W27006Ca схема – Электронный балласт для люминесцентных ламп

Содержание

Балласт электронный: схема 2х36

Электронный балласт - это устройство, которое включает люминесцентные лампы. Модели между собой отличаются по номинальному напряжению, сопротивлению и перегрузке. Современные устройства способны работать в экономном режиме. Подключение балластов осуществляется через контроллеры. Как правило, они применяются электродного типа. Также схема подключения модели предполагает применение переходника.

балласт электронный схема

Стандартная схема устройства

Схемы электронных балластов люминесцентных ламп включают в себя набор трансиверов. Контакты у моделей применяются коммутируемого типа. Обычное устройство состоит из конденсаторов емкостью до 25 пФ. Регуляторы в устройствах могут применяться операционного либо проводникового типа. Стабилизаторы в балластах устанавливаются через обкладку. Для поддержания рабочей частоты в устройстве имеется тетрод. Дроссель в данном случае крепится через выпрямитель.

электронный балласт 2х36 схема

Устройства низкого КПД

Балласт электронный (схема 2х36) низкого КПД подходит для ламп на 20 Вт. Стандартная схема включает в себя набор расширительных трансиверов. Пороговое напряжение у них составляет 200 В. Тиристор в устройствах данного типа используется на обкладке. С перегрузками борется компаратор. У многих моделей используется преобразователь, который работает при частоте 35 Гц. С целью повышения напряжения применяется тетрод. Дополнительно используются переходники для подключения балластов.

Устройства высокого КПД

Электронный балласт (схема подключения показана ниже) имеет один транзистор с выходом на обкладку. Пороговое напряжение элемента равняется 230 В. Для перегрузок используется компаратор, который работает на низких частотах. Данные устройства хорошо подходят для ламп мощностью до 25 Вт. Стабилизаторы довольно часто применяются с переменными транзисторами.

Во многих схемах используются преобразователи, и рабочая частота у них равняется 40 Гц. Однако она может повышаться при возрастании перегрузок. Также стоит отметить, что у балластов используются динисторы для выпрямления напряжения. Регуляторы часто устанавливаются за трансиверами. Операционные налоги выдают частоту не более 30 Гц.

схемы электронных балластов люминесцентных ламп

Устройство на 15 Вт

Балласт электронный (схема 2х36) для ламп на 15 Вт собирается с интегральными трансиверами. Тиристоры в данном случае крепятся через дроссель. Также стоит отметить, что есть модификации на открытых переходниках. Они выделяются высокой проводимостью, но работают при низкой частоте. Конденсаторы используются только с компараторами. Номинальное напряжение при работе доходит до 200 В. Изоляторы используются только в начале цепи. Стабилизаторы применятся с переменным регулятором. Проводимость элемента составляет не менее 5 мк.

Модель на 20 Вт

Электрическая схема электронного балласта для ламп на 20 Вт подразумевает применение расширительного трансивера. Транзисторы стандартно используются разной емкости. В начале цепи они устанавливаются на 3 пФ. У многих моделей показатель проводимости доходит до 70 мк. При этом коэффициент чувствительности сильно не снижается. Конденсаторы в цепи используются с открытым регулятором. Понижение рабочей частоты осуществляется через компаратор. При этом выпрямление тока происходит благодаря работе преобразователя.

Если рассматривать схемы на фазовых трансиверах, то там имеется четыре конденсатора. Емкость у них стартует от 40 пФ. Рабочая частота балласта поддерживается на уровне 50 Гц. Триоды для этого используются на операционных регуляторах. Для понижения коэффициента чувствительности можно встретить различные фильтры. Выпрямители довольно часто используются на подкладках и устанавливаются за дросселем. Проводимость балласта в первую очередь зависит от порогового напряжения. Также учитывается тип регулятора.

электронный балласт т8 схема

Схема балласта на 36 Вт

Балласт электронный (схема 2х36) для ламп на 36 Вт имеет расширительный трансивер. Подключение устройства происходит через переходник. Если говорить про показатели балластов, то номинальное напряжение равняется 200 Вт. Изоляторы для устройств подходят низкой проводимости.

Также схема электронного балласта 36W включает в себя конденсаторы емкостью от 4 пФ. Тиристоры довольно часто устанавливаются за фильтрами. Для управления рабочей частотой имеются регуляторы. У многих моделей используется два выпрямителя. Рабочая частота у балластов данного типа максимум равняется 55 Гц. При этом перегрузка может сильно возрастать.

Балласт Т8

Электронный балласт Т8 (схема показана ниже) имеет два транзистора с низкой проводимостью. У моделей используются только контактные тиристоры. Конденсаторы в начале цепи имеются большой емкости. Также стоит отметить, что балласты производятся на контакторных стабилизаторах. У многих моделей поддерживается высокое напряжение. Коэффициент тепловых потерь составляет около 65 %. Компаратор устанавливается с частотой 30 Гц и проводимостью 4 мк. Триод для него подбирается с обкладкой и изолятором. Включение устройства осуществляется через переходник.

электронный балласт схема подключения

Использование транзисторов MJE13003A

Балласт электронный (схема 2х36) с транзисторами MJE13003A включает в себя только один преобразователь, который находится за дросселем. У моделей используется контактор переменного типа. Рабочая частота у балластов составляет 40 Гц. При этом пороговое напряжение при перегрузках равняется 230 В. Триод в устройствах применяется полюсного типа. У многих моделей имеется три выпрямителя с проводимостью от 5 мк. Недостатком устройства с транзитами MJE13003A можно считать высокие тепловые потери.

Использование транзисторов N13003A

Балласты с данными транзисторами ценятся за хорошую проводимость. У них малый коэффициент тепловых потерь. Стандартная схема устройства включает проводной преобразователь. Дроссель в данном случае используется с обкладкой. У многих моделей низкая проводимость, но рабочая частота равняется 30 Гц. Компараторы для модификаций подбираются на волновом конденсаторе. Регуляторы подходят только операционного типа. Всего в устройстве имеется два реле, а контакторы устанавливаются за дросселем.

Использование транзисторов КТ8170А1

Балласт на транзисторе КТ8170А1 состоит из двух трансиверов. У моделей имеется три фильтра для импульсных помех. За включение трансивера отвечает выпрямитель, который работает при частоте 45 Гц. У моделей используются преобразователи только переменного типа. Они работают при пороговом напряжении 200 В. Данные устройства замечательно подходят для ламп на 15 Вт. Триоды в контроллерах используются выходного типа. Показатель перегрузки может меняться, и это в первую очередь связано с пропускной способностью реле. Также надо помнить о емкости конденсаторов. Если рассматривать проводные модели, то вышеуказанный параметр у элементов не должен превышать 70 пФ.

Использование транзисторов КТ872А

Принципиальная схема электронного балласта на транзисторах КТ872А предполагает использование только переменных преобразователей. Пропускная способность составляет около 5 мк, но рабочая частота может меняться. Трансивер для балласта подбирается с расширителем. У многих моделей используется несколько конденсаторов разной емкости. В начале цепи применяются элементы с обкладками. Также стоит отметить, что триод разрешается устанавливать перед дросселем. Проводимость в таком случае составит 6 мк, а рабочая частота не будет выше 20 Гц. При напряжении 200 В перегрузка у балласта составит около 2 А. Для решения проблем с пониженной чувствительностью используются стабилизаторы на расширителях.

принципиальная схема электронного балласта

Применение однополюсных динисторов

Электронный балласт (2х36 схема) с однополюсными динисторами способен работать при перегрузке свыше 4 А. Недостатком таких устройств является высокий коэффициент тепловых потерь. Схема модификации включает в себя два трансивера низкой проводимости. У моделей рабочая частота составляет около 40 Гц. Кондукторы крепятся за дросселем, а реле устанавливается только с фильтром. Также стоит отметить, что у балластов имеется проводниковый транзистор.

Конденсатор используется низкой и высокой емкости. В начале цепи применяются элементы на 4 пФ. Показатель сопротивления на этом участке составляет около 50 Ом. Также надо обратить внимание на то, что изоляторы используются только с фильтрами. Пороговое напряжение у балластов при включении равняется примерно 230 В. Таким образом, модели можно использовать для ламп разной мощности.

схема электронного балласта 36w

Схема с двухполюсным динистором

Двухполюсные динисторы в первую очередь обеспечивают высокую проводимость у элементов. Электронный балласт (2х36 схема) производится с компонентами на коммутаторах. При этом регуляторы используются операционного типа. Стандартная схема устройства включает в себя не только тиристор, но и набор конденсаторов. Трансивер при этом используется емкостного типа, и у него высокая проводимость. Рабочая частота элемента составляет 55 Гц.

Основной проблемой устройств является низкая чувствительность при больших перегрузках. Также стоит отметить, что триоды способны работать только при повышенной частоте. Таким образом, лампы часто мигают, а вызвано это перегревом конденсаторов. Чтобы решить эту проблему, на балласты устанавливаются фильтры. Однако они не всегда способны справиться с перегрузками. В данном случае стоит учитывать амплитуду скачков в сети.

fb.ru

Микросхема для зарядного устройства Li-Ion аккумулятора.

Понравились мне мелкие микросхемы для простых зарядных устройств. покупал я их у нас в местном оффлайн магазине, но как назло они там закончились, их долго везли откуда то. Глядя на эту ситуацию, я решил заказать себе их небольшим оптом, так как микросхемы довольно неплохие, и в работе понравились.
Описание и сравнение под катом.

Я не зря написал в заголовке про сравнение, так как за время пути собачка могла подрасти микрухи появились в магазине, я купил несколько штук и решил их сравнить.

В обзоре будет не очень много текста, но довольно много фотографий.

Но начну как всегда с того, как мне это пришло.
Пришло в комплекте с другими разными детальками, сами микрухи были упакованы в пакетик с защелкой, и наклейкой с названием.

Данная микросхема представляет собой микросхему зарядного устройства для литиевых аккумуляторов с напряжением окончания заряда 4.2 Вольта.
Она умеет заряжать аккумуляторы током до 800мА.
Значение тока устанавливается изменением номинала внешнего резистора.
Так же она поддерживает функцию заряда небольшим током, если аккумулятор сильно разряжен (напряжение ниже чем 2.9 Вольта).
При заряде до напряжения 4.2 Вольта и падении зарядного тока ниже чем 1/10 от установленного, микросхема отключает заряд. Если напряжение упадет до 4.05 Вольта, то она опять перейдет в режим заряда.
Так же имеется выход для подключения светодиода индикации.
Больше информации можно найти в даташите, у данной микросхемы существует гораздо более дешевый аналог.

Причем он более дешевый у нас, на Али все наоборот.
Собственно для сравнения я и купил аналог.

Но каково же было мое удивление когда микросхемы LTC и STC оказались на вид полностью одинаковыми, по маркировке обе — LTC4054.

Ну может так даже интереснее.
Как все понимают, микросхему так просто не проверить, к ней надо еще обвязку из других радиокомпонетов, желательно плату и т.п.
А тут как раз товарищ попросил починить (хотя в данном контексте скорее переделать) зарядное устройство для 18650 аккумуляторов.
Родное сгорело, да и ток заряда был маловат.

В общем для тестирования надо сначала собрать то, на чем будем тестировать.

Плату я чертил по даташиту, даже без схемы, но схему здесь приведу для удобства.

Ну и собственно печатная плата. На плате нет диодов VD1 и VD2, они были добавлены уже после всего.

Все это было распечатано, перенесено на обрезок текстолита.
Для экономии я сделал на обрезке еще одну плату, обзор с ее участием будет позже.

Ну и собственно изготовлена печатная плата и подобраны необходимые детали.

А переделывать я буду такое зарядное, наверняка оно очень известно читателям.

Внутри него очень сложная схема, состоящая из разъема, светодиода, резистора и специально обученных проводов, которые позволяют выравнивать заряд на аккумуляторах.
Шучу, зарядное находится в блочке, включаемом в розетку, а здесь просто 2 аккумулятора, соединенные параллельно и светодиод, постоянно подключенный к аккумуляторам.
К родному зарядному вернемся позже.

Спаял платку, выковырял родную плату с контактами, сами контакты с пружинами выпаял, они еще пригодятся.

Просверлил пару новых отверстий, в среднем будет светодиод, отображающий включение устройства, в боковых — процесс заряда.

Впаял в новую плату контакты с пружинками, а так же светодиоды.
Светодиоды удобно сначала вставить в плату, потом аккуратно установить плату на родное место, и только после этого запаять, тогда они будут стоять ровно и одинаково.

Плата установлена на место, припаян кабель питания.
Собственно печатная плата разрабатывалась под три варианта запитки.
2 варианта с разъемом MiniUSB, но в вариантах установки с разных сторон платы и под кабель.
В данном случае я сначала не знал, какбель какой длины понадобится, потому запаял короткий.
Так же припаял провода, идущие к плюсовым контактам аккумуляторов.
Теперь они идут по раздельным проводам, для каждого аккумулятора свой.

Вот как получилось сверху.

Ну а теперь перейдем к тестированию

Слева на плате я установил купленную на Али микруху, справа купленную в оффлайне.
Соответственно сверху они будут расположены зеркально.

Сначала микруха с Али.
Ток заряда.

Теперь купленная в оффлайне.

Ток КЗ.
Аналогично, сначала с Али.

Теперь из оффлайна.


Налицо полная идентичность микросхем, что ну никак не может не радовать 🙂

Было замечено, что при 4.8 Вольта ток заряда 600мА, при 5 Вольт падает до 500, но это проверялось уже после прогрева, может так работает защита от перегрева, я еще не разобрался, но ведут себя микросхемы примерно одинаково.

Ну а теперь немного о процессе зарядки и доработке переделки (да, даже так бывает).
С самого начала я думал просто установить светодиод на индикацию включенного состояния.
Вроде все просто и очевидно.
Но как всегда захотелось большего.
Решил, что будет лучше, если во время процесса заряда он будет погашен.
Допаял пару диодов (vd1 и vd2 на схеме), но получил небольшой облом, светодиод показывающий режим заряда светит и тогда, когда нет аккумулятора.
Вернее не светит, а быстро мерцает, добавил параллельно клеммам аккумулятора конденсатор на 47мкФ, после этого он стал очень коротко вспыхивать, почти незаметно.
Это как раз тот гистерезис включения повторной зарядки, если напряжение упало ниже 4.05 Вольта.
В общем после этой доработки стало все отлично.
Заряд аккумулятора, светит красный, не светит зеленый и не светит светодиод там, где нет аккумулятора.

Аккумулятор полностью заряжен.

В выключенном состоянии микросхема не пропускает напряжение на разъем питания, и не боится закоротки этого разъема, соответственно не разряжает аккумулятор на свой светодиод.

Не обошлось и без измерения температуры.
У меня получилось чуть более 62 градусов после 15 минут заряда.

Ну а вот так выглядит полностью готовое устройство.
Внешние изменения минимальны, в отличие от внутренних. Блок питания на 5 /Вольт 2 Ампера у товарища был, и довольно неплохой.
Устройство обеспечивает тока заряда 600мА на канал, каналы независимые.

Ну а так выглядело родное зарядное. Товарищ хотел попросить меня поднять в нем зарядный ток. Оно и родного то не выдержало, куда еще поднимать, шлак.

Резюме.
На мой взгляд, для микросхемы за 7 центов очень неплохо.
Микросхемы полностью функциональны и ничем не отличаются от купленных в оффлайне.
Я очень доволен, теперь есть запас микрух и не надо ждать, когда они будут в магазине (недавно опять пропали из продажи).

Из минусов — Это не готовое устройство, потому придется травить, паять и т.п., но при этом есть плюс, можно сделать плату под конкретное применение, а не использовать то, что есть.

Ну и в тоге получить рабочее изделие, изготовленное своими руками, дешевле чем готовые платы, да еще и под свои конкретные условия.
Чуть не забыл, даташит, схема и трассировка — скачать.

Надеюсь, что мой обзор был полезен и интересен. 🙂

mysku.ru

Плата защиты для модернизации аккумуляторов шуруповерта Battery Charger Protection Board

Небольшой фотоотчет о замене ячеек аккумулятора в шуруповерте.
Расскажу, плюсы и минусы, а также про ошибки, которые совершать не надо

Приветствую!
Давно собирался сделать небольшой отзыв о замене «сдохших» Ni-Cd ячеек в аккумуляторе шуруповерта на литиевые.
Моя старая аккумуляторная дрель-шуруповерт Интерскол успешно трудилась до настоящего момента на протяжении многих лет, помогая в многочисленных ремонтах и по хозяйству. Но постепенно аккумуляторы устали. А конкретно – исчерпался ресурс обоих комплектных аккумуляторов. Некоторые ячейки покрылись солью, за что и были дисквалифицированных из состава батареи. Переделку я осуществлял примерно полгода назад, АКБ заказывал по одной из ссылок с Mysku, с распродажи (обычные элементы недорогие 18650, лучше заказывать элементы с током около 25-30А, ссылки есть в комментариях ниже). Заказывал комплектом 4 шт., так как родные АКБ на 14.4В. И было два варианта: делать 4S или 3S. Первый чреват выходом из строя элементов шуруповерта, а второй – низким напряжением, и как вследствие большим током на контактах двигателя (и перегревом). Далее, была приобретена плата защиты ячеек BMS (ссылка), одна из самых простых на чипе 8254A.

Так вот. Плату 5А я крайне не рекомендую. Подходит она для конверсии р/у моделек и прочих игрушек с никеля или щелочных батареек на литиевые, а 5А вполне хватает для коллекторных моторов. А вот для шуруповерта я ее зря купил.
В следствие низкого рабочего тока маленькой платы срабатывает защита превышения тока от шуруповерта при превышении нагрузки. То есть при застревании сверла либо при срабатывании муфты. Практически сразу же после начала работы аккумулятор отключается — срабатывала отсечка.

Итак, наконец-то появилось время доработать свой «косяк», по замене старой маленькой платы защиты на предварительно заказанную новую плату защиты 3S Li-ion Lithium Battery Charger Protection Board 10.8V/11.1V/12.6V 30A Overcharge/Over-discharge/Overcurrent/Short-circuit Protection. Периодически мониторю акции в разных магазинах типа jd, tomtop, gearbest. В томтопе еще как то коврики были по акции бесплатно за регистрацию. С этого все и началось))

Отвлекся, Ну так вот про плату. На сайте представлены такие фото платы защиты

А вот внешний вид и описание платы

Плата имеет следующие параметры:
— Защитой обеспечиваются три ячейки литиевый элементов по 3,7 (3S)
— Рабочий ток платы до 10А без радиаторов, 15А — с установленным на транзисторы радиатором.
— Пиковый ток до 30А.
— Защита от перезаряда 4.25±0.025V
— Защита от глубокого разряда 2.50±0.08V
— Защита от короткого замыкания или от тока более 30А.
— Рабочая температура 40-85°C
— Односторонний дизайн платы позволяет установить ее на радиатор охлаждения.
— Размеры платы 50 х 22 х 4 мм
Помимо очевидных сторон (защита), наличие платы BMS в аккумуляторе позволяет не выводить наружу балансировочный разъем (для того же IMAX B6).

Теперь про упаковку и посылку. Пришло все в пупырке и в антистатическом запаянном пакете.

«Стриптиз». Достаем плату из антистатической упаковки

Внешний вид. С обратной стороны ничего нет, можно приклеить ее к радиатору

Размеры платы относительно небольшие. Чуть шире, чем один элемент 18650. Отлично поместится в корпусе старой батареи

Контрольные замеры)) Обратите внимание, отсутствуют отверстия крепления под винт

Присутствуют компоненты: чип 8254AA, мосфеты D403, шунт.

Мосфеты D403
Микросхема 8254AA
Схема подключения ячеек к плате

И электрическая схема самой платы (вариант для 4S. Для 3S принципиальных отличий нет)

Дополнительная информация - еще одна схема на основе 8254А

Схема видимо для плат BMS 3S, которые изначально ставятся в сборки аккумуляторных батарей. Клемма CH + от зарядки.
Схема изначально была в обзоре, оставлю для сравнения


Начинаем разбирать батарею. По хорошему требуется доработать обе батареи. Оставлю вторую как контрольный образец.

Слева кадмиевая батарея, отслужившая свое, справа — первая попытка замены (с BMS 5A).

Крупный планом сборка с платой защиты на 5А (старая)

Новая плата на 30А так и просится в шуруповерт. Итак, пора приступить к переборке.

Операция простая — отпаять старую (B+, B-, балансировочные B1/B2, и выходы P+, P-). И припаять в том же порядке уже на новую, скрепить сборку (термоклей и синяя изолента).

Силовые провода припаиваю толстым медным проводом. К аккумуляторным элементам либо очень быстро паять (чтобы не нагревалось), либо приваривать лепестки и паяться к лепесткам (предпочтительный вариант).

Балансировочные выводы B1, B2 расположены очень близко, и размеры контактных площадок маленькие, что намекает на малый балансировочный ток.

Аналогично аккуратно припаиваются силовые выходы, которые идут на клеммы батареи шуруповерта.

Собранный пакет из батарей и платы защиты можно упаковать обратно в корпус.

Небольшой тест срабатывания отсечки шуруповерта.


На видео хорошо видно, что защита не срабатывает при фиксации патрона. То есть имитируем нагрузку, вызываем срабатывание муфты. Старая плата сразу же уходила в защиту. Новая — держится молодцом!

В качестве итога скажу, что старая плата защиты на 5А оказалась непригодна для шуруповерта, у меня частенько срабатывала отсечка. После установки платы защиты 3S на 30А работа с шуруповертом стала гораздо приятнее. По ощущениям сборки 3S хватает раза в три дольше, чем аналогичного «родного» аккумулятора, с учетом остаточной емкости (например, вместо 15-20 минут работы Ni-Cd получается 45-60 минут от лития неспешной размеренной работы). А соответственно уже не надо то и дело ставить аккумуляторы на зарядку.

Если что – защита отключается после подачи внешнего питающего напряжения на плату (то есть необходимо установить на зарядку), потребовалось увеличить рабочий ток.

Теперь потребуется доработать блок питания (можно подсмотреть у ув. Kirich способы доработки штатных сзу).
В этом обзоре я останавливаться на зарядке не буду. Комплектуха заказана, еще не вся пришла. По мере переделки БП — опубликую еще обзор, по питанию этой модернизированной батареи. Общий смысл — меняются внутренности в БП, клеммы остаются, батарея заряжается штатно, в своих гнездах. Ниже приведу ссылки на подобные переделки.

И вместо вывода: Со старой платой защиты на 5А частенько срабатывала защита на моем шуруповерте. Мне потребовалось увеличить рабочий ток. С этой целью и была приобретена плата защиты 3S на 30А, батарея перепаяна, потестирована. А старая плата на 5А перекочует в игрушки.

Старая плата была на 5А типа такой

Полезные ресурсы:
Блок питания на 12В (3S)
Еще переделка шуруповерта с переделкой зарядного
Питание от балансира
Обзор переделки от Waldemarik

Переделываем плату 4s В 3s

В комментариях есть информация о переделке подобной же платы 4s
4s переделывается в 3s разрезанием одной дорожки и напаиванием одной перемычки

Спасибо t0xy за подробную информацию

«Заряжаем правильно» от Kirich

Если плата ушла в защиту — то защита отключается после подачи внешнего питающего напряжения на плату (то есть необходимо установить на зарядку),

Оффтоп: Что такое отсечка можно посмотреть тут, в творчестве Саши Поддубного

mysku.ru

Ремонтируем светодиодную лампу самостоятельно

Предыстория

Несколько лет назад были приобретены 4 светодиодные лампочки модели GL5.5-E27 изготовленные под брендом Estares. Две из них неплохо эксплуатировались в прихожей, где освещение горит по нескольку часов в день с периодическими переключениями, одна в ванной комнате и еще 1 в туалете, где режим эксплуатации отличается более частыми коммутациями, чем продолжительностью работы.

Но, невзирая на отличие в условиях эксплуатации, по истечении трех лет, все лампочки практически одновременно стали мигать через несколько минут после включения.

Причина этого явления известна - светодиоды постепенно выходят из строя из-за повышенного тока, протекающего через них. Производитель, чтобы лампа светила ярче использует драйвер с максимально допустимым для данного типа светодиодов выходным током. Как следствие светодиоды при работе нагреваются выше допустимой для данного типа светодиодов температуры, и соответственно быстрее деградируют. При этом яркость свечения лампы со временем начинает уменьшаться, это видно не вооруженным глазом. Сопротивление светодиодов также снижается и достигает того предела, при котором начинает срабатывать защита драйвера от перегрузки и короткого замыкания, это и вызывает мигание лампочки.

Ради интереса и экономии ради было принято решение попытаться осуществить ремонт этих светодиодных ламп, а именно заменить деградировавшие светодиоды на новые и посмотреть, что из этого получится.

Разборка светодиодной лампы

Обычным канцелярским ножом с узким лезвием очень аккуратно подрезаем клей, крепящий стеклянный плафон лампы к пластиковому корпусу. Плафон не придавливаем, он очень хрупкий и легко ломается. После подрезания клея плафон легко снимается.

Весь клей, а его там не мало, с обеих частей разобранной светодиодной лампы лучше удалить. Он нам не понадобится.

Что мы видим. На тонкой плате установлено шесть светодиодов, хотя возможна установка еще трех. Очевидно, что мы имеем дело с уже классическим подключением светодиодов к драйверу, такое же применяется в светодиодных лентах, по три последовательных светодиода. То есть, в данную лампу возможно установить всего 9 светодиодов, три группы по три светодиода в каждой. Это снизит нагрузку на светодиоды и продлит срок службы светодиодной лампы.

Плата прижата саморезами к пластиковому корпусу, в котором имеются вентиляционные отверстия, через алюминиевый радиатор.

Отпаиваем провода от платы и разбираем этот слоеный пирог. Термопаста между платой и радиатором отсутствует. Вопрос нужна ли она там риторический.

Под радиатором обнаруживаем плату драйвера. Обратите внимание на обесцвечивание красного плюсового провода. Это явно вызвано повышенной температурой.

В принципе дальше разбирать светодиодную лампу смысла нет, можно просто проверить работоспособность драйвера. При подаче на вход драйвера напряжения 220 В переменного тока, на выходе должно быть около 9 В постоянного.

Соблюдайте правила электробезопасности!

Лирически-теоретическое отступление

Но если есть большое желание посмотреть, а что там и как, то аккуратно поддеваем отверткой цоколь лампы по периметру и скручиваем цоколь по резьбе. Поддеваем торцовый контакт и вытаскиваем его. После этого плата драйвера свободно извлекается.

На фото провод идущий к торцовому контакту отсутствует.

Как видим, производитель не был оригинален и использовал типовой драйвер светодиодной лампы на микросхеме BP3122. .

Типовая схема применения BP3122 следующая:

Данная микросхема была специально разработана для применения в драйверах светодиодных ламп и представляет собой микросхему управления импульсным источником питания. Ее применение позволяет значительно сократить размер драйвера, а как следствие и его стоимость, за счет сокращения применяемых дополнительных компонентов.

Рекомендуемая производителем микросхемы выходная мощность не более 6 Вт при входном напряжении 230 В ±15% и 5 Вт в диапазоне входных напряжений переменного тока от 85 до 265 В. В микросхеме реализована защита от перегрузки и короткого замыкания, защита от перегрева, а также защита от перенапряжений. С механизмом самовозврата при устранении неисправности.

Уровень стабилизированного выходного тока определяется типом применяемого трансформатора, а именно соотношением витков первичной Np и вторичной Ns обмоток, и пиковым током в MOSFET, который в свою очередь, зависит от сопротивления задающего резистора, подключенного к входу CS микросхемы.

Стабилизация тока, на выходе исследованного драйвера, осуществляется на уровне 350 мА.

Ремонт светодиодной лампы

Для замены деградировавших, на AliExpress были заказаны новые светодиоды у этого продавца.

Отпаять старые светодиоды с платы проще всего посредством фена паяльной станции (температура около 300 °С). Можно и паяльником, но придется повозиться, изготовив специальную «вилочку для пайки светодиодов». Плата весьма теплоемкая и отбирает часть тепла на себя, поэтому паяльник менее 100 Вт можно даже не рассматривать.

Убрав старые светодиоды, не прекращая подогрева снизу платы, наносим на места пайки флюс, при необходимости припой, и размещаем новые светодиоды, соблюдая полярность.

Предварительно, выводы новых светодиодов также не помешает залудить. А для удобства их последующего позиционирования на плате, отметить, например анод, маркером.

Номинальные данные приобретенных светодиодов: ток 150 мА, напряжение 3,0 – 3,2 В, теплого, белого свечения 2800 – 3500 К.

Сборка осуществляется в обратном порядке. При наличии термопасты наносим ее на обратную сторону платы.

После этого работоспособность светодиодной лампы можно проверить, включив ее на несколько часов.

Не смотрите на горящие светодиоды не защищенным глазом, это опасно для зрения. Накройте их листом бумаги!

Если все нормально, все группы светодиодов светятся равномерно и не мигают, можно приклеить на место стеклянный плафон. Лучше использовать для этого клей типа «Момент». Термоклей не годится, при нагреве лампы во время работы, он может расплавиться и плафон отклеиться и упадет.

После высыхания клея светодиодная лампа снова будет служить вам верой и правдой. Ну а если вдруг, что, вы уже знаете, как ее починить.

Список файлов

BP3122-EN-DS-Rev-1-1.pdf

Описание микросхемы BP3122

  • Загрузок: 2312
  • Размер: 427 Kb

imolodec.com

Механизм Orient 469 | Часовой блог

механизм ориент

Самый ходовой механизм от самых ходовых Ориентов 46943. Скорей всего многим знакомый, потому как часы с этим механизмом или его модификациями очень распространены на территории России и продаются уже очень давно. К тому же эти механизмы используются в большом количестве различных моделей наручных часов и чаще всего, это самые доступные и качественные механические часы.

Механизм был разработан в 1971 году, спустя 40 лет, он модернизировался и до сих пор производится.

Характеристики:

 

  • 21 камень
  • частота баланса 21 600 полуколебаний в час.
  • запас хода около 40 часов
  • точность хода стандартная для механических часов +/- 20 секунд в сутки
  • апертура с числом и днем недели
  • секундная, минутная и часовая стрелка
  • автоподзавод
  • диаметр 27 мм
  • высота 5.45 мм
  • стрелки 1.50 x 0.90 x 0.20

Функции стоп секунды нет, день недели переводится нажатием кнопки в районе двух часов, дата переводится только вперед вращением заводной головки во втором положении, третье положение переводит время. Этот механизм завести в ручную невозможно, в первом положение заводная головка будет вращаться в холостую.

Этот механизм отличается особой надежностью и неприхотливостью, может отходить без проблем довольно продолжительный отрезок времени. Конкретно у меня на обзоре механизм отработавший около 7 лет практически без остановки, но убитый попаданием влаги.

Вполне возможно, если бы механизм не тонул, то он бы работал по сей день.

Под диском даты видим первый нехороший знак — воздействие влаги

Под системой календаря следов коррозии не видно, но можно разглядеть одно из слабых мест этого калибра — пластиковые шестерени переключения даты.

Схема автоподзавода по технологии Magic level («Волшебный рычаг»), есть небольшой износ ну и следы попадания жидкости. Интересный момент — на рычаг установлен подшипник скольжения (камень)

Опять следы ржавчины

Механизм без моста автоподзавода, Второй интересный момент есть противоударная защита цапфы анкерного колеса, но только с одной стороны

Ангренаж, на заводном баране тоже следы влаги

На фото видно сильную эрозию шестерни, предполагаемая причина нестабильного хода часов

 

 

 

chronometrica.ru

Схема драйвера для светодиодов 220

Для того чтобы светодиодные лампы работали максимально ярко и эффективно, используются специальные модули – драйверы. Собрать самостоятельно схему драйвера для светодиодов сможет каждый, если, конечно, имеются познания в электротехнике. Смысл работы прибора – преобразовать переменное напряжение, протекающее в сети, в постоянное (пониженное). Но прежде чем приступать к сборке, нужно определиться с тем, какие требования к устройству предъявляются – проанализируйте характеристики и виды приборов.

Для чего нужны драйверы?

Основное назначение драйверов – это стабилизация тока, который проходит через светодиод. Причем нужно учесть, что сила тока, который проходит по кристаллу полупроводника, должна быть точно такой же, как и у светодиода по паспорту. Благодаря этому обеспечивается устойчивое освещение. Кристалл в светодиоде намного дольше прослужит. Чтобы узнать напряжение, необходимое для питания светодиодов, нужно воспользоваться вольт-амперной характеристикой. Это график, показывающий зависимость между напряжением питания и током.

схема драйвера для светодиодов

Если планируется проводить освещение светодиодными лампами жилого или офисного помещения, то драйвер должен питаться от бытовой сети переменного тока с напряжением 220 В. Если же светодиоды используются в автомобильной или мототехнике, нужно использовать драйверы, питающиеся от постоянного напряжения, значение 9-36 В. В некоторых случаях (если светодиодная лампа небольшой мощности и питается от сети 220 В) допускается убрать схему драйвера светодиода. От сети если запитано устройство, достаточно включить в схему постоянный резистор.

Параметры драйверов

Прежде чем приобрести устройство или самостоятельно его изготовить, нужно ознакомиться с тем, какие у него имеются основные характеристики:

  1. Номинальный ток потребления.
  2. Мощность.
  3. Выходное напряжение.

Напряжение на выходе преобразователя напрямую зависит от того, какой выбран способ подключения источника света, числа светодиодов. Ток имеет прямую зависимость от яркости и мощности элементов.

pt4115 драйвер светодиодов схема

Преобразователь должен обеспечивать ток, при котором светодиоды будут работать с одинаковой яркостью. На PT4115 схема драйвера светодиодов реализуется довольно просто – это самый распространенный преобразователь напряжения для использования с LED-элементами. Изготовить прибор на его основе можно буквально «на коленке».

Мощность драйвера

Мощность прибора – это самая важная характеристика. Чем мощнее драйвер, тем большее число светодиодов можно подключить к нему (конечно, придется проводить простые расчеты). Обязательное условие – мощность драйвера должна быть больше, чем у всех светодиодов в сумме. Выражается это такой формулой:

Р = Р(св) х N,

где Р, Вт – мощность драйвера;

Р(св), Вт – мощность одного светодиода;

N – количество светодиодов.

драйвер светодиода 220в схема

Например, при сборке схемы драйвера для светодиода 10W вы можете смело подключать в качестве нагрузки LED-элементы мощностью до 10 Вт. Обязательно нужно иметь небольшой запас по мощности – примерно 25%. Поэтому, если планируется подключение светодиода 10 Вт, драйвер должен обеспечивать мощность не менее 12,5-13 Вт.

Цвета светодиодов

Обязательно нужно учитывать то, какой цвет испускает светодиод. От этого зависит то, какое падение напряжения будет у них при одинаковой силе тока. Например, при токе питания 0,35 А, падение напряжения у красных LED-элементов примерно 1,9-2,4 В. Мощность в среднем 0,75 Вт. Аналогичная модель с зеленым цветом будет уже иметь падение в интервале 3,3-3,9 В, а мощность 1,25 Вт. Поэтому, если вы применяете схему драйвера светодиода 220В с преобразованием в 12 В, к нему можно подключить максимум 9 элементов с зеленым цветом или 16 с красным.

Типы драйверов

схема драйвера для светодиода 10w

Всего можно выделить два типа драйверов для светодиодов:

  1. Импульсные. С помощью таких устройств создаются в выходной части устройства высокочастотные импульсы. Функционирование основывается на принципах ШИМ-модуляции. Среднее значение тока зависит от коэффициента заполнения (отношения длительности одного импульса к частоте его повторения). Ток на выходе меняется за счет того, что коэффициент заполнения колеблется в интервале 10-80%, а частота остается постоянной.
  2. Линейные – типовая схема и структура выполнены в виде генератора тока на транзисторах с р-каналом. С их помощью можно обеспечить максимально плавную стабилизацию питающего тока в случае, если напряжение на входе неустойчиво. Отличаются дешевизной, но у них малая эффективность. При работе выделяется большое количество тепла, поэтому можно использовать только для маломощных светодиодов.

Импульсные получили большее распространение, так как у них КПД намного выше (может достигать 95%). Устройства компактные, диапазон входного напряжения достаточно широкий. Но есть один большой недостаток – высокое влияние различного рода электромагнитных помех.

На что обратить внимание при покупке?

Покупку драйвера обязательно нужно совершать при выборе светодиодов. На PT4115 схема драйвера светодиодов позволяет обеспечить нормальное функционирование системы освещения. Устройства, использующие ШИМ-модуляторы, построенные по схемам с одной микросхемой, применяются по большей части в автомобильной технике. В частности, для подключения подсветки и ламп головного освещения. Но качество у таких простейших приборов довольно низкое – для использования в бытовых системах они не годятся.

Диммируемый драйвер

схема драйвера для светодиодов своими руками

Практически все конструкции преобразователей позволяют регулировать яркость свечения LED-элементов. С помощью таких устройств можно выполнять следующие действия:

  1. Уменьшать интенсивность освещенности днем.
  2. Скрывать или же подчеркивать определенные элементы интерьера.
  3. Зонировать помещение.

Благодаря этим качествам можно существенно сэкономить на электроэнергии, увеличить ресурс элементов.

Разновидности диммируемых драйверов

драйверы для мощных светодиодов схема

Типы диммируемых драйверов:

  1. Подключаются между БП и источником света. Они позволяют управлять энергией, которая поступает на LED-элементы. В основе конструкции находятся ШИМ-модуляторы с микроконтроллерным управлением. Вся энергия идет к светодиодам импульсами. От длины импульсов напрямую зависит энергия, которая поступит на светодиоды. Такие конструкции драйверов применяются в основном для работы модулей со стабилизированным питанием. Например, для лент или бегущих строк.
  2. Второй тип устройств позволяет проводить управление блоком питания. Управление производится при помощи ШИМ-модулятора. Также изменяется величина тока, который протекает через светодиоды. Как правило, такие конструкции применяются для питания тех устройств, которым необходим стабилизированный ток.

Нужно обязательно учесть тот факт, что ШИМ-регулирование плохо влияет на зрение. Лучше всего использовать схемы драйверов для питания светодиодов, в которых регулируется величина тока. Но вот один нюанс – в зависимости от величины тока свечение будет различным. При низком значении элементы будут излучать свет с желтым оттенком, при увеличении – с синеватым.

Какую микросхему выбрать?

схемы драйверов для питания светодиодов

Если нет желания искать готовое устройство, можно сделать его самостоятельно. Причем произвести расчет под конкретные светодиоды. Микросхем для изготовления драйверов довольно много. Вам потребуется только умение читать электрические схемы и работать с паяльником. Для простейших устройств (мощностью до 3 Вт) можно использовать микросхему PT4115. Она дешевая, и достать очень просто. Характеристики элемента такие:

  1. Регулирование яркости.
  2. Напряжение питания – 6-30 В.
  3. Выходной ток – 1,2 А.
  4. Допустимая погрешность при стабилизации тока – не более 5%.
  5. Защита от отключения нагрузки.
  6. Выводы для диммирования.
  7. КПД – 97%.

Обозначение выводов микросхемы:

  1. SW – подключение выходного коммутатора.
  2. GND – отрицательный вывод источников питания и сигнала.
  3. DIM – регулятор яркости.
  4. CSN – датчик входного тока.
  5. VIN – положительный вывод, соединяемый с источником питания.

Варианты схем драйверов

Варианты исполнения устройств:

  1. Если имеется источник питания с постоянным напряжением 6-30 В.
  2. Питание от переменного напряжения 12-18 В. В схему вводится диодный мост и электролитический конденсатор. По сути, «классическая» схема мостового выпрямителя с отсечением переменной составляющей.

Нужно отметить тот факт, что электролитический конденсатор не сглаживает пульсации напряжения, а позволяет избавиться от переменной составляющей в нем. В схемах замещения (по теореме Кирхгофа) электролитический конденсатор в цепи переменного тока является проводником. А вот в цепи постоянного тока он заменяется разрывом (нет никакого элемента).

схему драйвера светодиода от сети

Собрать схему драйвера светодиодов 220 своими руками можно только в том случае, если использовать дополнительный блок питания. В нем обязательно задействован трансформатор, которым понижается напряжение до необходимого значения в 12-18 В. Учтите, что нельзя подключать драйверы к светодиодам без электролитического конденсатора в блоке питания. При необходимости установки индуктивности необходимо произвести ее расчет. Обычно величина составляет 70-220 мкГн.

Процесс сборки

Все элементы, которые используются в схеме, нужно подбирать, опираясь на даташит (техническую документацию). Обычно в нем приводятся даже практические схемы использования устройств. Обязательно использовать в схеме выпрямителя низкоимпедансные конденсаторы (значение ESR должно быть низким). Применение иных аналогов снижает эффективность регулятора. Емкость должна быть не менее 4,7 мкФ (в случае использования схемы с постоянным током) и от 100 мкФ (для работы в цепи переменного тока).

схема драйвера для светодиодов 220

Собрать по схеме драйвер для светодиодов своими руками можно буквально за несколько минут, потребуется только наличие элементов. Но нужно знать и особенности проведения монтажа. Катушку индуктивности желательно располагать возле вывода микросхемы SW. Изготовить ее можно самостоятельно, для этого необходимо всего несколько элементов:

  1. Ферритовое кольцо – можно использовать со старых блоков питания компьютеров.
  2. Провод типа ПЭЛ-0,35 в лаковой изоляции.

Старайтесь все элементы располагать максимально близко к микросхеме, это позволит исключить появление помех. Никогда не проводите соединения элементов при помощи длинных проводов. Они не только создают множество помех, но и способны принимать их. В результате микросхема, неустойчивая к этим помехам, будет работать неправильно, нарушится регулировка тока.

Вариант компоновки

Разместить все элементы можно в корпусе от старой лампы дневного света. В ней уже все имеется – корпус, патрон, плата (которую можно повторно использовать). Внутри расположить все элементы блока питания и микросхему можно без особого труда. А с внешней стороны установить светодиод, который планируете запитывать от устройства. Схемы драйверов для светодиодов 220 В можно использовать практически любые, главное – понизить напряжение. Сделать это легко простейшим трансформатором.

драйвер светодиодов 220 схема своими руками

Монтажную плату желательно использовать новую. А лучше вообще обойтись без нее. Конструкция очень простая, допустимо применить навесной монтаж. Обязательно удостоверьтесь в том, что на выходе выпрямителя напряжение в допустимых пределах, в противном случае микросхема сгорит. После сборки и подключения произведите замер потребляемого тока. Учтите, что в случае снижения тока питания увеличится ресурс светодиодного элемента.

Тщательно выбирайте схему драйвера для питания светодиодов, рассчитывайте каждый компонент конструкции – от этого зависит срок службы и надежность. При правильном подборе драйверов характеристики светодиодов останутся максимально высокими, а ресурс не пострадает. Схемы драйверов для мощных светодиодов отличаются тем, что в них большее число элементов. Зачастую применяется ШИМ-модуляция, но в домашних условиях, что называется, «на коленке», такие устройства уже сложно собрать.

fb.ru

Схемы блоков питания для ноутбуков. Cборка № 5

  1. Домой
  2. Статьи
  3. Компьютерное железо
  4. Схемы блоков питания для ноутбуков. Cборка № 5

14/09/2016

81.9 K

схема, блок, питания, ноутбука, delta, asus, fsp
  • Схема универсального блока питания 70W для ноутбуков 12-24V, модель SCAC2004, плата EWAD70W
    на микросхеме LD7552.
  • Нажмите для увеличения изображения
К списку схем
  • Схема блока питания 60W 19V 3.42A для ноутбуков, плата KM60-8M
    на микросхеме UC3843.
  • Нажмите для увеличения изображения
К списку схем
  • Схема блока питания Delta ADP-36EH для ноутбуков 12V 3A
    на микросхеме DAP6A и DAS001.
  • Нажмите для увеличения изображения
К списку схем
  • Схема блока питания Li Shin LSE0202A2090 90W для ноутбуков 20V 4.5A
    на микросхеме NCP1203 и TSM101, АККМ на L6561.
  • Нажмите для увеличения изображения
К списку схем
  • Схема блока питания ADP-30JH 30W для ноутбуков 19V 1.58A
    на микросхеме DAP018B и TL431.
  • Нажмите для увеличения изображения
К списку схем
  • Схема блока питания Delta ADP-40PH ABW
  • Нажмите для увеличения изображения
  • Схема в формате PDF: ADP-40PH_2PIN.pdf
К списку схем
  • Схема блока питания HP Compaq CM-0K065B13-LF 65W для ноутбуков 18.5V 3.5A, модель PPP009H-DC359A
    на микросхемах UC3842 и LM358.
  • Нажмите для увеличения изображения
К списку схем
  • Схема блока питания NB-90B19-AAA 90W для ноутбуков 19V 4.74A
    на TEA1750.
  • Нажмите для увеличения изображения
  • Схема в формате PDF: NB-90B19-AAA.pdf
К списку схем
  • Схема блока питания LiteOn PA-1121-04CP
    на LTA702.
  • Нажмите для увеличения изображения
  • Схема в формате PDF: PA-1121-04.pdf
К списку схем
  • Схема блока питания Delta ADP-40MH BDA (Part No:S93-0408120-D04)
    на чипе DAS01A, DAP008ADR2G.
  • Нажмите для увеличения изображения
  • Схема в формате PDF: Delta_ADP-40MH_BDA.pdf
К списку схем
  • Ещё один вариант схемы блока питания Delta ADP-40MH BDA
    на чипах DAS01A и DAP8A.
  • Нажмите для увеличения изображения
  • Схема в формате PDF: Delta-ADP-40MH-BDA-OUT-20V-2A.pdf
К списку схем
  • Схема блока питания LiteOn 19V 4.74A
    на LTA301P, 103AI, PFC собрана на TDA4863G/FAN7530/L6561D/L6562D.
  • Нажмите для увеличения изображения
К списку схем
  • Схема блока питания Delta ADP-90SB BB AC:110-240v DC:19V 4.7A
    на микросхеме DAP6A, DSA001 или TSM103A.
  • Нажмите для увеличения изображения
К списку схем
  • Схема блоков питания Delta ADP-90FB AC:100-240v DC:19V 4.74A
    на микросхеме L6561D013TR, DAP002TR и DAS01A.
  • Нажмите для увеличения изображения
  • Схема в формате PDF: Delta-ADP-90FB-EK-rev.01.pdf
К списку схем
  • Схема блока питания LiteOn PA-1211-1
    на LM339N, L6561, UC3845BN, LM358N. Часть 1.
  • Нажмите для увеличения изображения
  • Часть 1 из 4. Вторая часть находится ниже на странице. Схема в формате PDF: PA-1211-1.pdf
  • Схема блока питания LiteOn PA-1211-1
    на LM339N, L6561, UC3845BN, LM358N. Часть 2.
  • Нажмите для увеличения изображения
  • Часть 2 из 4. Третья часть находится ниже на странице. Схема в формате PDF: PA-1211-1.pdf
  • Схема блока питания LiteOn PA-1211-1
    на LM339N, L6561, UC3845BN, LM358N. Часть 3.
  • Нажмите для увеличения изображения
  • Часть 3 из 4. Четвёртая часть находится ниже на странице. Схема в формате PDF: PA-1211-1.pdf
  • Схема блока питания LiteOn PA-1211-1
    на LM339N, L6561, UC3845BN, LM358N. Часть 4.
  • Нажмите для увеличения изображения
  • Часть 4 из 4. Вторая часть находится ниже на странице. Схема в формате PDF: PA-1211-1.pdf
К списку схем
  • Схема блоков питания Li Shin LSE0202A2090 AC:100-240v DC:20V 4.5A 90W
    на микросхемах L6561, NCP1203-60 и TSM101.
  • Нажмите для увеличения изображения
  • Схема в формате PDF: Li-Shin-LSE0202A2090.pdf
К списку схем
  • Схема универсального блока питания Gembird NPA-AC1 AC:100-240v DC:15V/16V/18V/19V/19.5V/20V 4.5A 90W
    на микросхеме LD7575 и полевом транзисторе MDF9N60.
  • Нажмите для увеличения изображения
  • Схема в формате PDF: GEMBIRD-model-NPA-AC1.pdf
К списку схем
  • Схема блоков питания Delta ADP-60DP AC:100-240v DC:19V 3.16A
    на микросхеме TSM103W (он же M103A) и I6561D.
  • Нажмите для увеличения изображения
  • Схема в формате PDF: ADP-60DP-19V-3.16A.pdf
К списку схем
  • Схема блоков питания Delta ADP-40PH BB AC:100-240v DC:19V 2.1A
    на микросхеме DAP018ADR2G и полевом транзисторе STP6NK60ZFP.
  • Нажмите для увеличения изображения
К списку схем
  • Схема блоков питания Asus SADP-65KB B AC:100-240v DC:19V 3.42A
    на микросхеме DAP006 (DAP6A или NCP1200) и DAS001 (TSM103AI).
  • Нажмите для увеличения изображения
К списку схем
  • Схема блоков питания Asus PA-1900-36 AC:100-240v DC:19V 4.74A
    на микросхеме LTA804N и LTA806N.
  • Нажмите для увеличения изображения
К списку схем
  • Схема блоков питания Asus ADP-90CD DB AC:100-240v DC:19V 4.74A
    на микросхеме DAP013D и полевике 11N65C3.
  • Нажмите для увеличения изображения
К списку схем
  • Схема блоков питания Asus ADP-90SB BB AC:100-240v DC:19V 4.74A
    на микросхеме DAP006 (она же DAP6A) и DAS001 (она же TSM103AI).
  • Нажмите для увеличения изображения
К списку схем
  • Схема блока питания LiteOn PA-1900/05 AC:100-240v DC:19V 4.74A
    на LTA301P и 103AI, транзистор PFC 2SK3561, транзистор силовой 2SK3569.
  • Нажмите для увеличения изображения
  • Схема в формате PDF: LiteOn-PA-1900-05.pdf
К списку схем
  • Схема блока питания LiteOn PA-1121-04 AC:100-240v DC:19V 6.3A
    на LTA702, транзистор PFC 2SK3934, транзистор силовой SPA11N65C3.
  • Нажмите для увеличения изображения
  • Схема в формате PDF: LiteOn-PA-1121-04.pdf
К списку схем
Теги этой статьи
  • схема
  • блок
  • питания
  • ноутбука
  • delta
  • asus
  • fsp
  • acer
  • compaq
  • samsung
  • lenovo
  • lite

Близкие по теме статьи:

Иллюстрация к статье Схемы блоков питания ATX, сборка № 2.
Схемы блоков питания ATX, сборка № 2.

35.4 K

схема, блок, питания, codegen, power, master, chieftec Читать Иллюстрация к статье Схемы блоков питания ATX, сборка № 3.
Схемы блоков питания ATX, сборка № 3.

28.1 K

схема, блок, питания, codegen, power, master, chieftec Читать Иллюстрация к статье Схемы блоков питания ATX, сборка № 8, БП «Colors-It».
Схемы блоков питания ATX, сборка № 8, БП «Colors-It».

18.4 K

схема, блок, питания, colors, sg6105, atx Читать Иллюстрация к статье Схемы блоков питания ATX, сборка № 9, БП «FSP».
Схемы блоков питания ATX, сборка № 9, БП «FSP».

70.7 K

схема, блок, питания, fsp, atx, pfc, apfc Читать Иллюстрация к статье Схемы блоков питания ATX. Полный список схем.
Схемы блоков питания ATX. Полный список схем.

164.4 K

sector.biz.ua

Отправить ответ

avatar
  Подписаться  
Уведомление о