Во что трансформировался электромотор: Двигатель электромобиля — принцип работы, устройство, виды

Содержание

Двигатель электромобиля — принцип работы, устройство, виды

По планам многих автоконцернов – именно за тяговым двигателем для электромобиля – будущее. Так известно, что в плане развития известного гиганта Bentley Motors значится, что к 2030-му году компания полностью трансформируется в производителя электроавтомобилей. На электродвигатели ставки также делают такие известные на весь мир компании, как Nissan, Volvo, Aston Martin. 

Тенденции таковы, что в массовом производстве сейчас больше представлены легковые электромобили и городской электротранспорт (согласно планам, в ряде таких стран как, к примеру, Франция и Норвегия в 2025-2030-м гг. автобусы в городах будут полностью заменены на электротранспорт).

Но чувствуется интерес и к установке электромоторов на грузовой транспорт. Особенно электродвигатели интересны производителям городских развозных фургонов, терминальных тягачей и коммунальных грузовиков.

На весь мир уже хорошо известен седельный тягач капотного типа Tesla Semi, в коммунальном хозяйстве США активно не первый год используют мусоровозы PETERBILT на электротяге, в Евросоюзе возрастает интерес к седельному тягачу с электродвигателем Emoss Mobile Systems B.

V. и Renault Trucks –развозному автомобилю для продуктов.

На постсоветском пространстве свой коммерческий электротранспорт пока только начинает появляться, но уже активно говорят про грузовик МАЗ-4381Е0 (на грузовике установлен асинхронный тяговый электродвигатель мощностью 70 кВт (95 л.с.), ориентированный на транспортировку грузов в черте города, и электрогрузовик Moskva опытно-конструкторского бюро Drive Electro (главное назначение — доставка товаров в магазины). Не за горами время, когда этот коммерческий транспорт с электромоторами будет активно востребован автопарками, логистическими центрами, предприятиями.

Также, безусловно, давно, как данность мы принимаем, что на электродвигателе работают трамваи, троллейбусы, погрузчики на складах и локомотивы. Трёхфазный асинхронный двигатель помогает двигаться на давно полюбившихся поездах «Ласточка» и «Сапсан».

Принцип работы

Принцип работы двигателя электромобиля основан на преобразовании электроэнергии в механическую энергию вращения. Главные участники преобразования энергии – статор и ротор.

Как работает традиционный электромотор?

  1. Магнитное поле статора действует на обмотку ротора.
  2. Возникает вращающий момент.
  3. Ротор начинает двигаться.

Наглядная схема двигателя электромобиля в системе электропривода представлена ниже:

Важная особенность классического электрокара – отсутствие дифференциала, коробки передач, передаточных устройств с шестеренками. Энергия от электромотора поступает прямо на колеса.

Без коробки передач – и большинство «гибридов» с электродвигателем и ДВС. Исключение – «гибриды» с параллельной схемой передачи на колёса крутящего момента. К ней мы ещё вернёмся в этой статье в разделе, посвящённом гибридным автомобилям.

Принцип работы любого электродвигателя базируется на процессах взаимного притяжения и отталкивания полюсов магнитов на роторе и статоре. Движение осуществляется под действием самого магнитного поля и инерции.


Устройство

Как устроен двигатель электромобиля?

При описании принципа работы электродвигателя, уже было упомянуто, что главные компоненты двигателя электромобиля– ротор и статор.

  1. Ротор – это вращающийся компонент двигателя.
  2. Статор находится в неподвижном состоянии. Он ответственен за создание неподвижного магнитного поля.

Ротор

Классический ротор автомобиля состоит из сердечника, обмотки и вала. У некоторых электродвигателей в состав ротора также входит коллектор.
  • Сердечник – это металлический стержень, на периферии которого располагается обмотка. Непосредственно через сердечник происходит замыкание магнитной цепи электродвигателя. Сердечник изготавливается из стальных пластин круглой формы. По структуре похож на слоёный пирог. При производстве сердечников используют изолированные листы стали с присадками кремния. В этом случае обеспечены увеличение КПД электродвигателя, наименьшие удельные потери в металле на единицу массы, снижение величины размагничивающих вихревых токов Фуко, которые возникают из-за перемагничивания сердечника. На поверхности сердечника есть продольные пазы. Через них прокладывается обмотка.
  • Вал – металлический стержень, который непосредственно передаёт вращающий момент. Также изготавливается из электротехнической стали. Служит основой для насаживания сердечника. На концах вала есть резьба, выемки под шестерёнки, подшипники качения, шкивы.
  • Коллектор – блок, крепящийся на валу. Представляет собой систему медных пластин. Изолирован от вала. Служит выпрямителем переменного тока, переключателем-автоматом направления тока (в зависимости от вида электродвигателя).

Статор (индуктор)

Статор состоит из станины, сердечника и обмотки:
  • Станина статора – корпус статора. Как правило, корпус бывает алюминиевым или чугунным. Алюминиевые станины популярны у электродвигателей легковых авто, чугунные – у спецтехники, которая вынуждена работать в условиях высокой вибрации. Станина служит базой крепления основных и добавочных полюсов.
  • Сердечник статора – цилиндр из профилированных стальных листов. Фиксируется винтами внутри станины. Снабжён пазами для обмотки.
  • Обмотка. Создаёт магнитный поток. При пересечении проводников ротора наводит в них электродвижущую силу.

Виды

Электродвигатели классифицируют по типу питания привода, конструкции щеточно-коллекторного узла, количеству фаз для запитывания:
  • По типу питания привода. Устройства делятся на моторы переменного и постоянного тока. Двигатели постоянного тока способны обеспечить более точную и плавную регулировку оборотов, высокий КПД. Двигатели переменного тока выручают, когда важна высокая перегрузочная способность. Это удачный вариант для подъёмно-транспортных машин. Впрочем, существуют и универсальные моторы, которые функционируют от переменного и постоянного тока.
  • По конструкции щеточно-коллекторного узла. Выпускаются бесколлекторные и коллекторные моторы. Бесколлекторный мотор работает за счёт движения ротора с постоянным магнитом. У конструкции нет щеточно-коллекторного узла.
    Решение обеспечивает достойный крутящий момент, широкий диапазон скоростей и высокий КПД. Важные преимущества бесколлекторного мотора – надёжность, способность к самосинхронизации, возможность подпитываться при переменном напряжении. Ресурс бесколлекторного мотора ограничен исключительно ресурсом подшипников. У коллекторных моторов присутствует щелочно-коллекторный узел. Удобство решения связано с тем, что он может использоваться и в качестве переключателя тока в обмотках, и как извещатель положения ротора, нет необходимости в контролле. Проблема коллекторных моделей – в том, что они зависимы от постоянных магнитов, которые, как известно, со временем, к огромному сожалению, теряют свои свойства.
  • По количеству фаз для запитывания. В зависимости от того, как запитывается обмотка, электродвигатели бывают однофазными и трёхфазными. В автомобилестроении широкое распространение получили трёхфазные решения, это связано с рядом технических характеристик (мощность, перегрузочная способность, частота вращения на холостом ходу).
Обратите внимание! Работать трёхфазные моторы могут синхронно и асинхронно, а в качестве ротора используются как короткозамкнутые, так и фазные модели. Самый популярный вариант – трехфазные асинхронные моторы с короткозамкнутым ротором. Они стоят на большинстве современных электрокаров.

Асинхронные и синхронные двигатели

Синхронные моторы – двигатели переменного тока, у которых частота вращения ротора идентична частоте вращения магнитного поля (измерение производится в воздушном зазоре). В автомобилестроении синхронные моторы встретить можно нечасто (хотя в мире техники – это, в целом, очень популярное решение – особенно в климатотехнике, насосных системах).

Но есть производители авто, которые при производстве электрокаров предпочитают устанавливать на свои машины именно синхронные двигатели. Яркий пример – концерн Renault. Синхронными двигателями на электромагнитах он оснастил электрокар Renault Zoe. На электромагниты подаётся постоянный ток. Полярность магнитов ротора стабильна.

Полярность магнитов статора при этом изменяется и обеспечивает бесперебойное вращение.

Преимущество синхронных двигателей на электромагнитах у авто – максимальная оптимизация рекуперации энергии торможения. И главный «конёк» авто с таким типом электродвигателя – полная безопасность при буксировке.

Гораздо более популярный вариант – асинхронные двигатели. Это двигатели переменного тока, у которых потенциал напряжения – магнитного поля не совпадает с частотой вращения ротора. Типичным 3-фазным асинхронным двигателем оснащены, например, хорошо известные автомобили Tesla S и Tesla Х.

Иногда асинхронные моторы называют индукционными, так как в роторе в соответствие с законом Ленца у них индуцируется электромагнитная сила.

Двигатель-колесо

Обособленно среди электромоторов стоит двигатель-колесо. Особенность двигателя- колеса – ориентир крутящего момента и силы напряжения на конкретное колесо.

Такие решения можно встретить в плагин-гибридных автомобилях («гибридах» с параллельной схемой, при описании устройства гибридных авто ниже по тексту мы остановимся на них подробнее). Работает двигатель-колесо в паре с ДВС.

У первых плагин-гибридных автомобилей с двигателем-колесом агрегат был монтирован в ступицу колеса, а работа осуществлялась исключительно в паре с внутренним зубчатым редуктором.

Некоторые же современные модели моторов, монтируемые внутри колёс, вполне могут работать без зубчатого редуктора. Это увеличивает управляемость, позволяет избежать увеличения удельного веса шасси, уменьшить риски, повышает КПД.

Преимущества и недостатки электродвигателей

Преимуществ у электродвигателей существенно больше, нежели недостатков. Более того, за счёт усовершенствования и конструктивных особенностей самих электроприводов, и инфраструктуры, связанной с зарядкой, многие вещи, которые вчера ещё казались критичными, сегодня теряют свою актуальность.

Преимущества

  • Не требуется «раскачка». Крутящий момент достигает максимума непосредственно при включении. Именно по этой причине электрический двигатель электромобиля не требует наличия стартеров и сцеплений – неотъемлемых спутников ДВС.
  • Удобство. Для включения заднего хода (то есть коррекции со стороны вращения мотора) достаточно поменять полярность, сложная коробка передач не требуется.
  • Высокий КПД. У машин с электродвигателями он достигает 95 %.
  • Независимость. На любой отметке скорости достигается максимальный показатель крутящего момента.
  • У мотора – малый вес. Производители могут себе легко позволить создавать компактные автомобили.
  • Есть все возможности для рекуперации энергии торможения. Если у авто с ДВС кинетическая энергия просто уходит в колодки (и стирает их), то у электромобиля в режиме рекуперации мотор может функционировать как генератор. В режиме генерации электроэнергия просто трансформируется в другую форму и быстро накапливается в АКБ. Особенно решение эффективно для транспортных средств с длинным тормозным путем. На объём генерируемой и накопленной энергии существенно влияет маршрут (рельеф, в частности наличие холмистых участков на дороге и уклон дороги).
  • Снижение расходов на эксплуатацию машины. Зарядку можно производить от электросети. Это существенно дешевле, нежели использование дизеля, бензина. Выгода очевидна даже по сравнению с бензиновыми авто эконом-класса.
  • Малый уровень шума.
  • В большинстве случаев для мотора не требуется принудительное охлаждение.
  • Экологичность. Использование транспорта с электродвигателем снижает количество выхлопных газов в воздухе.

Недостатки

Долгое время считалось, что самый большой минус использования электродвигателя – его зависимость от аккумуляторов, которые быстро выходят из строя. Теперь это неактуально. Современные батареи электрокаров, представленных в массовом выпуске, гарантируют пробег автомобиля 150-200 тыс. км. Потерял актуальность и тот фактор, что машины с электродвигателем существенно уступают бензиновым по мощности. Электротяга современных электромоторов уже не уступает ДВС.

Поэтому недостатки электродвигателей сейчас правильно свести не к недостаткам конструкции, а к плохо развитой инфраструктуре для того, чтобы подзаряжать электромобили. Если в США, Скандинавии подзарядить электрокар легко, то до недавнего момента даже в Западной и Центральной Европе с инфраструктурой для подзарядки таких машин были проблемы.

В России, Беларуси, Украине, Казахстане, пока, увы, с инфраструктурой ситуация ещё хуже. Хотя, например, в России число заправок для электрокаров с 2018 по 2020 год возросло в 3 раза, но полотно покрытия площадками для зарядки очень неоднородное. В Москве – более плотное, в регионах – слабое. Даже разрыв с такими городами-гигантами как Санкт-Петербург и Челябинск — колоссальный.

Устройство электромобиля

Рассматривая электродвигатель, важно остановиться на устройстве электромобиля в целом, изучение электродвигателя не самого по себе, а как части системы электропривода, где электродвигатель – один из его базовых компонентов, его «сердце». Но «организм», функционирует только тогда, когда в порядке все другие «органы» – части электропривода:
  • Аккумуляторная батарея.
  • Бортовое зарядное устройство. Его функция – обеспечение возможности заряжать аккумуляторную батарею от бытовой электрической сети.
  • Трансмиссия. Распространены трансмиссия с одноступенчатым зубчатым редуктором (чаще всего встречающийся и наиболее простой вариант) и бесступенчатая трансмиссия с гидротрансформатором (для старта с места), плавно изменяющие отношение скоростей вращения и вращающих моментов мотора и ведущих колес транспортного средства во всём рабочем диапазоне скоростей и тяговых усилий.
  • Инвертор. Назначение инвертора – трансформирование высокого напряжения постоянного тока аккумулятора в трехфазное напряжение переменного тока.
  • Преобразователь постоянного тока. Функция – зарядка дополнительной батареи, которая используется для системы освещения, кондиционирования, аудиосистемы.
  • Электронная система управления (блок управления). Отвечает за управление функциями, связанными с энергосбережением, безопасностью комфортом. В её «подчинении» – оценка заряда АКБ, оптимизация режимов движения, регулирование тяги, контроль за использованной энергией и за напряжением, управлением ускорением и рекуперативным торможением.

Аккумуляторная батарея

Аккумуляторная батарея (аккумулятор) – один из наиболее дорогих компонентов системы. По своей значимости играет такую же роль, как бензобак для ДВС. Электромобиль движется за счёт электричества, полученного от электросети во время зарядки и хранящегося в АКБ.

При этом важно помнить, что у большинства электромобилей устанавливаются одновременно два аккумулятора: один тяговой – он питает именно мотор и стартерный (как и в машинах с ДВС, он помогает системе освещения, системе подогрева). Эти аккумуляторы разные не только по назначению, но и техническим характеристикам.
Тяговый аккумулятор электрического двигателя электромобиля предназначен для питания мотора, запуска двигателя. У него нет высокого пускового тока, но он заточен на длительную работу, выдерживает большое количество циклов заряда-разряда.

Типичная тяговая АКБ – моноблочная секционная конструкция. Тяговая АКБ состоит из толстых электронных пластин – пористых сепараторов и электролитного вещества.
Самые распространенные аккумуляторы – литий-ионные. У них – наиболее высокая энергетическая плотность, не требуется обслуживание, достаточно низкий саморазряд.

Устройство и особенности гибридных систем


Свои особенности – у гибридных систем. В гибридных системах электродвигатель может рассматриваться и как «партнёр» ДВС, и как допэлемент, помогающий добиться экономии топлива и при этом повышения мощности.

Устройство «гибрида» отличается в зависимости от реализованной схемы передачи на колёса крутящего момента.

  • Параллельная. Аккумуляторы передают энергию электромотору, бак – топливо для ДВС. Оба агрегата равноправны и способны создать условия для перемещения авто. Но работает такая схема только при наличии коробки передач. Параллельная схема успешно реализована у автомобиля Honda Civic. Нередко гибриды с параллельной схемой выделяют в отдельную группу и называют плагин-гибридными.

  • Последовательная. Любое действие начинается с включения ДВС. Он же отвечает за последующие действия: поворот генератора для запуска электромотора, зарядку аккумуляторов.


  • Последовательно-параллельная. Через планетарный редуктор соединены ДВС, электродвигатель и генератор. В зависимости от условий движения может использоваться тяга электродвигателя или ДВС. Режим выбирается программно системой управления транспортного средства. Среди хорошо известных последовательно-параллельных «гибридов» – Toyota Prius, Lexus-RX 400h.

Классический гибридный автомобиль использует интегрированный в трансмиссию электрический мотор-генератор.

При этом для получения электрической тяги у гибридных систем задействованы четыре базовых компонента:

  • Мотор-генератор. Является обратимой силовой установкой. Может работать в двух режимах: непосредственно тягового мотора и генератора для зарядки высоковольтной аккумуляторной батареи. При работе в режиме мотора возможно создание крутящего момента и мощности, которых хватит для старта и движения автомобиля с выключенным ДВС, при работе устройства в режиме генератора продуцируется высоковольтная электроэнергия.
  • Высоковольтные силовые кабели. Изолированные электрические кабели большого сечения. Важны для переноса энергии между компонентами высоковольтных электроцепей.
  • Высоковольтные аккумуляторные батареи. Включенные в последовательную цепь аккумуляторные элементы. Позволяют накопить в батарее большой объём электроэнергии.
  • Высоковольтный силовой модуль управления для управления потоком электроэнергии для движения транспортного средства на электрической тяге.

Гибридные авто открывают новые эксплуатационные возможности, с одной стороны можно быть максимально экологичным, радоваться комфортной езде и сэкономить на топливе, а с другой стороны, при разряде аккумулятора владелец авто не попадёт впросак, если невозможно подзарядить мотор: в работу вступит ДВС.

Перспективы применения электродвигателей в автомобилях

Перспективы применения электродвигателей в автомобилях напрямую связаны с тем, насколько активно будет развиваться инфраструктура. Там, где она не обеспечена, использование электрокаров действительно ограничено. Ведь без подзарядки у многих авто – малая дальность пробега.

Впрочем, даже последняя проблема активно решаемая. Немецкие и японские разработчики (компании DBM Energy, Lekker Energie, Japan Electric Vehicle Club) сумели доказать миру: потенциал у электродвигателей, аккумуляторов без подзарядки может достигать 500 -1000 тысяч километров пробега. Правда, пока что 1 000 тысяч км пробега без подзарядки возможны только в теории, а 500-600 уже на практике.

На данный момент доступность такого транспорта – на уровне инженерно-конструкторской работы, экспериментальных выпусков, но есть перспективы что их подхватят автогиганты, и не за горизонтом – серийное производство.

Перспективы применения электродвигателей в автомобилях очень тесно связаны и с политикой отдельных государств. Например, в Норвегии обладатели электромобилей освобождены от уплаты ежегодного налога на транспорт, пользования платными дорогами, паромными переправами и даже большинством парковок. С учётом того, что налоги и тарифы в Скандинавии одни из самых высоких, мотивация приобрести именно авто с электродвигателем, а не ДВС – очень высокая.

Обратите внимание, что на базе LCMS ELECTUDE есть специальный раздел “Электрический привод”, в нём подробно разбираются электродвигатели, виды электропривода, системы зарядки, особенности обслуживания транспорта с электромотором. Кроме комплексных теоретических знаний в обучающих модулях приводятся многочисленные практические примеры.

В Британии разработан рекордный электромотор — ДРАЙВ

Авторы проекта пока представили лишь рисунки и уверяют, что первый рабочий образец мотора появится через год.

Когда речь заходит о прогрессе электрокаров, чаще всего говорят о росте удельной (на килограмм веса) ёмкости тяговых батарей. И тут постоянно идут подвижки. Но не менее захватывающими являются усилия инженеров, направленные на улучшение электромоторов. Новейший проект в этой области покоряет числами: две британские компании, Equipmake и HiETA, разработали тяговый электродвигатель под названием Ampere, который должен выдавать 220 кВт (299 л.с.) на 30 000 об/мин при собственной массе всего в 10 кг. Удельная отдача получается 22 кВт/кг. Лучшие серийные моторы на постоянных магнитах обеспечивают только 5 кВт/кг, поясняют разработчики.

Несмотря на высокую плотность компоновки деталей, включая преобразователи тока и редуктор, Ampere не должен перегреваться за счёт «оптимизированной термической эффективности».

Equipmake является специалистом по электромоторам, а HiETA — дока в аддитивных методах производства, в частности, в 3D-печати металлом. Она-то и позволит, по задумке партнёров, получить в Ампере столь высокие параметры. Здесь будут использованы высокопрочные сплавы, добавляемые только там, где нужно (как у напечатанного в 3D тормозного суппорта). Так металла требуется меньше. А ещё оптимизация конструкции позволила уменьшить и массу магнитов.

Про Ariel Hipercar ничего не слышно с 2017 года, когда было представлено шасси. По замыслу британцев, этот аппарат должен приводиться в движение только четырьмя электромоторами (1196 л.с., 1800 Н•м в сумме), но для подзарядки тяговой батареи можно задействовать микротурбину на 35 кВт.

Equipmake отмечает, что уже выпускаемые ею электромоторы задействованы в проекте Ariel Hipercar. Но тот является настоящим долгостроем. Если Ariel потянет время ещё, может, дождётся появления Ампера и применит его. Если нет, то найдутся другие желающие. Сама фирма Equipmake надеется на интерес не только авто-, но и судо- и авиастроителей.

назначение, устройство и принцип действия трансформатора

Трансформатор  –  это статическое электромагнитное устройство предназначенное для преобразование переменного тока одного напряжения той же частоты подающегося на его входную обмотку,  в другое переменное напряжение поступающиеся с его выходной обмотки.

Если на вход трансформатора поступает напряжение ниже, чем образующиеся на его выходе то такой трансформатор называют повышающим. Если на вход поступает напряжение выше чем образующие на его выходе, то это понижающий трансформатор.

Есть некая аналогия с передаточным числом шестереночной передачей.

Назначение и принцип действия трансформатора

Назначение и принцип действия трансформатора — это  передача электрической энергии на значительные расстояния от электростанций к различным потребителям: промышленным предприятиям, населению и т.п, с помощью электродвижущей силы и магнитной индукции.

Трансформаторы позволяют значительно экономить на стоимости проводов, а также снижают потери электроэнергии в линиях электропередач. Так как от силы тока зависит сечение проводов то, увеличивая напряжение и снижая силу тока (не снижая при этом передаваемую мощность) можно эффективно предавать напряжение на значительные расстояния.

Повышая напряжение (U), и снижая силу тока (I), передаваемая мощность (Р) остается неизменна.

Формула мощности  P = U * I или P = U2 / I

передача электроэнергии трансформаторами

Это позволяет экономить  на линиях электропередач:

  1. Используя провода с меньшим поперечным сечение, снижается расход  цветных металлов;
  2. Уменьшаются потери мощности при передаче электроэнергии на большие расстояния.

На электростанциях вырабатывается электрическая энергия посредством синхронных генераторов и составляет от 11 кВ до 20кВ, в некоторых случаях может применяться напряжение 30-35 кВ.  Эти величины не подходят как в быту, так и на промышленном производстве из-за слишком высокого напряжения. Но эти напряжения также недостаточны для экономичной передачи электроэнергии на расстояния. Поэтому на выходе из электростанций ставятся повышающие трансформаторы, которые повышают напряжение до 750 кВ, U=750kV напряжение которое непосредственно передается по линиям электропередач.

Приемники электрической энергии: различные бытовые приборы, электродвигатели, станки на производстве из-за соображения безопасности и конструктивными сложностями изготовления (требования к усиленной изоляции), также не могут работать с такими высокими напряжениями.  Они рассчитываются на более низкое напряжения, как правило, это 220V в быту и 380V на производстве.

Для понижения напряжения  используются различные понижающие трансформаторы. Любой трансформатор можно использовать как для повышения, так и для понижения напряжения.

Повышающие трансформаторы используют для передачи электроэнергии на большие расстояния, понижающие для распределения электроэнергии в точке разветвления потребителей.

Электрическая энергия по пути движения от электростанции до потребителя может трансформироваться 3 или 4 раза. Преобразование электроэнергии происходит с помощью магнитопровода трансформатора и переменного магнитного поля.

Трансформатор работает только с переменным напряжением, на постоянном токе не работает, так как не будет создаваться переменного магнитного поля, которое и составляет принцип работы любого трансформатора.

Изобретение трансформатора

Трансформатор изобрел выдающийся русский ученый П.И. Яблочковым в 1876г. Он использовал индукционную катушку с двумя обмотками для питания своей знаменитой лампы, «свечи Яблочкова». Это был первый генератор переменного тока. Этот трансформатор имел незамкнутый сердечник. Замкнутые сердечники, которые используются сейчас, появились только в 1884 г.

В 1889 году русский ученый М. О. Доливо-Добровольским изобрел трехфазную систему переменного тока и построил первый трехфазный асинхронный двигатель и первый трехфазный трансформатор.

С 1891г, он демонстрирует на электротехнической выставке в Франкфурте-на-Майне передачу высоковольтного трехфазного тока на расстояние более 100 км. Его трехфазный генератор имел мощность 230 кВА и напряжение U =95V. С помощью трехфазного трансформатора напряжение повышалось до 15 кВ и понижалось в точке приема до 65V (фазное напряжение), питая трехфазный асинхронный двигатель мощностью 75 кВт насосной установки. С помощью последовательного включения двух обмоток высокого напряжения удалось повысить 28 кВ и увеличить КПД электропередачи до 77%, что в то время было достаточно высоким.

Как устроен трансформатор

Принцип работы трансформатора

Простейший трансформатор – это две обмотки катушек, намотанные на магнитопроводе (замкнутом сердечнике трансформатора) с изоляцией по которым пропускают переменный ток.
Для наглядности обмотки расположены на разных стержнях стального сердечника. На самом деле часть обмоток может находится на одном стержне, а часть на другом. Такое расположение обмоток улучшает магнитную связь и снижает потери на магнитный поток рассеяния. Обмотка, на которую подают напряжение, называют первичной обмоткой, а обмотка трансформатора, с которой снимают напряжение, называют вторичной.

Изображение трансформатора на схеме

Обычно в быту для питания различных устройств, применяют понижающие трансформаторы, где напряжение первичной обмотки всегда больше напряжения на вторичной обмотке.
Трансформаторы предназначены не только для передачи электроэнергии, но и служат в различных электронных устройствах: компьютерах, телевизорах и осветительной аппаратуре. В современном мире трансформаторы являются наиболее употребительными и универсальными устройствами.

Видео: Трансформатор. Принцип работы и советы конструкторам

Видео доступным языком объясняет работу трансформатора и даёт некоторые конструктивные советы

Простое объяснение принципа работы трансформатора

Чтобы понять, что такое трансформатор, попробуем собрать его, попутно разбираясь в каждом шаге.

 

Для начала соберем электромагнит. Самый простейший электромагнит это кусок ферромагнетика, например гвоздь (сотка), вокруг которого намотана проволока. (катушка).

катушка индуктивности

Намотайте катушку, скажем витков 20-30 на гвоздь, подключите к батарейке или любому блоку питания постоянного напряжения (например 9 вольт).

При подаче тока на катушку, гвоздь усиливает свое магнитное свойство и становится постоянным электромагнитом — полной копией простого магнита.

Количеством витков, их толщиной (сечением провода), напряжением и током, материалом сердечника, способом намотки (например в два провода) Вашей катушки — Вы можете регулировать степень магнитной силы Вашего электромагнита.

А подключением намотки Вы можете регулировать положение полюсов Вашего электромагнита. (это важно)

При подключении катушки к батарейке у гвоздя, т. е. у Вашего электромагнита образовывается, как и у простого магнита два полюса, условно северный (он же плюс) и южный (он же минус).

Поднесите к Вашему электромагниту простой магнит любым из полюсов. Вы увидите электромагнитное взаимодействие. Магнит будет отталкиваться Вашим электромагнитом.

Теперь поменяйте провода от Вашей батарейки местами, т. е. плюс на минус. При этом Вы заметите, что электромагнит поменял направление силы — теперь он наоборот притягивает.

Чем чаще Вы переключаете плюс на минус, тем чаще Ваш магнит будет менять направление силы. Иными словами электромагнит будет притягивать отталкивать с частотой питающей его сети.

Северный и южный полюса магнита будут меняться между собой, потому что ВЫ создали переменное напряжение с частотой Вашего переключения плюс на минус.

Теперь на гвозде намотайте вторую точно такую же катушку и Вы получите простейший трансформатор.

Трансформатор это прибор, который трансформирует напряжение и ток одной величины в напряжение и ток другой величины.

Первая катушка называется первичной обмоткой, а вторая катушка вторичной обмоткой.

Итак соберите такую конструкцию.

  • Гвоздь, на нем две одинаковые катушки.
  • Подключите первичную обмотку к блоку питания с возможностью менять направление тока.
  • Ко второй катушке подключите мультиметр.

Теперь включите блок питания и начинайте переключать полярность с некоторой частотой. На второй катушке у Вас начнет появляться напряжение, которое передается посредством того, что называют электромагнитной индукции. В итоге на Вашем гвозде у Вас работают два электромагнита, на первый вы подаете ток и напряжение, а на втором электромагните этот ток и напряжение индуктируются.

Виды трансформаторов

Силовой трансформатор

Так выглядит силовой трансформатор

Этот виды трансформаторов относится к трансформаторам работающих в сетях промышленных и бытовых установках частотой питающей сети 50-60 Гц. Силовые трансформаторы предназначены для преобразование электрической энергии для передачи ее по ЛЭП например, с 38 кВ до 6кВ, 380V на 220V (380/220В). Электро цепи где используется высокое напряжение принято называть в электротехнике силовыми цепями, а трансформаторы соответственно силовые трансформаторы.

Конструкция силового трансформатора состоит из двух или трёх обмоток, возможно больше. Располагаются обмотки на броневом сердечнике, изготавливаемом из листов электротехнической стали. Некоторые силовые трансформаторы (с расщепленными обмотками) могут иметь несколько обмоток с низшего напряжения (НН) которые запитаны параллельно. Это позволяет получать напряжение больше чем от одного генератора и передавать больше электроэнергии, тем самым повышая КПД электроустановки.

Мощные силовые трансформаторы очень часто делают масляными, то есть его обмотки помещают в бак со специальным трансформаторным маслом. Трансформаторное масло служит для активного охлаждения и одновременной изоляции его обмоток.
Трансформаторы мощностью 400 кВА обладают большим весом и монтируются на специальных платформах или помещениях. Они поступают с завода в собранном состоянии, готовыми к подключению нагрузки на подстанциях или электростанциях. Основное исполнение силовых трансформаторов – это трехфазные трансформаторы. это связно с тем, что потери КПД однофазных трансформаторов на 15% больше.

Сетевые трансформаторы

сетевой трансформатор

Сетевые трансформаторы это самый распространенный вид трансформаторов, который можно встретить практически в любом бытовом электроприборе. Все сетевые трансформаторы, как правило, делают однофазными. Эти трансформаторы служат для преобразования высокого напряжение сети 220V до приемлемого напряжения, используемого в том или ином электроприборе. Понижающее напряжение может быть: 220/12V или 220/9V, 220/36V и т.д.

Многие изготавливают сетевые трансформатор не с одной, а с несколькими вторичными обмотками, что делает трансформатор более универсальным, часто используемый на разное напряжение одновременно.

Например, часть схемы запитана напряжение 12 Вольт, а другая 3 Вольта от одного трансформатора с несколькими обмотками.

конструкция магнитопроводов трансформатора

Изготавливают сетевые трансформаторы чаще всего из электротехнической стали на Ш – образных или стержневых сердечниках. Встречаются тороидальные сердечники. Ш-образный сердечник набирается из пластин, на которые надевают каркас на который наматываются обмотки трансформатора.

Тороидальный трансформатор имеет преимущества из-за своего более компактного вида и обладают более лучшими характеристиками. Обмотки тороидального трансформатора полностью охватывают магнитопровод, нет пустого пространства незанятого обмоткой в отличие от стержневых или броневых трансформаторов.

Сварочные трансформаторы также можно отнести к сетевым, мощность которых не превышает 6 кВт. Все сетевые трансформаторы работают на низкой частоте равной 50-60 Гц.

Автотрансформатор


Автотрансформатор – это трансформатор где обмотки низшего напряжения являются частью обмотки высшего. Обмотки автотрансформатора имеют прямую электрическую связь, а не только посредством магнитопровода. Делая отводы от одной обмотки можно получить различное напряжение. Отличить обмотки низшего и высшего напряжение можно по различному сечению использованного для намотки провода.

Преимущество автотрансформатора – это меньшие размеры, меньше использованного провода, меньше сердечник, меньше затрачено стали на его изготовление в итоге меньшая цена автотрансформатора.

Главный недостаток трансформатора — это гальваническая связь обмоток низшего и высокого напряжения. Возможность попадания сети высшего напряжения в сеть низшего. Невозможность применение автотрансформаторов в сетях с заземлением.
Автотрансформаторы применяют в сетях трехфазного тока с соединением обмоток в чаще всего в звезду, реже в треугольник.

Автотрансформаторы часто применяют в устройствах управления напряжением, в высоковольтных установках, в промышленности для пуска мощных асинхронных электродвигателей переменного тока. Мощность автотрансформаторов может быть до 100 МВт.

Преимущество автотрансформаторов увеличивается с увеличением коэффициента трансформации близкими (К=1-2).

Лабораторный автотрансформатор (ЛАТР)

Латр

Разновидностью автотрансформатора можно назвать лабораторный трансформатор (ЛАТР). Его основное назначение — это плавная регулировка напряжения, подающаяся к нагрузке, к любому потребителю электроэнергии. Конструкция автотрансформатора представляет собой тороидальный трансформатор у которого есть только одна обмотка, по которой бежит ползунок (угольный роликовый контакт) подключающий каждый виток не изолируемой обмотки (дорожки) автотрансформатора к схеме. Таким образом, создается регулирующий эффект.

При замыкании соседних витков роликовым ползунком в ЛАТР, не происходит межвитковых замыканий, так как токи питающей сети и нагрузки автотрансформатора в общей обмотке близки друг к другу и направлены встречно. Самые распространенные ЛАТРы регулируют напряжение от 0 до 250V. Трехфазные регулируют от 0/450 вольт. Автотрансформаторы ЛАТРы часто используют в научно исследовательских лабораториях для пусконаладочных работ различного назначения.

Трансформаторы тока

Трансформатор тока служит в основном в измерительной технике. Первичную обмотку такого трансформатора подключают к источнику тока, вторичная обмотка используется для различных измерительных приборов при небольшом внутреннем сопротивлении (R вн).
Первичная обмотка – это, как правило, всего виток провода включенного последовательно с измеряемой цепью переменного тока. Ток первичной обмотки прямо пропорционален току вторичной, в чем и достигается измерение величины силы тока (А).

Главная особенность трансформаторов тока состоит в том, что вторичная обмотка должна быть всегда нагружена, иначе происходит пробой изоляции высоким напряжением, также при отключенной нагрузке магнитопровод трансформатора тока просто сгорает от некомпенсированных наведенных токов.

Конструктивно трансформатор тока это одна или несколько изолированных обмоток намотанных на шихтованную холоднокатаную электротехническую сталь называемую сердечником. Первичная обмотка может быть просто провод, который пропущенный через окно магнитопровода трансформатора тока который измеряет силу тока проходящий через этот провод или шину. Коэффициент трансформации здесь 100/5, безопасны, так как отсутствует гальваническая связь между обмотками.

Применение трансформаторов тока: измерения силы тока в схемах релейной защиты, в измерительной аппаратуре. Выпускают с 1-2 группами вторичных обмоток. Одна группа может, подсоединяется к защитным устройствам, другая к измерительным приборам и счетчикам.

Трансформаторы напряжения

Трансформатор напряжения НОМ-3

Трансформаторы напряжения – это трансформаторы, преобразующие высокие напряжения пропорционально и точно в соответствии с фазами в величины, пригодные для измерения. Трансформаторы среднего напряжения имеют единственный магнитопровод и могут быть выполнены с одной или несколькими вторичными обмотками. Заземляемые трансформаторы напряжения по желанию помимо измерительной или защитной обмотки могут быть выполнены с дополнительной обмоткой для регистрации замыкания на землю.

Импульсный трансформатор тока

импульсный трансформатор тока

Применяются для измерения направления или силы тока в импульсных схемах. Импульсный трансформатор состоит из кольцевого ферритового сердечника с одной обмоткой. Измеряемый провод проходит сквозь кольцо, обмотку подключают к сопротивлению нагрузки (Rн).
Если обмотка содержит 1000 витков провода, то ток, проходящий через измеряемый провод будет равен 1000\1, то есть на сопротивлении нагрузки будет ток, который в 1000 раз меньше тока проходящего через измеряемый провод.

Производители трансформаторов тока изготовляют импульсные трансформаторы тока с различным коэффициентом трансформации. Инженеру проектировщику нужно лишь рассчитать сопротивление нагрузки и соответствующую схему измерения.
Если нужно измерить направление тока, то вместо сопротивления нагрузки подключают два стабилитрона с встречным включением.

Импульсный трансформатор

Распространен во всех современных электронных схемах. Импульсный трансформатор предназначен для сварочных устройств, блоков питания, импульсных преобразователей. Заменили в настоящее время низкочастотные трансформаторы с сердечниками из шихтованной стали, которые имели больше габариты и вес.
Состоит из ферритового магнитопровода различной формы: кольцо, чашечка, стержень, Ш — образный, П – образный. Ферритовый сердечник импульсных трансформаторов дает им несравненное преимущество перед старыми трансформаторами из стали в том, что они могут работать на частотах до и свыше 500 000 гц.

Импульсный трансформатор – это ВЧ (высокочастотный) трансформатор габариты и вес, которого с ростом частоты становиться только меньше!
Обмотка требует меньшего количества витков, а для регистрации высокочастотного тока достаточно полевого или биполярных транзисторов включенных по специальной схеме:

  • Прямоходовая;
  • Двухтактная;
  • Полумостовая;
  • Мостовая схема

Применяют импульсные трансформаторы и дроссели на феррите в энергосберегающих лампах, зарядных для мобильных устройств, в мощных инверторах тока, сварочных аппаратах.

Трансформатор Тесла

Трансформатор Николы Теслы — это аппарат, с помощью которого получают токи высокой частоты. Реализовывается при помощи первичной и вторичной обмотки, но первичная обмотка получает питание на частоте резонанса вторичной обмотки, при этом напряжение на выходе возрастает в десятки раз.

По мнению специалистов, Тесла изобретал трансформатор для решения глобального вопроса передачи электрической энергии из одного пункта в другой без применения проводов. Для того чтобы получилась задуманная изобретателем передача энергии при помощи эфира, необходимо на двух удаленных точках иметь по одному мощному трансформатору, которые работали бы на одной частоте в резонансе. сли проект реализовать, тогда не понадобятся гидроэлектростанции, мощные ЛЭП, наличие кабельных линий, что, конечно, противоречит монопольному владению электрической энергией разными компаниями.

С проектом Николы Теслы каждый гражданин общества мог бесплатно воспользоваться электричеством в нужный момент в любом месте, где бы он ни находился.

С точки зрения бизнеса эта система нерентабельна, так как она не окупится, ведь электричество становится бесплатным, именно по этой причине патент №645576 до сих пор ожидает своих инвесторов.

Видео: Принцип работы трансформатора

Основы — как работает трансформатор, первичная и вторичная обмотка, каким образом понижается или повышается напряжение у трансформатора за счет магнитного поля, для чего нужен магнитопровод и что такое взаимоиндуктивность — обо всем этом смотрите в видео!

Поделиться ссылкой:

Электродвигатель — Технический центр Эдисона

В электродвигатель был впервые разработан в 1830-х годах, через 30 лет после первая батарея. Интересно, что мотор был разработан до появления первых динамо-машина или генератор.

Выше: Первый мотор Davenport

1.) История и изобретатели:

1834 — Томас Дэвенпорт из Вермонта разработал первый настоящий электродвигатель («настоящее» значение достаточно мощный, чтобы выполнить задачу) хотя Джозеф Генри и Майкл Фарадей создал ранние устройства движения с использованием электромагнитных полей. Ранние «моторы» создавали вращающиеся диски или рычаги, которые качался взад и вперед. Эти устройства не могли сделать никакой работы для человечества. но были важны для того, чтобы проложить путь к лучшим двигателям в будущем.Различные двигатели Давенпорта были возможность запускать модельную тележку по круговой колее и другие задачи. Позже тележка оказалась первым важным приложением. электроэнергии (это была не лампочка). Рудиментарный полноразмерные электрические тележки были наконец построены через 30 лет после смерти Давенпорта в 1850-х годах.

Влияние электромотора на мир перед лампочками:
Тележки и подключенные энергосистемы стоили очень дорого. строили, но перевозили миллионы людей на работу в 1880-е годы.До тех пор рост электросети в 1890-х гг. большинство людей (средний и низкие классы) даже в городах не было электрического света в дом.

Только в 1873 году электродвигатель наконец добился коммерческого успеха. С 1830-х годов тысячи инженеров-новаторов улучшили двигатели и создали много вариаций. См. Другие страницы для получения более подробной информации об огромной истории электродвигателя.

Выводы двигателя к генератору:
После слабые электродвигатели были разработаны Фарадеем и Генри, другой пионер по имени Ипполит Пикси выяснил это, запустив двигаясь задом наперед, он мог создавать импульсы электричества. К 1860-м годам разрабатывались мощные генераторы. Электротехническая промышленность не могла начаться, пока генераторы были разработаны, потому что батареи не были экономичным способом получения энергии потребности общества.Подробнее о генераторах и динамо здесь>

2.) Как работают моторы

Электродвигатели могут работать от переменного (AC) или постоянного (DC) тока. Двигатели постоянного тока были разработаны первыми и имеют определенные преимущества и недостатки. Каждый тип мотора работает по-разному, но все они используют силу электромагнитного поля. Мы поговорим об основных принципах электромагнитных полей. в двигателях, прежде чем вы сможете перейти к различным типам двигателей.

переменного тока электродвигатели используют вторичную и первичную обмотку (магнит), первичную подключен к сети переменного тока (или непосредственно к генератору) и находится под напряжением. Вторичный получает энергию от первичной обмотки, не касаясь ее напрямую. Это делается с помощью сложные явления, известные как индукция.

Справа: инженер работает над кастомными модификациями дрона-октокоптера.Восемь крошечных DC двигатели создают достаточно мощности, чтобы поднять килограммы полезной нагрузки. Более новые конструкции двигателей, подобные этому, используют редкоземельные металлы в статоре для создания более сильных магнитных полей в небольших и легких пакеты.

Выше: универсальный двигатель, обычно используемый в большинстве электроинструментов.Имеет тяжелый плотный ротор. Выше: асинхронный двигатель может иметь «беличью клетку» или полый вращающийся катушка или тяжелый якорь.

2.a) Детали электродвигателя:

Есть много видов электродвигателей, но в целом они имеют похожие детали. Каждый мотор имеет статор , который может быть постоянным магнитом (как показано выше в «универсальном двигателе») или намотанными изолированными проводами. (электромагнит, как на фото вверху справа).Ротор находится посередине (большую часть времени) и подлежит к магнитному полю создается статором. Ротор вращается, поскольку его полюса притягиваются и отталкиваются полюсами статора. Смотрите наши видео ниже, показывающее, как это работает. В этом видео рассматривается бесщеточный двигатель постоянного тока, ротор которого находится снаружи, в других двигателях. тот же принцип обратный, с электромагнитами снаружи. Видео (1 минута):

Мощность мотора:
Сила двигателя (крутящий момент) определяется напряжением и длина провода электромагнита в статоре, чем длиннее провод (что означает больше катушек в статоре), тем сильнее магнитное поле.Это означает больше мощности для повернуть ротор. Смотрите наше видео, которое относится как к генераторам, так и к двигателям. Узнать больше.

Арматура — вращающаяся часть двигателя — это раньше называлось ротором, это поддерживает вращающиеся медные катушки. На фото ниже вы не видите катушки, потому что они плотно заправлены в якорь. Гладкий корпус защищает катушки от повреждений.

Статор — Корпус и катушки, составляющие внешнюю часть двигателя. В статор создает стационарное магнитное поле.

Вверху: В этом статоре отчетливо видны четыре отдельные катушки (якорь был удалено)

Обмотка или «Катушка» — медные провода, намотанные на сердечник для создания или получить электромагнитную энергию.

Провода, используемые в обмотки ДОЛЖНЫ быть изолированы. На некоторых фото вы увидите, что выглядит как обмотки из голого медного провода, это не так, это просто эмалированная с прозрачным покрытием.

Медь это самый распространенный материал для обмоток. Алюминий также используется но должен быть толще, чтобы нести такую ​​же электрическую безопасно загружать.Медные обмотки позволяют использовать двигатель меньшего размера. Подробнее о меди>

Перегорание мотора, устранение неисправностей:
Если двигатель работает слишком долго или с чрезмерным нагрузки, он может «сгореть». Это означает, что высокая температура вызвала изоляция обмотки может сломаться или оплавиться, а затем обмотки закорочены когда они касаются друг друга, и двигатель выходит из строя. Вы также можете сжечь двигатель, подав на него большее напряжение, чем обмоточные провода рассчитаны на.В этом случае проволока расплавится в самом слабом месте, разорвав соединение. Ты можешь проверьте двигатель, чтобы увидеть, не перегорел ли он таким образом, проверив сопротивление (сопротивление) с помощью мультиметра. Как правило, при проверке двигателя вы должны искать черные метки на обмотках.


Squirrel Cage — вторая катушка в асинхронном двигателе, см. Ниже чтобы увидеть, как это работает
Индукция — генерация электродвижущей силы в замкнутом цепь изменяющимся магнитным потоком через цепь.В сети переменного тока уровень мощности повышается и понижается, это заряжает обмотку на момент создания магнитного поля. Когда мощность падает в цикле магнитное поле не может поддерживаться, и оно схлопывается. Это действие передает мощность через магнетизм на другую обмотку или катушку. УЧИТЬ БОЛЬШЕ об индукции здесь.

3.) Типы электродвигателей переменного тока

Двигатели переменного тока:

3.а) Индукция Двигатель
3.b) Универсальный двигатель (можно использовать постоянный или переменный ток)
3.c) Синхронные двигатели
3.d) Двигатели с экранированными полюсами


См. Нашу страницу, посвященную асинхронным двигателям, здесь>

Это мощный двигатель, который можно использовать с мощность переменного и постоянного тока.

Преимущества :
-Высокий пусковой крутящий момент и небольшой размер (хорошо для общего использования в бытовые электроинструменты)
-Может работать на высоких скоростях (отлично подходит для стиральных машин и электродрелей)

Недостатки:
— Щетки со временем изнашиваются

Использует: приборы, ручной электроинструмент

Посмотреть видео ниже:


3.в) синхронный Моторы (Selsyn Motor)

Этот мотор аналогичен асинхронному двигателю, за исключением того, что он движется с частотой сети.

Мотор Selsyn был разработан в 1925 году и сейчас известен как Synchro. Узнать больше о их здесь.


Преимущества: Обеспечивает постоянную скорость, которая определяется количество полюсов и частота подаваемого переменного тока.
Недостатки: Не может работать с переменным крутящим моментом, этот двигатель будет остановиться или «вытащить» с заданным крутящим моментом.
Использует: a часы использует синхронные двигатели для обеспечения точной скорости вращения Руки. Это аналог двигателя , и хотя скорость точна, шаговый двигатель лучше подходит для работы с компьютерами, так как он функционирует на жестких «ступенях» разворота.

Этот мотор одинарный фазный двигатель переменного тока.Имеет только одну катушку с поворотным валом. в центре, отставание потока, проходящего вокруг катушки, вызывает сила магнита, чтобы двигаться по катушке. Это получает центральный вал с вращением вторичной обмотки.

Цилиндр изготовлен из стали и имеет медные стержни, встроенные по длине в цилиндр поверхность.


Преимущества: достигает высокого уровня крутящего момента, когда ротор начал быстро вращаться.
Используется в вентиляторах, приборах

Недостатки: медленный запуск, низкий крутящий момент для запуска. Используется в вентиляторах, обратите внимание на медленный старт фанатов.
Этот двигатель также используется для слива стиральных машин, открывашек и прочая бытовая техника.
Другие виды двигателей лучше подходят для более мощных нужд выше 125 Вт.

Посмотреть видео ниже:


4.) Двигатели постоянного тока (DC):

Двигатели постоянного тока были первым видом электродвигателей. Обычно они составляют 75-80% эффективный. Они хорошо работают на регулируемых скоростях и обладают большим крутящим моментом.

4.a) Общая информация
4.b) Щеточные двигатели постоянного тока
4.b.1) Двигатель постоянного тока с параллельной обмоткой
4.b.2) Двигатель постоянного тока с последовательной обмоткой
4.b.3) Двигатели-блины
4.b.4) Двигатель постоянного тока с постоянным магнитом
4.b.5) С раздельным возбуждением (Sepex)
4.c) Бесщеточные двигатели постоянного тока
4.c.1) Шаговый двигатель
4.c.2) Двигатели постоянного тока без сердечника / без сердечника


Матовый Двигатели постоянного тока:

Первый DC двигатели использовали щетки для передачи тока на другую сторону двигателя. Кисть названа так потому, что сначала имела форму метлы.Маленькие металлические волокна терлись о вращающуюся часть мотора. поддерживать постоянный контакт. Проблема с кистями в том, что они изнашиваются со временем из-за механики. Кисти будут создавать искры из-за трения. Парки часто плавили изоляцию и становились причиной коротких замыканий. в арматуре и даже переплавил коммутатор.

Первые моторы использовались на уличных железных дорогах.

Использует сплит кольцевой коммутатор со щетками.
Преимущества:
-Используется во множестве приложений, имеет простой контроль скорости с помощью уровня напряжения для управления.
-Имеет высокий пусковой момент (мощный пуск)
Ограничения: щетки создают трение и искры, это может привести к перегреву устройство и плавить / сжигать щетки, поэтому максимальная скорость вращения ограничено. Искры также вызывают радиочастоты. вмешательство. (RFI)

Есть пять типов двигателей постоянного тока с щетками:
Двигатель постоянного тока с параллельной обмоткой
Двигатель с обмоткой серии постоянного тока
Составной двигатель постоянного тока — совокупный и дифференциально смешанный двигатель
Двигатель постоянного тока с постоянным магнитом
Двигатель с раздельным возбуждением
Двигатель-блинчик

Бесщеточный Двигатели постоянного тока:

Щетка заменен внешним электрическим выключателем, который синхронизируется с положение двигателя (он изменит полярность по мере необходимости, чтобы сохранить вал двигателя вращается в одном направлении)
— Более эффективен, чем щеточные двигатели
— Используется, когда необходимо точное регулирование скорости (например, в дисководах, ленте машины, электромобили и т. д.)
-Долгий срок службы, так как работает при более низкой температуре и нет щеток изнашиваться.

Типы бесщеточные двигатели постоянного тока:
Шаговый двигатель
Двигатели постоянного тока без сердечника / без сердечника

4.b) ЩЕТОЧНЫЙ ДВИГАТЕЛИ ПОСТОЯННОГО ТОКА:

4.b.1) DC Шунтирующий двигатель

Шунт постоянного тока Электродвигатель подключен так, что катушка возбуждения подключена параллельно с арматура.Обе обмотки получают одинаковое напряжение. Катушка шунтирующего поля намотан множеством витков тонкой проволоки для создания высокого сопротивления. Этот гарантирует, что катушка возбуждения будет потреблять меньше тока, чем якорь (ротор).

Арматура (как видно выше, это длинная толстая цилиндрическая вращающаяся часть) имеет толстую медные провода, чтобы через них проходил большой ток, завести мотор.

В качестве арматуры витков (см. фото ниже) ток ограничен противоэлектродвижущим сила.

Сила катушки шунтирующего поля определяет скорость и крутящий момент двигателя.

Преимущества: Шунтирующий двигатель постоянного тока регулирует свою скорость. Это означает, что если загрузка При добавлении якоря замедляется, КЭДС уменьшается, в результате чего якорь ток увеличивается. Это приводит к увеличению крутящего момента, что помогает переместить тяжелый груз. При снятии нагрузки якорь ускоряется, CEMF увеличивается, что ограничивает ток, а крутящий момент уменьшается.

Конвейер Пример ленты : Представьте, что конвейерная лента движется с заданной скоростью, затем в пояс входит тяжелая коробка. Этот тип двигателя будет поддерживать движение ремня. с постоянной скоростью независимо от того, сколько коробок движется по ленте.

Посмотреть видео ниже, демонстрирующее действие параллельного двигателя постоянного тока !:

4.б.2) DC двигатель с последовательным заводом

Двигатель с серийной обмоткой — это двигатель постоянного тока с самовозбуждением. Обмотка возбуждения подключена внутри последовательно с обмоткой ротора. Таким образом обнажается обмотка возбуждения в статоре. до полного тока, создаваемого обмоткой ротора.

Этот тип двигателя похож на двигатель постоянного тока с параллельной обмоткой, за исключением того, что обмотки возбуждения сделаны из более тяжелого провода, поэтому они могут выдерживать более высокие токи.

Применение: Этот тип двигателя используется в промышленности в качестве пускового двигателя из-за большого крутящего момента.

Подробнее о двигателе с последовательным заводом:
, статья 1
Артикул 2

4.b.3) Блины Двигатель постоянного тока (также известный как двигатель с печатным якорем)

Блин мотор — мотор без железа.Большинство двигателей имеют медную обмотку. железный сердечник.

Видео с демонстрацией примеры мотора-блинчика:

Преимущества:
Точное регулирование скорости, плоский профиль, не имеет зубцов, которые возникают утюгом в электромагните

Недостатки:
плоская форма не подходит для всех приложений

Имеет обмотку в форме плоского эпоксидного диска между двумя магнитами с сильным магнитным потоком.Это полностью без железа, что делает большую эффективность. Используется в сервоприводах, был первым спроектирован как электродвигатели стеклоочистителя и видеоиндустрии, так как он был очень плоским в профиль и имел хороший контроль скорости. Компьютеры и видео / аудио запись всей использованной магнитной ленты, точный и быстрый контроль скорости был нужен, поэтому для этого был разработан мотор-блин. Сегодня это используется во множестве других приложений, включая робототехнику и сервосистемы.

4.b.4) Составной двигатель постоянного тока (накопительный и дифференциально-составной)

Это еще один самовозбуждающийся двигатель с последовательными и шунтирующими катушками возбуждения. Он имеет эффективное регулирование скорости и приличный пусковой крутящий момент.

Узнайте больше об этом типе двигателя здесь.

4.b.5) Двигатель постоянного тока с постоянным магнитом

Этот тип двигателя хорошо работает на высоких оборотах и ​​может быть очень компактным.
Область применения: компрессоры, другое промышленное применение.

Узнайте больше об этом типе двигателя здесь.

4.б.6) Отдельно возбужденный (сепекс)

SepEx имеет обмотку возбуждения, которая питается отдельно от якоря с прямым текущий сигнал. Полевой магнит также имеет собственный источник постоянного тока. В результате вы увидите это Тип двигателя имеет четыре провода — 2 для возбуждения и 2 для якоря.

Этот двигатель представляет собой щеточный двигатель постоянного тока. который имеет более широкие кривые крутящего момента, чем двигатель постоянного тока с последовательной обмоткой.

Узнайте больше об этом типе двигателя здесь.

4.c) Бесщеточные двигатели постоянного тока:

4.c.1) Шаговый Мотор

Шаговый мотор — это тип бесщеточного мотора, который перемещает центральный вал один часть хода за раз.Это делается с помощью зубчатых электромагнитов. вокруг куска железа в форме централизованной шестерни. Есть много видов шаговых двигателей. Они используются в системах, которые перемещают объекты с высокой точностью. положение, как сканер , дисковод и промышленная лазерная резьба устройства .

Посмотреть видео шагового двигателя в действии ниже:

4.в.2) Без сердечника / Двигатели постоянного тока без железа

Медь намотанная или алюминиевый сердечник вращается вокруг магнита без использования железа. Этот делается путем придания цилиндрической формы.
Преимущество: легкий и быстрый запуск отжима (используется в компьютере жестких дисков)
Недостаток: легко перегревается, так как железо обычно действует как радиатор, для охлаждения необходим вентилятор.

Узнайте больше об этом типе двигателя здесь.

Источники:
Документы Джозефа Генри — Смитсоновский институт
Denver Electric Motor Company
Стив Нормандин
Википедия
Томас Дэвенпорт — доктор Фрэнк Уикс мл.
Электромобиль своими руками


Связанные темы:

ИСТОРИЯ ЭЛЕКТРОМОТОРНЫХ ТЕХНОЛОГИЙ: ПУТЕШЕСТВИЕ ВО ВРЕМЯ

С момента зарождения технологий темпы инноваций продолжали ускоряться.Новые изобретения и технологии облегчают нашу жизнь, но удивительно то, что технологии часто приводят к новым новаторским идеям и открытиям, облегчая проектирование и создание даже более новых технологий. Этот постоянно ускоряющийся цикл инноваций продолжает видоизменять и реконструировать мир, в котором мы живем, и это причина, по которой вы можете потягивать старомодный и наблюдать за Сайнфельдом, когда вы упакованы в металлическую трубу, мчащуюся по небу на высоте 30 000 футов над уровнем моря. Атлантический океан.

История технологии электродвигателей не стала исключением, следуя этой тенденции инноваций на протяжении последних 200 лет.Оглядываясь назад на изобретение первого электродвигателя в 1832 году, трудно представить, какое влияние электродвигатели уже оказали на нашу жизнь и другие технологии, и еще труднее представить себе следующие 200 лет инноваций. Пересказывая историю электродвигателя, мы станем свидетелями ускоряющегося цикла инноваций в реальных условиях и лучше поймем, что нас ждет в будущем.

Изобретение электродвигателя

Ганс Христиан Эрстед экспериментировал с электричеством в 1820 году, когда он заметил, что компас отклоняется, когда он подносит к нему наэлектризованный стержень.Он только что открыл электромагнетизм и, хотя, несомненно, не осознавал влияния своего открытия, он просто привел в движение мяч для инноваций в технологии электродвигателей.

Вскоре ученые всего мира начали искать применение электромагнетизма для выработки электроэнергии. Уильяму Стерджену, английскому физику, приписывают изобретение первого электродвигателя постоянного тока в 1832 году. Его конструкция была первым электродвигателем, способным приводить в движение механизмы, однако он все еще был сильно ограничен своей низкой выходной мощностью.

Несколько лет спустя в США Томас Дэвенпорт и его жена Эмили Дэвенпорт получили первый патент на электродвигатель постоянного тока в 1837 году. Их конструкция была частичной адаптацией первого двигателя Sturgeon. К сожалению, несмотря на годы экспериментов, конструкция двигателя Давенпорта по-прежнему страдала от тех же проблем с мощностью и эффективностью, с которыми сталкивалась оригинальная конструкция Sturgeon.

Запатентованный двигатель Томаса и Эмили Давенпорт

Тем не менее, самый впечатляющий ранний двигатель был построен русским по имени Мориц фон Якоби, чей электродвигатель установил мировой рекорд по механической мощности в 1834 году, включая двигатель Давенпорта.Якоби тоже не терял времени, внося свои усовершенствования, и только год спустя, в 1835 году, он продемонстрировал увеличенную мощность своего нового дизайна, переправив через реку 14 человек на лодке, приводимой в движение его мотором.

Первый практический двигатель постоянного тока

После первых демонстраций возможностей электродвигателей резко вырос интерес к технологии электродвигателей, вдохновив на создание сотен новых изобретений и открытий. И все же первое поколение электродвигателей прославили пресс-папье.Они были ужасно непрактичными, имели потери напряжения на обмотках, нестабильный ток питания и обычное искрение. В течение следующих 50 лет инженеры и физики работали над решением этих проблем путем оптимизации и изменения основных компонентов электродвигателя.

В период с 1835 по 1886 год в конструкцию ротора и якоря был внесен ряд улучшений в целях разработки первого «практичного» двигателя, при этом заметный вклад внесли итальянский физик Антонио Пачинотти и бельгийский инженер-электрик Зенобе Грамм.Однако только американскому изобретателю Фрэнку Джулиану Спрэгу приписывают изобретение первого «практичного» двигателя в 1886 году.

«Практичный» мотор Фрэнка Джулиана Спрэга
Электродвигатель

Sprague устраняет искрение, потерю напряжения на обмотках и может подавать мощность с постоянной скоростью, что делает его первым «практичным» электродвигателем постоянного тока, позволяющим более широко применять электродвигатели. Конструкции двигателей Sprague были практически надежными и довольно мощными, но эффективность этих конструкций оставляла желать лучшего.Спраг будет использовать свои двигатели для разработки первой системы электрических тележек в следующем году в Ричмонде, штат Вирджиния, в 1887 году.

Первые генераторы и электрификация

В Европе, развивая свои ранние открытия и открытия других, Зеноб Грамм в 1871 году разработал свою машину Грамма. Его машина могла преобразовывать механическую энергию в непрерывный ток электрической энергии. Представляя свое изобретение на Всемирной выставке 1873 года в Вене, Грамм случайно обнаружил обратимость электродвигателей, когда он соединил два устройства постоянного тока на расстоянии 2 км друг от друга, одно из которых функционировало как двигатель, а другое — как генератор.

Открытие обратимости электродвигателя постоянного тока доказало, что электродвигатели можно использовать в качестве генераторов, преобразуя механическую работу в электрическую энергию, а также имея возможность возвращать неиспользованную энергию обратно источнику, что способствовало развитию первых электрических сетей.

К 1920-м годам страны всего мира начали разработку электрических сетей. Вскоре электричество начало проникать в повседневную жизнь: газовые фонари были заменены электрическими уличными фонарями, кондиционеры теперь охлаждали офисы и дома, а улицы крупных городов были заполнены системами электрических тележек.Электроэнергетика началась, и практичность электрических технологий ускорилась.

Передовая моторная технология — воздушные зазоры, магниты и др.

В 1921 году для электродвигателей была представлена ​​революционная новая концепция дизайна, которая еще больше повысила их надежность и эффективность. Несмотря на то, что группа обслуживания двигателей в США была введена для предотвращения повреждений, вызванных трением между компонентами, было обнаружено, что небольшой воздушный зазор между ротором и статором также способствует прохождению электромагнитного потока в машинах постоянного тока, дополнительно повышая их эффективность.

PCB Stator BLDC Двигатель с воздушным зазором, маркировка

Износ щеточных двигателей постоянного тока будет оставаться проблемой даже после обнаружения воздушного зазора. В щеточных двигателях постоянного тока щетки должны контактировать с коммутаторами для передачи электрических сигналов; эрозия из-за этого постоянного трения приведет к их износу, иногда к перегреву при высоких нагрузках. Их надежность и проблемы с регулированием температуры не позволили широко использовать щеточные электродвигатели постоянного тока в приложениях с большой мощностью, таких как HVAC и электромобили.

Все изменилось с изобретением бесщеточного коммутатора. Хотя бесщеточные двигатели с постоянными магнитами были открыты в 1962 году, они стали широко использоваться только в 1982 году, когда стали доступны редкоземельные металлы. С помощью постоянных магнитов бесщеточные двигатели постоянного тока могут быть более мощными и эффективными, чем любой щеточный двигатель, при этом обеспечивая превосходное качество движения.

Конечно, открытие бесщеточного двигателя постоянного тока не остановило инноваций, и в конце 80-х пара ученых Джерри Генко и Норман Смит запатентовали двигатель со статором на печатной плате.Их конструкция электрически и механически соединяла статор с печатной платой, чтобы снизить производственные и материальные затраты, связанные с двигателями BLDC с постоянными магнитами.

Современные моторные технологии

Бесщеточные двигатели постоянного тока сегодня на световые годы опережают старые троллейные двигатели 19 века, но их конструкция далека от совершенства. Обычные двигатели BLDC, подобные тем, которые были разработаны в 80-х годах, являются наиболее популярными типами двигателей на рынке сегодня, и их популярность продолжает расти вместе со спросом на углеродно-нейтральные продукты и доступные системы кондиционирования воздуха.Потребность в решениях с еще более высокой выходной мощностью в меньшем корпусе, меньшим воздействием на окружающую среду и жизнеспособным процессом массового производства будет продолжать расти.

Создавая на основе 200-летних открытий, команда ECM пересмотрела идею Дженко и Смита, рассматривая ее с точки зрения 21 века. За счет встраивания протравленных медью проводников в многослойную печатную плату для формирования статора, который работает вместе с постоянными магнитами, запатентованная технология ECM устраняет необходимость в обмотке проводов и слоях железа, используемых в обычных двигателях и генераторах.

Запатентованная печатная плата статора и двигателя ЭСУД
Использование

ECM статора печатной платы в конструкции постоянного магнита с постоянным магнитом позволяет им разрабатывать невероятно тонкие и легкие двигатели, которые используют до 80% меньше сырья. Кроме того, используя свой революционно новый дизайн, команда ECM создала программное обеспечение для проектирования PrintStator, которое автоматически создает уникальные конструкции статора на печатной плате и включает все запатентованные конструктивные особенности ECM. PrintStator оптимизирует геометрию и толщину меди в статорах печатных плат, чтобы создать машину с превосходной плотностью крутящего момента и энергоэффективностью.

Изображение запатентованной конструкции электродвигателя статора на печатной плате ECM в разобранном виде

В 2015 году был запущен PrintStator, который использовался для создания прототипа среднего привода для электрического велосипеда. На основе дискретных входных данных PrintStator автоматически сгенерировал уникальный дизайн статора печатной платы вместе со связанным файлом Gerber, указав подробные характеристики сборки, повсеместно используемые производителями печатных плат для печати проекта. К концу 2019 года компания ECM собрала 10 патентов, касающихся конструкции и программного обеспечения PCB Stator BLDC.PrintStator был использован для успешной интеграции платформы PCB Stator в электромобильную, HVACR, робототехническую, военную, морскую и медицинскую промышленность.

Конструкция двигателя статора печатной платы

ECM решает многие проблемы, с которыми сталкивались электродвигатели после их изобретения в 1832 году, значительно улучшая надежность, эффективность и удельную мощность двигателя, но также решая современные технологические препятствия, включая устойчивость, технологичность, размер и вес. Использование статоров на печатной плате в двигателях BLDC, безусловно, является следующим этапом эволюции технологии электродвигателей, но, как мы видим из прошлого, оно не будет последним.

________________
Приложение

[1] https://edisontechcenter.org/electricmotors.html#:~:text=History%20and%20Inventors%3A,motion%20devices%20 using%20electromagnetic%20fields. — Ранняя история электродвигателей и изобретатели
[2] https://shodhganga.inflibnet.ac.in/bitstream/10603/50968/4/chapter%201.pdf — Первые бесщеточные двигатели постоянного тока
[3] https: // Patnts.justia.com/inventor/robert-e-lordo (Патенты на двигатели BLDC) — Патенты на двигатели BLDC с постоянными магнитами
[4] https: // www.eti.kit.edu/english/1382.php (источник изображения и информации о первых двигателях Jacobi)
[5] http://www.bera.org/articles/sprague.html (изображение двигателя Sprague)
[6] https : //www.hemmings.com/stories/2020/01/31/why-thomas-and-emily-davenport-shouldnt-get-credit-for-inventing-the-electric-vehicle (Изображение двигателя Дэвенпорта)

Электродвигатель — Energy Education

Рисунок 1. Электродвигатель от старого пылесоса. [1] Рисунок 2. Электрический ротор. [2]

Электродвигатель — это устройство, используемое для преобразования электричества в механическую энергию, противоположное электрическому генератору.Они работают с использованием принципов электромагнетизма, которые показывают, что сила прилагается, когда электрический ток присутствует в магнитном поле. Эта сила создает крутящий момент на проволочной петле, присутствующей в магнитном поле, которая заставляет двигатель вращаться и выполнять полезную работу. Двигатели используются в широком спектре приложений, таких как вентиляторы, электроинструменты, бытовая техника, электромобили и гибридные автомобили.

Как они работают

У двигателей

есть много разных рабочих частей, чтобы они постоянно вращались, обеспечивая необходимую мощность.Двигатели могут работать от постоянного (DC) или переменного (AC) тока, и оба имеют свои преимущества и недостатки. Для целей этой статьи будет проанализирован двигатель постоянного тока, чтобы прочитать о двигателях переменного тока, нажмите здесь.

Основные части двигателя постоянного тока включают: [3]

  • Статор: Неподвижная часть двигателя, а именно магнит. Электромагниты часто используются для увеличения мощности.
  • Ротор: Катушка, которая установлена ​​на оси и вращается с высокой скоростью, обеспечивая систему вращательной механической энергией.
  • Коммутатор: Этот компонент является ключевым в двигателях постоянного тока, и его можно увидеть на рисунках 3 и 4. Без него ротор не смог бы вращаться непрерывно из-за противоположных сил, создаваемых изменяющимся током. Коммутатор позволяет ротору вращаться, меняя направление тока каждый раз, когда катушка делает пол-оборота.
  • Щетки: Они подключаются к клеммам источника питания, позволяя электроэнергии течь в коммутатор.
  • Двигатель постоянного тока
  • Рисунок 3: Базовая установка двигателя постоянного тока. [3]

  • Рисунок 4: Анимация двигателя в действии. Коммутатор вращается, чтобы ротор вращался непрерывно. [3]

Список литературы

20.2 Двигатели, генераторы и трансформаторы — физика

Электродвигатели, генераторы и трансформаторы

Как мы узнали ранее, на провод с током в магнитном поле действует сила — вспомните, F = IℓBsinθF = IℓBsinθ.Электродвигатели, которые преобразуют электрическую энергию в механическую, являются наиболее распространенным приложением магнитной силы к токоведущим проводам. Двигатели состоят из витков провода в магнитном поле. Когда ток проходит через петли, магнитное поле оказывает на петли крутящий момент, который вращает вал. При этом электрическая энергия преобразуется в механическую работу. На рисунке 20.23 показан схематический чертеж электродвигателя.

Рисунок 20.23 Крутящий момент в токовой петле.Вертикальная петля из проволоки в горизонтальном магнитном поле прикреплена к вертикальному валу. Когда ток проходит через проволочную петлю, на нее действует крутящий момент, заставляющий вращать вал.

Давайте исследуем силу на каждом сегменте контура на рисунке 20.23, чтобы найти крутящие моменты, возникающие вокруг оси вертикального вала — это приведет к полезному уравнению для крутящего момента на контуре. Мы считаем, что магнитное поле является однородным по прямоугольной петле, которая имеет ширину w и высоту, ℓ, как показано на рисунке.Сначала рассмотрим силу, действующую на верхний сегмент петли. Чтобы определить направление силы, мы используем правило правой руки. Ток идет на страницу слева направо, а магнитное поле идет слева направо в плоскости страницы. Согните пальцы правой руки от вектора тока к вектору магнитного поля, а большой палец правой руки направлен вниз. Таким образом, сила на верхнем сегменте направлена ​​вниз, что не создает крутящего момента на валу. Повторение этого анализа для нижнего сегмента — пренебрегая небольшим зазором, где выходят подводящие провода — показывает, что сила на нижнем сегменте направлена ​​вверх, снова не создавая крутящего момента на валу.

Рассмотрим теперь левый вертикальный сегмент петли. Снова используя правило правой руки, мы обнаруживаем, что сила, действующая на этот сегмент, перпендикулярна магнитному полю, как показано на рисунке 20.23. Эта сила создает крутящий момент на валу. Повторение этого анализа на правом вертикальном сегменте петли показывает, что сила на этом сегменте направлена ​​в направлении, противоположном направлению силы на левом сегменте, таким образом создавая равный крутящий момент на валу. Таким образом, общий крутящий момент на валу вдвое превышает крутящий момент на одном из вертикальных сегментов петли.

Чтобы определить величину крутящего момента при вращении проволочной петли, рассмотрите рисунок 20.24, на котором показан вид проволочной петли сверху. Напомним, что крутящий момент определяется как τ = rFsinθ, τ = rFsinθ, где F — приложенная сила, r — расстояние от оси до места приложения силы, а θ — угол между r . и F . Обратите внимание, что при вращении петли ток в вертикальных сегментах петли всегда перпендикулярен магнитному полю.Таким образом, уравнение F = IℓBsinθF = IℓBsinθ дает величину силы на каждом вертикальном сегменте как F = IℓB.F = IℓB. Расстояние × от вала до места приложения этой силы составляет × /2, поэтому крутящий момент, создаваемый этой силой, равен

. τsegment = rFsinθ = w / 2IℓBsinθ = (w / 2) IℓBsinθ.τsegment = rFsinθ = w / 2IℓBsinθ = (w / 2) IℓBsinθ.

20,10

Поскольку есть два вертикальных сегмента, общий крутящий момент вдвое больше, или

τ = wIℓBsinθ.τ = wIℓBsinθ.

20,11

Если у нас есть составной контур с Н витками, мы получим Н, в раз больше крутящего момента одиночного контура.Используя тот факт, что площадь петли равна A = wℓ; A = wℓ; выражение для крутящего момента становится

τ = NIABsinθ. τ = NIABsinθ.

20.12

Это крутящий момент на токоведущей петле в однородном магнитном поле. Можно показать, что это уравнение справедливо для петли любой формы.

Рисунок 20.24 Вид сверху на проволочную петлю с рисунка 20.23. Магнитное поле создает силу F на каждом вертикальном сегменте проволочной петли, которая создает крутящий момент на валу.Обратите внимание, что токи Iin, IoutIin и Iout имеют одинаковую величину, потому что они оба представляют ток, протекающий в проводной петле, но IinIin течет на страницу, а IoutIout вытекает из страницы.

Из уравнения τ = NIABsinθ, τ = NIABsinθ, мы видим, что крутящий момент равен нулю, когда θ = 0.θ = 0. Когда проволочная петля вращается, крутящий момент увеличивается до максимального положительного крутящего момента wℓBwℓB, когда θ = 90 ° .θ = 90 °. Затем крутящий момент уменьшается до нуля, когда проволочная петля поворачивается на θ = 180 ° .θ = 180 °.От θ = 180 ° θ = 180 ° до θ = 360 °, θ = 360 ° крутящий момент отрицательный. Таким образом, крутящий момент меняет знак каждые пол-оборота, поэтому проволочная петля будет колебаться вперед и назад.

Чтобы катушка продолжала вращаться в том же направлении, ток меняется на противоположный, когда катушка проходит через θ = 0 и θ = 180 ° θ = 0 и θ = 180 ° с использованием автоматических переключателей, называемых щетками , как показано на рисунке 20.25.

Рисунок 20.25 (a) Поскольку угловой момент катушки переносит ее через θ = 0, θ = 0, щетки меняют направление тока, и крутящий момент остается по часовой стрелке.(b) Катушка непрерывно вращается по часовой стрелке, при этом ток меняет направление на каждую половину оборота, чтобы поддерживать вращающий момент по часовой стрелке.

А теперь подумайте, что произойдет, если запустить двигатель в обратном направлении; то есть мы прикрепляем ручку к валу и механически заставляем катушку вращаться в магнитном поле, как показано на рисунке 20.26. Согласно уравнению F = qvBsinθF = qvBsinθ, где θθ — угол между векторами v → v → и B → -chargesB → — заряды в проводах петли испытывают магнитную силу, потому что они движутся в магнитном поле.Снова используя правило правой руки, когда мы сгибаем пальцы от вектора v → v → к вектору B → B →, мы обнаруживаем, что заряды в верхнем и нижнем сегментах ощущают силу, перпендикулярную проводу, которая не вызывает тока. . Однако заряды в вертикальных проводах испытывают силы, параллельные проводу, заставляя ток течь через провод и через внешнюю цепь, если она подключена. Такое устройство, которое преобразует механическую энергию в электрическую, называется генератором.

Рисунок 20.26 Когда эта катушка вращается на одну четверть оборота, магнитный поток Φ изменяется от максимального до нуля, вызывая ЭДС, которая пропускает ток через внешнюю цепь.

Поскольку ток индуцируется только в боковых проводах, мы можем определить наведенную ЭДС, рассматривая только эти провода. Как объясняется в разделе «Наведенный ток в проводе», ЭДС движения в прямом проводе, движущемся со скоростью v через магнитное поле B , равна E = Bℓv, E = Bℓv, где скорость перпендикулярна магнитному полю.В генераторе скорость составляет угол θθ с B (см. Рисунок 20.27), поэтому составляющая скорости, перпендикулярная B , равна vsinθ.vsinθ. Таким образом, в этом случае ЭДС, индуцированная на каждом вертикальном отрезке провода, равна E = Bℓvsinθ, E = Bℓvsinθ, и они направлены в одном направлении. Общая ЭДС вокруг контура тогда составляет

E = 2Bℓvsinθ.E = 2Bℓvsinθ.

20,13

Хотя это выражение действительно, оно не дает ЭДС как функцию времени. Чтобы узнать, как ЭДС изменяется во времени, предположим, что катушка вращается с постоянной угловой скоростью ω.ω. Угол θθ связан с угловой скоростью соотношением θ = ωt, θ = ωt, так что

E = 2Bℓvsinωt.E = 2Bℓvsinωt.

20,14

Напомним, что тангенциальная скорость v связана с угловой скоростью ωω соотношением v = rω.v = rω. Здесь r = w / 2r = w / 2, так что v = (w / 2) ωv = (w / 2) ω и

E = 2Bℓ (w2ω) sinωt = Bℓwωsinωt. E = 2Bℓ (w2ω) sinωt = Bℓwωsinωt.

20,15

Принимая во внимание, что площадь петли A = ℓwA = ℓw и учитывая N витков из проволоки , мы находим, что

E = NABωsinωtE = NABωsinωt

20.16

— ЭДС, индуцированная в катушке генератора из N, витков и области A, , вращающейся с постоянной угловой скоростью ωω в однородном магнитном поле B . Это также можно выразить как

. E = E0sinωtE = E0sinωt

20,17

где

— максимальная (пиковая) ЭДС.

Рис. 20.27. Мгновенная скорость вертикальных отрезков провода составляет угол θθ с магнитным полем. Скорость показана на рисунке зеленой стрелкой, и указан угол θθ.

На рисунке 20.28 показан генератор, подключенный к лампочке, и график зависимости ЭДС от времени. Обратите внимание, что ЭДС колеблется от положительного максимума E0E0 до отрицательного максимума −E0. − E0. Между тем, ЭДС проходит через ноль, что означает, что в это время через лампочку протекает нулевой ток. Таким образом, лампочка на самом деле мигает с частотой 2 f , потому что за период происходит два перехода через ноль. Поскольку такой переменный ток используется в домах по всему миру, почему мы не замечаем мерцания света? В Соединенных Штатах частота переменного тока составляет 60 Гц, поэтому свет мигает с частотой 120 Гц.Это быстрее, чем частота обновления человеческого глаза, поэтому вы не заметите мерцания огней. Кроме того, другие факторы препятствуют такому быстрому включению и выключению различных типов лампочек, поэтому светоотдача немного сглаживается .

Рис. 20.28 ЭДС генератора направляется на лампочку с показанной системой колец и щеток. График показывает зависимость ЭДС генератора от времени. E0E0 — пиковая ЭДС. Период равен T = 1 / f = 2π / ω, T = 1 / f = 2π / ω, где f — частота, с которой катушка вращается в магнитном поле.

Виртуальная физика

Генератор

Используйте это моделирование, чтобы узнать, как работает электрический генератор. Управляйте подачей воды, которая заставляет водяное колесо вращать магнит. Это вызывает ЭДС в соседней катушке провода, которая используется для зажигания лампочки. Вы также можете заменить лампочку вольтметром, который позволяет увидеть полярность напряжения, которая меняется с положительной на отрицательную.

Проверка захвата

Установите количество проволочных петель равным трем, силу стержневого магнита примерно на 50 процентов и площадь петли на 100 процентов.Обратите внимание на максимальное напряжение на вольтметре. Предполагая, что одно из основных делений вольтметра составляет 5 В, какое максимальное напряжение при использовании только однопроводной петли вместо трехпроводной петли?

  1. 5 В
  2. 15 В
  3. 125 В
  4. 53 В

В реальной жизни электрические генераторы сильно отличаются от рисунков в этом разделе, но принципы те же. Источником механической энергии, вращающей катушку, может быть падающая вода — гидроэнергия — пар, образующийся при сжигании ископаемого топлива, или кинетическая энергия ветра.Рисунок 20.29 показывает паровую турбину в разрезе; пар движется по лопастям, соединенным с валом, который вращает катушку внутри генератора.

Рисунок 20.29 Паротурбинный генератор. Пар, образующийся при сжигании угля, ударяет по лопаткам турбины, вращая вал, соединенный с генератором. (Источник: Nabonaco, Wikimedia Commons)

Еще одно очень полезное и распространенное устройство, использующее магнитную индукцию, называется трансформатором. Трансформаторы делают то, что подразумевает их название — они преобразуют напряжение из одного значения в другое; термин напряжение используется, а не ЭДС, потому что трансформаторы имеют внутреннее сопротивление.Например, многие сотовые телефоны, ноутбуки, видеоигры, электроинструменты и небольшие приборы имеют встроенный в подключаемый модуль трансформатор, который преобразует 120 В или 240 В переменного тока в любое напряжение, используемое устройством. На рисунке 20.30 показаны два разных трансформатора. Обратите внимание на катушки проводов, которые видны на каждом устройстве. Назначение этих катушек поясняется ниже.

Рисунок 20.30 Слева — обычный трансформатор с многослойным сердечником, который широко используется в передаче электроэнергии и в электрических приборах.Справа — тороидальный трансформатор, который меньше трансформатора с многослойным сердечником при той же мощности, но более дорогой в изготовлении из-за оборудования, необходимого для наматывания проводов в форме пончика.

На рис. 20.31 показан трансформатор с многослойной обмоткой, который основан на законе индукции Фарадея и очень похож по конструкции на устройство Фарадея, которое использовалось для демонстрации того, что магнитные поля могут генерировать электрические токи. Две катушки с проволокой называются первичной и вторичной катушками.При нормальном использовании входное напряжение подается на первичную катушку, а вторичная обмотка создает преобразованное выходное напряжение. Железный сердечник не только улавливает магнитное поле, создаваемое первичной катушкой, но также его намагниченность увеличивает напряженность поля, что аналогично тому, как диэлектрик увеличивает напряженность электрического поля в конденсаторе. Поскольку входное напряжение переменного тока, изменяющийся во времени магнитный поток проходит через вторичную катушку, вызывая выходное напряжение переменного тока.

Рисунок 20.31 Типичная конструкция простого трансформатора имеет две катушки, намотанные на ферромагнитный сердечник. Магнитное поле, создаваемое первичной катушкой, в основном ограничивается и увеличивается сердечником, который передает его на вторичную катушку. Любое изменение тока в первичной катушке вызывает ток во вторичной катушке.

Ссылки на физику

Магнитная веревочная память

Чтобы отправить людей на Луну, программе Apollo нужно было спроектировать бортовую компьютерную систему, которая была бы надежной, потребляла мало энергии и была достаточно маленькой, чтобы поместиться на борту космического корабля.В 1960-х годах, когда была запущена программа Apollo, целые здания регулярно выделялись для размещения компьютеров, вычислительная мощность которых была бы легко превзойдена самыми простыми современными портативными калькуляторами.

Для решения этой проблемы инженеры Массачусетского технологического института и крупного оборонного подрядчика обратились к запоминающему устройству с магнитным тросом , которое являлось ответвлением аналогичной технологии, использовавшейся до того времени для создания запоминающего устройства с произвольным доступом. В отличие от памяти с произвольным доступом, память с магнитным тросом была постоянным запоминающим устройством, которое содержало не только данные, но и инструкции.Таким образом, на самом деле это было больше, чем память: это была компьютерная программа, зашитая зашитой.

Компонентами магнитной веревочной памяти были проволока и железные кольца, которые назывались сердечниками . Железные сердечники служили трансформаторами, как показано на предыдущем рисунке. Однако вместо того, чтобы наматывать провода несколько раз вокруг сердечника, отдельные провода пропускали через сердечники только один раз, создавая эти одновитковые трансформаторы. До 63 проводов слов может проходить через одну жилу вместе с одним проводом бит .Если словарный провод проходит через данный сердечник, импульс напряжения на этом проводе вызывает в разрядном проводе ЭДС, которая интерпретируется как , . Если бы провод слова не проходил через сердечник, на разрядном проводе не наведалась бы ЭДС, что было бы интерпретировано как ноль .

Инженеры будут создавать программы, которые будут жестко встраиваться в эти запоминающие устройства магнитного троса. Процесс подключения мог занять до месяца, так как рабочие кропотливо протягивали провода через одни жилы и вокруг других.Если были допущены какие-либо ошибки в программировании или подключении, отладка была бы чрезвычайно трудной, если не невозможной.

Эти модули неплохо справились со своей задачей. Им приписывают исправление ошибки астронавта в процедуре посадки на Луну, что позволило Аполлону-11 совершить посадку на Луну. Сомнительно, чтобы Майкл Фарадей когда-либо мог представить себе такое применение магнитной индукции, когда открыл ее.

Проверка захвата

Если бы разрядный провод был дважды обмотан вокруг каждой жилы, как это повлияло бы на напряжение, индуцированное в разрядном проводе?

  1. Если количество витков вокруг провода удвоено, ЭДС уменьшается вдвое.
  2. Если количество витков вокруг провода удвоится, ЭДС не изменится.
  3. Если количество витков вокруг провода удваивается, то удваивается и ЭДС.
  4. Если количество витков вокруг провода удвоено, ЭДС в четыре раза превышает начальное значение.

Для трансформатора, показанного на рисунке 20.31, выходное напряжение VSVS из вторичной катушки почти полностью зависит от входного напряжения VPVP на первичной катушке и количества петель в первичной и вторичной катушках.Закон индукции Фарадея для вторичной обмотки дает наведенное выходное напряжение VSVS равным

. VS = −NSΔΦΔt, VS = −NSΔΦΔt,

20,19

где NSNS — количество витков во вторичной катушке, а ΔΦ / ΔtΔΦ / Δt — скорость изменения магнитного потока. Выходное напряжение равно индуцированной ЭДС (VS = ES), (VS = ES) при небольшом сопротивлении катушки — разумное предположение для трансформаторов. Площадь поперечного сечения катушек одинакова с каждой стороны, как и напряженность магнитного поля, поэтому ΔΦ / ΔtΔΦ / Δt одинаковы с каждой стороны.Входное первичное напряжение VPVP также связано с изменением магнитного потока на

VP = −NPΔΦΔt.VP = −NPΔΦΔt.

20,20

Из соотношения этих двух последних уравнений получаем полезное соотношение

VSVP = NSNP (3,07) .VSVP = NSNP (3,07).

20,21

Это известно как уравнение трансформатора. Он просто заявляет, что отношение вторичного напряжения к первичному напряжению в трансформаторе равно отношению количества петель во вторичной катушке к количеству петель в первичной катушке.

Передача электроэнергии

Трансформаторы

широко используются в электроэнергетике для повышения напряжения — так называемые повышающие трансформаторы — перед передачей на большие расстояния по высоковольтным проводам. Они также используются для понижения напряжения — так называемые понижающие трансформаторы — для подачи энергии в дома и на предприятия. Подавляющая часть электроэнергии вырабатывается с помощью магнитной индукции, когда катушка из проволоки или медный диск вращается в магнитном поле.Первичная энергия, необходимая для вращения катушек или диска, может быть получена различными способами. Гидроэлектростанции используют кинетическую энергию воды для привода электрогенераторов. Угольные или атомные электростанции создают пар для привода паровых турбин, вращающих змеевики. Другие источники первичной энергии включают ветер, приливы или волны на воде.

После выработки энергии ее необходимо передать потребителю, что часто означает передачу мощности на сотни километров. Для этого напряжение силовой установки повышается повышающим трансформатором, который повышается, и ток уменьшается пропорционально, потому что

Ptransmitted = ItransmittedVtransmitted⋅Ptransmitted = ItransmittedVtransmitted⋅

20.22

Более низкий ток ItransmittedItransmitted в передающих проводах снижает потери Джоулей , которые представляют собой нагрев провода из-за протекания тока. Этот нагрев вызван небольшим, но ненулевым сопротивлением RwireRwire проводов передачи. Потери энергии в окружающую среду из-за этого тепла составляют

. Plost = Itransmitted2Rwire, Plost = Itransmitted2Rwire,

20,23

, который пропорционален текущему квадрату в квадрате в проводе передачи.Вот почему передаваемый ток ItransmittedItransmitted должен быть как можно меньше, и, следовательно, напряжение должно быть большим для передачи мощности Ptransmitted⋅Ptransmitted⋅

Для передачи мощности на большие расстояния используются напряжения от 120 до 700 кВ. Напряжение повышается на выходе из электростанции повышающим трансформатором, как показано на рисунке 20.32.

Рисунок 20.32 Трансформаторы изменяют напряжение в нескольких точках системы распределения электроэнергии.Электроэнергия обычно вырабатывается при напряжении более 10 кВ и передается на большие расстояния при напряжениях от 120 до 700 кВ для ограничения потерь энергии. Распределение электроэнергии по районам или промышленным предприятиям осуществляется через подстанцию ​​и передается на короткие расстояния с напряжением от 5 до 13 кВ. Оно снижено до 120, 240 или 480 В для безопасности на месте отдельного пользователя.

После подачи электроэнергии в населенный пункт или промышленный центр напряжение на подстанции понижается до 5–30 кВ.Наконец, в частных домах или на предприятиях мощность снова понижается до 120, 240 или 480 В. Каждое повышающее и понижающее преобразование выполняется с помощью трансформатора, разработанного на основе закона индукции Фарадея. Мы прошли долгий путь с тех пор, как королева Елизавета спросила Фарадея, как можно использовать электричество.

Демонстрационное оборудование

Сент-Луис Мотор (Асинхронный двигатель)

Автор (ы): Джон Фишер и Гарольд Коллер

Демонстрационное оборудование — Руководство для учителя
SED 695B; Осень 2005

Иллюстрированные принципы :

  • электричество и магнетизм
  • индукционный
  • преобразование механической энергии в электрическую
  • преобразование электрической энергии в механическую

Учтенные стандарты :

6 класс естествознания


Студенты знают, что полезность источников энергии определяется факторами. которые участвуют в преобразовании этих источников в полезные формы и последствия процесс преобразования.

Высшая школа физики

Студенты знают, что при изменении магнитных полей возникают электрические поля, поэтому наводить токи в соседних проводниках.

Материалы

Разъяснение задействованных принципов

Сент-Луис Мотор
Два провода с зажимами
Аккумулятор 6В
гальванометр
строка
Св.Louis Motor работает по принципу индукции. или создание электрического тока из механической энергии и наоборот. Как электрический ток проходит по проводу, он создает магнитное поле. Барные магниты на двигателе служат для притяжения и отталкивания индуцированного магнитного поля в провод. В итоге мотор раскручивается. Это преобразование электрического энергия (от батареи) до механической энергии (двигатель движется). В Самое прекрасное в этом моторе то, что он работает и в обратном направлении! Ты можешь создать электрический ток из механической энергии, которую вы создаете, перемещая ротор.Эта простая демонстрация является основой большей части электричества. мы используем от электростанций (атомных, гидроэлектрических, ветряных и др.).

Процедура : *

1. Прикрепите зажимы к батарее 6V и к двум штырям St. Louis Motor.

2. Двигатель вращается свободно. Обратите внимание на преобразование электрической энергии (аккумулятор) в механическую энергию (двигатель вращается).

3. Отсоединить провода от АКБ. Присоедините гальванометр к место батареи.

4. Прикрепите шнур или проволоку к основанию двигателя. Сверните это как струна йо-йо.

5. Потяните за шнур, считывая показания гальванометра. Обратите внимание на трансформацию механической энергии (натянутая вами струна) в электрическую энергию ( напряжение, измеренное гальвенометром).

* Из-за небольшого размера St.Луи Мотор, это было бы сложно демонстрация для больших классов. Возможно, в качестве исследовательской лаборатории, было бы удачнее.

1. Каждый из двух зажимов прикреплен к двигателю и к 6V. аккумулятор. Мотор крутится.
2. Гальванометр заменяет батарею и наматывает шнур. вокруг основания мотора.
3. Когда струна натягивается, ротор вращается, создавая электрический ток. энергия, которая может быть считана гальвенометром.
4. Очевидным продолжением является обсуждение производства электроэнергии. в электростанциях.

Источники и ссылки :

http: // www.wvic.com/how-gen-works.htm

http://en.wikipedia.org/wiki/Induction_motor#Coreless_DC_motors

Для приобретения асинхронного двигателя:

Fisher Scientific

Преобразование энергии в электромобилях

Сегодняшнее общество постоянно меняется, поэтому каждый день происходит новый поиск решений, которые благоприятствуют планете и ее гражданам. И в этом процессе электроэнергия является фундаментальной частью.

Благодаря этим разработкам были созданы электромобили, и спустя годы, окруженные вопросами и негативом, они стали центром внимания. Для автомобильной промышленности совершенно очевидно, что будущее индивидуальной мобильности будет за электромобилями.

К сожалению, даже сегодня есть сомнения в том, как это работает и какие преимущества может принести электромобиль. Если вы один из тех, кто хочет инвестировать в один из них, мы приглашаем вас продолжить чтение.

Что такое электромобили?

Электромобиль — это транспортное средство, которое приводится в движение силой, создаваемой двигателем, работающим от электричества. Эти автомобили не только не загрязняют окружающую среду, но и обладают уникальным и практичным дизайном.

Как работают электромобили?

Двигатель получает и преобразует электрическую энергию в механическую посредством электромагнитных взаимодействий. Проводящий элемент, который у них находится внутри, совершает движение, когда попадает в магнитное поле, и в конечном итоге получает электрический ток.

Основные компоненты электромобиля

Зарядное устройство

Электромобили имеют зарядное устройство или трансформатор-преобразователь, который является элементом, отвечающим за альтернативное поглощение электричества непосредственно из сети для преобразования в постоянный ток. Добиваемся загрузки основного аккумулятора.

Аккумуляторы

Литий-ионные батареи

в конечном итоге накапливают энергию, передаваемую зарядным устройством, в виде постоянного тока (DC).Этот основной аккумулятор является средством, с помощью которого приводится в действие весь электромобиль, и может быть подключен двумя способами. На автомобилях с электродвигателем постоянного тока эта батарея будет напрямую подключена к двигателю. В отличие от электромобилей, у которых есть электродвигатель переменного тока, аккумулятор подключается к инвертору.

Преобразователь

Он отвечает за преобразование постоянного тока высокого напряжения, который вырабатывается основной батареей. Этот тип тока используется для питания вспомогательных аккумуляторов на 12 В, которые одновременно питают вспомогательные электрические компоненты автомобиля.

Инвестор

Инверторы отвечают за преобразование постоянного тока, вырабатываемого основной батареей, в переменный ток. Таким образом, вы можете привести в действие двигатель электромобиля.

Электродвигатель

Может быть переменного или постоянного тока. Разница между этими двумя животными в основном основана на способе их кормления. Постоянный ток подается непосредственно от основной батареи, а переменный ток подается за счет энергии, излучаемой батареей, ранее преобразованной в переменный ток через инвертор.

Преимущества

Преимущества, предлагаемые электромобилями, варьируются от экономичности в обслуживании до заботы об окружающей среде. Среди них у нас:

  • Они не вызывают загрязнения атмосферы на месте.
  • Они не производят звукового загрязнения.
  • Его использование позволяет избежать использования топлива и сэкономить масло с целью использования его в других целях.
  • Обслуживание и стоимость «топлива» намного меньше, чем у обычного.
  • Автомобиль получает эффективность 77%, когда электричество поступает из возобновляемых источников.
  • Они могут перезаряжать свою батарею с помощью рекуперативного торможения.
  • Технология аккумуляторов была усовершенствована, чтобы предложить почти такую ​​же автономность, как у некоторых автомобилей внутреннего сгорания небольшого объема.
  • Срок службы батареи составляет от 10 до 12 лет.
  • Почти во всех домах есть электрические розетки для медленной подзарядки, поэтому подзарядка в любом месте не проблема, плюс количество зарядных станций растет.

Недостатки

К сожалению, использование электромобилей окружено множеством проблем и негативов, но на самом деле их недостатки меньше, чем обсуждаемые:

  • Заряд аккумулятора и высокая цена за аккумуляторы с максимальным сроком службы.
  • В некоторых случаях электричество, используемое для подзарядки аккумуляторов, производится за счет загрязнения сырья, такого как уголь.
  • Меньше автономности, чем у обычного автомобиля, потому что ему требуется частая подзарядка.
  • Высокая стоимость начальной покупки.
  • Ограниченная доступность с точки зрения полной подзарядки в некоторых странах.
  • Некоторые модели имеют высокую стоимость.

Используемые источники энергии

Используемая энергия может поступать из разных источников, они могут быть возобновляемыми, ископаемыми или атомными. Они естественным образом встречаются на планете, и в случае электромобилей мы уделяем особое внимание одному из них: возобновляемой энергии.

Возобновляемые источники энергии — это те, которые поступают из окружающей среды и после использования могут быть восстановлены естественным или искусственным путем.Некоторые из них подвержены циклам, которые остаются более или менее постоянными по своей природе. Это:

  • Энергия морской воды.
  • Гидравлическая энергия.
  • Энергия ветра.
  • Солнечная энергия.
  • Энергия биомассы.

Источники:

https://prezi.com/stl51vosexeb/vehiculo-electrico/

https://deltonholdings.com/technoecologic/

https://www.elcarrocolombiano.com/notas-de-interes/lo-que-ust-de-saber-sobre-carros-electricos-en-colombia-costos-beneficios-y-algo-mas/

Преобразование энергии — Science NetLinks

Назначение

Для исследования того, как электрическая энергия может быть произведена из различных источников энергии, а затем преобразована почти в любую другую форму энергии.


Контекст

Этот урок является частью проекта «Энергия в мире высоких технологий», который исследует науку, лежащую в основе энергетики. Энергия в мире высоких технологий разрабатывается AAAS и финансируется Американским институтом нефти. Для получения дополнительных уроков, занятий и интерактивных материалов, которые ближе познакомятся с наукой, лежащей в основе энергетики, обязательно посетите страницу проекта «Энергия в мире высоких технологий».

Этот урок познакомит вас с электричеством как потоком электронов.В некоторых случаях электричество может быть потоком положительных зарядов или как положительных, так и отрицательных зарядов. В этом уроке основное внимание будет уделено более типичному определению потока электрического тока, например, потока электронов. Студенты должны иметь некоторые базовые знания об атомах и их структуре. Однако в рамках своих онлайн-чтений студенты будут изучать основы атомной структуры (ядро, протоны, нейтроны, электроны). Таким образом, этот урок дает хорошую возможность прояснить неправильные представления об атомах и убедиться, что все учащиеся понимают основную атомную структуру.Согласно тесту Benchmarks for Science Literacy , учащиеся всех возрастов демонстрируют широкий спектр представлений о природе и поведении частиц. Им не хватает понимания очень маленького размера частиц; приписывать частицам макроскопические свойства; верят, что в пространстве между частицами должно быть что-то; испытывают трудности с пониманием внутреннего движения частиц в твердых телах, жидкостях и газах; и испытывают проблемы с концептуальным представлением сил между частицами. ( Контрольные показатели научной грамотности , (стр.337).) Это заблуждение важно иметь в виду, говоря об электричестве как потоке электронов. Студенты могут подумать, что электроны находятся в медной проволоке, а не в атомах меди, из которых она состоит. Важно подчеркнуть этот момент среди учащихся, чтобы они развили понимание того, что вещества состоят из атомов, а не из атомов, находящихся как отдельный объект внутри веществ.

Электричество — это поток заряженных электронов через проводник (например, поперечное сечение провода).Поток этих свободных и движущихся заряженных электронов называется электрическим током.

Электроэнергия вырабатывается за счет преобразования первичных источников энергии, таких как уголь, нефть, природный газ, ядерная энергия и другие природные источники. Сжигание или сжигание этих первичных источников энергии дает энергию в виде тепла, которое преобразуется в электрическую энергию, которая производит ток. Первичные источники энергии, используемые для производства электроэнергии, могут быть возобновляемыми или невозобновляемыми.

Электричество — электрический ток — следует отличать от напряжения и от мощности.Электрический ток — это количество электрического заряда, протекающего по проводнику, и выражается как количество заряда за время. С другой стороны, мощность — это скорость использования энергии или количество затраченной энергии за заданную единицу времени. Электроэнергия — это скорость, с которой электрическая энергия преобразуется в другую форму энергии, такую ​​как тепло или свет, или наоборот.

Отношение мощности к току называется напряжением . Напряжение выражает количество энергии, израсходованной на количество электрического заряда.

Затраченная энергия определяется умножением степени на раз . Таким образом, энергию можно измерить, умножив мощность, израсходованную в киловатт , на время в часа , чтобы получить киловатт-часа . Ваш электросчетчик делает это автоматически.

В средних классах учащихся следует знакомить с энергией через преобразования энергии. Учащиеся должны проследить, откуда исходит и движется энергия, на примерах, которые включают различные формы энергии на пути: тепло, работа, свет, движение объектов, положение объектов, химические и упруго деформированные материалы.Согласно эталону для естественнонаучной грамотности , на начальных этапах обучения в умах учащихся может возникнуть некоторая путаница между энергией и источниками энергии. Еда, бензин и аккумуляторы — все это источники энергии. Когда они используются, содержащаяся в них энергия не исчезает; он превращается в другие формы энергии. Точно так же их материя тоже меняет форму, но не исчезает. С точки зрения того, куда направляется энергия, сложный подход — это подход, при котором учащиеся понимают, что всякий раз, когда какая-то энергия появляется в одном месте, обнаруживается, что она исчезает из другого.На этом этапе студентам не нужно сосредотачиваться на количественном аспекте преобразований энергии. Тем не менее, учащиеся должны уметь отслеживать движение энергии по мере ее преобразования и, таким образом, замечать, что некоторые из них превращаются в тепло и / или работу.

В некоторых источниках будет указано, что энергия «теряется» на тепло; однако использование этого термина означает, что мы не знаем, где находится энергия. Яснее говорить об «изменении», чем о «потерях» в преобразованиях энергии.

Работа — понятие сложное.Работа выполняется каждый раз, когда есть движение против некоторой противодействующей силы. Например, когда блок толкают по столу, мы должны работать с блоком, чтобы переместить его, и часть энергии, которую мы вкладываем в усилие, превращается в тепло из-за трения. Работа, которую мы вкладываем, за вычетом энергии, превращенной в тепло, идет на то, чтобы заставить блок двигаться — энергия движения блока.

Подробнее

Мотивация

Начните с демонстрации студентам маятника. Оттяните боб или массу маятника в сторону так, чтобы он был параллелен столу или земле.Держи это там. Спросите студентов:

  • Здесь, вверху, есть ли у боба запасенная энергия или энергия движения?
    (Имеет накопленную энергию.)
  • Как еще называется эта накопленная энергия?
    (Потенциальная энергия — это еще одно название этой накопленной энергии. Потенциальная энергия исходит от положения боба над землей против земного притяжения.)
  • Почему?
    (Энергия накоплена, и боб еще не двигается.)
  • Что будет с бобом, когда я его отпущу?
    (Боб начнет раскачиваться взад и вперед.)

Освободить боб.

  • Что случилось с потенциальной энергией боба?
    (Он был преобразован в энергию движения.)
  • Как еще называют энергию движения?
    (кинетическая энергия.)

Снова возьмите боб в сторону и удерживайте.

  • Что случилось с кинетической энергией боба?
    (Он остановился, потому что больше не движется.)
  • Какая энергия сейчас у боба?
    (Имеет потенциальную энергию.)

Удерживайте боб в сторону, но на этот раз в более низком положении (например, под углом 45 градусов). Спросите студентов:

  • Есть ли у боба еще потенциальная энергия?
    (Да.)
  • У него меньше или больше потенциальной энергии, чем когда он находится выше?
    (Боб имеет меньшую потенциальную энергию, когда он ниже, чем когда он выше над землей.)

Скажите студентам, что потенциальная энергия объекта может быть более или менее зависимой от его положения.Предложите им другие примеры, например, американские горки или автомобиль, спускающийся с холма по инерции. Попросите их подумать, как потенциальная энергия влияет на то, сколько кинетической энергии будет генерироваться, когда объект начнет двигаться. Например, если бы боб был выпущен из более низкой точки, генерируемая кинетическая энергия была бы меньше, поскольку имеется меньшая потенциальная энергия, с которой боб запускается. Это также верно в отношении автомобиля или американских горок на холме. Чем выше положение объекта на холме, тем больше его потенциальная энергия и большая кинетическая энергия будет генерироваться, когда он начнет двигаться.

Повторите студентам, что преобразования энергии могут идти туда и обратно. Потенциальная энергия может стать кинетической, а кинетическая энергия может стать потенциальной.

Теперь попросите учащихся представить транспортное средство, например машину или автобус. Спросите их: «Как движется машина?» У студентов могут быть разные ответы, например «ускоритель» или «человек, который им управляет». Поощряйте их, пока они не скажут «бензин». Спросите их:

  • Почему бензин в конечном итоге позволяет машине двигаться?
    (Если вы нажмете на акселератор автомобиля с пустым баком, он не двинется с места.Если человек попытается завести машину без газа, она не заведется. Таким образом, бензин — это в конечном итоге то, что нужно автомобилю.)

Сообщите учащимся, что бензин — это химическое вещество и жидкость. Спросите их: «Как бензин заставляет машину двигаться?» Предложите студентам провести мозговой штурм и направить их к идее о том, что бензин — это форма энергии, которая преобразуется в кинетическую энергию или движение автомобиля.

Когда бензин горит, часть химической энергии в связях, составляющих молекулы бензина, высвобождается, создавая газ под давлением в цилиндрах двигателя.Когда этот газ расширяется, поршни двигаются. Другое название этой энергии — внутренняя энергия. Внутренняя энергия определяется физическим состоянием газа в цилиндрах двигателя.

А теперь спросите студентов:

  • Является ли бензин или движущийся автомобиль примером движущейся энергии?
    (Движущаяся машина — пример движущейся энергии.)
  • Как еще называют движущуюся энергию?
    (Кинетическая энергия — другое название.)

Повторите студентам, что внутренняя энергия преобразуется в кинетическую.

Подробнее

Развитие

В этой части урока студенты исследуют, как электрическая энергия может быть произведена из различных источников энергии, а затем преобразована почти в любую другую форму энергии.

Подключите небольшой вентилятор и включите его. Спросите студентов:

  • Являются ли движущиеся лопасти этого вентилятора примером потенциальной или кинетической энергии?
    (Это пример кинетической энергии.)
  • Почему?
    (Лопасти движутся, и энергия движения называется кинетической энергией.)
  • Откуда лезвия получили энергию для движения?
    (Студенты отметят, что вентилятор был включен в розетку.)
  • Какой вид энергии в розетке?
    (Электроэнергия в розетке.)
  • Что происходит с электрической энергией, когда мы включаем вентилятор после того, как он был подключен к розетке?
    (Преобразуется в кинетическую энергию с помощью электродвигателя. Двигатель работает, когда электрический ток проходит через провод в магнитном поле.Проволока поворачивается, и часть электроэнергии превращается в кинетическую энергию.)
  • Что делает вентилятор?
    (Лопасти вентилятора перемещают воздух по комнате. Кинетическая энергия движущихся лопастей действительно способствует перемещению воздуха через лопасти вентилятора.)
  • Вся электрическая энергия, расходуемая в вентиляторе, превращается в работу, которая перемещает воздух? Если нет, что происходит с остальным?
    (Выделяется в виде тепла. Вентилятор преобразует электрическую энергию в кинетическую энергию, которая действительно работает, а также преобразует часть электрической энергии в тепло.)

Укажите на свет в комнате. Спросите студентов:

  • Какой вид энергии исходит от лампочки?
    (Студенты должны упомянуть световую энергию. Некоторые могут также упомянуть тепловую энергию из своего прошлого опыта с лампами накаливания.)
  • Лампочка сама по себе не начинает светиться или выделять тепло. Так откуда же берется световая и тепловая энергия?
    (Студенты должны упомянуть, что электричество используется лампочками для выработки световой и тепловой энергии.)
  • Что происходит со световой и тепловой энергией?
    (поглощается лампочкой и молекулами воздуха, в котором она растворяется).

Напишите на доске следующую диаграмму, отражающую энергетические процессы вентилятора и света:

Электрическая энергия (электричество) → кинетическая энергия

Электрическая энергия (электричество) → Световая энергия и тепловая энергия

Спросите студентов:

  • Что происходит с электрической энергией в обоих случаях?
    (Преобразуется в другие виды энергии.)
  • Откуда берется электроэнергия?
    (Дайте студентам время обдумать идеи о том, откуда берется электричество. Некоторые могут упомянуть, что электричество вырабатывается или что оно производится на электростанции.)

Попросите учащихся выполнить первую часть учебной ведомости «Преобразование энергии» с использованием форм энергии. Они могут ответить на вопросы об этом ресурсе в студенческом листе Transforming Energy. Ответы на эти вопросы можно найти в листе учителя «Трансформация энергии».

После того, как ученики проработают материал, еще раз посетите веер и свет, которые были упомянуты в Мотивации. Спросите студентов:

  • Откуда взялась кинетическая энергия лопастей вентилятора?
    (Электричество было преобразовано в кинетическую энергию.)
  • Электроэнергия — вторичный источник энергии. Что это обозначает?
    (Электричество вырабатывается из другого источника энергии и используется для хранения и передачи энергии.)
  • Откуда в США большая часть электроэнергии?
    (происходит из угля.)
  • Это возобновляемый или невозобновляемый источник энергии?
    (не подлежит возобновлению.)
  • Что значит быть невозобновляемым источником энергии?
    (Источник энергии нельзя заменить, поэтому он доступен в ограниченном количестве.)
  • Мы только что узнали, что электричество — это поток электронов. Что такое электрон?
    (Это одна из основных структур атома, отрицательно заряженная частица, которая движется вокруг ядра.)
  • Какие еще структуры составляют атом?
    (Протоны и нейтроны.)

Попросите учащихся продолжить работу с таблицей «Преобразование энергии». После того, как они заполнили таблицу, покажите учащимся прозрачность производства электроэнергии с помощью обычного сжигания угля. Используя ответы из студенческого листа, просмотрите каждый этап производства электроэнергии на угольных электростанциях. Спросите студентов, какие основные типы энергии используются и какие преобразования энергии происходят на каждом этапе.

Подробнее

Оценка

Чтобы оценить понимание учащимися, попросите их использовать свою учебную ведомость, чтобы прочитать и рассмотреть «Как работает электричество?» интерактивный.Затем они должны ответить на вопросы в своей ученической ведомости.

Задайте студентам эти четыре вопроса, заданные разделом «Тепло, свет и движение» на сайте Технического музея инноваций:

  • Тостер, очевидно, преобразует электрическую энергию в тепловую. Но что заставляет тосты всплывать? (Таймер устанавливается большинством тостеров. Наша энергия толкает хлеб в тостер, обычно с пружинами. Эта энергия преобразуется в потенциальную энергию в пружинах. Когда таймер срабатывает, пружины всплывают, в которых потенциальная энергия преобразуется в кинетическая энергия и звук.)
  • Большинство автомобилей работают на бензине, но у них также есть аккумуляторы. Какой вид энергии имеет автомобильный аккумулятор? Как вы думаете, какие устройства используются для работы в автомобиле от автомобильного аккумулятора? (Батарея — это химическая энергия. Химическая энергия преобразуется в электрическую, а электрическая энергия — в световую и тепловую энергию для фар и звук для радио.)
  • В некоторых духовках для приготовления пищи используется электричество, преобразованное в тепловую. Какую энергию используют неэлектрические духовки и плиты? (Неэлектрические плиты и духовки используют энергию газа, химическую энергию.Затем он превращается в тепло.)
  • В какие виды энергии компьютер преобразует электричество? (Свет, звук, движение и тепло.)

Расширения

Урок Science NetLinks «Преобразование энергии» служит отличным введением в этот план урока.


Хорошим продолжением от Science NetLinks является Power Play, в котором студенты исследуют преобразования энергии в процессе создания виртуальных машин.


TESLA for Teachers от PBS предлагает набор из трех уроков по энергии, подходящих для использования в средней школе. Первый вводит потенциальную энергию. Во втором и третьем уроках используются практические методы, чтобы показать, как механическую энергию можно преобразовать в электрическую и наоборот.


Предложите учащимся выяснить, как работают электромобили, перейдя в «Руководство для учащихся по автомобилям, работающим на альтернативном топливе». Это даст им понимание того, как различные виды энергии, помимо химической энергии в виде нефти, могут быть использованы для производства кинетической энергии, необходимой для работы транспортного средства.


Студенты могут узнать об основах электрических цепей из технических тем: Электричество: Цепи.


Информация о спонсоре
Этот контент был создан при поддержке Американского института нефти.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *