p – переход переходят только неосновные носители заряда: дырки из n – полупроводника и электроны из р – полупроводника. Они и создают во внешней цепи ток, противоположный прямому току – обратный ток. Он примерно в тысячу раз меньше прямого тока, т.к. определяется неосновными носителями зарядов.

8 слайд:

Вольтамперная характеристика диода

При увеличении обратного напряжения потоки основных носителей заряда уменьшаются, обратный ток увеличивается.

Дальнейшее увеличение U обр увеличивает ток незначительно, т.к. он определяется потоками неосновных носителей заряда.

Основное свойство диодов: т.к. диоды хорошо проводят ток в прямом направлении и плохо в обратном, то они обладают свойством односторонней проводимости, являются электрическими вентилями и используются в схемах выпрямителей переменного тока.

9 слайд:

Типы диодов

Устройство плоскостного диода

Устройство точечного диода

Обозначение полупроводниковых диодов на схемах.

10 слайд:

Опорные кремниевые диоды

Этот диод устроен так, что повышение обратного напряжения (приложенного к n-p – переходу) выше некоторого предела приводит к пробою диода — быстрому возрастанию обратного тока I обр при постоянном значении обратного напряжения U обр.

Если ток через диод превысит I maх, то это приведет его к перегреву и разрушению. Рабочим участком характеристики является участок отI min доI maх , который используется для стабилизации напряжения. Опорные диоды используются для стабилизации напряжения и создают опорное (эталонное) напряжение. Поэтому они называются кремниевыми стабилитронами.










1 из 9

№ слайда 1

Описание слайда:

№ слайда 2

Описание слайда:

Стремительное развитие и расширение областей применения электронных устройств обусловлено совершенствованием элементной базы, основу которой составляют полупроводниковые приборы Полупроводниковые материалы по своему удельному сопротивлению (ρ=10-6 ÷ 1010 Ом м) занимают промежуточное место между проводниками и диэлектриками. Стремительное развитие и расширение областей применения электронных устройств обусловлено совершенствованием элементной базы, основу которой составляют полупроводниковые приборы Полупроводниковые материалы по своему удельному сопротивлению (ρ=10-6 ÷ 1010 Ом м) занимают промежуточное место между проводниками и диэлектриками.

№ слайда 3

Описание слайда:

№ слайда 4

Описание слайда:

Для изготовления электронных приборов используют твердые полупроводники, имеющие кристаллическое строение. Для изготовления электронных приборов используют твердые полупроводники, имеющие кристаллическое строение. Полупроводниковыми приборами называются приборы, действие которых основано на использовании свойств полупроводниковых материалов.

№ слайда 5

Описание слайда:

Полупроводниковые диоды Это полупроводниковый прибор с одним p-n-переходом и двумя выводами, работа которого основана на свойствах p-n — перехода. Основным свойством p-n – перехода является односторонняя проводимость – ток протекает только в одну сторону. Условно-графическое обозначение (УГО) диода имеет форму стрелки, которая и указывает направление протекания тока через прибор. Конструктивно диод состоит из p-n-перехода, заключенного в корпус (за исключением микромодульных бескорпусных) и двух выводов: от p-области – анод, от n-области – катод. Т.е. диод – это полупроводниковый прибор, пропускающий ток только в одном направлении – от анода к катоду. Зависимость тока через прибор от приложенного напряжения называется вольт-амперной характеристикой (ВАХ) прибора I=f(U).

№ слайда 6

Описание слайда:

Транзисторы Транзистор — это полупроводниковый прибор, предназначенный для усиления, генерирования и преобразования электрических сигналов, а также коммутации электрических цепей. Отличительной особенностью транзистора является способность усиливать напряжение и ток — действующие на входе транзистора напряжения и токи приводят к появлению на его выходе напряжений и токов значительно большей величины. Свое название транзистор получил от сокращения двух английских слов tran(sfer) (re)sistor — управляемый резистор. Транзистор позволяет регулировать ток в цепи от нуля до максимального значения.

№ слайда 7

Описание слайда:

Классификация транзисторов: Классификация транзисторов: — по принципу действия: полевые (униполярные), биполярные, комбинированные. — по значению рассеиваемой мощности: малой, средней и большой. — по значению предельной частоты: низко-, средне-, высоко- и сверхвысокочастотные. — по значению рабочего напряжения: низко- и высоковольтные. — по функциональному назначению: универсальные, усилительные, ключевые и др. — по конструктивному исполнению: бескорпусные и в корпусном исполнении, с жесткими и гибкими выводами.

№ слайда 8

Описание слайда:

В зависимости от выполняемых функций транзисторы могут работать в трех режимах: В зависимости от выполняемых функций транзисторы могут работать в трех режимах: 1) Активный режим — используется для усиления электрических сигналов в аналоговых устройствах. Сопротивление транзистора изменяется от нуля до максимального значения — говорят транзистор «приоткрывается» или «подзакрывается». 2) Режим насыщения — сопротивление транзистора стремится к нулю. При этом транзистор эквивалентен замкнутому контакту реле. 3) Режим отсечки — транзистор закрыт и обладает высоким сопротивлением, т.е. он эквивалентен разомкнутому контакту реле. Режимы насыщения и отсечки используются в цифровых, импульсных и коммутационных схемах.

№ слайда 9

Описание слайда:

Индикатор Электрóнный индикáтор — это электронное показывающее устройство, предназначенное для визуального контроля за событиями, процессами и сигналами. Электронные индикаторы устанавливается в различное бытовое и промышленное оборудование для информирования человека об уровне или значении различных параметров, например, напряжения, тока, температуры, заряде батареи и т.д. Часто электронным индикатором ошибочно называют механический индикатор с электронной шкалой.

Cлайд 1

Классификация и обозначения полупроводниковых приборов Выполнено: Тепликов И. Сенюков Е.

Cлайд 2

Введение При использовании полупроводниковых приборов в электронных устройствах для унификации их обозначения и стандартизации параметров используются системы условных обозначений. Эта система классифицирует полупроводниковые приборы по их назначению, основным физическим и электрическим параметрам, конструктивно-технологическим свойствам, виду полупроводниковых материалов. Система условных обозначений отечественных полупроводниковых приборов базируется на государственных и отраслевых стандартах. Первый ГОСТ на систему обозначений полупроводниковых приборов ГОСТ 10862-64 был введен в 1964 году. Затем по мере возникновения новых классификационных групп приборов был изменен на ГОСТ 10862-72, а затем на отраслевой стандарт ОСТ 11.336.038-77 и ОСТ 11.336.919-81 соответственно в 1972, 1977, 1981 годах. При этой модификации основные элементы цифробуквенного кода системы условных обозначений сохранились. Эта система обозначений логически строена и позволяет наращивать по мере дальнейшего развития элементной базы. Основные термины, определения и буквенные обозначения основных и справочных параметров полупроводниковых приборов приведены в следующих гостах: 25529-82 – Диоды полупроводниковые. Термины, определения и буквенные обозначения параметров; 19095-73 – Транзисторы полевые. Термины, определения и буквенные обозначения параметров; 20003-74 – Транзисторы биполярные. Термины, определения и буквенные обозначения параметров; 20332-84 – Тиристоры. Термины, определения и буквенные обозначения параметров.

Cлайд 3

Условные обозначения и классификация отечественных полупроводниковых приборов Система обозначений современных полупроводниковых диодов, тиристоров и оптоэлектронных приборов установлена отраслевым стандартом ОСТ 11 336.919-81 и базируется на ряде классификационных признаков этих приборов. В основу системы обозначений положен буквенно-цифровой код, который состоит из 5 элементов…

Cлайд 4

Первый элемент Первый элемент (буква или цифра) обозначает исходный полупроводниковый материал, на базе которого создан полупроводниковый прибор. Для приборов общегражданского применения используются буквы, являющиеся начальными буквами в названии полупроводника или полупроводникового соединения. Для приборов специального применения вместо этих букв используются цифры. Исходный материал Условные обозначения Германий или его соединения Г или 1 Кремний или его соединения К или 2 Соединения галлия (например, арсенид галлия) А или 3 Соединения индия (например, фосфид индия) И или 4

Cлайд 5

Второй элемент- подкласс полупроводниковых приборов. Обычно буква выбирается из названия прибора, как первая буква названия Подкласс приборов Условные обозначения Подкласс приборов Условные обозначения Выпрямительные, универсальные, импульсные диоды Д Стабилитроны С Транзисторы биполярные Т Выпрямительные столбы Ц Транзисторы полевые П Диоды Ганна Б Варикапы В Стабилизаторы тока К Тиристоры диодные Н Сверхвысокочастотные диоды А Тиристоры триодные У Излучающие ОЭ приборы Л Туннельные диоды И Оптопары О

Cлайд 6

Третий элемент. Третий элемент (цифра) в обозначении полупроводниковых приборов, определяет основные функциональные возможности прибора. У различных подклассов приборов наиболее характерные эксплутационные параметры (функциональные возможности) различны. Для транзисторов – это рабочая частота и рассеиваемая мощность, для выпрямительных диодов — максимальное значение прямого тока, для стабилитронов – напряжение стабилизации и рассеиваемая мощность, для тиристоров – значение тока в открытом состоянии.

Cлайд 7

Четвертый элемент. Четвертый элемент (2 либо 3 цифры) означает порядковый номер технологической разработки и изменяется от 01 до 999.

Cлайд 8

Пятый элемент. Пятый элемент (буква) в буквенно-цифровом коде системы условных обозначений указывает разбраковку по отдельным параметрам приборов, изготовленных в единой технологии. Для обозначения используются заглавные буквы русского алфавита от А до Я, кроме З, О, Ч, Ы, Ш, Щ, Я, схожих по написанию с цифрами.

Cлайд 9

Условные обозначения и классификация зарубежных полупроводниковых приборов За рубежом существуют различные системы обозначений полупроводниковых приборов. Наиболее распространенной является система обозначений JEDEC, принятая объединенным техническим советом по электронным приборам США. По этой системе приборы обозначаются индексом (кодом, маркировкой), в котором первая цифра соответствует числу p-n переходов: 1 – диод, 2 – транзистор, 3 – тетрод (тиристор). За цифрой следует буква N и серийный номер, который регистрируется ассоциацией предприятий электронной промышленности (EIA). За номером могут стоять одна или несколько букв, указывающих на разбивку приборов одного типа на типономиналы по различным параметрам или характеристикам. Однако цифры серийного номера не определяют тип исходного материала, частотный диапазон, мощность рассеяния или область применения. В Европе используется система, по которой обозначения полупроводниковым приборам присваиваются организацией Association International Pro Electron. По этой системе приборы для бытовой аппаратуры широкого применения обозначаются двумя буквами и тремя цифрами. Так, у приборов широкого применения после двух букв стоит трехзначный порядковый номер от 100 до 999. У приборов, применяемых в промышленной и специальной аппаратуре, третий знак – буква (буквы используются в обратном алфавитном порядке: Z, Y, X и т.д.), за которой следует порядковый номер от 10 до 99.

Cлайд 10

Cлайд 11

Первый элемент. Первый элемент (буква) обозначает исходный полупроводниковый материал, на базе которого создан полупроводниковый прибор. Используются 4 латинские буквы A, B, C и D, в соответствии с видом полупроводника или полупроводникового соединения. Исходный материал Ширина запрещенной зоны, эВ Условные обозначения Германий 0,6…1 А Кремний 1…1,3 В Арсенид галлия более 1,3 С Антимонид индия менее 1,6 D

Cлайд 12

Второй элемент (буква) обозначает подкласс полупроводниковых приборов. Третий элемент (цифра или буква) обозначает в буквенно-цифровом коде полупроводниковые приборы, предназначенные для аппаратуры общегражданского применения (цифра) или для аппаратуры специального применения (буква). В качестве буквы в последнем случае используются заглавные латинские буквы, расходуемые в обратном порядке Z, Y, X и т.п. Четвертый элемент (2 цифры) означает порядковый номер технологической разработки и изменяется от 01 до 99. Например, ВТХ10-200 — это кремниевый управляемый выпрямитель (тиристор) специального назначения с регистрационным номером 10 и напряжением 200 В.

Cлайд 13

стандарт JIS-C-7012 Система стандартных обозначений, разработанная в Японии (стандарт JIS-C-7012, принятый ассоциацией EIAJ-Electronic Industries Association of Japan) позволяет определить класс полупроводникового прибора (диод или транзистор), его назначение, тип проводимости полупроводника. Вид полупроводникового материала в японской системе не отражается. Условное обозначение полупроводниковых приборов по стандарту JIS-C-7012 состоит из пяти элементов. Первый элемент. Первый элемент (цифра) обозначает тип полупроводникового прибора. Используются 3 цифры (0, 1, 2 и 3) в соответствии с типом прибора. Второй элемент. Второй элемент обозначается буквой S и указывает на то, что данный прибор является полупроводниковым. Буква S используется как начальная буква от слова Semiconductor. Третий элемент. Третий элемент (буква) обозначает подкласс полупроводниковых приборов. Ниже в таблице приведены буквы, используемые для обозначения подклассов Четвертый элемент. Четвертый элемент обозначает регистрационный номер технологической разработки и начинается с числа 11. Пятый элемент. Пятый элемент отражает модификацию разработки (А и В – первая и вторая модификация).

Cлайд 14

JEDEC Система обозначений JEDEC (Joint Electron Device Engineering Council), принята объединенным техническим советом по электронным приборам США. По этой системе приборы обозначаются индексом (кодом, маркировкой), в котором: Первый элемент. Первый элемент (цифра) обозначает число p-n переходов. Используются 4 цифры (1, 2, 3 и 4) в соответствии с типом прибора: 1 – диод, 2 – транзистор, 3 – тиристор, 4 – оптопара. Второй элемент. Второй элемент состоит из буквы N и серийного номера, который регистрируется ассоциацией предприятий электронной промышленности (EIA). Цифры серийного номера не определяют тип исходного материала, частотный диапазон, мощность рассеяния и область применения. Третий элемент. Третий элемент — одна или несколько букв, указывают на разбивку приборов одного типа на типономиналы по различным характеристикам. Фирма-изготовитель, приборы которой по своим параметрам подобны приборам, зарегестрированным EIA, может представлять свои приборы с обозначением, принятым по системе JEDEC. Пример: 2N2221A, 2N904.

Cлайд 15

Графические обозначения и стандарты В технической документации и специальной литературе применяются условные графические обозначения полупроводниковых приборов в соответствии с ГОСТ 2.730-73 «Обозначения условные, графические в схемах. Приборы полупроводниковые».

Cлайд 16

Cлайд 17

Cлайд 18

Cлайд 19

Cлайд 20

Cлайд 21

Cлайд 22

Cлайд 23

Cлайд 24

Cлайд 25

Cлайд 26

Cлайд 30

Триодный, запираемый в обратном направлении, выключаемый, с управлением по Катоду Аноду

Cлайд 31

Условные обозначения электрических параметров и сравнительные справочные данные полупроводниковых приборов Для полупроводниковых приборов определены и стандартизованы значения основных электрических параметров и предельные эксплутационные характеристики, которые приводятся в справочниках. К таким параметрам относятся: напряжение (например, Uпр – постоянное прямое напряжение диода), ток (например, Iст, max – максимально допустимый ток в стабилизации стабилитрона, мощность (например, Pвых – выходная мощность биполярного транзистора), сопротивление (например, rдиф – дифференциальное сопротивление диода), емкость (например, Cк – емкость коллекторного перехода), время и частота (например, tвос, обр — время обратного восстановления тиристора, диода), температура (например, Tmax — максимальная температура окружающей среды). Число значений основных электрических параметров исчисляется сотнями, причем для каждого подкласса полупроводниковых приборов эти параметры будут различными. В справочных изданиях приводятся значения основных электрических параметров и предельные эксплутационные характеристики полупроводниковых приборов. Ниже в качестве примера приведены эти данные для типичных представителей различных типов приборов.

Cлайд 32

Примеры обозначения некоторых транзисторов: КТ604А — кремниевый биполярный, средней мощности, низкочастотный, номер разработки 04, группа А 2Т920 — кремниевый биполярный, большой мощности, высокочастотный, номер разработки 37, группа А 2ПС202А-2 — набор маломощных кремниевых полевых транзисторов средней частоты, номер разработки 02, группа А, бескорпусный, с гибкими выводами на кристаллодержателе. 2Д921А — кремниевый импульсный диод с эффективным временем жизни неосновных носителей заряда менее 1нс, номер разработки 21, группа А 3И203Г — арсенидогаллиевый туннельный генераторный диод, номер разработки 3, группа Г АД103Б — арсенидогаллиевый излучающий диод инфракрасного диапазона, номер разработки 3, группа Б.

Cлайд 33

Основные ГОСТы: ГОСТ 15133-77 Приборы полупроводниковые. Термины и определения ОСТ 11 336,919 -81 Приборы полупроводниковые. Система условных обозначений. ГОСТ 2,730-73 Обозначения условные графические в схемах. Приборы полупроводниковые ГОСТ 18472-82 Приборы полупроводниковые. Основные размеры ГОСТ 20003-74 Транзисторы биполярные. Термины, определения и буквенные обозначения параметров. ГОСТ 19095 — 73 Транзисторы полевые. Термины, определения и буквенные обозначения параметров. ГОСТ 23448 — 79 Приборы полупроводниковые инфракрасные излучающие. Основные размеры. ГОСТ 25529-82 Диоды полупроводниковые. Термины, определения и буквенные обозначения параметров.

Презентация «Средства измерения температуры»

В презентации приведена классификация средств измерения температуры контактным и бесконтактным способом. Изложены принципы работы манометрического термометра, термометра сопротивления, термоэлектрического термометра, пирометра. Рассмотрены типовые приборы измерения температуры, применяемые на промышленных предприятиях

Данная презентация может использоваться при изучении теоретического материала по дисциплине «Автоматизация технологических процессов» для специальности 270107 «Производство неметаллических строительных изделий и конструкций»

В презентации изложены следующие вопросы:

1 измерение температуры
2 измерение температуры контактным способом

3 манометрические термометры

4 электрические термометры сопротивления

5 термоэлектрические термометры (термопары)

6 интеллектуальные преобразователи температуры

7 термометры цифровые малогабаритные

8 Бесконтактное измерение температуры

9 пирометры

10 универсальная система измерения температуры

11 бесконтактные инфракрасные датчики

12 одноцветные пирометры

13 пирометры спектрального отношения

14 оптоволоконные пирометры спектрального отношения

15 Вопросы для самоконтроля.

Данная презентация выполнена в соответствии с требованиями к результатам освоения дисциплин и рабочих программ по указанным специальностям

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Средства измерения температуры. Преподаватель НКСЭ Кривоносова Н.В.

содержание 1 Измерение температуры 2 измерение температуры контактным способом 3 манометрические термометры 4 электрические термометры сопротивления 5 термоэлектрические термометры (термопары) 6 интеллектуальные преобразователи температуры 7 термометры цифровые малогабаритные 8 Бесконтактное измерение температуры 9 пирометры 10 универсальная система измерения температуры 11 бесконтактные инфракрасные датчики 12 одноцветные пирометры 13 пирометры спектрального отношения 14 оптоволоконные пирометры спектрального отношения 15 вопросы

Измерение температуры Приборы для измерения температуры делятся на две группы: — контактные — имеет место надежный тепловой контакт чувствительного элемента прибора с объектом измерения; — бесконтактные — чувствительный элемент термометра в процессе измерения не имеет непосредственного соприкосновения с измеряемой средой

Измерение температуры контактным способом Классификация по принципу действия: 1. Термометры расширения – принцип действия основан на изменении объема жидкости (жидкостные) или линейных размеров твердых тел (биметаллические) при изменении температуры. Предел измерения от минус 190°С до плюс 600 °С.

2. Манометрические термометры – принцип действия основан на изменении давления жидкостей, парожидкостной смеси или газа в замкнутом объеме при изменении температуры. Пределы измерения от минус 150 °С до плюс 600 °С. Измерение температуры контактным способом

Измерение температуры контактным способом 3. Электрические термометры сопротивления — основаны на изменении электрического сопротивления проводников или полупроводников при изменении температуры. Пределы измерения от – 200 °С до + 650 °С.

Измерение температуры контактным способом 4. Термоэлектрические преобразователи (термопары) — основаны на возникновении термоэлектродвижущей силы при нагревании спая разнородных проводников или полупроводников. Диапазон температур от – 200 °С до + 2300 °С.

Манометрические термометры Манометрический термометр с трубчатой пружиной

Манометрические термометры Зависимость давления от температуры имеет вид где  =1/273,15 – температурный коэффициент расширения газа; t 0 и t – начальная и конечная температуры; Р 0 – давление рабочего вещества при температуре t 0 . P t = P o (1 + β (t — to))

Электрические термометры сопротивления Изготавливают платиновые термометры сопротивления (ТСП) для температур от –200 до +650 0 С и медные термометры сопротивления (ТСМ) для температур от –50 до +180 0 С.

Электрические термометры сопротивления Полупроводниковые термометры сопротивления, которые называются термисторами или терморезисторами, применяются для измерения температуры в интервале от –90 до +180 0 С.

Электрические термометры сопротивления Приборы, работающие в комплекте с термометрами сопротивления: — уравновешенные мосты, — неуравновешенные мосты, — логометры.

термоЭлектрические термометры (термопары) Спай термопары с температурой t 1 называется горячим или рабочим, а спай с t 0 – холодным или свободным. ТермоЭДС термопары есть функция двух температур: E AB = f (t l , t 0).

термоЭлектрические термометры (термопары) Электрическая схема термоэлектрического преобразователя (термопара)

термоЭлектрические термометры (термопары) Приборы, работающие в комплекте с термопарами: — магнитоэлектрические милливольтметры; — автоматические потенциометры.

термоЭлектрические термометры (термопары) Стандартные градуировки термопар

термоЭлектрические термометры (термопары) Термопреобразователи с унифицированным выходным сигналом ТХАУ Метран — 271, ТСМУ Метран — 74

термоЭлектрические термометры (термопары) ТХАУ Метран — 271, ТСМУ Метран — 74 Чувствительный элемент первичного преобразователя и встроенный в головку датчика измерительный преобразователь преобразуют измеряемую температуру в унифицированный токовый выходной сигнал, что дает возможность построения АСУ ТП без применения дополнительных нормирующих преобразователей

термоЭлектрические термометры (термопары) ТХАУ Метран — 271, ТСМУ Метран — 74 Использование термопреобразователей допускается в нейтральных и агрессивных средах, по отношению к которым материал защитной арматуры является коррозионностойким

Интеллектуальные преобразователи температуры Метран — 281 Метран — 28 6

Интеллектуальные преобразователи температуры Интеллектуальные преобразователи температуры (ИПТ) Метран-280: Метран-281, Метран-286 предназначены для точных измерений температуры нейтральных, а также агрессивных сред по отношению к которым материал защитной арматуры является коррозионностойким.

Интеллектуальные преобразователи температуры Управление ИПТ осуществляется дистанционно, при этом обеспечивается настройка датчика: — выбор его основных параметров; — перенастройка диапазонов измерений; — запрос информации о самом ИПТ (типе, модели, серийном номере, максимальном и минимальном диапазонах измерений, фактическом диапазоне измерений).

Интеллектуальные преобразователи температуры В Метран-280 реализовано три единицы измерения температуры: — градусы Цельсия, º С; — градусы Кельвина, К; градусы Фаренгейта, F. Диапазон измеряемых температур от 0 до 1000 º C .

Интеллектуальные преобразователи температуры Конструктивно Метран-280 состоит из термозонда и электронного модуля, встроенного в корпус соединительной головки. В качестве первичного термопреобразователя используются чувствительные элементы из термопарного кабеля КТМС (ХА) или резистивные чувствительные элементы из платиновой проволоки.

Интеллектуальные преобразователи температуры При обнаружении неисправности в режиме самодиагностики выходной сигнал устанавливается в состояние, соответствующее нижнему (I вых ≤ 3,77 мА) сигналу тревоги. В Метран-280 реализован режим защиты настроек датчика от несанкционированного доступа.

Термометры цифровые малогабаритные ТЦМ 9210

Термометры цифровые малогабаритные Термометры ТЦМ 9210 предлагаются для замены жидкостных стеклянных термометров (ртутных и др.). ТЦМ 9210 обеспечивают четкую индикацию температуры в условиях слабой освещенности.

Термометры цифровые малогабаритные Термометры цифровые малогабаритные ТЦМ – 9210 предназначены для измерений температуры сыпучих, жидких и газообразных сред посредством погружения термопреобразователей в среду (погружные измерения) или для контактных измерений температуры поверхностей (поверхностные измерения) с представлением измеряемой температуры на цифровом табло электронного блока.

Термометры цифровые малогабаритные Термометры применяются при научных исследованиях, в технологических процессах в горнодобывающей, нефтяной, деревоперерабатывающей, пищевой и других отраслях промышленности. Диапазон измеряемых температур от – 50 до +1800 º C .

Термометры цифровые малогабаритные Термометры состоят из термопреобразователя (ТТЦ), электронного блока и сетевого блока питания. ТТЦ состоит из чувствительного элемента (ЧЭ) с защитной оболочкой, внутренних соединительных проводов и внешних выводов, позволяющих осуществить подключение к электронному блоку термометра.

Термометры цифровые малогабаритные В качестве ЧЭ в ТТЦ термометров используются термопреобразователи сопротивления Pt100 , преобразователи термоэлектрические ТХА(К). Электронный блок предназначен для преобразования сигнала, поступающего с выхода ТТЦ в сигнал измерительной информации, который высвечивается на цифровом табло.

Бесконтактное Измерение температуры К бесконтактным приборам относятся пирометры излучения: 1. Пирометры частичного излучения (яркостные, оптические), основанные на изменении интенсивности монохроматического излучения тел в зависимости от температуры. Предел измерений от 800 до 6000 º С.

Бесконтактное Измерение температуры 2. Радиационные пирометры — основаны на зависимости мощности излучения нагретого тела от его температуры. Предел от 20 до 2000 º С.

Бесконтактное Измерение температуры 3. Цветовые пирометры — основаны на зависимости отношения интенсивностей излучения на двух длинах волн от температуры тела. Пределы измерения от 200 до 3800 º С.

пирометры Переносные пирометры ST20/30Pro, ST60/80ProPlus

пирометры Переносные пирометры ST20/30Pro, ST60/80ProPlus Быстродействующие, компактные и легкие пирометры пистолетного типа обеспечивают бесконтактные точные измерения температуры малых, вредных, опасных и труднодоступных объектов, просты и удобны в эксплуатации.

пирометры Переносные пирометры ST20/30Pro, ST60/80ProPlus Диапазон измеряемых температур от – 32 до +760 º C . Погрешность в диапазоне от – 32 до +26 º C . Прицел: лазерный. Спектральная чувствительность: 7 – 18 мкм. Время отклика: 500 мс. Индикатор: ЖК-дисплей с подсветкой и разрешением; 0,1 º C ST60Pro . Температура окружающей среды: 0 – 50 0 C .

пирометры Raynger 3i

пирометры Raynger 3i – серия бесконтактных инфракрасных термометров пистолетного типа с точным визированием, имеющих широкие диапазоны измерений, различные оптические и спектральные характеристики, большое разнообразие функции, что позволяет выбрать пирометр в соответствии с его назначением

пирометры Raynger 3i — 2М и 1М (высокотемпературные модели) – для литейного и металлургического производства: в процессах рафинирования, литья и обработки чугуна, стали и других металлов, для химического и нефтехимического производства; — LT, LR (низкотемпературные модели) – для контроля температуры при производстве бумаги, резины, асфальта, кровельного материала.

пирометры В пирометрах серии Raynger 3i предусмотрено: — память на 100 измерений; — сигнализация верхнего и нижнего пределов измерений; — микропроцессорная обработка сигналов; — выход на компьютер, самописец, портативный принтер; — компенсация отраженной энергии фона.

пирометры Raynger 3i Для модели LT, LR диапазон измеряемых температур от – 30 до + 1200 º C , спектральная чувствительность 8 – 14 мкм. Для модели 2M диапазон измеряемых температур от 200 до 1800 º C , спектральная чувствительность 1,53 – 1,74 мкм.

Универсальная система измерения температуры THERMALERT GP

Универсальная система измерения температуры Thermalert GP – универсальная система для непрерывного измерения температуры, в состав которой входит компактный недорогой монитор и инфракрасный датчик GPR и GPM. При необходимости монитор оснащается релейным модулем для сигнализации по двум точкам, а также обеспечивает питание датчика.

Универсальная система измерения температуры Инфракрасные датчики необходимы в таких областях, где контактное измерение температуры повредит поверхность, например, пластиковой пленки, или загрязнит продукт, а также для измерения температуры двигающихся или труднодоступных объектов.

Универсальная система измерения температуры В пирометрах серии Thermalert GP: — параметры монитора и датчика устанавливаются с клавиатуры монитора; — обеспечена обработка результатов измерений: фиксация пиковых значений, вычисление средней температуры, компенсация температуры окружающей среды; — предусмотрена стандартная или фокусная оптика;

Универсальная система измерения температуры — диапазоны сигнализации устанавливаются оператором; — имеется возможность работы монитора GP с другими инфракрасными пирометрами фирмы Raytek , например, Thermalert C l и Thermalert TX . Диапазон измеряемых температур от – 18 до + 538 º0 C .

Бесконтактные инфракрасные датчики THERMALERT

Бесконтактные инфракрасные датчики Стационарные бесконтактные инфракрасные датчики серии Thermalert ТХ предназначены для бесконтактного измерения температуры труднодоступных объектов и подключаются по двухпроводной линии связи к монитору, например, Thermalert GP

Бесконтактные инфракрасные датчики Thermalert ТХ Для модели LT диапазон измеряемых температур от – 18 до + 500 º C , спектральная чувствительность 8–14 мкм. Для модели LTO диапазон измеряемых температур от 0 до 500 º C , спектральная чувствительность 8 – 14 мкм. Для модели MT диапазон измеряемых температур от 200 до 1000 º C , спектральная чувствительность 3 ,9

Одноцветные пирометры Marathon MA

Пирометры спектрального отношения Marathon MR1S

Пирометры спектрального отношения Marathon MR 1 S Стационарные инфракрасные пирометры спектрального отношения серии Marathon MR 1 S используют двухцветный метод измерения для получения высокой точности при работе с высокими температурами. Пирометры MR1S имеют улучшенную электронно-оптическую систему, «интеллектуальную» электронику, которые размещаются в прочном, компактном корпусе.

Пирометры спектрального отношения Marathon MR 1 S Эти пирометры – идеальное решение при измерении температуры в загазованных, задымленных зонах, движущихся объектов или очень маленьких объектов, поэтому находят применение в различных отраслях промышленности: плавке руды, выплавке и обработке металлов, нагреве в печах различных типов, в том числе индукционных, выращивании кристаллов и др.

Пирометры спектрального отношения В пирометрах MarathonMR 1 S предусмотрено: — одно — или двухцветный режим измерения; — изменяемое фокусное расстояние; — высокоскоростной процессор; — программное обеспечение для «полевой » калибровки и диагностики; — уникальное предупреждение о «грязной» линзе; программное обеспечение Marathon DataTemp .

Пирометры спектрального отношения Для модели MR A1 S A диапазон измеряемых температур от 600 до 14 00 º C. Для модели MR A1 SС диапазон измеряемых температур от 1000 до 3000 º C.

Оптоволоконные пирометры спектрального отношения Marathon FibreOptic

Оптоволоконные пирометры спектрального отношения Стационарные пирометры серии Marathon FR1 используют технологию инфракрасного спектрального отношения, что обеспечивает высочайшую точность измерений в диапазоне от 500 до 2500 0 С. Пирометры позволяют измерять объекты, находящиеся в опасных и агрессивных зонах, и особенно применяются там, где невозможно использовать другие инфракрасные датчики.

Оптоволоконные пирометры спектрального отношения Marathon FR1 способны точно измерять температуру труднодоступных объектов, находящихся при высокой температуре окружающей среды, загрязненной атмосфере или сильных электромагнитных полях.

вопросы Назовите с редства измерения температуры контактным способом? Назовите средства измерения температуры бесконтактным способом? На чем основан принцип работы манометрического термометра? На чем основан принцип работы термоэлектрического термометра? Принцип работы пирометра?

ресурсы http://kipia.ru/ http://www.thermopribor.com/ http://www2.emersonprocess.com/ http://hi-edu.ru/ http://www.omsketalon.ru/

Спасибо за внимание


Оптоэлектронные полупроводниковые приборы | Полупроводниковые выпрямители

Страница 5 из 14

 Оптронами называют такие оптоэлектронные приборы, в которых имеются источник и приемник светового излучения (светоизлучатель и фотоприемник) с тем или иным видом оптической и электрической связи между ними и которые конструктивно связаны друг с другом.
Принцип действия оптронов любого вида основан на том, что в излучателе энергия электрического сигнала преобразуется в световую; в фотоприемнике, наоборот, световой сигнал вызывает электрический ток. Электрический сигнал на излучатель подается обычно от внешнего источника. Световой сигнал на фотоприемник поступает по цепи оптической связи от излучателя.
Процессы преобразования энергии в оптроне основаны на квантовой природе света, который представляет собой электромагнитное излучение в виде потока частиц — квантов.
Светоизлучатели. Для применения в оптронах пригодны несколько разновидностей излучателей: миниатюрные лампочки накаливания, в которых используется тепловое излучение нагретой электрическим током до 1800—2000 °С нити; неоновые лампочки, в которых используется свечение электрического разряда газовой смеси неон—аргон, и др. [см. 1, § 1.1].
Указанные виды излучателей имеют невысокую светоотдачу, ограниченную долговечность, большие габариты, малую направленность излучения и сложны в управлении. Основным видом излучателя, используемым в оптронах, является полупроводниковый инжекционный светоизлучающий диод — светодиод. Рассмотрим процесс преобразования энергии в таком оптроне (рис. 11,а).
На границе раздела р- и областей полупроводниковой структуры, как было показано выше, возникает p-n-переход, в котором сосредоточен объемный заряд из дырок и электронов. При приложении к структуре прямого напряжения 1/ип в активной области В кристалла некоторых видов полупроводников (например, арсенида галлия и соединений на его основе) создается избыточная концентрация свободных носителей зарядов, инжектируемых р-лпереходом, смещенным в прямом направлении. Возникающий при этом поток электронов проходит через область объемного заряда Е, создавая электронный ток /п. Часть электронов рекомбинируется в активной В и непрозрачной С областях кристалла с дырками. Каждый акт рекомбинации основных носителей заряда сопровождается излучением кванта света, т.е. имеет место излучательная рекомбинация.
Одновременно возникает дырочная составляющая тока /р, обусловленная инжекцией дырок в л-область и отражающая тот факт, что p-n-первходов с односторонней инжекцией не бывает. Доля этого тока тем меньше, чем сильнее легирована /т-область по сравнению с р-областью структуры кристалла [3].
Часть возникающего излучения поглощается в оптически «прозрачной» области А кристалла (лучи 1 на рис. 11,6), кроме того, имеет место: внутреннее отражение (лучи 2) при падении лучей света на границу раздела сред полупроводник — воздух, имеющих разную оптическую плотность, что приводит в конечном счете к их потере из-за самопоглощения.


Рис. 11. Электрическая (а) и оптическая (6) модели светодиода
Генерация квантов в активной области полупроводника является спонтанной и характеризуется тем, что лучи света направлены равновероятно во все стороны. Лучи 3, распространяющиеся в сторону сильно легированной области полупроводника, быстро поглощаются. Активная область В обладает волновод ным эффектом, и лучи 4 вследствие многократных отражений фокусируются вдоль этой области, поэтому интенсивность торцевого излучения значительно выше, чем в других направлениях выхода света из кристалла.
Основными материалами, из которых изготовляются излучатели, являются арсенид галлия и соединения на его основе, а материалом для фотоприемников служит кремний. Оба вида материалов имеют практически одинаковую оптическую плотность (показатель преломления). Это обстоятельство обеспечивает полное оптическое согласование генераторного и приемного блоков оптрона.
Фотоприемники. Принцип действия используемых в оптронах фотоприемников основан на внутреннем фотоэффекте, заключающемся в отрыве электронов от атомов внутри кристаллического тела под действием электромагнитного (оптического) излучения. Образование свободных электронов приводит к изменению электрических свойств облучаемого тела, а возникающие при этом фотоэлектрические явления используются на практике. Экспериментально установлено, что наиболее значительные фотоэлектрические явления имеют место в полупроводниках, в основном в беспримесных. Таким образом, в фотоприемнике происходит преобразование квантов света в энергию подвижных электрических зарядов, под действием которых на р-п-переходе возникает фото-ЭДС.
При разработке оптопар фотоприемник является определяющим элементом оптрона, а излучатель выбирается «под фотоприемник». Уровень оптронной техники в наибольшей степени характеризуется диодными оптронами, промышленные типы которых отличаются простотой устройства, большим разнообразием, широтой функциональных возможностей, хорошим сочетанием электрических параметров.
Конструкция силовых полупроводниковых приборов. Основой конструкции всякого полупроводникового прибора является полупроводниковая структура, определяющая его электрические параметры и характеристики. Структуру с элементами, обеспечивающими необходимую механическую прочность, надежный электрический и тепловой контакты с корпусом прибора, называют вентильным элементом конструкции. Вентильный   элемент должен иметь надежную защиту от влияния окружающей среды, поэтому он помещается в корпус, обеспечивающий герметизацию и механическую прочность всей конструкции.
По виду конструкции корпуса все силовые полупроводниковые вентили можно разделить на штыревые, с плоским основанием (фланцевые) и таблеточные.
На рис. 12,я показана конструкция штыревого тиристора, основание которого 2 изготовляется из меди совместно с нарезным болтом 1 для обеспечения электрического и теплового контакта с охладителем. Тиристоры с плоским основанием корпуса (рис. 12,в) имеют медный фланец 1 для крепления прибора болтами к охладителю. Крышки корпусов в обоих типах тиристоров выполняются в металлостеклянном или металлокерамическом исполнении. Верхний силовой вывод 3 может быть выполнен в виде металлического (медного) плетеного жгута (гибкий вывод) или медного полого стержня, заполненного свинцом (жесткий вывод, рис. 12,6).

Рис. 12. Конструкции мощных тиристоров:
а — штыревой тиристор с гибким и б — без гибкого вывода; в — фланцевый тиристор с гибким выводом
Тиристоры таблеточной конструкции (рис. 13,э) выполняются в виде таблетки 1 в гофрированном керамическом корпусе, обеспечивающем защиту вентильного элемента от загрязнений и механических повреждений. Таблетка помещается между верхним 2 и нижним 6 металлическими основаниями прибора, которые соприкасаются с охладителями, создавая электрический и тепловой контакты. Управляющий электрод 4 тиристора выведен на боковую поверхность корпуса. Подключение прибора к электрической цепи производится посредством токоведущих пластин 3 и 5.
Штыревая и фланцевая конструкции применяются для силовых вентилей на ток до 320 А, таблеточная — на ток 250А и более. Приборы с плоским основанием корпуса более стойки к воздействию циклической смены температуры. В разработках тиристоров последних лет такая конструкция применяется более часто.
На рис. 13,6 в качестве примера показана конструкция нового силового кремниевого транзистора серии ТК. Такие приборы имеют массивный корпус штыревой конструкции с нарезным болтом на основании для соединения с радиатором и жесткие выводы базы и эмиттера.
Общая характеристика полупроводниковых приборов. Отечественная промышленность выпускает в широком ассортименте силовые полупроводниковые приборы, применение которых дозволяет создавать экономичные, малогабаритные и обладающие высокой надежностью различные преобразователи электрической энергии. Для удобства выбора полупроводниковых приборов в процессе проектирования установок и замены вышедших из строя вентилей во время их эксплуатации применяется буквенно-цифровая система условных обозначений на силовые диоды, тиристоры, транзисторы и оптроны (ГОСТ 15543- 70*).


Рис. 13. Таблеточная конструкция тиристора Т500 без охладителя (а) и габаритно-установочные размеры силового транзистора (б) 
Для управления фототиристором в его корпусе предусмотрено специальное окно для пропускания светового потока. В оптронных тиристорах в качестве излучателя используется полупроводниковый светоизлучающий диод — светодиод, на который подается управляющий сигнал. Существенным преимуществом фото- и оптронных тиристоров перед тиристорами, управляемыми электрическим сигналом, является отсутствие гальванической связи между силовой цепью прибора и системой их управления.

2.1.   Классификация оптоэлектронных полупроводниковых приборов

Источники оптического излучения, используемые в оптоэлектронике, вообще говоря, весьма разнообразны. Однако большинство из них (сверхминиатюрные накальные и газоразрядные лампочки, порошковые и пленоч­ные электролюминесцентные излучатели, вакуумные катодолюминофорные и многие другие виды) не удовле­творяют всей совокупности современных требований и находят применение лишь в отдельных устройствах, главным образом в индикаторных приборах и отчасти в оптронах.

При оценке перспективности того или иного источни­ка определяющую роль играет агрегатное состояние активного светящегося вещества (или вещества, заполняющего рабочий объем). Из всех возможных вариан­тов (вакуум, газ, жидкость, твердое тело) предпочте­ние отдается твердотельному веществу, а «внутри» него – монокристаллическому как обеспечивающему наибольшую долговечность и надежность приборов.

Фундамент оптоэлектроники образуют две группы излучателей:

1) оптические генераторы когерентного излучения (лазеры), среди которых следует выделить полупровод­никовые лазеры;

1) светоизлучающие полупроводниковые диоды, осно­ванные на принципе спонтанной инжекционной электро­люминесценции.

Оптоэлектронный полупроводниковый прибор – это полупроводниковый прибор, излучающий или преобразующий электромагнитное излучение, чувствительный к этому излучению в видимой, инфракрасной и (или) ультрафиолетовой областях  спектра или использующий подобное излучение для внутреннего взаимодействия его элементов.

Оптоэлектронные полупроводниковые приборы можно подраз­делить на полупроводниковые излучатели, приемники излучения, оптопары и оптоэлектронные интегральные микросхемы (рис. 2.1).

Полупроводниковый излучатель – это оптоэлектронный полупроводниковый прибор, преобразующий электрическую энергию в энергию электромагнитного излучения в видимой, инфракрасной и ультрафиолетовой областях спектра.

Многие полупроводниковые излучатели могут излучать только некогерентные электромагнитные колебания. К ним относятся полупроводниковые излучатели видимой области спектра – полупроводниковые приборы отображения информации (свето-излучающие диоды, полупроводниковые знаковые индикаторы, шкалы и экраны), а также полупроводниковые излучатели инфракрасной области спектра – инфракрасные излучающие диоды.

Когерентные полупроводниковые излучатели – это полупро­водниковые лазеры с различными видами возбуждения. Они могут излучать электромагнитные волны с определенной ампли­тудой, частотой, фазой, направлением распространения и поля­ризацией, что и соответствует понятию когерентности.

Полупроводниковый приемник излучения – это оптоэлектронный полупроводниковый прибор, чувствительный к электромагнитному излучению видимой, инфракрасной и (или) ультрафиолетовой область zv спектра или преобразующий энергию электромагнитною излучения непосредственно в электрическую энергию.

К полупроводниковым приемникам излучения относятся фото­резисторы, фотодиоды, фотоэлементы, фототранзисторы и фототиристоры.

Виды монтажа полупроводниковых приборов. Эксплуатация полупроводниковых приборов и микросхем

Стремительное развитие и расширение областей применения электронных устройств обусловлено совершенствованием элементной базы, основу которой составляют полупроводниковые приборы . Поэтому, для понимания процессов функционирования электронных устройств необходимо знание устройства и принципа действия основных типов полупроводниковых приборов.

Транзисторы

Транзистор — это полупроводниковый прибор, предназначенный для усиления, генерирования и преобразования электрических сигналов, а также коммутации электрических цепей.

Отличительной особенностью транзистора является способность усиливать напряжение и ток — действующие на входе транзистора напряжения и токи приводят к появлению на его выходе напряжений и токов значительно большей величины.

С распространением цифровой электроники и импульсных схем основным свойством транзистора является его способность находиться в открытом и закрытом состояниях под действием управляющего сигнала.

Свое название транзистор получил от сокращения двух английских слов tran(sfer) (re)sistor — управляемый резистор. Это название неслучайно, так как под действием приложенного к транзистору входного напряжения сопротивление между его выходными зажимами может регулироваться в очень широких пределах.

Транзистор позволяет регулировать ток в цепи от нуля до максимального значения.

Классификация транзисторов:

По принципу действия: полевые (униполярные), биполярные, комбинированные.

По значению рассеиваемой мощности: малой, средней и большой.

По значению предельной частоты: низко-, средне-, высоко- и сверхвысокочастотные.

По значению рабочего напряжения: низко- и высоковольтные.

По функциональному назначению: универсальные, усилительные, ключевые и др.

По конструктивному исполнению: бескорпусные и в корпусном исполнении, с жесткими и гибкими выводами.

В зависимости от выполняемых функций транзисторы могут работать в трех режимах:

1) Активный режим — используется для усиления электрических сигналов в аналоговых устройствах. Сопротивление транзистора изменяется от нуля до максимального значения — говорят транзистор «приоткрывается» или «подзакрывается».

2) Режим насыщения — сопротивление транзистора стремится к нулю. При этом транзистор эквивалентен замкнутому контакту реле.

3) Режим отсечки — транзистор закрыт и обладает высоким сопротивлением, т.е. он эквивалентен разомкнутому контакту реле.

Режимы насыщения и отсечки используются в цифровых, импульсных и коммутационных схемах.

Биполярный транзистор — это полупроводниковый прибор с двумя p-n-переходами и тремя выводами, обеспечивающей усиление мощности электрических сигналов.

В биполярных транзисторах ток обусловлен движением носителей заряда двух типов: электронов и дырок, что и определяет их название.

На схемах транзисторы допускается изображать, как в окружности, так и без неё (рис. 3). Стрелка указывает направление протекания тока в транзисторе.

Рисунок 3 — Условно — графическое обозначения транзисторов n-p-n (а) и p-n-p (б)

Основой транзистора является пластина полупроводника, в которой сформированы три участка с чередующимся типом проводимости — электронным и дырочным. В зависимости от чередования слоев различают два вида структуры транзисторов: n-p-n (рис. 3, а) и p-n-p (рис. 3, б).

Эмиттер (Э) — слой, являющийся источником носителей заряда (электронов или дырок) и создающий ток прибора;

Коллектор (К) – слой, принимающий носители заряда, поступающие от эмиттера;

База (Б) — средний слой, управляющий током транзистора.

При включении транзистора в электрическую цепь один из его электродов является входным (включается источник входного переменного сигнала), другой — выходным (включается нагрузка), третий электрод — общий относительно входа и выхода. В большинстве случаев используется схема с общим эмиттером (рис 4). На базу подается напряжение не более 1 В, на коллектор более 1 В, например +5 В, +12 В, +24 В и т.п.

Рисунок 4 – Схемы включения биполярного транзистора с общим эмиттером

Ток коллектора возникает только при протекании тока базы Iб (определяется Uбэ). Чем больше Iб, тем больше Iк. Iб измеряется в единицах мА, а ток коллектора — в десятках и сотнях мА, т.е. IбIк. Поэтому при подаче на базу переменного сигнала малой амплитуды, малый Iб будет изменяться, и пропорционально ему будет изменяться большой Iк. При включении в цепь коллектора сопротивления нагрузки, на нем будет выделяться сигнал, повторяющий по форме входной, но большей амплитуды, т.е. усиленный сигнал.

К числу предельно допустимых параметров транзисторов в первую очередь относятся: максимально допустимая мощность, рассеиваемая на коллекторе Рк.mах, напряжение между коллектором и эмиттером Uкэ.mах, ток коллектора Iк.mах.

Для повышения предельных параметров выпускаются транзисторные сборки, которые могут насчитывать до нескольких сотен параллельно соединенных транзисторов, заключенных в один корпус.

Биполярные транзисторы ныне используются все реже и реже, особенно в импульсной силовой технике. Их место занимают полевые транзисторы MOSFET и комбинированные транзисторы IGBT , имеющие в этой области электроники несомненные преимущества.

В полевых транзисторах ток определяется движением носителей только одного знака (электронами или дырками). В отличии от биполярных, ток транзистора управляется электрическим полем, которое изменяет сечение проводящего канала.

Так как нет протекания тока во входной цепи, то и потребляемая мощность из этой цепи практически равна нулю, что несомненно является достоинством полевого транзистора.

Конструктивно транзистор состоит из проводящего канала n- или p-типа, на концах которого находятся области: исток, испускающий носители заряда и сток, принимающий носители. Электрод, служащий для регулирования поперечного сечения канала, называют затвором.

Полевой транзистор — это полупроводниковый прибор, регулирующий ток в цепи за счет изменения сечения проводящего канала.

Различают полевые транзисторы с затвором в виде p-n перехода и с изолированным затвором.

У полевых транзисторов с изолированным затвором между полупроводниковым каналом и металлическим затвором расположен изолирующий слой из диэлектрика — МДП-транзисторы (металл — диэлектрик — полупроводник), частный случай — окисел кремния — МОП-транзисторы.

МДП-транзистор со встроенным каналом имеет начальную проводимость, которая при отсутствии входного сигнала (Uзи = 0) составляет примерно половине от максимальной. В МДП-транзисторы с индуцированным каналом при напряжении Uзи=0 выходной ток отсутствует, Iс =0, так как проводящего канала изначально нет.

МДП-транзисторы с индуцированным каналом называют также MOSFET транзисторы. Используются в основном в качестве ключевых элементов, например в импульсных источниках питания.

Ключевые элементы на МДП-транзисторах имеют ряд преимуществ: цепь сигнала гальванически не связана с источником управляющего воздействия, цепь управления не потребляет тока, обладают двухсторонней проводимостью. Полевые транзисторы, в отличие от биполярных, не боятся перегрева.

Подробнее о транзисторах смотрите здесь:

Тиристоры

Тиристор — это полупроводниковый прибор, работающие в двух устойчивых состояниях – низкой проводимости (тиристор закрыт) и высокой проводимости (тиристор открыт). Конструктивно тиристор имеет три или более p-n – переходов и три вывода.

Кроме анода и катода, в конструкции тиристора предусмотрен третий вывод (электрод), который называется управляющим.

Тиристор предназначен для бесконтактной коммутации (включения и выключения) электрических цепей. Характеризуются высоким быстродействием и способностью коммутировать токи весьма значительной величины (до 1000 А). Постепенно вытесняются коммутационными транзисторами.

Рисунок 5 — Условно — графическое обозначение тиристоров

Динисторы (двухэлектродные) — как и обычные выпрямительные диоды имеют анод и катод. С увеличением прямого напряжения при определенном значении Ua = Uвкл динистор открывается.

Тиристоры (тринисторы — трехэлектродные) — имеют дополнительный управляющий электрод; Uвкл изменяется током управления, протекающим через управляющий электрод.

Для перевода тиристора в закрытое состояние необходимо подать напряжение обратное (- на анод, + на катод) или уменьшить прямой ток ниже значения, называемого током удержания Iудер.

Запираемый тиристор – может быть переведен в закрытое состояние подачей управляющего импульса обратной полярности.

Тиристоры: принцип действия, конструкции, типы и способы включения

Симисторы (симметричные тиристоры) — проводят ток в обоих направлениях.

Тиристоры применяются в качестве бесконтактных переключателей и управляемых выпрямителей в устройствах автоматики и преобразователях электрического тока. В цепях переменного и импульсных токов можно изменять время открытого состояния тиристора, а значит и время протекания тока через нагрузку. Это позволяет регулировать мощность, выделяемую в нагрузке.

Использование: в области изготовления полупроводниковых приборов путем бесфлюсовой пайки на воздухе без применения защитных сред, может быть использовано при сборке диодов Шоттки и биполярных транзисторов путем пайки полупроводниковых кристаллов к корпусам припоями на основе свинца. Сущность изобретения: способ сборки полупроводниковых приборов заключается в том, что на основании корпуса размещают фильтрующий и легирующий элемент, на который помещают навеску припоя и кристалл, а кассету с собранными приборами загружают в конвейерную водородную печь при температуре пайки 370°С. Новым в способе является то, что полупроводниковые кристаллы с припоем на коллекторной стороне фиксируют в перевернутом положении в ячейках вакуумной присоски и совмещают с контактными площадками корпусов приборов, а нагрев до температуры пайки осуществляют на воздухе импульсом тока через V-образные электроды, которые жестко закреплены в кронштейне, электрически последовательно соединены друг с другом и расположены дифференцированно над каждым кристаллом, а в момент расплавления припоя вакуумную присоску с кристаллами подвергают воздействию ультразвуковых колебаний в направлении, параллельном паяному шву, при этом давление на каждый кристалл осуществляют массой корпуса прибора и кронштейна с электродами. Техническим результатом изобретения является повышение надежности полупроводниковых приборов за счет снижения температуры нагрева при пайке поверхности кристалла со структурами, улучшение смачивания припоем соединяемых поверхностей, повышение производительности сборочных операций за счет групповой пайки кристаллов к корпусам. 2 ил.

Изобретение относится к изготовлению полупроводниковых приборов путем бесфлюсовой пайки на воздухе без применения защитных сред. Оно может быть использовано при сборке диодов Шоттки и биполярных транзисторов путем пайки полупроводниковых кристаллов к корпусам припоями на основе свинца. Существуют различные способы пайки полупроводниковых кристаллов к корпусу. Известен способ сборки мощных транзисторов кассетным методом, по которому ножка транзистора размещается на направляющих в кассете, а между кристаллом и корпусом размещается навеска припоя, при этом пайка осуществляется в конвейерной печи с восстановительной средой без использования флюсов. Кассета обеспечивает точную ориентацию кристалла относительно ножки прибора и исключает его смещение в процессе пайки. Недостатком известного способа является достаточно высокая трудоемкость изготовления полупроводниковых приборов. Кроме того, наличие оксидных пленок на соединяемых поверхностях ухудшает смачивание и капиллярное течение припоя в соединительном зазоре. Известен способ пайки микрополосковых устройств низкотемпературными припоями без применения флюсов, при котором паяемые поверхности предварительно покрывают металлами или сплавами с температурой плавления, близкой к температуре плавления припоя, но выше ее, а в момент расплавления припоя одной из паяемых деталей сообщают низкочастотные колебания. Основным недостатком указанного способа является низкая производительность данной сборочной операции, т.к. пайка осуществляется дискретно. Наиболее близким к заявляемому способу по технической сущности является способ сборки полупроводниковых приборов , заключающийся в том, что на основании корпуса размещают фильтрующий и легирующий элемент, на который затем помещают навеску припоя и кристалл. Недостатком данного способа является высокая трудоемкость сборочных операций и низкий процент выхода годных приборов. Кроме того, данный способ не обеспечивает предварительной ориентации и фиксации кристалла относительно корпуса, в результате чего возможны разворот и смещение кристалла еще до начала процесса пайки. Более того, при пайке необходима высокая температура нагрева, что предъявляет определенные требования к кристаллу. Особенно следует отметить наличие непропаев в паяном шве, что способствует увеличению теплового и электрического сопротивления контакта полупроводникового кристалла с корпусом. Поэтому этот способ сборки полупроводниковых приборов является низкоэффективным (или неэффективным), особенно при пайке полупроводниковых кристаллов к корпусам изделий силовой электроники. Задача, на решение которой направлено заявляемое решение, — это повышение надежности полупроводниковых приборов за счет снижения температуры нагрева при пайке поверхности кристалла со структурами, улучшение смачивания припоем соединяемых поверхностей, повышение производительности сборочных операций за счет групповой пайки кристаллов к корпусам. Эта задача достигается тем, что в способе сборки полупроводниковых приборов, заключающемся в том, что на основании корпуса размещают фильтрующий и легирующий элемент, на который помещают навеску припоя и кристалл, а кассету с собранными приборами загружают в конвейерную водородную печь при температуре пайки 370 o C, с целью повышения надежности полупроводниковых приборов за счет снижения температуры нагрева при пайке поверхности кристаллов со структурами, улучшения смачивания припоем соединяемых поверхностей и повышения производительности сборочных операций за счет групповой пайки кристаллов к корпусам, полупроводниковые кристаллы с припоем на коллекторной стороне фиксируют в перевернутом положении в ячейках вакуумной присоски и совмещают с контактными площадками корпусов, а нагрев до температуры пайки осуществляют на воздухе импульсом тока через V-образные электроды, которые жестко закреплены в кронштейне, электрически последовательно соединены друг с другом и расположены дифференцированно над каждым кристаллом, а в момент расплавления припоя вакуумную присоску с кристаллами подвергают воздействию ультразвуковых колебаний в направлении, параллельном паяному шву, при этом давление на каждый кристалл осуществляют массой корпуса прибора и кронштейна с электродами. Сопоставимый анализ с прототипом показывает, что заявляемый способ отличается от известного тем, что с целью повышения надежности полупроводниковых приборов за счет снижения температуры нагрева при пайке поверхности кристалла со структурами, улучшения смачивания припоем соединяемых поверхностей и повышения производительности сборочных операций за счет групповой пайки кристаллов к корпусам полупроводниковые кристаллы с припоем на коллекторной стороне фиксируют в перевернутом положении в ячейках вакуумной присоски и совмещают с контактными площадками корпусов, а нагрев до температуры пайки осуществляют на воздухе импульсом тока через V-образные электроды, которые жестко закреплены в кронштейне, электрически последовательно соединены друг с другом и расположены дифференцированно над каждым кристаллом, а в момент расплавления припоя вакуумную присоску с кристаллами подвергают воздействию ультразвуковых колебаний в направлении, параллельном паяному шву, при этом давление на каждый кристалл осуществляют массой корпуса прибора и кронштейна с электродами. Таким образом, заявляемый способ сборки полупроводниковых приборов соответствует критерию «новизна». Сравнение заявляемого способа с другими известными способами из известного уровня техники, также не позволило выявить в них признаки, заявляемые в отличительной части формулы. Сущность изобретения поясняется чертежами, на которых схематически изображены: на фиг. 1 — схема сборки и пайки полупроводниковых кристаллов к корпусам, вид сбоку; на фиг. 2 — фрагмент сборки и пайки одного кристалла к корпусу, вид сбоку. Способ сборки полупроводниковых приборов (фиг. 1 и 2) реализуется по схеме, содержащей основание 1, соединенное с вакуумным насосом. На основании закреплена вакуумная присоска 2, в ячейках которой фиксируются коллекторной поверхностью вверх полупроводниковые кристаллы 3 с припоем 4 на паяемой поверхности. На кристаллах размещают корпуса приборов 5. V-образные электроды 6 жестко закреплены в кронштейне 7, электрически последовательно соединены друг с другом и расположены дифференцированно над каждым кристаллом. Для равномерного нагрева всей площади кристалла при пайке размеры рабочей площади электрода должны быть на 0,6-1,0 мм больше каждой из сторон кристалла. Нагрев корпуса, кристалла и припоя до температуры пайки осуществляется за счет тепла, выделяемого рабочей площадкой V-образного электрода при прохождении через него импульса тока. Для разрушения оксидных пленок и активации соединяемых поверхностей кристалла и корпуса в момент расплавления припоя кристаллы 3 через вакуумную присоску 2 и основание 1 подвергаются воздействию ультразвуковых колебаний в направлении, параллельном паяному шву от ультразвукового концентратора 8. Давление на каждый кристалл осуществляется массой корпуса и кронштейна с электродами. Примером сборки полупроводниковых приборов может служить сборка диодов Шоттки. На коллекторную поверхность полупроводникового кристалла в составе пластины по известной технологии последовательно наносят следующие пленки: алюминия — 0,2 мкм, титана — 0,2-0,4 мкм, никеля — 0,4 мкм, а для пайки — припой, например ПСр2,5 толщиной 40-60 мкм. Затем полупроводниковую пластину разделяют на кристаллы. Металлическую пластину, состоящую из 10 корпусов 5 типа ТО-220, покрывают по известной технологии гальваническим никелем толщиной 6 мкм. Процесс сборки диодов Шоттки заключается в следующем: кристаллы 3 коллекторной поверхностью вверх фиксируются в ячейках вакуумной присоски 2, включается вакуумный насос, и за счет разности давлений кристаллы прижимаются к стенкам вакуумной присоски; пластина с корпусами приборов 5 размещается на кристаллах; кронштейн 7 с электродами 6 совмещают с контактными площадками корпусов в местах их пайки с кристаллами 3. При пайке кронштейн 7 с электродами 6 прижимает пластину из корпуса 5 к кристаллам 3. Через электроды, соединенные электрически последовательно друг с другом, пропускается импульс тока. Тепло от рабочей площадки электрода передается корпусам и далее кристаллам, разогревая припой до температуры пайки. В это время кристаллы подвергаются воздействию ультразвуковых колебаний в направлении, параллельном паяному шву от ультразвукового концентратора 8. Это способствует разрушению оксидных пленок и улучшению смачивания припоем соединяемых поверхностей кристалла и корпуса. Через заданное время отключается ток, и после кристаллизации припоя образуется качественное паяное соединение. Сжимающее усилие кристалла к корпусу при пайке задается массой корпуса и кронштейна с электродами. Так как при импульсной пайке происходит нагрев кристалла через корпус, то коллекторная поверхность нагревается до температуры пайки, а противоположная поверхность кристалла со структурами имеет температуру нагрева значительно ниже, чем коллекторная. Этот фактор способствует повышению надежности полупроводниковых приборов. Таким образом, использование предлагаемого способа сборки полупроводниковых приборов обеспечивает по сравнению с существующими способами следующие преимущества. 1. Повышается надежность полупроводниковых приборов за счет снижения температуры нагрева при пайке поверхности кристалла со структурами. 2. Улучшается смачивание припоем соединяемых поверхностей. 3. Повышается производительность сборочных операций за счет групповой пайки кристаллов к корпусам. Источники информации 1. Сборка мощных транзисторов кассетным методом /П.К. Воробьевский, В.В. Зенин, А. И. Шевцов, М.М. Ипатова//Электронная техника. Сер. 7. Технология, организация производства и оборудование. — 1979.- Вып. 4.- С. 29-32. 2. Пайка микрополосковых устройств низкотемпературными припоями без применения флюсов / В.И. Бейль, Ф.Н. Крохмальник, Е.М. Любимов, Н.Г. Отмахова//Электронная техника. Сер.7. Электроника СВЧ.- 1982.- Вып. 5 (341).- С. 40. 3. Яковлев Г.А. Пайка материалов припоями на основе свинца: Обзор.- М.: ЦНИИ «Электроника». Сер. 7. Технология, организация производства и оборудование. Вып. 9 (556), 1978, с. 58 (прототип).

Формула изобретения

Способ сборки полупроводниковых приборов, заключающийся в том, что на основании корпуса размещают фильтрующий и легирующий элемент, на который помещают навеску припоя и кристалл, а кассету с собранными приборами загружают в конвейерную водородную печь при температуре пайки 370°С, отличающийся тем, что полупроводниковые кристаллы с припоем на коллекторной стороне фиксируют в перевернутом положении в ячейках вакуумной присоски и совмещают с контактными площадками корпусов приборов, а нагрев до температуры пайки осуществляют на воздухе импульсом тока через V-образные электроды, которые жестко закреплены в кронштейне, электрически последовательно соединены друг с другом и расположены дифференцированно над каждым кристаллом, а в момент расплавления припоя вакуумную присоску с кристаллами подвергают воздействию ультразвуковых колебаний в направлении, параллельном паяному шву, при этом давление на каждый кристалл осуществляют массой корпуса прибора и кронштейна с электродами.

Министерство Науки и Образования

Реферат на тему:

Применение полупроводниковых приборов

Выполнил:

ученик 10-В класса

Средней Общеобразовательной

Школы №94

Гладков Евгений

Проверила:

Ольга Петровна

г. Харьков, 2004.

Полупроводниковые приборы – различные по конструкции, технологии изготовления и функциональному назначению электронные приборы, основанные на использовании свойств полупроводников. К полупроводниковым приборам относят также полупроводниковые микросхемы, которые представляют собой монолитные законченные функциональные узлы (усилитель, триггер, набор элементов), все компоненты которых изготавливаются в едином технологическом процессе.

Полупроводники – вещества, электронная проводимость которых имеет промежуточное значение между проводимостью проводников и диэлектриков. К полупроводникам относится обширная группа естественных и синтетических веществ различной химической природы, твердых и жидких, с разными механизмами проводимости. Наиболее перспективными полупроводниками в современной технике являются так называемые электронные полупроводники, проводимость которых обусловлена движением электронов. Однако в отличие от металлических проводников концентрация свободных электронов в полупроводниках очень мала и возрастает с повышением температуры, чем объясняется их пониженная проводимость и специфическая зависимость от удельного сопротивления и температуры: если у металлических проводников при нагревании электрическое сопротивление повышается, то у полупроводников оно понижается. Увеличение концентрации свободных электронов с повышением температуры объясняется тем, что с увеличением интенсивности тепловых колебаний атомов полупроводников все большее количество электронов срывается с внешних оболочек этих атомов и получает возможность перемещаться по объему полупроводника. В переносе электричества через полупроводники, помимо свободных электронов могут принимать участие места, освободившиеся от перешедших в свободное состояние электронов – так называемые дырки.

Поэтому и свободные электроны и дырки называют носителями электрического заряда, причём дырке приписывают положительный заряд, равный заряду электрона. В идеальном полупроводнике образование свободных электронов и дырок происходит одновременно, парами, а потому концентрации электронов и дырок одинаковы. Введение же в полупроводник определенных примесей способно привести к увеличению концентрации носителей одного знака и сильно повысить проводимость. Это происходит при условии, что на внешней оболочке атомов примеси находится на один электрон больше (донорные примеси) или на один электрон меньше (акцепторные примеси), чем у атомов исходного полупроводника. В первом случае примесные атомы (доноры) легко отдают лишний электрон, а во втором (акцепторы)– забирают недостающий электрон от атомов полупроводника, создавая дырку. Для наиболее распространённых полупроводников (кремния и германия), являющихся четырёхвалентными химическими элементами, донорами служат пятивалентные вещества (фосфор, мышьяк, сурьма), а акцепторами – трехвалентные (бор, алюминий, индий). В зависимости от преобладающего типа носителей примесные полупроводники делят на полупроводники электронного (п-типа) и дырочного (р-типа).

Зависимость электропроводимости полупроводника от различных внешних воздействий служит основой разнообразных технических приборов. Так, уменьшение сопротивления используется в термисторах, уменьшение сопротивления при освещении– в фоторезисторах. Появление ЭДС при прохождении тока через полупроводник, помещённый в магнитное поле (эффект Холла) применяется для измерения магнитных полей, мощности и т.д. Особенно ценными свойствами обладают неоднородные полупроводники (с изменяющейся от одной части объёма к другой проводимостью), а также контакты разных полупроводников между собой и полупроводников с металлами. Возникающие в таких системах эффекты наиболее ярко проявляются у электронно-дырочных переходов (р-п-переходом). Использование р-п-переходов лежит в основе действия многих полупроводниковых приборов: транзистора, полупроводникового диода, полупроводникового фотоэлемента, термоэлектрического генератора, солнечной батареи.

60-е – 70-е годы составляют эпоху полупроводниковой техники и собственно электроники. Электроника внедряется во все отрасли науки, техники и народного хозяйства. Являясь комплексом наук, электроника тесно связана с радиофизикой, радиолокацией, радионавигацией, радиоастрономией, радиометеорологией, радиоспектроскопией, электронной вычислительной и управляющей техникой, радиоуправлением на расстоянии, телеизмерениями, квантовой радиоэлектроникой.

В этот период продолжалось дальнейшее усовершенствование электровакуумных приборов. Большое внимание уделяется повышению их прочности, надёжности, долговечности. Разрабатывались пальчиковые и сверхминиатюрные лампы, что давало возможность снизить габариты установок, насчитывающих большое количество радиоламп.

Продолжались интенсивные работы в области физики твёрдого тела и теории полупроводников, разрабатывались способы получения монокристаллов полупроводников, методы их очистки и введения примесей. Большой вклад в развитие физики полупроводников внесла советская школа академика А.Ф.Иоффе.

Полупроводниковые приборы быстро и широко распространились за 50-е-70-е годы во все области народного хозяйства. В 1926 г. был предложен полупроводниковый выпрямитель переменного тока из закиси меди. Позднее появились выпрямители из селена и сернистой меди. Бурное развитие радиотехники (особенно радиолокации) в период второй мировой войны дало новый толчок к исследованиям в области полупроводников. Были разработаны точечные выпрямители переменных токов СВЧ на основе кремния и германия, а позднее появились плоскостные германиевые диоды. В 1948 г. американские учёные Бардин и Браттейн создали германиевый точечный триод (транзистор), пригодный для усиления и генерирования электрических колебаний. Позднее был разработан кремниевый точечный триод. В начале 70-х годов точечные транзисторы практически не применялись, а основным типом транзистора являлся плоскостной, впервые изготовленный в 1951 г. К концу 1952 г. были предложены плоскостной высокочастотный тетрод, полевой транзистор и другие типы полупроводниковых приборов. В 1953 г. был разработан дрейфовый транзистор. В эти годы широко разрабатывались и исследовались новые технологические процессы обработки полупроводниковых материалов, способы изготовления p-n- переходов и самих полупроводниковых приборов. В начале 70-х годов, кроме плоскостных и дрейфовых германиевых и кремниевых транзисторов, находили широкое распространение и другие приборы, использующие свойства полупроводниковых материалов: туннельные диоды, управляемые и неуправляемые четырёхслойные переключающие приборы, фотодиоды и фототранзисторы, варикапы, терморезисторы и т.д.

Развитие и совершенствование полупроводниковых приборов характеризуется повышением рабочих частот и увеличением допустимой мощности. Первые транзисторы обладали ограниченными возможностями (предельные рабочие частоты порядка сотни килогерц и мощности рассеяния порядка 100 — 200 МВт) и могли выполнять лишь некоторые функции электронных ламп. Для того же диапазона частот были созданы транзисторы с мощностью в десятки ватт. Позднее были созданы транзисторы, способные работать на частотах до 5 МГц и рассеивать мощность порядка 5 Вт, а уже в 1972 г. были созданы образцы транзисторов на рабочие частоты 20 — 70 МГц с мощностями рассеивания, достигающими 100 Вт и более. Маломощные же транзисторы (до 0,5 — 0,7 Вт) могут работать на частотах свыше 500 МГц. Позже появились транзисторы, работающие на частотах порядка 1000 МГц. Одновременно велись работы по расширению диапазона рабочих температур. Транзисторы, изготовленные на основе германия, имели первоначально рабочие температуры не выше +55 ¸ 70 °С, а на основе кремния — не выше +100 ¸ 120 °С. Созданные позже образцы транзисторов на арсениде галлия оказались работоспособными при температурах до +250 °С, и их рабочие частоты в итоге увеличились до 1000 МГц. Есть транзисторы на карбиде, работающие при температурах до 350 °С. Транзисторы и полупроводниковые диоды по многим показателям в 70-е годы превосходили электронные лампы и в итоге полностью вытеснили их из областей электроники. В интегральной электронике МДП-структуры широко используются для создания транзисторов и на их основе различных интегральных микросхем.

Перед проектировщиками сложных электронных систем, насчитывающих десятки тысяч активных и пассивных компонентов, стоят задачи уменьшения габаритов, веса, потребляемой мощности и стоимости электронных устройств, улучшения их рабочих характеристик и, что самое главное, достижения высокой надёжности работы. Эти задачи успешно решает микроэлектроника — направление электроники, охватывающее широкий комплекс проблем и методов, связанных с проектированием и изготовлением электронной аппаратуры в микроминиатюрном исполнении за счёт полного или частичного исключения дискретных компонентов.

Основной тенденцией микроминиатюризации является «интеграция» электронных схем, т.е. стремление к одновременному изготовлению большого количества элементов и узлов электронных схем, неразрывно связанных между собой. Поэтому из различных областей микроэлектроники наиболее эффективной оказалась интегральная микроэлектроника, которая является одним из главных направлений современной электронной техники. Сейчас широко используются сверхбольшие интегральные схемы, на них построено всё современное электронное оборудование, в частности ЭВМ и т.д.

Срок службы полупроводниковых триодов и их экономичность во много раз больше, чем у электронных ламп. За счёт чего транзисторы нашли широкое применение в микроэлектронике — теле-, видео-, аудио-, радиоаппаратуре и, конечно же, в компьютерах. Они заменяют электронные лампы во многих электрических цепях научной, промышленной и бытовой аппаратуры.

Полупроводниковые приборы, сведения о которых приводятся в справочнике, являются приборами общего применения. Они могут работать в разнообразных условиях и режимах, характерных для различных классов радиоэлектронной аппаратуры широкого, промышленного и специального применения.

Общие технические требования к приборам, предназначенным для аппаратуры определенного класса, содержатся в общих технических условиях (ОТУ) на эти приборы. Конкретные нормы на значения электрических параметров и специфические требования к данному типу приборов излагаются в частных технических условиях (ЧТУ) и ГОСТ на приборы.

Высокая надежность радиоэлектронной аппаратуры на полупроводниковых приборах может быть обеспечена лишь при условии учета на стадии ее проектирования, изготовления и эксплуатации следующих особенностей приборов:

  • разброса значений параметров, их зависимости от режима и условий работы;
  • изменения значений параметров в течение времени хранения или работы;
  • необходимости хорошего отвода тепла or корпусов приборов;
  • необходимости обеспечения запасов по электрическим, механическим и другим нагрузкам на приборы в радиоэлектронной аппаратуре;
  • необходимости принятия мер, обеспечивающих отсутствие перегрузок приборов во время монтажа и сборки радиоэлектронной аппаратуры.

Значения параметров приборов одного типа не одинаковы, а лежат в некотором интервале. Этот интервал ограничивается минимальными или максимальными значениями, указанными в справочнике. Некоторые параметры имеют двухстороннее ограничение значений. Приведенные в справочнике вольтамперные характеристики, зависимости параметров от режима и температуры являются усредненными для большою количества экземпляров приборов данного типа. Эти зависимости могут использоваться при выборе типа прибора для данной схемы и ориентировочного ее расчета.

Большинство параметров полупроводниковых приборов значительно изменяется в зависимости от режима работы и температуры. Например, время восстановления обратного сопротивления импульсных диодов зависит от значения прямого тока, напряжения переключения и сопротивления нагрузки; потери преобразования и коэффициент шума СВЧ диодов зависят от уровня подводимой мощности. Значительно изменяется в диапазоне температуры, указанном в технических условиях, обратный ток диода. В справочнике приводятся значения параметров, гарантируемых ТУ для соответствующих оптимальных или предельных режимов использования.

Применение и эксплуатация приборов должны осуществляться в соответствии с требованиями ТУ и стандартами — руководствами по применению. При конструировании радиоэлектронной аппаратуры необходимо стремиться обеспечить ее работоспособность в возможно более широких интервалах изменений важнейших параметров приборов. Разброс параметров приборов и изменение их значений во времени при проектировании аппаратуры учитываются расчетными методами или экспериментально, например методом граничных испытаний.

Время, в течение которого полупроводниковые приборы могут работать в аппаратуре (их срок службы), практически неограниченно Нормативно-техническая документация на поставку приборов (ГОСТ. ТУ), как правило, гарантирует минимальную наработку не менее 15 000 ч. а в облегченных режимах и условиях эксплуатации — до 30 000 ч. Однако теория и эксперименты показывают, что через 50 — 70 тыс. ч работы возрастания интенсивности отказов не наблюдается. Тем не менее за время храпения и работы могут происходить изменения значений параметров приборов. У отдельных экземпляров эти изменения оказываются столь значительными, что происходит отказ аппаратуры. Для контроля уровня надежности изготовляемых приборов используются такие показатели, как гамма-процентный ресурс, гамма-процентная сохраняемость, минимальная наработка (гарантийная наработка), интенсивность отказов при специальных кратковременных испытаниях в форсированном режиме. Нормы на эти показатели устанавливаются в ТУ на приборы.

Для расчета надежности радиоэлектронной аппаратуры следует использовать количественные показатели надежности, устанавливаемые путем проведения специальных испытаний, обработки большого объема статистических данных о различных испытаниях и «эксплуатации приборов в разнообразной аппаратуре.

Экспериментально установлено, что интенсивность (вероятность) отказов приборов растет при увеличении рабочей температуры переходов, напряжения на электродах и тока. В связи с повышением температуры ускоряю(сч практически отказы всех видов: короткие замыкания, обрывы и значительные изменения параметров. Повышение напряжения значительно ускоряет отказы приборов с МДП структурами и с низковольтными переходами. Увеличение тока приводит, главным образом, к ускоренному разрушению контактных соединений и токоведуших дорожек металлизации на кристаллах.

Приближенная зависимость интенсивности отказов от нагрузки имеет вид:

где λ(T п,макс, U макс, I макс) интенсивность отказов при максимальной нагрузке (может быть взята из результатов кратковременных испытаний в форсированном режиме). Значение В приблизительно равно 6000 К.

Для повышения надежности работы приборов в аппаратуре необходимо снижать, главным образом, температуру переходов и кристаллов, а также рабочие напряжения и токи, которые должны быть существенно ниже предельно допустимых. Рекомендуется устанавливать напряжения и токи (мощность) на уровне 0.5-0.7 предельных (максимальных) значений. Эксплуатация полупроводниковых приборов при температуре, напряжении или токе, равных предельному значению, запрещается. Не допускается даже кратковременное (импульсное) превышение предельно допустимою режима при эксплуатации. Поэтому необходимо принимать меры по защите приборов от электрических перегрузок, возникающих при переходных процессах (при включении и выключении аппаратуры, при изменении режима ее работы, подключении нагрузок, случайных изменениях напряжения источников питания).

Режимы работы приборов должны контролироваться с учетом возможных неблагоприятных сочетаний условий эксплуатации аппаратуры (повышенная окружающая температура, пониженное давление окружающей среды и др.).

Если необходимое значение тока или напряжения превышает предельно допустимое для данною прибора значение, рекомендуется применение более мощною или высоковольтного прибора, а в случае диодов — их параллельное или последовательное соединение. При параллельном соединении необходимо выравнивать токи через диоды с помощью резисторов с небольшим сопротивлением, включаемых последовательно с каждым диодом. При последовательном включении диодов обратные напряжения на них выравниваются с помощью шунтирующих резисторов или конденсаторов. Рекомендуемые сопротивления и емкости шунтов обычно указываются в ТУ на диоды. Между последовательно или параллельно включенными приборами должна быть хорошая тепловая связь (например, все приборы устанавливаются на одном радиаторе). В противном случае распределение нагрузки между приборами будет неустойчивым.

При воздействии различных факторов (температуры, влаги, химических. механических и других воздействий) параметры, характеристики и некоторые свойства полупроводниковых приборов могут изменяться. Для защиты структур полупроводниковых приборов от внешних воздействий служат корпуса приборов. Корпуса мощных приборов одновременно обеспечивают необходимые условия отвода тепла, а корпуса СВЧ приборов — оптимальное соединение электродов приборов со схемой. Необходимо иметь в виду, что корпуса приборов имеют ограничения по герметичности и коррозионной устойчивости, поэтому при эксплуатации приборов в условиях повышенной влажности рекомендуется покрывать их специальными лаками (например, типа УР-231 или ЭП-730).

Обеспечение отвода тепла от полупроводниковых приборов является одной и; главных задач при конструировании радиоэлектронной аппаратуры. Необходимо придерживаться принципа максимально возможного снижения температуры переходов и корпусов приборов. Для охлаждения мощных диодов или тиристоров используются теплоотводящие радиаторы, работающие в условиях естественной конвекции или принудительного обдува, а также конструктивные элементы узлов и блоков аппаратуры, имеющие достаточную поверхность или хороший теплоотвод. Крепление приборов к радиатору должно обеспечивать падежный тепловой контакт. Если корпус прибора должен быть изолирован, то для уменьшения общего теплового сопротивления лучше изолировать радиатор от корпуса аппаратуры, чем диод или тиристор oт радиатора.

Отвод тепла улучшается при вертикальном расположении активных поверхностей радиатора, так как при этом лучше условия конвекции. Ориентировочные размеры теплоотводяших радиаторов в форме вертикально ориентированных пластин из алюминия (квадратных или прямоугольных) в зависимости от рассеиваемой ими мощности, можно определить но формуле

где S — площадь одной стороны пластины, см 2 ; Р — рассеиваемая в приборе мощность, Вт. Пластины площадью до 25 см 2 могут иметь толщину 1-2 мм, площадью от 25 до 100 см 2 2-3 мм. свыше 100 см 2 — 3 — 4 мм.

При заливке плат с полупроводниковыми приборами компаундами, пенопластами, пенорезиной необходимо учитывать изменение теплового сопротивления между корпусом прибора и окружающей средой, а также возможность увеличения дополнительного нагрева приборов от расположенных вблизи элементов схемы с большим тепловыделением. Температура при заливке не должна превышать максимальной температуры корпуса прибора, указанной в ТУ. При заливке не должны возникать механические нагрузки на выводы, нарушающие целостное 1Ь стеклянных изоляторов или корпусов приборов.

В процессе подготовки и проведения монтажа полупроводниковых приборов в аппаратуру механические и климатические воздействия на них не должны превышать значений, указанных в ТУ.

При рихтовке, формовке и обрезании выводов участок вывода около корпуса должен быть закреплен гак. чтобы в проводнике не возникали изгибающие или растягивающие усилия. Оснастка и приспособления для формовки выводов должны быть заземлены. Расстояние от корпуса прибора до начала изгиба вывода должно быть не менее 2 мм. Радиус изгиба при диаметре вывода до 0,5 мм должен быть не менее 0.5 мм, при диаметре 0,6-1 мм — не менее 1 мм. при диаметре свыше 1 мм — не.менее 1,5 мм.

Паяльники, применяемые для пайки выводов приборов, должны быть низковольтными. Расстояние от корпуса или изолятора до места лужения или пайки вывода должно быть не менее 3 мм. Для отвода тепла участок вывода между корпусом и местом пайки зажимается пинцетом с губками из красной меди. Жало паяльника должно быть надежно заземлено. Если температура припоя не превышает 533 + 5 К, а время пайки не более 3 с. то можно производить пайку без теплоотвода или групповым методом (волной, погружением в припой и др.).

Очистка печатных плат от флюса производится жидкостями. которые не влияют на покрытие, маркировку или материал корпуса (например, спирто-бензиновой смесью).

В процессе монтажа, транспортировки, хранения СВЧ приборов необходимо обеспечивать их защиту ог воздействия статического электричества. Для лого все измерительное, испытательное, монтажное оборудование и инструменты надежно за?емляю1ся: для снятия заряда с тела оператора применяются заземляющие браслеты или кольца. используются антистатическая одежда, обувь, покрытия столов рабочих мест.

Диоды СВЧ необходимо предохранять от воздействия внешних электрических наволок и электромагнитных полей. Не следует хранить или даже кратковременно оставлять СВЧ диоды без специальной экранирующей упаковки. Перед установкой СВЧ диодов в аппаратуру последняя должна быть заземлена. Входы и выходы СВЧ тракта в неработающем или хранящемся блоке аппаратуры с использованием СВЧ диодов должны выть перекрыты металлическими заглушками.

При эксплуатации аппаратуры должны быть приняты меры, предохраняющие СВЧ диоды от электрических СВЧ перегрузок, которые могут привести либо к необратимому ухудшению параметров. либо к полному отказу (выгоранию) диодов. Для защиты от СВЧ перегрузок в аппаратуре применяются резонансные разрядники, ферритовые oграничители, газоразрядные аттенюаторы.

Министерство образования Российской Федерации

Кафедра: «Электронное машиностроение».

Сборка полупроводниковых приборов и интегральных микросхем

Выполнил: ст-т гр. ЭПУ — 32

Козачук Виталий Михайлович

Проверил: доцент

Шумарин Виктор Пракофьевич

Саратов 2000 г.

Особенности процесса сборки

Сборка полупроводниковых приборов и интегральных микросхем является наиболее трудоемким и ответственным технологическим этапом в общем цикле их изготовления. От качества сборочных операций в сильной степени зависят стабильность электрических параметров и надежность готовых изделий.

Этап сборки начинается после завершения групповой обработки полупроводниковых пластин по планарной технологии и разделе­ния их на отдельные элементы (кристаллы). Эти кристаллы, могут иметь простейшую (диодную или транзисторную) структуру или включать в себя сложную интегральную микросхему (с большим количеством активных и пассивных элементов) и поступать на сборку дискретных, гибридных или монолитных композиций.

Трудность процесса сборки заключается в том, что каждый класс дискретных приборов и ИМС имеет свои конструктивные особенности, которые требуют вполне определенных сборочных операций и режимов их проведения.

Процесс сборки включает в себя три основные технологические операции: присоединение кристалла к основанию корпуса; присоединение токоведущих выводов к активным и пассивным элементам полупроводникового кристалла к внутренним элементам корпуса; герметизация кристалла от внешней среды.

Присоединение кристалла к основанию корпуса

Присоединение кристалла полупроводникового прибора или ИМС к основанию корпуса проводят с помощью процессов пайки, приплавления с использованием эвтектических сплавов и приклеи­вания.

Основным требованием к операции присоединения кристалла является создание соединения кристалл — основание корпуса, об­ладающего высокой механической прочностью, хорошей электро- и теплопроводностью.

Пайка процесс соединения двух различных деталей без их расплавления с помощью третьего компонента, называемого при­поем. Особенностью процесса пайки является то, что припой при образовании паяного соединения находится в жидком состоянии, а соединяемые детали — в твердом.

Сущность процесса пайки состоит в следующем. Если между соединяемыми деталями поместить прокладки из припоя и всю композицию нагреть до температуры плавления припоя, то будут иметь место следующие три физических процесса. Сначала рас­плавленный припой смачивает поверхности соединяемых деталей. Далее в смоченных местах происходят процессы межатомного вза­имодействия между припоем и каждым из двух смоченных им ма­териалов. При смачивании возможны два процесса: взаимное растворение смоченного материала и припоя или их взаимная диф­фузия. После охлаждения нагретой композиции припой переходит в твердое состояние. При этом образуется прочное паяное соедине­ние между исходными материалами и припоем.

Процесс пайки хорошо изучен, он прост и не требует сложного и дорогостоящего оборудования. При серийном выпуске изделий электронной техники припайка полупроводниковых кристаллов к основаниям корпусов производится в конвейерных печах, обла­дающих высокой производительностью. Пайка проводится в вос­становительной (водород) или нейтральной (азот, аргон) среде. В печи загружают многоместные кассеты, в которые предваритель­но помещают основания корпусов, навески припоя и полупроводни­ковые кристаллы. При движении конвейерной ленты кассета с сое­диняемыми деталями последовательно проходит зоны нагрева, постоянной температуры, охлаждения. Скорость движения кассеты и температурный режим задают и регулируют в соответствии с тех­нологическими и конструктивными особенностями конкретного типа полупроводникового прибора или ИМС.

Наряду с конвейерными печами для припайки полупроводнико­вого кристалла к основанию корпуса используют установки, кото­рые имеют одну индивидуальную нагреваемую позицию, на которую устанавливают только одну деталь корпуса (ножку) и один полупроводниковый кристалл. При работе на такой установке оператор с помощью манипулятора устанавливает кристалл на основание корпуса и производит кратковременный нагрев соединя­емого узла. В зону нагрева подается инертный газ. Этот способ соединения деталей дает хорошие результаты при условии предва­рительного облуживания соединяемых поверхностей кристалла и основания корпуса.

Процесс присоединения кристалла пайкой подразделяют на низкотемпературный (до 400°С) и высокотемпературный (выше 400°С). В качестве низкотемпературных припоев используют спла­вы на основе свинца и олова с добавками (до 2%) сурьмы или вис­мута. Добавка сурьмы или висмута в оловянно-свинцовый припой позволяет избежать появления «оловянной чумы» в готовых при­борах и ИМС при их эксплуатации и длительном хранении. Высо­котемпературные припои изготовляют на основе серебра (ПСр-45, ПСр-72 и др.).

На технологический процесс пайки и качество полученного пая­ного соединения деталей сильное влияние оказывают чистота сое­диняемых металлических поверхностей и применяемого припоя, состав атмосферы рабочего процесса и наличие флюсов.

Наиболее широкое применение процесс пайки находит при сборке дискретных полупроводниковых приборов (диодов, транзис­торов, тиристоров и Др.). Это объясняется тем, что процесс пайки дает возможность получить хороший электрический и тепловой контакт между кристаллом полупроводника и кристаллодержателем корпуса, причем площадь контактного соединения может быть достаточно большой (для приборов большой мощности).

Особое место процесс пайки занимает при закреплении полу­проводникового кристалла большой площади на основании корпу­са из меди. В этом случае для снижения термомеханических напря­жений, возникающих за счет разницы в температурных коэффици­ентах расширения полупроводниковых материалов и меди, широко используют молибденовые и молибденовольфрамовые термоком­пенсаторы, имеющие площадь, равную площади полупроводнико­вого кристалла, а ТКl -близкий к ТКl полупроводника. Такая сложная многоступенчатая композиция с двумя прослойками из припоя с успехом используется при сборке полупроводниковых приборов средней и большой мощностей.

Дальнейшее развитие процесс пайки получил при сборке интег­ральных микросхем по технологии «перевернутого кристалла». Эта технология предусматривает предварительное создание на планарной стороне кристалла с ИМС «шариковых выводов» или «контакт­ных выступов», которые представляют собой бугорки из меди, покрытые припоем или оловом. Такой кристалл располагают на поверхности подложки или на основании корпуса так, чтобы бугор­ки соприкасались с ней в определенных участках. Таким образом, кристалл переворачивается и его планарная сторона посредством бугорков контактирует с поверхностью основания корпуса.

При кратковременном нагреве такой композиции происходит прочное соединение контактных выступов полупроводникового кристалла с основанием корпуса. Следует отметить, что те участки поверхности корпуса, с которыми соприкасаются «выступы», пред­варительно тоже облуживаются. Поэтому в момент нагрева проис­ходит соединение припоя основания корпуса с припоем контактных вы­ступов.

На рис. 1, а показан вариант присоединения кристалла ИМС, имеющего медные облуженные кон­тактные выступы, к подложке. Та­кая конструкция выводов не боится растекания припоя по подложке. Наличие высокого грибообразного выступа обеспечивает необходимый зазор между полупроводниковым кристаллом и подложкой при расплавлении припоя. Это позволяет проводить присоединение кристалла к подложке с высокой степенью точ­ности.

На рис. 1, в показан вариант сборки кристаллов, имеющих мяг­кие столбиковые выводы из припоя на основе олово-свинец.

Присоединение такого кристалла к основанию корпуса проводят обычным нагревом без дополнитель­ного давления на кристалл. Припой контактных выступов при нагрева­нии и расплавлении не растекается по поверхности облуженных участ­ков основания корпуса за счет сил поверхностного натяжения. Это, кроме того, обеспечивает определен­ный зазор между кристаллом и под­ложкой.

Рассмотренный метод присоединения кристаллов ИМС к осно­ванию корпуса или к какой-либо плате позволяет в значительной степени механизировать и автоматизировать технологический про­цесс сборки.

Приплавление с использованием эвтектических сплавов. Этот способ присоединения полупроводниковых кристаллов к основанию корпуса основан на образовании расплавленной зоны, в которой происходит растворение поверхностного слоя полупроводникового материала и слоя металла основания корпуса.

В промышленности широкое применение получили два эвтекти­ческих сплава: золото-кремний (температура плавления 370°С) я золото-германий (температура плавления 356°С). Процесс эвтектического присоединения кристалла к основанию корпуса имеет две разновидности. Первый вид основан на использовании прокладки из эвтектического сплава, которая располагается между соединяемыми элементами: кристаллом и корпусом. В этом виде соединения поверхность основания корпуса должна иметь зо­лотое покрытие в виде тонкой пленки, а поверхность полупроводни­кового кристалла может не иметь золотого покрытия (для кремния и германия) или быть покрытой тонким слоем золота (в случае присоединения других полупроводниковых материалов). При на­греве такой композиции до температуры плавления эвтектического сплава между соединяемыми элементами (кристалл-основание корпуса) образуется жидкая зона. В этой жидкой зоне происходит с одной стороны растворение слоя полупроводникового материала кристалла (или слоя золота, нанесенного на поверхность кри­сталла).

После охлаждения всей системы (основание корпуса — эвтектический расплав-полупроводниковый кристалл) происходит за­твердевание жидкой зоны эвтектического сплава, а на границе полупроводник-эвтектический сплав образуется твердый раствор. В результате этого процесса создается механически прочное соеди­нение полупроводникового материала с основанием корпуса.

Второй вид эвтектического присоединения кристалла к основа­нию корпуса обычно реализуется для кристаллов из кремния или германия. В отличие от первого вида для присоединения кристал­ла не используется прокладка из эвтектического сплава. В этом случае жидкая зона эвтектического расплава образуется в резуль­тате нагрева композиции позолоченное основание корпуса-кри­сталл кремния (или германия). Рассмотрим подробнее этот процесс. Если на поверхность основания корпуса, имеющего тонкий слой золотого покрытия, поместить кристалл кремния, не имеющий золотого покрытия, и всю систему нагреть до температуры на 40-50°С выше температуры эвтектики золото-кремний, то между соединяемыми элементами образуется жидкая фаза эвтектического состава. Так как процесс сплавления слоя золота с кремнием явля­ется неравновесным, то количество кремния и золота, растворив­шихся в жидкой зоне, будет определяться толщиной золотого по­крытия, температурой и временем проведения процесса сплавления. При достаточно больших выдержках и постоянной температуре процесс сплавления золота с кремнием приближается к равновес­ному и характеризуется постоянным объемом жидкой фазы золо­то-кремний. Наличие большого количества жидкой фазы может привести к вытеканию ее из-под кристалла кремния к его перифе­рии. При затвердевании вытекшая эвтектика приводит к образова­нию достаточно больших механических напряжений и раковин в структуре кристалла кремния, которые резко снижают прочность сплавной структуры и ухудшают ее электрофизические параметры.

При минимальных значениях времени и температуры сплавление золота с кремнием происходит не равномерно по всей площади соприкосновения кристалла с основанием корпуса, а лишь в ее от­дельных точках.

В результате этого уменьшается прочность сплавного соедине­ния, увеличиваются электрическое и тепловое сопротивления кон­такта и снижается надежность полученной арматуры.

Существенное влияние на процесс эвтектического сплавления оказывает состояние поверхностей исходных соединяемых элемен­тов. Наличие загрязнений на этих поверхностях приводит к ухуд­шению смачивания контактирующих поверхностей жидкой фазой и неравномерному растворению.

Приклеивание -это процесс соединения элементов друг с дру­гом, основанный на клеящих свойствах некоторых материалов, которые позволяют получать механически прочные соединения между полупроводниковыми кристаллами и основаниями корпусов (металлическими, стеклянными или керамическими). Прочность склеивания определяется силой сцепления между клеем и склеива­емыми поверхностями элементов.

Склеивание различных элементов интегральных схем дает воз­можность соединять самые разнообразные материалы в различных сочетаниях, упрощать конструкцию узла, уменьшать его массу, снижать расход дорогостоящих материалов, не применять припоев и эвтектических сплавов, значительно упрощать технологические процессы сборки самых сложных полупроводниковых приборов и ИМС.

В результате приклеивания можно получать арматуры и слож­ные композиции с электроизоляционными, оптическими и токопроводящими свойствами. Присоединение кристаллов к основанию корпуса с помощью процесса приклеивания незаменимо при сборке и монтаже элементов гибридных, монолитных и оптоэлектронных схем.

При приклеивании кристаллов на основания корпусов применя­ют различные типы клеев: изоляционные, токопроводящие, светопроводящие и теплопроводящие. По активности взаимодействия между клеем и склеиваемыми поверхностями различают полярные (на основе эпоксидных смол) и неполярные (на основе полиэти­лена).

Качество процесса приклеивания в значительной степени зави­сит не только от свойств клея, но и от состояния поверхностей склеиваемых элементов. Для получения прочного соединения необ­ходимо тщательно обработать и очистить склеиваемые поверхно­сти. Важную роль в процессе склеивания играет температура. Так, при склеивании элементов конструкций, которые не подвергаются в последующих технологических операциях воздействию высоких температур, можно использовать клеи холодного отверждения на эпоксидной основе. Для приклеивания кремниевых кристаллов к металлическим или керамическим основаниям корпусов обычно используют клей ВК-2, представляющий собой раствор кремний-органической смолы в органическом растворителе с мелкодиспергированным асбестом в качестве активного наполнителя или ВК-32-200, в котором в качестве наполнителя используют стекло или кварц.

Технологический процесс приклеивания полупроводниковых кристаллов проводят в специальных сборочных кассетах, обеспе­чивающих нужную ориентацию кристалла на основании корпуса и необходимое прижатие его к основанию. Собранные кассеты в зависимости от используемого клеящего материала подвергают определенной термической обработке или выдерживают при ком­натной температуре.

Особые группы составляют электропроводящие и оптические клеи, используемые для склеивания элементов и узлов гибридных и оптоэлектронных ИМС. Токопроводящие клеи представляют собой композиции на основе эпоксидных и кремнийорганических смол с добавлением порошков серебра или никеля. Среди них наи­более широкое распространение получили клеи АС-40В, ЭК-А, ЭК-Б, К-3, ЭВТ и КН-1, представляющие собой пастообразные жидкости с удельным электрическим сопротивлением 0,01- 0,001 Ом-см и диапазоном рабочих температур от -60 до +150°С. К оптическим клеям предъявляют дополнительные требования по значению коэффициентов преломления и светопропускания. Наи­более широкое распространение получили оптические клеи ОК.-72 Ф, ОП-429, ОП-430, ОП-ЗМ.

Присоединение выводов

В современных полупроводниковых приборах и интегральных мик­росхемах, у которых размер контактных площадок составляет несколько десятков микрометров, процесс присоединения выводов является одним из самых трудоемких технологических операций.

В настоящее время для присоединения выводов к контактным площадкам интегральных схем используют три разновидности сварки: термокомпрессионную, электроконтактную и ультразву­ковую.

Термокомпрессионная сварка позволяет присоединять электри­ческие выводы толщиной несколько десятков микрометров к оми­ческим контактам кристаллов диаметром не менее 20-50 мкм, причем электрический вывод можно присоединить непосредственно к поверхности полупроводника без промежуточного металлическо­го покрытия следующим образом. Тонкую золотую или алюминие­вую проволоку прикладывают к кристаллу и прижимают нагретым стержнем. После небольшой выдержки проволока оказывается плотно сцепленной с поверхностью кристалла. Сцепление происхо­дит вследствие того, что даже при небольших удельных давлениях, действующих на кристалл полупроводника и не вызывающих его разрушения, локальное давление в микровыступах на поверхности может быть весьма большим. Это приводит к пластической дефор­мации выступов, чему способствует подогрев до температуры ниже эвтектической для данного металла и полупроводника, что не вы­зывает каких-либо изменений в структуре кристалла. Происходя­щая деформация (затекание) микровыступов и микровпадин обус­ловливает прочную адгезию и надежный контакт, вследствие ван-дер-ваальсовых сил сцепления, а с повышением температуры меж­ду соединяемыми материалами более вероятна химическая связь. Термокомпрессионная сварка имеет следующие преимущества:

a) соединение деталей происходит без расплавления свариваемых материалов;

b) удельное давление, прикладываемое к кристаллу, не приводит к механическим повреждениям полупроводникового материала;

c) соединения получают без загрязнений, так как не используют припои и флюсы.

К недостаткам следует отнести малую производительность процесса.

Термокомпрессионную сварку можно осуществлять путем сое­динений внахлест и встык. При сварке внахлест электрический проволочный вывод, как отмечалось, накладывают на контактную площадку кристалла полупроводника и прижимают к нему специ­альным инструментом до возникновения деформации вывода. Ось проволочного вывода при сварке располагают параллельно плос­кости контактной площадки. При сварке встык проволочный вывод приваривают торцом к контактной площадке. Ось проволочного вывода в месте присоединения перпендикулярна плоскости кон­тактной площадки.

Сварка внахлест обеспечивает прочное соединение кристалла полупроводника с проволочными выводами из золота, алюминия, серебра и других пластичных металлов, а сварка встык-только с выводами из золота. Толщина проволочных выводов может со­ставлять 15-100 мкм.

Присоединять выводы можно как к чистым кристаллам полу­проводника, так и к контактным площадкам, покрытым слоем напылённого золота или алюминия. При использовании чистых поверхностей кристалла увеличивается переходное сопротивление контакта и ухудшаются электрические параметры приборов.

Элементы, подлежащие термокомпрессионной сварке, проходят определенную технологическую обработку. Поверхность кристалла полупроводника, покрытую слоем золота или алюминия, обезжи­ривают.

Золотую проволоку отжигают при 300-600°С в течение 5-20 мин в зависимости от способа соединения деталей. Алюминие­вую проволоку протравливают в насыщенном растворе едкого нат­ра при 80°С в течение 1-2 мин, промывают в дистиллированной воде, и сушат.

Основными параметрами режима термокомпрессионной сварки являются удельное давление, температура нагрева и время сварки, Удельное давление выбирают в зависимости от допустимого на­пряжения сжатия кристалла полупроводника и допустимой дефор­мации материала привариваемого вывода. Время сварки выбирают экспериментальным путем.

где d -диаметр проволоки, мкм; b -ширина соединения, мкм.

Давление на инструмент определяют, исходя из распределения напряжений на стадии завершения деформации:


где A -коэффициент, характеризующий изменение напряжений в процессе деформации проволоки; f -приведенный коэффициент трения, характеризующий трение между инструментом, проволо­кой и подложкой; -относительная деформация; -предел те­кучести материала проволоки при температуре деформации; d диаметр проволоки; D диаметр прижимного инструмента, рав­ный обычно (2÷3)d.

Рис. 2. Номограмма для выбора режимов термокомпрессионной сварки:

а золотой проволоки с плёнкой алюминия; б алюминиевой проволоки с плёнкой алюминия

На рис. 2 приведены номограммы режимов термокомпрес­сионной сварки золотой (а) и алюминиевой (б) проволоки с алю­миниевыми контактными площадками. Эти номограммы дают воз­можность оптимального выбора соотношения между давлением, температурой и временем.

Термокомпрессионная сварка имеет довольно много разновид­ностей, которые можно классифицировать по способу нагрева, по способу присоединения, по форме инструмента. По способу нагре­ва различают термокомпрессионную сварку с раздельным нагревом иглы, кристалла или пуансона, а также с одновременным нагре­вом двух из этих элементов. По способу присоединения термоком­прессионная сварка может быть встык и внахлест. По форме инструмента различают «птичий клюв», «клин», «капилляр» и «иглу» (рис. 14.3).

При сварке инструментом «птичий клюв» одно и то же устройство подает проволоку, присоединяет ее к контактным площадкам интегральной схемы и автоматически обрывает, не выпуская ее из «клюва». Инструмент в виде «клина» прижимает конец проволоки к подложке, при этом вдавливается не вся проволока, а только центральная ее часть. При сварке с помощью «капиллярного инст­румента» проволока проходит через него. Капиллярный наконеч­ник одновременно служит инструментом, передающим давление на проволоку. При сварке «иглой» конец проволочного вывода подво­дят в зону сварки специальным механизмом и накладывают на контактную площадку, а затем прижимают ее иглой с определенным усилием.


Рис. 3. Типы инструментов для проведения термокомпрессионной сварки:

а «птичий клюв»; б «клин»; в «капилляр»; г «игла»

Для осуществления процесса термокомпрессионной сварки ис­пользуются различные установки, основными узлами которых являются: рабочий столик с нагревательной колонкой или без нее, механизм создания давления на присоединяемый вывод, рабочий инструмент, механизм подачи и обрыва проволоки для выводов, механизм подачи кристаллов или деталей с присоединенным к ним кристаллом; механизм совмещения соединяемых элементов, опти­ческая система визуального наблюдения процесса сварки, блоки питания и управления. Все перечисленные узлы могут иметь раз­личное конструктивное исполнение, однако принцип их устройства и характер выполняемой работы одинаков.

Так, рабочий столик всех установок служит для закрепления кристалла или корпуса интегральной схемы в определенном поло­жении. Обычно рабочий столик термокомпрессионных установок является сменным, что позволяет закреплять кристаллы различных размеров и геометрических форм. Нагревательная колонка служит для нагрева кристаллов или корпусов до требуемой температуры и позволяет регулировать ее в пределах 50-500°С с точностью ре­гулировки +5°С. Механизм создания давления предназначен для прижатия вывода к контактной площадке кристалла и обеспечива­ет регулирование усилия от 0,01 до 5 Н с точностью ±5%. Рабо­чий инструмент является одним из основных узлов термокомпрес­сионной установки. Его изготовляют из твердых сплавов типа ВК-6М, ВК-15 (для инструментов «птичий клюв» и «капилляр»)

или из синтетического корунда (для «клина» и «иглы»). Конструк­ция механизма подачи и отрыва проволоки зависит от типа уста­новки и формы рабочего инструмента. Наиболее широко распрост­ранены два способа отрыва; рычажный и электромагнитный. Про­цесс отрыва проволочного вывода после изготовления термоком­прессионного соединения на кристалле интегральной схемы без нарушения его прочности во многом зависит от конструктивных особенностей механизма. Механизм подачи кристаллов или дета­лей к месту сварки представляет собой обыкновенные зажимы или сложные кассеты, смонтированные на рабочем столике уста­новки. Наибольшая производительность достигается при использо­вании кассет с металлической лентой, на которой корпуса или кристаллы предварительно ориентируются в заданной плоскости и в определенном положении. Механизм совмещения обычно вклю­чает в себя манипуляторы, которые позволяют перемещать кри­сталл до его совмещения с соединяемыми элементами. Обычно используют манипуляторы двух видов: рычажные и пантографные. Оптическая система визуального наблюдения состоит из биноку­лярного микроскопа или увеличительного экрана-проектора. В за­висимости от размеров присоединяемых элементов выбирают уве­личение оптической системы от 10 до 100 крат.

Электроконтактная сварка применяется для присоединения металлических выводов к контактным площадкам кристаллов по­лупроводниковых приборов и интегральных микросхем. Физиче­ская сущность процесса электроконтактной сварки заключается в нагреве соединяемых элементов в локальных участках приложения электродов. Разогрев локальных областей соединяемых элементов происходит за счет возникающего в местах контакта материала с электродами максимального электрического сопротивления при прохождении через электроды электрического тока. Основными параметрами процесса электроконтактной сварки являются значе­ние сварочного тока, скорость нарастания тока, время воздействия тока на соединяемые элементы и сила прижатия электродов к сое­диняемым деталям.

В настоящее время для присоединения выводов к контактным площадкам кристаллов интегральных схем используются два спо­соба электроконтактной сварки: с односторонним расположением двух электродов и с односторонним расположением одного сдвоен­ного электрода. Второй способ отличается от первого тем, что ра­бочие электроды выполнены в виде двух токонесущих элементов, разделенных между собой изоляционной прокладкой. В момент прижатия такого электрода к проволочному выводу и пропускания через образовавшуюся систему электродного тока происходит вы­деление большого количества теплоты в месте контакта. Внешнее давление в сочетании с разогревом деталей до температуры плас­тичности или расплавления приводит к прочному их соединению.

Технологическое оборудование для присоединения выводов ме­тодом электроконтакной сварки включает в себя следующие ос­новные узлы: рабочий столик, механизм создания давления на электрод, механизм подачи и отрезки проволоки, рабочий инстру­мент, механизм подачи кристаллов или корпусов с кристаллами, механизм совмещения соединяемых элементов, оптическую систему визуального наблюдения процесса сварки, блоки питания и управ­ления.Установки для ультразвуковой сварки состоят из следующих основных узлов: ра­бочего столика, механизма создания давления, механизма подачи Н отрезки проволоки, ультразвукового сварочного устройства и оп­тической системы.

Герметизация кристалла

После того как полупроводниковый кристалл ориентирован и за­креплен на основании корпуса и к его контактным площадкам присоединены выводы, его необходимо защитить от влияния окру­жающей среды, т. е. создать вокруг него герметичную и механиче­ски прочную оболочку. Такая оболочка может быть создана либо присоединением к основанию корпуса специальной крышки (баллона), которая накрывает полупроводниковый кристалл и изолирует его от внешней среды, либо обволакиванием основания корпуса с расположенным на нем полупроводниковым кристаллом пласт­массой, которая также отделяет кристалл от внешней среды.

Для герметичного соединения основания корпуса с крышкой или баллоном (дискретный вариант полупроводниковых приборов) широко используют пайку, электроконтактную и холодную сварку, а для герметизации кристалла на держателе-заливку, обволаки­вание и опрессовку пластмассой.)

Пайка. Пайку применяют для герметизации как дискретных приборов, так и ИМС. Наибольшее практическое использование этот процесс нашел при сборке и герметизации корпусов диодов и транзисторов. Элементы конструкции корпусов включают в себя отдельные узлы и блоки, полученные на основании процессов пайки: металла с металлом, металла с керамикой и металла со стеклом. Рассмотрим эти виды пайки.

Пайка металла с металлом уже рассматривалась в §2. По­этому здесь остановимся лишь на технологических особенностях, которые связаны с получением герметичных паяных соединений.

Основными элементами паяного соединения при герметизации интегральных схем являются основание корпуса и крышка. Про­цесс соединения основания корпуса с крышкой может проводиться либо с использованием прослойки припоя, которая располагается между основанием корпуса и крышкой в виде кольца, либо без прослойки припоя. Во втором случае края основания корпуса и крышки предварительно облуживают припоем.

При герметизации диодов, транзисторов и тиристоров в зависи­мости от конструкции корпуса могут иметь место несколько пая­ных соединений. Так, пайкой соединяют кристаллодержатель с баллоном и герметизируют верхние выводы корпуса тиристора.

К процессу пайки при герметизации предъявляют требования по чистоте исходных деталей, которые предварительно подверга­ются очистке, промывке и сушке. Процесс пайки проводят в ваку­уме, инертной или восстановительной среде. При использовании флюсов пайку можно проводить на воздухе. Флюсы в значитель­ной степени улучшают смачивание и растекание припоя по соеди­няемым поверхностям деталей, а это залог образования герметич­ного паяного шва. По выполняемой роли флюсы подразделяют на две группы; защитные и активные. Защитные флюсы предохраня­ют детали от окисления в процессе пайки, а активные способствуют восстановлению оксидов, образовавшихся в процессе пайки. В качестве защитных флюсов наиболее часто используют рас­творы канифоли. Активными флюсами служат хлористый цинк и хлористый аммоний. Для пайки используют припои ПОС-40 и ПОС-60.

Пайка керамики с металлом . В полупроводниковой технике. как и в электровакуумной, широкое применение находят спаи ке­рамики с металлом, которые обеспечивают более надежную герме­тизацию.интегральных схем.

Припои, которые используют для пайки металла с металлом, не смачивают поверхность керамических деталей и поэтому не спаи­ваются с керамическими деталями корпусов интегральных схем.

Для получения паяных соединений керамики с металлом ее предварительно металлизируют. Металлизация проводится с по­мощью паст, которые наносят на керамическую деталь. Хорошее сцепление металлизационного слоя с поверхностью керамики достигается высокотемпературным вжиганием. При вжигании паст растворитель улетучивается, а металлические частицы прочно соединяются с» поверхностью керамической детали. Толщина воз-жженного слоя металла составляет обычно несколько микрометров. Нанесение и вжигание пасты можно повторять по нескольку раз, при этом толщина слоя увеличивается и качество металлизационного слоя улучшается. Полученную таким образом металлизирован­ную керамику можно паять обычными припоями.

Распространенным способом нанесения металлических покры­тий на детали керамических корпусов является спекание слоя металлизационной пасты с керамикой при высокой температуре. В качестве исходных материалов используются порошки молибде­на, вольфрама, рения, тантала, железа, никеля, марганца, кобаль­та, хрома, серебра и меди с размерами зерен в несколько микро­метров. Для приготовления паст эти порошки разводят в связую­щих веществах: ацетоне, амилацетате, метиловом спирте и др.

Пайка металлизированных керамических деталей с металличе­скими проводится обычным способом.

Пайка стекла с металлом. Стекло ни с одним из чистых метал­лов не спаивается, так как чистая поверхность металлов не смачи­вается или плохо смачивается жидким стеклом.

Однако если поверхность металла покрыта слоем оксида, то смачивание улучшается, оксид частично растворяется в стекле и после охлаждения может произойти герметичное соединение. Ос­новная трудность при изготовлении спаев металл — стекло состоит в подборе компонентов стекла и металла с достаточно близкими значениями коэффициентов термического расширения во всем диа­пазоне от температуры плавления стекла до минимальной рабочей температуры полупроводникового прибора. Даже небольшое раз­личие в коэффициентах термического расширения может привести к образованию микротрещин и разгерметизации готового прибора.

Для осуществления пайки стекла с металлом для получения герметичных спаев необходимо: подбирать компоненты с одинако­выми коэффициентами термического расширения; применять стек­лянный припой в виде суспензии с металлическим порошком; по­степенно переходить от металла к основному стеклу с помощью промежуточных стекол; металлизировать поверхность стекла.

Для получения герметичных спаев стекла с металлом использу­ют три способа нагрева исходных деталей: в пламени газовой го­релки, с помощью токов высокой частоты, в муфельных или силитовых печах. Во всех случаях процесс проводят на воздухе, так как наличие оксидной пленки способствует процессу пайки.

Электроконтактная сварка . Этот процесс широко используется для герметизации корпусов полупроводниковых приборов и инте­гральных микросхем. Она основана на расплавлен ни определен­ных частей соединяемых металлических деталей за счет прохож­дения через них электрического тока. Сущность процесса электро­контактной сварки состоит в том, что к свариваемым деталям под­водят два электрода, на которые подают определенное напряжение. Так как площадь электродов значительно меньше, чем площадь сва­риваемых деталей, то при прохождении через всю систему элект­рического тока в месте соприкосновения свариваемых деталей, «находящихся под электродами, выделяется большое количество теплоты. Это происходит за счет большой плотности тока в малом объеме материала свариваемых деталей. Большие плотности тока разогревают контактные участки до расилавления определенных зон исходных материалов.

При прекращении действия тока температура контактных уча­стков снижается, что влечет за собой остывание расплавленной зоны и ее рекристаллизацию. Полученная таким образом рекристаллизационная зона герметично соединяет однородные и разно­родные металлические детали друг с другом.

Форма сварного шва зависит от геометрической конфигурации рабочих электродов. Если электроды выполнены виде заострен­ных стержней, то сварка получается точечной. Если электроды в виде трубки, то сварочный шов имеет форму кольца. При пластин­чатой форме электродов сварочный шов имеет вид полосы.

Большое значение для качественной герметизации корпусов приборов электросваркой имеет материал, из которого изготовляют рабочие электроды. К материалу электродов предъявляют повы­шенные требования по тепло- и электропроводности, а также по механической прочности. Для удовлетворения этих требований электроды делают комбинированными, выполненными из двух ма­териалов, один из которых обладает высокой теплопроводностью, а другой механической прочностью. Широкое распространение получили электроды, основание которых изготовлено из меди, а сердечник (рабочая часть) — из сплава вольфрама с медью.

Наряду с комбинированными используют электроды, выпол­ненные из однородного металла или сплава. Так, для сваривания стальных деталей используют электроды из меди (М1 и МЗ) и бронзы (0,4-0,8% хрома, 0,2-0,6% цинка, остальное-медь). Для сварки материалов с высокой электропроводностью (медь, серебро и т. п.) применяют электроды из вольфрама и молибдена.

Электроды должны хорошо прилегать друг к другу по рабочим свариваемым поверхностям. Наличие дефектов на рабочих поверх­ностях деталей (риски, вмятины, раковины и т. п.) приводит к не­равномерному разогреву свариваемых участков деталей и обра­зованию негерметичного сварного шва в готовом изделии. Особое внимание следует уделять креплению электродов в электродержа­телях, так как при плохом креплении между ними возникает так называемое переходное сопротивление, которое приводит к разо­греву самих электрододержателей. Электроды должны быть строго соосны между собой. Отсутствие соосности электродов приводит к возникновению брака при сварке.

Качество сварки в большой степени зависит от выбранного электрического и временного режима. При малом значении сва­рочного тока выделяющаяся теплота оказывается недостаточной для нагрева деталей до температуры плавления свариваемых ме­таллов, в этом случае получается так называемый «непровар» де­талей. При большом значении сварочного тока выделяется слиш­ком большое количество теплоты, которое может расплавить не только место сварки, но и всю деталь, что связано с «пережогом» деталей и выплеском металла.

Большое значение имеет время прохождения сварочного тока через электроды и детали. Как только включается сварочный ток, в месте контакта начинается разогрев свариваемых деталей, при­чем точки плавления достигают только поверхностные слои метал­ла. Если в этот момент выключить ток, то получится непрочная сварка. Чтобы получить прочный сварной шов, необходимо время для образования расплавленного ядра по всей локальной площад­ке свариваемых деталей. Перегрев ядра расплавленного металла приводит к его разрастанию и выплеску металла наружу. В ре­зультате этого могут образовываться раковины, которые рез­ко снижают механическую прочность и герметичность сварных швов.

Перед проведением процесса электроконтактной сварки все де­тали корпусов интегральных схем подвергают тщательной обра­ботке (промывке, обезжириванию, травлению, зачистке и т. п.).

Качество сварки контролируют внешним осмотром и с помощью поперечных разрезов сваренных изделий. Основное внимание уде­ляется механической прочности и герметичности сварных швов.

Холодная сварка. Метод герметизации холодной сваркой широко используется в электронной промышленности. В тех случаях, когда при герметизации исходных деталей корпусов недопустим их на­грев и требуется высокая чистота процесса, применяют холодную сварку-сварку под давлением. Кроме того, холодная сварка обес­печивает прочное герметичное соединение наиболее часто исполь­зуемых разнородных металлов (меди, никеля, ковара и стали).

К недостаткам данного метода следует отнести наличие значи­тельной деформации деталей корпусов в месте соединения, что приводит к существенному изменению формы и габаритных разме­ров готовых изделий.

Изменение наружного диаметра корпуса прибора зависит от толщины исходных свариваемых деталей. Изменение наружного диаметра готового прибора после проведения процесса холодной сварки

где — толщина буртика верхней детали до сварки; — толщи­на буртика нижней детали до сварки.

Большое значение для проведения процесса холодной сварки имеет наличие на поверхности соединяемых деталей пленки оксида. Если эта пленка пластичная и более мягкая, чем основной металл, то под давлением она растекается во все стороны и утоньшается, разделяя тем самым чистые металлические поверхности, в резуль­тате чего сварка не происходит. Если оксидная пленка более хруп­кая и твердая, чем покрываемый ею металл, то под давлением она трескается, причем растрескивание происходит одинаково на обеих соединяемых деталях. Загрязнения, имевшиеся на поверхности пленки, оказываются упакованными с обеих сторон в своеобразные пакеты, прочно зажатые по краям. Дальнейшее увеличение давле­ния приводит к растеканию чистого металла к периферийным уча­сткам. Наибольшее растекание происходит в серединной плоскости образовавшегося шва, благодаря чему все пакеты с загрязнения­ми вытесняются наружу, а чистые поверхности металла, всту­пая в межатомные взаимодействия, прочно сцепляются друг с другом.

Таким образом, хрупкость и твердость-это основные качества оксидной пленки, обеспечивающие герметичное соединение. Так как у большинства металлов толщина покрытия оксидными плен­ками не превосходит 10 -7 см, детали из таких металлов перед сваркой никелируют или хромируют. Пленки никеля и хрома об­ладают достаточной твердостью и хрупкостью и, следовательно, значительно улучшают сварное соединение.

Перед проведением процесса холодной сварки все детали обез­жиривают, промывают и сушат. Для образования качественного соединения двух металлических деталей необходимо обеспечить достаточную деформацию, пластичность и чистоту свариваемых деталей.

Степень деформации К при холодной сварке должна находить­ся в пределах 75-85%:

,

где -суммарная толщина свариваемых деталей; t -толщина сварного шва.

Прочность сварного соединения

где Р усилие разрыва; D диаметр отпечатка выступа пуансо­на; Н толщина одной из свариваемых деталей с наименьшим размером; -предел прочности на растяжение с наименьшим значением.

Для деталей корпусов при холодной сварке рекомендуются сле­дующие сочетания материалов: медь МБ-медь МБ, медь МБ-медь М1, медь МБ-сталь 10, сплав Н29К18 (ковар) -медь МБ, ковар-медь М1.

Критические давления, необходимые для пластической дефор­мации и холодной сварки, например для сочетания медь-медь, составляют 1,5*10 9 Н/м 2 , для сочетания медь — ковар они равны 2*10 9 Н/м 2 .

Герметизация пластмассой . Дорогостоящую герметизацию стек­лянных, металлостеклянных, металлокерамических и металлических корпусов в настоящее время успешно заменяют пластмассовой герметизацией. }В ряде случаев это повышает надежность приборов и ИМС, так как устраняется контакт полупроводникового кристал­ла с газовой средой, находящейся внутри корпуса.

Пластмассовая герметизация позволяет надежно изолировать кристалл от внешних воздействий и обеспечивает высокую механи­ческую и электрическую прочность конструкции. Для герметизации ИМС широко используют пластмассы на основе эпоксидных, крем-нийорганических и полиэфирных смол.

Основными методами герметизации являются заливка, обвола­кивание и опрессовка под давлением. При герметизации заливкой используют полые формы, в которые помещают полупроводниковые кристаллы с припаянными внешними выводами. Внутрь форм за­ливают пластмассу.

При герметизации приборов обволакиванием берут два (или более) вывода, изготовленных из ленточного или проволочного ма­териала, соединяют их между собой стеклянной или пластмассовой бусой и на один из выводов напаивают полупроводниковый кри­сталл, а к другому (другим) выводу присоединяют электрические контактные проводники. Полученную таким образом сборку герме­тизируют обволакиванием пластмассой.

Наиболее перспективным путем решения проблемы сборки и герметизации приборов является герметизация кристаллов с актив­ными элементами на металлической ленте с последующей гермети­зацией пластмассой. Преимущество этого метода герметизации со­стоит в возможности механизации и автоматизации процессов сбор­ки различных типов ИМС. Основным элементом конструкции пласт­массового корпуса является металлическая лента. Для выбора профиля металлической ленты необходимо исходить из размеров кристаллов, тепловых характеристик приборов, возможности мон­тажа готовых приборов на печатную плату электронной схемы, максимальной прочности на отрыв от корпуса, простоты конст­рукции.

Технологическая схема пластмассовой герметизации прибора включает в себя основные этапы планарной технологии. Присоеди­няют полупроводниковые кристаллы с активными элементами к металлической ленте, покрытой золотом, эвтектическим сплавле-нием золота с кремнием или обычной пайкой. Металлическую ленту изготовляют из ковара, меди, молибдена, стали, никеля.

различных типов полупроводниковых устройств

В этой статье мы немного поговорим о полупроводниковых устройствах в целом, о некоторых наиболее известных типах полупроводниковых устройств и многих других аспектах полупроводников.

Введение

За последние 70 лет полупроводники стали ключевым элементом в производстве электроники. С момента изобретения транзистора мир электроники всегда находился на экспоненциальной кривой с точки зрения исследований, разработок, производства, создания новых устройств и технологий.

Электронные устройства предназначены для обработки информации, то есть для высокоскоростной передачи, сбора и обработки информации в отраслях промышленности и производства, связи, искусства, медицины и даже во время войны.

Но все это можно связать с сердцем современной электроники и ее производства: полупроводниковыми приборами.

Несмотря на то, что электронная система изготавливается с использованием металлов, диэлектриков и полупроводников (подробнее об этом позже), полупроводники считаются основой электроники.

Что такое полупроводник?

Прежде чем перейти к обсуждению различных типов полупроводниковых устройств, важно иметь представление о том, что такое полупроводник.

Проще говоря, полупроводники — это материалы, которые не являются ни проводниками, ни изоляторами. Если немного подробнее остановиться на этом, материалы классифицируются на проводники, изоляторы и полупроводники в зависимости от их способности проводить электричество.

Проводники — это материалы с очень хорошей электрической проводимостью.Обычно металлы обладают хорошей электропроводностью, и вы можете найти медь или алюминий в электропроводке вашего дома.

Напротив, изоляторы — это материалы с очень плохой электропроводностью. Стекло, дерево и бумага — хорошие примеры изоляторов.

Теперь давайте поговорим о важной категории материалов для нашего обсуждения, то есть о полупроводниках. При комнатной температуре полупроводники представляют собой материалы с более низкой электропроводностью, чем проводники, но с более высокой электропроводностью, чем изоляторы.

ПРИМЕЧАНИЕ: Для более детального понимания полупроводников, вы должны углубиться в красиво сложную квантовую механику, которая «определенно» выходит за рамки этого обсуждения.

Полупроводниковые материалы

Если говорить об электропроводности в единицах Ом -1 см -1 , полупроводниковыми материалами являются материалы с удельной электропроводностью между 10 -9 Ом -1 см -1 и 10 2 Ом -1 см -1 .

Традиционно элементы IV группы, такие как кремний (Si) и германий (Ge), считаются элементарными полупроводниковыми материалами, то есть полупроводниками, состоящими только из одного атома.

Существуют и другие типы полупроводниковых материалов, которые могут быть образованы путем объединения элементов из группы III с элементами группы V, и они известны как составные полупроводники. Арсенид галлия (GaAs) — самый известный полупроводниковый материал в этой категории и фактически второй после кремния как наиболее часто используемый полупроводниковый материал.

Что такое полупроводниковые приборы?

Проще говоря, полупроводниковые устройства — это тип электронных компонентов, которые спроектированы, разработаны и изготовлены на основе таких полупроводниковых материалов, как кремний (Si), германий (Ge) и арсенид галлия (GaAs).

С момента своего использования в конце 1940-х (или начале 1950-х) полупроводники стали основным материалом при производстве электроники и ее разновидностей, таких как оптоэлектроника и термоэлектроника.

До использования полупроводниковых материалов в электронных устройствах, вакуумные лампы использовались в конструкции электронных компонентов.Основное различие между электронными лампами и полупроводниковыми устройствами заключается в том, что в электронных лампах проводимость электронов происходит в газообразном состоянии, тогда как в случае полупроводниковых устройств это происходит в «твердом состоянии».

Полупроводниковые приборы можно найти как в виде дискретных компонентов, так и в виде интегральных схем.

Почему полупроводники?

Основная причина использования полупроводниковых устройств (и, следовательно, лежащих в основе полупроводниковых материалов) в производстве электронных устройств и компонентов — это возможность легко управлять проводимостью носителей заряда i.е. электроны и дырки.

Как упоминалось ранее, электропроводность полупроводниковых материалов находится между проводниками и изоляторами. Даже эта проводимость может контролироваться внешними или внутренними факторами, такими как электрическое поле, магнитное поле, свет, температура и механические искажения.

Пренебрегая пока внешними факторами, такими как температура и свет, процесс, называемый легированием, обычно применяется к полупроводниковым материалам, когда примеси вводятся в их структуру для изменения структурных, а также электрических свойств.

Чистый полупроводник известен как внутренний полупроводник, а нечистый или легированный полупроводник известен как внешний полупроводник.

Когда количество свободных электронов в полупроводниковой структуре увеличивается после легирования, полупроводник известен как полупроводник n-типа. Точно так же, если количество отверстий увеличено, он известен как полупроводник p-типа.

Различные типы полупроводниковых устройств

Ниже приводится небольшой список некоторых из наиболее часто используемых полупроводниковых устройств.В зависимости от физической структуры устройства следующий список подразделяется на устройства с двумя терминалами и устройства с тремя терминалами.

Двухконтактные полупроводниковые приборы
  • Диод
  • Диод Шоттки
  • Светоизлучающий диод (светодиод)
  • DIAC
  • Стабилитрон
  • Фотодиод (фототранзистор)
  • PIN-диод
  • Лазерный туннельный диод
  • Фотоэлемент
  • Солнечный элемент
  • Диод Ганна
  • Диод IMPATT
  • Диод TVS (диод подавления переходных напряжений)
  • VCSEL (Лазер с вертикальной полостью, излучающий поверхность)
Трехполюсные полупроводниковые устройства
    Биполярные устройства
  • Полевой транзистор
  • Биполярный транзистор с изолированным затвором (IGBT)
  • Транзистор Дарлингтона
  • Кремниевый управляемый выпрямитель (SCR)
  • TRIAC
  • Тиристор
  • Однопереходный транзистор

Есть также несколько четырехконтактных полупроводников (например, оптопары) Оптопару) и датчик на эффекте Холла.

Для получения дополнительной информации о некоторых из вышеупомянутых полупроводниковых устройств, прочтите « P-N Junction Diode », « Transistor », « Thyristor ».

Применение полупроводниковых приборов

Как упоминалось ранее, полупроводниковые приборы являются основой почти всех электронных устройств. Некоторые из применений полупроводниковых устройств:

  • Транзисторы — основные компоненты в различных интегральных схемах, таких как микропроцессоры.
  • Фактически, они являются основными компонентами в конструкции логических вентилей и других цифровых схем.
  • Транзисторы также используются в аналоговых схемах, таких как усилители и генераторы.

Полупроводники | Введение в химию

Цель обучения
  • Сравните полупроводники N-типа и P-типа, отличив их от полупроводников и изоляторов, используя зонную теорию.

Ключевые моменты
    • Внутренние полупроводники состоят только из одного материала.
    • Внешние полупроводники состоят из внутренних полупроводников, в которые были добавлены другие вещества для изменения их свойств (они были легированы другим элементом).
    • Есть два типа внешних полупроводников: p-тип (p для положительного: дырка была добавлена ​​путем легирования элементом III группы) и n-типа (n для отрицательного: дополнительный электрон был добавлен путем легирования элементом III группы). элемент группы-V).

Условия
  • полупроводник — вещество с электрическими свойствами между хорошими проводниками и хорошими изоляторами
  • проводник: то, что может передавать электричество, тепло, свет или звук
  • легированный: описание полупроводника, в который было добавлено небольшое количество элементов для создания носителей заряда.

Полупроводники — это материалы, которые обладают свойствами как обычных проводников, так и изоляторов.Полупроводники делятся на две большие категории:

  • Собственные полупроводники состоят только из одного материала; кремний и германий — два примера. Их также называют «нелегированные полупроводники» или «полупроводники i-типа. «
  • Внешние полупроводники, с другой стороны, являются внутренними полупроводниками с добавлением других веществ для изменения их свойств, то есть они были легированы другим элементом.

Внутренние полупроводники

В классических кристаллических полупроводниках электроны могут иметь энергию только в определенных диапазонах (диапазонах уровней энергии).Энергия этих зон находится между энергией основного состояния и энергией свободного электрона (энергия, необходимая для полного выхода электрона из материала). Энергетические зоны соответствуют большому количеству дискретных квантовых состояний электронов. Большинство состояний с низкой энергией (ближе к ядру) занято, вплоть до определенной зоны, называемой валентной зоной.

Полупроводники и изоляторы отличаются от металлов населенностью электронов в каждой зоне.Валентная зона в любом металле почти заполнена электронами при обычных условиях. В полупроводниках только несколько электронов существуют в зоне проводимости чуть выше валентной зоны, а в изоляторе почти нет свободных электронов.

Иллюстрация электронной зонной структуры полупроводника Это исчерпывающая иллюстрация молекулярных орбиталей в массивном материале. По мере увеличения энергии в системе электроны покидают валентную зону и переходят в зону проводимости.

Полупроводники и изоляторы также отличаются относительной шириной запрещенной зоны. В полупроводниках ширина запрещенной зоны мала, что позволяет электронам заселять зону проводимости. В изоляторах он большой, что затрудняет прохождение электронов через зону проводимости.

Внешние полупроводники

Название «внешний полупроводник» может ввести в заблуждение. В то время как изоляционные материалы могут быть легированы, чтобы стать полупроводниками, собственные полупроводники также могут быть легированы, что приводит к примесному полупроводнику.Есть два типа примесных полупроводников, которые возникают в результате легирования: атомы с дополнительным электроном (n-тип для отрицательного элемента из группы V, например, фосфор) и атомы с одним электроном меньше (p-тип для положительного элемента из группы III. , например бор).

При производстве полупроводников легирование преднамеренно вводит примеси в чрезвычайно чистый или собственный полупроводник с целью изменения его электрических свойств. Примеси зависят от типа полупроводника.Слабо- и умеренно легированные полупроводники относятся к примерам примесей. Когда полупроводник легирован до такого высокого уровня, что он больше похож на проводник, чем на полупроводник, его называют вырожденным.

Полупроводники N-типа

Полупроводники

N-типа представляют собой тип примесных полупроводников, в которых атомы примеси способны обеспечивать дополнительные электроны проводимости для материала-хозяина (например, фосфор в кремнии). Это создает избыток отрицательных (n-типа) электронных носителей заряда.

Полупроводник N-типа После легирования материала фосфором появляется дополнительный электрон.

Легирующий атом обычно имеет на один валентный электрон больше, чем один тип основных атомов. Наиболее распространенный пример — атомное замещение в твердых телах IV группы элементами V группы. Ситуация становится более неопределенной, когда хозяин содержит более одного типа атомов. Например, в полупроводниках III-V, таких как арсенид галлия, кремний может быть донором, когда он замещает галлий, или акцептором, когда он замещает мышьяк.У некоторых доноров меньше валентных электронов, чем у хозяина, например щелочные металлы, которые являются донорами в большинстве твердых тел.

Полупроводники P-типа

Полупроводник p-типа (p означает «положительный») создается путем добавления к полупроводнику атома определенного типа с целью увеличения количества свободных носителей заряда. Когда легирующий материал добавляется, он забирает (принимает) слабосвязанные внешние электроны у атомов полупроводника. Этот тип легирующего агента также известен как акцепторный материал, а вакансия, оставленная электроном, известна как дырка.Целью легирования p-типа является создание большого количества дырок.

Полупроводник P-типа После того, как материал был легирован бором, в структуре отсутствует электрон, оставляя дырку. Это позволяет упростить поток электронов.

В случае кремния трехвалентный атом замещен в кристаллической решетке. В результате один электрон отсутствует в одной из четырех ковалентных связей, обычно являющихся частью решетки кремния. Следовательно, атом примеси может принять электрон из ковалентной связи соседнего атома, чтобы завершить четвертую связь.Вот почему эти легирующие примеси называют акцепторами.

Когда атом примеси принимает электрон, это вызывает потерю половины одной связи с соседним атомом, что приводит к образованию дырки. Каждая дырка связана с ближайшим отрицательно заряженным легирующим ионом, и полупроводник в целом остается электрически нейтральным. Однако, как только каждая дырка переместится в решетку, один протон в атоме в месте расположения дыры будет «обнажен» и больше не будет нейтрализован электроном.У этого атома будет три электрона и одна дырка, окружающие конкретное ядро ​​с четырьмя протонами.

По этой причине отверстие ведет себя как положительный заряд. Когда добавляется достаточно большое количество акцепторных атомов, дырок значительно превышает количество термически возбужденных электронов. Таким образом, дырки являются основными носителями, в то время как электроны становятся неосновными носителями в материалах p-типа.

Показать источники

Boundless проверяет и курирует высококачественный контент с открытой лицензией из Интернета.Этот конкретный ресурс использовал следующие источники:

Semiconductors — The Physics Hypertextbook

Обсуждение

неорганизованных банкнот

Просто спросите Бриттни Спирс, полупроводник — это материал, электрическая проводимость которого находится между проводником и изолятором. Элементами, наиболее часто используемыми в полупроводниковых устройствах, являются кремний и германий .

доноров, акцепторов / электронов, дырок

модель донор (носитель заряда) акцептор
электрон отрицательный положительный
отверстие положительный отрицательный

Полупроводники

  1. Биполярный металл-оксид-полупроводник (BMOS)
    описание
  2. Металлооксидный полупроводник с положительным каналом (PMOS)
    описание
  3. Металлооксидный полупроводник с отрицательным каналом (NMOS)
    описание
  4. Комплементарный металлооксидный полупроводник (CMOS)
    Технология производства полупроводников, использующая комбинацию полупроводниковых материалов, легированных n- и p-типами, для достижения низкого рассеяния мощности.Любой путь через затвор, через который может течь ток, включает транзисторы n- и p-типа. В любом стабильном состоянии включен только один тип, поэтому статическая мощность рассеивается, а ток течет только при переключении затвора для зарядки паразитной емкости.
    1. КМОП с N-каналом (NCMOS)
      Кремниевый затвор с реверсированием
    2. Расширенная CMOS (XCMOS)
      описание
    3. BiCMOS
      Процесс производства полупроводниковых устройств, сочетающий биполярность и КМОП-матрицу для обеспечения наилучшего баланса между доступным выходным током и потребляемой мощностью.

Полупроводниковые приборы

Диоды

Полупроводниковый прибор, проводящий электрический ток только в одном направлении. Это простейший вид полупроводникового прибора, он имеет два вывода и один PN переход. Один диод можно использовать как однополупериодный выпрямитель, а четыре — как двухполупериодный.

Транзисторы

Потому что они «передаточное сопротивление», как и «резисторы», они «транзисторы».

Трехконтактное полупроводниковое усилительное устройство, основной компонент большинства активных электронных схем, включая цифровую электронику.

  1. Точечный транзистор
    Устройство «Proof of Principle». Тупик. Транзистор был изобретен 23 декабря 1947 года в Bell Labs.
  2. Биполярный транзистор
  3. (также известный как переходной транзистор, многослойный транзистор)
    Транзистор, сделанный из полупроводникового материала n- и p-типа: npn или pnp. Средняя часть называется «базой», а две другие — «коллектором» и «эмиттером». При использовании в качестве усилительного элемента переход база-эмиттер находится в «прямом смещенном» (проводящем) состоянии, а переход база-коллектор «смещен в обратном направлении» или непроводящий.Небольшие изменения в токе эмиттера базы (входной сигнал) приводят к тому, что дырки (для устройств pnp) или свободные электроны (для npn) попадают в базу из эмиттера. Притягивающее напряжение коллектора заставляет большую часть этих зарядов проходить внутрь коллектора и собираться им, что приводит к усилению.
  4. полевой транзистор (FET)
    Транзистор с областью донорного материала с двумя выводами, называемыми «исток» и «сток», и прилегающей областью акцепторного материала между ними, называемой «затвором».Напряжение между затвором и подложкой управляет током между истоком и стоком, истощая донорную область носителями заряда в большей или меньшей степени. Поскольку через затвор не течет никакой ток (за исключением небольшого тока утечки), полевые транзисторы можно использовать для создания схем с низким энергопотреблением.
    1. Junction Field Effect Transistor (JFET)
      Полевой транзистор, в котором проводящий канал находится между pn-переходами в кремниевом материале. Pn переход действует как диод, поэтому он становится проводящим, если напряжение затвора меняется на противоположное.
    2. Металлооксидный полупроводниковый полевой транзистор (MOSFET)
      Большинство современных транзисторов являются MOSFET.

Основы полупроводников — Что такое полупроводник, типы, материалы, физика

Основы полупроводников — Что такое полупроводник, типы, материалы, физика и многое другое.

Полупроводник можно определить как вещество, обладающее свойствами как проводника, так и изолятора.

Он может проводить электричество при определенных обстоятельствах, но не всегда.Эта физика и свойство полупроводника делают его хорошей средой для контролируемого использования электричества по мере необходимости. Электропроводность полупроводника зависит от нескольких факторов, таких как ток или напряжение, приложенные к управляющему электроду, или от интенсивности облучения инфракрасным ( IR ), видимым светом, ультрафиолетом ( UV ) или рентгеновскими лучами.

Итак, мы можем сказать, что полупроводник — это материал, который имеет электрическую проводимость больше, чем изолятор, но меньше, чем проводник.

Примеры : Диоды, транзисторы и многие фотоэлектрические элементы.

Полупроводники — факты и физика

Как я упоминал выше, полупроводник имеет двойное свойство — проводник и изолятор электричества. Это свойство зависит от примесей, добавленных в полупроводниковый материал (чистый такой материал называется « внутренний »). Примеси, добавляемые к материалу для изменения его электрических свойств, называются «легирующими добавками » , а процесс добавления примесей к чистому полупроводниковому материалу называется легированием.

Типы полупроводников

Полупроводники бывают двух типов:

  1. Полупроводник N-типа — это тот, который переносит ток в виде отрицательно заряженных электронов. Это очень похоже на проводимость тока в проводе.
  2. A Полупроводник P-типа — это тот, который переносит ток в основном в виде недостатков электронов, называемых дырками. Дыра имеет положительный электрический заряд. Этот заряд равен заряду электрона и противоположен ему.Эти дырки текут в направлении, противоположном электронам.

Функция / применение

Полупроводник может помочь контролировать поток электричества. Основная функция такого устройства состоит в том, чтобы переключать ВКЛ, и ВЫКЛ, поток электроэнергии по мере необходимости. Полупроводниковый прибор может выполнять функцию вакуумной лампы, объем которой в сотни раз превышает его объем. Одна интегральная схема ( IC ), такая как микросхема микропроцессора, может выполнять работу набора электронных ламп.

Полупроводниковые материалы

Для изготовления полупроводников используется несколько материалов и элементов. Основное требование — материал не должен быть очень хорошим проводником электричества и не должен быть очень плохим проводником электричества. Его свойства можно изменить, добавляя или удаляя атомы / примеси.

Полупроводниковые материалы включают — кремний, сурьму, мышьяк, бор, углерод, германий, арсенид галлия, селен, карбид кремния, серу, теллур, оксиды большинства металлов.

Что такое сверхпроводник?

Сверхпроводник — это элемент, интерметаллический сплав или соединение, которое без сопротивления проводит электричество ниже определенной температуры.

Приведенный в движение электрический ток будет вечно течь по замкнутому контуру из сверхпроводящего материала.

Диод

Диод — это электронный компонент, который позволяет току течь только в одном направлении. Это устройство, состоящее из p-n перехода.Чаще всего они используются для преобразования переменного тока в постоянный, потому что они пропускают положительную часть волны и блокируют отрицательную часть сигнала переменного тока, или, если они перевернуты, они пропускают только отрицательную часть, а не положительную часть.

Диод — это простейшее из возможных полупроводниковых устройств и лучшее устройство для изучения и понимания того, как работает полупроводник.

Транзистор

Транзистор представляет собой устройство, изготовленное из цельного куска полупроводникового материала и используется для усиления и переключения электронных сигналов.Транзистор может быть активен только в одном направлении и может потреблять больший или меньший ток через свой нагрузочный резистор.

Производство полупроводников

Производство полупроводников требует знаний и опыта. Производство должно производиться в чистом помещении. Используемые химические вещества должны быть чистыми и не содержать каких-либо примесей. Процесс добавления контролируемых примесей в полупроводник известен как легирование.

Этапы производства полупроводников
  1. Дизайн / создание маски
  2. Узор
  3. Производство вафель
  4. Формирование устройства / Формирование изоляционного слоя устройства
  5. Формирование устройства / Формирование транзистора
  6. Металлизация
  7. Сборка и тестирование

Полупроводниковая промышленность

Объем производства полупроводников на сегодняшний день превышает 300 миллиардов долларов, и ожидается, что он будет расти на 13-15% ежегодно.США, Южная Корея, Япония и Европейский Союз доминируют в отрасли и бизнесе.

10 ведущих компаний-производителей полупроводников

  1. Корпорация Intel: мировой лидер в области кремниевых инноваций, разрабатывает процессорные технологии и поддерживает глобальные инициативы.
  2. Samsung Electronics: полупроводники, включая DRAM, Flash, SRAM, графическую память, MCP, Mask ROM, системные LSI, ЖК-модули TFT и многое другое.
  3. Toshiba: производитель и поставщик запоминающих устройств, логических ИС общего назначения, транзисторов, диодов, оптических устройств, датчиков, радиочастотных устройств, микрокомпьютеров, ASIC, ASSP, универсальных линейных ИС, ИС источника питания, транзисторных массивов, Драйвер двигателя, ИС операционного усилителя, ИС компаратора, Операционный усилитель и другие электронные компоненты SMD.
  4. Texas Instruments: Разработчик и поставщик процессоров цифровых сигналов, дискретных и интегральных схем, вычислителей и цифровой обработки света ( DLP ).
  5. STMicroelectronics: предлагает систему на кристалле ( SoC, ) и другие подобные решения.
  6. Qualcomm: ведущий поставщик передовых технологий производства полупроводников.
  7. Hynix (ранее Hyundai Electronics): производитель и поставщик микросхем динамической оперативной памяти (« DRAM», ) и микросхем флэш-памяти.
  8. Renesas Technology: микрокомпьютеры, логические и аналоговые устройства, дискретные устройства и продукты памяти.
  9. AMD: Advanced Micro Devices: американская транснациональная компания.
  10. Sony

Полупроводниковые вакансии

В связи с быстрым ростом отрасли появляется все больше и больше компаний, производящих полупроводники. В этой отрасли есть прекрасная работа и возможность трудоустройства для инженеров-электронщиков.

Вакансии доступны в следующих категориях:

  • Электротехника
  • Программная инженерия / DSP
  • Техническая поддержка
  • Продажи / маркетинг
  • Разработка приложений
  • Проект
  • Управление материальными потоками
  • Изготовление / Производство
  • Гарантия качества
  • Административный

Просто изучите разделы « карьера », « вакансий » или « работайте с нами, » на веб-сайтах этих компаний и подайте заявку на наиболее подходящую работу.

Похожие сообщения:

Полупроводниковые материалы — IEEE IRDS ™

Полупроводниковые материалы варьируются по цене и доступности от кремния в большом количестве до дорогих редкоземельных элементов (РЗЭ). Солнечные элементы, полевые транзисторы, датчики Интернета вещей и схемы беспилотных автомобилей требуют для работы полупроводниковых материалов. Современный мир буквально обязан своим существованием полупроводникам и материалам, используемым при их производстве.

По мере того, как существующие полупроводниковые материалы достигают своих физических ограничений, новые материалы готовы занять их место.Рынок этих материалов в сочетании с новыми приложениями для полупроводников меняет производство и закупку материалов во всей отрасли.

Виды полупроводниковых материалов

Чтобы понять меняющийся характер производства полупроводников, необходимо понять существующие полупроводниковые материалы и то, как их состав влияет на электронные устройства. Новости отрасли содержат последние сведения о ценах на материалы и исследованиях, но имеют тенденцию предполагать осведомленность о текущих свойствах и ограничениях материалов.

Какие полупроводниковые материалы используются чаще всего?

Наиболее часто используемые полупроводниковые материалы — это кремний, германий и арсенид галлия. Из этих трех германий был одним из первых используемых полупроводниковых материалов. Германий имеет четыре валентных электрона, которые представляют собой электроны, расположенные на внешней оболочке атома.

Количество валентных электронов в полупроводниковом материале определяет его проводимость. Хотя германий стал важным шагом в эволюции полупроводниковых материалов, он в значительной степени вышел из употребления в пользу нынешнего короля полупроводниковых материалов — кремния.

Кремний широко используется в качестве полупроводникового материала с 1950-х годов. Самый распространенный элемент на Земле после углерода, кремний имеет четыре валентных электрона и плавится при более высокой температуре, чем германий (1414 градусов по Цельсию по сравнению с германием 938,3 градуса по Цельсию).

Кремний в большом количестве присутствует в кварците. Процессы экстракции, очистки и кристаллизации кремния эффективны и экономичны. Элемент кристаллизуется в форме алмаза для относительно прочной связи, придавая кристаллам кремния сильные механические свойства.

Арсенид галлия — второй по распространенности полупроводник, используемый сегодня. В отличие от кремния и германия, арсенид галлия представляет собой соединение, а не элемент, и образуется путем объединения галлия с его тремя валентными электронами и мышьяком, который имеет пять валентных электронов.

Восемь валентных электронов заставляют устройства на основе арсенида галлия быстро реагировать на электрические сигналы, что делает соединение хорошо подходящим для усиления высокочастотных сигналов, видимых на телевизионных спутниках. Однако у арсенида галлия есть некоторые ограничения: это соединение труднее производить в массовом порядке, чем кремний, а химические вещества, используемые при производстве арсенида галлия, довольно токсичны.

Какие полупроводниковые материалы самые эффективные?

В дополнение к арсениду галлия состав диоксида кремния имеет характеристики, превосходящие кремний, что позволяет использовать его в качестве изолятора, пассивирующего слоя и строительного слоя в металлооксидных кремниевых (МОП) устройствах, тип поля с изолированным затвором. -эффект транзистор. Диоксид кремния имеет высокую диэлектрическую прочность и более широкую запрещенную зону, чем кремний, что делает его эффективным изолятором, а соединение легко осаждается на других материалах.

Какие из последних инноваций в полупроводниковых материалах?

Кремний, являясь наиболее важным материалом в производстве полупроводников на протяжении большей части конца двадцатого и начала двадцать первого веков, приближается к пределу своей полезности. Спрос на все более компактные и быстрые интегральные схемы резко повысили эффективность материала, и отраслевые эксперты опасаются, что кремний скоро достигнет пределов закона Мура. Исследования новых материалов продолжаются, и некоторые материалы имеют большие перспективы на будущее:

  • Нитрид галлия высокой мощности может быть использован для более эффективного и быстрого преобразования энергии в электрических сетях из-за его высокого критического энергетического поля.
  • Полупроводники на основе антимонида и висмута находят применение в улучшенных инфракрасных датчиках для медицинского и военного секторов.
  • Графен может превзойти кремний в качестве универсального полупроводникового материала, но его широкое коммерческое использование может произойти через двадцать пять лет.
  • Пирит может использоваться для замены теллурида кадмия из редкоземельных элементов, который широко используется в солнечных элементах, но имеет ограниченное количество. Пирит является обильным, недорогим и нетоксичным.

Узнайте больше о полупроводниковых материалах в дорожной карте IRDS ™

Получите доступ к дорожной карте IRDS ™

Свойства полупроводниковых материалов

Полупроводниковые материалы обладают определенными характеристиками, связанными с электропроводностью. Будущее полупроводников зависит от того, смогут ли новые материалы с такими характеристиками производиться массово по цене, аналогичной стоимости кремния.

Каковы отличительные характеристики полупроводниковых материалов?

Материалы, обеспечивающие электрическую проводимость, естественно, называются проводниками.Примеры включают золото, серебро и медь. С другой стороны, изоляторы обладают высоким сопротивлением и препятствуют электропроводности. Резина, стекло и керамика — изоляторы.

Полупроводники, как следует из названия, обладают характеристиками как проводников, так и изоляторов. Полупроводники обычно имеют кристаллическую форму и имеют небольшое количество свободных электронов, необходимых для обеспечения проводимости. Вместо этого их атомы группируются вместе, образуя кристаллическую решетку, через которую возможна электрическая проводимость, но только при правильных условиях.

При низких температурах полупроводники обладают низкой проводимостью или вообще не имеют проводимости и действуют как изоляторы. Однако при комнатной температуре или при воздействии света, напряжения или тепла они могут проводить электричество. Именно это квазисостояние между проводниками и изоляторами делает полупроводники настолько важными для электронных устройств, поскольку они определяют, как, когда и где течет электричество.

Как работают полупроводники?

Металлы проводят электричество, потому что их свободные электроны могут свободно перемещаться между атомами, поскольку электричество требует потока электронов от одного атома к другому.Полупроводники, такие как чистый кремний, имеют мало свободных электронов и действуют больше как изоляторы.

Поведение кремния можно изменить в сторону проводимости с помощью процесса, называемого легированием. Легирование приводит к смешиванию крошечных примесей с полупроводниковыми материалами. Примеси добавляют к основному материалу «донорные атомы», повышая проводимость. Количество примесей, добавленных к полупроводниковым материалам, ничтожно — всего лишь один донорный атом на десять миллионов атомов полупроводника, — но достаточно, чтобы обеспечить электрическую проводимость.

Используются две категории примесей, N-тип и P-тип:

  • Полупроводники N-типа содержат фосфор или мышьяк. Оба вещества имеют по пять валентных электронов. При добавлении к решетке кремния одному из легирующих электронов не с чем связываться, поэтому он может пропускать электрический ток. Электроны имеют отрицательный заряд, поэтому эти полупроводники называют полупроводниками N-типа.
  • Полупроводники
  • P-типа «легированы» бором или галлием. Два легирующих элемента имеют только три валентных электрона.Когда они смешиваются с решеткой кремния, нескольким электронам кремния не с чем связываться, обеспечивая электрическую проводимость. Отсутствие электрона создает положительный заряд, поэтому кремний, легированный бором или галлием, называется полупроводником P-типа.

Как производятся полупроводниковые материалы?

При производстве интегральных схем компоненты схемы, такие как транзисторы и проводка, осаждаются на поверхности тонкой кремниевой кристаллической пластины.Затем тонкая пленка компонента покрывается фотостойким веществом, на которое с помощью технологии фотолитографии проецируется рисунок схемы.

В результате получается один слой схемы с транзисторами на самом нижнем уровне. Затем процесс повторяется со многими схемами, сформированными друг над другом и на полупроводниковой основе.

Узнайте больше о полупроводниковых материалах в дорожной карте IRDS ™

Получите доступ к дорожной карте IRDS ™

Применение полупроводниковых материалов

Производство полупроводников обеспечивает базовое оборудование почти для всех электронных устройств.Он используется для усиления энергии, переключения, преобразования энергии, датчиков и многого другого.

Какие изделия обычно изготавливают из полупроводниковых материалов?

Распространенные продукты и компоненты, изготовленные из полупроводниковых материалов, включают следующее:

  • транзисторы биполярные
  • диоды
  • Транзисторы полевые
  • микросхемы
  • переходной полевой транзистор
  • Светодиоды (LED)
  • Металлооксидные полупроводниковые полевые транзисторы (МОП-транзисторы)
  • Выпрямители с кремниевым управлением

Какие отрасли промышленности используют полупроводниковые материалы больше всего?

Полупроводниковые материалы являются важным компонентом электронных устройств, что делает их жизненно важными практически для всех основных отраслей промышленности.Во всем мире ежедневно используется более ста миллиардов полупроводников.

Секторы, которые особенно зависят от полупроводниковых материалов, включают следующее:

  • искусственный интеллект
  • чистая энергия
  • связь
  • вычисления
  • энергия
  • здравоохранение
  • Интернет вещей
  • военный

Узнайте больше о полупроводниковых материалах в дорожной карте IRDS ™

Получите доступ к дорожной карте IRDS ™

Рынок полупроводниковых материалов

Поскольку почти все промышленные секторы зависят от электронных устройств, рынок полупроводников относительно стабилен.Расходы на материалы, необходимые для первоначального производства полупроводниковых корпусов, варьируются от легкодоступного кремния и керамики до дорогостоящих редкоземельных металлов.

Как обстоят дела на мировом рынке полупроводниковых материалов?

Рынок полупроводниковых материалов достиг более 50 миллиардов долларов в 2018 году и, по прогнозам, достигнет стоимости более 70 миллиардов долларов к концу 2025 года. Прогнозируемый среднегодовой темп роста в период с 2018 по 2025 год оценивается в 4,32 процента.

Что делает полупроводниковые материалы такими ценными?

Хотя некоторые полупроводниковые материалы дешевы и доступны в большом количестве (кремний является наиболее очевидным примером), РЗЭ, используемые в производстве диэлектриков с высоким κ и химико-механической полировке, могут быть дорогостоящими.

На величину РЗЭ влияют несколько факторов. Процессы, необходимые для отделения РЗЭ от породы, в которой они обнаружены, сложны и дороги, требуя тысяч стадий для извлечения и очистки готового материала.

Сложность извлечения РЗЭ из сырья заставила многие горнодобывающие компании отказаться от получения прибыли от РЗЭ. Китай — одна из немногих стран, которые сосредоточились на добыче и переработке РЗЭ, в результате чего страна производит 85 процентов мировых запасов вольфрама и молибдена.

Жесткая хватка Китая над производством РЗЭ позволяет ему не только устанавливать цены, но и использовать ценный полупроводниковый материал в качестве политического оружия. В 2010 году Китай прекратил все продажи РЗЭ в Японию из-за спора по поводу задержания Японией китайского рыболовного капитана. Решит ли Китай использовать экспорт РЗЭ во время продолжающейся торговой войны между США и Китаем, вызывает озабоченность.

Как перерабатываются и утилизируются полупроводниковые материалы?

Учитывая ценность некоторых полупроводниковых материалов, рециркуляция и утилизация ценных РЗЭ и других веществ возможны.В настоящее время переработка РЗЭ наиболее успешна при работе с крупномасштабными полупроводниковыми продуктами, такими как солнечные элементы, автомобильные катализаторы и магниты ветряных турбин. РЗЭ также регенерируют из аккумуляторов.

Переработка более мелких полупроводниковых материалов является финансово проблематичной, учитывая небольшое количество материала, утилизируемого из отдельных продуктов, таких как смартфоны. Переработка полупроводниковых материалов также связана с собственными экологическими издержками: процесс приводит к значительным отходам и выбросам множества токсичных загрязнителей.Этические соображения также вызывают озабоченность, поскольку многие использованные полупроводниковые продукты попадают на предприятия по переработке электронных отходов в странах третьего мира, известные тем, что эксплуатируют детский труд.

Самый очевидный способ снизить затраты на РЗЭ — начать добычу и переработку собственных месторождений РЗЭ в других странах, кроме Китая (несмотря на свое название, РЗЭ равномерно распределены по земле, хотя это затрудняет поиск крупных залежей в одном месте) . Однако, как отмечает Communications из ACM , для этого требуется готовность инвестировать в разработку экономически эффективных процессов добычи, добычи и переработки.

Хотите узнать больше о полупроводниковых материалах? Рассмотрите возможность чтения Международной дорожной карты для устройств и систем (IRDS ™). IRDS ™ — это набор прогнозов, которые исследуют будущее электроники, полупроводников и компьютерной индустрии на пятнадцатилетний горизонт. Он охватывает ряд критических областей и технологий, от приложений до устройств и производства. Присоединяйтесь к техническому сообществу IRDS ™, чтобы загрузить дорожную карту и быть в курсе наших последних мероприятий.

Как загрузить IRDS ™

Получите доступ к дорожной карте IRDS ™

Полупроводниковые приборы — Университетская физика, том 3

Цели обучения

К концу этого раздела вы сможете:

  • Опишите, что происходит, когда материалы n- и p-типа соединяются вместе, используя концепцию диффузионного и дрейфового тока (нулевое приложенное напряжение).
  • Объясните реакцию p-n перехода на напряжение прямого и обратного смещения
  • Опишите функцию транзистора в электрической цепи
  • Используйте концепцию p-n-перехода, чтобы объяснить его применение в усилителях звука и компьютерах

Полупроводники находят множество применений в современной электронике.В этом разделе мы описываем некоторые основные полупроводниковые устройства. Большим преимуществом использования полупроводников для элементов схем является тот факт, что многие тысячи или миллионы полупроводниковых устройств могут быть объединены на одном крошечном кусочке кремния и соединены токопроводящими дорожками. Полученная структура называется интегральной схемой (ИС), а микросхемы являются основой многих современных устройств, от компьютеров и смартфонов до Интернета и глобальных сетей связи.

Диоды

Пожалуй, самое простое устройство, которое можно создать из полупроводника, — это диод.Диод — это элемент схемы, который позволяет электрическому току течь только в одном направлении, как односторонний клапан (см. Модель проводимости в металлах). Диод создается путем соединения полупроводника типа p с полупроводником типа n ((рисунок)). Соединение между этими материалами называется переходом p-n . Сравнение энергетических диапазонов кремниевого диода показано на (Рисунок) (b). Положение валентной зоны и зоны проводимости одинаково, но уровни примесей совершенно разные.Когда образуется переход p-n , электроны из зоны проводимости материала типа n диффундируют к стороне p , где они соединяются с дырками в валентной зоне. Эта миграция заряда оставляет положительные ионизированные донорные ионы на стороне n и отрицательные ионизированные акцепторные ионы на стороне p , создавая узкий двойной слой заряда на переходе p n , называемый обедненным слоем. . Электрическое поле, связанное с обедненным слоем, предотвращает дальнейшую диффузию.Потенциальная энергия электронов на переходе p-n представлена ​​(рисунок).

(a) Изображение соединения p-n . (b) Сравнение энергетических зон кремния типа p и n до достижения равновесия.

В состоянии равновесия (а) избыточный заряд находится рядом с границей раздела и чистый ток равен нулю, и (б) разность потенциальной энергии для электронов (выделена голубым цветом) предотвращает дальнейшую диффузию электронов в сторону p .

Теперь можно понять поведение полупроводникового диода. Если положительная сторона батареи подключена к материалу типа n , слой обеднения расширяется, и разность потенциальной энергии на переходе p-n увеличивается. Немногие электроны (дырки) или ни один из них не обладают достаточной энергией, чтобы преодолеть потенциальный барьер, и ток значительно снижается. Это называется конфигурацией обратного смещения. С другой стороны, если положительная сторона батареи подключена к материалу типа p , слой обеднения сужается, разность потенциальной энергии на переходе p-n уменьшается, и электроны (дырки) легко перемещаются.Это называется конфигурацией прямого смещения диода. В общем, диод позволяет току свободно течь в одном направлении, но предотвращает протекание тока в противоположном направлении. В этом смысле полупроводниковый диод представляет собой односторонний клапан.

Мы можем оценить математическую взаимосвязь между током и напряжением диода, используя концепцию электрического потенциала. Рассмотрим N отрицательно заряженных основных носителей (электроны, отданные примесными атомами) в материале типа n и потенциальный барьер V на переходе p-n .Согласно распределению Максвелла-Больцмана, доля электронов, обладающих достаточной энергией для диффузии через потенциальный барьер, составляет. Однако, если аккумуляторная батарея под напряжением применяется в конфигурации с прямым смещением, эта доля улучшается до. Электрический ток из-за основных носителей со стороны n на сторону p , следовательно, равен

.

где — ток без приложенного напряжения, а T — температура. Ток из-за неосновных носителей (тепловое возбуждение электронов из валентной зоны в зону проводимости на стороне p- и последующее притяжение к стороне n ) не зависит от напряжения смещения.Таким образом, чистый ток равен

.

Примерный график зависимости тока от напряжения смещения приведен на (Рисунок). В конфигурации прямого смещения небольшие изменения напряжения смещения приводят к большим изменениям тока. В конфигурации с обратным смещением ток равен. При экстремальных значениях обратного смещения атомы в материале ионизируются, что вызывает лавину тока. Это происходит при пробивном напряжении.

Зависимость тока от напряжения на переходе p-n (диод).В конфигурации прямого смещения электрический ток течет легко. Однако в конфигурации с обратным смещением электрический ток протекает очень мало.

Ток диода Присоединение положительного полюса батареи к стороне p и отрицательного полюса к стороне n полупроводникового диода дает ток, равный обратному току насыщения (обратный ток насыщения — это ток диод в конфигурации с обратным смещением, такой как эта.) Напряжение батареи равно 0.12 В. Какая температура диода?

Стратегия

Первая конфигурация — это конфигурация прямого смещения, а вторая — конфигурация обратного смещения. В любом случае (рисунок) показывает ток.

Решение Ток в конфигурациях прямого и обратного смещения задается

.

Ток без смещения связан с током обратного насыщения на

Следовательно,

(рисунок) можно записать как

Это отношение намного больше единицы, поэтому второй член в левой части уравнения обращается в нуль.Если взять натуральный логарифм с обеих сторон, получим

.

Таким образом, температура равна

.

Значение Ток, протекающий через диод в конфигурации прямого и обратного смещения, чувствителен к температуре диода. Если потенциальная энергия, поставляемая батареей, велика по сравнению с тепловой энергией окружающей среды диода, то прямой ток смещения очень велик по сравнению с обратным током насыщения.

Проверьте свое понимание Как величина тока прямого смещения соотносится с величиной тока обратного смещения?

Ток прямого смещения намного больше.В хорошем приближении диоды пропускают ток только в одном направлении.

Соединительный транзистор

Если диоды — это односторонние клапаны, транзисторы — это односторонние клапаны, которые можно осторожно открывать и закрывать для регулирования тока. Особый вид транзистора — это переходной транзистор. Переходный транзистор состоит из трех частей, включая полупроводник типа n , также называемый эмиттером; тонкий полупроводник типа p , являющийся базой; и другой полупроводник типа n , называемый коллектором ((рисунок)).Когда положительный вывод подключен к слою типа p (основание), небольшой ток электронов, называемый током базы, течет к выводу. Это заставляет большой ток коллектора течь через коллектор. Базовый ток можно регулировать для управления большим током коллектора. Таким образом, текущий прирост составляет

.

Соединительный транзистор состоит из трех частей: эмиттера, базы и коллектора. Напряжение, приложенное к базе, действует как клапан для управления электрическим током от эмиттера к коллектору.

Переходный транзистор может использоваться для усиления напряжения от микрофона для управления громкоговорителем. В этом случае звуковые волны заставляют диафрагму внутри микрофона быстро двигаться внутрь и наружу ((рисунок)). Когда диафрагма находится в положении «внутрь», к базе транзистора прикладывается крошечное положительное напряжение. Это открывает «клапан» транзистора и пропускает большой электрический ток в громкоговоритель. Когда диафрагма находится в выключенном положении, к базе транзистора прикладывается крошечное отрицательное напряжение, которое закрывает клапан транзистора, так что ток не течет в громкоговоритель.Это закрывает «вентиль» транзистора, поэтому ток не течет в громкоговоритель. Таким образом, ток в динамик контролируется звуковыми волнами, и звук усиливается. Любое электрическое устройство, усиливающее сигнал, называется усилителем.

Усилитель звука на переходном транзисторе. Напряжение, подаваемое микрофоном на базу, действует как клапан для управления большим электрическим током, который проходит через громкоговоритель.

В современных электронных устройствах цифровые сигналы используются с диодами и транзисторами для выполнения таких задач, как обработка данных.Электрические цепи передают два типа электрических сигналов: аналоговые и цифровые ((рисунок)). Аналоговый сигнал непрерывно изменяется, тогда как цифровой сигнал переключается между двумя фиксированными значениями напряжения, такими как плюс 1 вольт и ноль вольт. В цифровых схемах, подобных тем, что используются в компьютерах, транзистор ведет себя как двухпозиционный переключатель. Транзистор либо включен, что означает, что клапан полностью открыт, либо он выключен, что означает, что клапан полностью закрыт. Интегральные схемы содержат обширные коллекции транзисторов на одном куске кремния.Они предназначены для обработки цифровых сигналов, представляющих единицы и нули, которые также известны как двоичный код. Изобретение микросхемы помогло запустить современную компьютерную революцию.

Реальные данные часто являются аналоговыми, что означает, что данные могут постоянно изменяться. Значения интенсивности звуковых или визуальных образов обычно аналоговые. Эти данные преобразуются в цифровые сигналы для электронной обработки в записывающих устройствах или компьютерах. Цифровой сигнал генерируется из аналогового сигнала, требуя определенного значения отсечки напряжения.

Сводка

  • Диод образуется переходом n-p . Диод позволяет току двигаться только в одном направлении. В конфигурации диода с прямым смещением ток экспоненциально возрастает с увеличением напряжения.
  • Транзистор образуется переходом n-p-n . Транзистор — это электрический клапан, который регулирует ток в цепи.
  • Транзистор — важный компонент в усилителях звука, компьютерах и многих других устройствах.

Концептуальные вопросы

Когда соединяются материалы типа p и n , почему вблизи соединения возникает однородное электрическое поле?

Когда соединяются материалы типа p и n , почему слой истощения не растет бесконечно?

Электрическое поле, создаваемое открытыми ионами, уменьшает дальнейшую диффузию. В равновесии диффузионные и дрейфовые токи нейтрализуются, поэтому чистый ток равен нулю.Следовательно, сопротивление области истощения велико.

Как узнать, установлен ли диод в конфигурации с прямым смещением ?

Почему конфигурация обратного смещения приводит к очень малому току?

Положительный вывод применяется к стороне n , которая открывает больше ионов рядом с переходом (расширяет обедненный слой), увеличивает разность напряжений перехода и, следовательно, уменьшает диффузию дырок через переход.

Что происходит в крайнем случае, когда материалы типа n и p сильно легированы?

Объясните, как работает усилитель звука, используя концепцию транзистора.

Звук перемещает диафрагму внутрь и наружу, что изменяет входной или базовый ток транзисторной схемы. Транзистор усиливает этот сигнал (полупроводник p-n-p, ). Выходной или коллекторный ток управляет динамиком.

Проблемы

Покажите, что для V меньше нуля,

Диод p-n имеет обратный ток насыщения.Он смещен вперед, так что через него проходит ток. Какое напряжение смещения прикладывается при температуре 300 К?

Коллекторный ток транзистора составляет 3,4 А при базовом токе 4,2 мА. Какой сейчас прирост?

Если приложить положительный конец батареи к стороне p и отрицательный конец к стороне n перехода p-n , измеренный ток составит. Изменение полярности на обратное дает ток насыщения в обратном направлении.Какова температура, если напряжение смещения 1,2 В?

Базовый ток транзистора составляет 4,4 А, а его коэффициент усиления по току 1126. Что такое ток коллектора?

Глоссарий

усилитель
электрическое устройство, усиливающее электрический сигнал
базовый ток
ток, потребляемый от базы n материал типа в транзисторе
напряжение пробоя
в диоде, напряжение обратного смещения, необходимое для возникновения лавины тока
ток коллектора
ток от коллектора р материал типа
истощенный слой
Область
рядом с переходом p-n , который создает электрическое поле
конфигурация прямого смещения
Конфигурация диода
, которая приводит к сильному току
переходной транзистор
Электрический клапан
на основе разветвления p-n-p
p-n переход
Переход
, образованный соединением полупроводников типа p и n
конфигурация обратного смещения
Конфигурация диода
, которая приводит к низкому току

9.8: Полупроводниковые приборы — Физика LibreTexts

Полупроводники находят множество применений в современной электронике. В этом разделе мы описываем некоторые основные полупроводниковые устройства. Большим преимуществом использования полупроводников для элементов схем является тот факт, что многие тысячи или миллионы полупроводниковых устройств могут быть объединены на одном крошечном кусочке кремния и соединены токопроводящими дорожками. Полученная структура называется интегральной схемой (ИС), а микросхемы являются основой многих современных устройств, от компьютеров и смартфонов до Интернета и глобальных сетей связи.

Диоды

Пожалуй, самое простое устройство, которое можно создать из полупроводника, — это диод. Диод — это элемент схемы, который позволяет электрическому току течь только в одном направлении, как односторонний клапан (см. Модель проводимости в металлах). Диод создается путем соединения полупроводника типа p с полупроводником типа n (рисунок \ (\ PageIndex {1} \)). Соединение между этими материалами называется переходом p-n . Сравнение энергетических зон кремниевого диода показано на рисунке \ (\ PageIndex {1b} \).Положение валентной зоны и зоны проводимости одинаково, но уровни примесей совершенно разные. Когда образуется переход p-n , электроны из зоны проводимости материала типа n диффундируют к стороне p , где они соединяются с дырками в валентной зоне. Эта миграция заряда оставляет положительные ионизированные донорные ионы на стороне n и отрицательные ионизированные акцепторные ионы на стороне p , создавая узкий двойной слой заряда на стыке p n , называемый истощением . слой .Электрическое поле, связанное с обедненным слоем, предотвращает дальнейшую диффузию. Потенциальная энергия электронов на переходе p-n представлена ​​на рисунке \ (\ PageIndex {2} \).

Рисунок \ (\ PageIndex {1} \): (a) Изображение перехода p-n . (б) Сравнение энергетических зон кремния типа p и n до достижения равновесия.

Теперь можно понять поведение полупроводникового диода. Если положительная сторона батареи подключена к материалу типа n , слой обеднения расширяется, и разность потенциальной энергии на переходе p-n увеличивается.Немногие электроны (дырки) или ни один из них не обладают достаточной энергией, чтобы преодолеть потенциальный барьер, и ток значительно снижается. Это называется конфигурацией обратного смещения . С другой стороны, если положительная сторона батареи подключена к материалу типа p , слой истощения сужается, разность потенциальной энергии на переходе p-n уменьшается, и электроны (дырки) легко перемещаются. Это называется конфигурацией прямого смещения диода .В общем, диод позволяет току свободно течь в одном направлении, но предотвращает протекание тока в противоположном направлении. В этом смысле полупроводниковый диод представляет собой односторонний клапан.

Рисунок \ (\ PageIndex {2} \): в состоянии равновесия (а) избыточный заряд находится рядом с границей раздела, а общий ток равен нулю, и (б) разность потенциальной энергии для электронов (выделена голубым цветом) предотвращает дальнейшую диффузию электронов. в p — сторона.

Мы можем оценить математическую взаимосвязь между током и напряжением диода, используя концепцию электрического потенциала.{eV_b / k_BT} — 1 \ right). \]

Примерный график зависимости тока от напряжения смещения приведен на рисунке \ (\ PageIndex {3} \). В конфигурации прямого смещения небольшие изменения напряжения смещения приводят к большим изменениям тока. В конфигурации с обратным смещением ток равен \ (I_ {net} \ приблизительно -I_0 \). При экстремальных значениях обратного смещения атомы в материале ионизируются, что вызывает лавину тока. Этот случай имеет место при напряжении пробоя .

Рисунок \ (\ PageIndex {3} \): Зависимость тока от напряжения на переходе p-n (диод).{-5} эВ / K} \ left (\ dfrac {1} {19} \ right) = 73 \, K. \ nonumber \]

Значение

Ток, протекающий через диод в конфигурации прямого и обратного смещения, чувствителен к температуре диода. Если потенциальная энергия, поставляемая батареей, велика по сравнению с тепловой энергией окружающей среды диода, \ (k_BT \), то прямой ток смещения очень велик по сравнению с обратным током насыщения.

Упражнение \ (\ PageIndex {1} \)

Как величина прямого тока смещения соотносится с величиной тока обратного смещения?

Решение

Ток прямого смещения намного больше.В хорошем приближении диоды пропускают ток только в одном направлении.

Создайте переход p n и проследите за поведением простой схемы для прямого и обратного напряжения смещения. Посетите этот сайт, чтобы узнать больше о полупроводниковых диодах.

Переходный транзистор

Если диоды — это односторонние клапаны, транзисторы — это односторонние клапаны, которые можно осторожно открывать и закрывать для регулирования тока. Особый вид транзистора — это переходной транзистор.Переходный транзистор состоит из трех частей, включая полупроводник типа n , также называемый эмиттером; тонкий полупроводник типа p , являющийся базой; и еще один полупроводник типа n , называемый коллектором (рисунок \ (\ PageIndex {4} \)). Когда положительный вывод подключен к слою типа p (основание), небольшой ток электронов, называемый базовым током \ (I_B \), течет к выводу. Это заставляет большой ток коллектора \ (I_C \) течь через коллектор.Базовый ток можно регулировать для управления большим током коллектора. Таким образом, текущий прирост составляет

.

\ [I_c = \ beta I_B. \]

Рисунок \ (\ PageIndex {4} \): переходной транзистор состоит из трех частей: эмиттера, базы и коллектора. Напряжение, приложенное к базе, действует как клапан для управления электрическим током от эмиттера к коллектору.

Переходный транзистор может использоваться для усиления напряжения от микрофона для управления громкоговорителем. В этом приложении звуковые волны заставляют диафрагму внутри микрофона быстро двигаться внутрь и наружу (рисунок \ (\ PageIndex {5} \)).Когда диафрагма находится в положении «внутрь», к базе транзистора прикладывается крошечное положительное напряжение. Это открывает «клапан» транзистора и пропускает большой электрический ток в громкоговоритель. Когда диафрагма находится в выключенном положении, к базе транзистора прикладывается крошечное отрицательное напряжение, которое закрывает клапан транзистора, так что ток не течет в громкоговоритель. Это закрывает «вентиль» транзистора, поэтому ток не течет в громкоговоритель. Таким образом, ток в динамик контролируется звуковыми волнами, и звук усиливается.Любое электрическое устройство, усиливающее сигнал, называется усилителем .

Рисунок \ (\ PageIndex {5} \): аудиоусилитель на основе переходного транзистора. Напряжение, подаваемое микрофоном на базу, действует как клапан для управления большим электрическим током, который проходит через громкоговоритель.

В современных электронных устройствах цифровые сигналы используются с диодами и транзисторами для выполнения таких задач, как обработка данных. Электрические цепи передают два типа электрических сигналов: аналоговые и цифровые (рисунок \ (\ PageIndex {6} \)).Аналоговый сигнал непрерывно изменяется, тогда как цифровой сигнал переключается между двумя фиксированными значениями напряжения, такими как плюс 1 вольт и ноль вольт. В цифровых схемах, подобных тем, что используются в компьютерах, транзистор ведет себя как двухпозиционный переключатель. Транзистор либо включен, что означает, что клапан полностью открыт, либо он выключен, что означает, что клапан полностью закрыт. Интегральные схемы содержат обширные коллекции транзисторов на одном куске кремния.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *