Вместо ионистора: Ионисторы вместо стартерного свинцово-кислотного аккумулятора / Хабр

Содержание

Ионисторы вместо стартерного свинцово-кислотного аккумулятора / Хабр

Идея запуска ДВС от ионисторов (на западе их называют суперконденсаторы) не нова, в сети есть несколько публикаций и видео роликов. В тех, которые я смотрел, либо ничего не вышло, либо получилось слишком дорого. Получилось заводить двигатель только на ионисторах емкостью 3 тысячи фарад. На 500 и 700 фарадах двигатель ни у кого не завелся.

Теория

Набравшись опыта коллег по цеху, решил сначала провести эксперименты на виртуальной модели гибридного аккумулятора. Для этого взял замечательную программу Yenka. Нашел в сети, то что у вазовского стартера рабочий ток примерно 150-200 ампер. Ионисторов в Yenka не нашел. Использовал обычные конденсаторы только с большой емкостью. В результате виртуальных экспериментов ионисторы в 500 фарад крутили стартер аж 3.5 секунды, пока напряжение не упало ниже 8 В.

Падение напряжения при виртуальном «прокручивании» стартера от сборки из 6 ионисторов по 500Ф

Эксперимент в программе показывает, что можно завестись от сборки из шести 500 фарадников. Но на практике у коллег не получилось. Возможные причины:

  1. я напутал в схеме в программе;

  2. программа «врет»;

  3. на самом деле ток стартера выше;

  4. на практике были поддельные ионисторы.

1 и 2 я проверил расчетами «на коленке» — получился схожий с программой результат. 3 и 4 проверить не удалось.

Изначально, мне сильно не понравились клеммы на 500 фарадных ионисторах, они меньше чем на UPS-ных аккумуляторах. А если посмотреть на клеммы авто аккумуляторов и толщину провода к стартеру, то можно предположить, что из-за малого сечения клемм ионисторов было сильное падение напряжения на них и тока не достаточно чтобы провернуть стартер.

У конденсаторов, в отличии от аккумуляторов, под нагрузкой нет стабильного напряжения. То есть, если подключаем стартер к заряженной до 14 вольт батареи ионисторов, то через 2 секунды работы напряжение упадет до 11 вольт, еще через 2 секунды до 7 вольт. Чтобы напряжение снова поднялось, нужно заряжать конденсаторы. Поэтому время работы стартера сильно зависит от начального напряжения. Так как максимальное напряжение одного ионистора 2.7 вольт, а генератор в машине может выдавать до 14.5 вольт в сборе нужны минимум 6 ионисторов, тогда максимальное напряжение составит 16.2 вольт. Было бы разумно использовать весь потенциал ионисторов и заряжать их до 16 вольт. Не нашел достоверной информации о том не сгорит ли стартер от 16 вольт. Но в характеристиках других электроприборов в машине русским по белому сказано: «до 15 вольт». Решил рискнуть стартером и собрать гибридный аккумулятор, где будет 6 банок ионисторов на 16.2 В, подключенные только к стартеру, балансировочная плата, обычный аккумулятор на 12 вольт для питания всего остального и заряжаемый от генератора. И повышающий преобразователь чтобы повысить напряжение от 12 до 16 вольт.

Еще существенный недостаток ионисторов, особенно китайских — быстрый саморазряд. Поэтому, если оставлять преобразователь постоянно включенный, то он быстро высадит аккумулятор. Так как на зарядку ионисторов требуется время, решил сделать момент включения преобразователя как можно раньше — при снятии машины с сигнализации. От сигналки идет только минус, поэтому пустил через реле.

Закупка

Нашел в китайском магазине ионисторы на 350 фарад. Забил емкость в Yenk-у, оказалось, что их хватит на 2.5 секунды работы стартера. Заказал их, а также балансировочную плату.

Преобразователь сначала купил в китайском магазине повышающий, собрал схему, преобразователь сразу сгорел. Не учел то, что в нем не было ограничения по току, а у ионисторов практически нулевое сопротивление, вот и получилось короткое замыкание на выходе преобразователя. Ограничение по току бывает в повышающе-понижающих, купил — тоже сгорел, но не сразу. Купил третий другого исполнения — работает отлично!

Аккумулятор взял обычный от UPS на 7 Ач.

Сборка

В качестве корпуса будет коробка от старого свинцового аккумулятора. Крышку срезал так, чтобы клеммы остались на месте. Иначе клеммы будут на крышке и соединять их нужно будет соплями гибкими проводами. А я хочу все силовые соединения сделать жесткие, резьбовые. Полностью перегородки вырезать не стал, ширина одной “банки” как раз подошла под диаметр одного ионистора, оставил куски перегородок как изоляторы и для крепления преобразователя. 

Резьба на ионисторах оказалась не стандартная — М8×1.0 (у стандартной шаг 1.25 мм,  у этой 1 мм). Гайки чудом нашел в магазине грузовых запчастей. 

Между собой соединил алюминиевой полосой сечением 30х1 мм, сделанной из обрезка тавра, купленного в магазине крепежа. 

зажим плашечный ПА-2-2 ВК

Внутри аккумуляторные клеммы проводились к пластинам свинцовым стержнем 12 мм. Для соединения с ним взял “зажим плашечный ПА-2-2 ВК” и отпилил от него кусок, нужного размера. К болту зажима прикрутил алюминиевую полосу, идущую к ионистору. Балансировочную плату соединил с перемычками тонкими проводами с клеммами на винты. Точно так же как и преобразователь и аккумулятор. 

Общий “плюс” на 12В вывел через стенку корпуса болтом 6 мм. Точно так же  вывел минус включения преобразователя. 

ФотоПодгорели зажимы при плохом контакте

Эксперименты

Опыты будем ставить на «Калине» с двигателем 1.6, 16 клапанов. При заряде ионисторов до 16 вольт летом холодный двигатель с легкостью заводится. Прогретый заводится даже при 14 вольт. Зимой при температуре -11 так же успешно завелся но уже с трудом. Бывали случаи что с первой попытки не заводится, для второй попытки нужно ждать 1.5 минуты пока заряжаются ионисторы. Но со второй попытки всегда заводится. На новом стандартном аккумуляторе, в любые морозы машина заводилась с первой попытки. 

Сейчас, зимой, сдох аккумулятор от UPS, либо он просто не предназначен для работы на морозе, либо мне его изначально дали еле живой. Его не хватает даже на втягивающее стартера, но ионисторы заряжает. Заказал 4 LiFePO4 аккумуляторы и балансир. 

можно ли его заменить на

Что если использовать электролитический конденсатор вместо аккумулятора? Такое возможно, но есть одно слишком серьёзное препятствие — телефоны и электромобили с таким источником автономного питания не смогут «держать заряд».


Производители всерьёз рассматривают в качестве альтернативы аккумуляторам так называемые двойные электрохимические ионисторы — здесь и далее в контексте суперконденсаторы (или «супер-конденсаторы», как печатают некоторые издания). Но пока на текущем уровне технологического прогресса это допустимо лишь в определённых областях. Но пока на текущем уровне технологического прогресса это допустимо лишь в определённых областях.


В чём плюсы конденсатора в сравнении с аккумулятором?

  • Мгновенно. Ионистор отлично справляется с пиковым пусковым током, накапливая и отдавая энергию практически мгновенно.
  • Быстро. Заряжается не за час-другой, а за считанные секунды (поэтому, например, NASA применяет суперконденсаторы в космосе).
  • Безопасно. Накапливает заряд на твёрдых телах, когда как литиевые батареи — в процессе химических реакций (обычно жидкостных).
  • Надёжно. Коммерческие суперконденсаторы гарантируют 1 миллион циклов заряда, когда как обычные аккумуляторы — в среднем 800-1200 циклов.
  • КПД. Суперконденсаторы отдают энергию с эффективностью порядка 98%.
  • Выносливо. Устойчивость к экстремальным температурам и физическим повреждениям.

В чём минусы конденсатора в сравнении с аккумулятором?

  • Низкая ёмкость. Самый большой коммерческий суперконденсатор в фарадах (F) накапливает лишь 20% от электрической энергии в сравнимой батарее.
  • Не держит. Аккумуляторы предлагают намного больше плотности энергии на единицу массы, обеспечивая долгую автономность без внешнего питания.
  • Саморазряд. Степень саморазряда существенно превышает таковую у самого слабого аккумулятора.
  • Малоприменим. В итоге даже самый мощный суперконденсатор (обеспечивающий лучшую величину энергии) не сможет дольше минуты питать «аварийку» у заглушенного автомобиля и подсветку экрана у работающего телефона.


Почему суперконденсатор вместо аккумулятора на практике используют так редко?

1. У них разные цели

В аккумуляторе намного больше запасается энергии, а это самая важная его цель — не разряжаться как можно дольше в бытовых приборах, в потребительской электронике и автомобилях.


2. У конденсатора саморазряд

В аккумуляторах он тоже есть, но в значительной меньшей степени проявляется. Суперконденсаторы быстро заряжаются и быстро отдают заряд — для длительного хранения энергии они не подходят ещё и по причине утечек.


3. Разное напряжение

В то время, пока аккумулятор поддерживает ваш телефон в рабочем состоянии, напряжение практически не меняется. Конденсатор изменяет напряжение в зависимости от накопленного заряда — цифры меняются в значительных пределах, что неприемлемо для чувствительной мобильной электроники, например.


→ В этой статье мы рассматриваем тему суперконденсаторов в максимально упрощённом варианте для массовой публики.


Польза ионисторов в регистраторах

Если вас интересует, например, подробная возможность установки конденсаторов вместо аккумуляторов в RAID-контроллерах, то напишите об этом в комментарии или отправьте сообщение нам ВКонтакте @NeovoltRu.

Подпишитесь в группе на новости из мира гаджетов, узнайте об улучшении их автономности и прогрессе в научных исследованиях аккумуляторов. Подключайтесь к нам в Facebook и Twitter. Мы также ведём насыщенный блог в «Дзене» и на Medium — заходите посмотреть.



Суперконденсаторы вместо аккумулятора в автомобиле


Суперконденсатор или ионистор — это что-то нечто среднее между аккумулятором и обычным конденсатором. У него много плюсов, которыми не обладает аккумуляторная батарея. Поэтому, я познакомлю вас с полностью рабочим прототипом батареи для машины на ионисторах. С помощью него можно не просто завести двигатель пару раз, а вполне полноценно эксплуатировать автомобиль неограниченное время.

Понадобится



Этого хватит для первого опытного образца.

Первое испытание с запуском двигателя


Я купил 6 суперконденсаторов и плату балансовой защиты, бывают они продаются индивидуально под каждый ионистор, а бывает и цельная линейка под шесть штук.
Собрал все воедино.

Плата защиты исключает перезаряд суперконденсаторов напряжением выше 2,7В, поэтому использовать ее практически обязательно нужно, если включение элементов производится последовательно.
Далее я припаял клеммы и установил эту батарею на авто. Но предварительно ее необходимо зарядить небольшим током 5-7 А до рабочего напряжения. На это ушло 10-15 минут времени.

После подключения автомобиль завелся без лишних сложностей, двигатель работал стабильно, напряжение в бортовой сети держалось на должном уровне.
В ходе этого эксперимента выяснились следующие плюсы и минут: батарея из ионисторов быстро разряжалась при выключенном зажигании, а именно где-то через 5-6 часов напряжение падало до 10 В. Это был минус, а плюс был в том, что даже при этом напряжении автомобиль все ещё заводился, так как для ионистора любое напряжение рабочее, в отличии от аккумулятора.
В итоге запустить двигатель по прошествии одних суток уже не представлялось возможным. И я решил исправить данный недостаток в следующей конструкции.

Схема


Вот схема второго прототипа батареи.

Оговорюсь сразу: солнечной панели и второго аккумулятора в ней нет. Тут также используется линейка из суперконденсаторов с балансной платой. Также добавлен контроллер заряда аккумулятора, пара переключателей, вольтметр и сам небольшой аккумулятор емкостью 7,5АЧ.
Работа устройства такова: перед запуском авто открываем капот и счелкаем верхний по схеме переключатель. Через мощный 50 Ваттный резистор сопротивлением 1 Ом, ионистор начинает заряжаться от аккумулятора. Заряжать напрямую без этого резистора нельзя, так как для аккумулятора это будет равносильно короткому замыканию.

На все про все уходит 15 минут времени. Для меня это не критично. После этого можно заводить авто и ехать. Также парально резистору воткнут диод Шоттки. Он служит для зарядки аккумулятора после того как двигатель запущен.
А заряжается аккумуляторная батарея через контроллер зарядки.

Он нужен для того, чтобы каждый раз не щелкать переключатель включения, а один раз включить и ехать: встать у магазина и уйти на пару часов. И если ионистор начнет тянуть из аккумулятора ток, и разряжать его ниже 11,4 В, то контроллер зарядки тут же его отключит. Тем самым защитит батарею от полного разряда, что может ее погубить раньше срока.
Нижний по схеме переключатель служит для подключения вольтметра либо к ионисторам, либо к батарее.

Полностью рабочий экземпляр батареи на суперконденсаторах


Собрал всю схему в пластиковой коробке. Временно естественно, чисто покататься и испробовать новшество.

Вид устройства с верху.

Защитный контроллер.

Мощный токоограничивающий резистор.

Цифровой вольтметр виден через пластик.

Устанавливаем на автомобиль вместо штатной батареи.

Включаем зажигание и пробуем произвести пуск двигателя.

Мотор запустился быстро, без каких либо проблем.

Производится зарядка ионисторов и аккумуляторной батареи, о чем свидетельствуют показания вольтметра.

Заключение


Теперь поподробнее о достоинствах и недостатка:
Плюсы:
  • В отличии от аккумулятора суперконденсаторы надежнее справляются с пиковым пусковым током. Пуск получается надежнее.
  • Низкое напряжение вполне является рабочим.
  • Имеет низкий вес, от чего всю коробку можно запросто таскать домой на всякий случай.
  • Для пуска можно произвести зарядку даже от батареек и спокойно ехать в путь.

Минусы:
  • Большой саморазряд. Передвигаться конечно можно, но если необходимо на короткий срок включить габариты или аварийную сигнализацию — мало на что хватит энергии, при заглушенном двигателе естественно.

Ну это то что пришло в голову. Теперь о стоимости. На Али Экспресс супер конденсаторы стоят не так уж и дорого. И если посчитать их 6 и балансную защиту, то выйдет дешевле чем кислотный аккумулятор.
На этом у меня все. Надеюсь мой эксперимент был для вас познавательным и интересным. Удачи всем!

Смотрите видео


Ионисторы для машины вместо аккумулятора. Может ли ионистор заменить аккумулятор? Из чего состоит устройство конденсатора

Как только человек придумал самодвижущуюся тележку на паровом двигателе (1768г.), а позже (1886) усовершенствовал мотор до ДВС – у водителя появилась задача не только направлять лошадиные силы в нужную сторону, но и запускать их в работу.

Проблема пуска двигателя в разные времена решалась по-разному. Для парового мотора достаточно было развести огонь под котлом, бензиновые двигатели требовали мышечной силы или химического источника тока.

С появлением аккумуляторов возникла необходимость обслуживания и контроля заряда стартерных батарей, особенно в зимний период. Часто, в помощь штатному АКБ, автовладельцу приходилось использовать внешний источник тока: сетевое пусковое устройство, запасной свинцово-кислотный АКБ, или новинку последних лет компактные пусковые устройства на базе Литий-Полимеров.

Главная проблема химических источников тока – саморазряд и старение. Срок службы классического свинцово-кислотного аккумулятора со свободным электролитом составляет около 3х лет. Гелевые и AGM аккумуляторы «живут» дольше, однако и они не вечны. Даже если АКБ бездействует – в нём происходят химические процессы, которые приводят к постепенной потере ёмкости батареи.

Это замечание верно и для пусковых устройств на основе аккумуляторов, например, средний срок службы Li-Po пускача составляет 3-5 лет, за это время токопроводный гель которым наполнены аккумуляторы твердеет и постепенно теряет свои свойства. Инженеры- конструкторы давно ищут источник тока который мог бы заменить аккумуляторы и избавить автовладельцев от «слабых мест» АКБ.



Речь в данной статье пойдёт о конденсаторах. Точнее о супер-конденсаторах или ионисторах, способных отдавать огромные токи и обладающих рядом преимуществ в сравнении с аккумуляторами. Как заменить АКБ машины на сборку из конденсаторов, конструкторы ещё не придумали, однако инженерам из Carku удалось создать устройство способное помочь в запуске двигателя автомобиля, тот самый ATOM 1750 .

Главное отличие данного аппарата от аккумуляторных аналогов – вечный срок службы ! Если говорить о пусковых устройствах на базе Литий-полимерных или Свинцово-кислотных батарей, то продолжительность их работы ограничена одной-тремя тысячами циклов заряд/разряд. Конденсаторные пускачи обеспечивают до миллиона циклов. Для того, чтобы представить масштаб предположим, что Вы используете ATOM 1750 дважды в день в течение календарного года. Ресурса прибора при такой интенсивности работы хватит (1.000.000: (365х2))= 1млн. : 730=

1369 лет .

Вторая особенность – неприхотливость ионисторов. Для хранения конденсаторных пусковых устройств не нужны особые условия: вы можете положить аппарат в бардачок или под сиденье авто, и вспомнить о нём, только когда аккумулятору машины понадобится помощь. Аппарат – идеальный вариант для забывчивых водителей. Если следить за уровнем заряда батареи нет ни времени ни желания – аппарат можно спокойно хранить в машине в самые лютые холода или в жару.


Третий плюс – наличие встроенного литиевого аккумулятора. Запас энергии, который хранится в полностью заряженной Li-Ion батарее аппарата ёмкостью 6000mAh – сможет зарядить конденсаторы устройства для более чем 6 пусков подряд. Батарея не участвует в пуске, и предназначена только для зарядки конденсаторов. Вот здесь и кроется та самая ложка дёгтя: любой аккумулятор боится глубокого разряда. Если батарею на долгое время оставить без зарядки –

АКБ , рано или поздно, выйдет из строя. Саморазряд, свойственный в той или иной мере любому аккумулятору добьёт разряженную батарею. Напоминаем , что профилактическую зарядку неиспользуемой литиевой батареи необходимо проводить 1 раз в пол-года .


Высокие и низкие температуры хранения ускоряют процессы саморазряда и деградации АКБ . Температурный режим хранения встроенного аккумулятора рекомендованный производителем составляет от 0 до +25 С. Впрочем, даже если штатная батарея устройства выйдет из стоя конденсаторы АТОМ 1750 – запитанные от разряженного автомобильного АКБ всё равно смогут запустить двигатель машины.

Плюс номер четыре . Возможность зарядки ионисторов прибора от разряженной

АКБ машины. Для пуска двигателя достаточно подключить крокодилы аппарата к клеммам «уставшего » АКБ и уже через 45-60 сек. – автомобиль будет готов к старту.


Более подробно про особенности АТОМ 1750 :

Аппарат представляет собой профессиональный джамп-стартер. В отличие от Li-Po аналогов, пуск двигателя производится не за счёт энергии запасённой в аккумуляторе, а при помощи мощных ультраконденсаторов. Мощности пускача достаточно для запуска бензиновых двигателей объёмом до и для работы с дизельными моторами до .


МОЩЬ

Сборка из пяти ионисторов ёмкостью 350F каждый, выдаёт пусковые токи до 350А , что говорит о широком диапазоне применения данного устройства.


Высокий стартовый ток АТОМ 1750 подкреплён стабильным напряжением, которое выдают конденсаторы. Аппарат обеспечивает заявленный ток на протяжении 3х секунд, что является одним из важнейших условий запуска двигателя.


МОБИЛЬНОСТЬ

Вес пускача составляет 1.3 кг. Для сравнения, схожий по возможностям свинцово-кислотный бустер весит более 6 кг (DRIVE 900 ), а разница в габаритах впечатляет ещё больше.


На боковых гранях АТОМ 1750 расположены:


На передней панели расположен:

Дисплей (1) для отображения рабочих параметров, кнопка «Boost» (2) для заряда ионисторов от встроенного аккумулятора, кнопки включения фонаря и питания устройства (3).


ЗАЩИТА

В качестве силовых кабелей на аппарате используются медные провода сечением 6мм2 , длинной 300 мм.


Интеллектуальный блок, не только защищает пусковое устройство от переполюсовки, короткого замыкания и обратных токов генератора, но и позволяет за несколько минут продиагностировать АКБ машины и вывести результаты проверки на табло.


АТОМ 1750 — подскажет владельцу, что аккумулятор машины нуждается в зарядке, либо, что АКБ – пора заменить на новый.


Если при подключении к аккумулятору машины на экране появляется надпись J UMP START READY – цепь работает в штатном режиме. Можно приступать к пуску двигателя.

Надпись «REVERSED » сообщает о неправильном подключении крокодилов. Следует проверить полярность – красный зажим должен быть соединён с плюсовым контактом АКБ, чёрный с минусовым.

ЗАРЯДКА

Обратите внимание, при подключении АТОМ к источнику тока, сначала заряжаются ультраконденсаторы, затем, начинается зарядка встроенной батареи устройства.


Представим себе ситуацию, когда вокруг никого а запустить двигатель у штатного АКБ машины – не получается.


Первый способ запуска машины с помощьюАТОМ 175 – заключается в зарядке конденсаторов непосредственно от клемм разряженного АКБ автомобиля. После подключения аппарата дожидаемся появления надписи

JUMP START READY и запускаем двигатель не снимая крокодилы с клемм. Время зарядки конденсаторов зависит от уровня разряда АКБ и составляет от 45 сек до 2.5мин.


Второй способ зарядки – через гнездо прикуривателя. Атом 1750 можно подключить к бортовой сети с помощью специального переходника из комплекта. Время зарядки около 2 минут.


Третий источник энергии – встроенная батарея прибора. После нажатия на кнопку Boost – аппарат использует энергию запасённую в Литиевом аккумуляторе. Время зарядки – 2-3мин .


Ну и последний вариант зарядки, если под рукой нет иных источников, — придётся искать розетку. С помощью блока питания от мобильной электроники (5V, 2А ) – конденсаторы можно зарядить и от сети.


Ещё один Важный момент. Заряжать Атом 1750 можно не только от собственного разряженного АКБ , но и от ЛЮБОГО автомобиля-донора (большая и маленькая машины – показать). В отличие от «прикуривания» — операция зарядки ионисторов АТОМ 1750 — абсолютно безопасна, и не требует соблюдения никаких условностей, кроме полярности подключения.


ПУСК АВТОМОБИЛЯ

Для того, чтобы приступить к использованию Джамп-стартера хозяину машины следует убедиться, что зажигание автомобиля выключено. При подключении — следует соблюдать полярность: красный кабель устройства соединяется с плюсовой клеммой аккумулятора автомобиля, чёрный с минусовой клеммой.

После подключения можно приступать к запуску двигателя. Если в течение 3х секунд мотор не запустился – следует зарядить конденсаторы ещё раз и повторить попытку.

После того, как двигатель заработал «крокодилы» с клемм аккумулятора следует снять.

ATOM 1750 поставляется в картонной коробке.

В комплекте с аппаратом:

    Шнур для зарядки аппарата от прикуривателя автомобиля;

    USB-Кабель.



Напоминаем, что одним из условий продолжительной службы аппарата является своевременная зарядка встроенного аккумулятора устройства, поэтому после каждого пуска с использованием энергии аккумулятора – необходимо отправить АТОМ на зарядку. При длительном хранении рекомендуем заряжать устройство до уровня 80-90% один раз в 6 месяцев. Хранить аппарат следует при плюсовой температуре.

Для накопления электроэнергии люди сначала использовали конденсаторы. Потом, когда электротехника вышла за пределы лабораторных опытов, изобрели аккумуляторы, ставшие основным средством для запасания электрической энергии. Но в начале XXI века снова предлагается использовать конденсаторы для питания электрооборудования. Насколько это возможно и уйдут ли аккумуляторы окончательно в прошлое?

Причина, по которой конденсаторы были вытеснены аккумуляторами, была связана со значительно большими значениями электроэнергии, которые они способны накапливать. Другой причиной является то, что при разряде напряжение на выходе аккумулятора меняется очень слабо, так что стабилизатор напряжения или не требуется или же может иметь очень простую конструкцию.

Главное различие между конденсаторами и аккумуляторами заключается в том, что конденсаторы непосредственно хранят электрический заряд, а аккумуляторы превращают электрическую энергию в химическую, запасают ее, а потом обратно преобразуют химическую энерию в электрическую.

При преобразованиях энергии часть ее теряется. Поэтому даже у лучших аккумуляторов КПД составляет не более 90%, в то время, как у конденсаторов он может достигать 99%. Интенсивность химических реакций зависит от температуры, поэтому на морозе аккумуляторы работают заметно хуже, чем при комнатной температуре. Кроме этого, химические реакции в аккумуляторах не полностью обратимы. Отсюда малое количество циклов заряда-разряда (порядка единиц тысяч, чаще всего ресурс аккумулятора составляет около 1000 циклов заряда-разряда), а также «эффект памяти». Напомним, что «эффект памяти» заключается в том, что аккумулятор нужно всегда разряжать до определенной величины накопленной энергии, тогда его емкость будет максимальной. Если же после разрядки в нем остается больше энергии, то емкость аккумулятора будет постепенно уменьшаться. «Эффект памяти» свойственен практически всем серийно выпускаемым типам аккумуляторов, кроме, кислотных (включая их разновидности — гелевые и AGM). Хотя принято считать, что литий-ионным и литий-полимерным аккумуляторам он не свойственнен, на самом деле и у них он есть, просто проявляется в меньшей степени, чем в других типах. Что же касается кислотных аккумуляторов, то в них проявляется эффект сульфатации пластин, вызывающий необратимую порчу источника питания. Одной из причин является длительное нахождение аккумулятора в состоянии заряда менее, чем на 50%.

Применительно к альтернативной энергетике «эффект памяти» и сульфатация пластин являются серьезными проблемами. Дело в том, что поступление энергии от таких источников, как солнечные батареи и ветряки, сложно спрогнозировать. В результате заряд и разряд аккумуляторов происходят хаотично, в неоптимальном режиме.

Для современного ритма жизни оказывается абсолютно неприемлемо, что аккумуляторы приходится заряжать несколько часов. Например, как вы себе представляете поездку на электромобиле на дальние расстояния, если разрядившийся аккумулятор задержит вас на несколько часов в пункте зарядки? Скорость зарядки аккумулятора ограничена скоростью протекающих в нем химических процессов. Можно сократить время зарядки до 1 часа, но никак не до нескольких минут. В то же время, скорость зарядки конденсатора ограничена только максимальным током, который дает зарядное устройство.

Перечисленные недостатки аккумуляторов сделали актуальным использование вместо них конденсаторов.

Использование двойного электрического слоя

На протяжении многих десятилетий самой большой емкостью обладали электролитические конденсаторы. В них одной из обкладок являлась металлическая фольга, другой — электролит, а изоляцией между обкладками — окись металла, которой покрыта фольга. У электролитических конденсаторов емкость может достигать сотых долей фарады, что недостаточно для того, чтобы полноценно заменить аккумулятор.

Большую емкость, измеряемую тысячами фарад, позволяют получить конденсаторы, основанные на так называемом двойном электрическом слое. Принцип их работы следующий. Двойной электрический слой возникает при определенных условиях на границе веществ в твердой и жидкой фазах. Образуются два слоя ионов с зарядами противоположного знака, но одинаковой величины. Если очень упростить ситуацию, то образуется конденсатор, «обкладками» которого являются указанные слои ионов, расстояние между которыми равно нескольким атомам.

Конденсаторы, основанные на данном эффекте, иногда называют ионисторами. На самом деле, этот термин не только к конденсаторам, в которых накапливается электрический заряд, но и к другим устройствам для накопления электроэнергии — с частичным преобразованием электрической энергии в химическую наряду с сохранением электрического заряда (гибридный ионистор), а также для аккумуляторов, основанных на двойном электрическом слое (так называемые псевдоконденсаторы). Поэтому более подходящим является термин «суперконденсаторы». Иногда вместо него используется тождественный ему термин «ультраконденсатор».

Техническая реализация

Суперконденсатор представляет собой две обкладки из активированного угля, залитые электролитом. Между ними расположена мембрана, которая пропускает электролит, но препятствует физическому перемещению частиц активированного угля между обкладками.

Следует отметить, что суперконденсаторы сами по себе не имеют полярности. Этим они принципиально отличаются от электролитических конденсаторов, для которых, как правило, свойственна полярность, несоблюдение которой приводит к выходу конденсатора из строя. Тем не менее, на суперконденсаторах также наносится полярности. Связано это с тем, что суперконденсаторы сходят с заводского конвейера уже заряженными, маркировка и означает полярность этого заряда.

Параметры суперконденсаторов

Максимальная емкость отдельного суперконденсатора, достигнутая на момент написания статьи, составляет 12000 Ф. У массово выпускаемых супероконденсаторов она не превышает 3000 Ф. Максимально допустимое напряжение между обкладками не превышает 10 В. Для серийно выпускаемых суперконденсаторов этот показатель, как правило, лежит в пределах 2,3 – 2,7 В. Низкое рабочее напряжение требует использование преобразователя напряжения с функцией стабилизатора. Дело в том, что при разряде напряжение на обкладках конденсатора изменяется в широких пределах. Построение преобразователя напряжения для подключения нагрузки и зарядного устройства являются нетривиальной задачей. Предположим, что вам нужно питать нагрузку с мощностью 60 Вт.

Для упрощения рассмотрения вопроса пренебрежем потерями в преобразователе напряжения и стабилизаторе. В том случае, если вы работаете с обычным аккумулятором с напряжением 12 В, то управляющая электроника должна выдерживать ток в 5 А. Такие электронные приборы широко распространены и стоят недорого. Но совсем другая ситуация складывается при использовании суперконденсатора, напряжение на котором составляет 2,5 В. Тогда ток, протекающий через электронные компоненты преобразователя, может достигать 24 А, что требует новых подходов к схмотехнике и современной элементной базы. Именно сложностью с построением преобразователя и стабилизатора можно объяснить тот факт, что суперконденсаторы, серийный выпуск которых был начат еще в 70-х годах XX века, только сейчас стали широко использоваться в самых разных областях.

Суперконденсаторы могут соединяться в батареи с использованием последовательного или параллельного соединения. В первом случае повышается максимально допустимое напряжение. Во втором случае — емкость. Повышение максимально допустимого напряжения таким способом является одним из способов решения проблемы, но заплатить за нее придется снижением емкости.

Размеры суперконденсаторов, естественно, зависят от их емкости. Типичный суперконденсатор емкостью 3000 Ф представляет собой цилиндр диаметром около 5 см и длиной 14 см. При емкости 10 Ф суперконденсатор имеет размеры, сопоставимые с человеческим ногтем.

Хорошие суперконденсаторы способны выдержать сотни тысяч циклов заряда-разряда, превосходя по этому параметру аккумуляторы примерно в 100 раз. Но, как и у электролитических конденсаторов, для суперконденсаторов стоит проблема старения из-за постепенной утечки электролита. Пока сколь-нибудь полной статистики выхода из строя суперконденсаторов по данной причине не накоплено, но по косвенным данным, срок службы суперконденсаторов можно приблизительно оценить величиной 15 лет.

Накапливаемая энергия

Количество энергии, запасенной в конденсаторе, выраженное в джоулях:

где C — емкость, выраженная в фарадах, U — напряжение на обкладках, выраженное в вольтах.

Количество энергии, запасенной в конденсаторе, выраженное в кВтч, равно:

Отсюда, конденсатор емкостью 3000 Ф с напряжением между обкладками 2,5 В способен запасти в себе только 0,0026 кВтч. Как это можно соотнести, например, с литий-ионным аккумулятором? Если принять его выходное напряжение не зависящим от степени разряда и равным 3,6 В, то количество энергии 0,0026 кВтч будет запасено в литий-ионном аккумуляторе емкостью 0,72 Ач. Увы, весьма скромный результат.

Применение суперконденсаторов

Системы аварийного освещения являются тем местом, где использование суперконденсаторов вместо аккумуляторов дает ощутимый выигрыш. В самом деле, именно для этого применения характерна неравномерность разрядки. Кроме этого, желательно, чтобы зарядка аварийного светильника происходила быстро, и чтобы используемый в нем резервный источник питания имел большую надежность. Источник резервного питания на основе суперконденсатора можно встроить непосредственно в светодиодную лампу T8. Такие лампы уже выпускаются рядом китайских фирм.

Как уже отмечалось, развитие суперконденсаторов во многом связано с интересом к альтернативным источникам энергии. Но практическое применение пока ограничено светодиодными светильниками, получающими энергию от солнца.

Активно развивается такое направление как использование суперконденсаторов для запуска электрооборудования.

Суперконденсаторы способны дать большое количество энергии в короткий интервал времени. Запитывая электрооборудование в момент пуска от суперконденсатора, можно уменьшить пиковые нагрузки на электросеть и в конечном счете уменьшить запас на пусковые токи, добившись огромной экономии средств.

Соединив несколько суперконденсаторов в батарею, мы можем достичь емкости, сопоставимой с аккумуляторами, используемыми в электромобилях. Но весить эта батарея будет в несколько раз больше аккумулятора, что для транспортных средств неприемлемо. Решить проблему можно, используя суперконденсаторы на основе графена, но они пока существуют только в качестве опытных образцов. Тем не менее, перспективный вариант знаменитого «Ё-мобиля», работающий только от электричества, в качестве источника питания будет использовать суперконденсаторы нового поколения, разработка которых ведется российскими учеными.

Суперконденсаторы также дадут выигрыш при замене аккумуляторов в обычных машинах, работающих на бензине или дизельном топливе — их использование в таких транспортных средствах уже является реальностью.

Пока же самым удачным из реализованных проектов внедрения суперконденсаторов можно считать новые троллейбусы российского производства, вышедшие недавно на улицы Москвы. При прекращении подачи напряжения в контактную сеть или же при «слетании» токосъемников троллейбус может проехать на небольшой (порядка 15 км/ч) скорости несколько сотен метров в место, где он не будет мешать движению на дороге. Источником энергии при таких маневрах для него является батарея суперконденсаторов.

В общем, пока суперконденсаторы могут вытеснить аккумуляторы только в отдельных «нишах». Но технологии бурно развиваются, что позволяет ожидать, что уже в ближайшем будущем область применения суперконденсаторов значительно расширится.

Алексей Васильев

Большинство современных конденсаторов имеют емкость в микрофарадах или пикофарадах. Емкость Ионисторов исчисляется Фарадами.
Что бы понять насколько это много, можно вспомнить формулу по которой можно рассчитать необходимую емкость в зависимости от нагрузки.

Где
С — емкость, Ф;
I — постоянный ток разрядки, А;
U — номинальное напряжение ионистора, В;
t — время разрядки от Uном до нуля, с;

Сейчас на рынке уже есть ионисторы емкостью в десятки Фарад.
К примеру есть ионистор на 5,5 Вольта емкостью 22 Фарада. Мы зарядим его полностью и подключим лампочку на 1 Ватт (5,5 Вольт 0,18 Ампера).

Итого:
22 Фарада = 0,18 Ампера t / 5,5 Вольта
t = 672 секунды

Исходя из формулы выше наша лампочка будет гореть 672 секунды или 12 минут. Кажется что это не такая большая величина, но на самом деле мы можем использовать несколько ионисторов сразу.
Для примера существуют суперконденсаторы намного большей емкости.

К примеру на новом российском авто Ё-мобиль используются конденсаторы фирмы http://www.elton-cap.com/ .
Ионисторы этой фирмы достигают емкости в 10 000 Фарад при напряжении 1,5 Вольта. Так же они производят ячейки (модули) с несколькими ионисторами емкостью в 1000 Фарад и рабочим напряжением 15 Вольт.

К сожалению у Суперконденсаторов есть достоинства и недостатки.

Суперконденсаторы достаточно дорогие поэтому не составляют конкуренции батареям (аккумуляторам), так как конденсаторы емкостью равной емкости одного аккумулятора обойдутся вам в тысячи долларов.
Темнеменее использование суперконденсаторов в электронике более чем оправдано.
— к сожалению на контантах суперконденсаторов во время всего цикла разрядки падает напряжение, поэтому для устройств которые требуют постоянного напряжение это не применимо. Возможен вариант использования стабилизатора, но при этом устройство будет потреблять больше энергии.
— к сожалению суперконденсатор нельзя полноценно использовать вместе с аккумулятором. Если их подключить параллельно из-за внутреннего сопротивления, аккумуляторная батарея всегда будет отдавать больше тока чем конденсатор.
При этом если потребитель использует импульсный источник питания, в те моменты когда батарея и конденсатор будут отключены — батарея будет заряжать конденсатор, при этом с большими токами и щадящего режима для батареи просто не получится.
Единственный выход использовать Ионисторы как дополнительный источник питания, тоесть заряжать их во время когда сеть не нагружена и полностью отдавать их энергию в нужные моменты, после чего подключать батарею, когда энергия уже исчерпана.
Это значительно усложняет систему а значит и цену таких устройств.
Однако все так же еффективно эти конденсаторы можно использовать в системах рекуперации энергии.

Очень большое колличество циклов заряда и разряда
+ большие токи отдачи
+ Суперконденсаторы достаточно быстро заряжаются (практически моментально зависит от того какой ток может обеспечить зарядное устройство)
+ Суперконденсаторы намного меньше обычных конденсаторов и в тоже время имеют намного большую емкость.
+ широкий рабочий диаппазон температур (от -50 до + 50 градусов цельсия)

Возможно за суперконденсаторами будущее, но к сожалению на данный момент они вряд ли смогут полностью заменить аккумуляторы.



Хотя на некоторых автомобилях уже сейчас заменяются пусковые батареи на суперконденсаторы, которые куда более эффективно выполняют свои функции. В часности они отдают моментально очень большие токи которые необходимы для удачного пуска двигателя особенно в холодную погоду.

Суперконденсатор, также известный как ультраконденсатор или двухслойный конденсатор, отличается от обычного конденсатора тем, что имеет очень большую емкость. Конденсатор хранит энергию с помощью статического заряда, в противовес электрохимическим реакциям батареи. Применение дифференциального напряжения на положительную и отрицательную пластины заряжает конденсатор. Это похоже на накопление статического заряда при трении. Прикосновение же к пластине конденсатора высвободит энергию.

Существует три типа конденсаторов, основным среди них является электростатический конденсатор с сухим сепаратором. Эта классическая модель конденсатора имеет очень маленькую емкость и в основном используется в радиоэлектронике. Емкость конденсатора измеряется в фарадах и для электростатического колеблется в диапазоне пикофарад (пФ).

Следующий тип конденсатора — электролитический, он обеспечивает более высокую емкость в сравнении электростатическим и оценивается в микрофарадах (мкФ), что в миллион раз больше пикофарада. Сепаратор в таких конденсаторах влажного типа. Как и в электрических батареях, конденсаторы имеют разные полюса, которые необходимо соблюдать при использовании.

Третий тип – это суперконденсатор, его емкость оценивается в фарадах и в тысячи раз больше емкости электролитического. Суперконденсатор используется для хранения энергии, подвергающейся частым циклам заряда/разряда при высоких значениях силы тока и короткой длительности.

Единица измерения емкости фарад, названа так в честь английского физика Майкла Фарадея (1791-1867). Один фарад хранит один кулон электрического заряда при напряжении один вольт. Один микрофарад в миллион раз меньше фарада, а пикофарад в миллион раз меньше микрофарада.

Инженеры General Electric начали экспериментировать с ранней версией суперконденсатора еще в 1957 году, но коммерческого интереса эти разработки не вызвали. В 1966 году Standart Oil заново случайно обнаружили эффект двухслойного конденсатора во время работы с экспериментальными конструкциями топливных элементов. Двухслойная структура значительно улучшала способность накапливать энергию. Технология снова не была коммерциализирована и лишь 1990-х нашла свое применение.

Развитие суперконденсаторов тесно переплетено с технологиями электрохимических источников тока, именно оттуда были позаимствованы специальные электроды и электролит. В то время как основной электрохимический двухслойный конденсатор (EDLC) зависит от электростатического действия, асимметричный двухслойный электрохимический конденсатор (AEDLC) использует батарееподобные электроды для получения более высокой плотности энергии, но это ограничивает его жизненный цикл и наделяет ограничениями, схожими на ограничения электрохимического источника тока. Многообещающим выглядит использование графена в качестве материала электрода, но исследования в этом направлении пока только ведутся.

Было испробовано много типов электродов, и наиболее распространенной системой электрохимического двухслойного суперконденсатора сегодня является версия на основе углерода с органическим электролитом. Неоспоримым преимуществом такого суперконденсатора является простота изготовления.

Все конденсаторы имеют предел напряжения. В то время как электростатический конденсатор является высоковольтным, суперконденсатор ограничен напряжением в 2,5-2,7 В. Повышение значения напряжения выше этого уровня возможно, но негативно сказывается на продолжительности срока службы. Поэтому для получения более высокого напряжения используют последовательное соединение нескольких суперконденсаторов. В свою очередь, последовательное соединение уменьшает общую емкость и увеличивает внутреннее сопротивление. Такое соединение более чем трех конденсаторов требует дополнительной балансировки для избежания перенапряжения отдельной ячейки. Похожим образом реализована система защиты литий-ионного аккумулятора.

Возьмите источник тока с номинальным напряжением 6 В и напряжением отсечки 4,5 В. Если этот источник тока – суперконденсатор, то из-за своего линейного характера разряда он достигнет точки отсечки еще в первой четверти цикла, остальные три четверти энергетического резерва будут недоступными для использования. Можно конечно дополнительно использовать преобразователь напряжения — он позволит пользоваться источником питания и с низким значением напряжения, но это добавляет дополнительные расходы и приводит к потерям энергии. Электрическая же батарея имеет график разряда в виде относительно прямой линии, что позволяет использовать от 90 до 95 % накопленной в ней энергии.

На рисунках 1 и 2 показаны характеристики тока и напряжения при заряде и разряде суперконденсатора. При зарядке напряжение увеличивается линейно, а ток проседает, когда конденсатор полностью зарядился, вследствие этого даже отпадает необходимость использования системы детектирования полного заряда. При разрядке напряжение уменьшается также линейно. Для поддержания постоянного уровня потребляемой мощности при падении напряжения, преобразователь напряжения будет потреблять все большую силу тока. Разряд будет достигнут, когда нагрузочные требования больше не могут быть удовлетворены.

Рисунок 1: Зарядные характеристики суперконденсатора. Напряжение линейно растет при постоянном уровне тока заряда. При полном заполнении конденсатора зарядный ток падает.

Рисунок 2: Разрядные характеристики суперконденсатора. При разряде напряжение снижается линейно. Опциональный преобразователь напряжения может поддерживать определенный показатель напряжения, но это увеличивает показатель силы тока разряда.

Время зарядки суперконденсатора составляет от 1 до 10 секунд. Зарядные характеристики аналогичны характеристикам электрохимических батарей, и в значительной степени ограничены допустимой силой тока зарядного устройства. Суперконденсатор невозможно зарядить сверх его емкости, вследствие этого ему не нужна система детектирования полного заряда — ток просто перестает течь в него.

В таблице 3 сравниваются суперконденсатор и стандартный литий-ионный аккумулятор.

ХарактеристикиСуперконденсаторСтандартный литий-ионный аккумулятор
Время зарядки1-10 секунд10-60 минут
Количество циклов1 миллион или 30 тысяч часов500 и выше
Напряжение ячейкиОт 2,3 до 2,75 В3,6 В номинал
Удельная энергоемкость (Вт*ч/кг)5 (стандартно)120-240
Удельная мощность (Вт/кг)до 10 тысяч1000-3000
Стоимость килограмм ватта$ 10000 (стандартно)$ 250-1000 (большие системы)
Время жизни10-15 летот 5 до 10 лет
Допустимый зарядный диапазон температурот -40°С до 65°Сот 0°С до 45°С
Допустимый разрядный диапазон температурот -40°С до 65°Сот -20°С до 60°С

Таблица 3: Сравнение производительности суперконденсатора и литий-ионного аккумулятора.

Суперконденсатор может заряжаться и разряжаться практически неограниченное число раз. В отличии от электрохимической батареи, в которую заложен жизненный цикл определенного размера, суперконденсатор практически нечувствителен к воздействию циклического режима работы. Также слабее на него действуют и возрастные изменения, связанные с деградацией материалов. При нормальных условиях емкость суперконденсатора после 10 лет эксплуатации сохраняется на уровне 80% от номинальной. Но работа с высокими напряжениями может снизить его срок жизни. Также стоит отметить преимущество суперконденсатора по температурным показателях — слабым местом всех электрохимических источников тока.

Саморазряд суперконденсатора значительно выше у обычных конденсаторов и немного превышает показатель электрохимической батареи. Причиной такого высокого саморазряда, главным образом, выступают свойства органического электролита. Для сравнения, суперконденсатор теряет половину запасенной энергии за 30-40 дней, а свинцовые и литиевые аккумуляторы саморазряжаются всего на 5% в месяц.

Применение суперконденсаторов

Суперконденсаторы являются идеальным выбором в случаях, где возникает краткосрочная потребность в питании и есть возможность быстрой зарядки. В противовес этому, электрохимические батареи оптимизированы для обеспечения относительно долгосрочного электропитания. Объединение этих двух систем в гибридный источник питания позволяет использовать сильные стороны каждой. Такие гибриды уже существуют, например, в виде союза суперконденсатора и свинцово-кислотной электрохимической системы .

Суперконденсаторы находят свое применение в системах, где необходимо обеспечение питания продолжительностью от нескольких секунд до нескольких минут, и также могут быть быстро заряжены. Подобными качествами располагает и маховик (инерционный аккумулятор), поэтому суперконденсатор может выступать ему альтернативой в определенных процессах, например, транспортной сфере.

Сегодня продолжаются испытания системы суперконденсаторов мощностью 2 мВт и системы маховиков мощностью 2,5 мВт для обеспечения движения Нью-Йоркской железной дороги (Long Island Rail Road — LIRR). Целью этих испытаний является поиск решения проблемы проседания напряжения при разгоне. Обе системы должны обеспечивать бесперебойную подачу электроэнергии определенной мощности в течение 30 секунд, а также заряжаться за такой же период времени. Главными требованиями являются колебание напряжения в диапазоне не более 10 %, низкие эксплуатационные расходы и долговечность не менее 20 лет. (Пока что больший интерес вызывали маховики, так как считается, что они более прочные и экономичные, но испытания еще продолжаются).

Япония также активно исследует и развивает использование суперконденсаторов. Уже существуют 4 мВт системы, установленные в зданиях, предназначение которых заключается в уменьшении нагрузки на электросети в часы пик. Также существуют системы, обеспечивающие кратковременное электропитание в моменты между отключением электричества и запуском резервных генераторов.

Технологии суперконденсаторов также смогли проникнуть в область электротранспорта. Возможность зарядки за счет сил торможения и способность обеспечения высоких показателей силы тока для ускорения делают суперконденсаторы крайне интересными для гибридных и электрических транспортных средств. Широкий диапазон рабочих температур и долговечность дают преимущество над электрохимическими батареями в этой сфере.

Но недостатки суперконденсаторов, такие как низкая удельная энергоемкость и высокая стоимость, побуждают некоторых разработчиков делать выбор в пользу более емкого аккумулятора за ту же стоимость. В таблице 4 приведены преимущества и недостатки суперконденсаторов.

ПреимуществаПрактически неограниченный жизненный цикл; может быть перезаряжен миллионы раз
Высокая удельная мощность и низкое внутреннее сопротивление обеспечивают высокие токи нагрузки
Процесс зарядки занимает секунды; сам прекращает процесс зарядки
Простой процесс и условия зарядки
Безопасный, устойчивый к неправильной эксплуатации
Отличные показатели работы при низких температурах
НедостаткиНизкая удельная энергоемкость
Линейный характер снижения напряжения не позволяет использовать всю накопленную энергию
Высокий саморазряд, выше, чем у электрических батарей
Низкое напряжение ячейки, необходимость последовательного соединения и балансировки систем из нескольких ячеек
Высокая стоимость ватта энергии

Суперконденсаторы или Ионисторы вместо аккумулятора.

Большинство современных конденсаторов имеют емкость в микрофарадах или пикофарадах. Емкость Ионисторов исчисляется Фарадами.
Что бы понять насколько это много, можно вспомнить формулу по которой можно рассчитать необходимую емкость в зависимости от нагрузки.

C=I·t/U ,
 
где
С — емкость, Ф;
I — постоянный ток разрядки, А;
U — номинальное напряжение ионистора, В;
t — время разрядки от Uном до нуля, с;

Сейчас на рынке уже есть ионисторы емкостью в десятки Фарад.
К примеру есть ионистор на 5,5 Вольта емкостью 22 Фарада. Мы зарядим его полностью и подключим лампочку на 1 Ватт (5,5 Вольт  0,18 Ампера).

Итого:
22 Фарада = 0,18 Ампера  t / 5,5 Вольта
t = 672 секунды

Исходя из формулы выше наша лампочка будет гореть  672 секунды или 12 минут. Кажется что это не такая большая величина, но на самом деле мы можем использовать несколько ионисторов сразу.
Для примера существуют суперконденсаторы намного большей емкости.

Модуль суперконденсаторов Maxwell на 500 фарад. Рабочее напряжение 12Вольт — 48 Вольт

К примеру на новом российском авто Ё-мобиль используются конденсаторы фирмы http://www.elton-cap.com/.
Ионисторы этой фирмы достигают емкости в  10 000 Фарад при напряжении 1,5 Вольта. Так же они производят ячейки (модули) с несколькими ионисторами емкостью в 1000 Фарад и рабочим напряжением 15 Вольт.

К сожалению у Суперконденсаторов есть достоинства и недостатки.

— Суперконденсаторы достаточно дорогие поэтому не составляют конкуренции батареям (аккумуляторам), так как конденсаторы емкостью равной емкости одного аккумулятора обойдутся вам в тысячи долларов.
Темнеменее использование суперконденсаторов в электронике более чем оправдано.
— к сожалению на контантах суперконденсаторов  во время всего цикла разрядки падает напряжение, поэтому для устройств которые требуют постоянного напряжение это не применимо. Возможен вариант использования стабилизатора, но при этом устройство будет потреблять больше энергии.
— к сожалению суперконденсатор нельзя полноценно использовать вместе с аккумулятором. Если их подключить параллельно из-за внутреннего сопротивления, аккумуляторная батарея всегда будет отдавать больше тока чем конденсатор.
При этом если потребитель использует импульсный источник питания, в те моменты когда батарея и конденсатор будут отключены — батарея будет заряжать конденсатор, при этом с большими токами и щадящего режима для батареи просто не получится.
Единственный выход использовать Ионисторы как дополнительный источник питания, тоесть заряжать их во время когда сеть не нагружена и полностью отдавать их энергию в нужные моменты, после чего подключать батарею, когда энергия уже исчерпана.
Это значительно усложняет систему а значит и цену таких устройств.
Однако все так же еффективно эти конденсаторы можно использовать в системах рекуперации энергии.

+ очень большое колличество циклов заряда и разряда
+ большие токи отдачи
+ Суперконденсаторы достаточно быстро заряжаются (практически моментально зависит от того какой ток может обеспечить зарядное устройство)
+ Суперконденсаторы  намного меньше обычных конденсаторов и в тоже время имеют намного большую емкость.
+ широкий рабочий диаппазон температур (от -50 до + 50 градусов цельсия)

Возможно за суперконденсаторами будущее, но к сожалению на данный момент они вряд ли смогут полностью заменить аккумуляторы.

Суперконденсаторы BOOSTCAP большой емкости для увеличение потенциала электромобиля. Соединены параллельно с аккумуляторной батарей

Сборка из 200 суперконденсаторов BOOSTCAP установленных в багажник электромобиля для уменьшения нагрузки на аккумуляторы и ускорения зарядки

Хотя на некоторых автомобилях уже сейчас заменяются пусковые батареи на суперконденсаторы, которые куда более эффективно выполняют свои функции. В часности они отдают моментально очень большие токи которые необходимы для удачного пуска двигателя особенно в холодную погоду.

Ионисторы, литий-ионные суперконденсаторы


Рис. 1. Конструкция конденсаторов. Слева на право: «обычный» конденсатор, электролитический, ионистор.

Ионистор — двухслойный электрохимический конденсатор

Ионистор (двухслойный электрохимический конденсатор, суперконденсатор, ультраконденсатор — англ. Electric double-layer capacitor, polyacene capacitors…) — электрохимическое устройство, конденсатор с органическим или неорганическим электролитом, «обкладками» в котором служит двойной электрический слой на границе раздела электрода и электролита. Функционально представляет собой гибрид конденсатора и химического источника тока. Толщина двойного электрического слоя в ионисторах (то есть расстояние между «обкладками» конденсатора) крайне мала за счет использования электролитов, а площадь пористых материалов обкладок — колоссальна, запасенная ионистором энергия выше по сравнению с обычными конденсаторами того же размера. К тому же использование двойного электрического слоя вместо обычного диэлектрика позволяет намного увеличить площадь поверхности электрода. Типичная емкость ионистора — несколько фарад при номинальном напряжении 2-10 вольт.

Применяются для основного и резервного питания в бытовой техники — в цифровых и зеркальных фотоаппаратах, фотовспышках, фонарях, карманных плеерах и автоматических коммунальных счетчиках — везде, где требуется быстро зарядить устройство, или на длительное время сохранить питания энергозависимой памяти при отключении основных источников питания (аккумулятора, сетевого блока питания).
Пример: в фотоаппаратах ионистор обеспечивает питание таймера, фотокамера без основного источника питания (аккумулятора или батареек) длительное время сохраняет настройки времени и даты.

Литий-ионные конденсаторы: устройство и принцип работы

Литий-ионные суперконденсаторы являются гибридом двойнослойного конденсатора и литий-ионного аккумулятора. Значения их удельных энергетических и мощностных характеристик находятся в пределах между значениями, свойственными литий-ионным аккумуляторам и суперконденсаторам.

В настоящее время для автономного питания электронный устройств применяются аккумуляторы (свинцовые, никель-кадмиевые, никель-металл-гидридные, литий-ионные и др.), электрохимические конденсаторы (двойнослойные конденсаторы (ДСК), псевдоконденсаторы (ПсК)) и другие. Каждый тип имеет свои энергетические и мощностные характеристики, ресурс в циклах заряд/разряд, температурный диапазон эксплуатации, показатель саморазряда, которые определяют области их применения. Например, ДСК обеспечивают большую мощность, могут разряжаться большими токами в короткие интервалы времени, но небольшую энергоемкость, тогда как аккумуляторы, имея меньшую мощность, обладают большей энергоемкостью. С целью обеспечения большей энергоемкости и мощности разрабатывают и производят устройства, являющиеся гибридом ДСК и аккумуляторов — гибридные конденсаторы. Для их изготовления используют электроды различных типов. Например, отрицательный электрод может быть сделан с применением активированного угля (электрод в двойнослойных конденсаторах ДСК). В качестве электроактивного компонента положительного электрода применяют, в частности, оксид металла (NiO, PbO2 — электрод аккумулятора). В связи с развитием литий-ионных технологий, позволяющих создавать энергоемкие аккумуляторы, большой интерес вызывают гибридные конденсаторы, представляющие собой гибрид двойнослойного конденсатора — ДСК и литий-ионного аккумулятора (ЛИА) — литий-ионный суперконденсатор (ЛИСК). Такие системы демонстрируют повышенные мощностные, энергетические и ресурсные характеристики. Данный тип устройств в англоязычной литературе относят к ассиметричным двойнослойным электрохимическим конденсаторам (Asymmetric electrochemical double layer capacitors, AEDLC).

Устройство и принцип работы литий-ионного суперконденсатора

При изготовлении литий-ионного суперконденсатора обычно используют следующие пары активных материалов электродов (отрицательный электрод/положительный электрод):

  • Li4Ti5O12/углеродный материал с развитой поверхностью;
  • графит (неграфитизированный углерод)/углеродный материал с развитой поверхностью;
  • смесь Li4Ti5O12 и углерода с развитой поверхностью/смесь катодного материала литий-ионного аккумулятора (LiFePO4, LiMn2O4, LiNixCoyMn(1-x-y)O2 и другие литиевые соли или оксиды металлов с переменной валентностью) и углерода с развитой поверхностью.

В двух первых типах ЛИСК от ДСК взят положительный электрод (углеродный материал с развитой поверхностью), а от ЛИА — отрицательный (графит или нанотитанат Li4Ti5O12). Тип Li4Ti5O12/углеродный материал с развитой поверхностью исторически возник первым, однако на данный момент не имеет большого распространения. Третий тип появился совсем недавно и отличается тем, что в нем и анод, и катод включают композиционные материалы, как ЛИА, так и ДСК. При его функционировании как на аноде, так и на катоде параллельно протекают процессы, характерные для работы ЛИА и ДСК. На данный момент наиболее популярными считаются устройства, содержащие графит в составе отрицательного электрода и углеродный материал с развитой поверхностью в составе положительного электрода, то есть относящиеся ко второму типу ЛИСК.


Рисунок 2. Схематичное описание направлений движения заряженных частиц при заряде/разряде: а) ДСК; б) ЛИСК; в) ЛИА (ионы обозначены синим цветом, анионы — оранжевым, оранжевыми стрелками показан процесс заряда, синими — разряда).

ДСК имеет два одинаковых электрода, выполненных из углерода с развитой поверхностью, нанесенного на металлическую фольгу; электроды помещены в электролит. Обычно электролит представляет собой соли, растворенные в органических растворителях. В процессе растворения образуются катионы (например, ТЕМА+ — триэтилметил аммоний) и анионы (к примеру, BF4–). При заряде ДСК катионы и анионы, входящие в состав электролита, локализуются на поверхности отрицательного и положительного электродов соответственно (рис. 2а). При разряде катионы и анионы переходят с поверхности электродов обратно в раствор электролита. В ЛИА протекают другие электрохимические процессы. При заряде положительно заряженные ионы лития интеркалируют (встраиваются) в структуру графита и удаляются из катодного материала — деинтеркалируют (рис. 2в). При разряде ионы лития выходят из структуры графита и встраиваются обратно в структуру катодного материала. Электролит в данном случае выступает в качестве среды, обеспечивающей перенос ионов лития, то есть его функция отлична от электролита в ДСК, где он является источником катионов и анионов. При заряде ЛИСК происходит локализация анионов (PF6–) на поверхности положительного электрода и внедрение катионов (Li+) лития в структуру активного материала отрицательного электрода (графит), (рис. 2б). В данном случае электролит становится средой, обеспечивающей перенос ионов лития, и источником анионов для положительного электрода, совмещая две описанные выше функции. При разряде ЛИСК происходят обратные процессы. Емкость ДСК определяется емкостью каждого из электродов и вычисляется по формуле: 1/Сячейки = 1/С+1/С+.

В случае симметричного конденсатора С = С+ = С и Сячейки = С/2. Заряд накапливается на поверхности обоих электродов. Если на положительном электроде работает поверхность, то в отрицательном электроде можно добиться того, чтобы работал объем, — другими словами, происходило внедрение ионов лития в активный материал. Замена активного материала отрицательного электрода (углерода с развитой удельной поверхностью) на материалы, способные к обратимому внедрению лития, например, предварительно литированный графит, обладающий значительно большей емкостью, чем материал положительного электрода (С >> С+), приводит к повышению общей емкости ячейки в два раза. Тогда емкость ячейки — Сячейки = С+ — целиком определяется емкостью положительного электрода. У ДСК, имеющего симметричную конструкцию, заряд катода и анода при разряде изменяется одинаково. Максимальное напряжение устройства примерно равно 2,5 Вольт (рис. 3а). Напряжение полностью заряженного ЛИСК выше, чем у ДСК, и составляет 3,8–4 Вольта (рис. 3б).


Рисунок 3. Изменение напряжения: а) ДСК; б) ЛИСК при заряде/разряде (зеленым обозначено напряжение на ячейке, синим — потенциал анода, красным — потенциал катода; потенциалы электродов указаны относительно потенциала лития).

Увеличение напряжения устройства достигается ввиду использования в качестве анода литированного графита, потенциал которого близок к потенциалу металлического лития. При разряде потенциал катода снижается, а потенциал анода несколько увеличивается из-за деинтеркаляции лития. Для обеспечения длительного ресурса напряжение на ячейке не должно уменьшаться ниже или повышаться больше значений, указанных производителем. Таким образом, ЛИСК устойчиво работает в определенном диапазоне напряжений.

Основные производители литий-ионных конденсаторов

Первые ЛИСК, появившиеся на рынке, были изготовлены компаниями Fuji Heavy Industries в сотрудничестве с Nihon Micro Coating (2002–2005 гг.), Advanced Capacity Technologies (EcoCache — 2005, Premlis — 2006), JM Energy (2007), FDK (2007) и другими фирмами.

Сравнительный анализ энергетических и мощностных характеристик литий-ионных суперконденсаторов наглядно представлен на диаграмме (рис. 4).


Рисунок 4. Сравнение ЛИСК с другими устройствами, применяемыми для сохранения электроэнерги.

Литий-ионные суперконденсаторы в сравнении с двойнослойными конденсаторами обладают большим напряжением (до 4 В), большей удельной энергией (до 25 Вт·ч/кг), (рис. 4), меньшим саморазрядом (

По сравнению с литий-ионными аккумуляторами они имеют большую удельную мощность (до 2800 Вт/кг, находятся правее по сравнению с аккумуляторами, рис. 4), больший ресурс (10 000–500 000 циклов) и лучшую работоспособностью при высоких температурах (до 80 °C).

Суперконденсаторы

— жизнеспособная альтернатива технологии литий-ионных батарей?

11 ноя 2020

14376 Просмотры

8 мин чтения

Введение

Суперконденсаторы

, также называемые ультраконденсаторами, двухслойными конденсаторами или электрохимическими конденсаторами, представляют собой тип системы накопления энергии, привлекающий в последние годы многих экспертов.Проще говоря, их можно представить как нечто среднее между обычным конденсатором и батареей; тем не менее, они отличаются от обоих.

Прежде чем мы углубимся в нюансы того, могут ли суперконденсаторы сами по себе влиять на то, как можно хранить энергию в будущем, стоит узнать больше о том, как они работают и чем они отличаются от литий-ионных аккумуляторов.

Суперконденсаторы и батареи, они оба являются методами хранения. Если мы посмотрим на литий-ионные батареи, они полностью зависят от химических реакций.Они состоят из положительной и отрицательной стороны, технически называемых анодом и катодом. Эти две стороны погружены в жидкий электролит и разделены микроперфорированным сепаратором, через который проходят только ионы. Во время зарядки и разрядки аккумуляторов ионы имеют тенденцию перемещаться взад-вперед между анодом и катодом. В процессе переноса ионов батарея нагревается, расширяется, а затем сжимается. Эти реакции постепенно разрушают батарею, что приводит к сокращению срока ее службы.Однако существенным преимуществом аккумуляторной технологии является то, что она имеет очень высокую удельную энергию или плотность энергии для хранения энергии для последующего использования.

Но суперконденсаторы разные; они не полагаются на химическую игру, чтобы функционировать. Вместо этого они накапливают в себе потенциальную энергию электростатически. В суперконденсаторах между пластинами используется диэлектрик или изолятор, чтобы разделить совокупность положительных (+ ve) и отрицательных (-ve) зарядов на пластинах с каждой стороны. Именно такое разделение позволяет устройству накапливать энергию и быстро ее высвобождать.Он в основном улавливает статическое электричество для использования в будущем. Самым значительным преимуществом этого является то, что конденсатор 3 В теперь по-прежнему будет конденсатором 3 В через 15-20 лет. Напротив, с другой стороны, аккумулятор может терять емкость по напряжению со временем и при повторном использовании.

Кроме того, в отличие от батареи, они имеют более высокую пропускную способность, что означает, что они могут заряжаться и разряжаться за меньшее время. Тем не менее, они имеют очень низкую удельную энергию по сравнению с батареями. Суперконденсаторы лучше всего подходят для очень небольших всплесков мощности.

Сама концепция «суперконденсатора » вовсе не нова. Первый суперконденсатор был создан GE (General Electric) в 1957 году. Standard Oil, случайно в 1966 году открыли двухслойный конденсатор при работе с топливными элементами. Тем не менее, только в конце 1970-х годов японская компания NEC начала коммерчески предлагать первый «суперконденсатор» для резервного копирования памяти компьютера.

Мы находимся на этапе, когда применение суперконденсаторов только начинается.В целом было обнаружено, что суперконденсаторы обладают наибольшим потенциалом для применения в гибридных транспортных средствах (намекает на приобретение Tesla — Maxwell).

Peugeot-Citroen, Toyota, Mazda и даже Lamborghini выпустили модели автомобилей, в которых используется определенная комбинация суперконденсаторов и обычных литий-ионных аккумуляторов. Такие автомобили, как концепт Toyota Hybrid-R и мощный Sian от Lamborghini, используют суперконденсаторы для определенной роли. Например, они использовали его в системах рекуперации энергии во время замедления автомобиля.Проще говоря, когда автомобили замедляются, энергия, генерируемая в результате этого действия, накапливается бортовыми суперконденсаторами и позже используется для ускорения. Приводит к экономии батарей для менее напряженных действий, чем ускорение и замедление. В нем используется превосходная пропускная способность суперконденсаторов.

Интересно, что Илон Маск недавно заявил, что приобретение Tesla компании Maxwell окажет значительное влияние на батареи . Это было связано с объявлением Tesla о приобретении компании Maxwell, производящей ультраконденсаторы и аккумуляторы из Сан-Диего, за более чем 200 миллионов долларов.Было неясно, было ли это для основного бизнеса компании, суперконденсаторов, или для ее новейшей технологии аккумуляторов, такой как новая технология сухих электродов для аккумуляторных элементов.

В Швейцарии можно увидеть фантастический пример того, насколько эффективны суперконденсаторы. Парк автобусов имеет зарядные станции на различных остановках на своем ежедневном коммутационном маршруте. Всего за 15 секунд можно зарядить аккумулятор, а для полной зарядки хватит всего нескольких минут. За счет частых дозаправок он восполняет недостаток плотности и накопления энергии.А поскольку суперконденсаторы потребляют более низкий ток в течение нескольких минут за раз, это снижает нагрузку на сеть.

Почему суперконденсаторы вызывают большой интерес и чем они отличаются, например, от литий-ионных батарей?

Ответ на этот вопрос может во многом зависеть от приложений, для которых они могут использоваться. Действительно, у каждой технологии есть несколько явных преимуществ и недостатков. Как упоминалось ранее, батареи имеют гораздо более высокую плотность энергии и , чем суперконденсаторы.

Это означает, что аккумуляторы больше подходят для приложений с более высокой плотностью энергии, например, для приложений, в которых устройство должно работать в течение длительных периодов времени на одной зарядке. С другой стороны, суперконденсаторы имеют гораздо более высокую удельную мощность, чем батареи. Это делает их идеальными для приложений с высоким энергопотреблением, таких как питание электромобиля. Пожалуйста, обратитесь к выставке ниже для сравнительного обзора.

Суперконденсаторы

также имеют гораздо больший срок службы, чем батареи. Обычная батарея может выдерживать около 2000-3000 циклов зарядки и разрядки, в то время как ультраконденсаторы обычно выдерживают более 1000000 циклов.Это может дать значительную экономию материалов и затрат.

Волнение действительно кажется заслуженным. Суперконденсаторы могут перезаряжаться за секунды, и в отличие от батарей, которые зависят от внутренних химических реакций и, следовательно, быстро изнашиваются, суперконденсаторы не разрушаются со временем. Суперконденсатор на 2,7 В сегодня будет суперконденсатором на 2,7 В через 15 лет. Для сравнения, все современные конструкции аккумуляторов постепенно теряют производительность, что означает, что ваша 12-вольтовая батарея сегодня может быть 11-вольтовой.Аккумулятор на 4 вольта всего за три года.

Возможно, все еще существует некоторая распространенная путаница с точки зрения хранения энергии. Таблица 6, показанная ниже, может прояснить, как эти две технологии сравниваются по характеристикам плотности мощности и плотности энергии, включая некоторые другие формы накопления энергии.

Хотя суперконденсатор с таким же весом, как батарея, может выдерживать большую мощность, его ватт / кг (удельная мощность) до 10 раз лучше, чем у литий-ионных батарей. Однако неспособность суперконденсаторов медленно разряжаться означает, что их количество ватт-часов / кг (плотность энергии) — это лишь часть того, что предлагает литий-ионный аккумулятор.

Впереди захватывающие времена для суперконденсаторов в будущем — следите!

С учетом приведенных выше сравнений и всех примеров различных приложений суперконденсаторов, исследуемых многочисленными производителями оригинального оборудования, похоже, не наблюдается какого-либо массового движения к замене батарей на суперконденсаторы. Итак, почему все это волнение?

Суперконденсаторы

превосходят традиционные конденсаторы благодаря своей способности накапливать и выделять энергию; однако они не смогли заменить обычные литий-ионные батареи.Это происходит главным образом потому, что литий-ионные аккумуляторы обладают такой мощностью, которую суперконденсаторы не могут дать в виде удельной энергии или плотности энергии (литий-ионные ~ 250 Втч / кг по сравнению с суперконденсаторами ~ 20 Вт-час / кг).

Основываясь на недавних исследованиях суперконденсаторов, прорыв может быть достигнут с помощью суперконденсаторов на основе графена, что приведет к значительному прогрессу в суперконденсаторах. В результате исследования Квинслендского технологического университета и Райсского университета были опубликованы две статьи, опубликованные в журнале Journal of Nanotechnology и Power Sources .Исследователи из этих университетов предложили решение, состоящее из двух слоев графена со слоем электролита между ними. Эта пленка получается прочной, тонкой и может выделять большое количество энергии за короткое время. Эти факторы даны как данность — в конце концов, это суперконденсатор. Это исследование делает это исследование уникальным и интересным, потому что исследователи предполагают, что новые, более тонкие суперконденсаторы могут заменить более громоздкие батареи в будущих электромобилях.

Даже такие компании, как Skeleton Technologies, которые в значительной степени сосредоточились на технологии суперконденсаторов, признают, что гибридизация систем с литий-ионным и суперконденсаторным приводом может продвинуть электрические технологии в новую эру.

Соавтор исследования

Цзиньчжан Лю говорит, что «Ожидается, что в будущем суперконденсаторы можно будет модифицировать для хранения большего количества энергии, чем литий-ионный аккумулятор, при этом сохраняя способность выделять свою энергию в 10 раз быстрее. Это означает, что суперконденсаторы в его кузовных панелях могут полностью питать автомобиль ». Он добавляет, что «после одной полной зарядки этот автомобиль должен быть в состоянии проехать до 500 км (310 миль) — аналогично автомобилю с бензиновым двигателем и более чем вдвое превышает лимит тока электромобиля.”

Для технологии, которой почти 65 лет, суперконденсаторы еще не нашли свое место в электрических технологиях. Но похоже, что вместе с литий-ионными батареями и с более широким применением графена суперконденсаторы постепенно становятся жизненно важной ролью в гибридно-электрических технологиях. Суперконденсаторы могут сыграть роль в создании литий-ионных аккумуляторов с высокой плотностью энергии, более полезных в течение более продолжительных периодов времени.

Список литературы

  1. Разница между батареей и суперконденсатором
  2. Как работают суперконденсаторы?
  3. Суперконденсатор против батареи — Сравнение и практический пример
  4. Могут ли суперконденсаторы заменить батареи?
  5. Суперконденсаторы против батарей: выдержат ли батареи испытание временем?
  6. Конденсаторы заменят батареи?
  7. Новые материалы делают суперконденсаторы лучше аккумуляторов
  8. Узнайте, как суперконденсатор может улучшить аккумулятор
  9. Могут ли ультраконденсаторы заменить батареи в электромобилях будущего?

Суперконденсаторы в качестве альтернативы батареям

Представьте, что вы заряжаете свой мобильный телефон всего за несколько секунд.Или подумайте, как изменился бы транспорт, если бы заправка электромобиля занимала всего несколько минут.

Технология быстрого включения питания существует уже несколько десятилетий — в суперконденсаторах. Суперконденсаторы не только заряжаются быстрее, чем батареи, но и служат дольше, потому что не страдают от физических потерь при зарядке и разрядке, которые изнашивают батареи. У них также есть ряд преимуществ в плане безопасности. Однако суперразмер суперконденсаторов — они должны быть намного больше, чтобы удерживать ту же энергию, что и батареи, — и их сверхвысокая стоимость сдерживают их.

Но ряд ученых считает, что недавние открытия сделали быстрые, надежные и потенциально более безопасные накопители энергии в суперконденсаторах, иногда называемых ультраконденсаторами, в пределах досягаемости, позволяя лучше конкурировать с батареями.

«Ультраконденсаторы похожи на молнию в бутылке, если хотите, — сказал Майкл Сунд, вице-президент Maxwell Technologies, ведущего производителя новой технологии, который продает тысячи единиц для зарядки автобусов в Китае.

Проблемы с безопасностью аккумуляторов

Любой, у кого закончился заряд во время важного телефонного разговора или кто пытался успокоить ребенка, чей игрушечный грузовик внезапно остановился, знает пределы заряда аккумуляторов.Аккумуляторы заряжаются долго, они относительно тяжелые — большая проблема для рынка электромобилей — и их безопасность часто возникает как проблема.

Этим летом крупному розничному торговцу пришлось отозвать тысячи запасных батарей для ноутбуков, произведенных Apple, только одним из многих производителей ноутбуков и сотовых телефонов, у которых были отозваны собственные батареи из соображений безопасности. (См. Соответствующий тест: «Что вы не знаете о батареях».)

Пожары с батареями в начале этого года также помогли временно заземлить новый Dreamliner компании Boeing.В одной из самых страшных трагедий, связанных с выходом из строя аккумуляторной батареи, два члена экипажа погибли в 2010 году в результате крушения самолета UPS в Дубае, которое следователи связали с пламенем, поднимающимся над грузом аккумуляторных батарей. (См. Статью по теме: «Преобразование полета для повышения топливной эффективности: пять технологий на взлетно-посадочной полосе».)

Опасные подводные камни использования батарей являются частью того, что способствует возобновлению интереса к суперконденсаторам.

Безопасность — это гораздо большая проблема, чем это было в прошлом, — сказал Питер Харроп, председатель IDTechEx, исследовательской фирмы, базирующейся в Кембридже, США.К. Он и другие поклонники новых технологий утверждают, что суперконденсаторы будут процветать, поскольку компании будут искать новые и более надежные источники питания, которые также более безопасны, чем современные батареи.

Вместо химикатов, затрудняющих управление батареями, суперконденсаторы используют своего рода статическое электричество для хранения энергии. Это означает, что их характеристики более предсказуемы, их материалы более надежны и менее уязвимы к перепадам температуры, и они могут быть полностью разряжены для более безопасной транспортировки, сказал Харроп.(См. Соответствующие фотографии: «Семь ингредиентов для улучшения аккумуляторов электромобилей».)

Открытие для суперконденсаторов?

Ученым давно известно, что энергия может храниться в виде электрического заряда, а не в химических реактивах, как в батареях. Знаменитый эксперимент Бенджамина Франклина с рядами лейденских сосудов, которые он назвал «батареей» после военного термина, обозначающего совместное функционирование оружия, на самом деле был ранней версией конденсатора.

Но недавний прорыв в материалах суперконденсаторов может сделать их конкурентами батареям в большем количестве приложений.«Суперконденсаторы улучшаются намного быстрее, чем батареи», — сказал Харроп.

С другой стороны, суперконденсаторы уже много лет находятся на грани коммерческого успеха. Заголовок 1995 года, например, предполагал, что ультраконденсаторы «рвутся вперед». Но они остались небольшим бизнесом по сравнению с перезаряжаемыми батареями — в первую очередь потому, что они хранят относительно мало энергии по сравнению с обычными элементами.

В аккумуляторах накопление электрического заряда называется «плотностью энергии», в отличие от «плотности мощности» или скорости доставки энергии.

Плотность энергии суперконденсаторов бледнеет по сравнению с литий-ионными батареями — технологией, которая сегодня обычно используется в телефонах и ноутбуках. Литий-ионные аккумуляторы хранят в 20 раз больше энергии, чем суперконденсаторы для данного веса и размера. Это означает, что iPhone 5, возможно, должен быть на два или три дюйма толще, чтобы удерживать суперконденсатор, что делает устройство едва ли стройным.

Суперконденсаторы, с другой стороны, выделяются по удельной мощности. Они обладают огромной мощностью — их можно быстро заряжать и высвобождать эту мощность быстрыми всплесками тока.Подумайте о тех резких электрических ударах, которые могут возникнуть, если неправильно натереть ворсистое ковровое покрытие. Или, может быть, лучше подумайте о разрядах электричества, которые зажигают летнюю бурю.

Производитель суперконденсаторов Maxwell Technologies сообщил, что наибольшие продажи идут производителям автобусов. Операторы используют суперконденсаторы, чтобы улавливать энергию, генерируемую при торможении автобуса на одной из своих многочисленных остановок, а затем разряжать электроэнергию, чтобы автобус начал движение с полной остановки. С этой целью суперконденсаторы могут полностью заменить батареи в гибридных автобусах, в то время как полностью электрические автобусы требуют меньше батарей.

Это, вероятно, лучший способ продолжить продажу суперконденсаторов в качестве дополнения к батареям или двигателям, работающим на топливе, сказал Сунд. «Суперконденсаторы часто дополняют батареи», — сказал он. «Поэтому мы стараемся держаться подальше от того, что мы называем« вышибанием батарей »».

Тем не менее, есть и другие места, где суперконденсаторы полностью заменяют батареи. Один из примеров — ветряные турбины, особенно расположенные на море и труднодоступные. Суперконденсаторы могут обеспечивать, например, всплески мощности, необходимые для регулировки лопастей турбины при изменении ветровых условий.

Аккумуляторы традиционно удовлетворяли эту потребность. Но батареи изнашиваются, потому что их химические вещества со временем теряют свою эффективность. Поскольку они не используют химические вещества для хранения электроэнергии, конденсаторы служат намного дольше, что является важным фактором для турбин, чья высота и удаленное расположение делают их обслуживание дорогостоящим.

Некоторые европейские автомобили также используют суперконденсаторы аналогично автобусам. Европейские «микрогибридные» автомобили выключаются, когда обычно работают на холостом ходу. Эта технология «старт-стоп» обычно работает только от батарей, но французский автопроизводитель PSA использует суперконденсаторы Maxwell в некоторых своих автомобилях Citroen и Peugeot.

Аккумуляторы, тем не менее, продолжают занимать большую часть рынка микрогибрид, потому что суперконденсаторы и сопутствующая электроника могут добавить пару сотен долларов к стоимости автомобиля. Сторонники технологии утверждают, что в долгосрочной перспективе суперкапсы стоят меньше, потому что они служат дольше, чем батареи, и экономят больше топлива, поскольку работают более надежно.

Тем не менее, когда дело доходит до микрогибридных автомобилей, начальная цена покупки пока превосходит эффективность и долгосрочную стоимость владения, сказал Сунд.

Преодолеть препятствия

Новые материалы могут помочь суперконденсаторам лучше конкурировать по плотности энергии. Многие ученые сосредотачиваются на графене, углероде толщиной всего в один атом, который вызвал большое волнение с тех пор, как он был усовершенствован около десяти лет назад. Производство графена оказалось дорогим. Но недавно лаборатория показала, что дешевое обычное бытовое устройство может производить графен в недорогих высококачественных листах. Аспирант использовал записывающее устройство DVD, чтобы сделать графен в химической лаборатории, которой руководит Рик Канер, профессор Калифорнийского университета в Лос-Анджелесе.

DVD-привод имеет функцию под названием LightScribe, которая наносит изображения на поверхность DVD-дисков. Оказывается, лазер также преобразует обычный материал, оксид графита, в листы графена. Открытие было описано в прошлом году в журнале Science.

Лазер производит графен с характеристикой, которая делает его особенно перспективным для суперконденсаторов: он выходит с отверстиями или порами. Этот высокопористый графен можно уложить в несколько слоев, при этом обе стороны каждого слоя остаются доступными.В экспериментах это удвоило или утроило плотность энергии суперконденсаторов, сделанных из графена.

Диск размером с DVD из лаборатории Рика Канера содержит микроконденсаторы.

Фотография любезно предоставлена ​​Аргоннской национальной лабораторией

Пожалуйста, соблюдайте авторские права. Несанкционированное использование запрещено.

Один слой атомов углерода не хранит много энергии, сказал Канер. «Это когда вы можете складывать сотни или даже тысячи слоев — и это то, что мы делаем.«

Он не предсказывает, когда новый материал может появиться в коммерческих суперконденсаторах, кроме как надеется, что это произойдет не через десять или даже пять лет. Даже в этом случае суперконденсаторы, вероятно, будут работать в тандеме с батареями». «пока они не заменят батареи», — сказал Канер. сказал.«Кроме того, в отличие от батарей, они не перезаряжаются и не перегреваются».

По словам Харропа из IDTechEX, преимущества суперконденсаторов в области безопасности будут расти по мере роста спроса на портативную энергию. Сами по себе конденсаторы представляют собой проблему безопасности, потому что любая технология, которая хранит энергию, потенциально опасна. Но производители постепенно отказываются от токсичных и легковоспламеняющихся химикатов, которые использовались в суперконденсаторах, и даже эти суперконденсаторы имеют лучшие показатели безопасности, чем литий-ионные батареи, сказал он.

Между тем безопасность аккумуляторов станет более серьезной проблемой по мере увеличения размеров элементов, таких как те, которые сейчас используются в электромобилях. Харроп добавил, что чем больше батарея, тем больше вероятность того, что что-то пойдет не так. «Легче сделать аккумулятор безопасным для чего-то вроде телефона, чем для автомобиля».

Эта история является частью специальной серии, посвященной вопросам энергетики. Для получения дополнительной информации посетите The Great Energy Challenge.

Суперконденсаторы против батарей — BatteryGuy.com База знаний

В суперконденсаторах нет ничего нового. General Electric пыталась использовать их потенциал в 1950-х годах, но сегодня пресса внезапно загорелась рассказами о том, что эта технология навсегда изменит способ хранения энергии. Было даже предположение, что батареи в том виде, в каком мы их знаем, больше никогда не будут прежними.

Волнение действительно кажется заслуженным. У них есть способность перезаряжаться за секунды и в отличие от всех

Электрические автобусы с питанием от суперконденсаторов используются в Китае почти десять лет.

типов батарей, которые зависят от внутренних химических реакций и поэтому изнашиваются, а суперконденсаторы со временем не разрушаются.Это означает, что суперконденсатор на 2,7 В сегодня будет суперконденсатором на 2,7 В через 15 лет. Все остальные современные конструкции аккумуляторов постепенно теряют производительность, а это означает, что ваша 12-вольтовая батарея сегодня может превратиться в 11,4-вольтовую батарею всего за 3 года.

Пожалуй, больше всего привлекает внимание то, что суперконденсаторы можно напечатать на 3D-принтере, что делает их в высшей степени универсальными для любой формы без необходимости создания производственной линии. Не меньшее восхищение вызывает их ультратонкая природа, что означает, что их можно легко интегрировать в одежду и другие ткани.

Так стоит ли готовить учебники истории для батарей? Еще не совсем.

Развитие портативной энергетики не было линейным. Технологический прогресс не всегда продвигал производительность аккумуляторов на каждый уровень. Вот почему, хотя литий-ионный аккумулятор, который питает ваш телефон, появился в 1990-х годах, тот, который запускает ваш автомобиль, скорее всего, все еще свинцово-кислотный и основан на конструкции, которой более 200 лет!

«Новое» обычно означает «лучше» в примерно способов.Литий-ионные батареи хорошо разряжают стабильную энергию в течение длительных периодов времени, но они дороги. Свинцово-кислотные батареи быстро производят большое количество энергии и, что самое главное, дешевы в производстве.

История батареи изобилует техническими достижениями, но на каждом этапе старые химические продукты выживают и продолжают использоваться, потому что, хотя вся новая концепция захватывает заголовки, никогда не бывает лучше, чем каждые .

Суперконденсаторы ничем не отличаются… на данный момент.Хотя они могут заряжаться быстро, работать намного дольше, сохранять большую мощность и работать при экстремальных температурах, с которыми большинство других химикатов просто не справляются, они плохо обеспечивают постоянную мощность в течение длительных периодов, как показано на графике ниже.

Суперконденсатор в сравнении с характеристиками заряда и разряда батареи. Батареи поддерживают постоянное напряжение во время разряда, суперконденсаторы — нет — график Tecate Group

С точки зрения накопления энергии существует распространенная путаница. В то время как суперконденсатор, имеющий такой же вес, как батарея, может удерживать большую мощность, его мощность в ваттах / кг — Power Density до десяти раз лучше, чем у литий-ионных батарей.Его неспособность к медленному разряду означает, что его Energy Density (Ватт-час / кг или Втч / кг) — это лишь часть того, что предлагает литий-ионный аккумулятор.

Плотность мощности и плотность энергии суперконденсаторов по сравнению с другими формами хранения — Изображение: Tecate Group

Они также довольно плохо удерживают свой заряд, саморазряжаясь до половины своей емкости в течение 40 дней, когда не используются, — это не та характеристика, которую вы хотите под капотом вашего автомобиля или в вашей дымовой пожарной сигнализации.

Наконец, у суперконденсаторной ячейки напряжение около 2.5 по сравнению с литий-ионным 3,6. Вы можете начать соединять их вместе, но сама схема становится причиной внутреннего сопротивления, которое может уменьшить преимущества суперконденсатора.

Короче говоря, все еще остается желать лучшего для тех, кто хочет полностью заменить все батареи на суперконденсаторы.

Так к чему весь такой ажиотаж?

Так же, как литий-ионный аккумулятор сделал возможными мобильные телефоны, но не заменил аккумуляторы легковых и грузовых автомобилей, суперконденсатор определенно играет роль в портативных источниках энергии.

Китай уже использует их в некоторых гибридных автобусах с 2006 года. Когда автобус тормозит, останавливаясь и забирая пассажиров, энергия, генерируемая тормозами, передается на суперконденсаторы. Он хранится там, пока пассажиры садятся на борт, а затем обеспечивает готовый источник ускорения при трогании с места.

Это означает, что автобусу требуется меньше литий-ионных батарей (в некоторых случаях вообще не требуется), что делает его легче и позволяет проехать дальше на одной зарядке. Дэн Йе, исполнительный директор Sinautec, a U.Южнокитайское совместное предприятие, производящее автобусы только с суперконденсаторами, утверждает, что автомобили могут идти на 40% больше, чем стандартные электрические автобусы, и на 40% дешевле в производстве.

Но когда дело касается автомобилей, нужно проявлять осторожность. Автобусы постоянно останавливаются и трогаются с места, поэтому существует гарантированный регулярный источник энергии, перемещающийся от тормозов к суперконденсаторам. Они также следуют обычному маршруту, где могут быть размещены резервные зарядные станции, если при торможении суперконденсаторы недостаточно заряжены.

Джо Шиндалл — профессор электротехники и информатики Массачусетского технологического института. Он отмечает, что из-за этих проблем суперконденсаторы «плохо подходят для электромобилей».

Суперконденсаторы в смартфонах и ноутбуках?

В настоящее время это маловероятно, потому что, хотя способность перезаряжаться в течение нескольких секунд заставляет многих пускать слюни с нетерпением, суперконденсаторы не сохраняют стабильное напряжение или емкость при разряде. Это именно то, что нужно смартфонам и ноутбукам для работы в течение длительного времени, поэтому кажется, что литий-ионные батареи пока не сойдутся с места.

Когда дело доходит до полной замены батарей другого химического состава, суперконденсатор пока этого не сделает.

Вместо этого они стремятся присоединиться к аккумуляторным батареям в мире портативных источников энергии и предлагают улучшения в некоторых областях, но ничего близкого к полной замене, похоже, не подразумевают многие заголовки.

Последний бой

В общем, суперконденсаторы подходят для приложений, требующих возможности быстрой зарядки и разрядки, где это время измеряется в секундах или нескольких минутах.Для всего, что требует более длительного времени, батареи остаются лучшим решением.

От
Характеристика Суперконденсаторы Литий-ионные батареи
Вт / кг (удельная мощность) 5 до 240
Втч / кг (удельная энергия) до 10 000 до 3000
Время заряда (элемента) секунд минут
Напряжение элемента г.2,5 3,6
Срок службы 1 миллион + до 3000
Диапазон рабочих температур Нагнетание:
от –40 до 65 ° C (от –40 до 149 ° F)
Перезарядка:
от –40 до 65 ° C (от –40 до 149 ° F)
Разрядка:
от –20 до 60 ° C (от –4 до 140 ° F)
Перезарядка:
от 0 до 45 ° C (от 32 ° до 113 ° F)
Саморазряд 50% в течение месяца до 3% в месяц

Дополнительная литература и источники:

Могут ли ультраконденсаторы заменить батареи в электромобилях будущего?

Ультраконденсаторы — это круто.Но смогут ли они заменить батареи в электромобилях будущего?

Ультраконденсаторы имеют значительные преимущества перед батареями, в конце концов, они намного легче, быстрее заряжаются, безопаснее и нетоксичны. Однако есть места, где батарейки протирают ими пол. По крайней мере на данный момент.

СВЯЗАННЫЙ: TESLA ВСТРЕЧАЕТСЯ В «ПРОРЫВНЫЕ» ИННОВАЦИИ В БАТАРЕЯХ

С недавним приобретением производителей ультраконденсаторов такими компаниями, как Tesla, ультраконденсаторы могут оказаться на грани вытеснения аккумуляторов в качестве источника питания для электромобилей.

Что такое ультраконденсатор?

Ультраконденсаторы, также называемые суперконденсаторами, двухслойными конденсаторами или электрохимическими конденсаторами, представляют собой тип системы накопления энергии, который набирает популярность в последние годы. Их можно рассматривать как нечто среднее между обычным конденсатором и батареей, но они отличаются от того и другого.

Ультраконденсаторы имеют очень высокую емкость по сравнению с их традиционными альтернативами — отсюда и название. Как и батарея, у ультраконденсаторных элементов положительный и отрицательный электроды разделены электролитом.Но в отличие от батарей ультраконденсаторы накапливают энергию электростатически (так же, как конденсатор), а не химически, как батарея.

Ультраконденсаторы также имеют диэлектрический разделитель, разделяющий электролит, как и конденсатор. Такая внутренняя структура ячеек позволяет ультраконденсаторам иметь очень высокую плотность хранения энергии, особенно по сравнению с обычными конденсаторами.

Ультраконденсаторы действительно потребляют меньше энергии, чем батареи аналогичного размера. Но они могут высвобождать свою энергию гораздо быстрее, поскольку разряд не зависит от протекающей химической реакции.

Еще одним большим преимуществом ультраконденсаторов является то, что их можно перезаряжать огромное количество раз с минимальным ухудшением характеристик или без него (более 1 миллион циклов зарядки / разрядки не редкость). Это связано с тем, что при их подзарядке не происходит никаких физических или химических изменений.

По этой причине суперконденсаторы часто используются в приложениях, требующих множества быстрых циклов зарядки / разрядки, а не в долговременных компактных накопителях энергии, таких как автомобильные бустерные блоки и блоки питания.

Источник: stantontcady / Flickr

Наиболее часто используемым электродным материалом для ультраконденсаторов является углерод в различных формах, например активированный уголь, углеродное волокно-ткань, углерод на основе карбида, углеродный аэрогель, графит (графен) и углеродные нанотрубки ( УНТ).

Как заряжать ультраконденсатор?

Когда на положительную и отрицательную обкладки конденсатора подается разность напряжений, он начинает заряжаться. По данным Battery University, «это похоже на накопление электрического заряда при ходьбе по ковру.Прикосновение к объекту высвобождает энергию через палец ».

Некоторые из самых первых примеров этой технологии были разработаны в конце 1950-х годов в General Electric, но в то время не было жизнеспособных коммерческих приложений. На это потребовалось до 1990-х годов. за достижения в области материаловедения и производства для улучшения характеристик ультраконденсаторов и снижения их стоимости, чтобы сделать их коммерчески жизнеспособными.

Как работают ультраконденсаторы? потребляемой мощности, а затем улавливают и быстро накапливают избыточную энергию, которая в противном случае может быть потеряна.

Источник: Electronics Tutorials

По этой причине они являются отличным дополнением к первичным источникам энергии, так как заряжаются и разряжаются очень быстро и эффективно.

Несмотря на то, что аккумуляторы могут удерживать большое количество энергии, для их перезарядки требуется несколько часов. Напротив, конденсаторы, и особенно ультраконденсаторы, заряжаются почти мгновенно, но они могут хранить только небольшое количество энергии.

По этой причине ультраконденсаторы являются идеальным решением, когда системе требуется быстрая зарядка и не нужно хранить электричество в течение длительного времени.Они также весят меньше, чем батареи, стоят меньше и, как правило, не содержат токсичных металлов или вредных материалов.

Могут ли ультраконденсаторы заменять батареи?

Ответ на этот вопрос во многом зависит от того, для чего они будут использоваться. У каждого есть свои преимущества и недостатки. Как упоминалось ранее, батареи имеют гораздо более высокую плотность энергии и , чем ультраконденсаторы.

Это означает, что они больше подходят для приложений с более высокой плотностью энергии или когда устройству необходимо работать в течение длительных периодов времени на одной зарядке.У суперконденсаторов мощность и плотность намного выше, чем у аккумуляторов. Это делает их идеальными для приложений с высоким энергопотреблением, таких как питание электромобиля.

Как упоминалось выше, ультраконденсаторы имеют гораздо больший срок службы, чем батареи. Обычная батарея может выдерживать около 2000-3000 циклов заряда и разряда, в то время как ультраконденсаторы обычно могут выдерживать более 1000000 . Это может дать огромную экономию материалов и затрат.

Извлечено из: skeletontech

Ультраконденсаторы также намного безопаснее и значительно менее токсичны.Они не содержат вредных химикатов или тяжелых металлов и с гораздо меньшей вероятностью взорвутся, чем батареи.

Кроме того, ультраконденсаторы имеют гораздо больший рабочий диапазон, чем батареи. Фактически, в этой области они безнадежно превосходят аккумуляторы, поскольку они могут работать в диапазоне от -40 до +65 градусов по Цельсию.

Ультраконденсаторы также могут заряжаться и разряжаться намного быстрее, чем батареи, обычно в течение нескольких секунд, и они намного эффективнее саморазряда, чем батареи.

Многие ультраконденсаторы имеют гораздо более длительный срок хранения, чем батареи. Некоторые из них, такие как ячейки SkelCap, могут храниться до 15 лет одновременно с минимальным снижением емкости или без него.

Источник: Windell Oskay / Flickr

Как и в случае с большинством других технологий, основным фактором, способствующим применению ультраконденсаторов, является их соотношение цены и качества. Ультраконденсаторы, как правило, являются более экономичным выбором в долгосрочной перспективе для приложений, требующих коротких всплесков энергии.

Батареи, однако, являются гораздо лучшим выбором для приложений, требующих постоянного низкого тока с течением времени.

Могут ли ультраконденсаторы заменить батареи в электромобилях будущего?

Как мы видели, ультраконденсаторы лучше всего подходят для ситуаций, когда требуется большая мощность за короткий промежуток времени. Что касается электромобилей, это будет означать, что они будут иметь преимущества перед батареями, когда транспортному средству нужны всплески энергии — например, во время ускорения.

Фактически, это именно то, что Toyota сделала с концептуальным автомобилем Yaris Hybrid-R, который использует суперконденсатор для использования во время разгона.

PSA Peugeot Citroen также начала использовать ультраконденсаторы в составе своих систем экономии топлива start-stop. Это позволяет значительно ускорить начальное ускорение.

Система Mazda i-ELOOP также использует ультраконденсаторы для хранения энергии во время замедления. Сохраненная мощность затем используется для систем запуска и остановки двигателя.

Суперконденсаторы также используются для быстрой зарядки источников питания в гибридных автобусах при движении от остановки к остановке.

Когда гибридная энергия используется исключительно для повышения производительности, такие вопросы, как дальность действия и способность удерживать заряд, не так важны — и поэтому некоторые производители высокого класса, такие как Lamborghini, также начинают включать электронные двигатели с питанием от суперконденсаторов в их гибриды.

Однако ультраконденсаторы пока не заменяют батареи в большинстве электромобилей. Литий-ионные аккумуляторы, вероятно, станут основным источником питания для электромобилей в ближайшем или отдаленном будущем.

Многие полагают, что более вероятно, что ультраконденсаторы станут более обычным явлением в качестве систем рекуперации энергии во время замедления. Эту накопленную мощность можно затем повторно использовать в периоды ускорения, а не напрямую заменять батареи.

Источник: Mic / Flickr

Однако, согласно этому исследованию, они также могут применяться в гибридных транспортных средствах вместо батарей, когда «потребляемая мощность меньше мощности электродвигателя; когда потребляемая мощность транспортного средства превышает мощность электродвигателя, двигатель работает, чтобы удовлетворить потребность транспортного средства в мощности, а также обеспечить мощность для перезарядки блока суперконденсатора.«

Недавние исследования суперконденсаторов на основе графена могут также привести к прогрессу в использовании суперконденсаторов в электромобилях. Одно исследование, проведенное учеными из Университета Райса и Технологического университета Квинсленда, привело к появлению двух статей, опубликованных в журнале Journal of Power Sources и Nanotechnology .

Они предложили решение, состоящее из двух слоев графена со слоем электролита между ними.Пленка получается прочной, тонкой и способной выделять большое количество энергии за короткое время.

Эти факторы даны как данность — в конце концов, это суперконденсатор. Что отличает это исследование, так это то, что исследователи предполагают, что новые, более тонкие ультраконденсаторы могут заменить более громоздкие батареи в будущих электромобилях.

Это также может включать в себя интеграцию ультраконденсаторов, например, в панели кузова, панели крыши, полы и даже двери. Теоретически это могло бы обеспечить транспортное средство всей необходимой энергией и сделать его значительно легче, чем электромобили с батарейным питанием.

Источник: Depositphotos

Такой электромобиль будет заряжаться значительно быстрее, чем современные автомобили с батарейным питанием. Но, как и все ультраконденсаторы, это решение по-прежнему не может удерживать столько энергии, сколько стандартные батареи.

«В будущем есть надежда, что суперконденсатор будет разработан для хранения большего количества энергии, чем литий-ионный аккумулятор, сохраняя при этом способность выделять свою энергию в 10 раз быстрее, что означает, что автомобиль может полностью питаться от суперконденсаторы в его корпусных панелях », — сказал соавтор исследования Цзиньчжан Лю.

«После одной полной зарядки этот автомобиль должен быть в состоянии проехать до 500 км ( 310 миль ) — аналогично автомобилю с бензиновым двигателем и более чем вдвое превышает лимит тока электромобиля».

Кажется, впереди интересное время. Наблюдайте за этим пространством.

Суперконденсатор VS Li-Ion Battery_Greenway battery

Литий-ионный аккумулятор хорошо известен своей эффективностью и долговечностью, но на рынке доступны многие другие типы накопителей наждака.Эти вещи не только обеспечивают эффективную работу, но и дают наилучшие результаты, суперконденсатор — один из них. Давайте поговорим об этом подробнее.

Можем ли мы использовать суперконденсатор в качестве батареи?

Суперконденсаторы — это конденсаторы с высокими предельными значениями, с более низкими пределами напряжения и более высокой емкостью, чем у различных типов конденсаторов, и практически они лежат где-то посередине между электролитическими конденсаторами и батареями с батарейным питанием.

Практически это означает, что они:

1.Заряжается намного быстрее, чем аккумуляторы

2. может хранить значительно больше жизнеспособности, чем электролитические конденсаторы

3. Иметь ожидаемый срок службы (оцениваемый в циклах управления / сброса) где-то близко к двум (больше, чем батареи с батарейным питанием и не совсем электролитические конденсаторы)

Для проверки ожидаемой продолжительности жизни подумайте о том, что, в то время как электролитические конденсаторы имеют неограниченное количество циклов зарядки, литиевые батареи обычно находятся в диапазоне от 500 до 10 000 циклов.Как бы то ни было, суперконденсаторы имеют ожидаемый срок службы от 100000 до миллиона циклов. Чтобы понять это подробнее, давайте проверим преимущества и недостатки суперконденсатора.

Достоинства и недостатки суперконденсаторов

К достоинствам суперконденсаторов можно отнести:

I. Баланс накопления жизнеспособности со временем зарядки и высвобождения:

Хотя они не могут хранить столько же жизненной силы, сколько эквивалентно оцененная литиевая батарея (они обычно хранят живучесть по весу), суперконденсаторы могут восполнить это скоростью заряда.Время от времени они почти на 1000 раз быстрее, чем время зарядки сопоставимого предельного аккумулятора.

II. Некоторые электрические игрушки, в которых используются суперконденсаторы, могут заряжаться мгновенно:

Многие компании надеются воплотить аналогичную идею в настоящих электромобилях. Представьте себе электромобили, управляемые суперконденсаторами (вместо батарей с батарейным питанием), которые могут полностью заряжаться за меньшее время, чем требуется для заправки двигателя с невозобновляемым источником энергии газом, в отличие от длительных периодов времени зарядки, регулярно требуемых батареей. -работал авто.

III.Рабочие температуры в широком диапазоне:

Суперконденсаторы имеют гораздо более продолжительную рабочую температуру (от -40F до +150F).

Недостатки суперконденсаторов:

IV.Самовыпуск:

Суперконденсаторы не подходят для длительного хранения жизнеспособности. Скорость выпуска суперконденсаторов существенно выше, чем у литиевых батарей; они могут терять до 10-20 процентов своего заряда каждый день из-за саморазвязки.

V. Несчастье постепенного напряжения:

В то время как батареи дают близкое постоянное выходное напряжение до полного разряда, выходное напряжение конденсаторов падает непосредственно с их зарядом.

Заменят ли когда-нибудь суперконденсаторы литий-ионные батареи?

Поскольку во многих приложениях их способности недостаточно для воспроизведения активности в течение длительного времени. В любом случае, люди часто упускают из виду одно важное качество — стойкость. Суперконденсаторы можно заряжать и разряжать большое количество раз, а аккумуляторы — пару тысяч, в лучшем случае.Он может быть заменен дорогостоящим аккумулятором по следующим причинам:

Дешевле:

Поскольку они менее дорогие в изготовлении, чем батареи (зависит от размера), и служат на 1000 больше, они могут быть полностью прибыльными, если вы можете разыграть то, что вам нужно.

Долгая жизнь:

Смогли бы вы представить, как за 1 мгновение зарядите свой мобильный телефон энергией? Это может не длиться 24 часа, но что насчет 8 часов, вы можете оживить где-то еще в один момент и не обесцениться через пару лет, намного лучше, чем тупая литий-ионная батарея, но люди ленивы, я не знаю, могут ли они может потребоваться зарядить в течение дня в любом случае, на мгновение?

Быстрая работа:

Они будут все больше использоваться в рекуперативном торможении, где они могут поглощать жизнеспособность значительно быстрее, чем батареи, и они передают излишки батареям, еще половину или половину емкости.

С многообещающим последействием графена вполне вероятно, что супер-суперконденсаторы могут вытеснить батареи. Когда они в некоторой степени обращаются с подобным запросом, пришло время его рассмотреть. Иметь ввиду; Конденсаторы полезны для многих циклов, а не для пары тысяч, как батареи, и они заряжаются в 1000 раз быстрее, если ваша зарядная станция может обеспечить силу тока.

Сравнение суперконденсатора и литий-ионного аккумулятора:

Итак, батареи и суперконденсаторы в чем-то совпадают, причем качество одного является недостатком другого.Отдельно стоит выделить основные параметры суперконденсаторов и литий-ионных аккумуляторов:

1. время зарядки:

В этом суперконденсатор превосходит ожидания: время зарядки составляет от 1 до 10 секунд, в отличие от 10–1 часа для достижения полной зарядки аккумулятора.

2.Жизнь:

Типичные батареи имеют 500-1000 циклов заряда-разряда, в то время как суперконденсаторы могут достигать одного миллиона циклов. Управление автомобилем: аккумуляторы рассчитаны на 5–10 лет, а суперконденсаторы — на 10–15 лет.

3. явная живучесть:

Это полная выносливость на единицу массы и является существенным недостатком суперконденсатора с нормальным значением 10 Втч / кг, в отличие от 100-200 для батарей. Для справки, у нас есть 3700 Втч / кг для нефтяного топлива (с учетом 30% эффективности двигателя внутреннего сгорания). Что касается единицы объема, суперконденсаторы также сильно отстают — 15 Втч / л и 1200 Втч / л для батарей. Это означает, что iPhone 5, управляемый суперконденсатором, будет иметь толщину 2 дюйма.

4. явная мощность:

Поскольку суперконденсаторы могут быстро заряжаться, они также могут быстро высвобождаться, таким образом они могут передавать интенсивность до 10 кВт / кг. С другой стороны, у литий-ионных аккумуляторов максимальная мощность составляет 3000 Вт / кг.

5.Стоимость:

Будучи умеренным нововведением, суперконденсаторы пока что дороги, их стоимость составляет около 20 долларов за ватт, в то время как батареи намного дешевле в диапазоне от 0,5 до 1 доллара за ватт.

Итог:

Литий-ионные батареи и суперконденсаторы — это два разных типа накопителей энергии, но они оба используются сейчас.Главное отличие в их доступности, цене и сроке службы. Суперконденсатор официально не применяется на рынке и в тех местах, где вы можете найти его, довольно дорого, чем его первоначальная цена. Это может быть инструмент нового поколения для зарядки и хранения энергии.

Случайный прорыв может стать недостающим звеном для электромобилей

Хайгейт вспоминает, как набросал какие-то приблизительные цифры на обратной стороне конверта. «Я сделал подсчет и подумал:« Черт побери, это смешно », — вспоминает он.«[Емкость] была в 100 раз больше, чем она должна была быть для маленькой вещи квадратный сантиметр. Я думал, что совершил ошибку».

Они наткнулись на материал, диэлектрические свойства которого в 1000–10 000 раз превосходят свойства существующих проводников. В течение последних 14 месяцев Superdielectrics работала с исследователями из университетов Бристоля и Суррея, чтобы определить, работают ли их полимеры в реальных условиях. На этой неделе они опубликовали свои результаты.

Ученые создали небольшие устройства, которые могут питать вентилятор или светодиод в течение нескольких минут, и утверждают, что при дальнейшей работе материал может в конечном итоге достичь плотности энергии до 180 ватт-часов на килограмм по сравнению с 10 Втч / кг. за лучшие суперконденсаторы, доступные в настоящее время.

Это приведет к тому, что суперконденсаторы будут соответствовать литий-ионным батареям. Это могут быть смартфоны, которые заряжаются за секунды, а также более дешевые и безопасные электромобили, которые можно использовать за то же время, которое требуется для заправки бензинового автомобиля. Вместо того, чтобы заряжать каждую вторую остановку, китайские автобусы могли пробежать 20 или 30 минут, прежде чем они разогнались за секунды.

По словам доктора Дженифер Бакстер из Института инженеров-механиков, сокращение времени зарядки может также ускорить внедрение электромобилей.«Если вы можете уменьшить время, затрачиваемое на зарядку, и вы можете поддерживать или увеличивать диапазон в пределах этой зарядки, это, безусловно, уменьшит беспокойство людей по поводу электромобилей», — говорит она.

Регенеративное торможение — еще одно возможное применение. «Батареи не любят быстро заряжаться, — говорит Купер, не принимавший участия в исследовании. Суперконденсаторы идеально подходят для этого и могут помочь сделать электромобили более эффективными.

Есть некоторые потенциальные препятствия, которые необходимо преодолеть.Хотя этот материал конкурентоспособен с батареями по весу, Купер отмечает, что размер также будет иметь значение, если они будут использоваться в транспортных средствах. Это еще не исследовано, но Highgate оценивает, что объем суперконденсатора, изготовленного с использованием этой технологии, будет примерно на 30 процентов больше, чем у эквивалентной батареи.

Подробнее: Батареи, заполненные возобновляемой энергией, могут положить конец ископаемому топливу

Другая проблема, и «ахиллесова пята» суперконденсаторов, по мнению Highgate, — это их внутренний ток утечки.В то время как батареи могут хранить энергию в течение недель или месяцев, суперконденсаторы могут хранить ее только в течение нескольких часов или дней, прежде чем она уйдет. Это может не иметь значения для некоторых приложений, но станет проблемой для электромобилей, если они не будут использоваться в течение нескольких дней. Одним из решений может быть объединение суперконденсаторов с батареями в качестве резервных.

Большинство считает, что впервые эта технология будет использоваться не в автомобилях, а в качестве ключевой части инфраструктуры зарядки. «Примерно половина населения не живет в местах, где они могут заряжать дома на ночь», — говорит Тим ​​Мартин, директор компании Zapinamo, которая разрабатывает гибкие электрические зарядные станции.Этим людям вместо этого нужен доступ к средствам быстрой зарядки, но Мартин говорит, что национальная сеть будет изо всех сил пытаться поставлять электроэнергию с требуемой скоростью.

Большие накопители, заполненные суперконденсаторами, могут начать появляться на заправочных станциях, чтобы действовать как буфер между электромобилями и сетью. Они могут заряжаться медленно, в нерабочее время, когда электричество дешевле, а затем при необходимости быстро доставлять эту энергию на несколько транспортных средств. «Накопленная энергия — единственный способ сочетать мгновенную мощность со скоростью зарядки, которая избавляет от беспокойства о дальности полета», — говорит Мартин.

Тот же подход может изменить правила игры для возобновляемых источников энергии. Поскольку солнечная энергия и ветер непредсказуемы, вырабатываемое ими электричество необходимо хранить, чтобы его можно было высвобождать во время затишья. «Когда все ставят чайник после обеда, внезапный всплеск спроса должен откуда-то возникать», — говорит Купер. В настоящее время это делается в основном путем перекачивания воды вверх и подачи ее обратно через турбины, когда требуется энергия, но суперконденсаторы предлагают гораздо большую гибкость, поскольку они могут реагировать так быстро.

«Энергия ветра, волн и солнца доступна, но она непостоянна, и без накопления на нее нельзя полагаться для удовлетворения наших потребностей в энергии», — говорит Хайгейт. «Эта новая работа изменит энергетическую систему, лежащую в основе нашего образа жизни — это необходимое развитие, прежде чем мы и наши дети сможем получить действительно устойчивое и экологически безопасное энергоснабжение».

Что такое суперконденсатор? Объяснение следующего шага для электромобилей и гибридов

► Суперконденсаторы имеют несколько преимуществ перед батареями
► Но в настоящее время есть и недостатки
► Они используются в новом Lamborghini Sian

В 2019 году электромобили широко рассматриваются как преемники автомобилей с ДВС, и производители спешат электрифицировать свои модельные ряды: на автосалоне во Франкфурте в 2019 году будут представлены готовые к производству электромобили от Porsche, VW и Honda, и это лишь некоторые из них.И легко понять почему.

Увеличенный запас хода, больше точек зарядки и общие усовершенствования делают электромобили серьезным соперником бензиновых аналогов. Но для многих они все еще далеки от совершенства: требуется время на зарядку и по-прежнему отсутствует по-настоящему широко распространенная инфраструктура, по крайней мере, в Великобритании.

Хотя сейчас литий-ионная технология используется по умолчанию, она не может быть окончательным ответом, когда дело доходит до питания электромобилей. Суперконденсаторы позволяют решить некоторые давние проблемы, связанные с полностью электрическими автомобилями с батарейным питанием, а также имеют дополнительные преимущества для гибридов.Они могли бы стать толчком для мира электромобилей, но что такое суперконденсаторы, как они работают и настолько ли они научно-фантастические, как кажутся?

Что такое суперконденсатор?

Давайте сначала объясним, что такое суперконденсатор. Иногда называемый ультраконденсатором, суперконденсатор, как и батарея, является средством хранения и высвобождения электричества. Но вместо того, чтобы хранить энергию в форме химикатов, суперконденсаторы хранят электричество в статическом состоянии, что позволяет им быстрее заряжать и разряжать энергию.

В химическую лабораторию!

Литий-ионные батареи

работают с использованием слоев ячеек с использованием положительных и отрицательных электродов, разделенных электролитом. Они генерируют заряд, когда ионы лития переходят от отрицательного к положительному положению при разряде, а при зарядке происходит обратное.

Как работают суперконденсаторы?

Конденсаторы

, с другой стороны, хранят электричество в статическом состоянии, а не оставляют его «запертым» в химических реакциях. Взломайте конденсатор, и вы обнаружите две проводящие пластины, называемые электродами, разделенные изоляционным материалом, известным как диэлектрик.Эти две пластины, одна положительная, а другая отрицательная, создают электрическое поле при подключении к электрической цепи, которая поляризует атомы в диэлектрике, поэтому положительные атомы сидят на стороне отрицательной пластины, а отрицательные атомы — на стороне положительной пластины. пластина, создавая таким образом заряд.


Во многих отношениях суперконденсатор — это просто конденсатор большего размера с большими электродными пластинами и меньшим расстоянием между ними, что позволяет хранить больший заряд в виде потенциальной электрической энергии.Суперконденсатор не использует диэлектрик; вместо этого пористые электродные пластины пропитаны электролитом и разделены очень тонким разделительным материалом. Когда заряд проходит через электроды, атомы в них становятся поляризованными, придавая электродам положительный или отрицательный заряд.

Затем они притягивают электроны противоположной полярности в электролите и, таким образом, создают двойной электрический слой, а это означает, что суперконденсаторы хранят намного больше энергии, чем их обычные конденсаторные аналоги.

В чем преимущества суперконденсаторов?

Суперконденсаторы уже существуют в автомобилях с системами рекуперативного торможения. Это связано с их большей удельной мощностью, чем у батарей, основанных на химических реакциях, что позволяет им быстро накапливать и разряжать электричество, что удобно для сбора энергии, генерируемой при торможении, а затем быстрого высвобождения ее при ускорении.

В автомобилях, полностью построенных на элементах, таких как Toyota FCHV, также используются суперконденсаторы для обеспечения дополнительной ускоряющей мощности, которую водородные топливные элементы не могут сделать в одиночку.

Им еще предстоит заменить литий-ионные батареи в качестве основного источника энергии, но электрические и гибридные автомобили развиваются из года в год, поэтому у суперконденсаторов есть большой потенциал, чтобы играть большую роль в электромобилях и автомобилях следующего поколения. зарядная инфраструктура для их поддержки.

Поскольку суперконденсаторы в значительной степени полагаются на физику, а не на химию, чтобы хранить свою энергию, они не разлагаются так же, как литий-ионные батареи. Это может предоставить огромные возможности для увеличения срока службы электромобиля, а также для снижения воздействия на окружающую среду использования литий-ионных элементов питания.

Но самым большим преимуществом суперконденсаторов перед литий-ионными и никель-кадмиевыми батареями является их способность быстро заряжаться и разряжаться; мы говорим о зарядке в минутах, а не в часах. Таким образом, суперконденсаторы могут быть панацеей для сокращения часов, которые в настоящее время уходит на перезарядку полностью электрического автомобиля, или могут повысить скорость гибридов, о чем мы расскажем позже в этой статье.

Суперконденсаторы

также очень хорошо справляются с беспроводной зарядкой, что в сочетании с их способностью заряжаться на высокой скорости может избавить от необходимости подключать электромобили к точкам питания и сделать процесс зарядки более плавным.

В чем недостатки суперконденсаторов?

В настоящее время с суперконденсаторами связаны две основные проблемы, и самая тревожная — это плотность энергии. Конечно, суперконденсаторы могут поглощать и отдавать большое количество энергии быстрее, чем литий-ионные батареи, но сейчас они не могут хранить столько энергии.

Это проблема, которая делает их менее подходящими для электромобилей, но не означает, что они должны быть исключены в будущем. Не забывайте, что потребовалось время, чтобы извлечь приемлемый диапазон пробега из литий-ионных аккумуляторных систем, поэтому есть возможности для повышения плотности энергии суперконденсаторов, если умные люди работают над повышением их эффективности.

Исследователи из Университета Суррея заявили о прорыве в материалах для суперконденсаторов, которые могут позволить им использовать весь диапазон бензиновых автомобилей, но это первые дни, и вы не увидите этого на современных суперконденсаторах.

Вторая проблема с суперконденсаторами в том виде, в каком они стоят, — это разрядка или время, в течение которого они могут удерживать заряд. В настоящее время суперконденсаторы не могут удерживать заряд так же долго, как литий-ионные батареи. Если, например, вы оставили автомобиль с суперконденсаторным питанием в гараже на неделю, вы, скорее всего, найдете его бесплатно, когда вернетесь.

Быстрая зарядка может решить эту проблему, но вам нужно убедиться, что у вас есть под рукой зарядное устройство, имеющее достаточную силу тока, чтобы обеспечить высокий заряд, с которым может справиться суперконденсатор. У вас вряд ли будет домашнее зарядное устройство на пару тысяч ампер в запасе.

По мере того, как в суперконденсаторах совершаются прорывы, мы можем ожидать лучшего накопления энергии и способов предотвращения быстрой разрядки, которая в конечном итоге может привести к тому, что суперконденсаторы вытеснят литий-ионные аккумуляторные системы.Но это похоже на долгий путь.

Суперконденсаторы прямо сейчас? Рука помощи гибридам

По мере того, как в суперконденсаторах совершаются прорывы, мы можем ожидать лучшего накопления энергии и способов предотвращения быстрой разрядки, которая в конечном итоге может привести к тому, что суперконденсаторы вытеснят литий-ионные аккумуляторные системы. Но это похоже на долгий путь.

Так что насчет теперь? Хотя суперконденсаторы какое-то время могут не использоваться в электромобилях, эта технология уже идеально подходит для гибридных силовых агрегатов.Суперконденсаторы уже используются для быстрой зарядки источников питания в гибридных автобусах при их движении от остановки к остановке, но такие производители автомобилей, как Lamborghini, обнаруживают, что они также могут добавить серьезную дополнительную производительность.

Когда гибридная энергия используется исключительно для повышения производительности, такие вопросы, как дальность полета и способность удерживать заряд, не так важны — и именно поэтому мы уже наблюдаем, как технологии проникают в мир гиперкаров.

Lamborghini Sian сочетает в себе электромотор мощностью 34 л.с. с питанием от суперконденсатора и двигатель Sant’Agata V12 для sub 3.0 с 0 до 100 км / ч.

В Сиане использование суперконденсатора является единственным методом хранения электроэнергии, но вполне возможно, что мы могли бы получить автомобили, в которых также сочетаются суперконденсатор и литий-ионная технология, используя преимущества обоих; литий-ионные батареи по-прежнему будут основным источником энергии, но суперконденсаторы могут их дополнить для более быстрого разряда и перезарядки энергии во время разгона и торможения.


Какое будущее у суперконденсаторов?

Мы просто обсуждаем здесь идею, но такая машина могла бы работать на суперконденсаторе вокруг города, где есть инфраструктура для поддержки быстрой зарядки, эффективно переключаясь с powerpoint на powerpoint.Затем для более длительных прогулок автомобиль может переключиться на литий-ионный аккумулятор с рекуперативным торможением, помогающим увеличить запас хода.

Учитывая, что Тесла купила Максвелла, специалиста по суперконденсаторам и батареям, в 2019 году, есть шанс, что именно производитель автомобилей сделает такой электромобиль реальностью; время покажет, для чего Tesla использует технологию Максвелла.

Суперконденсаторы

уже используются для быстрой зарядки блоков питания в гибридных автобусах при их движении от остановки к остановке. В настоящее время такие зарядные устройства коммерчески нецелесообразны для массового производства, но по мере того, как все больше людей покупают электромобили, инфраструктура зарядки, вероятно, разовьется до такой степени, что широко распространенные зарядные устройства для суперконденсаторов станут реальностью.

Итак, мы можем ожидать увидеть точки зарядки суперконденсаторов и беспроводные зарядные устройства, питаемые от них на станциях, как электрический эквивалент бензонасоса, способного заправить автомобиль за считанные минуты.

Чтобы получить немного научной фантастики о вещах, такую ​​зарядку можно было бы расширить с помощью суперконденсаторов, встроенных в дороги, постоянно доставляющих энергию электромобилям, когда они мчатся и останавливаются на светофоре.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *