Вихревые токи и потери на гистерезис
Вихревые токи, или токи Фуко — вихревой индукционный объёмный электрический ток, возникающий в электрических проводниках при изменении во времени потока действующего на них магнитного поля.
Во время перемагничивания магнитных материалов переменным магнитным полем, часть энергии магнитного поля, участвующего в процессе перемагничивания, теряется. На единицу массы определенного магнитного материала в форме тепла рассеивается определенная часть мощности, которую называют «удельные магнитные потери».
Удельные магнитные потери включают в себя динамические потери, а также потери на гистерезис. К динамическим потерям относятся потери, вызываемые вихревыми токами (индуцируемыми в материале) и магнитной вязкостью (так называемое магнитное последействие). Потери же на магнитный гистерезис объясняются необратимыми перемещениями границ доменов.
Каждому магнитному материалу соответствует своя величина потерь на гистерезис, пропорциональная частоте перемагничивающего магнитного поля, а также площади гистерезисной петли данного материала.
Петля гистерезиса:
Для нахождения мощности потерь связанных с гистерезисом в единице массы (в Вт/кг) используется следующая формула:
Для снижения гистерезисных потерь, чаще всего прибегают к применению таких магнитных материалов, коэрцитивная сила которых мала, то есть материалов с тонкой петлей гистерезиса. Такой материал отжигают, чтобы снять напряжения внутренней структуры, уменьшить количество дислокаций и иных дефектов, а также укрупнить зерно.
Вихревые токи также вызывают необратимые потери. Они связаны с тем, что перемагничивающее магнитное поле индуцирует ток внутри перемагничиваемого материала. Потери вызываемые вихревыми токами, соответственно, зависят от электрического сопротивления перемагничиваемого материала и от конфигурации магнитопровода.
Таким образом, чем значительнее удельное сопротивление (чем хуже проводимость) магнитного материала, тем меньшими окажутся потери, вызываемые вихревыми токами.
Потери на вихревые токи пропорциональны частоте перемагничивающего магнитного поля в квадрате, поэтому в устройствах работающих на достаточно высоких частотах неприменимы магнитопроводы из материалов с высокой электрической проводимостью.
Оценить мощность потерь на вихревые токи для единицы массы магнитного материала (в Вт/кг) можно воспользовавшись формулой:
Так как количественно потери на вихревые токи зависят от квадрата частоты, то для работы в области высоких частот необходимо прежде всего принимать во внимание потери именно на вихревые токи.
Для минимизации этих потерь стараются использовать магнитопроводы с более высоким электрическим сопротивлением.
Чтобы сопротивление увеличить, сердечники набирают из множества взаимно изолированных листов ферромагнитного материала с достаточно высоким собственным удельным электрическим сопротивлением.
Порошкообразный магнитный материал прессуют с диэлектриком, дабы частички магнитного материала оказались отделены друг от друга частичками диэлектрика. Так получают магнитодиэлектрики.
Еще вариант — применение ферритов — особой ферримагнитной керамики, отличающейся высоким удельным электрическим сопротивлением, близким к сопротивлению диэлектриков и полупроводников. Фактически ферриты являются твердыми растворами оксида железа с оксидами некоторых двухвалентных металлов, что можно описать обобщенной формулой:
С уменьшением толщины листа металлического материала, соответственно уменьшаются и потери вызываемые вихревыми токами. Но одновременно растут потери связанные с гистерезисом, ибо с утончением листа размер зерна также уменьшается, а значит растет коэрцитивная сила.
Практически с ростом частоты потери на вихревые токи увеличиваются сильнее нежели потери на гистерезис, в этом можно убедиться, сравнив две первые формулы. И на определенной частоте потери на вихревые токи начинают все более преобладать над потерями на гистерезис.
Это значит, что хотя толщина листа и зависит от рабочей частоты, тем не менее для каждой частоты должна быть подобрана определенная толщина листа, с которой будут минимизированы магнитные потери в целом.
Обычно магнитным материалам свойственно запаздывание изменения собственной магнитной индукции в зависимости от длительности действия перемагничивающего поля.
Данное явление вызывает потери, связанные с магнитным последействием (или так называемой магнитной вязкостью). Это связано с инерционностью процесса перемагничивания доменов. Чем короче длительность приложенного магнитного поля — тем длительнее запаздывание, а значит и магнитные потери, вызываемые «магнитной вязкостью», больше. Этот фактор необходимо учитывать при проектировании импульсных устройств с магнитными сердечниками.
Потери мощности от магнитного последействия невозможно рассчитать прямо, но их можно найти косвенно — как разность между полными удельными магнитными потерями и суммой потерь на вихревые токи и на магнитный гистерезис:
Итак, в процессе перемагничивания наблюдается некоторое отставание магнитной индукции от напряженности перемагничивающего магнитного поля по фазе. Причиной тому опять же вихревые токи, которые по закону Ленца препятствуют изменению магнитной индукции, гистерезисные явления и магнитное последействие.
Фазовый угол запаздывания называется углом магнитных потерь δм. В характеристиках динамических свойств магнитных материалов указывается такой параметр как тангенс угла магнитных потерь tgδм.
Здесь приведена схема замещения и векторная диаграмма для тороидальной катушки с сердечником из магнитного материала, где r1- эквивалентное сопротивление всех магнитных потерь:
Видно, что тангенс угла магнитных потерь обратно пропорционален добротности катушки. Возникающую при данных условиях индукцию Bm в перемагничиваемом материале можно разложить на две составляющие: первая — совпадает по фазе с напряженностью перемагничивающего поля, вторая — отстает от нее на 90 градусов.
Первая составляющая непосредственно связана с обратимыми процессами при перемагничивании, вторая — с необратимыми. Применяемые в цепях переменного тока, магнитные материалы характеризуются в связи с этим таким параметром как комплексная магнитная проницаемость:
Ранее ЭлектроВести писали, что две команды американских физиков разработали стратегию производства устройств для преобразования света в электричество с помощью органических полупроводников и «освобожденных» электронов.
По материалам: electrik.info.
Вихревые токи (токи Фуко): физический смысл, потери, применение
В электрических устройствах, приборах, машинах металлические детали способны иногда перемещаться, находясь в магнитном поле. При этом в них индуцируется ЭДС самоиндукции. В результате воздействия ЭДС в толще металлических деталей будут циркулировать вихревые В электрических устройствах, приборах, машинах металлические детали способны иногда перемещаться, находясь в магнитном поле. При этом в них индуцируется ЭДС самоиндукции. В результате воздействия ЭДС в толще металлических деталей будут циркулировать вихревые токи или их еще называют токи Фуко (по фамилии первого исследователя).
В свою очередь, вихревые токи индуцируют собственные магнитные потоки, замыкающиеся в проводнике, которые в соответствии с правилом Ленца препятствуют изменению магнитного потока прибора или устройства, тем самым ослабляя его.
Рассмотрим процесс формирования вихревых токов в металлическом сердечнике, помещенном в магнитное поле катушки, по которой протекает переменный ток. Вокруг катушки формируется переменный магнитный поток, пересекающий сердечник.
В сердечнике также будет индуцироваться ЭДС, вызывающая в нем так называемые вихревые токи, которые нагревают сердечник. Поскольку сопротивление сердечника незначительно, то наводимые индукционные токи могут быть достаточно большими, что приведет к сильному нагреву сердечника.
Первые исследования в области изучения вихревых токов были проведены в 1824 г. французким физиком Д.Ф. Араго, который обнаружил их наличие в медном диске, находящемся на оси под обращающейся магнитной стрелкой.
Под воздействием вихревых токов диск оборачивался.
Первые подробные исследования вихревых токов были проведены французским исследователем Фуко, и впоследствии по его имени они и получили свое название.
Методы уменьшения вихревых токов
Мощность, расходуемая на нагрев электротехнических устройств электромагнитного типа, значительно снижает их КПД. Поэтому с целью уменьшения величины вихревых токов повышают сопротивление магнитопровода.
Для этого сердечники выполняют не сплошными, а набирают из отдельных тонких пластин (толщиной 0,1- 0,5 мм), покрытым слоем изоляционного материала.
Также при изготовлении сердечника в сырье вводят специальные добавки, увеличивающие его сопротивление.
Практическое применение токов Фуко
В некоторых случаях вихревые токи используют в полезных целях. К примеру, создание устройства магнитного тормоза диска электросчетчика. Оборачиваясь, диск пересекает магнитные линии магнита, в толщине диска формируется вихревые токи, которые создают свои магнитные потоки, препятствующие вращению диска, и вызывающие его торможение.
Полезное действие вихревые токи оказывают при индукционной плавке металлов.
Для этого тигель с металлом размещают в магнитное поле, которое своим воздействием индуцирует вихревые токи, расплавляющие металл, при этом тигель остается холодным.
Что такое вихревые токи — Строительный журнал Palitrabazar.ru
Вихревые токи
В электрических аппаратах, приборах и машинах металлические детали иногда движутся в магнитном поле или неподвижные металлические детали пересекаются силовыми линиями меняющегося по величине магнитного поля. В этих металлических деталях индуктируется ЭДС самоиндукции.Под действием этих э. д. с. в массе металлической детали протекают вихревые токи (токи Фуко) , которые замыкаются в массе, образуя вихревые контуры токов.
Вихревыми токами (также токами Фуко) называются электрические токи, возникающие вследствие электромагнитной индукции в проводящей среде (обычно в металле) при изменении пронизывающего ее магнитного потока.
Вихревые токи порождают свои собственные магнитные потоки, которые, по правилу Ленца, противодействуют магнитному потоку катушки и ослабляют его. Кроме того, они вызывают нагрев сердечника, что является бесполезной тратой энергии.
Пусть имеется сердечник из металлического материала. Поместим на этот сердечник катушку, по которой пропустим переменный ток. Вокруг катушки окажется переменный магнитный ток, пересекающий сердечник. При этом в сердечнике станет наводиться индуцированная ЭДС, которая, в свою очередь, вызывает в сердечнике токи, называемые вихревыми. Эти вихревые токи нагревают сердечник. Так как электрическое сопротивление сердечника невелико, то наводимые в сердечниках индуцированные токи могут оказываться достаточно большими, а нагрев сердечника — значительным.
Впервые вихревые токи были обнаружены французским учёным Д.Ф. Араго (1786 — 1853) в 1824 г. в медном диске, расположенном на оси под вращающейся магнитной стрелкой. За счёт вихревых токов диск приходил во вращение. Это явление, названное явлением Араго, было объяснено несколько лет спустя M. Фарадеем с позиций открытого им закона электромагнитной индукции.
Вихревые токи были подробно исследованы французским физиком Фуко (1819 — 1868) и названы его именем. Он назвал явление нагревания металлических тел, вращаемых в магнитном поле, вихревыми токами.
В качестве примера на рис унке показаны вихревые токи, индуктируемые в массивном сердечнике, помещенном в катушку, обтекаемую переменным током. Переменное магнитное поле индуктирует токи, которые замыкаются по путям, лежащим в плоскостях, перпендикулярных направлению поля.
Вихревые токи: а — в массивном сердечнике, б — в пластинчатом сердечнике
Способы уменьшения токов Фуко
Мощность, затрачиваемая на нагрев сердечника вихревыми токами, бесполезно снижает КПД технических устройств электромагнитного типа.
Чтобы уменьшить мощность вихревых токов, увеличивают электрическое сопротивление магнитопровода, для этого сердечники набирают из отдельных тонких (0,1- 0,5 мм) пластин, изолированных друг от друга с помощью специального лака или окалины.
Магнитопроводы всех машин и аппаратов переменного тока и сердечники якорей машин постоянного тока собирают из изолированных друг от друга лаком или поверхностной непроводящей пленкой (фосфатированных) пластин, выштампованных из листовой электротехнической стали. Плоскость пластин должна быть параллельна направлению магнитного потока.
При таком делении сечения сердечника магнитопровода вихревые токи существенно ослабляются, так как уменьшаются магнитные потоки, которыми сцепляются контуры вихревых токов, а следовательно, понижаются и индуктируемые этими потоками э. д. с, создающие вихревые токи.
В материал сердечника также вводят специальные добавки, также увеличивающие его электрическое сопротивление. Для увеличения электрического сопротивления ферромагнетика электротехническую сталь приготовляют с присадкой кремния.
Сердечники некоторых катушек (бобин) набирают из кусков отожженной железной проволоки. Полоски железа располагают параллельно линиям магнитного потока. Вихревые же токи, протекающие в плоскостях, перпендикулярных направлению магнитного потока, ограничиваются изолирующими прокладками. Для магнитопроводов приборов и устройств, работающих на высокой частоте, применяют магнетодиэлектрики. Чтобы снизить вихревые токи в проводах, последние изготавливают в виде жгута из отдельных жил, изолированных друг от друга.
Лицендрат — это система переплетенных медных проводов, в которой каждая жила изолирована от соседних. Лицендрат предназначен для использования на высокочастотных токах для предотвращения возникновения паразитных токов и токов Фуко.
Применение токов Фуко
В ряде случаев вихревые токи используются в технике, например для торможения вращающихся массивных деталей. Электродвижущая сила, наводимая в элементах детали при пересечении магнитного поля, вызывает в ее толще замкнутые токи, которые, взаимодействуя с магнитным полем, создают значительные противодействующие моменты.
Широко применяется также такое магнитоиндукционное торможение для успокоения движения подвижных частей электроизмерительных приборов, в частности для создания противодействующего момента и торможения подвижной части электрических счетчиков.
В этих приборах диск, укрепленный на оси счетчика, вращается в зазоре постоянного магнита. Наводимые в массе диска при этом движении вихревые токи, взаимодействуя с потоком того же магнита, создают противодействующий и тормозящий моменты.
Например, вихревые токи нашли в устройстве магнитного тормоза диска электрического счетчика. Вращаясь, диск пересекает магнитные силовые линии постоянного магнита. В плоскости диска возникают вихревые токи, которые, в свою очередь, создают свои магнитные потоки в виде трубочек вокруг вихревого тока. Взаимодействуя с основным полем магнита, эти потоки тормозят диск.
В ряде случаев, применяя вихревые токи, можно использовать технологические операции, которые невозможно применить без токов высокой частоты. Например, при изготовления вакуумных приборов и устройств из баллона необходимо тщательно откачать воздух и иные газы. Однако в металлической арматуре, находящейся внутри баллона, имеются остатки газа, которые можно удалить только после заваривания баллона.
Для полного обезгаживания арматуры вакуумный прибор помещают в поле высокочастотного генератора, в результате действия вихревых токов арматура нагревается до сотен градусов, остатки газа при этом нейтрализуются.
Примером полезного применения вихревых токов, вызываемых переменным полем, могут служить электрические индукционные печи. В них магнитное поле высокой частоты, создаваемое обмоткой, которая окружает тигель, наводит вихревые токи в металле, находящемся в тигле. Энергия вихревых токов трансформируется в тепло, плавящее металл.
Вихревые токи
Детали из металла у автомобиля или разнообразных электрических устройствах, имеют способность двигаться в магнитном поле и пересекаться с силовыми линиями. Благодаря этому образовывается самоиндукция. Предлагаем рассмотреть аномальные вихревые токи фуко, потоки воздуха, их определение, применение, влияние и как уменьшить потери на вихревые токи в трансформаторе.
Из закона Фарадея следует, что изменение магнитного потока производит индуцированное электрическое поле даже в пустом пространстве.
Если металлическая пластина вставляется в это пространство, индуцированное электрическое поле приводит к появлению электрического тока в металле. Эти индуцированные токи называются вихревые токи.
Фото: Вихревые токиТоки Фуко – это потоки, индукция которых проводится в проводящих частях разнообразных электрических приборах и машинах, блуждающие токи Фуко особенно опасны для пропуска воды или газов, т.к. их направление невозможно контролировать в принципе.
Если индуцированные встречные токи создаются изменяющимся магнитным полем, то токи вихревые будут перпендикулярны к магнитному полю, и их движение будет производиться по кругу, если данное поле однородно. Эти индуцированные электрические поля очень сильно отличаются от электростатических электрических полей точечных зарядов.
Практическое применение вихревых токов
Вихревые токи полезны в промышленности для рассеивания нежелательной энергии, например у поворотного кронштейна механического баланса, особенно если сила тока очень высокая. Магнит в конце опоры настраивает вихревые токи в металлической пластине, прикрепленной к концу кронштейна, скажем, ansys.
Схема: вихревые токиВихревые потоки, как учит физика, могут быть также использованы в качестве эффективного тормозного усилия в двигателях транзитного поезда. Электромагнитные приспособления и механизмы на поезде около рельсов специально настроены для создания вихревых токов. Благодаря движению тока, получается плавный спуск системы и поезд останавливается.
Закрученные токи вредны в измерительных трансформаторах и для человека. Металлический сердечник используется в трансформаторе, чтобы увеличить поток. К сожалению, вихревые токи, полученные в якоре или сердечнике, могут увеличить потери энергии. Построив металлическую сердцевину чередующихся слоев из проводящих и не проводящих энергию, материалов, размер индуцированных петель уменьшается, таким образом, уменьшая потери энергии. Шум, который производит трансформатор при работе, является следствием именно такого конструктивного решения.
Видео: вихревые токи Фуко
Еще один интересный использования вихревой волны – применение их в электросчетчиках или медицине. В нижней части каждого счетчика расположен тонкий алюминиевый диск, который всегда вращается. Это диск движется в магнитном поле, так что там всегда есть вихревых токи, цель которых замедлить движения диска. Благодаря этому датчик работает точно и без перепадов.
Вихри и скин-эффект
В том случае, когда возникают очень сильные вихревые токи (при высокочастотном токе), в телах плотность тока становится значительно меньше, чем на их поверхностях. Это так называемый скин эффект, его методы используются для создания специальных покрытий для проводов и в трубах, которые разрабатываются специально для вихре-токов и тестируются в экстремальных условиях.
Это доказал еще ученый Эккерт, который исследовали ЭДС и трансформаторные установки.
Схема индукционного нагреваПринципы вихревых токов
Катушка из медной проволоки является распространенным методом для воспроизведения индукции вихревых токов. Переменный ток, проходящий через катушку, создает магнитное поле внутри и вокруг катушки. Магнитные поля образуют линии вокруг провода и соединяются, образуя более крупные петли. Если ток увеличивается в одной петле, магнитное поле будет расширяться через некоторые или все из петель проволоки, которые находятся в непосредственной близости. Это наводит напряжение в соседних петлях гистерезис, и вызывает поток электронов или вихревые токи, в электропроводящем материале. Любой дефект в материале, включая изменения в толщине стенки, трещин, и прочих разрывов, может изменить поток вихревых токов.
Закон Ома
Закон Ома является одним из самых основных формул для определения электрического потока. Напряжение, деленное на сопротивление, Ом, определяет электрический ток, в амперах. Нужно помнить, что формулы для расчета токов не существует, необходимо пользоваться примерами расчета магнитного поля.
Индуктивность
Переменный ток, проходящий через катушку, создает магнитное поле внутри и вокруг катушки. С увеличением тока, катушка индуцирует циркуляцию (вихревых) потоков в проводящем материале, расположенном рядом с катушкой. Амплитуда и фаза вихревых токов будет меняться в зависимости от загрузки катушки и ее сопротивления. Если поверхность или под поверхностью возникнет разрыв в электропроводном материале, поток вихревых токов будет прерван. Для его налаживания и контроля существуют специальные приборы с разной частотой каналов.
Магнитные поля
На фото показано, как вихревые электрические токи образуют магнитное поле в катушке. Катушки, в свою очередь, образуют вихревые токи в электропроводном материале, а также создавают свои собственные магнитные поля.
Магнитное поле вихревых токовДефектоскопия
Изменение напряжения на катушке будет влиять на материал, сканирование и исследование вихревых токов позволяет производить прибор для измерения поверхностных и подповерхностных разрывов. Несколько факторов будут влиять на то, какие недостатки могут быть обнаружены:
- Проводимость материала оказывает значительное воздействие на пути следования вихревых токов;
- Проницаемость проводящего материала также имеет огромное влияние из-за его способности быть намагниченным. Плоскую поверхность гораздо легче сканировать, чем неровную.
- Глубина проникновения имеет очень большое значение в контроле вихретоков. Поверхность трещины гораздо легче обнаружить, чем суб-поверхностного дефекта.
- Это же касается и площади поверхности. Чем меньше площадь – тем быстрее происходит образование вихревых токов.
Обнаружение контура дефектоскопом
Существуют сотни стандартных и специальных зондов, которые производятся для конкретных типов поверхностей и контуров. Края, канавки, контуры, и толщина металла вносят свой вклад в успех или провал испытаний. Катушка, которая расположена слишком близко к поверхности проводящего материала будет иметь наилучшие шансы на обнаружение разрывов. Для сложных контуров катушка вставляется в специальной блок и прикрепляется к арматуре, что позволяет пройти ток через неё и проконтролировать его состояние. Многие устройства требуют специальных формованных изделий зонда и катушки, чтобы приспособиться к неправильной форме детали. Катушка также может иметь специальную (универсальную) форму, чтобы соответствовать конструкции детали.
Уменьшаем вихревые токи
Для того чтобы уменьшить вихревые токи катушек индуктивности нужно увеличить сопротивление в этих механизмах. В частности рекомендуется использовать лицендрат и изолированные провода.
56. Вихревые токи (токи Фуко). Их применение.
Вихревые токиилитоки Фуко́(в честьЖ. Б. Л. Фуко) — вихревые индукционные токи, возникающие впроводникахпри изменении пронизывающего ихмагнитного потока.
Впервые вихревые токи были обнаружены французским учёным Д.Ф Араго(1786—1853) в 1824 г. в медном диске, расположенном на оси под вращающейся магнитной стрелкой. За счёт вихревых токов диск приходил во вращение. Это явление, названное явлением Араго, было объяснено несколько лет спустяM. Фарадеемс позиций открытого им закона электромагнитной индукции: вращаемое магнитное поле наводит в медном диске токи (вихревые), которые взаимодействуют с магнитной стрелкой. Вихревые токи были подробно исследованы французским физикомФуко(1819—1868) и названы его именем. Он открыл явление нагревания металлических тел, вращаемых в магнитном поле, вихревыми токами.
Токи Фуко возникают под воздействием переменного электромагнитного поляи по физической природе ничем не отличаются от индукционных токов, возникающих в линейных проводах. Они вихревые, то есть замкнуты в кольца. Электрическое сопротивление массивного проводника мало, поэтому токи Фуко достигают очень большой силы. В соответствии справилом Ленцаони выбирают внутри проводника такое направление и путь, чтобы противиться причине, вызывающей их. Поэтому движущиеся в сильном магнитном поле хорошие проводники испытывают сильное торможение, обусловленное взаимодействием токов Фуко с магнитным полем. Это свойство используется длядемпфированияподвижных частей гальванометров, сейсмографов и др.
Тепловое действие токов Фуко используется в индукционных печах— в катушку, питаемую высокочастотным генератором большой мощности, помещают проводящее тело, в нем возникают вихревые токи, разогревающие его до плавления.
С помощью токов Фуко осуществляется прогрев металлических частей вакуумных установок для их дегазации.
Во многих случаях токи Фуко могут быть нежелательными. Для борьбы с ними принимаются специальные меры: с целью предотвращения потерь энергии на нагревание сердечников трансформаторов, эти сердечники набирают из тонких пластин, разделённых изолирующими прослойками. Появлениеферритовсделало возможным изготовление этих проводников сплошными.
57. Самоиндукция — явление возникновения ЭДС индукции в проводящем контуре при изменении протекающего через контур тока. При изменении тока в контуре меняется поток магнитной индукции через поверхность, ограниченную этим контуром, в результате чего в нём возбуждается ЭДС самоиндукции. Направление ЭДС оказывается таким, что при увеличении тока в цепи эдс препятствует возрастанию тока, а при уменьшении тока — убыванию. Величина ЭДС пропорциональна скорости изменения силы тока I и индуктивности контура L:
За счёт явления самоиндукции в электрической цепи с источником ЭДС при замыкании цепи ток устанавливается не мгновенно, а через какое-то время. Аналогичные процессы происходят и при размыкании цепи, при этом величина ЭДС самоиндукции может значительно превышать ЭДС источника. Чаще всего в обычной жизни это используется в катушках зажигания автомобилей. Типичное напряжение самоиндукции при напряжении питающей батареи 12В составляет 7-25кВ.
При всяком изменении силы тока в проводящем контуре возникает ЭДС самоиндукции, в результате чего в контуре появляются дополнительные токи, называемые экстратоками самоиндукции. Экстратоки самоиндукции, согласно правилу Ленца, всегда направлены так, чтобы препятствовать изменениям тока в цепи, т.е. направлены противоположно току, создаваемому источником. При выключении источника тока экстратоки имеют такое же направление, что и ослабевающий ток. Следовательно, наличие индуктивности в цепи приводит к замедлению исчезнования или установления тока в цепи.
Что такое вихревые токи и какие меры принимают для их уменьшения
Краткое определение
Вихревые токи — это токи, которые протекают в проводниках под воздействием на них переменного магнитного поля. Не обязательно поле должно изменяться, может и тело двигаться в магнитном поле, все равно в нем начнёт течь ток.
Нельзя найти реальную траекторию движения токов для их учёта, ток протекает там, где находит путь с наименьшим сопротивлением. Вихревые токи всегда протекают по замкнутому контуру. Основные условия для его возникновения — нахождение предмета в переменном магнитном поле или его перемещение относительно поля.
История открытия
В 1824 году учёный Д.Ф. Араго проводил эксперимент. Он на одной оси смонтировал медный диск, над ним расположил магнитную стрелку. При вращении магнитной стрелки диск начинал двигаться. Так впервые наблюдали явление вихревых токов. Диск начинал вращаться из-за того, что из-за протекания токов появлялось магнитное поле, которое взаимодействовало со стрелкой. Это назвали, тогда как явление Араго.
Спустя пару лет М. Фарадей, открывший закон электромагнитной индукции, объяснял это явление таким образом: подвижное магнитное поле наводит в диске ток (как в замкнутом контуре) и он взаимодействует с полем стрелки.
Почему второе название — это токи Фуко? Потому что физик Фуко подробно исследовал явление вихревых токов. В ходе своих исследований он сделал великое открытие. Оно заключалось в том, что тела под воздействием вихревых токов нагреваются. С теорией разобрались, теперь мы расскажем о том, где применяются токи Фуко и какие вызывают проблемы.
На видео ниже предоставлено более подробное определение данного явления:
Вред от вихревых токов
Если вы рассматривали конструкцию сетевого трансформатора 50 Гц, наверняка обратили внимание, что его сердечник набран из тонких листов, хотя может показаться что проще было сделать цельную литую конструкцию.
Дело в том, что так борются с вихревыми токами. Фуко установил нагрев тел, в которых они протекают. Так как работа трансформатора и основана на принципах взаимодействия переменных магнитных полей, то вихревые токи неизбежны.
Любой нагрев тел – это выделение энергии в виде тепла. В таком случае будут возникать потери в сердечнике. Чем это опасно? В электроустановке сильный нагрев приводит к разрушению изоляции обмоток и выходу из строя машины. Вихревые токи зависят от магнитных свойств сердечника.
Как снизить потери
Потери энергии в магнитопроводе не приносят пользы, тогда как с ними бороться? Чтобы снизить их величину сердечник набирают из тонких пластин электротехнической стали — это своеобразные меры профилактики для снижения паразитных токов. Такие потери описывает формула, по которой можно произвести расчет:
Как известно: чем меньше сечение проводника, тем больше его сопротивление, а чем больше его сопротивление, тем меньше ток. Пластины изолируют друг от друга окалиной или слоем лака. Сердечники крупных трансформаторов стягиваются изолированной шпилькой. Так снижают потери сердечника, т.е. это и есть основные способы уменьшения токов Фуко.
Какие последствия от влияния этого явления? Магнитное поле, возникающее из-за протекания токов Фуко ослабляет поле, из-за которого они возникли. То есть вихревые токи уменьшают силу электромагнитов. То же самое касается и конструкции деталей электродвигателей и генератора: ротора и статора.
Применение на практике
Теперь о полезных сферах применения токов Фуко. Огромный вклад был внесен в металлургию изобретением индукционных сталеплавильных печей. Они устроены таким образом, что расплавляемую массу металла помещают внутри катушки, через которую протекает ток высокой частоты. Его магнитное поле наводит большие токи внутри металла до его полного плавления.
Примечание автора! Развитие индукционных печей значительно повысило экологичность производства металла и изменило представление о методах плавки. Я работаю на металлургическом комбинате, где десять лет назад запустили новый высокотехнологичный цех с такими установками, а спустя несколько лет после освоения нового оборудования был закрыт классический мартен. Это говорит о продуктивности такого способа нагрева металлов. Также используются вихревые токи для поверхностной закалки металла.
Наглядное применение на практике:
Кроме металлургии они используются на производстве электровакуумных приборов. Проблемой является полное удаление газов перед герметизацией колбы. С помощью токов Фуко электроды лампы разогревают до высоких температур, таким способом деактивируя газ.
В быту вы можете встретить кухонные индукционные плиты, на которых готовят пищу, благодаря как раз применению данного явления. Как видите, вихревые токи имеют свои плюсы и минусы.
Токи Фуко несут и пользу, и вред. В некоторых случаях их влияние влечёт за собой не электрические проблемы. Например, трубопровод, проложенный около кабельных линий, быстрее сгнивает без видимых сторонних причин. В то же время устройства индукционного нагрева довольно показали себя с хорошей стороны, тем более такой прибор для бытового использования можно собрать самому. Надеемся, теперь вы знаете, что такое вихревые токи Фуко, а также какое применение нашлось им на производстве и в быту.
Материалы по теме:
Токи фуко — справочник студента
Каждый человек, который изучает электродинамику и другие разделы науки об электричестве, сталкивается с таким понятием, как вихревые токи. Что это такое, какие есть свойства вихревых токов, как определить их в трансформаторе? Об этом и другом далее.
Суть явления
Вихревые или токи фуко — это те, которые протекают из-за воздействия переменного магнитного поля. При этом изменяется не само поле, а проводниковое положение данного поля. То есть если будет происходить проводниковое перемещение статичного поля, то в нем все равно будет образовываться энергия.
Узнай стоимость своей работы
Бесплатная оценка заказа!
Токи Фуко
Фуко возникают там, где изменяется переменное магнитное поля и фактически они ничем не отличаются от энергии, идущей по проводам, или вторичных электрических трансформаторных обмотков.
Определение из учебного пособия
Свойства вихревых токов
Стоит отметить, что вихревая энергия не отличается от индукционной проводной. По направлению и силе Фуко зависит от металлического проводникового элемента, от того, в каком направлении идет переменный магнитный поток, какие имеет свойства металл и как изменяется магнитный поток. При этом токовое распределение очень сложное.
В проводниковых объектах, имеющих габаритные объемы, токи бывают большими, из-за чего значительно повышается температура тела.
Токовая энергия способна создавать нагревание проводника для индукционной печи и металлического плавления. Подобно другим индукционным разновидностям, Фуко взаимодействуют с первичным магнитным полем и тормозят индуктивное движение.
Узнай стоимость своей работы
Бесплатная оценка заказа!
Нагревание как одно из свойств
Полезное и вредное действие
Имеют токи фуко полезное и вредное действие. Они нагревают и плавят металлы в области вакуума и демпфера, но в то же время происходят энергопотери в области трансформаторных сердечников и генераторов из-за того, что выделяется большое количество тепла.
Полезное действие индукционных токов
Как определить в трансформаторе
Узнать, где находятся вихревые токи в трансформаторе, несложно. Как правило, они располагаются в трансформаторных сердечниках. Когда замыкаются в сердечниках, то нагревают их и создают энергию. Поскольку появляются в плоскостях, которые перпендикулярны магнитному потоку по характеристике, происходит трансформаторное уменьшение сердечников.
Определение в трансформаторе
Применение
Нашли вихревые токи применение в электромагнитной индукции. Они используются для того, чтобы тормозить вращающиеся массивные детали. Благодаря магнитоиндукционному торможению они также применяются, чтобы успокоить подвижные части электроизмерительных приборов, в частности, чтобы создать противодействующий момент и притормозить подвижную часть электросчетчиков.
Также используются они в магнитном тормозном диске на электрическом счетчике. В ряде случаев применяются в технологических операциях, которые невозможны без применения высоких частот. К примеру, при откачке воздуха из вакуумных приборов и баллонов с газом. Кроме того, они нужны, чтобы полностью обезгаживать арматуру в высокочастотном генераторе.
Применение в проводниках
Способы уменьшения блуждающих токов
Чтобы уменьшить блуждающие фуковые токи, нужно максимальным образом сделать увеличение сопротивления на токовом пути с помощью заполнения дистиллированной водой циркуляционной системы и встраивания изоляционных шлангов трубопроводов у теплового обменника и вентиля.
Стоит отметить, что нахождение их в электромашинах нежелательно из-за нагрева сердечников и создания энергопотери, поскольку по закону Леннца они размагничивают эти устройства. Чтобы уменьшить их вредное воздействие, используется несколько методов.
Так сердечники машин делают из стали и изолируют друг от друга при помощи лаковой пленки, окалины и прочих материалов. Благодаря этому они не распространяются. Кроме того, поперечный вид сечения на каждом отдельном проводнике уменьшает токовую силу.
В некоторых приборах в качестве сердечников используются катушки с отожженой железной проволокой. При этом полоски на них идут параллельно тем линиям, которые расположены на магнитном потоке.
Обратите внимание! Ограничение вихревой энергии происходит изолирующими прокладками, то есть жгуты состоят из отдельных жил, изолированных между собой.
Уменьшение токовой силы
Возможные проблемы
Вихревые виды проводят энергию и рассеивают ее, выделяя джоулевую теплоту. Такая энергия ротора асинхронной двигательной установки готовится из фурромагнетиков и способствует нагреву сердечников.
Чтобы бороться с подобным явлением, сердечники создаются из тонкой стали, покрываются изоляцией и устанавливаются поперек пластин. Если пластины имеют небольшую толщину, они обладают малой объемной плотностью. Благодаря ферритам и веществам, имеющим большое магнитосопротивление, сердечники делаются сплошными. Направление их ослабляет энергию внутри провода.
В результате он неравномерный. Это явление скин-эффекта или поверхностного эффекта, из-за которого внутренний проводник бесполезен, и в цепях, где есть большая частота, используются проводниковые трубки.
Обратите внимание! Скин-эффект применяется для того, чтобы разогревать поверхностный металл для металлической закалки. При этом закалка может быть проведена на любой глубине.
Проблемы, вызванные индукционными токами
Фуко являются индукционными токами, которые возникают в крупных проводниках сплошного типа. Обозначаются буквой ф. Они имеют свойство нагрева проводников.
В результате чего они чаще используются в индукционного типа печах. Важно отметить, что способны генерировать магнитное поле. В этом механизм их работы. В некоторых случаях они полезны, в других нежелательны.
В любом случае они используются во многих устройствах.
Источник: https://rusenergetics.ru/ustroistvo/toki-fuko
Вихревые токи Фуко: причины возникновения и применение
В электричестве есть целый ряд явлений, которые нужно знать специалистам. Хоть и не вся информация может пригодиться в повседневной практике, но иногда поможет понять причину какой либо проблемы.
Вихревые токи послужили причиной становления некоторых технологических ухищрений при изготовлении электрических машин и даже стали основой для принципа работы некоторых изобретений.
Давайте разберемся, что такое вихревые токи Фуко и как они возникают.
Краткое определение
Вихревые токи — это токи, которые протекают в проводниках под воздействием на них переменного магнитного поля. Не обязательно поле должно изменяться, может и тело двигаться в магнитном поле, все равно в нем начнёт течь ток.
Нельзя найти реальную траекторию движения токов для их учёта, ток протекает там, где находит путь с наименьшим сопротивлением. Вихревые токи всегда протекают по замкнутому контуру. Основные условия для его возникновения — нахождение предмета в переменном магнитном поле или его перемещение относительно поля.
История открытия
В 1824 году учёный Д.Ф. Араго проводил эксперимент. Он на одной оси смонтировал медный диск, над ним расположил магнитную стрелку. При вращении магнитной стрелки диск начинал двигаться.
Так впервые наблюдали явление вихревых токов. Диск начинал вращаться из-за того, что из-за протекания токов появлялось магнитное поле, которое взаимодействовало со стрелкой.
Это назвали, тогда как явление Араго.
Спустя пару лет М. Фарадей, открывший закон электромагнитной индукции, объяснял это явление таким образом: подвижное магнитное поле наводит в диске ток (как в замкнутом контуре) и он взаимодействует с полем стрелки.
Почему второе название — это токи Фуко? Потому что физик Фуко подробно исследовал явление вихревых токов. В ходе своих исследований он сделал великое открытие. Оно заключалось в том, что тела под воздействием вихревых токов нагреваются. С теорией разобрались, теперь мы расскажем о том, где применяются токи Фуко и какие вызывают проблемы.
На видео ниже предоставлено более подробное определение данного явления:
Как провести проводку в доме из СИП-панелей?
Вред от вихревых токов
Если вы рассматривали конструкцию сетевого трансформатора 50 Гц, наверняка обратили внимание, что его сердечник набран из тонких листов, хотя может показаться что проще было сделать цельную литую конструкцию.
Дело в том, что так борются с вихревыми токами. Фуко установил нагрев тел, в которых они протекают. Так как работа трансформатора и основана на принципах взаимодействия переменных магнитных полей, то вихревые токи неизбежны.
Любой нагрев тел – это выделение энергии в виде тепла. В таком случае будут возникать потери в сердечнике. Чем это опасно? В электроустановке сильный нагрев приводит к разрушению изоляции обмоток и выходу из строя машины. Вихревые токи зависят от магнитных свойств сердечника.
Как снизить потери
Потери энергии в магнитопроводе не приносят пользы, тогда как с ними бороться? Чтобы снизить их величину сердечник набирают из тонких пластин электротехнической стали — это своеобразные меры профилактики для снижения паразитных токов. Такие потери описывает формула, по которой можно произвести расчет:
Как известно: чем меньше сечение проводника, тем больше его сопротивление, а чем больше его сопротивление, тем меньше ток. Пластины изолируют друг от друга окалиной или слоем лака. Сердечники крупных трансформаторов стягиваются изолированной шпилькой. Так снижают потери сердечника, т.е. это и есть основные способы уменьшения токов Фуко.
Какие последствия от влияния этого явления? Магнитное поле, возникающее из-за протекания токов Фуко ослабляет поле, из-за которого они возникли. То есть вихревые токи уменьшают силу электромагнитов. То же самое касается и конструкции деталей электродвигателей и генератора: ротора и статора.
Применение на практике
Теперь о полезных сферах применения токов Фуко. Огромный вклад был внесен в металлургию изобретением индукционных сталеплавильных печей. Они устроены таким образом, что расплавляемую массу металла помещают внутри катушки, через которую протекает ток высокой частоты. Его магнитное поле наводит большие токи внутри металла до его полного плавления.
Уникальный дом в виде сапога
Примечание автора! Развитие индукционных печей значительно повысило экологичность производства металла и изменило представление о методах плавки.
Я работаю на металлургическом комбинате, где десять лет назад запустили новый высокотехнологичный цех с такими установками, а спустя несколько лет после освоения нового оборудования был закрыт классический мартен.
Это говорит о продуктивности такого способа нагрева металлов. Также используются вихревые токи для поверхностной закалки металла.
Наглядное применение на практике:
Кроме металлургии они используются на производстве электровакуумных приборов. Проблемой является полное удаление газов перед герметизацией колбы. С помощью токов Фуко электроды лампы разогревают до высоких температур, таким способом деактивируя газ.
В быту вы можете встретить кухонные индукционные плиты, на которых готовят пищу, благодаря как раз применению данного явления. Как видите, вихревые токи имеют свои плюсы и минусы.
Токи Фуко несут и пользу, и вред. В некоторых случаях их влияние влечёт за собой не электрические проблемы. Например, трубопровод, проложенный около кабельных линий, быстрее сгнивает без видимых сторонних причин.
В то же время устройства индукционного нагрева довольно показали себя с хорошей стороны, тем более такой прибор для бытового использования можно собрать самому.
Надеемся, теперь вы знаете, что такое вихревые токи Фуко, а также какое применение нашлось им на производстве и в быту.
Источник: https://www.remontostroitel.ru/vihrevye-toki-fuko-prichiny-vozniknoveniya-i-primenenie.html
Вихревые токи: физический смысл, потери, поле, применение
В свою очередь, вихревые токи индуцируют собственные магнитные потоки, замыкающиеся в проводнике, которые в соответствии с правилом Ленца препятствуют изменению магнитного потока прибора или устройства, тем самым ослабляя его.
Рассмотрим процесс формирования вихревых токов в металлическом сердечнике, помещенном в магнитное поле катушки, по которой протекает переменный ток. Вокруг катушки формируется переменный магнитный поток, пересекающий сердечник.
В сердечнике также будет индуцироваться ЭДС, вызывающая в нем так называемые вихревые токи, которые нагревают сердечник. Поскольку сопротивление сердечника незначительно, то наводимые индукционные токи могут быть достаточно большими, что приведет к сильному нагреву сердечника.
Первые исследования в области изучения вихревых токов были проведены в 1824 г. французким физиком Д.Ф. Араго, который обнаружил их наличие в медном диске, находящемся на оси под обращающейся магнитной стрелкой.
Под воздействием вихревых токов диск оборачивался.
Первые подробные исследования вихревых токов были проведены французским исследователем Фуко, и впоследствии по его имени они и получили свое название.
Методы уменьшения вихревых токов
Мощность, расходуемая на нагрев электротехнических устройств электромагнитного типа, значительно снижает их КПД. Поэтому с целью уменьшения величины вихревых токов повышают сопротивление магнитопровода.
Для этого сердечники выполняют не сплошными, а набирают из отдельных тонких пластин (толщиной 0,1- 0,5 мм), покрытым слоем изоляционного материала.
Также при изготовлении сердечника в сырье вводят специальные добавки, увеличивающие его сопротивление.
Практическое применение токов Фуко
В некоторых случаях вихревые токи используют в полезных целях. К примеру, создание устройства магнитного тормоза диска электросчетчика. Оборачиваясь, диск пересекает магнитные линии магнита, в толщине диска формируется вихревые токи, которые создают свои магнитные потоки, препятствующие вращению диска, и вызывающие его торможение.
Полезное действие вихревые токи оказывают при индукционной плавке металлов.
Для этого тигель с металлом размещают в магнитное поле, которое своим воздействием индуцирует вихревые токи, расплавляющие металл, при этом тигель остается холодным.
Источник: https://pue8.ru/elektrotekhnik/592-vikhrevye-toki.html
Вихревые токи Фуко
В некоторых случаях движение металлических деталей в электрических машинах и устройствах происходит через магнитные поля.
В других ситуациях возможны пересечения неподвижных металлических элементов с силовыми линиями магнитного поля, изменяющегося по величине. В результате, внутри металлических деталей происходит индуктирование ЭДС самоиндукции.
Под влиянием ЭДС в них образуются вихревые токи Фуко, замыкающиеся в массе и вызывающие образование вихревых токовых контуров.
Физические свойства и определение токов Фуко
К вихревым токам относятся электрические токи, которые возникают под влиянием электромагнитной индукции, появляющейся в металлической или другой проводящей среде. Эта индукция появляется под воздействием изменяющегося магнитного потока.
В свою очередь вихревые токи способствуют появлению собственных магнитных потоков. В соответствии с законом Ленца, они оказывают противодействие магнитному потоку катушки и делают его слабее. Это приводит к нагреву сердечника и бесполезным тратам электрической энергии. Данный процесс можно рассмотреть подробнее на примере металлического сердечника. На него помещается катушка, с пропущенным переменным током. Вокруг катушки происходит образование переменного магнитного тока, пересекающего сердечник. Одновременно в нем наводится индуцированная электродвижущая сила, вызывающая, в свою очередь, вихревые токи. Их действие вызывает нагревание сердечника. При незначительном сопротивлении сердечника, наведенные токи могут иметь довольно большое значение и привести к существенному нагреву.
Как уменьшить действие токов Фуко
Действие вихревых токов необходимо снизить, поскольку мощности, бесполезно расходуемые для нагрева сердечника, приводят к снижению КПД электромагнитных устройств.
С целью уменьшения этой мощности, в магнитопроводе необходимо увеличить сопротивление. Поэтому для набора сердечников используются отдельные тонкие пластины, толщиной от 0,1 до 0,5 мм.
Изоляция пластин между собой осуществляется специальными лаками или окалиной.
Короткое замыкание: формула для расчета
Набор магнитопроводов для всей аппаратуры переменного тока и сердечников для устройств постоянного тока также осуществляется из пластин, изолированных между собой. Для их изготовления применяется штампованная листовая электротехническая сталь. Плоскости пластин размещаются параллельно с направлением магнитного потока. Таким образом, сечение сердечника оказывается разделенным, что приводит к ослаблению и уменьшению магнитных потоков. Соответственно, наблюдается снижение ЭДС, индуктируемых этими потоками. Именно они способствуют появлению вихревых токов. Практикуется ввод в материал сердечника специальных добавок, способствующих росту его электрического сопротивления.
В некоторых конструкциях катушек для набора сердечников используется отожженная железная проволока. Расположение железных полосок осуществляется параллельно с линиями магнитного потока.
Ограничение вихревых токов, протекающих в перпендикулярных плоскостях с магнитным потоком, выполняется с помощью изолирующих прокладок.
Снижение токов Фуко в проводах происходит следующим образом: в состав жгутов входят отдельные жилы, изолированные между собой.
Использование вихревых токов
Несмотря на большое количество отрицательных моментов, токи Фуко нашли свое применение в различных областях. Например, они успешно используются в электрических счетчиках как магнитный тормоз диска.
Токи Фуко применяются во многих технологических операциях, связанных с токами высокой частоты. Без них не обходится изготовление вакуумных устройств и приборов, где требуется тщательная откачка воздуха и газов.
Металлическая арматура, помещенная внутрь баллона, содержит остатки газа, удаляющиеся только после заваривания колбы. Полное удаление газов производится высокочастотным генератором, в поле которого помещается прибор.
Источник: https://electric-220.ru/news/vikhrevye_toki_fuko/2016-06-13-975
Исследование токов Фуко
Исследование токов Фуко ( Сорокин Антон, МОУ СОШ № 11 г. Ейска, Краснодарский край. Руководитель: Семке А.И.)
Вихревые токи, токи Фуко (в честь Фуко, Жан Бернар Леон) – вихревые индукционные токи, возникающие в массивных проводниках при изменении пронизывающего их магнитного потока.
Впервые вихревые токи были обнаружены французским учёным Д.Ф Араго (1786 — 1853) в 1824 г. в медном диске, расположенном на оси под вращающейся магнитной стрелкой. За счёт вихревых токов диск приходил во вращение. Это явление, названное явлением Араго, было объяснено несколько лет спустя M.
Фарадеем с позиций открытого им закона электромагнитной индукции: вращаемое магнитное поле наводит в медном диске токи (вихревые), которые взаимодействуют с магнитной стрелкой. Вихревые токи были подробно исследованы французским физиком Фуко (1819—1868) и названы его именем.
Он открыл явление нагревания металлических тел, вращаемых в магнитном поле, вихревыми токами.
Токи Фуко возникают под воздействием переменного электромагнитного поля и по физической природе ничем не отличаются от индукционных токов, возникающих в линейных проводах. Они вихревые, то есть, замкнуты в кольца. Электрическое сопротивление массивного проводника мало, поэтому токи Фуко достигают очень большой силы.
В соответствии с правилом Ленца они выбирают внутри проводника такое направление и путь, чтобы противиться причине, вызывающей их. Поэтому движущиеся в сильном магнитном поле хорошие проводники испытывают сильное торможение, обусловленное взаимодействием токов Фуко с магнитным полем.
Это свойство используется для демпфирования подвижных частей гальванометров, сейсмографов и др.
Под действием этих ЭДС в массе металлической детали протекают вихревые токи (токи Фуко), которые замыкаются в массе, образуя вихревые контуры токов. Вихревые токи порождают свои собственные магнитные потоки, которые, по правилу Ленца, противодействуют магнитному потоку катушки и ослабляют его. Кроме того, они вызывают нагрев сердечника, что является бесполезной тратой энергии.
- Объект исследования: электрические токи в сплошных средах
- Предмет исследования: эффекты, возникающие при порождении токов Фуко
- Цель работы: Исследовать эффекты, возникающие при порождении токов Фуко в сплошных средах
- Задачи исследования:
1. Изучить имеющиеся информационные, научные и электронные источники информации по данной теме исследования.
2. Изготовить физический маятник.
3. Провести измерения силы сопротивления при колебаниях физического маятника в обычных условиях и при возникновении токов Фуко.
Гипотеза исследования: энергия магнитного поля, порождаемого токами Фуко, зависит от толщины медных пластин
Результаты исследования. В ходе проведенного исследования мы обнаружили, что число затухающих колебаний зависит от значения тока Фуко и магнитного поля, его порождающего.
При увеличении толщины медных пластин число колебаний уменьшается. При толщине медных пластин равной 6 мм число колебаний стало равным 1.
Результаты данного исследования, возможно, использовать для проектирования тормозных устройств подъемных кранов, эскалаторов, вагонеток в промышленности и транспорте.
Энергия магнитного поля, порождаемого токами Фуко, зависит от толщины медных пластин. С увеличением числа медных пластин, а, следовательно, толщины меди, энергия магнитного поля, порождаемого токами Фуко, увеличилась.
Cиловое действие токов Фуко можно использовать в успокоителях колебаний подвижных частей приборов и аппаратов, в индукционных тормозах (в которых массивный металлический диск вращается в поле электромагнитов).
См. также
Учебное оборудование, производимое и поставляемое ЗАО «Крисмас+» для исследования физических и физико-химических параметров состояния окружающей среды
Путеводитель по выбору оборудования для учебно-исследовательских работ
Источник: https://u-center.info/libraryschoolboy/researchphysical/toki-fuko
Токи Фуко
Токи Фуко (в честь Фуко, Жан Бернар Леон) — это вихревые замкнутые электрические токи в массивном проводнике, которые возникают при изменении пронизывающего его магнитного потока.
Вихревые токи являются индукционными токами и образуются в проводящем теле либо вследствие изменения во времени магнитного поля, в котором находится тело, либо вследствие движения тела в магнитном поле, приводящего к изменению магнитного потока через тело или какую-либо его часть. Величина токов Фуко тем больше, чем быстрее меняется магнитный поток.
В отличие от электрического тока в проводах, текущего по точно определённым путям, Вихревые токи замыкаются непосредственно в проводящей массе, образуя вихреобразные контуры.
Эти контуры тока взаимодействуют с породившим их магнитным потоком.
Согласно правилу Ленца, магнитное поле вихревых токов направлено так, чтобы противодействовать изменению магнитного потока, индуцирующего эти вихревые токи.
Если медную пластину отклонить от положения равновесия и отпустить так, чтобы она вошла со скоростью ? в пространство между полосами магнита, то пластина практически остановится в момент ее вхождения в магнитное поле
Замедление движения связано с возбуждением в пластине вихревых токов, препятствующих изменению потока вектора магнитной индукции. Поскольку пластина обладает конечным сопротивлением, токи индукции постепенно затухают и пластина медленно двигается в магнитном поле. Если электромагнит отключить, то медная пластина будет совершать обычные колебания, характерные для маятника.
Вихревые токи приводят к неравномерному распределению магнитного потока по сечению магнитопровода.
Это объясняется тем, что в центре сечения магнитопровода намагничивающая сила вихревых токов, направленная навстречу основному потоку, является наибольшей, так как эта часть сечения охватывается наибольшим числом контуров вихревых токов.
Такое «вытеснение» потока из середины сечения магнитопровода выражено тем резче, чем выше частота переменного тока и чем больше Магнитная проницаемость ферромагнетика. При высоких частотах поток проходит лишь в тонком поверхностном слое сердечника.
Это вызывает уменьшение кажущейся (средней по сечению) магнитной проницаемости. Явление вытеснения из ферромагнетика магнитного потока, изменяющегося с большой частотой, аналогично электрическому Скин-эффекту и называемому магнитным скин-эффектом.
В соответствии с законом Джоуля — Ленца вихревые токи нагревают проводники, в которых они возникли. Поэтому вихревые токи приводят к потерям энергии (потери на вихревые токи) в магнитопроводах (в сердечниках трансформаторов и катушек переменного тока, в магнитных цепях машин).
Для уменьшения потерь энергии на вихревые токи (и вредного нагрева магнитопроводов) и уменьшения эффекта «вытеснения» магнитного потока из ферромагнетиков магнитопроводы машин и аппаратов переменного тока делают не из сплошного куска ферромагнетика (электротехнической стали), а из отдельных пластин, изолированных друг от друга.
Такое деление на пластины, расположенные перпендикулярно направлению вихревых токов, ограничивает возможные контуры путей вихревого тока, что сильно уменьшает величину этих токов.
При очень высоких частотах применение ферромагнетиков для магнитопроводов нецелесообразно; в этих случаях их делают из магнитодиэлектриков, в которых вихревые токи практически не возникают из-за очень большого сопротивления этих материалов.
При движении проводящего тела в магнитном поле индуцированные вихревые токи обусловливают заметное механическое взаимодействие тела с полем.
На этом принципе основано, например, торможение подвижной системы в счётчиках электрической энергии, в которых алюминиевый диск вращается в поле постоянного магнита.
В машинах переменного тока с вращающимся полем сплошной металлический ротор увлекается полем из-за возникающих в нём вихревых токов. Взаимодействие вихревого тока с переменным магнитным полем лежит в основе различных типов насосов для перекачки расплавленного металла.
Вихревые токи возникают и в самом проводнике, по которому течёт переменный ток, что приводит к неравномерному распределению тока по сечению проводника. В моменты увеличения тока в проводнике индукционные вихревые токи направлены у поверхности проводника по первичному электрическому току, а у оси проводника — навстречу току.
В результате внутри проводника ток уменьшится, а у поверхности увеличится. Токи высокой частоты практически текут в тонком слое у поверхности проводника, внутри же проводника тока нет. Это явление называется электрическим скин-эффектом.
Чтобы уменьшить потери энергии на вихревые токи, провода большого сечения для переменного тока делают из отдельных жил, изолированных друг от друга.
Вихревые токи применяются для пайки, плавки и поверхностной закалки металлов, а их силовое действие используется в успокоителях колебаний подвижных частей приборов и аппаратов, в индукционных тормозах (в которых массивный металлический диск вращается в поле электромагнитов) и т. п.
Применение токов Фуко
Полезное применение вихревые токи нашли в устройстве магнитного тормоза диска электрического счетчика. Вращаясь, диск пересекает магнитные силовые линии постоянного магнита. В плоскости диска возникают вихревые токи, которые, в свою очередь, создают свои магнитные потоки в виде трубочек вокруг вихревого тока. Взаимодействуя с основным полем магнита, эти потоки тормозят диск.
В ряде случаев, применяя вихревые токи, можно использовать технологические операции, которые невозможно применить без токов высокой частоты. Например, при изготовления вакуумных приборов и устройств из баллона необходимо тщательно откачать воздух и иные газы.
Однако в металлической арматуре, находящейся внутри баллона, имеются остатки газа, которые можно удалить только после заваривания баллона.
Для полного обезгаживания арматуры вакуумный прибор помещают в поле высокочастотного генератора, в результате действия вихревых токов арматура нагревается до сотен градусов, остатки газа при этом нейтрализуются.
Вихревые токи находят полезное применение также при индукционной плавке металлов и поверхностной закалке токами высокой частоты.
Источник: https://www.radioingener.ru/toki-fuko/
Токи Фуко — понятие и применение на практике
Взаимодействие электромагнитного поля с проводниками образует вихревые токи. Это явление способно выполнять полезные и вредные функции.
В определенных ситуациях энергия затрачивается попусту либо ухудшает работоспособность трансформаторов и линий электропередачи.
Однако правильное применение базовых принципов данного эффекта позволяет бесконтактным образом исследовать состав материалов, решать другие практические задачи.
В индукционных варочных панелях токи Фуко разогревают посуду с экономичным потреблением электроэнергии
Открытие вихревых токов
По историческим данным, впервые это явление обнаружил в начале 19 века французский исследователь Д. Араго. Специалистам известен его наглядный опыт. Вращение намагниченной стрелкой приводит в движение тонкий диск из меди, расположенный на небольшом расстоянии сверху.
Природу явления раскрыл М. Фарадей, объяснивший представленный простой пример перемещения взаимодействием поля и образованных в проводнике токов. Они получили специфическое название по фамилии ученого.
Фуко обнаружил нагрев тел при достаточно сильном энергетическом потенциале источника переменного тока.
Природа вихревых токов
Трансформатор — виды и применение
Образование ЭДС в проводниках при воздействии изменяющегося магнитного потока называют индукцией. На принципах этого явления функционируют электродвигатели, генераторы, катушки фильтров и колебательных контуров.
Что это такое токи Фуко, показано на рисунке
При определенном расположении источника переменного поля и проводника приходится учитывать отмеченные выше эффекты. При необходимости в контрольных точках можно измерить определенное напряжение. Важные особенности:
- с учетом неравномерного распределения электрической проводимости затруднено точное определение траектории токов;
- они будут возникать при перемещении пластины относительно постоянного магнита;
- линии образуют замкнутые контуры в толще образца;
- они расположены перпендикулярно вектору магнитного потока.
Практическое применение вихревых токов
Применение и эксплуатация элегазовых выключателей
Прохождение сильного тока повышает энергетический потенциал молекулярной решетки, что сопровождается нагревом.
Это явление объясняет возможность использования соответствующей технологии для бесконтактного повышения температуры проводящих материалов.
Если приводить пример с индукционной варочной панелью, можно подчеркнуть следующие плюсы:
- образование тепла в глубине дна посуды обеспечивает эффективный нагрев рабочей зоны;
- температура на поверхности панели не повышается чрезмерно;
- тепловое воздействие на продукты выполняется быстрее, по сравнению с аналогами (спиральные ТЭНы, газовые плиты).
Привести пример на основе опыта с вращением диска несложно. Этот же принцип реализован в конструкции электромеханического счетчика потребленной энергии. В данном случае вращение рабочего узла обеспечивается наведенными токами. Ускорение/ замедление соответствует изменению мощности в нагрузке.
При увеличении тока можно нагреть металлы (сплавы) до температуры плавления
При тщательном изучении тематических вопросов можно найти определенные минусы. Электромагнитный поток в цельном сердечнике трансформатора способен увеличить энергетические потери. По этой причине соответствующие детали создают из комплекта пластин, покрытых слоем диэлектрика. Эти элементы соединяют изолированным стержнем.
Вихри и скин-эффект
Что является источником магнитного поля
При определенном расположении рабочего тела и генератора электромагнитных волн токи на поверхности становятся сильнее, чем в глубине. Эту особенность (скин эффект) учитывают при создании специальных покрытий.
Принципы вихревых токов
Для детального изучения процессов можно рассмотреть действие полей при подключении к источнику типовой катушки индукции. Переменный ток в проводнике образует силовые линии поля.
Напряженность создает разницу потенциалов в соседних петлях. Движение электронов формирует вихревые токи.
Они движутся по траекториям наименьшего сопротивления, которое изменяется при наличии в изделиях примесей, трещин, полостей и других дефектов.
Закон Ома
Вихревые токи – это направленное движение электронов в проводнике. Поэтому рассматриваемые явления вполне могут быть описаны базовыми физическими формулами и определениями.
Сила тока рассчитывается по закону Ома:
I = (-1/R) * (dФ/dt), где:
- R – электрическое сопротивление;
- Ф – магнитный поток;
- dt – интервал времени.
Понятно, что для практических вычислений сложнее всего выяснить значение проводимости. Кроме отмеченных выше неравномерностей пути прохождения тока (различия проводника), траектория меняется под воздействием переменного поля.
Индуктивность
Следует подчеркнуть проницаемость проводника силовыми линиями электромагнитного поля. Такое воздействие при увеличении тока источника питания интенсифицирует вихревые эффекты в контрольном образце, установленном на небольшом расстоянии.
Амплитуда наведенных токов и фаза определяются нагрузкой и проводимостью катушки индукции. Как и в предыдущем примере, разрывы и другие дефекты проводящего участка оказывают существенное влияние на рабочие электрические характеристики конструкции.
Магнитные поля
Зависимость от параметров материалов показана на рисунке. Цифрами отмечены:
- пара или диамагнетики;
- ферриты;
- железо.
Как будут возникать токи в разных образцах при равных общих условиях
Интересно. Взаимное воздействие оказывают магнитные поля, созданные катушкой и вихревыми процессами.
Дефектоскопия
Рассмотренные недостатки можно преобразовать в достоинства. По изменению вихревых токов определяют наличие дефектов при сканировании контрольных образцов. При создании измерительных приборов учитывают следующие факторы:
- проводимость определяет силу и путь прохождения токов;
- ровные поверхности исследовать проще;
- вихревые процессы активизируется при уменьшении рабочей области.
Обнаружение контура дефектоскопом
С учетом целевого назначения корректируют конструкцию и размещение датчиков. Как правило, катушку устанавливают ближе к месту измерения. Корректируют форму изделия для лучшего соответствия объекту обследования.
Уменьшение вихревых токов
Чтобы успешно бороться с негативными проявлениями вихревых эффектов в электроэнергетике и других областях, пользуются отмеченными особенностями. В частности, увеличивают сопротивление проводников добавлением кремниевых и других присадок. Наборы из пластин размещают параллельно вектору магнитного потока. Обеспечивают надежную изоляцию элементов конструкции.
Полезное и негативное воздействие
Почему явление может применяться для решения практических задач, показано выше на конкретных примерах. Однако следует помнить о потерях, которые способны провоцировать вихревые токи. Для исключения ошибок необходимо тщательно проверять конструкторский расчет. Обязательно нужно оценить степень влияния переменного магнитного поля на проводящие материалы.
Видео
Источник: https://amperof.ru/teoriya/toki-fuko-ponyatie-primenenie.html
Вихревые токи – токи Фуко, что это такое и где они используются
Вихревые или еще так называемые цикличные токи могут нести в себе помимо вреда еще и пользу. С одной стороны, вихревые токи — это непосредственная причина потерь электроэнергии в проводнике либо же катушке. В то же самое время на этом эффекте построены современные индукционные печи, так что польза от таких токов есть. Давайте поговорим о пользе и вреде немного по подробней.
yandex.ru
Краткое определение
Для начала давайте дадим определение озвученному явлению. Вихревые токи — это такие токи, которые начинают протекать по причине воздействия переменного магнитного поля. При этом может изменяться не само поле, а положение проводника в этом поле, то есть если проводник начнет перемещаться в статичном поле, то в нем все равно образуются токи Фуко.
И траекторию протекания таких токов определить невозможно. Известно лишь то, что ток проходит в том месте, где сопротивление минимально.
Как открыли это явление
Изначально вихревые токи были зафиксированы в 1824 году ученым Д.А. Араго во время проведения следующего опыта:
На одной оси были смонтированы медный диск и магнитная стрелка, диск располагался внизу, а стрелка несколько выше. Так вот, когда стрелку вращали, то медный диск также начинал вращаться, так как протекающие токи формировали магнитное поле, которое и вступало во взаимодействие с магнитной стрелкой.
Наблюдаемый эффект получил название – явление Араго.
yandex.ru
По истечении нескольких лет этот вопрос стал изучать Максвелл Фарадей, который как раз открыл закон электромагнитной индукции. Так вот, согласно открытому закону было сделано предположение, что магнитное поле оказывает непосредственное воздействие на атомарную решетку проводника.
И образующийся в результате данного воздействия электрический ток, всегда формирует магнитное поле во всем проводнике.
А подробно описал вихревые токи уже экспериментатор Фуко, именно поэтому второе название вихревых токов – токи Фуко. С историей немного познакомились, теперь давайте узнаем природу вихревых токов.
Природа вихревых токов
- Замкнутые циклические токи могут образоваться в проводнике только в том варианте, когда магнитное поле, в котором находится проводник, имеет нестабильную структуру, то есть имеет вращение или изменяется со временем.
- Из этого следует, что сила вихревых токов имеет прямую связь со скоростью изменения магнитного потока, проходящего через проводник.
- По общепринятой теории электроны перемещаются в проводнике линейным образом из-за разности потенциалов, а это значит, что ток имеет прямое направление.
yandex.ru
Токи Фуко ведут себя совершенно по-другому и образуют вихревой замкнутый контур прямо в проводнике. При этом данные токи способны на взаимодействие с магнитным полем, которое их и создало.
Проводя исследование этих токов, ученый Ленц сделал вывод, что сгенерированное вихревыми токами магнитное поле не позволяет магнитному потоку, который и создал эти токи, измениться. При этом направленность силовых линий вихревого тока идентично вектору направления индукционного тока.
Вихревые токи и их вред
Давайте вспомним, как выглядит обычный трансформатор.
Так вот, если вы внимательно посмотрите на сердечник, то вы увидите, что он собран из отдельных пластин. А вам не кажется, что гораздо проще его было выполнить цельным?
Именно таким «дроблением» пытаются максимально снизить негативное воздействие токов Фуко. Ведь вихревые токи нагревают тело, в котором они протекают.
Как же они появляются в трансформаторе? Его работа и основана на принципах взаимодействия магнитных полей переменного характера, а как мы уже знаем переменное поле неизбежно порождает вихревые токи.
yandex.ru
Получается, что вихревой ток нагревает сердечник. А нагрев ведет к снижению КПД и сильный перегрев приведет к оплавлению изоляции, а значит разрушению трансформатора.
Как снижают потери
Данные потери могут быть описаны следующей формулой:
Как вы знаете, верно следующее утверждение: проводник с маленьким сечением обладает большим сопротивлением, а чем больше сопротивление проводника, тем меньший ток проходит через него.
Именно поэтому сердечник выполнен из цельного куска стали, а не собран из тонких пластин, которые изолированы друг от друга окалиной или слоем лака. Такой способ сборки сердечника максимально уменьшает потери в сердечнике, то есть сводят вихревые токи до минимума.
Полезное использование вихревых токов
Данные токи не только несут негатив. Их давно научились использовать с пользой. Так, например, свойства вихревых токов используются в индукционных счетчиках. Данные токи замедляют вращение алюминиевого диска, который вращается под действием магнитного поля.
Так же создание индукционных сталеплавильных печей оказало несоизмеримый вклад в развитие всей современной индустрии производства стали.
yandex.ru
Такие печи работают следующим образом: металл, который будут подвергать плавлению, помещают внутрь катушки, через которую начинают пропускать ток повышенной частоты. При этом магнитное поле формирует большие токи внутри металла, и последующий нагрев расплавляет металл.
В многоквартирных домах вы сможете увидеть индукционные плитки, принцип работы которых также основан на использовании эффекта образования вихревых токов.
Заключение
Это все, что я хотел вам рассказать о вихревых токах (токах Фуко). Если статья оказалась вам полезна или интересна, то оцените ее лайком. Спасибо за ваше внимание!
Источник: https://zen.yandex.ru/media/id/5aef12c13dceb76be76f1bb1/5c7a80b99aa57f00b340551f
Токи Фуко – jelectro.ru
Электрическое поле окружает человека повсеместно, как в производственных процессах, так и в повседневной жизни. Большинство людей даже не подразумевают, что в процессе своей жизнедеятельности сталкиваются с таким явлением, как вихревые токи. Эти токи могут оказывать как положительное, так и негативное влияние на жизнь человека, и нет однозначного ответа: больше от них пользы или вреда.
Французский физик Жанн Фуко, давший вразумительное объяснение вихревым потокам
Так, благодаря данному явлению функционируют индукционные электрические плиты и печи, либо свет включается при нажатии на кнопку. Но в тоже время под воздействием этих потоков теряется энергия в катушках и проводнике, и для ее сохранения приходится применять дополнительные технологические действия. Например, данная технология применима в трансформаторах. Его сердцевина (сердечник) состоит из большого количества мелких и плоских шихтовых пластин, которые прочно соединены друг с другом при помощи лака. Очень часто сердечник дополнительно обтянут шпилькой, основное предназначение которой снизить вихревые токи. В современном мире этот феномен стали называть токи Фуко.
История открытия
Первое понятие о вихревых потоках было упомянуто в 1824 году физиком французского происхождения Д.Ф. Арго (1786-1853), который проводил ряд экспериментов с намагниченной стрелкой, крутящейся над диском из меди. В определенный момент он заметил, что без какого-либо дополнительного воздействия диск начинал крутиться вместе со стрелкой. Точного объяснения данного феномена физик дать не смог, но оно получило наименование «явление Арго».
Спустя некоторое время, Максвелл Фарадей, рассматривавший вихревые токи с точки зрения постулата, основанного на знаниях об электромагнитной индукции, который он же и открыл, сделал заключение, что электрическое поле, исходящее от вращающейся стрелки, оказывает прямое воздействие на атомное строение диска из меди, что и способствует образованию направленного движения заряженных частиц. Электроток способствует образованию электромагнитного поля вокруг медного диска.
Понятие вихревых токов
Более тщательно изучил, а также подробно описал в своих работах вихревые токи французский физик Жанн Фуко (1819-1868), впоследствии данное действие было названо в честь него и получило название актуальное в сегодняшние дни – токи Фуко. Эти токи схожи с индукционными токами, вырабатываемыми электрогенераторами. При наличии постоянного или временного магнитно-вихревого поля в непосредственной близости от проводника обязательно образуются токи Фуко: чем объемнее проводник, тем сильнее будет сила потоков тока.
Мощность вихревых токов
Периодические и непостоянные токи появляются в проводниках только в том случае, когда магнитное поле не одинаково и попеременно меняется в зависимости от силы вращения. Соответственно, сила вихревого потока прямо пропорционально связана с изменением магнитного поля вокруг проводника.
Токи Фуко функционируют немного по другому принципу. Они находятся непосредственно в самом проводнике, образуя замкнутые очертания, напрямую взаимодействуя с магнитным полем, послужившим их появлению. Изучая вихревые токи, русский физик Эмилий Христианович Ленц (1804-1865) пришел к выводу, что магнитное поле вихревых потоков не дает измениться магнитному полю, благодаря которому они зародились. Сила индукционного тока и вихревого потока движется по одному векторному направлению.
Варианты уменьшения силы вихревых потоков
Для увеличения КПД различных технических приборов требуется существенное уменьшение вихревых токов. Для этого требуется увеличение электрического сопротивления магнитопровода. Способ уменьшения вредного воздействия токов Фуко зависит напрямую от типа электрического оборудования.
Якорные сердечники машин с постоянным током и магнитные провода устройств с переменным током в процессе сборки тщательным образом изолируются друг от друга при помощи специальных пластин из штампованной листовой электротехнической стали, толщина которых может варьироваться от 0,1 до 0,5 мм, и «запекаются» специальными лаками или окалиной. Пластины при этом должны быть расположены параллельно магнитным потокам.
В процессе литья деталей сердечника в его состав добавляются специальные компоненты, к примеру, кремний, увеличивающие силу его электрического сопротивления.
В другом случае при сборке сердечников применяются куски железной проволоки, прошедшие специальную тепловую обработку, которые располагаются строго параллельно магнитному полю. Также дополнительно могут быть использованы специальные изолирующие прокладки.
При такой сборке сердечника сила вихревых потоков существенно снижается, а КПД увеличивается.
Уменьшение мощности вихревых потоков
В магнитных проводах устройств с высокой частотой работы для снижения силы вихревого потока провода тщательно изолируются друг от друга и располагаются в виде спирали (жгута), каждый из которых покрыт специальным изолирующим материалом. Такой метод изоляции получил название – лицендрат. Его применяют на сегодняшний день для снижения потоков Фуко.
В процессе передачи электрической энергии на дальние расстояния применяется особый многожильный кабель, где каждая жила изолирована отдельно, это существенно уменьшает потери электроэнергии, тем самым увеличивая производительность.
Применение токов Фуко
Многие ученные разных времен считали и считают, что негативного воздействия от вихревых потоков куда больше, чем позитивного. Но тем не менее, человечество научилось применять токи Фуко во благо в различных областях жизнедеятельности.
Наиболее широкое применение они получили в промышленной и машиностроительной сферах. Так, на основе этого явления удалось создать насос для перекачки и закалки расплавленных металлов, а в металлургической и промышленной отраслях используются индукционные печи, которые в несколько раз превосходят аналогичные системы, работающие по другому принципу. Плавление и закалка различных металлов возможны только с применением этого явления. Вихревые потоки способствуют торможению и снижению скорости вращения металлических дисков в индукционных тормозах, без этого бы просто не функционировали скоростные поезда на магнитных подвесках. Также без вихревых потоков Фуко не обходятся современные вычислительные приборы и аппараты, вакуумные устройства, где необходима полная откачка воздуха и других газов, принцип работы современных трансформаторов возможен только благодаря применению в их конструкции вихревых потоков. Более того, оборудование, работающее на основе токов Фуко, обладает существенной экономичностью и хорошей производительностью.
Индукционный мотор, работающий на вихревых потоках
Таким образом, такое действие, как токи Фуко, – полезное, легко объяснимое и довольно понятное явление на сегодняшний день, представляет собой вихревые потоки, которые возникают под воздействием электромагнитной индукции в металлическом, а также любом другом проводнике. Вихревые токи Фуко многие ученые современности относят к удивительным явлениям в электротехнике, которые современное общество научилось использовать с пользой для себя, при необходимости доводя их до нужной мощности, уменьшая при надобности и направляя полученную энергию в правильное русло. Жанн Фуко был умным и одаренным человеком, который, помимо объяснения феномена вихревых потоков, сделал немало других важных открытий, одним из них является нагревание металлических объектов, вертящихся в магнитном потоке благодаря воздействию вихревого тока. Он первым дал вразумительное и достаточно понятное объяснения данного факта.
Применение токов Фуко для торможения дисков в индукционных тормозах
Видео
Оцените статью:Нагревание — сердечник — Большая Энциклопедия Нефти и Газа, статья, страница 2
Нагревание — сердечник
Cтраница 2
Формула (13.58) была получена без учета потерь энергии в трансформаторе, которые вызваны в основном следующими причинами: нагреванием обмоток проходящими по ним нагрузочными токами, нагреванием сердечника вихревыми токами и нагреванием сердечника при его перемагничении переменным магнитным потоком. [16]
Формула (13.58) была получена без учета потерь энергии в трансформаторе, которые вызваны в основном следующими причинами: нагреванием обмоток проходящими по ним нагрузочными токами, нагреванием сердечника вихревыми токами и нагреванием сердечника при его перемагничении переменным магнитным потоком. [17]
Однако во многих случаях нагревание, вызываемое токами Фуко, является вредным. К таким случаям относится нагревание сердечников трансформаторов ( см. § 236) и вообще металлических сердечников всякого рода обмоток, по которым идет переменный ток. Чтобы избежать такого нагревания, сердечники делают слоистыми, отделяя слои друг от друга тонкой прослойкой изоляции, расположенной перпендикулярно к направлению токов Фуко. [18]
Все потери в двигателе идут на его нагревание. В процессе эксплуатации двигателей допустимым пределом нагревания сердечника ротора и корпуса статора при изоляции обмотки класса А ( хлопок, шелк, бумага и другие органические материалы, пропитанные маслом) является температура 110 С. [19]
Применение ферритов на высоких частотах дает целый ряд преимуществ по сравнению с металлами. На основании этих данных можно заключить, что нагревание сердечника за счет потерь является весьма существенным фактором и его необходимо учитывать. [20]
Согласно принципу Ленца магнитное поле вихревых токов стремится противодействовать изменениям магнитного потока, их индуктирующего, вследствие чего при переменном намагничивающем токе вихревые токи обладают сильным размагничивающим действием, в частности в массивном железном сердечнике они почти полностью уничтожают переменный магнитный поток. Кроме того, они вызывают значительные потери энергии на нагревание сердечника. [21]
Гораздо большие плотности тока получаются при меньших размерах сердечников и для высших гармоник магнитного потока. Однако длительность этих вихревых токов так мала, что даже при большой их плотности не получается сколько-нибудь заметного нагревания сердечника, если только размыкание обмотки не повторяется очень часто. [22]
Важным примером промышленного материала, в котором текстура рекристаллизации полезна, может служить трансформаторная сталь. Стальной лист в сердечнике трансформатора непрерывно перемагничивается. Около 0 4 % общего расхода электроэнергии теряется на нагревание сердечников трансформаторов. [24]
Работа, затрачиваемая на перемагничение, должна или превратиться в дополнительную энергию магнитного поля соленоида, или перейти в тепло. Отсюда заключаем, что перемагничение при наличии гистерезиса должно вызывать нагревание сердечника, что и наблюдается на опыте. [25]
Принято говорить о мощности nojepb в меди — Рм — В процессе работы трансформатора его сердечник перемагничивается ( явление гистерезиса), на что расходуется энергия. Кроме того, в сердечнике индуцируются вихревые токи, нагревающие сердечник. Расход энергии на перемагничивание сердечника ( потери на гистерезис) и на нагревание сердечника вихревыми токами ( потери на вихревые токи) называют потерями в стали. Принято говорить о мощности потерь в стали — РСт — Вследствие того что часть энергии в трансформаторе теряется ( потери в меди и потери в стали), мощность тока во вторичной обмотке меньше мощности тока в первичной обмотке. [26]
Вихревые токи появляются в проводящем материале при изменении магнитной индукции. Согласно закону Ленца [ уравнение ( 3 — 13) ] индуктированные напряжения пропорциональны скорости изменения потока. Если сердечник выполнен из проводящего материала, в нем будут протекать вихревые токи и соответствующая им электрическая мощность будет тратиться на нагревание сердечника. Большинство ферромагнитных материалов является в той или иной степени проводящими, и при изменении магнитной индукции в иих будут протекать вихревые токи. Мощность потерь на вихревые токи поступает от источника электрической энергии, питающего дроссель; это проявляется в увеличении намагничивающего тока. Так как ток и напряженность поля тесно связаны между собой, то потери на вихревые токи вызывают расширение петли гистерезиса и увеличение коэрцитивной силы Яс материала. [28]
Нагрев якоря определяется потерями энергии в сердечнике и в обмотке якоря. Увеличение потерь в сердечнике возможно при замыкании листов между собой, что влечет за собой усиление вихревых токов. Если в процессе ремонта сердечник плохо спрессован, то в нем увеличится индукция, что также поведет к увеличению потерь и нагревания сердечника. [29]
В практике переменное поле для размагничивания обычно создается катушкой, питающейся от сети частотой 60 гц. Катушка может быть без железа или с железным сердечником. Естественно, что железный сердечник также будет подвергаться воздействию переменного поля и поэтому, так же как сердечники трансформаторов, должен быть шихтованным, чтобы избежать слишком больших вихревых токов, которые приводят к нагреванию сердечника и снижению действующей напряженности поля. Точно так же любой металлический кожух, находящийся внутри или снаружи катушки, должен иметь паз, параллельный оси, чтобы избежать появления короткозамкцутого вторичного витка, по которому циркулировал бы большой ток, как в понижающем трансформаторе. [30]
Страницы: 1 2 3
Вихревые токи фуко. Что такое вихревые токи
В 1824 году французский физик Даниэль Араго впервые наблюдал действие вихревых токов на медный диск, расположенный под магнитной стрелкой на одной оси. При вращении стрелки в диске наводились вихревые токи, приводя его в движение. Это явление получило название «эффекта Араго» в честь его первооткрывателя.Исследования вихревых токов были продолжены французским физиком Жаном Фуко. Он подробно описал их природу и принцип действия, а также наблюдал явление нагрева ферромагнетика, вращаемого в статическом магнитном поле. Токи новой природы были тоже названы в честь исследователя.
Природа вихревых токов
Токи Фуко могут иметь место при воздействии на проводник переменного магнитного поля, либо при перемещении проводника в статическом магнитном поле. Природа вихревых токов аналогична индукционным, которые возникают в линейных проводах при прохождении через них электрического тока. Направление вихревых токов замкнуто по кругу и противоположно вызывающей их силе.Токи Фуко в хозяйственной деятельности человека
Самый простой пример проявления токов Фуко в обыденной жизни — их воздействие на магнитопровод обмоточного трансформатора. Из-за воздействия наведенных токов появляется низкочастотная вибрация (трансформатор гудит), способствующая сильному нагреву. В этом случае энергия тратится впустую, а КПД установки падает. Для предотвращения значительных потерь сердечники трансформаторов не изготовляют цельными, а набирают из тонких полос электротехнической стали с низкой удельной электропроводностью. Полосы изолированы между собой электротехническим лаком или слоем окалины. Появление ферритовых элементов позволило выполнять малогабаритные магнитопроводы цельными.Эффект от действия вихревых токов используется повсеместно в промышленности и машиностроении. Поезда на магнитной подвеске используют токи Фуко для торможения, высокоточные приборы имеют систему демпфирования указывающей стрелки, основанной на действии вихревых токов. В металлургии широко распространены индукционные печи, имеющие целый комплекс преимуществ перед аналогичными установками. В индукционной печи нагреваемый металл можно поместить в безвоздушное пространство, добиваясь его полной дегазации. Индукционная плавка черных металлов также получила широкое распространение в металлургии ввиду высокой экономичности установок.
Индукционные токи могут возбуждаться и в сплошных массивных проводниках. В этом случае их называют токами Фуко или вихревыми токами. Электрическое сопротивление массивного проводника мало, поэтому токи Фуко могут достигать очень большой силы.
В соответствии с правилом Ленца токи Фуко выбирают внутри проводника такие пути и направления, чтобы своим действием возможно сильнее противиться причине, которая их вызывает. Поэтому движущиеся в сильном магнитном поле хорошие проводники испытывают сильное торможение, обусловленное взаимодействием токов Фуко с магнитным полем. Этим пользуются для демпфирования (успокоения) подвижных частей гальванометров, сейсмографов и других приборов. На подвижной части прибора укрепляется проводящая (например, алюминиевая) пластинка в виде сектора (рис. 63.1), которая вводится в зазор между полюсами сильного постоянного магнита. При движении пластинки в ней возникают токи Фуко, вызывающие торможение системы. Преимущество такого устройства состоит в том, что торможение возникает лишь при движении пластинки и исчезает, когда пластинка неподвижна.
Поэтому электромагнитный успокоитель совершенно не препятствует точному приходу системы в положение равновесия.
Тепловое действие токов Фуко используется в индукционных печах. Такая печь представляет собой катушку, питаемую высокочастотным током большой силы. Если поместить внутрь катушки проводящее тело, в нем возникнут интенсивные вихревые токи, которые могут разогреть тело до плавления. Таким способом осуществляют плавление металлов в вакууме, что позволяет получать материалы исключительно высокой чистоты.
С помощью токов Фуко осуществляется также прогрев внутренних металлических частей вакуумных установок для их обезгаживания.
Во многих случаях токи Фуко бывают нежелательными, и приходится принимать для борьбы с ними специальные меры. Так, например, чтобы предотвратить потери энергии на нагревание токами Фуко сердечников трансформаторов, эти сердечники набирают из тонких пластин, разделенных изолирующими прослойками. Пластины располагаются так, чтобы возможные направления токов Фуко были к ним перпендикулярными. Появление ферритов (полупроводниковых магнитных материалов с большим электрическим сопротивлением) сделало возможным изготовление сердечников сплошными.
Токи Фуко, возникающие в проводах; по которым текут переменные токи, направлены так, что ослабляют ток внутри провода и усиливают вблизи поверхности. В результате быстропеременный ток оказывается распределенным по сечению провода неравномерно — он как бы вытесняется на поверхность проводника. Это явление называется скин-эффектом (от английского skin — кожа) или поверхностным эффектом. Из-за скин-эффекта внутренняя часть проводников в высокочастотных цепях оказывается бесполезной. Поэтому в высокочастотных цепях применяют проводники в виде трубок.
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ
РОССИЙСКОЙ ФЕДЕРАЦИИ
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
«КУРГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»
Выполнил: Студент группы Т-10915 Логунова М.В.
Преподаватель Воронцов Б.С.
Курган 2016
Введение 3
1. Токи Фуко 4
2.Вихри и скин-эффект 7
3.Практическое применение токов Фуко 8
4.Вывод формул 10
4.1. Сила вихревого тока по закону Ома 10
4.2. Формулы для посчёта потерь на токи Фуко 10
Заключение 11
Список использованной литературы 12
Введение
Индукционный ток может возникать не только в линейных контурах, то есть в проводниках, поперечные размеры которых пренебрежимо малы по сравнению с их длиной. Индукционный ток возникает и в массивных проводниках. В этом случае проводник не обязательно включать в замкнутую цепь. Замкнутая цепь индукционного тока образуется в толще самого проводника. Такие индукционные токи называются вихревыми илитоками Фуко .
Вихревые токи, или токи Фуко (в честь Ж. Б. Л. Фуко) — вихревые индукционные токи, возникающие впроводникахлибо вследствие изменения во времени магнитного поля, в котором находится тело, либо вследствие движения тела в магнитном поле, приводящего к изменению магнитного потока через тело или какую-либо его часть.
Величина токов Фуко тем больше, чем быстрее меняется магнитный поток.
Токи Фуко
Впервые вихревые токи были обнаружены французским учёным Д. Ф. Араго(1786-1853) в 1824 г. в медном диске, расположенном на оси под вращающейся магнитной стрелкой. За счёт вихревых токов диск приходил во вращение. Это явление, названное явлением Араго, было объяснено несколько лет спустяM. Фарадеемс позиций открытого им закона электромагнитной индукции: вращаемое магнитное поле наводит в медном диске вихревые токи, которые взаимодействуют с магнитной стрелкой. Вихревые токи были подробно исследованы французским физикомФуко(1819-1868) и названы его именем. Он открыл явление нагревания металлических тел, вращаемых в магнитном поле, вихревыми токами.
Токи Фуко возникают под воздействием переменного электромагнитного поля и по физической природе ничем не отличаются от индукционных токов, возникающих в линейных проводах.
Но, в отличие от электрического тока в проводах, текущего по точно определённым путям, вихревые токи замыкаются непосредственно в проводящей массе, образуя вихреобразные контуры. Эти контуры тока взаимодействуют с породившим их магнитным потоком. Электрическое сопротивление массивного проводника мало, поэтому токи Фуко достигают очень большой силы. Согласно правилу Ленца, магнитное поле вихревых токов направлено так, чтобы противодействовать изменению магнитного потока, индуцирующего эти вихревые токи.
Поэтому движущиеся в сильном магнитном поле хорошие проводники испытывают сильное торможение, обусловленное взаимодействием токов Фуко с магнитным полем.Например, если медную пластину отклонить от положения равновесия и отпустить так, чтобы она вошла со скоростью υ в пространство между полосами магнита, то пластина практически остановится в момент её вхождения в магнитное поле (рис. 1).
Замедление движения связано с возбуждением в пластине вихревых токов, препятствующих изменению потока вектора магнитной индукции. Поскольку пластина обладает конечным сопротивлением, токи индукции постепенно затухают и пластина медленно двигается в магнитном поле. Если электромагнит отключить, то медная пластина будет совершать обычные колебания, характерные для маятника.
Вихревые токитакже приводят к неравномерному распределению магнитного потока по сечению магнитопровода. Это объясняется тем, что в центре сечения магнитопровода намагничивающая сила вихревых токов, направленная навстречу основному потоку, является наибольшей, так как эта часть сечения охватывается наибольшим числом контуров вихревых токов. Такое «вытеснение» потока из середины сечения магнитопровода выражено тем резче, чем выше частота переменного тока и чем больше магнитная проницаемость ферромагнетика. При высоких частотах поток проходит лишь в тонком поверхностном слое сердечника. Это вызывает уменьшение кажущейся (средней по сечению) магнитной проницаемости. Явление вытеснения из ферромагнетика магнитного потока, изменяющегося с большой частотой, аналогично электрическому скин-эффекту и называемому магнитным скин-эффектом.
В соответствии с законом Джоуля — Ленца вихревые токи нагревают проводники, в которых они возникли. Поэтому вихревые токи приводят к потерям энергии (потери на вихревые токи) в магнитопроводах (в сердечниках трансформаторов и катушек переменного тока, в магнитных цепях машин).
Для уменьшения потерь энергии на вихревые токи (и вредного нагрева магнитопроводов) и уменьшения эффекта «вытеснения» магнитного потока из ферромагнетиков магнитопроводы машин и аппаратов переменного тока делают не из сплошного куска ферромагнетика (электротехнической стали), а из отдельных пластин, изолированных друг от друга. Такое деление на пластины, расположенные перпендикулярно направлению вихревых токов, ограничивает возможные контуры путей вихревого тока, что сильно уменьшает величину этих токов. При очень высоких частотах применение ферромагнетиков для магнитопроводов нецелесообразно; в этих случаях их делают из магнитодиэлектриков, в которых вихревые токи практически не возникают из-за очень большого сопротивления этих материалов.
При движении проводящего тела в магнитном поле индуцированные вихревые токи обусловливают заметное механическое взаимодействие тела с полем. На этом принципе основано, например, торможение подвижной системы в счётчиках электрической энергии, в которых алюминиевый диск вращается в поле постоянного магнита. В машинах переменного тока с вращающимся полем сплошной металлический ротор увлекается полем из-за возникающих в нём вихревых токов. Взаимодействие вихревого тока с переменным магнитным полем лежит в основе различных типов насосов для перекачки расплавленного металла.
Вихревые токи возникают и в самом проводнике, по которому течёт переменный ток, что приводит к неравномерному распределению тока по сечению проводника. В моменты увеличения тока в проводнике индукционные вихревые токи направлены у поверхности проводника по первичному электрическому току, а у оси проводника — навстречу току. В результате внутри проводника ток уменьшится, а у поверхности увеличится. Токи высокой частоты практически текут в тонком слое у поверхности проводника, внутри же проводника тока нет. Это явление называется электрическим скин-эффектом. Чтобы уменьшить потери энергии на вихревые токи, провода большого сечения для переменного тока делают из отдельных жил, изолированных друг от друга.
Вихревые токи илитоки Фуко́ (в честьЖ. Б. Л. Фуко ) — вихревые индукционные токи, возникающие впроводниках при изменении пронизывающего ихмагнитного потока .
Впервые вихревые токи были обнаружены французским учёным Д.Ф Араго (1786-1853) в 1824 г. в медном диске, расположенном на оси под вращающейся магнитной стрелкой. За счёт вихревых токов диск приходил во вращение. Это явление, названное явлением Араго, было объяснено несколько лет спустяM. Фарадеем с позиций открытого им закона электромагнитной индукции: вращаемое магнитное поле наводит в медном диске токи (вихревые), которые взаимодействуют с магнитной стрелкой. Вихревые токи были подробно исследованы французским физикомФуко (1819-1868) и названы его именем. Он открыл явление нагревания металлических тел, вращаемых в магнитном поле, вихревыми токами.
Токи Фуко возникают под воздействием переменного электромагнитного поля и по физической природе ничем не отличаются от индукционных токов, возникающих в линейных проводах. Они вихревые, то есть замкнуты в кольца. Электрическое сопротивление массивного проводника мало, поэтому токи Фуко достигают очень большой силы. В соответствии справилом Ленца они выбирают внутри проводника такое направление и путь, чтобы противиться причине, вызывающей их. Поэтому движущиеся в сильном магнитном поле хорошие проводники испытывают сильное торможение, обусловленное взаимодействием токов Фуко с магнитным полем. Это свойство используется длядемпфирования подвижных частей гальванометров, сейсмографов и др.
Тепловое действие токов Фуко используется в индукционных печах — в катушку, питаемую высокочастотным генератором большой мощности, помещают проводящее тело, в нем возникают вихревые токи, разогревающие его до плавления.
С помощью токов Фуко осуществляется прогрев металлических частей вакуумных установок для их дегазации .
Во многих случаях токи Фуко могут быть нежелательными. Для борьбы с ними принимаются специальные меры: с целью предотвращения потерь энергии на нагревание сердечников трансформаторов , эти сердечники набирают из тонких пластин, разделённых изолирующими прослойками. Появлениеферритов сделало возможным изготовление этих проводников сплошными.
57. Самоиндукция — явление возникновения ЭДС индукции в проводящем контуре при изменении протекающего через контур тока. При изменении тока в контуре меняется поток магнитной индукции через поверхность, ограниченную этим контуром, в результате чего в нём возбуждается ЭДС самоиндукции. Направление ЭДС оказывается таким, что при увеличении тока в цепи эдс препятствует возрастанию тока, а при уменьшении тока — убыванию. Величина ЭДС пропорциональна скорости изменения силы тока I и индуктивности контура L:
За счёт явления самоиндукции в электрической цепи с источником ЭДС при замыкании цепи ток устанавливается не мгновенно, а через какое-то время. Аналогичные процессы происходят и при размыкании цепи, при этом величина ЭДС самоиндукции может значительно превышать ЭДС источника. Чаще всего в обычной жизни это используется в катушках зажигания автомобилей. Типичное напряжение самоиндукции при напряжении питающей батареи 12В составляет 7-25кВ.
При всяком изменении силы тока в проводящем контуре возникает ЭДС самоиндукции, в результате чего в контуре появляются дополнительные токи, называемые экстратоками самоиндукции. Экстратоки самоиндукции, согласно правилу Ленца, всегда направлены так, чтобы препятствовать изменениям тока в цепи, т.е. направлены противоположно току, создаваемому источником. При выключении источника тока экстратоки имеют такое же направление, что и ослабевающий ток. Следовательно, наличие индуктивности в цепи приводит к замедлению исчезнования или установления тока в цепи.
Детали из металла у автомобиля или разнообразных электрических устройствах, имеют способность двигаться в магнитном поле и пересекаться с силовыми линиями. Благодаря этому образовывается самоиндукция. Предлагаем рассмотреть аномальные вихревые токи фуко, потоки воздуха, их определение, применение, влияние и как уменьшить потери на вихревые токи в трансформаторе.
Из закона Фарадея следует, что изменение магнитного потока производит индуцированное электрическое поле даже в пустом пространстве.
Если металлическая пластина вставляется в это пространство, индуцированное электрическое поле приводит к появлению электрического тока в металле. Эти индуцированные токи называются вихревые токи.
Фото: Вихревые токиТоки Фуко – это потоки, индукция которых проводится в проводящих частях разнообразных электрических приборах и машинах, блуждающие токи Фуко особенно опасны для пропуска воды или газов, т.к. их направление невозможно контролировать в принципе.
Если индуцированные встречные токи создаются изменяющимся магнитным полем, то токи вихревые будут перпендикулярны к магнитному полю, и их движение будет производиться по кругу, если данное поле однородно. Эти индуцированные электрические поля очень сильно отличаются от электростатических электрических полей точечных зарядов.
Практическое применение вихревых токов
Вихревые токи полезны в промышленности для рассеивания нежелательной энергии, например у поворотного кронштейна механического баланса, особенно если сила тока очень высокая. Магнит в конце опоры настраивает вихревые токи в металлической пластине, прикрепленной к концу кронштейна, скажем, ansys.
Схема: вихревые токиВихревые потоки, как учит физика, могут быть также использованы в качестве эффективного тормозного усилия в двигателях транзитного поезда. Электромагнитные приспособления и механизмы на поезде около рельсов специально настроены для создания вихревых токов. Благодаря движению тока, получается плавный спуск системы и поезд останавливается.
Закрученные токи вредны в измерительных трансформаторах и для человека. Металлический сердечник используется в трансформаторе, чтобы увеличить поток. К сожалению, вихревые токи, полученные в якоре или сердечнике, могут увеличить потери энергии. Построив металлическую сердцевину чередующихся слоев из проводящих и не проводящих энергию, материалов, размер индуцированных петель уменьшается, таким образом, уменьшая потери энергии. Шум, который производит трансформатор при работе, является следствием именно такого конструктивного решения.
Видео: вихревые токи Фуко
Еще один интересный использования вихревой волны – применение их в электросчетчиках или медицине. В нижней части каждого счетчика расположен тонкий алюминиевый диск, который всегда вращается. Это диск движется в магнитном поле, так что там всегда есть вихревых токи, цель которых замедлить движения диска. Благодаря этому датчик работает точно и без перепадов.
Вихри и скин-эффект
В том случае, когда возникают очень сильные вихревые токи (при высокочастотном токе), в телах плотность тока становится значительно меньше, чем на их поверхностях. Это так называемый скин эффект, его методы используются для создания специальных покрытий для проводов и в трубах, которые разрабатываются специально для вихре-токов и тестируются в экстремальных условиях.
Это доказал еще ученый Эккерт, который исследовали ЭДС и трансформаторные установки.
Схема индукционного нагреваПринципы вихревых токов
Катушка из медной проволоки является распространенным методом для воспроизведения индукции вихревых токов. Переменный ток, проходящий через катушку, создает магнитное поле внутри и вокруг катушки. Магнитные поля образуют линии вокруг провода и соединяются, образуя более крупные петли. Если ток увеличивается в одной петле, магнитное поле будет расширяться через некоторые или все из петель проволоки, которые находятся в непосредственной близости. Это наводит напряжение в соседних петлях гистерезис, и вызывает поток электронов или вихревые токи, в электропроводящем материале. Любой дефект в материале, включая изменения в толщине стенки, трещин, и прочих разрывов, может изменить поток вихревых токов.
Закон Ома
Закон Ома является одним из самых основных формул для определения электрического потока. Напряжение, деленное на сопротивление, Ом, определяет электрический ток, в амперах. Нужно помнить, что формулы для расчета токов не существует, необходимо пользоваться примерами расчета магнитного поля.
Индуктивность
Переменный ток, проходящий через катушку, создает магнитное поле внутри и вокруг катушки. С увеличением тока, катушка индуцирует циркуляцию (вихревых) потоков в проводящем материале, расположенном рядом с катушкой. Амплитуда и фаза вихревых токов будет меняться в зависимости от загрузки катушки и ее сопротивления. Если поверхность или под поверхностью возникнет разрыв в электропроводном материале, поток вихревых токов будет прерван. Для его налаживания и контроля существуют специальные приборы с разной частотой каналов.
Магнитные поля
На фото показано, как вихревые электрические токи образуют магнитное поле в катушке. Катушки, в свою очередь, образуют вихревые токи в электропроводном материале, а также создавают свои собственные магнитные поля.
Магнитное поле вихревых токовДефектоскопия
Изменение напряжения на катушке будет влиять на материал, сканирование и исследование вихревых токов позволяет производить прибор для измерения поверхностных и подповерхностных разрывов. Несколько факторов будут влиять на то, какие недостатки могут быть обнаружены:
- Проводимость материала оказывает значительное воздействие на пути следования вихревых токов;
- Проницаемость проводящего материала также имеет огромное влияние из-за его способности быть намагниченным. Плоскую поверхность гораздо легче сканировать, чем неровную.
- Глубина проникновения имеет очень большое значение в контроле вихретоков. Поверхность трещины гораздо легче обнаружить, чем суб-поверхностного дефекта.
- Это же касается и площади поверхности. Чем меньше площадь – тем быстрее происходит образование вихревых токов.
Обнаружение контура дефектоскопом
Существуют сотни стандартных и специальных зондов, которые производятся для конкретных типов поверхностей и контуров. Края, канавки, контуры, и толщина металла вносят свой вклад в успех или провал испытаний. Катушка, которая расположена слишком близко к поверхности проводящего материала будет иметь наилучшие шансы на обнаружение разрывов. Для сложных контуров катушка вставляется в специальной блок и прикрепляется к арматуре, что позволяет пройти ток через неё и проконтролировать его состояние. Многие устройства требуют специальных формованных изделий зонда и катушки, чтобы приспособиться к неправильной форме детали. Катушка также может иметь специальную (универсальную) форму, чтобы соответствовать конструкции детали.
Уменьшаем вихревые токи
Для того чтобы уменьшить вихревые токи катушек индуктивности нужно увеличить сопротивление в этих механизмах. В частности рекомендуется использовать лицендрат и изолированные провода.
электромагнетизм — Метод расчета вихревых токов проводника, это правильно?
Это сложный предмет, но он очень хорошо изучен в контексте вихретоковых тормозов, где тормозящая сила используется для создания тормозной силы без механического трения / износа. Для меня отправной точкой для того, чтобы узнать больше, был этот пост — в частности, сообщение Джима Харди содержало множество хороших ссылок.
Похоже, что некоторые из наиболее важных анализов были выполнены Смайтом (1942), Шибером (1974) и Воутерсом (1992) — см. Эту главу диссертации, чтобы узнать больше.
Подводя итог, кажется, есть четыре важных фактора (неожиданность). Это
- Само магнитное поле: вы ожидаете, что сила будет масштабироваться с квадратом поля, поскольку индуцированный ток масштабируется с полем, а сила масштабируется с произведением поля и тока.
- Скорость движения: чем быстрее вы двигаетесь, тем больше изменяется поток и, следовательно, больше сила. В первом порядке вы ожидаете линейной зависимости, хотя есть косвенное влияние на сопротивление:
- Эффективное сопротивление пластины (сопротивление на единицу площади).Для неферромагнитных материалов скин-эффект не очень велик, и ток будет течь через тело пластины: но с ферромагнитными материалами и высокими скоростями ток будет возникать только на поверхности. Это увеличивает сопротивление и снижает ток и, следовательно, силу . 2 \ cdot A} {\ rho / t} $$
- На низких частотах потери на вихревые токи уменьшаются за счет создания сердечника из нескольких тонких листов, называемых ламинатами. Они слегка изолированы друг от друга специальными лаками. Это увеличивает сопротивление замкнутых путей и снижает потери от завихрения.
- Эти потери, пропорциональные квадрату частоты, становятся чрезмерно высокими на радиочастотах. Невозможно сделать очень тонкие слои, поэтому используются сердечники из гранулированного или порошкового железа.Железная пыль смешивается со связующим материалом и сжимается до необходимой формы. Такие сердечники используются в радиочастотных устройствах.
- Эти потери можно дополнительно уменьшить, используя материал сердечника с высоким сопротивлением. Для этого сталь легируют кремнием до 4%.
- Демпфирование : Эффект демпфирования вихревых токов, используемый в некоторых электрических измерительных приборах.Катушка таких инструментов намотана на каркас из легкого металла. Когда катушка и рамка вращаются в поле постоянного магнита, вихревые токи, возникающие в рамке, создают в приборе демпфирующий момент.
- Индукционная печь : В индукционных печах нагреваемый металл помещается в быстро меняющееся магнитное поле, создаваемое высокочастотным переменным током. Вихревые токи, возникающие в металле, выделяют столько тепла, что металл плавится.
- Асинхронный двигатель : Когда металлический цилиндр помещается во вращающееся магнитное поле, в нем возникает вихревой ток.Эти токи, согласно закону Ленца, пытаются уменьшить относительное движение между цилиндром и полем. Таким образом, цилиндр начинает вращаться в направлении поля. Это принцип работы асинхронного двигателя.
- Электрические тормоза : Когда сильное стационарное магнитное поле внезапно прикладывается к вращающемуся барабану, вихревые токи, возникающие в барабане, создают крутящий момент, который останавливает движение барабана. Этот принцип используется при остановке электропоездов.
- Помимо этого, вихревые токи используются в спидометрах автомобилей и «глубокой термообработке» человеческого тела.
- Пропорционально квадрату частоты
- Пропорционально квадрату плотности потока
- Пропорционально квадрату толщины ламинированного листа
- обратно пропорционально удельному сопротивлению материала
- Демпфирование: Катушка измерительного прибора установлена в раме из легкого металла. Когда катушка и указатель вращаются в постоянном магнитном поле, в металлическом корпусе индуцируется вихревой ток, который создает демпфирующий момент.
- Электрические тормоза: Когда к вращающемуся барабану прикладывается постоянное магнитное поле, вихревой ток, возникающий в барабане, создает тормозной момент.Эти тормоза известны как вихретоковые тормоза.
- Индукционная печь: В индукционной печи металл, который должен быть нагрет, помещается в быстро меняющееся магнитное поле, создаваемое током высокой частоты. В металлической части возникает вихревой ток, и металл нагревается. Индукционный нагреватель подшипников также работает по тому же принципу.
- Эффект вихревого тока используется для обеспечения тормозного момента в счетчиках энергии индукционного типа.
- Вихретоковые приборы используются для обнаружения трещин в металлических частях.
где $ v $ — скорость, $ B $ — магнитное поле, $ A $ — площадь магнитного пятна, $ \ rho $ — объемное сопротивление и $ t $ — толщина пластины (удельное сопротивление площади $ \ sigma = \ rho / t $).Обратите внимание, что я немного изменил уравнение, приведенное в справочнике — оно показывало крутящий момент для вращающегося диска, из которого я вывел силу ($ F = \ frac {\ Gamma} {R} $)
Теперь, когда скорость становится выше, индуцированные токи могут генерировать поле, которое составляет значительную часть приложенного поля; и, как я уже упоминал, может начать играть скин-эффект. Оба они будут генерировать дополнительный член во взаимосвязи между силой и скоростью, но на этом этапе аналитические вычисления становятся сложными и обычно выполняются путем подбора экспериментальных данных.
Но все вышесказанное должно дать нам начало. Это говорит нам о том, что более толстые проводники испытывают большую силу и что по мере того, как предметы движутся быстрее, сила увеличивается. Есть прекрасный эксперимент, демонстрирующий вихревые токи, при которых сильный магнит падает на толстую медную трубку и кажется почти парящим: это наблюдение полностью согласуется с приведенным выше уравнением (вам нужна толстая медь, чтобы получить достаточную индукцию; и поскольку сила увеличивается со скоростью, будет скорость, при которой замедляющая сила компенсирует гравитацию).
Видео, демонстрирующее это явление, показано здесь — кстати, оно показывает, что эффект сильнее для медной трубки, чем для алюминиевой, что согласуется с тем фактом, что объемная проводимость меди больше, чем у алюминия (примерно на 1,5 Икс).
Что такое вихревые токи?
Эдди токи — это токи, которые циркулируют в проводниках, как вихри в поток. Они индуцируются изменением магнитных полей и течением в замкнутых контурах, перпендикулярно плоскости магнитного поля.Их можно создать, когда проводник движется через магнитное поле, или когда магнитное поле окружение неподвижного проводника меняется, то есть все, что приводит к проводник испытывает изменение силы или направления магнитного поле может производить вихревые токи. Размер вихревого тока пропорционален величине магнитного поля, площади петли и скорости изменения магнитного потока, и обратно пропорционально удельному сопротивлению дирижер.
Как и любой ток, протекающий через проводник, вихревой ток будет производить свой собственный магнитное поле. Закон Ленца гласит, что направление магнитно-индуцированного ток, как и вихревой, будет таким, что создаваемое магнитное поле будет противодействовать изменению магнитного поля, которое его создало. Это сопротивление создало противоположными магнитными полями используется в вихретоковом торможении, которое обычно используется как метод остановки вращающихся электроинструментов и американских горок.
в диаграмма ниже, токопроводящий металлический лист (представляющий движущийся например, автомобиль с горками или электроинструмент), движется мимо неподвижного магнита. В виде лист движется мимо левого края магнита, он почувствует увеличение напряженность магнитного поля, вызывающая вихревые токи против часовой стрелки. Эти токи создают свои собственные магнитные поля и, согласно закону Ленца, направление будет вверх, т.е. противодействовать внешнему магнитному полю, создавая магнитное сопротивление.На другом краю магнита лист будет выходить из магнитное поле, и изменение поля будет в противоположном направлении, таким образом индуцирование вихревых токов по часовой стрелке, которые затем создают магнитное поле, действующее вниз. Это будет притягивать внешний магнит, также создавая сопротивление. Эти силы сопротивления замедляют движущийся лист, обеспечивая торможение. Электромагнит может использоваться для внешнего магнита, что означает, что можно изменять силу торможение осуществляется путем регулирования тока через катушки электромагнита.Преимущество вихревого торможения в том, что оно бесконтактное, поэтому механический износ. Однако вихревое торможение не подходит для торможения на низкой скорости и поскольку проводник должен двигаться, вихревые тормоза не могут удерживать предметы в стационарные позиции. Таким образом, часто необходимо также использовать традиционные фрикционный тормоз.
Эдди течения были впервые обнаружены в 1824 году ученым, а затем премьер-министром Франция, Франсуа Араго.Он понял, что намагнитить можно больше всего. проводящие объекты и был первым свидетелем вращательного магнетизма. Десять лет позже закон Ленца был постулирован Генрихом Ленцем, но только в 1855 г. что французский физик Леон Фуко официально открыл вихревые токи. Он обнаружили, что сила, необходимая для вращения медного диска при размещении его обода между полюсами магнита, такого как подковообразный магнит, увеличивается, и диск нагревается индуцированными вихревыми токами.
Отопление Эффект возникает из-за преобразования электрической энергии в тепловую. и используется в устройствах индукционного нагрева, например в некоторых плитах и сварочных аппаратах. В сопротивление, ощущаемое вихревыми токами в проводнике, вызывает джоулев нагрев и количество выделяемого тепла пропорционально текущему квадрату. Однако для таких приложений, как двигатели, генераторы и трансформаторы, это тепло считается потери энергии и, как таковые, вихревые токи должны быть сведены к минимуму.Это может быть достигается за счет ламинирования металлических сердечников этих устройств, где каждый сердечник состоит из нескольких изолированных листов металла. Это разбивает ядро на многие отдельные магнитные цепи и ограничивает прохождение вихревых токов через него, уменьшая количество тепла, выделяемого за счет джоулева нагрева.
Эдди токи также можно отвести через трещины или прорези в проводнике, которые нарушают цепи и предотвратить циркуляцию токовых петель.Это значит, что вихревые токи могут использоваться для обнаружения дефектов в материалах. Это называется неразрушающий контроль и часто используется в самолетах. Магнитное поле производятся вихревыми токами, где изменение поля показывает наличие неровности; дефект уменьшит размер вихря ток, который, в свою очередь, снижает напряженность магнитного поля.
Другой применение вихревых токов — магнитная левитация. Проводники подвергаются переменные магнитные поля, которые вызывают вихревые токи внутри проводника и создают отталкивающее магнитное поле, раздвигающее магнит и проводник.Это переменное магнитное поле может быть вызвано относительным движением между магнит и проводник (обычно магнит неподвижен, а проводник движется) или с помощью электромагнита, применяемого с переменным током для изменения напряженность магнитного поля.
Наведенные вихревые токи в простой проводящей геометрии: математический формализм описывает возбуждение электрических вихревых токов в изменяющемся во времени магнитном поле (журнальная статья)
Нагель, Джеймс Р. Индуцированные вихревые токи в простых проводящих геометриях: математический формализм описывает возбуждение электрических вихревых токов в изменяющемся во времени магнитном поле . США: Н. П., 2017.
Интернет. DOI: 10.1109 / MAP.2017.2774206.
Нагель, Джеймс Р. Наведенные вихревые токи в простых проводящих геометриях: математический формализм описывает возбуждение электрических вихревых токов в изменяющемся во времени магнитном поле .Соединенные Штаты. https://doi.org/10.1109/MAP.2017.2774206
Нагель, Джеймс Р. Пт.
«Наведенные вихревые токи в простых проводящих геометриях: математический формализм описывает возбуждение электрических вихревых токов в изменяющемся во времени магнитном поле». Соединенные Штаты. https://doi.org/10.1109/MAP.2017.2774206. https://www.osti.gov/servlets/purl/1433514.
@article {osti_1433514,
title = {Индуцированные вихревые токи в простых проводящих геометриях: математический формализм описывает возбуждение электрических вихревых токов в изменяющемся во времени магнитном поле},
author = {Нагель, Джеймс Р.},
abstractNote = {В этой статье вводится полный математический аппарат для описания возбуждения электрических вихревых токов из-за изменяющегося во времени магнитного поля. Процесс работает, применяя квазистатическое приближение к закону Ампера и затем разделяя магнитное поле на воздействующие и индуцированные члены. Результатом является неоднородное векторное уравнение Гельмгольца, которое может быть решено аналитически для многих практических геометрий. Затем решаются четыре демонстрационных случая в постоянном поле возбуждения во всем пространстве - бесконечная плита в одном измерении, продольный цилиндр в двух измерениях, поперечный цилиндр в двух измерениях и сфера в трех измерениях.Численное моделирование также выполняется параллельно с аналитическими вычислениями, каждый из которых проверяет точность полученных выражений.},
doi = {10.1109 / MAP.2017.2774206},
url = {https://www.osti.gov/biblio/1433514},
journal = {IEEE Antennas and Propagation Magazine},
issn = {1045-9243},
число = 1,
объем = 60,
place = {United States},
год = {2017},
месяц = {12}
}
Формула потерь на вихревые токи — ваш электротехнический гид
Привет друзья,В этой статье я обсуждаю потери на вихревые токи , формулу потерь на вихревые токи, их причины и приложения.Итак, начнем с нашей темы.
Что такое потери на вихревые токи?
Каждый раз, когда магнитный поток, связанный с проводящим материалом, изменяется, напряжения индуцируются во всех возможных путях, и, следовательно, индуцированные токи устанавливаются во всем объеме проводящего материала.
Эти токи подобны вихревым токам, возникающим в воде. Следовательно, эти токи называются «вихревыми токами». В некоторых случаях эти токи могут быть настолько сильными, что металлическая деталь может раскалиться докрасна.
Электрическая энергия, которая теряется в виде тепла из-за вихревых токов в материале сердечника, называется потерей на вихревые токи.
Потери на вихревые токи, P e = K e B max 2 f 2 t 2 В ватт
Где K e = постоянное
B max = максимальное плотность потока в Тесла
f = частота перемагничивания в Гц
t = толщина пластин в мм
V = объем сердечника в м 3
Эта формула или уравнение потерь на вихревые токи может использоваться во всех электрических машинах, таких как трансформаторы , Двигатели переменного и постоянного тока для расчета потерь на вихревые токи.
Величина этих токов зависит от сопротивления металла. Если сопротивление металла велико, то вихревые токи слабые.
Они производятся внутри железных сердечников вращающихся якорей двигателей и динамо-машин, а также в сердечниках трансформаторов. Потери на вихревые токи нежелательны в электрических машинах, поскольку они выделяют тепло и ответственны за потерю энергии, вызывая дополнительное повышение температуры.
Чтобы минимизировать эти токи, сердечники электрических машин не рассматриваются как единый кусок мягкого железа, а сделаны из множества тонких пластин мягкого железа, которые изолированы друг от друга лаком.Этот тип сердечника называется «слоистым сердечником».
В многослойном сердечнике вихревые токи возникают отдельно во всех слоях, а не во всем объеме твердого сердечника.
Таким образом, длина пути тока заметно увеличивается с последующим увеличением сопротивления. Следовательно, токи и их нагревательный эффект сводятся к минимуму. Однако намагниченность сердечника не изменяется, поскольку сердечник непрерывен в направлении поля.
Как минимизировать потери на вихревые токи?
Где используется вихревой ток?
Вихревые токи целесообразно использовать в следующих случаях:
Спасибо, что прочитали о «формуле потерь на вихревые токи».
Электромагнетизм | Все сообщения
© http://www.yourelectricalguide.com/ формула потерь на вихревые токи.
Потери на гистерезисеи потери на вихревые токи: в чем разница?
Все электродвигатели испытывают вращательные потери при преобразовании электрической энергии в механическую.Эти потери обычно классифицируются как магнитные потери, механические потери, потери в меди, щеточные потери или паразитные потери, в зависимости от основной причины и механизма. В категорию магнитных потерь входят два типа — потери на гистерезис и потери на вихревые токи.
Гистерезис потери
Гистерезисные потери вызваны намагничиванием и размагничиванием сердечника, поскольку ток течет в прямом и обратном направлениях. По мере увеличения намагничивающей силы (тока) магнитный поток увеличивается.Но когда сила намагничивания (ток) уменьшается, магнитный поток уменьшается не с той же скоростью, а менее постепенно. Следовательно, когда сила намагничивания достигает нуля, плотность магнитного потока все еще имеет положительное значение. Чтобы плотность потока достигла нуля, необходимо приложить силу намагничивания в отрицательном направлении.
Соотношение между силой намагничивания H и плотностью магнитного потока B показано на кривой гистерезиса или петле. Площадь петли гистерезиса показывает энергию, необходимую для завершения полного цикла намагничивания и размагничивания, а площадь петли представляет потерю энергии во время этого процесса.
Петля гистерезиса показывает взаимосвязь между наведенной плотностью магнитного потока (B) и силой намагничивания (H). Его часто называют петлей B-H.Изображение предоставлено: NDT Resource Center
Уравнение потерь на гистерезис имеет следующий вид:
P b = η * B макс n * f * V
P b = потеря гистерезиса (Вт)
η = коэффициент гистерезиса Штейнмеца, в зависимости от материала (Дж / м 3 )
B max = максимальная плотность потока (Вт / м 2 )
n = показатель Штейнмеца, варьируется от 1.От 5 до 2,5, в зависимости от материала
f = частота вращения магнитного поля в секунду (Гц)
V = объем магнитного материала (м 3 )
Вихретоковые потери
Потери на вихревые токи являются результатом закона Фаради, который гласит, что «Любое изменение в окружающей среде катушки с проволокой вызовет в катушке напряжение, независимо от того, как создается магнитное изменение». Таким образом, когда сердечник двигателя вращается в магнитном поле, в катушках индуцируется напряжение или ЭДС.Эта наведенная ЭДС вызывает протекание циркулирующих токов, называемых вихревыми токами. Потери мощности, вызванные этими токами, известны как потери на вихревые токи.
В сердечниках якоря двигателей используется множество тонких железных элементов (называемых «пластинами»), а не цельная деталь, поскольку сопротивление отдельных частей выше, чем сопротивление одной цельной детали. Это более высокое сопротивление (из-за меньшей площади на единицу) снижает вихревые токи и, в свою очередь, потери на вихревые токи. Пластины изолированы друг от друга с помощью лакового покрытия, предотвращающего «перепрыгивание» вихревых токов от одного слоя к другому.
Вихревые токи в многослойных сердечниках (справа) меньше, чем в сплошных сердечниках (слева).Изображение предоставлено: wikipedia.org
Уравнение потерь на вихревые токи имеет вид:
P e = K e * B max 2 * f 2 * t 2 * V
P e = потери на вихревые токи (Вт)
K e = постоянная вихревого тока
B = плотность потока (Вт / м 2 )
f = частота вращения магнитного поля в секунду (Гц)
t = толщина материала (м)
V = объем (м 3 )
Магнитные потери названы так потому, что они зависят от магнитных путей в двигателе, но их также называют «потерями в сердечнике» и «потерями в стали».”
Формула потерь на вихревые токи — электрическое напряжение
Когда проводник помещается в переменное магнитное поле, в проводнике начинает течь локализованный ток, который называется вихревым током. Потери энергии в виде тепловой энергии в проводнике, вызванные протеканием вихревого тока, известны как потери на вихревые токи .
Потери на вихревые токи могут быть минимизированы за счет использования тонких ламинированных листов кремнистой стали вместо твердого стального листа.Различные факторы, такие как плотность магнитного потока, частота, электрические свойства материала и толщина ламинированных листов, влияют на потери на вихревые токи. Вывод формулы потерь на вихревые токи дает подробный обзор факторов, от которых зависят потери на вихревые токи. Формула потерь на вихревые токи (P) приведена ниже.
Выведем формулу потерь на вихревые токи для лучшего понимания потерь на вихревые токи в стальном сердечнике.
Вывод формулы потерь от вихревых токов
При использовании тонких ламинированных листов площадь пути вихревого тока уменьшается, и, таким образом, сопротивление пути увеличивается. При увеличении сопротивления потенциал, возникающий в двух точках ламинирования, уменьшается, и в результате уменьшается величина вихревых токов и потери на вихревые токи.
Математическое выражение для потерь на вихревые токи
Пусть длина, высота и толщина ламинированного листа равны L, h и 𝞃 соответственно.Толщина листа очень меньше длины (L) и высоты (h) листа. Пусть синусоидальное изменяющееся во времени магнитное поле перпендикулярно области, образованной и h.
Переменное магнитное поле, перпендикулярное области, образованной 𝞃 и h, равно;
B = B макс Sinωt
Рассмотрим небольшой элементный контур с замкнутым контуром PQRSP толщиной d x , а расстояние малого элемента от начала координат составляет x .Напряжение будет индуцироваться в этом замкнутом контуре аналогично индукции в однооборотной катушке.
Площадь контура PQRS (A) = 2h x ——- (1)
Плотность потока B = Φ / A
Поток, пересекающий контур PQRSP =
Φ = BA
Φ = B max Sinωt 2h x ——————- (2)
Действующее значение напряжения, индуцированное в контуре
E = 4,44 f Φmax
E = √ 2Π fΦmax [ √ 2Π = 4.44]
E = √ 2Π fBmax A
E = √2ΠfB max 2h x ——————- (3)
Сопротивление вихретокового тракта
R = ρ * (2h + 4x) / L d x ————– (4)
Потери на вихревые токи ( d P) в малой элементарной петле d x
d P = E 2 / R
d P = E 2 Ld x / [ρ * (2h + 4x)] ——– (5)
Так как толщина листа намного меньше по сравнению с высотой листа и x размер можно игнорировать.
d P = E 2 Ldx / (ρ * 2h)
d P = [√2ΠfB max 2hx] 2 Ldx / (ρ * 2h)]
d P = [4ΠfB max 2hx] 2 Ldx / (ρ * 2h)]
d P = 4Π 2 Bmax 2 f 2 hL / ρ ———- (6)
Общие потери на вихревые токи =
Объем листа (В) = hL𝞃
Потери на вихревые токи на единицу объема =
P eddy = Π 2 Bmax 2 f 2 𝞃 2 / 6ρ ——– (7)
P eddy = K e f 2 Bmax 2 𝞃 2 ————— (8)
Где,
K e = Π 2 /6 ρ
K e называется коэффициентом вихревых токов.
Таким образом, потери на вихревые токи на единицу объема составляют;
Как минимизировать потери на вихревые токи?
Потери на вихревые токи зависят от толщины стального сердечника.Тонкий ламинированный лист можно использовать вместо цельного куска стального сердечника. Потери на вихревые токи в стальном сердечнике сводятся к минимуму, если используются тонкие ламинированные стальные листы, которые имеют электрическую изоляцию. Тонкий ламинированный лист имеет более высокое сопротивление. Следовательно, когда лист находится под изменяющимся магнитным полем, в листе индуцируется меньшее напряжение. Низкое наведенное напряжение на тонком листе приводит к снижению вихревого тока и, как следствие, уменьшению потерь тепла (I 2 R) в тонком ламинированном листе.
Другая электрическая величина, которая влияет на потери на вихревые токи, — это соотношение напряжения и частоты. Потери на вихревые токи остаются постоянными, если следующие электрические величины остаются постоянными.
Если напряжение и частота постоянны, плотность потока также останется постоянной , потому что плотность потока пропорциональна отношению V / f.
Применение вихревых токов
Вихревой ток нежелателен в двигателе, трансформаторе, поскольку он вызывает тепловые потери, которые являются потерей энергии.Однако вихретоковый ток можно с успехом использовать в следующих приложениях.
Вихревые токи и потери вихревого тока в учебниках и ссылках по энергосистеме | ПРОЕКТИРОВАНИЕ ТРАНСМИССИОННЫХ ЛИНИЙ и СТУПИЦА ЭЛЕКТРОТЕХНИКИ
Вихревые токи, также известные как токи Фуко, представляют собой индуцированные токи, присутствующие в проводниках, причем их направление противоположно изменению потока, которое их породило.Когда проводник подвергается воздействию магнитного поля, которое является динамическим (изменяется из-за относительного движения), вихревые токи будут присутствовать в виде циркулирующего потока электронов или тока внутри тела проводника.
Эти циркулирующие вихри тока создают индуцированные магнитные поля, которые препятствуют изменению исходного магнитного поля в соответствии с законом Ленца, вызывая силы отталкивания или сопротивления между проводником и магнитом.
Эти токи рассеивают энергию и создают магнитное поле, которое имеет тенденцию противодействовать изменениям поля.
Для получения дополнительной информации о вихревых токах ниже приведены полезные ссылки по этой теме.
Что такое вихревой ток?
Вихревой ток — это ток, индуцируемый маленькими завихрениями («водоворотами») на большом проводнике (изобразите лист меди).Если большая проводящая металлическая пластина перемещается через магнитное поле, которое пересекает перпендикулярно листу, магнитное поле будет индуцировать небольшие «кольца» тока, которые фактически создадут внутренние магнитные поля, противодействующие изменению. Читать далее…Что такое вихретоковые потери?
Сердечники силовых трансформаторов обычно изготавливаются из мягкого железа или стали. Потому что железо и сталь — хорошие проводники; ток может быть индуцирован в сердечнике, когда сердечник подвергается воздействию движущегося магнитного поля.Таким образом, если не будут приняты особые меры предосторожности, в сердечнике трансформатора будут индуцироваться большие циркулирующие токи. Эти токи называются вихревыми токами. Читать далее…Видео с объяснением вихревых токов
Упрощенный высокоточный расчет потерь на вихревые токи в обмотках с круглым проводом
Недавно было показано, что наиболее часто используемые методы расчета потерь на высокочастотные вихревые токи в обмотках с круглым проводом могут иметь значительную погрешность, превышающую 60%.Предыдущая работа включает формулу, основанную на параметрическом наборе моделирования анализа конечных элементов (FEA), который дает потери эффекта близости для большого диапазона частот с использованием параметров из справочной таблицы на основе геометрии обмотки. Подробнее …
Вихревые токи на соленоидах
Явление, вызванное скоростью изменения индуцированного магнитного поля.