конструкция, виды и как выбрать?
Понижающие трансформаторы относятся к категории преобразователей значения электрического тока. Причем их входящее напряжение будет выше, чем исходящее. Представленные установки применяются в линиях электропередач и быту. Принцип работы понижающих приборов, особенности и применение будут рассмотрены далее.
Конструкция
В принципе работы трансформаторов используется физический закон электромагнитной индукции. Стандартные устройства имеют сердечник и две обмотки. Первичная обмотка понижающего трансформатора подключается к электрической сети. Вокруг сердечника магнитопривода генерируется магнитное поле. Во вторичной обмотке появляется электричество с определенным показателем напряжения.
Мощность на выходе определяется соотношением количества витков в обеих катушках. Соотношением витков, составляющих обмотку первичной и вторичной катушек, можно выбирать характеристики выходного напряжения. Устройство трансформаторов позволяет получить требуемое значение тока для питания промышленных и бытовых электроприборов.
Трансформаторы напряжения не меняют частоту тока. Для этого понижающему агрегату потребуется иметь в конструкции выпрямитель. Он будет менять частоту тока с переменного до постоянного значения, и наоборот.
В понижающих трансформаторах сегодня применяются полупроводники. Их работу дополняет схема интегрального типа. В цепь включаются конденсаторы, микросхемы, пьезоэлементы, резисторы и т. д. Такой понижающий бытовой трансформатор имеет небольшие габариты, высокий уровень КПД, малый вес. Он не шумит, не нагревается. В трансформаторах представленных типов допускается выбрать мощность исходящего тока. Устройство включает в схему защиту против короткого замыкания. Традиционные конструкции также пользуются спросом. Подобные схемы просты, надежны.
Интересное видео: Понижающий трансформатор
Назначение
Трансформаторы понижающие применяются в различных сферах человеческой деятельности. Силовые конструкции устанавливаются на подстанциях на пути следования линий электропередач. Представленные типы аппаратов понижают при работе показатель тока в сети от 380 до 220 В. При такой мощности работают бытовые электроприборы. Представленная установка называется промышленным трансформатором понижения тока.
К бытовым понижающим разновидностям относят приборы, которые работают на более низких мощностях. Они принимают 220 В на первичный контур, а выдают 42, 36, 12 В, учитывая требования потребителя.
Расчет характеристик оборудования
Трансформатор понижающий может относиться к различным категориям, что зависит от ряда параметров. Помимо конструкционных отличий (наличие пьезоэлементов, конденсаторов и т. д.) оборудование отличается мощностью, назначением, строением. Общим для них является коэффициент трансформации. Он всегда будет меньше 1. Не существует понижающий трансформатор с коэффициентом больше 1. Такие приборы относятся к категории повышающих агрегатов.
Чтобы подобрать правильное количество витков в контурах, производится расчет. Известно, что коэффициент трансформации, равен 0,2. Прибор понижает напряжение в сети. В первичной обмотке 120 витков. Определим количество витков во вторичной катушке:
ВО = 120*0,2 = 24 витка.
Используя коэффициент трансформации, определяем выходное напряжение. Если на первичную обмотку поступает ток 220 В, расчет будет таким:
НВ = 220*0,2 = 44 В.
Зная коэффициент трансформации, как определить мощность оборудования, не составит труда. Когда мы выбираем прибор для изменения параметров тока в цепи, требуется определение потребностей стандартных потребителей. При пониженной нагрузке в сети бытовая техника не будет работать правильно. Чтобы в трансформаторе не вырабатывалось слишком низкое значение тока, обязательно учитывают коэффициент трансформации.
Разновидности
Когда потребность промышленного или бытового оборудования в вопросе уровня напряжения определена, нужно обратить внимание на выбор разновидности аппарата. Различают следующие виды:
- Тороидальный. Сердечник получил форму тора. Прибор характеризуется малым весом, незначительными габаритами. Широко применяется в радиоэлектронике.
- Стержневый. Применяются для оборудования высокой или средней мощности. Простота конструкции отличает устройство сердечника.
- Броневой. Относятся к категории маломощных конструкций. Магнитопривод как броня охватывает контуры.
- Многообмоточный. Имеет две и более обмотки.
- Трехфазный. Применяется в промышленной сети. Прибор призван понижать напряжение с 380 В до приемлемого потребителем уровня. В некоторых случаях применяется в бытовых целях.
- Однофазный. Подключаются к однофазной сети. Это одна из наиболее востребованных разновидностей.
Многообразие представленных конструкций позволяет применять их в различных сферах деятельности человека. Стоимость оборудования зависит от мощности аппаратуры, сложности конструкции, области применения. Про понижающие трансформаторы 380/220 мы уже писали на этой странице.
Видео: Силовой понижающий трансформатор с несколькими вторичными обмотками.
Распространенные модели
Покупатели отдают предпочтение в большинстве случаев всего нескольким моделям. Чтобы правильно выбрать аппаратуру, потребуется знать их маркировку, ее расшифровку. Большим спросом пользуются такие модели:
- ТСЗИ. Трехфазная разновидность, внутренняя конструкция которой защищена специальным кожухом.
- ОСМ. Применяются в системах сигнализации, освещения. Их устанавливают в специальный ящик. Внутрь корпуса не должна попадать грязь, пыль, влага. Монтируются на дин-рейку.
- ТТп, ТС-180, ЯТП применяются в бытовых сетях. Монтируются просто. Используются для напряжения невысокого уровня.
- ОСОВ, ОСО. Обладает сухой системой охлаждения. Применяют в бытовых сетях.
Информация о разновидности прибора приведена в маркировке. Она указывается на корпусе трансформатора. Маркировка находится в открытом доступе для обслуживающего персонала.
Интересное видео: Сетевой понижающий трансформатор
Как выбрать?
Выбрать трансформаторное устройство представленного типа может профессионал. Существует несколько правил в проведении этого процесса. В первую очередь следует обратить внимание на показатель входного напряжения. Оборудование должно быть рассчитано на прием определенного напряжения.
Затем нужно установить, какой уровень тока требуется потребителю. В соответствии с этой характеристикой выбирают параметры выходного напряжения. Мощность приборов, подведенных к трансформатору, должна быть немного ниже, чем его выходное напряжение.
Качественные изделия выдерживают аварийные ситуации. В них предусмотрена особая защита от короткого замыкания, перенапряжения, резких скачков электричества, перегрузок. В этом случае система работает стабильно даже в неблагоприятных условиях.
Установка и эксплуатация
Внутреннюю часть представленного агрегата нужно тщательно защищать от неблагоприятных внешних воздействий. В корпус не должны попадать пыль, влага, грязь и прочие посторонние вещества. Поэтому оборудование устанавливается в защитный корпус, кожух или ящик. В него должен быть обеспечен легкий доступ. Обслуживающий персонал при необходимости быстро произведет осмотр системы в случае необходимости.
Монтаж нужно проводить таким образом, чтобы исключить вероятность случайного соприкосновения человека к неизолированным проводникам тока. Агрегат подключается к заземлению при помощи медного провода. Сечение должно составлять от 2,5 мм и более.
Периодически производится осмотр, обслуживание и ремонт трансформаторов. Неисправности должны вовремя устраняться.
Интересное видео: Как намотать своими руками сетевой понижающий трансформатор 220 на 12 вольт?
При выборе места установки, условий эксплуатации обязательно учитывают требования производителя. ГОСТ устанавливает климатическое исполнение, которое должно учитываться при установке.
Рассмотрев особенности, применение и условия эксплуатации понижающих трансформаторов, можно выбрать оптимальную разновидность приборов.
Трансформатор напряжения — Википедия
Антирезонансный трансформатор напряженияТрансформа́тор напряже́ния — одна из разновидностей трансформатора, предназначенная не для преобразования электрической мощности для питания различных устройств, а для гальванической развязки цепей высокого напряжения (6 кВ и выше) от низкого (обычно 100 В) напряжения вторичных обмоток.
Используется в измерительных цепях, преобразуя высокое напряжение линий электропередач генераторов в удобное для измерения низковольтное напряжение.
Кроме того, применение трансформатора напряжения позволяет изолировать низковольтные измерительные цепи защиты, измерения и управления от высокого напряжения, что, в свою очередь, позволяет использовать более дешёвое оборудование в низковольтных сетях и удешевляет их изоляцию.
Так как трансформатор напряжения не предназначен для передачи через него мощности, основной режим работы трансформатора напряжения — режим холостого хода.
Измерительный трансформатор напряжения по принципу выполнения мало отличается от силового понижающего трансформатора. Он состоит из стального сердечника, набранного из пластин листовой электротехнической стали, первичной обмотки и одной или двух вторичных обмоток. В результате изготовления должен быть достигнут необходимый класс точности: по амплитуде и углу. Трехфазные трансформаторы напряжения с выведенными нулевыми выводами выполняются на пятистержневом магнитопроводе, чтобы при коротком замыкании на стороне высокого напряжения суммарный магнитный поток замыкался по стали сердечника (при замыкании по воздуху возникает большой ток, приводящий к перегреву трансформатора). Трёхфазные трансформаторы с трёхстрежневым магнитопроводом исходя из вышеуказанных причин не имеют внешних нулевых выводов и не применяются для регистрации «замыканий на землю». Чем меньше нагружена вторичная обмотка трансформатора напряжения (то есть чем ближе режим к режиму холостого хода либо, другими словами, чем больше сопротивление цепи вторичной обмотки), тем фактический коэффициент трансформации Кт ближе к номинальному значению. Это особенно важно при подключении ко вторичной цепи измерительных приборов, так как коэффициент трансформации влияет на точность измерений. В зависимости от нагрузки один и тот же трансформатор напряжения может работать в разных классах точности: 0,5; 1; 3.
- Заземляемый трансформатор напряжения — однофазный трансформатор напряжения, один конец первичной обмотки которого должен быть наглухо заземлён, или трёхфазный трансформатор напряжения, нейтраль первичной обмотки которого должна быть наглухо заземлена (трансформатор с ослабленной изоляцией одного из выводов — однофазный ТН типа ЗНОМ или трёхфазные ТН типа НТМИ и НАМИ).
- Незаземляемый трансформатор напряжения — трансформатор напряжения, у которого все части первичной обмотки, включая зажимы, изолированы от земли до уровня, соответствующего классу напряжения.
- Каскадный трансформатор напряжения — трансформатор напряжения, первичная обмотка которого разделена на несколько последовательно соединённых секций, передача мощности от которых к вторичным обмоткам осуществляется при помощи связующих и выравнивающих обмоток.
- Ёмкостный трансформатор напряжения — трансформатор напряжения, содержащий ёмкостный делитель.
- Двухобмоточный трансформатор — трансформатор напряжения, имеющий одну вторичную обмотку напряжения.
- Трёхобмоточный трансформатор напряжения — трансформатор напряжения, имеющий две вторичные обмотки: основную и дополнительную.
При наличии нескольких вторичных обмоток в трехфазной системе основные соединяются «в звезду», образуя выходы фазных напряжений a, b, c и общую нулевую точку о, которая обязательно должна заземляться для предотвращения последствий пробоя изоляции со стороны первичной обмотки (на практике чаще всего заземляется фаза «b» обмотки НН трансформатора напряжения). Дополнительные обмотки обычно соединяются по схеме «разомкнутый треугольник» с целью контроля напряжения нулевой последовательности. В нормальном режиме это напряжение находится в пределах 1-3 В за счет погрешности обмоток, резко возрастая при аварийных ситуациях в цепях высокого напряжения, что дает возможность простого подключения быстродействующих устройств релейной защиты и автоматики (для цепей с изолированной нейтралью — обычно на сигнал). Для регистрации земли в сети необходимо заземление нулевого вывода обмотки ВН трансформатора напряжения (для прохождения гармоник нулевой последовательности).
Особенности работы трансформаторов напряжения регламентируются главой 1.5 Правил устройства электроустановок. Так, нагрузка вторичных обмоток измерительных трансформаторов, к которым присоединяются счетчики, не должна превышать номинальных значений. Сечение и длина проводов и кабелей в цепях напряжения расчетных счетчиков должны выбираться такими, чтобы потери напряжения в этих цепях составляли не более 0,25 % номинального напряжения при питании от трансформаторов напряжения класса точности 0,5 и не более 0,5 % при питании от трансформаторов напряжения класса точности 1,0. Для обеспечения этого требования допускается применение отдельных кабелей от трансформаторов напряжения до счетчиков. Потери напряжения от трансформаторов напряжения до счетчиков технического учета должны составлять не более 1,5 % номинального напряжения.
Особенности работы ТН в сетях с изолированной и заземлённой нейтралями[править | править код]
В сетях с заземлённой нейтралью при замыкании на землю напряжение повреждённой фазы около места замыкания уменьшается до нуля, вектор 3U0{\displaystyle 3U_{0}} получается сложением векторов фазных напряжений (сложение фазных векторов, расположенных 120° относительно друг от друга), и следовательно напряжение 3U0{\displaystyle 3U_{0}} возрастает до фазного напряжения.
В сетях с изолированной нейтралью при замыкании на землю все фазные напряжения (относительно нулевой точки) остаются без изменения, но относительно земли фазные напряжения увеличиваются до линейного, при этом трансформируясь во вторичную обмотку (при обязательном заземлении нулевой точки первичной обмотки ТН) они геометрически суммируются. При этом вектора этих напряжений расположены друг относительно друга на 60°, то 3U0=3Ub=3Uc{\displaystyle 3U_{0}={\sqrt {3}}U_{b}={\sqrt {3}}U_{c}}, где Ub{\displaystyle U_{b}},Uc{\displaystyle U_{c}} — напряжения неповреждённых фаз относительно земли. Поскольку напряжения неповреждённых фаз относительно земли увеличились до 3{\displaystyle {\sqrt {3}}}, то 3U0=3Uf{\displaystyle 3U_{0}=3U_{f}}, то есть 3U0{\displaystyle 3U_{0}} возрастает до утроенного значения фазного напряжения относительно нуля.
Исходя из вышеуказанных особенностей у ТН для работы в сетях с заземлённой нейтралью дополнительная обмотка выполняется на 100 В, а для сетей с изолированной нейтралью 100/3 В.
Трансформаторы напряжения в сетях с изолированной нейтралью могут входить в феррорезонанс с паразитными ёмкостями распределительных сетей (особенно это нежелательное явление характерно для кабельных сетей), что может приводить к их отказу. Для предотвращения порчи трансформаторов напряжения в результате феррорезонанса разработаны антирезонансные трансформаторы напряжения типа НАМИ.
Параметры трансформатора напряжения[править | править код]
На шильдике трансформатора напряжения указываются следующие параметры:
- Напряжение первичной обмотки.
- Напряжение основной вторичной обмотки: для однофазных ТН равно 100 В, для трёхфазных фазное напряжение вторичной обмотки 100/3{\displaystyle {\sqrt {3}}} В.
- Напряжение дополнительной вторичной обмотки: для сетей с заземлённой нейтралью 100 В, для сетей с изолированной нейтралью 100/3 В.
- Номинальная мощность трансформатора, в ВА, в соответствии с классом точности.
- Максимальная мощность трансформатора, в ВА.
- Напряжение короткого замыкания, в процентах.
Отечественные трансформаторы напряжения имеют следующее буквенные обозначения:
- Н — трансформатор напряжения;
- Т — трёхфазный;
- О — однофазный;
- С — сухой;
- М — масляный;
- К — каскадный либо с коррекцией;
- А — антирезонансный;
- Ф — в фарфоровом корпусе;
- И — контроль Изоляции;
- Л — в литом корпусе из эпоксида;
- ДЕ — с ёмкостным делителем напряжения;
- З — с заземляемой первичной обмоткой.
- В. Н. Вавин Трансформаторы напряжения и их вторичные цепи М., «Энергия», 1977
- ГОСТ 18685-73. Трансформаторы тока и напряжения. Термины и определения
- Правила устройства электроустановок. Издание седьмое.
Трансформатор
устройство и принцип работы, назначение, схемы, фото и видео-инструкция как сделать и подключить трансформатор своими руками
Вопрос, что такое трансформатор, для опытных и даже начинающих электриков совершенно простой. Но обычные обыватели, которые с электрикой не дружат, даже и не представляют, как выглядит трансформатор, для чего он необходим, а тем более, не осведомлены о его конструкции и принципе работы. Поэтому в этой статье будем разбираться с этим прибором, рассмотрим вопрос, а можно ли сделать трансформатор своими руками, и так далее. Итак, трансформатор – это электромагнитное устройство, которое может изменять напряжение переменного тока (увеличивать или уменьшать).
Трансформаторы токаУстройство и принцип работы
Итак, конструкция трансформатора достаточно проста и состоит из сердечника и двух катушек из медной проволоки. В основе принципа работы лежит электромагнитная индукция. Чтобы вы поняли, как работает этот прибор, рассмотрим, как магнитное поле, образуемое в катушках (обмотках) устройства, изменяет показатель напряжения.
Подаваемый на первую обмотку электрический ток (он переменный, поэтому изменяется по направлению и величине) образует в катушке магнитное поле (оно также переменное). В свою очередь магнитное поле образует во второй катушке электрический ток. Такой своеобразный обмен параметрами. Но просто так изменение напряжения не произойдет, оно зависит от того, сколько витков медной проволоки в каждой обмотке. Конечно, величина изменения магнитного поля (скорость) также влияет на величину напряжения.
Что касается количества витков, то получается так:
- если число витков в первичной катушке больше, чем во вторичной, то это понижающий трансформатор;
- и, наоборот, если количество витков во вторичной обмотке больше, чем в первичной, то это повышающий трансформаторный прибор.
Поэтому существует формула, которая определяет так называемый коэффициент трансформации. Вот она:
k=w1/w2, где w – это число витков в катушке с соответствующим номером.
Внимание! Любой трансформатор может быть и понижающим, и повышающим, все зависит от того, к какой обмотке (катушке) подсоединяется питающий кабель сети переменного тока.
И еще один момент, касающийся устройства. Это сердечник трансформатора. Все дело в том, что существуют разные виды этого устройства, в которых сердечник присутствует или отсутствует.
- Так вот, в тех видах, где сердечник трансформатора отсутствует или изготовлен из феррита или альсифера называются высокочастотными (выше 100 кГц).
- Приборы с сердечником из стали, феррита или пермаллои – низкочастотные (ниже 100 кГц).
Первые используются в радио- и электросвязи. Вторые в для усиления звуковых частот, к примеру, в телефонии. Со стальным сердечником используется в электротехнике (в бытовых приборах в том числе).
Условные обозначения и параметры
Приобретая трансформатор, необходимо понимать, что написано на его корпусе или в сопроводительных документах. Ведь существует определенная маркировка трансформаторов, которые определяют его назначение. Основное, на что необходимо обратить внимание, до какого показателя этот прибор может снизить напряжение. К примеру, 220/24 говорит о том, что на выходе получится ток напряжением 24 вольта.
А вот буквенные обозначения чаще всего говорят о типе устройства. Кстати, имеется в виду буквы, стоящие после цифр. К примеру, О или Т – одно- или трехфазный соответственно. То же самое можно сказать о количестве обмоток, о типе охлаждения, о способе и месте установки (внутренние, наружные и прочее).
Расшифровка маркировки трансформатораЧто касается параметров трансформатора, то существует определенный стандартный ряд, который и определяет характеристики прибора. Их несколько:
- Напряжение в первичной катушке.
- Напряжение во вторичной катушке.
- Первичная сила тока.
- Вторичная сила тока.
- Общая мощность аппарата.
- Коэффициент трансформации.
- КПД.
- Коэффициент мощности и нагрузки.
Есть так называемая внешняя характеристика трансформатора. Это зависимость вторичного напряжения от вторичной силы тока, при условии, что сила тока первичной обмотки будет номинальной, а cos φ= const. По-простому – чем выше сила тока, тем ниже напряжение. Правда, второй параметр изменяется всего лишь на несколько процентов. При этом внешняя характеристика трансформатора определяется относительными характеристиками, а именно коэффициентом загрузки, который определяется по формуле:
Обозначение на схемахK=I2/I2н, где второй показатель силы – это сила тока при номинальном напряжении.
Конечно, характеристики трансформатора – это достаточно большой ряд всевозможных показателей, от которых зависит сама работа прибора. Здесь и мощность потерь, и внутреннее сопротивление в обмотке.
Как сделать самостоятельно
Итак, как сделать трансформатор самому? Зная, принцип работы установки и его конструктивные особенности, можно собрать своими руками простейший аппарат. Для этого вам понадобится любое металлическое кольцо, на котором надо накрутить два участка обмотки. Самое важно – обмотки не должны касаться друг друга, а место их намотки не зависит конкретно от их расположения. То есть, они могут быть размещена напротив друг друга или рядом. Важно – даже небольшое расстояние между ними.
Внимание! Трансформатор работает только от сети переменного тока. Так что не стоит подключать к вашему устройству батарейку или аккумулятор, где присутствует ток постоянный. Работать от этих источников электроэнергии он не будет.
Как уже было сказано выше, количество витков в обмотках определяет, какой прибор вы собираете – понижающий или повышающий. К примеру, если вы на первичной обмотке соберете 1200 витков, а на вторичной всего лишь 10, то на выходе вы получите напряжение 2 вольта. Конечно, при подключении первичной катушки к напряжению 220-240 вольт. Если фазировка трансформатора будет заменена, то есть, провести подсоединение 220 вольт к вторичной обмотке, то на выходе первичной получится ток напряжением 2000 вольт. То есть, к назначению трансформатора надо подходить осторожно, учитывая тот самый коэффициент трансформации.
Как правильно подключить
Что касается монтажа трансформатора, особенно его понижающего типа в быту дома, то необходимо знать некоторые нюансы проводимого процесса.
- Во-первых, это касается самого устройства. При монтаже трансформатора иногда появляется необходимость подключения не одного потребителя, а сразу нескольких. Поэтому обращайте внимание на количество выходных клемм. Конечно, необходимо знать, что суммарная потребляемая мощность потребителей не должна быть больше мощности самого трансформаторного устройства. Во всяком случае, специалисты рекомендуют, чтобы второй показатель был всегда больше первого на 15-20%.
- Во-вторых, подключение трансформатора производится электрической проводкой. Так вот ее длина и до прибора, и после не должна быть очень большой. К примеру, понижающий аппарат для светодиодного освещения предполагает наличие проводки от него до светильников не больше двух метров. Это позволит избежать больших потерь мощности.
Внимание! Нельзя процесс монтажа трансформатора проводить и в том случае, если потребляемая мощность потребителей будет меньше мощности самого агрегата.
- В-третьих, место установки электрического понижающего прибора должно быть выбрано правильно. Самое важное, чтобы до него всегда можно было бы добраться просто, особенно когда есть необходимость провести демонтаж со следующей заменой и монтажом трансформатора. Поэтому перед тем как подключить трансформатор, необходимо определиться с его местом установки.
Схема замещения
Буквально несколько слов о том, что такое схема замещения трансформатора. Начнем с того, что две катушки соединены между собой магнитным полем, поэтому проанализировать работы трансформатора, а тем более его характеристики, очень сложно. Поэтому для этих целей сам прибор заменяют моделью, которая и называется схема замещения трансформатора.
По сути, все переводится на математический уровень, а точнее, в уравнения (токов и электрического состояния). Здесь важно, чтобы все уравнения, касающиеся прибора и его модели, совпадали. Кстати, для многих схема замещения трансформатора достаточно сложна, поэтому существует упрощенный вариант, в котором нет тока холостого хода, ведь на него приходится незначительная часть.
Фазировка
Фазировка трансформатора – это испытание его выходов, когда в одну цепь подключены несколько приборов параллельно. Ведь обязательное условие эффективной работы цепи с отсутствием больших потерь мощности – это правильное соединение фаз между собой, чтобы образовался замкнутый контур.
Если фазы не совпадут, то падает мощности и растет нагрузка. Если не совпадает чередование фаз, то произойдет короткое замыкание.
Заключение по теме
Итак, был сделан небольшой обзор всего, что касается трансформаторных установок, поэтому будем считать, что вопрос, зачем нужны трансформаторы, исчерпан, хотя и не полностью. Об этом приборе можно говорить долго. К примеру, самые простые варианты: как разобрать трансформатор, как прозвонить его, как подключить или демонтировать самому дома.
Трансформатор напряжения , назначение и принцип действия
Трансформатор напряжения — это одна из разновидностей трансформаторов, который нужен для:
- преобразования электрической мощности и питания различных устройств,
- гальванической развязки цепей высокого напряжения (6 кВ и выше) от низкого (обычно 100 В) напряжения вторичных обмоток.
- измерения напряжения на подстанциях и питания всевозможных реле защиты
Измерительный трансформатор напряжения служит для понижения высокого напряжения, подаваемого в установках переменного тока на измерительные приборы и реле защиты и автоматики.
Трансформатор напряжения принцип работы
Для непосредственного включения на высокое напряжение потребовались бы очень громоздкие приборы и реле вследствие необходимости их выполнения с высоковольтной изоляцией. Изготовление и применение такой аппаратуры практически неосуществимо, особенно при напряжении 35 кВ и выше.
Применение трансформаторов напряжения позволяет использовать для измерения на высоком напряжении стандартные измерительные приборы, расширяя их пределы измерения; обмотки реле, включаемых через трансформаторы напряжения, также могут иметь стандартные исполнения.
Кроме того, трансформатор напряжения изолирует (отделяет) измерительные приборы и реле от высокого напряжения, благодаря чего он обеспечивает безопасность их обслуживания на подстанции.
Основное принципиальное отличие измерительных трансформаторов напряжения (ТН) от трансформаторов тока (ТТ) состоит в том, что они, как и все силовые модели, рассчитаны на обычную работу без закороченной вторичной обмотки.
В то же время, если силовые трансформаторы предназначены для передачи транспортируемой мощности с минимальными потерями, то измерительные трансформаторы напряжения конструируются с целью высокоточного повторения в масштабе векторов первичного напряжения.
измерительный трансформатор напряженияПринципы работы трансформатора напряжения
Конструкцию трансформатора напряжения, как и трансформатора тока, можно представить магнитопроводом с намотанными вокруг него двумя обмотками:
- первичной;
- вторичной.
Специальные сорта стали для магнитопровода, а также металл их обмоток и слой изоляции подбираются для максимально точного преобразования напряжения с наименьшими потерями. Число витков первичной и вторичной катушек рассчитывается таким образом, чтобы номинальное значение высоковольтного линейного напряжения сети, подаваемое на первичную обмотку, всегда воспроизводилось вторичной величиной 100 вольт с тем же направлением вектора для систем, собранных с заземленной нейтралью.
Если же первичная схема передачи энергии создана с изолированной нейтралью, то на выходе измерительной обмотки будет присутствовать 100/√3 вольт.
Для создания разных способов моделирования первичных напряжений на магнитопроводе может располагаться не одна, а несколько вторичных обмоток.
Устройство однофазного трансформатора напряжения
устройство однофазного трансформатора напряженияУстройство однофазного трансформатора напряжения:
- а — общий вид трансформатора напряжения;
- б — выемная часть;
- 1,5 — проходные изоляторы;
- 2 — болт для заземления;
- 3 — сливная пробка;
- 4 — бак;
- 6 — обмотка;
- 7 — сердечник;
- 8 — винтовая пробка;
- 9 — контакт высоковольтного ввода
Однофазные трансформаторы напряжения получили наибольшее распространение. Они выпускаются на рабочие напряжения от 380 В до 500 кВ.
Конструктивные размеры и масса ТН определяются не мощностью, как у силовых трансформаторов, а в основном объемом изоляции первичной обмотки и размерами её выводов высокого напряжения.
Трансформаторы напряжения с номинальным напряжением от 380 В до 6 кВ имеют исполнение с сухой изоляцией (обмотки выполняются проводом марки ПЭЛ и пропитываются асфальтовым лаком).
Свердловский завод трансформаторов тока выпускает трансформаторы напряжения на 6, 10, 35 кВ с литой изоляцией.
У трансформаторов напряжением 10 — 500 кВ изоляция масляная (магнитопровод погружен в трансформаторное масло).
Пример назначение и область применение трансформаторов напряжения ЗНОЛ-НТЗ
Трансформаторы предназначены для наружной установки в открытых распределительных устройствах (ОРУ). Трансформаторы обеспечивают передачу сигнала измерительной информации измерительным приборам и устройствам защиты и управления, предназначены для использования в цепях коммерческого учета электроэнергии в электрических установках переменного тока на класс напряжения 35 кВ. Трансформаторы выполнены в виде опорной конструкции.
Корпус трансформаторов выполнен из компаунда на основе гидрофобной циклоалифатической смолы «Huntsman», который одновременно является основной изоляцией и обеспечивает защиту обмоток от механических и климатических воздействий. Рабочее положение трансформаторов в пространстве — вертикальное, высоковольтными выводами вверх.
схема включения обмоток трансформатора напряжения ЗНОЛ-НТЗСхемы включения трансформаторов напряжения
Измерительные трансформаторы применяются для замера линейных и/или фазных первичных величин. Для этого силовые обмотки включают между:
- проводами линии с целью контроля линейных напряжений;
- шиной или проводом и землей, чтобы снимать фазное значение.
Важным элементом безопасности измерительных трансформаторов напряжения является заземление их корпуса и вторичной обмотки.
На заземление трансформаторов напряжения обращается повышенное внимание, ведь при пробое изоляции первичной обмотки на корпус или во вторичные цепи в них появится высоковольтный потенциал, способный травмировать людей и сжечь оборудование.
Преднамеренное заземление корпуса и одной вторичной обмотки отводит этот опасный потенциал на землю, чем предотвращает дальнейшее развитие аварии.
Трансформатор напряжения при напряжении до 35 кВ
Трансформатор напряжения при напряжении до 35 кВ по принципу выполнения ничем не отличается от силового понижающего трансформатора. Он состоит из магнитопровода, набранного из пластин листовой электротехнической стали, первичной обмотки и одной или двух вторичных обмоток. На рис. 2.1. показана схема трансформатора напряжения с одной вторичной обмоткой. На первичную обмотку подается высокое напряжение Ub a напряжение вторичной обмотки U2 подведено к измерительному прибору.
рис. 2.1 Схема включения однофазного трансформатора напряженияТрансформаторы применяются в наружных (типа НОМ-35, серий ЗНОМ и НКФ) или внутренних установках переменного тока напряжением 0,38-500 кВ и номинальной частотой 50 Гц. Трехобмоточные трансформаторы НТМИ предназначены для сетей с изолированной нейтралью, серии НКФ (кроме НКФ-110-5 8) — с заземленной нейтралью.
В электроустановках используются однофазные, трехфазные (пятистержневые) и каскадные трансформаторы напряжения (ТН). Выбор того или иного типа трансформатора напряжения зависит от напряжения сети, значения и характера нагрузки вторичных цепей и назначения трансформатора напряжения (для целей изменения, для контроля однофазных замыканий на землю, для питания устройств релейной защиты и автоматики).
Ввиду относительно высокой стоимости ТН для сетей 110-750 кВ они в ряде случаев, там, где это возможно по условиям работы систем измерения, защиты и автоматики электроустановок, заменяются емкостными делителями напряжения.
По изоляции различают трансформаторы напряжения с сухой и масляной изоляцией.
Обозначение трансформатора напряжения на схеме
Обозначение трансформатора напряжения на схемеПредохранители трансформаторов осуществляют защиту трансформаторов напряжения от повреждения в случае их работы в ненормальном режиме — при однофазном замыкании на землю, при возникновении в сети феррорезонансных явлений или в случае наличия короткого замыкания в первичной обмотке трансформатора напряжения.
Трёхфазный трансформатор
Среди электромагнитных устройств данного типа выделяется трёхфазный трансформатор. Он имеет магнитную и гальваническую связи фаз. Наличие схемы первого типа обусловлено соединением магнитопроводов в одну систему. При этом потоки магнитного воздействия расположены относительно друг друга под углом 120 °. Стержень в данной системе не нужен, так как при объединении центров трёх фаз сумма электромагнитных русел равняется нулю вне зависимости от времени. Благодаря этому схема с шестью стержнями преобразуется в трёхстержневую.
В соединении обмоток устройства можно использовать схемы трёх типов:
- Соединение в виде звезды может осуществляться с выводом от общих точек или же без него. Здесь каждую обмотку соединяют с нейтральной точкой.
- По треугольной схеме фазы соединяются последовательно.
- Зигзаг-это схема, которая чаще всего применяется во время отвода от общей точки. В ней соединяются три обмотки, расположенные на разных стержнях магнитопроводов.
Применение трёхфазного трансформатора является более экономичным, чем использование соединённых однофазных конструкций.
Нагрузка трансформаторов напряжения
Вторичная нагрузка трансформатора напряжения—это мощность внешней вторичной цепи. Под номинальной вторичной нагрузкой понимают наибольшую нагрузку, при которой погрешность не выходит за допустимые пределы, установленные для трансформаторов данного класса точности.
Конструкции трансформаторов напряжения
В установках напряжением до 18 кВ применяются трехфазные и однофазные трансформаторы, при более высоких напряжениях — только однофазные.
При напряжениях до 20 кВ имеется большое число типов трансформаторов напряжения: сухие (НОС), масляные (НОМ, ЗНОМ, НТМИ, НТМК), с литой изоляцией (ЗНОЛ). Следует отличать однофазные двухобмоточные трансформаторы НОМ от однофазных трехобмоточных трансформаторов ЗНОМ. Трансформаторы типов ЗНОМ-15, -20 -24 и ЗНОЛ-06 устанавливаются в комплектных токопроводах мощных генераторов. В установках напряжением 110 кВ и выше применяют трансформаторы напряжения каскадного типа НКФ и емкостные делители напряжения НДЕ.
Измерительные трансформаторы напряжения
Измерительные трансформаторы напряжения предназначены для уменьшения первичных напряжений до значений, наиболее удобных для подключения измерительных приборов, реле защиты, устройств автоматики. Применение измерительных трансформаторов обеспечивает безопасность работающих, так как цепи высшего и низшего напряжения разделены, а также позволяет унифицировать конструкцию приборов и реле.
Видео: Трансформаторы напряжения
Технические характеристики трансформаторов напряжения, схемы включения. Факторы, влияющие на класс точности. Виды трансформаторов напряжения, расшифровка маркировки.
Виды и принцип работы трансформаторов
Трансформатор нужен для преобразования электрической энергии одного напряжения к электрической энергии другого напряжения. Используется для повышения или понижения напряжения. Нет разницы в понижении или повышении, так как трансформатор является обратимой электрической машиной (возможно преобразование электроэнергии как в большую, так и меньшую сторону). Однако производители выпускают трансформаторы для определенных целей – или повышающим или понижающим трансом.
На электрической станции турбогенератором вырабатывается электроэнергия с генераторным напряжением, например 15кВ, далее она трансформируется повышающими трансформаторами (описываемые элементы обозначены на схеме) до напряжения линии электропередач (например, 35кВ, 110кВ, 220кВ, 330кВ, 750кВ). Далее по ЛЭП электроэнергия передается к потребителям и снижается через понижающие трансформаторы до величины 10, 6, 0,4кВ.
Зачем передачу электроэнергии делают на высокие напряжения? Это необходимо для снижения потерь электроэнергии, что достигается увеличением напряжения. Какие бывают трансформаторы
По назначению:
- самыми распространенными являются силовые трансформаторы, предназначенные для передачи и распространения электроэнергии
- существуют силовые трансформаторы специального назначения – сварочные, печные
- трансформаторы тока и напряжения (измерительные и релейные) тоже относятся к трансформаторам
- испытательные трансформаторы – для подачи высокого напряжения для проверки прочности изоляции
- а также радиотрансформаторы, импульсные трансформаторы, пик-трансформаторы
Трансформаторы подразделяются на разные виды в зависимости от числа обмоток на двухобмоточные и многообмоточные (одна первичная и одна или несколько вторичных обмоток).
В зависимости от числа фаз – однофазные, трехфазные, многофазные.
По способу охлаждения – масляные, сухие.
Принцип действия трансформатора
Принцип работы трансформатора основан на явлении электромагнитной индукции. Возьмем для примера двухобмоточный однофазный трансформатор. К первичной обмотке подключается источник переменного тока. Этот ток протекает по обмотке и создает переменный магнитный поток Ф, который пронизывает обмотки трансформатора и изменяясь наводит в них ЭДС. Так как обмотки имеют различное число витков, то и величина ЭДС будет в них различная.
В повышающих трансах вторичное напряжение будет больше первичного, а в понижающих – наоборот. К вторичной обмотке подключается нагрузка и возникает вторичный ток, созданный индуцируемой магнитным потоком ЭДС. Таким образом, в трансформаторе происходит передача электроэнергии из первичной обмотки с напряжением U1 и током I1 во вторичную обмотку с током I2 и напряжением U2 посредством магнитного потока.
Сохраните в закладки или поделитесь с друзьями
Последние статьи
Самое популярное
Трансформатор — Вікіпедія
Трансформатор Силовий трансформатор 110/35/10кВ потужністю 63МВАТрансформа́тор (від лат. transformo — перетворювати) — пристрій для перетворення параметрів (амплітуд і фаз) напруг і струмів[1].
Трансформатор — статичний електромагнітний пристрій, що має дві або більше індуктивно зв’язані обмотки і призначений для перетворення за допомогою електромагнітної індукції однієї або кількох систем (напруг) змінного струму в одну або декілька інших систем (напруг) змінного струму без зміни частоти системи (напруги) змінного струму[2].
Трансформатори широко застосовуються в лініях електропередач, в розподільних та побутових пристроях. При високій напрузі й малій силі струму передача електроенергії відбувається з меншими втратами. Тому, зазвичай лінії електропередач є високовольтними. Водночас побутові й промислові машини вимагають великої сили струму й малої напруги, тому перед споживанням електроенергія перетворюється в низьковольтну. Трансформатори знайшли застосування також у різних випрямних, підсилювальних, сигналізаційних та інших пристроях.
Коефіцієнт корисної дії сучасних трансформаторів, особливо підвищеної потужності, вельми високий і досягає значень 0,95…0,996.
У 1831 році англійським фізиком Майклом Фарадеєм при проведенні ним основоположних досліджень було відкрите явище електромагнітної індукції, що лежить в основі принципу роботи електричного трансформатора.
Вперше трансформатори, як такі були продемонстровані в 1882 році[3], хоча ще в 1876 році Яблочков П. М. запатентував (патент Франції № 115793 від 30 листопада 1876 року[4]) аналогічний пристрій для створених ним освітлювальних пристроїв — «свічок Яблочкова»[5][6]. Це був трансформатор з розімкнутим осердям, у вигляді стрижня, на який намотувались обмотки.
Трансформатор силовий ОСМ1-0,63 380/220-24-12-5; Однофазний Сухий Багатоцільового призначення потужністю 0,63 кВАУ 1885 р. угорські інженери фірми «Ganz factory» Отто Блаті, Карл Зіперновскі і Мікша Дері винайшли трансформатор із замкнутим магнітопроводом, що зіграло важливу роль у подальшому розвитку конструкцій трансформаторів[7].
Велику роль для підвищення надійності трансформаторів зіграло застосування масляного охолодження (кінець 1880-х років, Джордж Свінберн). Свінберн розташовував трансформатори у керамічних посудинах, заповнених оливою, що суттєво підвищувало надійність ізоляції обмоток.[8].
Винахід трансформатора був важливим фактором у так званій війні струмів — конкурентній боротьбі за те, який електричний струм, постійний чи змінний ефективніший для масового користування.
З винайденням трансформатора виник технічний інтерес до змінного струму. Електротехнік російського походження М. О. Доліво-Добровольський у 1889 р. розробив для німецької фірми «Allgemeine Elektricitäts-Gesellschaft» перший трифазний трансформатор[9]. На електротехнічній виставці у Франкфурті-на-Майні у 1891 р. Доліво-Добровольський демонстрував дослідну високовольтну електропередачу трифазного струму на відстань 175 км. Трифазний генератор мав потужність 230 кВт при напрузі 95 В.
У 1891 році Нікола Тесла винайшов резонансний трансформатор для генерування високої напруги при високій частоті[10][11][12].
Схематична будова ідеального трансформатора Підключення трансформатора у схеміНайпростіший трансформатор складається з двох обмоток на спільному осерді. Одна з обмоток під’єднана до джерела змінного струму. Ця обмотка називається первинною. Інша обмотка, вторинна, служить джерелом струму для навантаження. Створений струмом у первинній обмотці змінний магнітний потік викликає появу е.р.с. у вторинній обмотці, оскільки обидві обмотки мають спільне осердя. Співвідношення е.р.с. у вторинній обмотці й напруги на первинній залежить від кількості витків у обох обмотках. В ідеальному випадку
- USUP=NSNP=IPIS{\displaystyle {\frac {U_{S}}{U_{P}}}={\frac {N_{S}}{N_{P}}}={\frac {I_{P}}{I_{S}}}},
де індексом P позначені величини, що стосуються первинної обмотки, а індексом S — відповідні величини для вторинної обмотки, U — напруга, N — кількість витків, I — сила струму.
Таким чином, перетворення напруги й сили струму в трансформаторі визначається кількістю витків у первинній та вторинній обмотках. Напруга пропорційна кількості витків, тоді як сила струму обернено пропорційна їй.
У реальних трансформаторах енергія передається від первинного кола до вторинного з втратами. Існує низка фізичних причин, що їх зумовлюють.
Однією з причин втрат є активний опір обмоток. При протіканні струму через трансформатор, він нагрівається і віддає тепло навколишньому середовищу. При збільшенні частоти опір обмоток збільшується через скін-ефект та ефект близькості, які зменшують площу перерізу провідника, через який протікає струм.
Ще одна причина втрат — перемагнічування осердя внаслідок гістерезису. Ці втрати для конкретної речовини осердя пропорційні частоті й залежать від пікового значення потоку магнітного поля через осердя.
Інша причина втрат — струми Фуко. Змінне магнітне поле в осерді породжує змінне вихрове електричне поле, яке викликає додаткові вихрові струми, що теж призводять до нагрівання. Для зменшення струмів Фуко осердя виготовляють із тонких сталевих пластинок, оскільки втрати, пов’язані зі струмами Фуко, обернено квадратично залежать від товщини матеріалу. На високих частотах для виготовлення осердь використовують феромагнітні матеріали, які завдяки більшому опору, мають значно менші втрати.
Частина енергії втрачається на механічні коливання. Феромагнітний матеріал осердя розширюється і стискається у змінному магнітному полі завдяки явищу магнітострикції. Цим пояснюється гудіння трансформатора, що супроводжує його роботу. Додатково, первинна й вторинна обмотка притягаються й відштовхуються у змінному магнітному полі, змушуючи також коливатися і корпус трансформатора.
Магнітний потік, що виходить за межі осердя, сам по собі не призводить до втрати енергії, але він може призводити до появи вихрових струмів Фуко в металевих деталях корпусу й кріплення, що теж зумовлює невеликі втрати енергії.
Загалом, великі трансформатори мають коефіцієнт корисної дії до 98%[13]. Трансформатори з надпровідних матеріалів можуть збільшити цей коефіцієнт до 99,85%[14].
Втрати у трансформаторах залежать від навантаження. Втрати без навантаження зумовлені в основному опором обмоток, тоді як причиною втрат при повному навантаженні зазвичай є гістерезис та вихрові струми. Втрати при відсутності навантаження можуть бути значними, тому навіть, якщо до вторинної обмотки нічого не підключено, трансформатори повинні задовольняти умовам економної роботи. Конструювання трансформаторів із малими втратами вимагає великого осердя, високоякісної електротехнічної сталі, товстіших провідників, що збільшує початкові затрати, але окупається при експлуатації[15].
Режими роботи трансформатора[ред. | ред. код]
Режим холостого ходу[ред. | ред. код]
Трансформатор може працювати в режимі холостого ходу, коли вторинне коло розімкнене (навантаження відсутнє), тобто ZS=∞;IS=0{\displaystyle Z_{S}=\infty ;I_{S}=0}. За допомогою дослідження холостого ходу можна визначити ККД трансформатора, коефіцієнт трансформації, а також втрати в осерді.
У режимі холостого ходу для трансформатора з сердечником з магнітом’якого матеріалу струм холостого ходу характеризує величину втрат в осерді (на вихрові струми і на гістерезис) та реактивну потужність перемагнічування магнітопроводу. Потужність втрат можна обчислити, помноживши активну складову струму холостого ходу на напругу, що подається на трансформатор.
Для трансформатора без феромагнітного осердя втрати на перемагнічування відсутні, і струм холостого ходу визначається опором індуктивності первинної обмотки, який пропорційний до частоти змінного струму та величини індуктивності.
Режим короткого замикання[ред. | ред. код]
Режим короткого замикання можна отримати в результаті замикання вторинної обмотки накоротко. Це аварійний режим, що може призвести до виходу з ладу трансформатора. При цьому струм у вторинній обмотці може бути у 20…30 разів більшим за номінальний. Тому слід відрізняти режим короткого замикання від досліду короткого замикання. За допомогою останнього можна визначити втрати корисної потужності на нагрівання проводів в колі трансформатора.
При дослідженні режиму короткого замикання, на первинну обмотку трансформатора подається змінна напруга невеликої величини, виводи вторинної обмотки закорочують. Величину напруги на вході встановлюють такою, щоб струм короткого замикання дорівнював номінальному (розрахунковому) струму трансформатора. У таких умовах величина напруги короткого замикання характеризує втрати в обмотках трансформатора, втрати на омічний опір. Потужність втрат можна обчислити помноживши напругу короткого замикання на струм короткого замикання.
Даний режим широко використовується у вимірювальних трансформаторах струму.
Режим навантаження[ред. | ред. код]
Режим роботи трансформатора при якому вторинна обмотка замкнута на опір називається режимом роботи трансформатора під навантаженням. При такому режимі роботи у вторинній обмотці буде протікати струм IS, який створить свій магнітний потік ΦS, який за правилом Ленца має зменшити зміни магнітного потоку в осерді. Це призводить до автоматичного збільшення сили струму в колі первинної обмотки. Збільшення сили струму в колі первинної обмотки відбувається згідно із законом збереження енергії:
- IP⋅UP≈IS⋅US{\displaystyle I_{P}\cdot U_{P}\approx I_{S}\cdot U_{S}} або UPUS≈ISIP{\displaystyle {\frac {U_{P}}{U_{S}}}\approx {\frac {I_{S}}{I_{P}}}}.
Це означає, що підвищуючи за допомогою трансформатора напругу у кілька разів, ми в стільки ж разів зменшуємо силу струму (та навпаки). Отже, трансформатор перетворює змінний струм таким чином, що добуток сили струму на напругу приблизно однаковий у первинній і вторинній обмотках.
Трансформатор з двома обмотками на феромагнітному осерді | |
Трансформатор з трьома обмотками. Крапками позначені початки обмоток, стосовно напрямку намотування | |
Трансформатор з електростатичним екраном для усунення ємнісного зв’язку між обмотками |
Силовий трансформатор[ред. | ред. код]
Силовий трансформатор — стаціонарний прилад з двома або більше обмотками, який за допомогою електромагнітної індукції перетворює систему змінної напруги та струму в іншу систему змінної напруги та струму, як правило, різних значень при тій же частоті з метою передачі електроенергії без зміни її потужності при передаванні[16][17].
Силовий трансформатор використовується для перетворення параметрів електричної енергії в електричних мережах і устаткуванні, що застосовуються для приймання та споживання електричної енергії[18]. Силовий трансформатор застосовується у складі комплектних трансформаторних підстанцій для пониження напруги при подачі електроенергії населеним пунктам.
Термін «силовий» вказує на роботу даного виду трансформаторів з великими потужностями. Необхідність застосування силових трансформаторів зумовлена різною величиною робочих напруг ліній електропередач (35…750 кВ), міських електромереж (як правило 6…10 кВ), напруги що подається кінцевим споживачам (0,4 кВ, вони ж 380/220 В) та напруги, необхідної для роботи електромашин і електроприладів (у досить широкому діапазоні від одиниць вольт до сотень кіловольт).
Силові трансформатори поділяються на сухі, найчастіше використовуються в електромережах і в джерелах живлення різних приладів, і масляні, що працюють при напругах від 6кВ і вище. Масляні трансформатори відрізняються від сухих тим, що як ізоляційне та охолоджувальне середовище застосовується спеціальна трансформаторна олива. Силові масляні трансформатори переважно призначаються для пониження напруги електромереж.
Умовна графічна познака автотрансформа- тора з трьома виводамиАвтотрансформатор[ред. | ред. код]
Автотрансформатор — трансформатор, дві або більше обмоток якого мають спільну частину[19]. Це є варіант виконання силового трансформатора, в якому первинна і вторинна обмотки сполучені безпосередньо, і мають за рахунок цього не тільки електромагнітний зв’язок, а й електричний. Обмотка автотрансформатора має декілька виводів (як мінімум 3), при підключенні до яких, можна отримувати різні напруги.
Перевагою автотрансформатора є вищий ККД, оскільки лише частина потужності піддається перетворенню — це особливо суттєво, коли вхідна і вихідна напруги відрізняються незначно. Недоліком є відсутність електричної ізоляції (гальванічної розв’язки) між первинним і вторинним колом. У промислових мережах, де наявність заземлення нульового проводу обов’язкова, цей чинник ролі не грає, зате суттєвою є менша витрата сталі для осердя, міді для обмоток, менша вага і габарити, і в результаті — менша вартість.
Застосування автотрансформаторів економічно виправдане замість звичайних трансформаторів для сполучення ефективно заземлених мереж з напругою 110 кВ і вище при коефіцієнтах трансформації не більших за 3…4.
Узгоджувальний трансформатор[ред. | ред. код]
Узгоджувальний трансформатор (англ. matching transformer) — трансформатор, призначений для вмикання між двома колами з різними імпедансами з метою оптимізації потужності сигналу, що пересилається[1]. Одночасно узгоджувальний трансформатор забезпечує створення гальванічної розв’язки між ділянками схем.
Узгоджувальні трансформатори за особливостями використання поділяють на вхідні, вихідні та проміжні.
Вимірювальний трансформатор[ред. | ред. код]
Вимірювальний трансформатор (англ. instrument transformer[20]) — трансформатор, призначений для пересилання інформаційного сигналу вимірювальним приладам, лічильникам, пристроям захисту і (або) керування[21]. Вимірювальні трансформатори поділяються на трансформатори струму і трансформатори напруги.
Трансформатор струму — вимірювальний трансформатор, в якому за нормальних умов роботи вторинний струм практично пропорційний первинному і зсув фаз між ними близький до нуля[21].
Вимірювальний трансформатор струму — трансформатор, який призначений для перетворення струму до значення, зручного для виміру. Первинна обмотка трансформатора струму включається послідовно у коло зі змінним струмом, що вимірюється. А у вторинну включаються вимірювальні прилади. Струм, що протікає по вторинній обмотці трансформатора струму, пропорційний струму, що протікає у його первинній обмотці.
Трансформатори струму широко використовуються для вимірювання електричного струму й у пристроях релейного захисту електроенергетичних систем, у зв’язку з чим на них накладаються високі вимоги по точності. Трансформатори струму забезпечують безпеку вимірювань, ізолюючи вимірювальні кола від первинного кола з високою напругою, яка часто складає сотні кіловольт.
Зазвичай, трансформатор струму виготовляється з двома і більше групами вторинних обмоток: одна використовується для підключення пристроїв захисту, інша, точніша — для підключення засобів обліку і вимірювання (наприклад, лічильників електроенергії).
Трансформатор напруги — вимірювальний трансформатор, у якому за нормальних умов використання вторинна напруга пропорційна первинній напрузі та за умови правильного вмикання зміщена відносно неї за фазою на кут, близький до нуля[21].
Трансформатор напруги використовується для перетворення високої напруги в низьку в колах релейного захисту та контрольно-вимірювальних приладів і автоматики. Застосування трансформатора напруги дозволяє ізолювати логічні кола захисту і кола вимірювання від кіл високої напруги.
Імпульсний трансформатор[ред. | ред. код]
Імпульсний трансформатор — трансформатор з феромагнітним осердям, для перетворення імпульсів електричного струму або напруги з тривалістю імпульсу до десятків мікросекунд з мінімальним спотворенням форми імпульсу. Імпульсні трансформатори в радіолокації, імпульсному радіозв’язку, автоматиці і обчислювальній техніці служать для узгодження джерела імпульсів з навантаженням, зміни полярності імпульсів, розділення електричних кіл по постійному і змінному струму, додавання сигналів, запалювання імпульсних ламп тощо.
Робота імпульсного трансформатора істотно відрізняється під час формування фронту і вершини імпульсу. Для кращої передачі фронту і спаду імпульсу необхідно, щоб міжвиткова ємність обмоток, паразитні ємності монтажу і індуктивність розсіяння імпульсного трансформатора були мінімальними. Зменшення міжвиткових ємностей досягається використанням сердечників малих розмірів, відповідним намотуванням і взаємним розташуванням обмоток, а також зменшенням числа витків (при цьому знижується коефіцієнт трансформації). В імпульсних трансформаторах застосовують сердечники з пермалою, кремнистої трансформаторної сталі, феритів та інших матеріалів з високою магнітною проникністю.
Резонансний трансформатор[ред. | ред. код]
Резонансний трансформатор — трансформатор, що працює на резонансній частоті коливального контура утвореного однією або декількома із його обмоток підключенням до електричного конденсатора. У резонансного трансформатора зазвичай вторинна обмотка виконує роль індуктивності у коливальному контурі, утвореному разом з конденсатором. Коли на первинну обмотку подати періодичний струм у вигляді прямокутних чи пилкоподібних імпульсів на резонансній частоті, кожен імпульс струму дає поштовх коливанням індукованого струму у вторинній котушці. У зв’язку з резонансом можуть досягатись великі значення напруги, поки вона не буде обмежена якимось процесом, таким як електричний пробій. Такі пристрої використовуються для створення високої змінної напруги, що не може бути досягнутою на таких електростатичних машинах, як електростатичний генератор Ван де Граафа чи електрофорна машина.
Приклади:
Застосування трансформаторів[ред. | ред. код]
Трифазний розподільний трансформатор.Найчастіше трансформатори застосовуються в електромережах та в джерелах живлення різних приладів.
Застосування в електромережах[ред. | ред. код]
Оскільки втрати на нагрівання дроту пропорційні квадрату струму, що проходить через дріт, при передачі електроенергії на великі відстані вигідно використовувати дуже великі напруги і невеликі струми. З міркувань безпеки та для зменшення маси ізоляції в побуті бажано використовувати менші напруги. Тому для найбільш вигідного транспортування електроенергії в електромережі багаторазово застосовують силові трансформатори: спочатку для підвищення напруги генераторів на електростанціях перед транспортуванням електроенергії, а потім для зниження напруги лінії електропередач до прийнятного для споживачів рівня.
Оскільки в електричній мережі три фази, для перетворення напруги застосовують трифазні трансформатори, або групу з трьох однофазних трансформаторів, з’єднаних за схемою зірки або трикутника. У трифазного трансформатора сердечник для всіх трьох фаз загальний.
Незважаючи на високий ККД трансформатора (для трансформаторів великої потужності — понад 99%), в дуже потужних трансформаторах електромереж виділяється велика потужність у вигляді тепла (наприклад, для типової потужності блоку електростанції 1 ГВт на трансформаторі може виділятися потужність до декількох мегават). Тому трансформатори електромереж використовують спеціальну систему охолодження: трансформатор поміщається в бак, заповнений трансформаторним маслом або спеціальною негорючою рідиною. Масло циркулює під дією конвекції або примусово між баком і потужним радіатором. Іноді масло охолоджують водою. «Сухі» трансформатори використовують при відносно малій потужності.
Застосування в джерелах електроживлення[ред. | ред. код]
Компактний мережевий трансформатор.Для живлення різних вузлів електроприладів потрібні найрізноманітніші напруги. Блоки електроживлення у пристроях, які потребують кілька напруг різної величини, містять трансформатори з декількома вторинними обмотками або містять у схемі додаткові трансформатори. Наприклад, в телевізорі за допомогою трансформаторів отримують напруги від 5 вольт (для живлення мiкросхем і транзисторів) до декількох кіловольт (для живлення анода кінескопа через помножувач напруги).
У схемах живлення сучасних радіотехнічних та електронних пристроїв (наприклад в блоках живлення персональних комп’ютерів) широко застосовуються високочастотні імпульсні трансформатори. В імпульсних блоках живлення змінну напругу мережі спершу випрямляють, а потім за допомогою інвертора перетворюють на високочастотні імпульси. Система управління за допомогою широтно-імпульсної модуляції (ШІМ) дозволяє стабілізувати напругу. Після чого імпульси високої частоти подаються на імпульсний трансформатор, на виході з якого, після випрямлення і фільтрації отримують стабільну постійну напругу.
У минулому мережевий трансформатор (на 50-60 Гц) був однією з найважчих деталей багатьох приладів. Справа в тому, що лінійні розміри трансформатора визначаються його потужністю, причому виявляється, що лінійний розмір мережевого трансформатора приблизно пропорційний потужності в степені 1/4. Розмір трансформатора можна зменшити, якщо збільшити частоту змінного струму. Тому сучасні імпульсні блоки живлення при однаковій потужності є значно легшими.
Трансформатори на 50-60 Гц, незважаючи на свої недоліки, продовжують використовувати в схемах живлення, в тих випадках, коли необхідно забезпечити мінімальний рівень високочастотних перешкод, наприклад при високоякісному звуковідтворенні.
- ↑ а б ДСТУ 2815-94 Електричні й магнітні кола та пристрої. Терміни та визначення.
- ↑ ГОСТ 16110-82 Трансформаторы силовые. Термины и определения.
- ↑ Allan, D.J. (Jan. 1991). Power Transformers – The Second Century. Power Engineering Journal 5 (1): 5–14.
- ↑ Iablochkov, Pavel Nikolaevich Архівовано 25 червня 2013 у Wayback Machine. на сайті TheFreeDictionary.com Farlex, Inc.
- ↑ Stanley Transformer. Los Alamos National Laboratory; University of Florida. Архів оригіналу за 2013-06-25. Процитовано Jan. 9, 2009.
- ↑ De Fonveille, W. (Jan. 22, 1880). Gas and Electricity in Paris. Nature 21 (534): 283. Процитовано Jan. 9, 2009.
- ↑ Hughes, Thomas P. Networks of Power: Electrification in Western Society, 1880–1930. Baltimore: The Johns Hopkins University Press, 1993. — p. 95. ISBN 0-8018-2873-2.
- ↑ Савинцев Ю. М Силовые трансформаторы: основные вехи развития.
- ↑ Neidhöfer, Gerhard; in collaboration with VDE «History of Electrical Engineering» Committee (2008). Michael von Dolivo-Dobrowolsky and Three-Phase: The Beginnings of Modern Drive Technology and Power Supply (German) (вид. 2). Berlin: VDE-Verl. ISBN 978-3-8007-3115-2.
- ↑ Uth, Robert (Dec. 12, 2000). Tesla Coil. Tesla: Master of Lightning. PBS.org. Архів оригіналу за 2013-06-25. Процитовано 2008-05-20.
- ↑ Tesla, Nikola. System of Electrical Lighting. U.S. Patent 454 622, issued June 23, 1891. Архів оригіналу за 2013-06-25. Процитовано 2019-05-09.
- ↑ Патент США № 568 176 від 22 вересня 1896. Apparatus for producing electric currents of high frequency and potential. Опис патенту на сайті Бюро по реєстрації патентів і торгових марок США.
- ↑ Kubo, T.; Sachs, H.; Nadel, S. (2001). Opportunities for new appliance and equipment efficiency standards (PDF). American Council for an Energy-Efficient Economy. с. 39. Архів оригіналу за травень 31, 2009. Процитовано June 21, 2009.
- ↑ Riemersma, H., et al.; Eckels, P.; Barton, M.; Murphy, J.; Litz, D.; Roach, J. (1981). Application of Superconducting Technology to Power Transformers. IEEE Transactions on Power Apparatus and Systems. PAS-100 (7): 3398. doi:10.1109/TPAS.1981.316682. Архів оригіналу за 1 вересень 2007. Процитовано 13 лютий 2011.
- ↑ Heathcote, Martin (November 3, 1998). J & P Transformer Book, Twelfth edition. Newnes. с. 41–42. ISBN 0750611588.
- ↑ ДСТУ ГОСТ 30830-2003 (IEC 60076-1-93) Трансформатори силові. Частина 1. Загальні положення (ГОСТ 30830-2002 (IEC 60076-1-93). IDT)
- ↑ «Power transformer» у Міжнародному електротехнічному словнику (IEV 421-01-01)
- ↑ ДСТУ 2790-94 Системи електропостачальні номінальною напругою понад 1000 В: джерела, мережі, перетворювачі та споживачі електричної енергії. Терміни та визначення.
- ↑ ДСТУ 3270-95 Трансформатори силові. Терміни та визначення.
- ↑ «Instrument transformer» в IEV ref 321-01-01
- ↑ а б в ДСТУ 2976-94 Трансформатори струму й напруги. Терміни та визначення.
- Загірняк М. В., Невзлін Б. І. Електричні машини : підручник. — К. : Знання, 2009. — 399 с. — ISBN 978-966-346-644-6.
- Кучерук І. М., Горбачук І. Т., Луцик П. П. Загальний курс фізики : навч. посібник у 3-х т. — Київ : Техніка, 2006. — Т. 2 : Електрика і магнетизм.
- Монтаж, наладка і експлуатація електрообладнання. Конспект лекцій (для студентів 5 курсу денної і 6 курсу заочної форм навчання спеціальності 7.0906003 — «Електричні системи електроспоживання») / А. В. Хитров — Харків : ХНАМГ, 2009. — 328 с.
- Трансформатори. Монтаж, обслуговування та ремонт / М. В. Принц, В. М. Цимбалістий. — Л. : Оріяна-Нова, 2007. — 184 c. — (Професійно-технічна освіта України). — ISBN 978-966-2128-03-1
- Сивухин Д. В. Общий курс физики. — Москва : Наука, 1977. — Т. 3 : Электричество. (рос.)
- Захист трансформаторів та автотрансформаторів : Навч. посіб. для студ. напрямів «Системи упр. вир-вом та розподілом електроенергії», «Електр. системи та мережі», «Електр. станції» / В. П. Кідиба, Т. М. Шелепетень ; Нац. ун-т «Львів. політехніка». — Л. : Вид-во Нац. ун-ту «Львів. політехніка», 2004. — 177 c. — Бібліогр.: 26 назв.
Трансформаторы и автотрансформаторы: определения и отличия
Работа электрооборудования обеспечивается системой повышающих, понижающих трансформаторов. Приборы «отличаются» рядом характеристик. Бытовые агрегаты рассчитаны на напряжение 110 или 220В, а бытовые – на 380В. Некоторые из представленных устройств снижают или повышают напряжение, другие передают электричество постепенно от подстанции потребителям.
Подобные действия совершают «трансформаторы и автотрансформаторы». Агрегаты характеризуются некоторыми отличиями. Однако подобные аппараты предназначены для поддержания требуемого уровня напряжения в сети. Чтобы научиться правильно, безопасно применять подобное оборудование, нужно рассмотреть их главные отличия.
Основное определение
Чтобы понимать, «чем принципиально отличаются трансформатор и автотрансформатор», нужно рассмотреть их определение.
Трансформатор – электромагнитный прибор статического типа, преобразующий электрический ток переменного значения с определенным показателем напряжения в электроэнергию другого уровня. Прибор способен повышать или понижать этот показатель. Система способна преобразовывать частоту и количество фаз электрического тока. Также рекомендуем ознакомиться с конструкцией и принципами работы трансформатора.
Оборудование включает несколько обмоток. Контуры находятся на сердечнике из специального сплава. Первичная катушка подключается к сети переменного типа. Вторичная катушка или все остальные обмотки соединены с установкой, потребляющей исходящее электричество.
Основным принципом работы прибора является закон Фарадея. При перемещении через обмотку магнитного потока определяется некоторая электродвижущая сила.
При необходимости менять параметры незначительно, разрешается применять «автотрансформатор». Этот агрегат представляет собой систему с двумя обмотками, объединенными в одну катушку. Это обеспечивает возникновение электромагнитной, электрической связи. Подробнее о автотрансформаторе мы писали здесь.
Основные отличия
Существует всего 5 основных отличий трансформатора и автотрансформатора. Их можно кратко перечислить:
- В первую очередь оба этих агрегата отличаются «тем», что у них присутствует разное количество обмоток.
- Надежность и безопасность автотрансформатора уступает обычному трансформатору.
- Автотрансформаторы стоят дешевле.
- Трансформатор имеет меньший уровень КПД.
- Габариты автотрансформатора меньше.
У трансформаторов, отличающихся количеством обмоток, есть две катушки и более. Второй тип агрегатов обладает одной совмещенной катушкой. Она имеет минимум три выхода для подключения к различным коммуникациям и получения на выходе различных показателей сети.
Автотрансформаторы применяются в сетях с напряжением от 150 кВ и более. Они компактные, удобные и стоят значительно дешевле. Их главным преимуществом является высокий уровень КПД. Однако существенным недостатком является отсутствие между обмотками изоляционного материала. Это понижает безопасность представленных приборов при его эксплуатации и обслуживании. Для промышленных сетей это не столь важно, но для бытового применения подобный факт является существенным недостатком.
Если применять этот прибор в бытовых сетях, при возникновении аварийной ситуации электричество может быть приложено из первичной обмотки к низшему напряжению. Это происходит из-за пробоя изоляции частей, проводящих электричество. Части агрегата будут соединены с высоковольтными частями. Поэтому для бытовых нужд применяют трансформаторы, а в промышленности – автотрансформаторы.
Рассмотрев основные отличия автотрансформаторов и трансформаторов, каждый пользователь сможет правильно применять подобное оборудование в своих целях.