Выпрямитель тока это: переменный ток в постоянный, схема выпрямителя тока

Содержание

Значение, Определение, Предложения . Что такое выпрямитель

В электронику телевизора входит выпрямитель для преобразования переменного тока в постоянный.
В виду того, что выпрямитель не оснащен системой контроля, сумма гармонических составляющих невелика.
Нет,я не думаю, что Линдси нужно Бразильский выпрямитель для волос, Ронни.
А это — селениевый выпрямитель.
Кто-то выключил мой влагопоглотитель чтоб включить выпрямитель для волос.
Так или иначе, я завещала всё своё имущество. Мой выпрямитель для волос, мой телевизор, мой глобус.
Поскольку выпрямитель проводит ток только в прямом направлении, любая энергия, выделяемая конденсатором, будет поступать в нагрузку.
Начальный этап преобразования переменного тока в постоянный заключается в передаче переменного тока через выпрямитель.
В этот момент выпрямитель снова проводит ток и подает его в резервуар до тех пор, пока не будет достигнут пик напряжения.
Аналогичным образом, статья Марка Ратнера и Ари Авирама 1974 года иллюстрировала теоретический молекулярный выпрямитель.
Емкостный источник питания обычно имеет выпрямитель и фильтр для получения постоянного тока от пониженного переменного напряжения.
Простые диодные схемы, клиппирование, зажим, выпрямитель.
SMPS, предназначенный для ввода переменного тока, обычно может работать от источника постоянного тока, потому что постоянный ток будет проходить через выпрямитель без изменений.
Выпрямитель вырабатывает нерегулируемое напряжение постоянного тока, которое затем подается на большой фильтрующий конденсатор.
Они состоят из анодов, подключенных к источнику постоянного тока, часто трансформатор-выпрямитель, подключенный к источнику переменного тока.
Концепция молекулярной электроники была опубликована в 1974 году, когда Авирам и Ратнер предложили органическую молекулу,которая могла бы работать как выпрямитель.
Проблема в том, что выпрямитель является нелинейным устройством, поэтому входной ток сильно нелинейен.
Когда происходит потеря мощности, выпрямитель просто выпадает из цепи, а батареи сохраняют мощность постоянной и неизменной.
Вход ИБП с двойным преобразованием-это, по сути, большой выпрямитель.
Соответствующий инвертор / выпрямитель обеспечивает около 2-3% потерь энергии в каждом направлении.
В то время как Heartbreaker и Maverick использовали только один ламповый выпрямитель 5AR4, Solo использовал две трубки 5U4G.
Я думаю, что желательным моментом является преобразование переменного тока в постоянный через выпрямитель.
Генератор переменного тока-это устройство переменного тока, которое использует выпрямитель для производства постоянного тока для зарядки аккумулятора.
Этот выпрямитель теперь требует шести диодов, по одному подключенных к каждому концу вторичной обмотки каждого трансформатора.
Управляемый трехфазный мостовой выпрямитель использует тиристоры вместо диодов.
При разомкнутом переключателе эта схема действует как обычный мостовой выпрямитель.
При закрытом выключателе он действует как выпрямитель удвоения напряжения.
Для преобразования переменного тока в постоянный в электровозах может быть использован синхронный выпрямитель.
Электролитический выпрямитель был устройством с начала двадцатого века, которое больше не используется.
Исследовательские проекты пытаются разработать унимолекулярный выпрямитель, единственную органическую молекулу,которая будет функционировать как выпрямитель.
В 1909 году Исаак К. Шеро запатентовал первый выпрямитель для волос, состоящий из двух плоских утюжков, которые нагреваются и прижимаются друг к другу.
Другие результаты

Как выбрать выпрямитель тока? | Статьи

Выпрямители тока — это устройства, преобразующие переменное напряжение сети в постоянное. Их использование необходимо при подключении к сети электронной или транзисторной аппаратуры, а также приборов, для работы которых необходимо отличное от стандартного напряжение.

Различают несколько видов этих устройств:

  • электроконтактные,
  • кенотронные,
  • ртутные,
  • газотронные,
  • полупроводниковые и другие.

Также существует разделение выпрямителей на однополупериодные и двухполупериодные. Первые предназначены для подключения устройств малой мощности с емкостными и индуктивными сглаживающими фильтрами. Вторые используются для питания более мощных приборов и обеспечивают более высокую пульсацию выпрямленного тока.

По числу фаз выпрямители разделяются на:

  • однофазные для электрооборудования малой мощности;
  • двухфазные для приборов средней мощности;
  • трехфазные для мощного промышленного оборудования;
  • многофазные.

В зависимости от уровня преобразуемого напряжения различают: низковольтные (до 100 В), средневольтовые (220—1000 В) и высоковольтные (более 1000 В) приборы.

Разновидностью выпрямителей тока являются инверторы — устройства, которые выполняют обратную функцию: преобразовывают постоянное напряжение в переменное.

Самое широкое применение находят следующие виды выпрямителей тока:

  1. устройства для зарядки аккумуляторов;
  2. полупроводниковые приборы для обеспечения постоянным током гальванических ванн, промышленных станков, очистного и другого оборудования;
  3. универсальные полупроводниковые устройства, преобразующие трехфазный переменный ток в постоянный.

Выпрямители тока от компании «Штиль»

Если вы хотите получить квалифицированный ответ на вопрос, как выбрать выпрямитель тока, обращайтесь к специалистам компании «Штиль». Наше предприятие является производителем этого оборудования и может предложить вам устройства для решения самых разных задач. В каталоге представлены устройства для бытового и промышленного использования, рассчитанные на подключение разного по мощности оборудования.

Обратившись к нам, вы получите рекомендацию по выбору оптимального по параметрам выпрямителя тока и сможете купить качественное и надежное устройство по выгодной цене с гарантией от производителя.

4.10. Выпрямление переменного тока и напряжения

Рассмотрим работу нескольких простейших выпрямителей

Работа однополупериодного выпрямителя на r-нагрузку

Пусть дана схема (рис. 4.47), вольтамперная характеристика диода (рис. 4.48) и напряжение источника u(t) = Um sint. Поставим задачу: определить ток в цепи и напряжение на нагрузке. Используем графический метод для расчета тока.

Графические построения просты и понятны (рис. 4.48). При синусоидальном напряжении источника ток в цепи несинусоидален. Видно, что ток однополярен. Если этот ток умножить на сопротивление (r), то получим напряжение на нагрузке. Если пренебречь заштрихованной площадкой то в интервале (p – 2p) ток будет равен нулю (рис. 4.49).

Определим среднее значение выпрямленного тока:

.

Для сравнения, среднее значение синусоидального тока равно:

.

Действующее значение выпрямленного тока равно:

.

Видно, действующее значение выпрямленного тока в раз меньше, чем переменного тока.

С принятыми допущениями КПД этого выпрямителя равен:

,

где

.

Тогда окончательно:

Работа однополупериодного выпрямителя на rL-нагрузку

Введем в цепь индуктивность (рис. 4.50) и решим ту же задачу.

Дано: u = Um sinwt, L, r, BAX. Определим ток i., и напряжение ur.

Применим метод кусочно-линейной аппроксимации. Расчет начнем с момента времени t = 0. В этот момент диод открывается и его сопротивление становится равным нулю.

Задача решается так же, как и при расчете переходного процесса.

Решение здесь приводить не будем, дадим только конечное выражение для тока:

.

Первое слагаемое в этом выражении – свободная составляющая, а второе слагаемое – принужденная составляющая, которая считается по схеме замещения (рис. 4.51) комплексно-символическим методом. Постоянную интегрирования А найдем из начальных условий:

.

Откуда:

.

Выражение для тока примет вид:

,

где p = -r/L.

Построим этот ток (рис. 4.52, штриховая линия). Решение для тока справедливо пока ток больше нуля i(t) > 0. При возрастании индуктивности (рис. 4.53) ампер-секундная площадка не изменяется, а только деформируется.

Использование L-элемента в однополупериодном выпрямителе для улучшения качества выпрямленного тока позволяет уменьшить коэффициент амплитуды К

а, но не обеспечивает идеальное выпрямление переменного тока.

Работа однополупериодного выпрямителя на rC-нагрузку

Введем в схему однополупериодного выпрямителя емкость С, включенную параллельно нагрузке (рис. 4.54). Расчет также начнем с момента отпирания диода. Применим метод кусочно-линейной аппроксимации.

Пусть в некоторый момент времени t1 рабочая точка на характеристике диода переходит в первый квадрант, выполняется условие: ja>jк.

Сопротивление диода становится равным нулю: .

Напряжение источника становится равным напряжению на конденсаторе и на нагрузке:

.


Ток равен:

В цепях с конденсатором при первом включении на напряжение наблюдается некорректная коммутация, которая сопровождается скачками тока больших величин. Если С > 1000 мкФ выпрямитель необходимо защищать от этих скачков.

В момент времени, когда входное напряжение достигает максимальной величины:

,

потенциал катода становится больше потенциала анода: jк > jа. При этом ключ (диод) размыкается. Разряд конденсатора можно описать уравнением (рис. 4.55):

.

заряд будет продолжаться до тех пор, пока напряжение на конденсаторе будет больше входного напряжения: uc(t) > u(t). Влияние величины емкости на скорость разряда конденсатора показано на (рис. 4.56). Использование ёмкостного элемента, включенного к нагрузке однополупериодного выпрямителя, позволяет обеспечить сглаживание выпрямленного напряжения и выполнить поставленную задачу в определенном диапазоне нагрузок.

Схемы однофазных выпрямителей

Рассмотрим наиболее распространенные схемы однофазных выпрямителей.

1.

Двухполупериодный выпрямитель (рис. 4.57).

Дано: напряжение , сопротивление Rн, диоды 1, 2, 3, 4 и их вольтамперные характеристики.

Требуется определить Uн и iн.

Проанализируем цепь методом кусочно-линейной аппроксимации. Расчет начнем с момента времени t = 0.

Приверхний зажим становится положительным. Образуется контур протекания тока. Отпираются диоды 1 и 2. Напряжение на нагрузке равно:

При входное напряжение становится меньше нуля: .Диоды 1 и 2 запираются, а 3 и 4 отпираются. Напряжение на нагрузке становится равным:

.

В дальнейшем процессы повторяются. Временные диаграммы приведены на (рис. 4.58).

Проанализируем воздействие С – эле­ментов на кривые выходного напряжения (рис. 4.59). При двухполупериодном выпрямлении качество выпрямленного напряжения можно обеспечить меньшими значениями реактивных элементов. Главным недостатком этого выпрямителя является то, что уровень выпрямленного напряжения зависит от входного напряжения.

2.

Этого недостатка нет в схеме (рис. 4.60), так как с помощью трансформатора можно получить любое напряжение на вторичной обмотке изменением коэффициента трансформации.

Коэффициент трансформации равен:

.

Выбирая КТ, можно сформировать любое U2:

Процессы в схеме (рис. 4.60) полностью аналогичны предыдущей (рис. 4.57), там, где были включенными диоды 1 и 2, здесь будет включен диод 1.

С помощью трансформаторного элемента входная цепь с напряжением U1 гальванически развязывается с выходной цепью с напряжением Uн.

Если какую-то точку выходной цепи соединить с землей, то тогда электромагнитный импульс, поступивший во входную цепь, не приведет к перераспределению потенциалов в выходной цепи. Электромагнитным импульсом может быть грозовой разряд, сварочная дуга, внезапные короткие замыкания в цепи или обрывы.

Электромагнитный импульс распространяется без проводов и наводится в электрическую цепь благодаря реактивным элементам.

Схемы трехфазных выпрямителей

Рассмотрим однополупериодный трехфазный выпрямитель (рис. 4.61). Исходная информация для расчетов задается аналогично.

Дано: входное фазное напряжение , сопротивление нагрузки Rн, диоды 1, 2, 3 и их ВАХ.

Определить напряжение нагрузки uн.

Расчет этого выпрямителя начнем с момента времени . С этого момента при напряжение больше всех остальных напряжений, поэтому напряжение нагрузки равно:

.

С момента времени напряжение больше всех остальных. Поэтому напряжение нагрузки равно:

.

Дальнейшие расчеты понятны, а временная диаграмма показана на (рис. 4.62). Кривая выходного напряжения однополярна, она колеблется от амплитудного значения до его половины. Этим напряжением уже можно питать такие нагрузки, как двигатель постоянного тока, у которого наблюдается малая зависимость скорости вращения от коэффициента пульсаций.

Рассмотрим трехфазный двухполупериодный выпрямитель (рис. 4.63, схема Ларионова).

Схема (рис. 4.63) работает аналогично предыдущей (рис. 4.61).

В интервале точек 1 – 2 (рис. 4.64) кривая напряжения uc инвертируется. Поэтому выходное напряжение uн имеет еще меньший коэффициент пульсаций по сравнению со схемой (см. рис. 4.62).

Для большинства общетехнических установок эта кривая удовлетворяет стандартам и не требует дополнительной фильтрации.

Качественные показатели выходного напряжения выпрямителей

Главным показателем качества выходного напряжения является коэффициент пульсаций, который равен отношению разности максимального и минимального значений выходного напряжения к его номинальному значению:

.

Следующим показателем является коэффициент искажения, который равен отношению действующего значения напряжения первой гармоники к действующему значению напряжения:

.

Коэффициент гармоник оценивает содержание высших гармоник в напряжении и равен отношению всех высших гармоник к основной гармонике:

Коэффициент полезного действия:

.

Коэффициент мощности:

Мощность искажения:

.

1. Электронные выпрямители — СтудИзба

1.Электронные выпрямители их виды и характеристика.

 

Одним из основных источников  энергии в быту и в промышленноти является электрический ток. Электрический ток бывает двух видов: постоянный и переменный. Переменный ток имеет следующие преимущества перед  постоянным:

1.Переменный ток  в промышленном масштабе легче получить, так как генераторы переменного тока имеют более простое техничекое устройство, чем генераторы  постоянного тока ( динамомашины ).

2. Переменный ток легко транспортировать на любые расстояния без  значительных потерь энергии.

При необходимости переменный ток может быть преобразован в постоянный ток с помощью электронного устройства, который называется выпрямителем.

         Электронный выпрямитель — это электротехническое устройство для преобразования переменного тока в постоянный.         

Структурная схема выпрямителя:

 

 

 

 

 

                  1                         2                          4                          5

 

 

1.Трансформатор — необходим для повышения или понижения входного перенменного напряжения до необходимого уровня и изоляции аппарата от входной электрической сети.

2.Выпрямляющие элементы ( вентили )- это ламповые или полупроводниковые диоды, которые подключаются ко вторичной обмотке трансформатора и служат для преобразования переменного тока в пульсирующий.. Все выпрямляющие элементы обладают односторонней проводимостью.

3.Сглаживающий фильтр — применяется для понижения пульсации выпрямленного напряжения и тока. Это совокупность резисторов ,катушек индуктивности и конденсаторов. 

4.Стабилизатор — поддерживает постоянным амплитуду выпрямленного напряжения и тока на выходе выпрямителя. Стабилизатор делает эти характеристики независимыми от колебания напряжения в электрической сети на входе выпрямителя. Иногда стабилизатор ставят сразу перед трансформатором — стабилизатор входного напряжения.

                       

                          Технические характеристики выпрямителей.

         Если в качестве выпрямляющего элемента используется двухэлектродная лампа (кенотрон),  выпрямитель называется ламповым. Если  полупроводниковый диод – полупроводниковым.

         Если выпрямляется  один полупериод входного напряжения, выпрямитель называется однополупериодным.  Если оба полупериода – двухполупериодным.

        При выпрямленном напряжении  на выходе меньше  500 вольт выпрямитель называется низковольтным. Если напряжение на выходе больше 500 вольт, выпрямитель  высоковольтный.

                  Электрические характеристики выпрямителей.

1. Входное переменное напряжение и ток.

1. Выходное  напряжение и ток.

2. Коэффициент пульсации   Kp = Uп / Ucp.

Uп – амплитуда переменной составляющей выпрямленного напряжения.

Uср – среднее значение выпрямленного напряжения.

Кр – коэффициент пульсации выпрямленного напряжения.

          Пусть  график выходного напряжения на выходе выпрямителя имеет следующий вид. Рассчитаем коэффициент пульсации  для данного случая.

 

                  U

 

 

         Umax

 

          Uср

         Umin

 

 

 

 

                                                                                                                                                        

 

                   0                                                                                                      t

 

        По определению:

 

                                       Uп    =   (  Umax – Umin ) / 2

                                       Uср  =   (  Umax + Umin ) / 2

                                      

                   Kp = Uп / Ucp  = (  Umax – Umin ) / (  Umax + Umin )

 

 

 

4. Нагрузочная характеристика выпрямителя – график зависимости напряжения на выходе от силы тока нагрузки. Имеет падающий характер.

                               

U                                   

 

 

 

   0                                                                   J   

 

 

Выпрямители

 

4.3. Выпрямители

 

Из курса физики Вам известно, что выпрямитель представляет собой прибор, преобразующий переменный по величине и направлению ток в ток одного направления. Выпрямители относятся к вторичным источникам электропитания.

Простейший выпрямитель переменного тока состоит из трансформатора и полупроводникового диода (рис. 4.11 а). Для простоты будем считать трансформатор и диод идеальными, то есть у трансформатора активное сопротивление обмоток равно нулю, прямое сопротивление диода также равно нулю, а обратное сопротивление диода равно бесконечности (обратным током можно пренебречь).

На вход выпрямителя со вторичной обмотки трансформатора подается синусоидальное напряжение (рис. 4.11 б). В первый полупериод, когда на верхней (по схеме) точке обмотки положительный потенциал относительно нижней точки, диод открыт и через нагрузочный резистор протекает ток. Во второй полупериод (полярность напряжения указана в скобках) диод закрыт и ток в резисторе отсутствует. Таким образом, выходное напряжение (оно снимается с нагрузочного резистора) имеет форму половинок синусоиды (рис. 4.11в). Оно называется пульсирующим.

Рассмотренный выпрямитель называется однополупериодным, поскольку в нем используются только половины каждого из периодов сетевого напряжения. Схема однополупериодного выпрямителя в практике применяется очень редко, поскольку получается большой коэффициент пульсаций выпрямленного напряжения (по сравнению с двухполупериодным выпрямителем при одинаковых сопротивлениях нагрузки).

В практике применяются двухполупериодные выпрямители. Они бывают мостовыми и с выводом от средней точки вторичной обмотки трансформатора. В двухполупериодных выпрямителях используются оба полупериода напряжения сети, поэтому они являются более эффективными, чем однополупериодные.

Рассмотрим работу двухполупериодного выпрямителя с двумя диодами и выводом от средней точки вторичной обмотки трансформатора (рис. 4.12а). Его можно рассматривать как совокупность двух однополупериодных выпрямителей, к которым подсоединен один и тот же резистор нагрузки.

Пусть в первый полупериод на верхней (по схеме) точке обмотки трансформатора оказался положительный потенциал относительно нижней точки и, соответственно, относительно средней точки. Тогда ток будет протекать от верхней точки обмотки через диод VD1 к выводу “+”, через резистор нагрузки к выводу “-” и средней точке обмотки. Во второй полупериод на нижней (по схеме) точке обмотки окажется положительный потенциал относительно средней и верхней точки. Ток в этом случае будет протекать от нижней точки обмотки через диод VD2 к выводу “+”, через резистор нагрузки к выводу “-” и средней точке вторичной обмотки трансформатора. Таким образом, ток через резистор все время протекает в одном направлении и на выходе получается форма напряжения, изображенная на рисунке 4.12 в.

Недостатком рассмотренного выпрямителя является то, что в каждый из полупериодов напряжение снимается только с половины вторичной обмотки трансформатора. Более экономичным является двухполупериодный выпрямитель, собранный на четырех диодах (рис. 4.13 а). Эта схема называется мостовой, поскольку в ней применен диодный мост. К одной из диагоналей моста присоединяют вторичную обмотку трансформатора, а к другой — нагрузочный резистор. Иногда на схемах диодный мост изображают с помощью одного диода (рис. 4.13 б).

В положительный полупериод сетевого напряжения (сверху по схеме на обмотке “+”, снизу “-”) ток протекает от верхней точки обмотки через диод VD2 к клемме “+”, через резистор нагрузки к клемме “-”, через  диод VD4  к

нижней точке обмотки. В отрицательный полупериод сетевого напряжения (полярность показана в скобках) ток протекает от нижней точки обмотки через диод VD3 к клемме “+”, через резистор нагрузки к клемме “-”, через диод VD1 к верхней точке обмотки. Таким образом, каждая пара диодов работает поочередно и оба полупериода ток через резистор нагрузки имеет одно и то же направление.

Для питания операционных усилителей необходимо иметь два источника питания разной полярности, имеющих общую точку. На рисунке 4.13в показана схема выпрямителя, обеспечивающего двухполупериодное выпрямление каждого из напряжений на резисторах RН1, RН2

 Выпрямленное напряжение, получаемое на выходе всех рассмотренных типов выпрямителей, является пульсирующим; в нем можно выделить постоянную и переменную составляющие. Постоянная составляющая выпрямленного напряжения — это среднее значение напряжения за период. Коэффициент пульсаций — это отношение амплитуды первой гармоники выпрямленного напряжения к постоянной составляющей выпрямленного напряжения. Для нормальной работы большинства электронных устройств необходимо, чтобы пульсации напряжения были как можно меньше. Поэтому на выходе выпрямителей достаточно часто устанавливают сглаживающие фильтры, уменьшающие пульсации выпрямленного напряжения.

Основными элементами фильтров служат конденсаторы, катушки индуктивности и транзисторы, сопротивления которых различны для постоянного и переменного токов. В зависимости от используемых элементов различают емкостные, индуктивные и электронные фильтры.

Простейшим емкостным фильтром служит конденсатор, включаемый параллельно резистору нагрузки. Рассмотрим, как изменится выходное напряжение при использовании такого фильтра в однополупериодном выпрямителе (рис. 4.14а). В интервал времени Dt положительного полупериода сетевого напряжения конденсатор через открытый диод заряжается в полярности, указанной на схеме. Когда напряжение на вторичной обмотке трансформатора становится меньше напряжения, до которого зарядился конденсатор, он начинает разряжаться через нагрузочный резистор. Причем направление разрядного тока совпадает с направлением тока, протекающего в резисторе через открытый диод. В следующий положительный полупериод конденсатор через открытый диод снова заряжается и процессы разрядки повторяются. Тем самым заполняются паузы в токе, протекающем через резистор, и пульсации выпрямленного напряжения сглаживаются (рис. 4.14 в).

В выпрямителях применяются емкостно — индуктивные, емкостно — резистивные и электронные фильтры. Простейшие варианты схем таких фильтров приведены на рисунках 4.15 а, б, в соответственно. Емкостно-резистивные фильтры в настоящее время применяются очень редко и при очень небольших токах нагрузки. Для фильтрации выпрямленного напряжения достаточно часто используются электронные фильтры. В качестве примера на рисунке 4.16 приведена схема электронного фильтра, примененного в экономичном импульсном стабилизаторе напряжения [42]. Ток базы транзистора VT2 протекает по цепи: плюс источника, резистор R2, переход баз-эмиттер транзистора, резистор нагрузки, минус источника. Ток базы транзистора VT1 протекает по цепи: плюс источника питания, переход эмиттер-база  транзистора VT1, выводы коллектор-эмиттер транзистора VT2, резистор нагрузки, минус источника питания. Напряжение на конденсаторе С2 изменяется в основном за счет изменения силы тока базы транзистора VT2, а ток базы этого транзистора существенно меньше тока нагрузки (транзисторы должны иметь большой коэффициент усиления по  току).

Для получения высоких напряжений обычно используют схемы умножения напряжения. На рисунке 4.17а приведена схема умножителя напряжения. Умножители напряжения позволяют получить большое значение выпрямленного напряжения при не очень больших обратных напряжениях, приложенных к диодам. Выпрямители по схеме умножения напряжения используют для питания электронно-лучевых трубок осциллографов и телевизоров.

Если в распоряжении пользователя нет полупроводниковых диодов с необходимым обратным напряжением, то диоды можно включать последовательно для повышения допустимого обратного напряжения. Чтобы диоды не вышли из строя из-за разброса их обратных сопротивлений параллельно каждому диоду подключают резисторы сопротивлением 30-100 кОм (рис. 4.17 б). Сопротивление резисторов должно быть одинаковым и меньше наименьшего из обратных сопротивлений диодов. Тогда к каждому из диодов будут приложены примерно одинаковые обратные напряжения.

Если нужно получить прямой ток, больший предельного тока одного диода, используют параллельное соединение диодов (рис. 4.17в). Чтобы диоды не вышли из строя из-за разброса прямых токов (даже у однотипных диодов разброс может составлять десятки процентов) последовательно с диодами включают уравнительные резисторы сопротивлением десятые доли ома или единицы ом. Сопротивления резисторов подбирают экспериментально, чтобы токи через диоды были одинаковыми.

 

 

Выпрямители. Назначение, классификация, основные схемы и расчет. Однополупериодный выпрямитель, принцип его работы и схема

Ещё в начале ХХ века имел место очень принципиальный спор между корифеями электротехники. Какой ток выгоднее передавать потребителю на большие расстояния: постоянный или переменный? Научный спор выиграли сторонники передачи переменного тока по проводам высоковольтных линий от подстанции к потребителю. Эта система принята во всём мире и успешно эксплуатируется до сих пор.

Но большинство электронной техники и не только бытовой, но и промышленной питается постоянными напряжениями и это привело к созданию целой отрасли электрики – преобразование (выпрямление) переменного тока. После того как электронная лампа была забыта, главным элементом любого выпрямителя стал полупроводниковый диод .

Схемотехника выпрямителей весьма обширна, но самым простым является однополупериодный выпрямитель .

Однополупериодный выпрямитель.

Напряжение с вторичной обмотки силового трансформатора подаётся на один единственный диод. Вот схема.

Поэтому выпрямитель и назван однополупериодным. Выпрямляется только один полупериод и на выходе получается импульсное напряжение. Форма его показана на рисунке.

Схема проста и не требует большого количества элементов. Это и сказывается на качестве выпрямленного напряжения. При низких частотах переменного напряжения (например, как в электросети — 50 Гц) выпрямленное напряжение получается сильно пульсирующим. А это очень плохо.

Для того чтобы снизить величину пульсации выпрямленного напряжения приходится брать величину конденсатора С1 очень большую, порядка 2000 – 5000 микрофарад, что увеличивает размер блока питания, так как электролиты на 2000 — 5000 мкф имеют довольно большие размеры. Поэтому на низких частотах эта схема практически не используется. Зато однополупериодные выпрямители прекрасно зарекомендовали себя в импульсных блоках питания работающих на частотах 10 – 15 кГц (килогерц). На таких частотах величина ёмкости фильтра может быть очень небольшой, а простота схемы уже не столь сильно влияет на качество выпрямленного напряжения.

Примером использования однополупериодного выпрямителя может служить простой зарядник от сотового телефона. Так как зарядник сам по себе маломощный, то в нём применяется однополупериодная схема, причём как во входном сетевом выпрямителе 220V (50Гц), так и в выходном, где требуется выпрямить переменное напряжение высокой частоты со вторичной обмотки импульсного трансформатора.

К несомненным достоинствам такого выпрямителя следует отнести минимум деталей, низкую стоимость и простые схемные решения. В обычных (не импульсных) блоках питания многие десятилетия успешно работают двухполупериодные выпрямители.

Двухполупериодные выпрямители.

Они бывают двух схемных решений: выпрямитель со средней точкой и мостовая схема, известная, как схема Гретца. Выпрямитель со средней точкой требует более сложного в исполнении силового трансформатора, хотя диодов там используется в два раза меньше чем в мостовой схеме. К недостаткам двухполупериодного выпрямителя со средней точкой можно отнести то, что для получения одинакового напряжения, число витков во вторичной обмотке трансформатора должно быть в два раза больше, чем при использовании мостовой схемы. А это уже не совсем экономично с точки зрения расходования медного провода.

Величина пульсаций выпрямленного напряжения меньше чем у однополупериодного выпрямителя и величину конденсатора фильтра так же можно использовать гораздо меньшую. Наглядно увидеть, как работает двухполупериодная схема можно по рисунку.

Как видим, на выходе выпрямителя уже в два раза меньше «провалов» напряжения — тех самых пульсаций.

Активно применяется схема выпрямителя со средней точкой в выходных выпрямителях импульсных блоков питания для ПК . Так как во вторичной обмотке высокочастотного трансформатора требуется меньшее число витков медного провода, то гораздо эффективнее применять именно эту схему. Диоды же применяются сдвоенные, т.е. такие, у которых общий корпус и три вывода (два диода внутри). Один из выводов — общий (как правило катод). По виду сдвоенный диод очень похож на транзистор .

Наибольшую популярность приобрела в бытовой и промышленной аппаратуре мостовая схема . Взгляните.

Можно без преувеличения сказать, что это самая распространённая схема. На практике вы с ней ещё не раз встретитесь. Она содержит четыре полупроводниковых диода, а на выходе, как правило, ставится RC-фильтр или только электролитический конденсатор для сглаживания пульсаций напряжения.

О данной схеме уже рассказывалось на странице про диодный мост . Стоит отметить, что и у мостовой схемы есть недостатки. Как известно, у любого полупроводникового диода есть так называемое прямое падение напряжения (Forward voltage drop V F ). Для обычных выпрямительных диодов оно может быть 1 — 1,2 V (зависит от типа диода). Так вот, при использовании мостовой схемы на диодах теряется напряжение, равное 2 x V F , т.е. около 2 вольт. Это происходит потому, что в выпрямлении одной полуволны переменного тока участвуют 2 диода (затем другие 2). Получается, что на диодном мосте теряется часть напряжения, которое мы снимаем со вторичной обмотки трансформатора, а это явные потери. Поэтому в некоторых случаях в составе диодного моста применяются диоды Шоттки, у которых прямое падение напряжения невелико (около 0,5 вольта). Правда, стоит учесть, что диод Шоттки не рассчитан на большое обратное напряжение и очень чувствителен к его превышению.

Большой интерес вызывает выпрямитель с удвоением напряжения .

Выпрямитель с удвоением напряжения.

Принцип удвоителя напряжения Латура-Делона-Гренашера основан на поочерёдном заряде-разряде конденсаторов С1 и С2 разными по полярности полуволнами входного напряжения. В результате между катодом одного диода и анодом второго диода возникает напряжение в два раза превышающее входное. Схема в студию:)

Стоит отметить, что данная схема применяется в блоках питания нечасто. Но её можно смело использовать, если необходимо вдвое увеличить напряжение, которое снимается со вторичной обмотки трансформатора. Это будет более логичным и правильным решением, чем перематывать вторичную обмотку трансформатора с целью увеличить выходное напряжение вторичной обмотки в 2 раза (ведь при этом придётся наматывать вторичную обмотку с вдвое большим числом витков). Так что, если не удалось найти подходящий трансформатор — смело применяем данную схему.

Развитием схемы стало создание умножителя на полупроводниковых диодах.

Умножитель напряжения.

Каждый диод и конденсатор образуют «звено» и эти звенья можно соединять последовательно до получения напряжения в несколько десятков киловольт. Конечно, для этого входное напряжение тоже должно быть достаточно большим.


На рисунке изображён четырёхзвенный умножитель и на выходе мы получаем напряжение в четыре раза превышающее входное (U ). Эти выпрямители получили большое распространение там, где нужно получить высокое напряжение при достаточно малом токе. Например, по такой схеме были выполнены источники высокого напряжения в старых телевизорах и осциллографах для питания анода электронно-лучевой трубки.

Сейчас такие источники питания используются в научных лабораториях, в детекторах элементарных частиц, в медицинской аппаратуре (люстра Чижевского) и в оружии самообороны (электрошокер). При повторении подобных конструкций и подборе деталей, следует учитывать рабочее напряжение , как диодов, так и конденсаторов исходя из напряжения, которое вы хотите получить. Весь умножитель, как правило, заливается специальным компаундом или эпоксидной смолой во избежание высоковольтных пробоев между элементами схемы.

Для нормальной работы некоторых устройств как, например, люстры Чижевского необходимы достаточно высокие напряжения. Как считают специалисты, излучатель отрицательных аэроионов, эффективен только при напряжении не менее 60 киловольт.

Трёхфазные выпрямители.

Устройства, которые используются для получения постоянного тока из переменного трёхфазного тока, называются трёхфазными выпрямителями. Трёхфазные выпрямители в бытовой технике, конечно, не используются. Единственный прибор, который может использоваться в быту это сварочный аппарат. В качестве трёхфазных выпрямителей используются наработки двух известных электротехников Миткевича и Ларионова. Самая простая схема Миткевича называется «три четверти моста параллельно», что означает три силовых диода включенных параллельно через вторичные обмотки трёхфазного трансформатора. Схема.


Коэффициент пульсаций на нагрузке очень мал, что позволяет использовать конденсаторы фильтра небольшой ёмкости и малых габаритов.

Более сложной является схема Ларионова, которая называется «три полумоста параллельно», что это такое хорошо видно из рисунка.


В схеме используется уже шесть диодов и немного другая схема включения. Вообще схем трёхфазных выпрямителей достаточно много и наиболее совершенной, хотя редко употребляемой является схема «шесть мостов параллельно», а это уже 24 диода! Зато эта схема может выдавать высокое напряжение при большой мощности.

Трёхфазные мощные выпрямители используются в электровозах, городском электротранспорте (трамвай, троллейбус, метро), в промышленных установках для электролиза. Так же промышленные системы очистки газовых смесей, буровое и сварочное оборудование используют трёхфазные выпрямители.

Теперь вы знаете, какие бывают выпрямители переменного тока и сможете легко обнаружить их на принципиальной схеме или печатной плате любого прибора. А для тех, кто хочет знать больше, рекомендуем ознакомиться с

Выпрямители относятся ко вторичным источникам электропитания, для которых первичным источником являются сети переменного тока.
Выпрямитель — это устройство, которое преобразует переменное напряжение питающей сети в однонаправленное пульсирующее. Именно однонаправленное пульсирующее так как назвать его постоянным немного некорректно. Существует и несколько иное определение: выпрямитель предназначен для преобразования переменного напряжения в импульсное напряжение одной полярности.

Выпрямители могут быть однополупериодные и двуполупериодные . К тому же они разделяются на однофазные и многофазные .

Итак, начнем с однофазного однополупериодного выпрямителя на полупроводниковом диоде.

Однополупериодный выпрямитель

Схема однополупериодного выпрямителя до боли проста и объяснять тут нечего. Для наглядности положительные и отрицательные полуволны показаны разными цветами. Поскольку диод обладает свойствами односторонней проводимости, на выходе получается пульсирующее напряжение одной полярности. Для схемы характерны следующие параметры:

Среднее значение выпрямленного напряжения

Действующее значение входного напряжения

Среднее значение выпрямленного тока

Действующее значение тока во вторичной обмотке трансформатора

Коэффициент пульсаций

К достоинствам схемы можно отнести простоту конструкции. Недостатки — большие пульсации, малые значения выпрямленного тока и напряжения, низкий КПД. Применяется такая схема для питания низкоомных нагрузок, некритичных к высоким пульсациям.


В бытовой технике однолупериодные выпрямители применяются в основном в импульсных источниках питания: из-за большой рабочей частоты (около 15 кГц а иногда и выше) пульсации не столь чувствительны и их легче сгладить.

Двухполупериодный выпрямитель

Схема выпрямления с выводом от средней точки трансформатора


Пунктиром показано напряжение на входе второго диода. Как видно из графиков, во время первого полупериода первый диод открыт и на нагрузке создается падение напряжения. Во время второго полупериода первый диод закрывается, поскольку оказывается включенным в обратном направлении, а второй, наоборот, открывается и на нагрузке снова выделяется положительная полуволна. На схеме плюсиками и минусами обозначено действие полуволн переменного тока. Частота пульсаций двуполупериодного выпрямителя вдвое больше, что является его достоинством. Для такой схемы характерны следующие параметры:

U ср = 0.9U вх
U вх = 1.11U ср
I ср = 0.9U вх /R н
I 2 = 0.78I ср
p = 0.67

Достоинства: удвоенные значения U ср и I ср , вдвое меньший коэффициент пульсаций по сравнению с однополупериодной схемой. Недостатки: наличие трансформатора с двумя симметричными обмотками (что увеличивает его массогабаритные показатели). К тому же на диодах удвоенное обратное напряжение.

В этой статье мы разберем какие бывают выпрямители, для какой цели служат, в чем заключаются особенности того или иного выпрямителя. Если мы решаем собрать какое-либо устройство или просто необходимо запитать готовое, то мы можем использовать питание от гальванических элементов (батареек), либо воспользоваться для этих целей аккумуляторами. Но как быть, если радиоустройство не планируется носить с собой и оно потребляет значительный ток? В таких случаях запитывают устройство от сети 220 вольт.

Напрямую запитать от 220 вольт, разумеется, мы не можем, напряжение слишком высокое и ток переменный, а для питания электронных устройств почти всегда необходим постоянный ток и более низкое напряжение. Необходим так называемый сетевой адаптер .

Фотография трансформатора

Понизить напряжение мы можем с помощью трансформатора, о нем мы поговорим в одной из следующих статей, пока нам достаточно знать, что с помощью трансформатора мы можем понизить или повысить напряжение при переменном токе. Далее нам необходимо сделать из переменного тока постоянный, для этих целей и служит выпрямитель. Существуют три основных типа выпрямителей.

Однополупериодный выпрямитель



Этот выпрямитель работает только в течение положительного полупериода синусоиды. Это можно видеть на следующем графике:


На выходе после диода мы получаем пульсирующее напряжение, нам нужно сделать из него постоянное, то есть из пульсирующего тока получить постоянный. Для этих целей служит электролитический конденсатор большой емкости, подключенный параллельно выходу питания в соответствии с полярностью. На фотографии ниже можно увидеть внешний вид подобного конденсатора:


Такой конденсатор благодаря большой емкости разряжается в течении отрицательного полупериода синусоиды. Обычно для фильтрации напряжения в выпрямителях применяют электролитические конденсаторы от 2200 микрофарад. В усилителях и других устройствах, где важно чтобы напряжение не проседало при увеличении мощности нагрузки, ставят конденсаторы на большую емкость, чем 2200 микрофарад. Для устройств питающих бытовую аппаратуру обычно конденсаторов такой емкости бывает достаточно. На следующем графике (выделено красным), мы можем видеть, как конденсатор поддерживает напряжение стабильным во время прохождения отрицательной полуволны.


Двухполупериодный выпрямитель со средней точкой



Для этой схемы необходим трансформатор, с двумя вторичными обмотками. Напряжение на диодах в два раза выше, чем при включении схемы с однополупериодным выпрямителем или при включении мостовой схемы. В этой схеме попеременно работают оба полупериода. В течении положительного полупериода работает одна часть схемы обозначенная В1 , во время отрицательного полупериода работает вторая часть схемы обозначенная В2 . Эта схема является менее экономичной, чем мостовая схема, в частности у неё более низкий коэффициент использования трансформатора. В этой схеме после диодов получается также пульсирующее напряжение, но частота пульсаций в два раза выше. Что мы и можем видеть на следующем графике:

Двухполупериодный выпрямитель, мостовая схема



И наконец, рассмотрим схему мостового выпрямителя, самую распространенную схему, по которой сделана большая часть всех выпущенных трансформаторных блоков питания. Сейчас объясню принцип работы :


Ток у нас на выходе с трансформатора переменный, а переменный ток, как известно, в течение периода дважды меняет свое направление. Говоря другими словам, конечно же упрощенно, при переменном токе с частотой 50 герц, ток у нас 100 раз в секунду меняет свое направление. То есть сначала он течет от вывода диодного моста под цифрой один , ко второму, потом в течение другой полуволны он течет от вывода под номером два к первому.


Рассмотрим, что происходит с диодным мостом при подаче напряжения, мы видим, на рисунке обозначен красным путь тока, напрямую пройти к выводу диодного моста соединенного с переменным током не позволит диод, который получается у нас включенный в обратном включении, а в обратном включении, как мы помним, диоды не пропускают ток. Току остается только один путь (выделено на рисунке синим), через нагрузку и через диод уйти в провод соединенный с выводом переменного тока. Когда у нас ток меняет свое направление, то вступает в действие вторая часть диодного моста, которая действует аналогично той, что описал выше. В итоге у нас получается на выходе такой же график напряжения, как и у двухполупериодного выпрямителя со средней точкой:


При сборке выпрямителя нужно учитывать полярность на выходе диодного моста, если мы подключим электролитический конденсатор неправильно, то рискуем испортить конденсатор и можно считать, что повезло, если этим все ограничится. Поэтому при сборке диодного моста важно помнить одно правило, плюс на выходе с моста всегда будет в точке соединения 2 катодов диодов, а минус в точке соединения анодов. Встречается и такое обозначение на схемах диодного моста:


Диодный мост можно собрать как из отдельных диодов, так и взять специальную сборку из 4 диодов, уже соединенных по мостовой схеме, и имеющий 4 вывода. В таком случае остается только подать переменный ток, идущий обычно с вторичной обмотки трансформатора на два вывода моста, а с оставшихся двух выводов снимать плюс и минус. Обычно на самой детали бывает обозначено, где какой вывод у моста. Так выглядит импортный диодный мост:


Фото диодный мост кц405

Трехфазные выпрямители

Существуют и трехфазные трансформаторы. Обычным однофазным диодным мостом с такого трансформатора не получится на выходе постоянный ток. Конечно, если нагрузка небольшая можно подключиться к одной фазе и к нулевому проводу трансформатора, но экономичным такое решение не назовешь.


Для трехфазного тока существуют специальные схемы выпрямителей, две таких схемы приведены на рисунках ниже. Первая, известная как схема Миткевича , имеет низкий коэффициент габаритной мощности трансформатора. Эта схема применяется при небольших мощностях нагрузки.

Вторая схема, известная как , нашла широкое применение в электротехнике, так как имеет лучшие технико-экономические показатели по сравнению со схемой Миткевича.


Схема Ларионова может использоваться как «звезда-Ларионов” и «треугольник-Ларионов”. Вид подключения зависит от схемы подключения трансформатора, либо генератора, с выходом которого соединен этот выпрямитель. Автор статьи — AKV .

Обсудить статью ВЫПРЯМИТЕЛИ

Выпрямители бывают однополупериодными или двухполупериодными в зависимости от того сколько полупериодов переменного тока используется — один или два. По однополупериодной схеме выполняют выпрямители, от которых требуется небольшой ток.

Рис.3.2. Однофазный однополупериодный выпрямитель (рисунок выполнен авторами)

(а — схема однополупериодного выпрямителя; б — диаграмма входного напряжения; в — диаграмма и среднее значение напряжения на нагрузке; г — диаграмма и среднее значение тока в нагрузке)

Во время положительной полуволны (в интервале 0 ÷ π) плюс напряжения на вторичной обмотке трансформатора приложен к аноду диода, а минус — к катоду (рис.3.2,а). Диод открывается, и ток проходит от плюса вторичной обмотки трансформатора через диод и сопротивление нагрузки Rн на минус вторичной обмотки трансформатора.

Во время отрицательной полуволны (в интервале π ÷ 2π) на анод диода поступает минус, а на катод — плюс входного напряжения, т.е. к диоду прикладывается обратное напряжение, и он закрыт.

На графике в этот момент на сопротивлении нагрузки нет падения напряжения (рис.3.2, в). Трансформатор Т играет двойную роль: он служит для подачи на вход выпрямителя ЭДС е 2 соответствующей заданной величине выпрямленного напряжения E d и обеспечивает гальваническую развязку цепи нагрузки и питающей сети. Параметры, относящиеся к цепи постоянного тока, то есть к выходной цепи выпрямителя, принято обозначать с индексом d (от английского словаdirect — прямой): R d — сопротивление нагрузки; u d — мгновенное значение выпрямленного напряжения; i d — мгновенное значение выпрямленного тока. Для однополупериодного выпрямителя имеются следующие соотношения.

ЭДС обмотки трансформатора синусоидадьна —

e 2 =√2·E 2 ·sin Θ, где

θ=ωt, E 2 — действующее значение ЭДС.

Постоянная составляющая выпрямленного напряжения:

Постоянная составляющая выпрямленного тока:

Для данной схемы выпрямления среднее значение анодного тока вентиля I аср = I d . Максимальное значение анодного тока:

i a max =√2·E 2 /R d =I d ·π.

Максимальное значение обратного напряжения на вентиле:

U обр max = √2·E 2 = E d ·π.

Коэффициент пульсаций, равный отношению амплитуды низшей (основной) гармоники пульсаций к среднему значению выпрямленного напряжения равен:

K п =U пульс max 01 /U d = (√2E 2 /2)/(√2E 2 /π) = π/2= 1,57

Эта схема применяется редко из-за большого коэффициента пульсаций.

Однофазный двухполупериодный выпрямитель со средней точкой


Рис.3.3. Однофазный двухполупериодный выпрямитель со средней точкой (рисунок выполнен авторами)

(а — схема двухполупериодного выпрямителя со средней точкой; б — диаграмма входного напряжения на диодах VD1 и VD2; в — диаграмма и среднее значение напряжения на нагрузке; г — диаграмма и среднее значение тока в нагрузке; д — ток в первичной обмотке трансформатора)

Эта схема представляет собой два однополупериодных выпрямителя, работающих на общую нагрузку Rd и питающихся от находящихся в противофазе ЭДС (рис.3.3,б) e2a и e2b.

Схема обеспечивает прохождение тока через нагрузку в течение обоих полупериодов. Во время положительного полупериода работает первая половина вторичной обмотки (2а). Ток идёт от плюса вторичной обмотки трансформатора через диод VD1, нагрузку R d и на среднюю точку вторичной обмотки. В это время к аноду диода VD2 приложен минус, а к катоду — плюс, и диод закрыт. Во время отрицательного полупериода картина меняется: будет открыт диод VD2, а диод VD1 — закрыт. В этот полупериод ток протекает за счёт напряжения на обмотке 2b. На рис. 3.3, б, в, г, д представлены временные диаграммы для двухполупериодной схемы выпрямителя со средней точкой. В случае активной нагрузки для рассматриваемой схемы действуют следующие соотношения:

E d =2√2 ·E 2 /π; U d =2√2 ·E 2 /π; I d =U d /R d ;

i a max = √2 ·E 2 /R d ; i а ср = I d /2; Uобр max= 2√2 ·E 2; K П ´= 0,66

Однофазная мостовая схема


Рис.3.4. Однофазный мостовой выпрямитель (рисунок выполнен авторами)

(а — схема двухполупериодного выпрямитель, мостовая схема; б — диаграмма входного напряжения на диодах мостовой схемы; в — диаграмма и среднее значение напряжения на нагрузке; г — диаграмма и среднее значение тока в нагрузке)

Мостовая схема является наиболее распространённой. Она также двухполупериодная. Во время положительного полупериода ток проходит от плюса вторичной обмотки трансформатора через диод VD1, сопротивление нагрузки R d , диод VD3 на минус вторичной обмотки. В это время ко второй паре диодов VD2, VD4 приложено обратное напряжение. Они закрыты. Во время отрицательного полупериода ток протекает через диод VD2, нагрузку R d , диод VD4. В случае чисто активной нагрузки, пренебрежении индуктивностью обмотки трансформатора и идеальных диодах эта схема имеет следующие основные соотношения:

U d = 0,9 E 2 ; I d = U d /R d ; i a max = √2·E 2 ;

I a cp = I d /2; U обр max = √2·E 2 ; K П = 0,66.

Если сравнить мостовую схему и схему со средней точкой, то для получения одинакового напряжения в схеме со средней точкой вторичная обмотка должна иметь большее количество витков, чем в мостовой схеме. Это увеличивает размеры трансформатора. В этой же схеме к диодам прикладывается вдвое большее напряжение, чем в мостовой. Учитывая это, предпочтение отдаётся мостовой схеме, хотя здесь и требуется больше диодов. При выборе диодов для выпрямителя выбирают диоды, у которых значения выпрямленного тока и допустимого обратного напряжения равны или превышают расчетные.

Сглаживающие фильтры

Рассмотрим следующую схему сглаживания выпрямленного напряжения.

Рис.3.5. Сглаживание пульсаций с помощью емкостного фильтра (рисунок выполнен авторами)

(а — схема однополупериодного выпрямителя; б — диаграмма входного напряжения; в — диаграмма и среднее значение напряжения на нагрузке (пунктирной линией — без сглаживающего фильтра, красной линией — с емкостным фильтром)

На сопротивлении нагрузки выделяется пульсирующее напряжение, форма которого значительно отличается от формы постоянного напряжения. Для сглаживания пульсирующего напряжения используются сглаживающие фильтры, которые состоят в большинстве случаев из конденсатора и дросселя. Конденсатор сглаживает пульсирующее напряжение, а дроссель задерживает переменную составляющую сглаженного напряжения от попадания в нагрузку. В настоящее время функции дросселя выполняют стабилизаторы напряжения. Принцип сглаживания можно проследить по графику (рис.3.5,в). Красной линией показано напряжение на конденсаторе (или сопротивлении нагрузки). Сглаживание напряжения происходит за счёт того, что во время уменьшения пульсирующего напряжения ток в нагрузке, а, следовательно, и напряжение на R н, поддерживаются напряжением зарядившегося конденсатора. При возрастании пульсирующего напряжения конденсатор снова подзаряжается и так далее. Конденсатор хорошо сглаживает пульсации, если его емкость такова, что выполняется условие:

Xc= 1/mωC, где m — пульсность схемы, т.е. количество пульсаций за период.

Для однофазного однополупериодного выпрямителя m = 1, для однофазного двухполупериодного со средней точкой и мостового выпрямителя m = 2.

Режим работы выпрямителя в значительной степени определяется типом сглаживающего фильтра, включенного на его выходе. В маломощных выпрямителях, питающихся от однофазной сети переменного тока, применяются простейшие ёмкостные фильтры, в выпрямителях средней и большой мощности используются Г-образные LC и RC-фильтры и П-образные СLC и СRC-фильтры. Основным параметром сглаживающих фильтров является коэффициент сглаживания:

k= k Псх /k Пн,

где k псх — коэффициент пульсаций на входе фильтра; k пн — коэффициент пульсаций на нагрузке. Ёмкостный фильтр является наиболее простым из всех видов сглаживающих фильтров. Применение ёмкостного фильтра рационально при достаточно больших значениях сопротивления нагрузки и коэффициента пульсаций на нагрузке. Фильтр состоит из конденсатора, включенного параллельно нагрузке (рис. 3.5,а). Коэффициент пульсаций напряжения на выходе выпрямителя с ёмкостным фильтром находят по выражению:

k П = 1/mωR н

Индуктивно-ёмкостные фильтры (Г-образный LC-фильтр и П-образный CLC-фильтр) широко применяются при повышенных токах нагрузки, поскольку падение напряжения на них можно сделать сравнительно небольшим. КПД у таких фильтров достаточно высокий. Недостатки индуктивно-ёмкостных фильтров: большие габаритные размеры и масса, повышенный уровень электромагнитного излучения от элементов фильтра, сравнительно высокая стоимость и трудоемкость изготовления.

Наиболее широко используется Г-образный LC-фильтр (рис. 3.6). Для эффективного сглаживания пульсаций таким фильтром необходимо выполнение следующих условий:

X c = 1/mωC> X c.


Рис.3.6. Индуктивно-ёмкостный сглаживающий фильтр —

Г — образный при учитывании только LC 1 и П — образный C 0 LC 1 (рисунок выполнен авторами)

При их выполнении, пренебрегая потерями в дросселе L, для коэффициента сглаживания можно записать:

g = (mω) 2 LC — 1

Для того, чтобы избежать резонансных явлений в фильтре необходимо выбирать q>3. Кроме этого, одним из основных условий является обеспечение явно выраженной индуктивной реакции фильтра на выпрямитель, необходимой для большей стабильности внешней характеристики выпрямителя. Для обеспечения индуктивной реакции необходимо, чтобы:

L ≥ 2U d /(m 2 — 1)mω·I d = 2R н /(m 2 — 1)mω.

П-образный CLC-фильтр отличается от описанного LC-фильтра наличием еще одной ёмкости C 0 , включаемой на входе фильтра. Расчет таких фильтров производят в два этапа, сначала рассчитывают ёмкость конденсатора C 0 , исходя из допустимой величины пульсации напряжения на нем, затем по приведенным выше формулам рассчитывают Г-образное звено. Наибольший коэффициент сглаживания в П-образном фильтре достигается при C 0 = C 1 .

При выборе конденсаторов фильтра следует следить за тем, чтобы они были рассчитаны на напряжение на 15…20% превышающее напряжение холостого хода выпрямителя при максимальном напряжении сети (чтобы учесть перенапряжения, возникающие при включении выпрямителя). Необходимо также, чтобы амплитуда переменной составляющей напряжения на них не превышала предельно допустимого значения.

Резистивно-ёмкостные фильтры целесообразно применять при малых токах нагрузки (менее 10…15 мА) и небольших требуемых коэффициентах сглаживания. Достоинства этих фильтров — малые габариты и масса, низкая стоимость. Недостаток — сравнительно большое падение напряжения на фильтре (что снижает КПД устройства выпрямления в целом).

Простейший Г-образный RC-фильтр (рис. 3.7) состоит из балластного резистора Rф и конденсатора С 1 . Коэффициент сглаживания такого фильтра вычисляется по формуле:

g = mωC · R н R ф / (R н +R ф).


Рис. 3.7. Резистивно-ёмкостный сглаживающий фильтр — Г — образный при учитывании только R Ф C 1 и П — образный C 0 R Ф C 1 (рисунок выполнен авторами)

Сопротивление фильтра R ф выбирают из условия допустимого падения напряжения на фильтре или исходя из заданного КПД η по формуле:

R ф = R н (1-η)/η

Комбинированные фильтры применяются при необходимости получения больших коэффициентов сглаживания на выходе выпрямителя. Они представляют собой последовательное включение нескольких фильтров. При каскадном включении LC-фильтров можно считать, что суммарный коэффициент сглаживания (q ф) равен произведению коэффициентов сглаживания составляющих фильтр звеньев:

q ф = q 1 q 2 q 3 …q n

(Петрович В. П., 2008). Для нахождения оптимального числа звеньев такого фильтра n опт при заданном q ф можно воспользоваться формулой.

Выпрямление электрических колебаний , это процесс, в результате которого переменное входное колебание преобразуется в выходное колебание только одного знака (рисунок 1.5). Процесс выпрямления используется в устройствах электропитания (блоках питания) и демодуляторах.

Выпрямление всегда осуществляется при использовании нелинейных элементов, обладающих свойством однонаправленного пропускания электрического тока. Благодаря таким свойствам на выходе выпрямляющего элемента получают ток одного знака.

Для выпрямления применяют полупроводниковые и вакуумные (кенотроны) диоды, газоразрядные диоды (газотроны), тиратроны, кремниевые и селеновые элементы, тиристоры и другие элементы с нелинейными свойствами в зависимости от применения,

значений выпрямленных напряжений и токов, отбираемых нагрузкой. В маломощных электронных устройствах для выпрямления чаще всего применяют полупроводниковые диоды.

Название “выпрямитель” используется, прежде всего, для схем, преобразующих переменный ток в постоянный. Выпрямителем называется также и сам элемент с однонаправленными свойствами, используемые в процессе выпрямления.

Однополупериодным выпрямителем называется такой выпрямитель, на выходе которого после процесса выпрямления остаются колебания одного знака. Схема однополупериодного выпрямителя, возбуждаемого синусоидальным сигналом, представлена на рисунке 1.6.

Диод, включенный таким образом, что приводит ток только при положительных полупериодах входного колебания, т.е. когда напряжение на его аноде больше потенциала катода. Среднее значение колебания, полученного в результате выпрямления синусоидального напряжения с действующим значением и максимальным значением , равно

.


Например, при выпрямлении напряжения с действующим значением , после выпрямления получаем напряжение .

В отрицательный полупериод диод не проводит ток, и все подведенное к выпрямителю напряжение действует на диоде как обратное напряжение выпрямителя. При изменение направления включения диода он будет проводить в отрицательные полупериоды и не проводить в положительные.

Рассматриваемая схема выпрямителя называется последовательной. Название связано с тем, что нагрузка включается последовательно с нелинейным элементом (вентилем).

Двухполупериодным выпрямителем называют такой выпрямитель, в котором после процесса выпрямления остаются участки входного колебания, имеющие один знак. К ним после изменения знака добавляются участки, имеющие противоположный знак.

Принципиальная схема двухполупериодного выпрямителя, управляемого синусоидальным сигналом от трансформатора, показана на рисунке 1.7.

В периоды времени, когда на аноде диода Д1 действует положительное напряжение, на аноде диода Д2 присутствует отрицательное и наоборот. Это происходит потому, что средняя точка вторичной обмотки трансформатора заземлена, и, следовательно, она имеет нулевой потенциал. При положительной полуволне напряжения на вторичной обмотке диод Д1 пропускает ток, а диод Д2 не пропускает. При отрицательной полуволне положительное напряжение действует на диоде Д2, который при этом проводит, а диод Д1, смещенный в обратном направлении, не проводит. Среднее значение напряжения, получено


го на выходе двухполупериодного выпрямителя в 2 раза больше напряжения, полученного на выходе однополупериодного выпрямителя.

Технические параметры выпрямителя:

Коэффициент пульсаций выпрямителя называется отношение максимального значения переменной составляющей напряжения на выходе выпрямителя к значению его постоянной составляющей на этом выходе. В большинстве применений желательно, чтобы коэффициент пульсаций был как можно меньше. Уменьшение пульсаций достигается путем применения соответствующих фильтров.

Коэффициент использования трансформатора в выпрямительной схеме , определяется как отношение двух мощностей: выходной мощности постоянного тока и номинальной мощности вторичной обмотки трансформатора.

Коэффициент полезного действия , это параметр, характеризующий эффективность схемы выпрямителя при преобразовании переменного напряжения в постоянное. КПД выпрямителя выражается отношением мощности постоянного тока, выделяемой в нагрузке, к входной мощности переменного тока. Коэффициент полезного действия определяется для резистивной нагрузки.

Частотная пульсация выпрямителя , это основная частота переменной составляющей, существующей на выходе выпрямителя. В случае однополупериодного выпрямителя частота пульсаций равна частоте входного колебания. Фильтрация пульсаций тем проще, чем выше частота пульсации.

Выпрямление переменного тока

Общие сведения о выпрямителях

Преобразователи, стабилизаторы напряжения и ряд других элементов не являются обязательными для всех источников питания. В зависимости от требований, предъявляемых к источникам питанию, эти узлы могут присутствовать в схеме, а могут и отсутствовать. Однако процесс выпрямления переменного напряжения будет присутствовать всегда, а значит будут присутствовать и связанные с ним проблемы сглаживания пульсаций напряжения. Эти две операции неразрывно связаны друг с другом и в конечном итоге определяют требования, предъявляемые к силовому трансформатору, а поэтому они являются основополагающими для всего дальнейшего процесса проектирования блока питания. Так как в блоке питания требуется выпрямлять синусоидальное напряжение, создаваемое на вторичных обмотках силового трансформатора, необходимо стремиться к максимальной эффективности использования трансформатора, поэтому следует рассматривать вариант только двухполупериодного выпрямления. Однополупериодное выпрямление не только менее эффективно (так как при этом используется только одна полуволна из полного периода синусоидального сигнала), но также возникает постоянная составляющая тока, протекающего в трансформаторе, а даже небольшие величины постоянного тока, протекающего в обмотках трансформатора, могут привести к намагничиванию и даже к насыщению его сердечника. При насыщении материала сердечника возникают дополнительные потери и поток рассеяния, который может индуцировать токи фоновых помех в ближайших к трансформатору цепях схемы. Более того, при насыщении сердечника, на элементах трансформатора может выделяться повышенная тепловая энергия, вплоть до разрушения его конструкции.

Выбор ламповых или полупроводниковых выпрямительных диодов

Существует две основные разновидности схем двухполупериодного выпрямления: выпрямитель, использующий отвод от средней точки обмотки трансформатора, и мостовая схема выпрямления (рис. 6.2).

Мостовая схема (часто называемая схемой Греца) выпрямления представляет стандартную современную топологию, так как она позволяет экономить на обмотке трансформатора (требуется вдвое меньше витков вторичной обмотки). Схема выпрямления, в которой используется обмотка трансформатора с отводом от среднего витка, считается традиционной в схемах ламповых выпрямителей, так как она позволяет экономить на количестве выпрямляющих элементов (которые всегда стоили недешево).

При рассмотрении схемы высоковольтного источника питания, для которого напряжение постоянного тока VDCне превышает 1 кВ, необходимо сделать выбор между использованием кремниевого полупроводникового диода или вакуумного термоэлектронного диода (кенотрона), например, такого, как GZ34. Ламповый выпрямительный диод не отличается высокой эффективностью работы. Дело заключается не только в том, что для него требуется источник питания подогревателей, но и в том, что на ламповых выпрямителях падение высоковольтного напряжения составляет десятки вольт, кроме этого возрастает выходное сопротивление источника питания. Они очень чувствительны в отношении пульсирующей составляющей постоянного тока (которая будет рассмотрена ниже), и, следовательно, с ними требуется применять сглаживающие конденсаторы с максимальной емкостью, которые будут подключаться параллельно их выводам. Более того, полное сопротивление, подключаемое последовательно в цепи каждого анода, должно превосходить минимальное значение, которое определяется следующим выражением:

Рис. 6.2 Схемы двухполупериодного выпрямления

в которой Rsсопротивление вторичной обмотки трансформатора; Rpсопротивление первичной обмотки трансформатора; п — коэффициент трансформации, или отношение количества витков вторичной обмотки к количеству витков в первичной.

Хотя приводимые ниже в табл. 6.1 данные позволяют производить быстрое сравнение характеристик наиболее распространенных двойных выпрямительных ламповых диодов (двухполупериодных кенотронов), за получением более подробной информации необходимо будет обратиться к паспортным данным, представляемых производителями ламп.

Таблица 6.1
Тип лампы Rseries, Ом (Vout = 300 В)C(max), мкФIheater, мА
EZ90/6X470520160,6
EZ80/6V490215500,6
EZ81/6CA4150190501
GZ34/5AR425075601,9
GZ372507560*2,8

Примечание. Компания Маллэрд (Mullard) не указала значение C(max) для лампового диода GZ37, но в силу того, что как для GZ34, так и для GZ37 амплитудные значения токов одинаковы, ia(pk)= 750 мА, то можно будет принять, что для диода GZ37величина C(max) = 60 мкФ.

Ламповые диоды GZ34, входящие в серию NOS и выпускаемые компанией Маллэрд (Mullard), представляют в настоящее время почти музейную редкость и поэтому очень дорогие, хотя некоторые из современных дамповых диодов GZ34, как сообщалось в печати, имеют очень неустойчивые параметры при высоких напряжениях, поэтому достаточно популярной заменой для данного лампового диода является весьма «прожорливая» в отношении потребляемых токов лампа NOS GZ37. Ламповые диоды с косвенным подогревом EZ80 и EZ81 дешевле и значительно доступнее, они являются идеальными для применения в схемах предусилителей или небольших монофонических усилителей мощности. Для не очень популярного лампового диода EZ90 приводимые паспортные характеристики не являются такими подробными, как это сделано для диода EZ80, но вполне возможно предположить, что он окажется даже дешевле.

Выпрямительные диоды с косвенным подогревом разработаны для питания от стандартного блока питания подогревателей катодов, который имеет напряжение 6,3 В и предназначен для приемо-усилительных ламп, однако, их особенностью является то, что напряжение между подогревателем и катодом Vghможет достигать значения примерно 300 В. Это предъявляет повышенные требования к качеству изоляции между катодом и подогревателем, при этом шумовые токи с катода выпрямительного диода поступают в общий заземленный источник питания подогревателей. Если условие низкого уровня шумов является определяющим, то можно как бы переложить возникающие сложности со столь чувствительной изоляцией катод-подогреватель на более выносливый силовой трансформатор, путем использования отдельной обмотки, предназначенной для цепи подогревателей катодов ламповых выпрямительных диодов и гальванически связанной с катодами.

Высоковакуумные ламповые выпрямители обладают одним единственным явным преимуществом перед кремниевыми диодами, но это преимущество может оказаться настолько важным, что позволит стерпеть все их недостатки. Время нарастания выходного напряжения (время, необходимое для изменения напряжения от значения 10% до значения, составляющего 90% номинального) при условии полной нагрузки составляет примерно 5 с, что сильно снижает величину противотока электролитических конденсаторов по сравнению с полупроводниковыми выпрямителями (рис. 6.3).

Ярые приверженцы высоковакуумных ламповых диодов указывают, что лампа включается и выключается более чисто по сравнению с кремниевым диодом, и это в итоге приводит к менее выраженным резонансным явлениям в источнике питания. Однако, по мнению автора, оба типа выпрямителей характеризуется пиками (выбросами) при переключении, и, в силу этого, особое значение приобретает необходимость использования сглаживающих и демпфирующих элементов. Если и наблюдаются некоторые преимущества при использовании ламповых выпрямительных диодов, то они, скорее всего, обязаны своим происхождением уменьшенным пульсирующим составляющим переменного тока (подробнее эта проблема будет рассмотрена ниже).

Рис. 6.3 Плавное нарастание высоковольтного напряжения, питаемого от лампового выпрямителя EZ81 с током нагрузки 120 мА

Какая бы топологическая схема выпрямителя ни была бы выбрана, необходима уверенность, что она будет в состоянии оказывать противодействие возмущениям, оказываемым на нее окружающими цепями. При рассмотрении схемы выпрямителя, питающегося от сети переменного тока промышленной частоты, необходимо точно задавать максимально допустимые значения напряжений и токов. Однако, величина ни того, ни другого параметра не является строго однозначной, как это может показаться на первый взгляд (рис. 6.4).

На рис. 6.4 приведена схема выпрямителя, в которой использованы два кремниевых диода, включенных в плечи вторичной обмотки трансформатора, имеющей отвод от средней точки (обмотки 300-0-300 В). Напряжение холостого хода на накопительном конденсаторе составит 424 В постоянного тока (необходимо обратить внимание, что это напряжение значительно превышает то значение, которое было бы, если бы вместо кремниевых диодов использовались ламповые диоды: прямая замена кремниевых диодов на ламповые недопустима). Предельно допустимое напряжение диода, удовлетворяющее требованиям схемы, представляет максимально допустимое обратное напряжение, которое может быть многократно приложено к нему, VRPM. Иногда оно указывается как рабочее напряжение диода, (или, как сложилось исторически, максимальное или амплитудное обратное напряжение).

В табл. 6.2 сравниваются необходимые рабочие напряжения кремниевых диодов для мостовой схемы выпрямления и схемы с отводом от средней точки вторичной обмотки трансформатора.

Рис. 6.4 Влияние конденсатора на величину выпрямленного напряжения

Таблица 6.2
Схема выпрямленияОтношение допустимого обратного напряжения диода к среднеквадратическому значению напряжения, VRPM/ VRMSКоличество диодов, включаемых последовательно в каждом плече схемы
С отводом от центрального витка обмотки трансформатора2√21
Мостовая√22

При выпрямлении высоких напряжений схема с отводом от центрального витка вторичной обмотки трансформатора имеет тот недостаток, что для нее требуется использовать полупроводниковые диоды, рассчитанные на удвоенные значения напряжения VRPM. Поэтому в схеме выпрямителя, в которой используется вторичная обмотка трансформатора с отводом от средней точки и напряжения 300-0-300 В необходимо будет использовать диоды, у которых VRRM> 849 В. Однако в выпрямителе, в котором будет использоваться только одна вторичная обмотка, рассчитанная на напряжение 300 В и мостовая схема выпрямления, может быть обеспечено точно такое же значение выходного напряжения, при этом необходимо использовать диоды, для которых напряжение VRPM > 424 В. Несмотря на это, очень удобными для применения оказываются выпрямители, в которых используются полупроводниковые диоды и трансформаторы с отводом от средней точки вторичной обмотки трансформатора, предназначенные для работы с низкими напряжениями и высокими значениями токов, так как в этой схеме прямое падение напряжения на диодах схемы, V будет в два раза ниже аналогичного параметра, характерного для мостовой схемы выпрямления, поскольку за каждый полупериод выпрямляемого синусоидального напряжения, ток протекает только через один диод, а не через два, как в мостовой схеме.

Такие лаповые диоды, как GZ34, EZ81, EZ80 и т. д. предназначаются для использования в схемах выпрямления с отводом от средней точки, что подразумевает использование трансформатора, вторичная обмотка которого изготовлена с отводом от среднего витка. Однако совместное использование лампового и полупроводникового выпрямительных диодов позволяет обойти данную проблему, а также сохранить преимущество первых, связанное с плавным нарастанием выпрямленного тока (рис. 6.5).

Рис. 6.5 Схема выпрямителя с комбинированным использованием лампового и полупроводниковых выпрямительных диодов

Когда выпрямленное напряжение с диодов поступает на накопительный конденсатор, импульсные токи в несколько раз превышают величину постоянного тока, протекающего в нагрузке. К счастью, современные кремниевые диоды разрабатываются таким образом, чтобы учесть это превышение пиковых значений тока, поэтому для двухполупериодной схемы выпрямления оказывается достаточным выбрать каждый диоде номинальным значением рабочего тока, равным половине постоянного тока, протекающего в нагрузке. (Это становится возможным потому, что через каждый диод в схеме двухполупериодного выпрямления ток протекает только в течение одной половины периода.)

Ртутные выпрямители

Ртутные выпрямители последнее время становятся все более модными, а их мягкий голубоватый разряд, возникающий в парах ртути, внешне выглядит очень привлекательно. Ртутные выпрямители очень хрупкие, а их пары ядовиты, поэтому они требуют к себе очень внимательного отношения, не допускающего как механических повреждений баллона лампы, так и превышения номинальных электрических нагрузок. Так как при работе такого выпрямителя используются пары ртути, то капли жидкого металла достаточно быстро осаждаются на внутренних стенках баллона лампы, поэтому при включении подогреватель должен, прежде всего, испарить некоторое количества металла, что требует в обязательном порядке вертикального положения баллона ртутного выпрямителя. Время, которое необходимо для предварительного прогрева катода перед тем, как будет приложено высоковольтное напряжение, приведено в табл. 6.3.

Таблица 6.3
Необходимое время предварительного прогрева лампыЛампы производства компании EdiswanЛампы производства компании Milliard
После длительного хранения или механических воздействийНе менее 15 минНе менее 30 мин
При ежедневной эксплуатацииНе менее 60 сНе менее 60 с

Для предотвращения обратной вспышки работа ртутных выпрямителей ограничивается диапазоном температур от 20 до 60 °С, хотя для ряда ртутных выпрямителей верхний предел температуры ограничивается значением 50 °С. Поэтому для таких выпрямителей может оказаться необходимым использовать электрический вентилятор, обеспечивающий дополнительный отвод горячего воздуха от близкорасположенных нагретых элементов схемы. В дополнение ко всему, выпрямитель типа 866 требует применения совместно с ним стабилизирующего нагрузочного резистора, подключенного параллельно выходным клеммам выпрямителя и отводящего примерно 10% от общего тока нагрузки.

Ртутные выпрямители характеризуются меньшим падением прямого напряжения (примерно 15 В) и значительно меньшим значением собственного сопротивления по сравнению с высоковакуумными ламповыми диодами и могут применяться при более высоких значениях рабочих напряжений и токов. Однако процесс их включения и выключения происходит значительно более резко по сравнению с другими типами ламповых выпрямительных диодов, поэтому они склонны вызывать дополнительные осцилляции (паразитные колебательные процессы), если их анодный провод не снабжен поглощающими ферритовыми шайбами или ВЧ дросселем, а в ряде случаев может потребоваться заключение дампы в металлический экранирующий кожух. Наиболее простым способом, позволяющим выявить влияние генерации, оказывается использование не осциллографа, а обычного радиоприемника, работающего в диапазоне УКВ-ЧМ, который необходимо перемещать рядом со схемой и прослушивать «жужжание» при его приближении к ламповым диодам. В ртутных выпрямителях как бы соединяются недостатки полупроводниковых и ламповых выпрямляющих диодов, когда объединяются требования, заставляющие использовать источник питания для цепи подогревателей, цепь задержки включения высоковольтного напряжения и демпфирующие устройства, чтобы добиться электрических характеристик ненамного лучших, чем для кремниевых диодов. Однако, следует отметить, что в ртутных выпрямителях отсутствует процесс накопления заряда, который вызывает превышение значения, или бросок, тока.

ВЧ шумы выпрямителей

При работе выпрямителя постоянно происходят переключения выпрямляющих элементов схемы с одного на другой. Следует учесть, что хотя нижеприведенные рассуждения относятся к случаю чисто омической нагрузки выпрямителя, полученные результаты также будут справедливы и для случая нагрузки, представленной накопительным конденсатором.

Как только амплитудное значение переменного входного напряжения при своем увеличении пройдет через нулевое значение, один или несколько выпрямляющих диодов перейдут во включенное состояние и будут оставаться включенными во время действия положительной полуволны, то есть пока амплитуда напряжения не снизится обратно до нулевого значения. После прохождения амплитуды через нулевое значение во время действия отрицательной полуволны напряжения включится второй диод, или несколько диодов, образующие второе плечо схемы выпрямителя. Для каждого диода необходимо минимальное значение прямого напряжения, при котором будет происходить его включение (даже если величина такого напряжения составляет всего 0,7 В, требуемого для включения кремниевого диода). Это означает, что существует своего рода мертвая зона, симметрично расположенная относительно нулевого значения напряжения, когда ни один диод из обоих плечей не будет проводить ток. Трансформатор, обладающей собственной индуктивностью, в такие моменты времени окажется отключенным и будет пытаться поддерживать протекание тока по цепи, однако это приведет к возникновению э.д.с. самоиндукции, величина которой определяется выражением:

К счастью, в самом трансформаторе существует слишком большое количество паразитных емкостей, предотвращающих возрастание напряжения до слишком высоких значений. Однако, бывают и случаи, когда избыточное напряжение, приложенное к системе, может возбудить колебательный процесс, приводящий к появлению последовательности затухающих импульсов. Используя измерительную катушку, автор однажды зафиксировал выброс импульсов с частотой 200 кГц, возникающих в силовом трансформаторе именно по указанной выше причине. К счастью, указанная проблема решается достаточно простым шунтированием каждого отдельного диода пленочным конденсатором с емкостью 10 нФ, рабочее напряжение которого равняется рабочему напряжению VRRMдиода.

 

Основы эксплуатации, мониторинга и обслуживания выпрямителя

Устойчивость, кажется, является последней модной фразой, а катодная защита (CP) является важным компонентом устойчивости многих металлических конструкций. Что может быть лучше для сохранения и обслуживания инфраструктуры, чем уменьшение коррозии? Некоторые системы CP состоят из расходуемых анодов, которые подвержены естественной коррозии для защиты менее активных металлов, таких как сталь. Другим нужны источники питания, чтобы направлять защитный ток в нужном направлении.Наиболее распространенными источниками напряжения подаваемого тока являются выпрямители, которые могут выйти из строя. Выпрямители в хорошем состоянии могут обеспечить бесперебойную работу системы CP, что снижает затраты на ремонт и рабочее время / время технического специалиста. В этой статье обсуждаются основы эксплуатации и обслуживания выпрямителя вместе с основными рекомендациями.

Устойчивость — это способность терпеть. Основная цель любой системы катодной защиты (CP) — смягчение коррозии. Сохранение трубы или другой металлической конструкции за счет предотвращения коррозионного повреждения позволяет ей выдерживать нагрузку.Следовательно, уменьшение коррозии ведет к устойчивости.

CP чаще всего достигается с помощью гальванической (протекторной) системы или системы подаваемого тока. Гальваническая система CP состоит из расходуемых анодов, обычно сделанных из активных металлов (алюминия, магния или цинка), которые подвержены коррозии, чтобы обеспечить защитные токи для менее активного металла, такого как трубопроводная сталь. Система CP с подаваемым током (ICCP) использует внешнее питание в виде выпрямителя или другого источника напряжения, который управляет анодами с подаваемым током (например,(например, чугун, графит и смешанный оксид металлов) для коррозии с целью распределения защитного тока по структуре (катоду).

Выпрямитель — это электрическое устройство, преобразующее переменный ток (AC), который периодически меняет направление, в постоянный ток (DC), который течет только в одном направлении. Обязательно, чтобы выпрямитель оставался в состоянии постоянной работы. Поскольку выпрямитель — это электрическое устройство, оно уязвимо для скачков напряжения. Удар молнии поблизости может вызвать срабатывание автоматического выключателя или короткое замыкание диода.Поэтому регулярные осмотры и мониторинг необходимы для поддержания исправного функционирования выпрямителя с длительным сроком службы.

Безопасность — самый важный аспект всех проверок. Целью любой задачи, связанной с работой выпрямителя, является безопасное выполнение работы, включая использование надлежащих средств защиты.

Эксплуатация

Выпрямитель состоит из трех основных компонентов: трансформатора, блока и шкафа. Назначение трансформатора — безопасно отделить входящее переменное напряжение (первичная сторона) от вторичной стороны, которое регулируется для управления выходным напряжением выпрямителя.Обычно эти регулировки выполняются с ответвителями, подключенными к вторичной обмотке с интервалами, которые предлагают несколько вариантов настройки. Пакет является фактическим выпрямителем и состоит из набора кремниевых диодов или селеновых пластин, которые функционируют как однонаправленные токовые клапаны. Диоды или пластины сконфигурированы так, что переменный ток периодически течет в одном направлении и блокируется в другом, в результате чего оба направления волны переменного тока текут в одном и том же направлении. В шкафу с тестовой панелью надежно размещены эти компоненты, что позволяет осуществлять мониторинг и другие расширенные операции.

Дополнительные элементы, которые могут быть найдены в типичном выпрямителе, включают автоматический выключатель, измерители выходного напряжения и тока, грозовые разрядники, ограничители перенапряжения, ответвления трансформатора и предохранители.

В таблице 1 перечислены общие правила, которые можно и нельзя делать с выпрямителями. 1 Эта информация помогает обеспечить безопасность персонала и надежную, длительную работу выпрямителя.

Мониторинг

Регулярный контроль рекомендуется для всех выпрямительных установок.Основная цель контроля — убедиться, что выпрямитель все еще работает и что скачок напряжения не сработал в выключателе. Некоторые объекты требуют определенных проверок через определенные промежутки времени. Например, операторы трубопроводов природного газа и нефтепродуктов должны проверять свои выпрямители шесть раз в год с интервалами, не превышающими 21 месяц. Кроме того, политика компании может предписывать еще более строгие интервалы проверки.

Мониторинг обычно включает визуальный осмотр и электрические испытания.Визуальный осмотр может включать поиск физических повреждений установки / шкафа / компонентов, признаков перегрева и признаков гнезд насекомых / грызунов, а также запись характеристик выпрямительного блока и показаний счетчика / настроек крана. Тестирование часто включает ручные измерения выходного напряжения и тока выпрямителя для проверки точности счетчика и потенциалов структуры к электролиту. Также имеется оборудование для удаленного мониторинга труднодоступных выпрямителей; однако эти устройства лучше всего использовать в качестве дополнения к мониторингу на месте, а не вместо него.

Перед проведением визуального осмотра и тестирования важно надеть соответствующие средства индивидуальной защиты (СИЗ). Как минимум, следует использовать защитные очки, кожаную рабочую обувь (при необходимости с водонепроницаемым покрытием) и кожаные или резиновые перчатки. Политика компании может определять дополнительные требования к СИЗ.

При первом приближении к выпрямителю помните о его окружении, например о неровностях почвы, ядовитых растениях или стоячей воде. Используйте все органы чувств для обнаружения признаков неисправности, в том числе визуальные (например,g., опаляющий) и слышимый (например, треск). Проверьте шкаф на наличие переменного тока с помощью одобренного детектора переменного тока. Старомодный способ определить, наэлектризован ли шкаф (или горячий), заключался в том, чтобы почистить его тыльной стороной руки. С появлением детектора переменного тока в этом больше нет необходимости и необходимости. Постучите по шкафу, чтобы уведомить всех жителей (ос, мышей, пауков и даже змей) о том, что вы входите. Обязательно имейте под рукой спрей от насекомых.

Техническое обслуживание

Основными причинами выхода из строя выпрямителя являются небрежное обращение, возраст и молнии.Перед выполнением любых действий по устранению неисправностей неработающего выпрямителя обязательно выключите его как автоматическим выключателем, так и отключением панели. Наиболее распространенные проблемы выпрямителя включают неисправные счетчики, ослабленные клеммы, перегоревшие предохранители, открытую конструкцию / заземляющие провода и повреждение молнией (даже при наличии молниеотводов). Целью поиска и устранения неисправностей является систематическая изоляция компонентов выпрямителя до тех пор, пока не будет обнаружена неисправная деталь, и рекомендуется следовать рекомендациям производителя выпрямителя по обслуживанию и устранению неисправностей.

Протестируйте выключатель, трансформатор, блок выпрямителя, счетчики, предохранители, дроссель, конденсаторы и грозовые разрядники по отдельности. Следите за ненадежными соединениями, признаками искрения и странным запахом. Могут потребоваться дополнительные испытания для проверки целостности конструкции и заземляющих выводных проводов.

Таблица 2 содержит таблицу поиска и устранения неисправностей 2 , предназначенную для быстрой диагностики проблем выпрямителя.

Общие сценарии и уловки торговли

Часто встречается выпрямитель с выходом по напряжению и без токового выхода.Поскольку выходное напряжение говорит о том, что цепи выпрямления не повреждены, один или оба выходных кабеля могут быть повреждены или заземление анода может быть полностью разряжено. Чтобы начать поиск и устранение неисправностей, определите подходящее временное электрически изолированное заземление, такое как водопропускная труба, забор, якорь для растяжек опоры электропередачи или дорожный знак. Выключите выпрямитель, затем отсоедините подводящий провод конструкции и подключите временное заземление к отрицательному выводу. Установите ответвительные планки на одно из самых низких значений и включите выпрямитель.Если выпрямитель теперь выдает и вольты, и амперы, значит, подводящий провод конструкции поврежден. Если по-прежнему нет усилителей, выключите выпрямитель, верните подводящий провод конструкции к отрицательному выводу, отсоедините провод анодного вывода и подключите временное заземление к положительному выводу. Включите выпрямитель. Если выпрямитель теперь выдает и вольт, и ампер, значит, провод анода оборван или существующее заземление истощено. Если по-прежнему нет усилителей, то требуется дополнительное тестирование для оценки эффективности конструкции и анодных выводных проводов, чтобы определить, связана ли проблема с обоими проводами.

Другой распространенный случай — найти выпрямитель с перегоревшим предохранителем. Это может быть результатом скачка напряжения и просто требует установки нового предохранителя. Однако предохранители выпрямителя могут быть довольно дорогими. Временная установка автоматического выключателя через зажимы предохранителей позволяет проверить работу выпрямителя без использования нескольких предохранителей. Для этого испытания можно использовать типичный домашний автоматический выключатель подходящего размера для данной области применения. Просто прикрепите провода измерительных выводов к каждому концу автоматического выключателя и прикрепите провода к каждому из имеющихся монтажных зажимов предохранителя.Убедитесь, что автоматический выключатель и подводящие провода не соприкасаются с шкафом выпрямителя или любым другим металлическим предметом. Включите выпрямитель. Если прерыватель не срабатывает, просто замените предохранитель. Если автоматический выключатель срабатывает, значит, существуют другие проблемы, и необходимо выполнить дополнительное устранение неисправностей.

Иногда выпрямитель можно встретить с сработавшим автоматическим выключателем. Это может быть результатом скачка напряжения и просто требует сброса автоматического выключателя. Однако скачки напряжения нежелательны, поскольку выпрямитель может оставаться выключенным в течение длительного времени.Обязательно проверьте эффективность электрического заземления выпрямителя и следуйте рекомендациям Национального электротехнического кодекса (NEC). При необходимости установите дополнительное заземление. Кроме того, существуют ограничители перенапряжения, которые могут быть установлены для уменьшения скачков напряжения. Обязательно следуйте рекомендациям производителя по размеру.

Уход за выпрямителем также очень важен для предотвращения постройки гнезд насекомыми, грызунами и другими животными. Гнезда насекомых и грызунов могут быть опасны внутри шкафа выпрямителя.Укусы насекомых или даже змеи определенно нежелательны. Однако сами гнезда тоже могут вызвать проблемы. Помимо возможной опасности возгорания, гнездо может препятствовать прохождению воздушного потока через шкаф выпрямителя и приводить к перегреву (и возможному выходу из строя) компонентов. Следите за тем, чтобы насекомые и грызуны не попадали в выпрямитель. Некоторые из способов удержать вредителей — закрыть все проникновения в шкаф, кроме тех, которые предназначены для вентиляции, или использовать химический пестицид, чтобы уменьшить их интерес к въезду.Для герметизации проходов и каналов можно использовать уплотнение канала или вязко-эластичный аморфный неполярный полиолефин (например, VISCOTAQ ), чтобы закрыть любое из отверстий шкафа. Простой и эффективный химический пестицид, который идеально подходит для использования в выпрямителе, представляет собой небольшую открытую чашку с нафталиновыми шариками. Их легко приобрести, и они очень хорошо работают.

Сводка

Ключом к устойчивости конструкций является эффективное CP как средство контроля / смягчения коррозии. Выпрямители — отличные инструменты, которые помогают обеспечить эффективный ICCP.Они требуют планового контроля и порой мелкого ремонта. Мониторинг и обслуживание выпрямителя необходимы, но их можно выполнять безопасно, что помогает обеспечить надежную и долгосрочную работу выпрямителя.

Благодарности

Автор благодарит за поддержку Integrated Rectifier Technologies, Inc., 15360–116 Ave., Эдмонтон, AB, Канада, T5M 3Z6; Universal Rectifiers, Inc., 1631 Cottonwood School Rd., Rosenberg, TX 77471; ERICO International, 34600 Solon Rd., Solon, OH 44139; Amcorr Products & Services, 8000 IH 10 W.# 600, Сан-Антонио, Техас 78230; Тим Дженкинс; и Дон Олсон.

Ссылки

1 «Общие правила обращения с выпрямителями», Integrated Rectifier Technologies, Inc., http://irtrectifier.com/technical-info/rectifier-safety/ (15 июля 2013 г.).

2 «Устранение неисправностей выпрямителя», Universal Rectifiers, Inc., http://www.universalrectifiers.com/PDF%20Files/Troubleshooting.pdf (15 июля 2013 г.).

Эта статья основана на документе CORROSION 2015 No. 5667, представленный в Далласе, штат Техас.

Торговое наименование.

Что такое выпрямитель? — Определение из Техопедии

Что означает выпрямитель?

Выпрямитель — это электрическое устройство, состоящее из одного или нескольких диодов, которое преобразует переменный ток (AC) в постоянный (DC). Диод похож на односторонний клапан, который пропускает электрический ток только в одном направлении. Этот процесс называется исправлением.

Выпрямитель может иметь форму нескольких различных физических форм, таких как твердотельные диоды, ламповые диоды, ртутные дуговые клапаны, кремниевые выпрямители и различные другие полупроводниковые переключатели на основе кремния.

Выпрямители

используются в различных устройствах, в том числе:

  • Источники питания постоянного тока
  • Радиосигналы или детекторы
  • Источник энергии вместо генерирующего тока
  • Системы передачи электроэнергии постоянного тока высокого напряжения
  • Некоторые бытовые приборы используют выпрямители мощности для создания энергии, например ноутбуки или портативные компьютеры, игровые системы и телевизоры.

Techopedia объясняет выпрямитель

Выпрямитель — это электрическое устройство, преобразующее переменный ток в постоянный.Переменный ток регулярно меняет направление, тогда как постоянный ток течет только в одном направлении.

Выпрямление производит тип постоянного тока, который включает в себя активные напряжения и токи, которые затем преобразуются в тип постоянного напряжения постоянного тока, хотя это зависит от конечного использования тока. Ток может течь непрерывно в одном направлении, и ток не может течь в противоположном направлении.

Практически все выпрямители содержат более одного диода в определенных схемах.Выпрямитель также имеет разные формы волны, такие как:

  • Полуволна: либо положительная, либо отрицательная волна проходит, а другая волна блокируется. Это неэффективно, потому что только половина входной формы волны достигает выхода.
  • Full Wave: обращает отрицательную часть формы волны переменного тока и объединяет ее с положительной.
  • Однофазный переменный ток: два диода могут образовывать двухполупериодный выпрямитель, если трансформатор с центральным отводом. Если нет центрального отвода, необходимы четыре диода, расположенные в виде моста.
  • Трехфазный переменный ток: обычно используются три пары диодов

Одна из ключевых проблем выпрямителей заключается в том, что мощность переменного тока имеет пики и минимумы, которые могут не обеспечивать постоянное напряжение постоянного тока. Обычно сглаживающая схема или фильтр должны быть соединены с силовым выпрямителем, чтобы обеспечить плавный постоянный ток.

Выпрямитель | Инжиниринг | Фэндом

Выпрямитель

Выпрямитель — электрическое устройство для преобразования переменного тока в постоянный.

Переменный ток, полуволновые и двухполупериодные выпрямленные сигналы

Это делается с помощью одного или нескольких полупроводниковых устройств (например, диодов), расположенных определенным образом. Когда для выпрямления переменного тока используется только один диод (путем блокировки отрицательной или положительной части формы волны. Разница между термином диод и термином выпрямитель является просто одним из вариантов использования, например, термин выпрямитель описывает диод , который используется для преобразования переменного тока в постоянный. Выпрямление — это процесс преобразования переменного тока (AC) в постоянный (DC). Почти все выпрямители состоят из ряда диодов в определенной конфигурации для более эффективного преобразования переменного тока в постоянный, чем это возможно с одним диодом. Выпрямление обычно выполняется полупроводниковыми диодами. До разработки твердотельных выпрямителей использовались ламповые диоды.

При полуволновом выпрямлении либо положительная, либо отрицательная половина волны переменного тока проходит легко, другая половина блокируется.Полуволновое выпрямление устраняет половину волны, поэтому оно очень неэффективно. Как следует из названия, полуволновой выпрямитель позволяет только половине входного сигнала достигать выхода. Это может быть положительная или отрицательная половина в зависимости от того, в каком смысле подключен диод. Полуволновое выпрямление может быть достигнуто с помощью одного диода в однофазном питании.

Двухполупериодное выпрямление преобразует обе полярности входного сигнала в постоянный ток и является более эффективным.Однако, в зависимости от конфигурации трансформатора, для него может потребоваться в четыре раза больше выпрямителей, чем для однополупериодного выпрямления. Это связано с тем, что для каждой выходной полярности требуется 2 выпрямителя для каждого, например, один для случая, когда переменный ток «X» положительный, а другой — для положительного полюса переменного тока «Y». Другой выход постоянного тока требует того же самого, что дает четыре отдельных перехода (см. Полупроводники / диод). Расположенные таким образом четыре выпрямителя называются мостовым выпрямителем.

Двухполупериодный выпрямитель преобразует всю форму входного сигнала в форму волны постоянной полярности (положительной или отрицательной) на выходе, изменяя отрицательные (или положительные) части формы волны переменного тока.Таким образом, положительные (отрицательные) части объединяются с перевернутыми отрицательными (положительными) частями для создания полностью положительной (отрицательной) формы волны напряжения / тока.

Для однофазного переменного тока, если переменный ток имеет центральное ответвление, то два диода, соединенные спина к спине (т. Е. Аноды с анодом или катод с катодом), образуют двухполупериодный выпрямитель.

Если нет центрального отвода, то необходимы четыре диода, соединенные мостом.

Для трехфазного переменного тока используются шесть диодов.Обычно используется три пары диодов, но каждая пара не является двойным диодом , который использовался бы для двухполупериодного однофазного выпрямителя. Вместо этого пары расположены последовательно (от анода к катоду). Как правило, имеющиеся в продаже двойные диоды имеют четыре вывода, поэтому пользователь может настроить их для использования с однофазным разделенным питанием, для полумоста или для трехфазного использования.

Трехфазный мостовой выпрямитель.

Один тип одиночного выпрямителя

переменного тока используется для передачи тока, потому что его можно легко повышать или понижать по напряжению с помощью простого трансформатора.Линии электропередач высокого напряжения передают ту же мощность при более низком токе (что приводит к меньшему нагреву), а затем она понижается трансформаторами подстанции до более управляемых напряжений. Преобразование уровня напряжения постоянного тока намного сложнее. Один из методов состоит в том, чтобы преобразовать напряжение в переменный ток (с помощью устройства, называемого инвертором), использовать трансформатор для изменения напряжения, а затем вернуть его обратно в постоянный ток. Постоянный ток необходим для внутренних цепей многих бытовых электрических и электронных устройств. Компьютеры, телефоны, телевизоры, часы, твердотельное освещение и т. Д., все предназначены для работы на DC.

Сглаживание выхода выпрямителя [править | править источник]

Хотя однополупериодного и двухполупериодного выпрямления достаточно для получения формы постоянного тока на выходе, ни одно из них не дает постоянного постоянного тока. Для получения «устойчивого» постоянного тока из выпрямленного переменного тока требуется сглаживающая схема . В простейшей форме это может быть так называемый накопительный конденсатор или сглаживающий конденсатор, размещенный на выходе постоянного тока выпрямителя. По-прежнему останется некоторое количество пульсаций переменного тока, при котором напряжение не будет полностью сглажено.

Для дальнейшего уменьшения этой пульсации можно использовать конденсаторный входной фильтр. Это дополняет накопительный конденсатор дросселем и вторым фильтрующим конденсатором, так что на выводах фильтрующего конденсатора может быть получен устойчивый выход постоянного тока. Дроссель эффективно обеспечивает высокий импеданс для тока пульсаций.

Эффективность выпрямления измеряет, насколько эффективно выпрямитель преобразует переменный ток в постоянный. Он определяется как отношение выходной мощности постоянного тока к входной мощности переменного тока, где Выходная мощность постоянного тока является произведением среднего тока и напряжения.Более простой способ рассчитать эффективность — использовать.

Без сглаживания двухполупериодные выпрямители имеют КПД или 81%. Полупериодные выпрямители имеют КПД 40,5%.

Как узнать, неисправен ли ваш регулятор-выпрямитель: симптомы и решения

Вы обеспокоены тем, что ваш выпрямитель-регулятор может выйти из строя? Если вы подозреваете, что этот жизненно важный компонент вашего велосипеда может работать на последнем этапе, продолжайте читать, чтобы узнать о главных симптомах неисправности и некоторых практических решениях для решения проблемы.

Вы не захотите пропустить эти полезные советы и простое пошаговое руководство по проверке напряжения выпрямителя регулятора.

Понимание того, как работает выпрямитель-регулятор

Если вы хотите узнать, как узнать, неисправен ли выпрямитель-регулятор, в первую очередь важно понять, как этот компонент вашего велосипеда работает. В современных велосипедах есть батареи со схемой электрического заряда. Регулятор-выпрямитель — стандартный компонент этой схемы.

Название этой детали уместное, так как выпрямитель стабилизатор регулирует и выпрямляет напряжение.Катушка статора генератора вашего велосипеда вырабатывает переменное напряжение. Как правило, мотоциклы имеют трехкомпонентную систему, состоящую из трех проводов, соединяющих статор с выпрямителем регулятора. Некоторые велосипеды имеют однофазную конструкцию, потому что их производство дешевле, и в этом случае будет два провода, а не три.

В любом случае стабилизатор-выпрямитель преобразует мощность переменного тока в мощность постоянного тока, а затем регулирует мощность постоянного тока, чтобы напряжение не превышало 14,5 вольт. В этот момент напряжение постоянного тока направляется к аккумулятору велосипеда.

Распространенные причины отказа

Существует множество возможных причин отказа выпрямителя регулятора мотоцикла. Неисправный выпрямитель регулятора может не только повлиять на такие вещи, как параметры мотоцикла, но и повлиять на его характеристики на дороге. Одна из основных причин поломки — тепло. Различные производители мотоциклов устанавливают выпрямитель регулятора в разных местах велосипеда, при этом некоторые размещают деталь рядом с радиатором или другими частями велосипеда, которые препятствуют воздушному потоку.

В зависимости от того, где расположен выпрямитель регулятора вашего велосипеда, деталь может перегреться. Когда он перегревается, компонент может быстро выйти из строя.

Другая распространенная причина отказа выпрямителя регулятора связана с аккумулятором. Для подачи напряжения аккумулятор должен иметь надежное заземление. Если связь плохая и напряжение сбойное, это может привести к тому, что выпрямитель регулятора станет более горячим, чем обычно. Такие вещи, как плохое заземление, ослабленная или слабая батарея и изношенное соединение с батареей, могут привести к отказу выпрямителя регулятора.

Ключевые признаки, на которые следует обратить внимание

Итак, как узнать, неисправен ли выпрямитель регулятора? В общем, существует два основных способа выхода из строя выпрямителя регулятора. Во-первых, диод может перегореть и разрядить аккумулятор. У вас не возникнет проблем с диагностикой неисправного выпрямителя регулятора, если причиной является аккумулятор. Вы сразу заметите такие признаки, как плохой запуск, колебания показаний счетчика и тусклый свет фар.

Если вы заметили эти признаки, всегда рекомендуется проверять напряжение с помощью вольтметра, а не полагаться только на эти симптомы для диагностики проблемы.Если напряжение упадет ниже

около 13 вольт, велосипед начнет разряжать аккумулятор. Когда это происходит, полная остановка двигателя — лишь вопрос времени.

Другой способ, которым ваш выпрямитель регулятора может выйти из строя, — это перегореть шунтирующий регулятор. Если стабилизатор-выпрямитель не может регулировать уровни напряжения, аккумулятор будет перезаряжаться.

Вы также можете использовать вольтметр для диагностики перезарядки. Если вы получаете показания более 17 вольт, это обычно означает, что выпрямитель регулятора не может преобразовать избыточную мощность.Все это дополнительное напряжение могло сделать фары более яркими, прежде чем они погаснут.

Важно отметить, что вы всегда должны проверять состояние компонентов в электрической схеме вашего велосипеда. Эта ступень является неотъемлемой частью при определении неисправности выпрямителя регулятора. Проблемы с любой из частей схемы могут вызвать сбой. Если ваш выпрямитель регулятора уже умер, взгляните на внутренние соединения. Иногда производственный брак также может привести к отказу.

Как проверить выпрямитель регулятора на отказ

На большинстве мотоциклов регулятор и выпрямитель расположены вместе в одном блоке, но в других старых моделях они устанавливаются отдельно. Вот что вам нужно сделать, чтобы проверить выпрямитель на неисправность:

  • Для начала отсоедините провода на велосипеде и переключите мультиметр на диодную функцию.
  • Взгляните на положительный диод, вставив положительный провод в положительный диод велосипеда.
  • Затем подключите отрицательный провод ко входам статора. Вы пока не должны видеть никаких показаний на глюкометре.
  • Предполагая, что на данный момент все в порядке, подключите положительный диод к отрицательному выводу, прежде чем подключать положительный провод ко всем входам статора. На этом этапе счетчик должен что-то показать, но конкретные числа не имеют значения.
  • Повторите эти действия для отрицательного диода, подключив положительный провод к отрицательному диоду и подключив входы статора и отрицательный провод.
  • Измеритель не должен показывать никаких показаний при подключении положительного провода и входов статора.
  • Чтобы проверить регулятор, подключите провода измерителя к аккумулятору велосипеда во время его работы. Показание не должно быть выше 14,5 вольт или ниже 13,5 вольт. Если показание выше, это означает, что батарея перезаряжена и вам может потребоваться замена выпрямителя регулятора.

Замена выпрямителя регулятора может стоить от 20 до 100 долларов.Учитывая цены на мотоциклы, знание того, как распознать признаки неисправности выпрямителя регулятора, может сэкономить вам много времени, проблем и расходов. Если вы обнаружите проблему на ранней стадии, вы можете заменить компонент по относительно доступной цене и потенциально избежать полного отказа батареи в будущем.

Неважно, заинтересованы ли вы в покупке нового мотоцикла или предпочитаете подержанные мотоциклы. Поиск автомобиля может дать вам ценную информацию о любом рассматриваемом вами велосипеде и поможет избежать потенциально неисправных систем.Кроме того, не забудьте использовать калькулятор ссуды на мотоцикл при поиске следующего велосипеда, чтобы найти лучшее предложение с учетом ваших бюджетных потребностей.

Работа диодных выпрямителей (неуправляемых выпрямителей)

Введение

Цепи, которые используются для преобразования входной мощности переменного тока (переменного тока) в выходную мощность постоянного тока (постоянного тока) , известны как схемы выпрямителя. Выпрямители используются практически во всем оборудовании, от зарядного устройства низкого напряжения до систем передачи постоянного тока высокого напряжения.В основном выпрямители подразделяются на управляемые выпрямители и неуправляемые выпрямители. В управляемых выпрямителях используются полупроводниковые переключатели, такие как тиристоры, BJT, MOSFET, IGBT и т. Д. Выходными параметрами управляемого выпрямителя можно легко управлять с помощью полупроводниковых переключателей. В этой статье обсуждаются только неуправляемые выпрямители. Как видно из названия, этими выпрямителями нельзя управлять извне. Управляемые выпрямители состоят из нескольких диодов и элементов кондиционирования, таких как конденсаторы.

Классификация неуправляемых выпрямителей

Неуправляемые выпрямители можно классифицировать следующим образом:

  1. Однополупериодный выпрямитель
  2. Двухполупериодный выпрямитель
  3. Мостовой выпрямитель.

Из этих трех типов неуправляемых выпрямителей наиболее часто используется мостовой выпрямитель. Мостовой выпрямитель — самый эффективный из трех. Итак, давайте сначала обсудим мостовой выпрямитель.

1. Полноволновой мостовой выпрямитель

На схеме показан двухполупериодный мостовой выпрямитель.Однофазный двухполупериодный мостовой выпрямитель состоит из четырех диодов, соединенных в замкнутый контур, называемый «мостом». Выходной сигнал двухполупериодного мостового выпрямителя такой же, как и у обычного двухполупериодного выпрямителя, но преимущество состоит в том, что он не требует трансформатора с отводом по центру. Следовательно, стоимость и размер схемы уменьшаются.

Двухполупериодный мостовой выпрямитель

Положительный полупериод

В двухполупериодном мостовом выпрямителе два диода будут проводить каждый полупериод.Остальные диоды будут иметь обратное смещение. Во время положительного полупериода питания диоды D1 и D2 смещены в прямом направлении и будут проводить. Диоды D3 и D4 имеют обратное смещение и не проводят ток.

Двухполупериодный мостовой выпрямитель

Отрицательный полупериод

Во время отрицательного полупериода диодов питания D3 и D4 смещены в прямом направлении и будут проводить. Диоды D1 и D2 имеют обратное смещение и не проводят ток.
Во время обоих полупериодов ток, протекающий через нагрузку, является однонаправленным.Следовательно, напряжение, развиваемое на нагрузке, также является однонаправленным. Выходное напряжение содержит пульсации напряжения, которыми можно управлять, подключив конденсатор параллельно нагрузке.

Двухполупериодный мостовой выпрямитель

2. Полуволновое выпрямление

Однополупериодный выпрямитель состоит из одного диода, подключенного последовательно с нагрузкой. При полуволновом выпрямлении, когда однофазный источник переменного тока подключен к полуволновому выпрямителю, диод проходит только положительный полупериод питания и блокирует отрицательный полупериод.Поскольку выпрямитель пропускает только половину мощности, он называется полуволновым выпрямителем.

Схема полуволнового выпрямителя

Полуволновой выпрямитель

В течение каждого положительного полупериода синусоидальной волны переменного тока анод является положительным по отношению к катоду. Следовательно, диод смещен в прямом направлении. При состоянии с прямым смещением диод действует как замкнутый переключатель, в результате чего через диод протекает ток. Во время каждого «отрицательного» полупериода синусоидальной волны переменного тока анод является отрицательным по отношению к катоду.Следовательно, диод имеет обратное смещение и действует как разомкнутый переключатель. Через диод или цепь не течет ток.

двухполупериодный выпрямитель

Однополупериодные выпрямители создают слишком много пульсаций, и выходной ток не является непрерывным. Эти недостатки делают его непригодным для многих приложений, особенно в цепях, требующих «стабильного и плавного» напряжения питания постоянного тока. Пульсации и эффективность можно улучшить с помощью двухполупериодных выпрямителей.
В двухполупериодных выпрямителях мы можем получать выходное напряжение в течение положительного и отрицательного полупериодов.Поэтому он обеспечивает более высокий КПД, чем однополупериодные выпрямители. Он обеспечивает выходное напряжение чисто постоянного тока. Для двухполупериодных выпрямителей среднее выходное напряжение постоянного тока выше, чем у полуволнового, выход двухполупериодного выпрямителя имеет гораздо меньшую пульсацию, чем у полуволнового выпрямителя, обеспечивая более плавную форму выходного сигнала.
В однофазной цепи неуправляемого полноволнового выпрямителя теперь используются два диода. Только один диод будет смещен в прямом направлении и будет проводить в течение каждого полупериода.В двухполупериодном выпрямителе используется трансформатор с центральным ответвлением, как показано на рисунке.

Уменьшение пульсаций в мостовых выпрямителях с помощью сглаживающего конденсатора

Мостовой выпрямитель с фильтром

Как упоминалось ранее, пульсации напряжения можно контролировать, подключив сглаживающий конденсатор параллельно нагрузке. Он преобразует полноволновую рябь на выходе выпрямителя в плавное выходное напряжение постоянного тока. Но использование конденсатора в схеме ограничено факторами стоимости и размером схемы.Сглаживающий конденсатор регулирует пульсации следующим образом:

Обычно используются сглаживающие конденсаторы емкостью 100 мкФ или выше алюминиевого электролитического типа. При выборе подходящего значения емкости учитываются следующие параметры: рабочее напряжение и значение емкости, определяющее количество пульсаций на выходе.

Уменьшение пульсаций в полуволновом выпрямителе с помощью сглаживающего конденсатора

Постоянное напряжение, полученное после выпрямления, содержит определенное количество пульсаций напряжения, которые можно уменьшить, используя большое значение емкости.Для однополупериодных выпрямителей в этом нет необходимости. Это связано с тем, что в полуволновом выпрямителе пульсации будут увеличиваться, а не уменьшаться. Однополупериодные выпрямители практически не используются в схеме из-за их пониженного КПД и больших потерь.

Двухполупериодный выпрямитель с фильтром

Применение выпрямителей.

Выпрямители

широко используются во всем электронном оборудовании для обеспечения питания постоянным током от имеющегося источника переменного тока. Управляемые выпрямители используются в системе передачи постоянного тока высокого напряжения для преобразования генерируемой мощности переменного тока в мощность постоянного тока для передачи.Также он используется для зарядки аккумуляторов, бытовых инверторов и т. Д.

Подробнее о диодах

  • Типы диодов (Click)
    Диод — это двухконтактный электронный компонент, который обеспечивает нулевое сопротивление при прямом смещении и бесконечное сопротивление при обратном смещении. В этой статье рассказывается о различных типах диодов.
Схема полноволнового выпрямителя

»Электроника

Мостовой выпрямитель обеспечивает значительные преимущества по сравнению с однополупериодным выпрямителем, обеспечивая лучшее сглаживание и лучшую эффективность.


Цепи диодного выпрямителя Включают:
Цепи диодного выпрямителя Полуволновой выпрямитель Двухполупериодный выпрямитель Двухдиодный двухполупериодный выпрямитель Двухполупериодный мостовой выпрямитель Синхронный выпрямитель


Хотя однополупериодный выпрямитель находит применение для обнаружения сигналов и пиков, он не получил широкого распространения в выпрямлении мощности. Именно в области выпрямления мощности мостовой выпрямитель является наиболее распространенной формой выпрямителя.

Двухполупериодный выпрямитель сложнее, чем полуволновой, но двухполупериодный выпрямитель предлагает некоторые существенные преимущества, и в результате он почти исключительно используется в этой области.

Двухполупериодный выпрямитель: основы

Концепция двухполупериодного выпрямителя заключается в том, что он использует обе половины формы волны для обеспечения выходного сигнала, что значительно повышает его эффективность.

Сравнение работы полуволнового и двухполупериодного выпрямителей

Еще одним преимуществом при использовании в источнике питания является то, что результирующий выходной сигнал намного легче сгладить.При использовании сглаживающего конденсатора время между пиками для полуволнового выпрямителя намного больше, чем для двухполупериодного.

Двухполупериодный выпрямитель обеспечивает лучшее сглаживание.

Из принципиальной схемы видно, что основная частота выпрямленного сигнала в два раза больше, чем у исходного сигнала — в выпрямленном сигнале вдвое больше пиков. Это часто можно услышать, когда в звуковой цепи присутствует небольшой фоновый гул.

Преимущества и недостатки двухполупериодного выпрямителя

Хотя для схемы двухполупериодного выпрямителя требуется больше диодов, чем для схемы полуволнового выпрямителя, она имеет преимущества с точки зрения использования обеих половин альтернативной формы волны для обеспечения выходного сигнала.


Преимущества двухполупериодного выпрямителя

  • Использует обе половины формы волны переменного тока
  • Проще обеспечить сглаживание за счет частоты пульсаций

Недостатки двухполупериодного выпрямителя

  • Более сложный, чем полуволновой выпрямитель
  • Двухчастотный гул звуковой цепи может быть более слышимым

Типы двухполупериодных выпрямительных схем

Существует два основных типа схемы двухполупериодного выпрямителя.Каждый тип имеет свои особенности и подходит для разных приложений.

  • Схема двухдиодного двухполупериодного выпрямителя: Схема двухдиодного двухполупериодного выпрямителя не так широко используется с полупроводниковыми диодами, поскольку требует использования трансформатора с центральным ответвлением. Однако эта схема выпрямителя широко использовалась во времена термоэмиссионных клапанов / вакуумных ламп. Поскольку выпрямительная схема с четырьмя клапанами была бы большой, вариант с двумя диодами был намного предпочтительнее.
    Двухполупериодный выпрямитель с двумя диодами и трансформатором с центральным ответвлением
  • Схема мостового выпрямителя: Двухполупериодная схема мостового выпрямителя гораздо более широко используется в наши дни. Он предлагает более эффективное использование трансформатора, а также не требует трансформатора с центральным отводом. Дополнительная стоимость — два дополнительных диода, что в наши дни не является дорогим дополнением. Часто четыре диодных моста можно купить по отдельности, что значительно упрощает конструкцию всей схемы.
    Двухполупериодный выпрямитель с мостовым выпрямителем

Ввиду их преимуществ, схемы двухполупериодного выпрямителя практически всегда используются вместо однополупериодных схем. Повышенная эффективность в сочетании с лучшей сглаживающей способностью, обусловленной более коротким временем между пиками, означает, что их преимущества значительно перевешивают недостатки. Лишь изредка, часто для источников питания с низкими требованиями, предпочтительнее использовать однополупериодный выпрямитель, чем двухполупериодный выпрямительный контур.

Другие схемы и схемотехника:
Основы операционных усилителей Схемы операционных усилителей Цепи питания Конструкция транзистора Транзистор Дарлингтона Транзисторные схемы Схемы на полевых транзисторах Условные обозначения схем
Вернуться в меню «Конструкция схемы». . .

Трехфазный мостовой выпрямитель — обзор

Сравнение основных типов машин

Приведенные выше замечания о допустимом крутящем моменте синхронной машины имеют особое значение для частотно-регулируемых приводов, где, кроме того, часто требуется быстрое реагирование на скорость.Принимая во внимание такие особенности, сравнение различных типов машин является информативным и кратко представлено на рис. 7.24. Электромагнитная способность выдерживать перегрузку по крутящему моменту определяет максимальную скорость ускорения (и замедления). Уникальная особенность постоянного тока. машина его перегрузочная способность; например удвоение тока якоря фактически удвоило бы крутящий момент для любого конкретного значения тока возбуждения. Это не следует для переменного тока. машины, потому что угол крутящего момента между статором и ротором м.м.с. не фиксирован, а зависит от нагрузки, и машина может выйти из шага.Таким образом, если требуется кратковременная перегрузка 2 на единицу или даже больше, как в некоторых сталелитейных и тяговых приводах, используется переменный ток. Возможно, потребуется уменьшить номинальные параметры машины, чтобы соответствовать этим требованиям, то есть сделать ее больше, чтобы при полной нагрузке она использовалась недостаточно с точки зрения ее продолжительной мощности. Постоянный ток Обычно не требуется снижение номинальных характеристик машины, но при питании от преобразователя SCR коэффициент мощности сети падает как постоянный ток. напряжение снижается, поскольку для этого необходимо увеличить угол задержки зажигания. Эта проблема часто решается последовательным использованием нескольких мостовых выпрямителей.

На рисунке 7.24a выбран момент перегрузки 2 на единицу до 1 на единицу (базовая) скорость. Это означает, что ток якоря составляет 2 на единицу в этой области постоянного крутящего момента. После достижения полного напряжения дальнейшее увеличение сверх базовой скорости требует ослабления поля, которое при постоянном токе якоря приведет к падению крутящего момента обратно пропорционально уменьшению магнитного потока. Произведение крутящего момента на скорость будет постоянным в этой области постоянной мощности. При превышении 2 на единицу скорости ток якоря, возможно, придется уменьшить из-за ограничений коммутации и стабильности, но в некоторых промышленных приводах использовались диапазоны ослабления поля до 4/1 или более.Контроль скорости путем ослабления поля в своей простоте применения всегда был привлекательной особенностью. Тем не менее, поскольку d.c. машины несут тяжелую нагрузку по техническому обслуживанию, поскольку из-за коммутатора и щеток приводы большой мощности фактически были заменены на переменный ток. машины, для которых многие современные схемы управления возникли относительно недавно, вслед за быстрым развитием силовой электроники и микроэлектроники.

Рисунок 7.24b для индукционной машины основан на работе, проделанной в разделе 4.3 и Примеры 4.11–4.164.114.124.134.144.154.16 и предполагает перегрузочную способность, такую ​​же, как для постоянного тока. машины по 2 на единицу , хотя для нее потребуется около 3 на единицу тока , исходя из тока полной нагрузки (см. Пример 4.13). Предполагается, что частота скольжения регулируется для обеспечения постоянного потока на полюс, что, в свою очередь, происходит с постоянным отношением E / f . Ток должен поддерживаться на уровне перегрузки, необходимой для получения 2 крутящего момента на единицу крутящего момента при запуске.Что касается постоянного тока. машины, дальнейшее увеличение скорости при достижении максимального напряжения требует ослабления магнитного потока, которое происходит при уменьшении частоты при той же сохраняющейся перегрузке по току. Это область постоянной мощности. По мере увеличения частоты крутящий момент для конкретного скольжения становится меньше (уравнение (4.5)), и требуется большее скольжение для получения достаточно большого тока ротора, поэтому кривая регулирования скорости становится более крутой, как показано. С помощью векторного управления можно добиться лучшего управления углом крутящего момента во время переходных процессов, и, поскольку это может быть достигнуто с помощью более простого и дешевого двигателя с короткозамкнутым ротором, d.c. У машины есть еще одно преимущество в том, что она быстро реагирует на требуемый крутящий момент. Однако на приводах средней и малой мощности он все еще может конкурировать по цене.

Возможности синхронных машин уже обсуждались, а наличие управления полем позволяет работать с более высокими коэффициентами мощности и более низкими токами, чем асинхронные двигатели. На рисунке 7.24c показано близкое сравнение с постоянным током. машина. Тем не менее, для этих кратковременных перегрузок синхронная машина должна быть спроектирована и рассчитана на большее увеличение тока возбуждения и / или якоря, чем для d.c. машина, потому что крутящий момент на ампер ниже, как объяснялось ранее.

Обычно для силовых электронных приводов, хотя формы сигналов далеки от чистого постоянного тока. или синусоидального переменного тока, характеристики могут быть рассчитаны с разумной точностью путем усреднения гармоник и предположения, что изменение среднего (среднеквадратичного) напряжения является единственным соображением. В методах, использованных в главах 3, 4 и 5 при изменении напряжения и / или частоты, не указывался источник питания, которым сегодня обычно является силовая электронная схема.Хотя пренебрежение гармониками означает пренебрежение дополнительными потерями в машине, проблемами коммутации и наличием пульсаций крутящего момента, это обычно не приводит к значительным ошибкам в расчетах скорости / среднего крутящего момента. Рабочие примеры в этой настоящей главе следуют этой процедуре, хотя для цепи прерывателя были рассчитаны формы кривой тока, а затем вычислены значения среднего крутящего момента.

Возможно, стоит отметить, что даже при синусоидальном питании при расчетах производительности были сделаны определенные допущения.Например, во время запуска асинхронного двигателя пиковые токи и крутящие моменты могут намного превышать значения, рассчитанные из напряжения, деленного на полное сопротивление эквивалентной цепи. В главе 8 это проиллюстрировано компьютерным моделированием пусковых и синхронизирующих переходных процессов, для которых переменный ток. Машинные уравнения разработаны на основе первых принципов и объяснена организация компьютерной программы.

Бесщеточные моторные приводы

Эти моторы пытаются электронным образом копировать действие щеток и коммутатора на d.c. машина. Такое расположение гарантирует, что токи якоря-катушки меняются (коммутируются), когда катушки вращаются под влиянием одной полярности поля на противоположную полярность. Таким образом, общая сила и крутящий момент сохраняют одинаковое направление. Коммутатор и щетки в постоянном токе. машина действует как датчик положения вала. Якорь и м.д.с. поля имеют фиксированное угловое смещение δ , иногда называемое углом крутящего момента (φ fa ), что схематично показано на рисунке 7.25а, где предполагается, что якорь намотан таким образом, что его общая м.м.д. идет в том же направлении, что и ток в щетке.

Рисунок 7.25. Бесщеточный d.c. двигатель, (а) Нормальный постоянный ток машина; (б) якорь на статоре; (c) схема управления главной цепью; (d) крутящий момент.

Для полностью бесщеточной машины, для которой поле должно быть постоянным магнитом, катушки якоря намотаны на неподвижный (внешний) элемент (рисунок 7.25b) и соединены через полупроводниковые переключатели, которые активируются из положения вала ( Рисунок 7.25c), так что их токи аналогичным образом меняются местами, чтобы соответствовать полярности полюса вращающегося поля. Таким образом, частота переключения автоматически синхронизируется со скоростью вращения вала, как в обычном постоянном токе. мотор. При δ = 90 ° крутящий момент пропорционален F a × F f и, при любом другом угле, при условии синусоидальной m.m.f. распределений крутящий момент пропорционален F a F f sin δ .При движении ротора δ изменяется от 0 ° до 180 °; затем питание переключается, чтобы снова вернуть δ к нулю, и цикл повторяется. Таким образом, крутящий момент будет пульсировать, как однофазная выпрямленная синусоида (рис. 7.25d). Это устройство эквивалентно постоянному току. машина только с двумя сегментами коммутатора и имеет нулевое минимальное значение крутящего момента. Обычно имеется не менее трех выводов от трехфазной обмотки, которые в свою очередь питаются от трехфазного мостового инвертора. Это срабатывает под управлением детектора положения, так что его выходная частота автоматически регулируется скоростью вала.Пульсации крутящего момента теперь будут похожи на форму выходного сигнала трехфазного мостового выпрямителя; поскольку нулевой крутящий момент отсутствует, пусковой крутящий момент доступен всегда. Профилирование поверхности полюса магнита дополнительно улучшает плавность крутящего момента в течение полного цикла. Моменты переключения можно легко изменить, чтобы получить эффект, аналогичный смещению оси кисти, которое иногда в умеренной степени используется на обычном постоянном токе. машины. См. Пример 3.1. Характеристика скорости / нагрузки бесщеточной машины аналогична a d.c. машина с фиксированным возбуждением, то есть скорость немного падает с увеличением крутящего момента.

Бесщеточный постоянный ток приводы обычно используются для приложений с позиционным управлением в области промышленного управления. Поскольку продолжительность цикла зависит от движения ротора, ШИМ обычно не применяется к этим приводам. Поток ротора создается постоянными магнитами на роторе, обеспечивая трапециевидную МПС. Вариант с фасонными магнитами для создания синусоидальной МПД. известен как «бесщеточный переменный ток».Бесщеточная машина обычно питается от трехфазного инвертора, и регенерация снова становится простой, если предоставляется подходящая схема силового электронного преобразователя. Хотя значительные исследовательские усилия были затрачены на повышение скорости отклика или устранение необходимости в дорогостоящих датчиках на бесщеточных датчиках постоянного тока. В большинстве промышленных контроллеров используются простые датчики на валу на эффекте Холла и фиксированные углы проводимости с переменным постоянным током. напряжение связи. Коммерческие единицы часто включают в себя контроллеры PI или PID (стр.197).

Приводы с реактивным реактивным электродвигателем

Еще одним вариантом в семействе синхронных машин является реактивный электродвигатель, как описано в разделе 5.8. Импульсные реактивные двигатели изменяют напряжение питания статора в зависимости от положения ротора так же, как и в бесщеточных машинах. Характеристики аналогичны характеристикам серии постоянного тока. двигатель или шаговый двигатель (рисунок 5.5), если для срабатывания силовых электронных переключателей статора используется критерий постоянного угла. В некоторых случаях можно использовать меньше переключателей, чем в инверторе.Импульсный реактивный привод чаще всего используется в устройствах с регулируемой скоростью средней мощности. Наряду с другими бесщеточными машинами она также является конкурентом на предстоящем прибыльном рынке приводов для электрических и гибридных дорожных транспортных средств. Ранее это была провинция округа Колумбия. машина, которая в настоящее время сталкивается с проблемой асинхронных двигателей. (13)

Заключение

Таким образом, основной постоянный ток Машина обеспечивает наилучшие характеристики разгона и простейшие характеристики управления, а базовая индукционная машина — самые низкие.Это отражает физическую сложность одного по отношению к другому; индукционная машина с сепаратором ротора дешевле, прочнее и практически не требует технического обслуживания. Постоянный ток Машина имеет пределы коммутации и, в случае синхронных и асинхронных двигателей с контактным кольцом, требует обслуживания щеточного оборудования. С добавлением силового электронного преобразователя (ов) и микроэлектронных контроллеров можно управлять любой машиной для обеспечения, при определенной стоимости, аналогичных характеристик. Достижения в области мощных полупроводников с быстрой коммутацией, таких как IGBT, позволили улучшить ШИМ и другие методы формирования волны для снижения гармонических потерь до низких уровней.Хотя d.c. машины остаются популярными для малых прецизионных приводов, некоторые производители прекратили производство постоянного тока. диски. Асинхронный двигатель с векторным управлением значительно увеличил свою долю на рынке и тяговые приводы, долгое время являвшиеся традиционным рынком для больших объемов постоянного тока. серийные двигатели, в настоящее время в основном поставляются с трехфазными асинхронными двигателями; асинхронный двигатель, запускающийся с низкой частотой статора, позволяет избежать перегорания коммутатора или чрезмерного номинала отдельного полупроводника, связанного с остановкой d.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *