Холодильник устройство и принцип работы – Как работает холодильник: принцип, устройство, схема

Содержание

Устройство холодильников | Ремонт холодильников на дому

1. Однокамерные холодильники

Устройство и принцип действия холодильного агрегата однокамерного холодильника.

В однокамерном холодильнике охлаждение холодильной камеры происходит от основного испарителя, который расположен в верхней части холодильного шкафа. Холодный воздух из испарителя падает вниз и охлаждает продукты холодильной камеры.

Для того, что бы охлаждение было не очень сильным, под основным испарителем устанавливают поддон с небольшими окошками, через которые холодный воздух от испарителя поступает в холодильную камеру. Приоткрывая и закрывая эти окошки можно регулировать температуру в холодильной камере.

Поскольку известно, что холодный воздух опускается вниз, то в однокамерных холодильниках морозильная камера расположена только в верхней части холодильного шкафа.

Холодильный агрегат однокамерного холодильника работает следующим образом: мотор-компрессор откачивает пары холодильного агента  из испарителя и нагнетает их в конденсатор. Здесь пары охлаждаются, конденсируются и переходят в жидкую фазу. Далее жидкий холодильный агент  через фильтр-осушитель и капиллярную трубку направляется в испаритель.

Выплёскиваясь в каналы испарителя, жидкий  холодильный агент  вскипает и начинает отбирать тепло от поверхности испарителя, тем самым охлаждая внутренний объём холодильника. Пройдя через испаритель, холодильный агент  выкипает и превращается в пар, который опять откачивается мотор-компрессором.

Цикл непрерывно повторяется до тех пор, пока температура на поверхности испарителя не достигнет необходимой величины, после чего терморегулятор выключит мотор-компрессор. Под действием окружающей среды температура в морозильной камере повышается, и терморегулятор снова включает мотор-компрессор.

Таким образом, внутри холодильника поддерживается необходимая температура. Для предотвращения образования конденсата на поверхности трубопровода всасывания на этот трубопровод по всей его длине припаивается капиллярная трубка.

При работе холодильника капиллярная трубка нагревается, соответственно нагревая трубопровод всасывания. На современных моделях холодильников капиллярная трубка находится внутри трубопровода всасывания.

2. Двухкамерные холодильники

Схема агрегата двухкамерного холодильника

Двухкамерный холодильник отличается от однокамерного наличием отдельных испарителей для холодильной и морозильной камер. В однокамерном холодильнике охлаждение холодильной камеры происходит от основного испарителя, который расположен в верхней части холодильного шкафа, холодный воздух от которого падает вниз и охлаждает продукты холодильной камеры.

В двухкамерном холодильнике камеры разделены теплоизолирующей перегородкой. Объем каждой камеры охлаждается своим испарителем.

Принцип действия агрегата двухкамерного холодильника следующий: холодильный агент, накачиваемый мотор-компрессором, проходит по конденсатору и капиллярной трубке, попадет в испаритель морозильной камеры, вскипает, и, испаряясь, начинает охлаждать поверхность испарителя.

При этом испарение жидкого холодильного агента и, соответственно, охлаждение начинается в месте входа капиллярной трубки в испаритель и постепенно продвигается по его каналам к выходу (см. рисунок ниже). Пока испаритель морозильной камеры не обмёрзнет до минусовой температуры, в испаритель холодильной камеры холодильный агент не поступает.

После обмерзания испарителя морозильной камеры жидкий холодильный агент начинает проникать в испаритель холодильной камеры, охлаждает его до температуры -14°С, после чего термостат, установленный на испарителе холодильной камеры, отключит мотор-компрессор.

После отключения мотора воздух в холодильной камере под воздействием окружающей среды постепенно нагревается, от этого нагревается испаритель холодильной камеры, и после нагрева испарителя до определённой температуры терморегулятор снова включает мотор-компрессор.

«Плачущий» испаритель.

Так обычно называют испаритель холодильной камеры в двухкамерных холодильниках. И вот почему: как правило, в относительно большой по объёму холодильной камере устанавливается испаритель небольшого размера (в несколько раз меньше, чем в морозильной камере), который обмерзает до температуры -14°С за довольно короткое время.

После чего чувствительный элемент терморегулятора, закреплённый на поверхности этого испарителя, даёт команду на отключение мотор-компрессора. За время работы мотора испаритель успевает охладить объём холодильной камеры до температуры +4°С.

После отключения мотор-компрессора воздух в холодильной камере начинает разогревать поверхность испарителя, и замерзший на нём слой инея тает и каплями стекает по испарителю в специальный лоток на стенке камеры. На фото ниже модели «плачущих» испарителей.

В двух-компрессорных холодильниках в одном корпусе устроены два самостоятельных холодильных прибора – холодильная камера и морозильная камера. Принцип действия полностью аналогичен выше описанному.

Что лучше, два компрессора или один?

Однозначного ответа на этот вопрос не существует, свои плюсы и минусы есть у обеих систем. Основным достоинством двухкомпрессорных моделей считается их повышенная экономичность — по сравнению с аналогичным по размеру однокомпрессорным аппаратом, двухкомпрессорный будет потреблять немного меньше электроэнергии. Разница в энергопотреблении не так велика, но если ее спроецировать на весь срок службы холодильника, то получится весьма существенная сумма. Это особенно актуально для европейских стран, стоимость электроэнергии в которых довольно высока. Кстати, наверное именно поэтому двухкомпрессорные модели производятся в основном в Европе.

С технической точки зрения повышенную экономичность двухкомпрессорных холодильников можно объяснить следующим образом. Как известно, двухкомпрессорные модели имеют независимую регулировку температуры в каждой камере, если система управления обнаруживает повышение температуры в одной из камер, то включается соответствующий этой камере маломощный экономичный компрессор, который выключается как только температура в камере достаточно понизится.

Однокомпрессорный холодильник не имеет раздельной регулировки. И если надо понизить температуру в холодильной камере, приходится включать единственный, относительно мощный и энергоемкий компрессор, который одновременно с охлаждением холодильной камеры будет вынужден совершать, возможно, ненужную в данный момент работу по дополнительному промораживанию морозилки, расходуя на это дополнительную электроэнергию.

К другим достоинствам двухкомпрессорной схемы, помимо уже упоминавшейся раздельной регулировки температуры в камерах, стоит отнести наличие полноценного режима суперзаморозки в морозильной камере, а также возможность отключить одну из камер, оставив работать другую (бывает полезно во время длительного отсутствия владельца). Кроме того, в силу определенных особенностей функционирования компрессионного холодильного агрегата, два маломощных компрессора создают меньше шума, чем один мощный. Соответственно, при прочих равных условиях, двухкомпрессорный холодильник будет работать немного тише.

Что касается однокомпрессорных аппаратов, то отсутствие всех вышеперечисленных благ компенсируется более низкой ценой самого холодильника, что в некоторых случаях является решающим фактором. Есть смысл упомянуть еще об одном типе холодильников, тем более, что он приобретает все большую популярность. Речь идет об однокомпрессорном аппарате, в холодильном агрегате которого дополнительно установлен специальный электромагнитный клапан, управляющий потоками хладагента, циркулирующего в агрегате. Благодаря наличию этого клапана, появилась возможность охлаждать камеры независимо друг от друга, не расходуя энергию компрессора на камеру, в данный момент времени не нуждающуюся в понижении температуры. Использование такой схемы позволяет достичь экономичности, сравнимой с экономичностью двухкомпрессорного холодильника.

В  подавляющем большинстве случаев холодильники  оснащенные системой No Frost и обслуживающие обе камеры, имеют один компрессор. Этот тип холодильников достаточно популярен, например, производственные программы таких фирм как Samsung, LG, Daewoo, Sharp, General Electric состоят, в основном, именно из таких аппаратов. Конструктивно подобные холодильники могут сильно отличаться друг от друга.

3. Холодильники NO FROST

Холодильники системы NO FROST отличаются от холодильников с обычной системой охлаждения тем, что в морозильной камере они не имеют привычного испарителя из металла, на который укладываются замораживаемые продукты.

Испаритель, который правильнее называть воздухоохладителем, в таких моделях скрыт за пластиковыми панелями, а холодильная камера вообще не имеет своего испарителя. Продукты в холодильниках NO FROST охлаждаются циркулирующим по камерам холодным воздухом, охлаждённым при прохождении через воздухоохладитель.

Конструктивно испаритель (воздухоохладитель) в холодильниках NO FROST в большинстве моделей холодильников внешне напоминает автомобильный радиатор

и может располагаться как в верхней, так и в нижней части морозильной камеры или за панелью на задней стенке этой камеры. За испарителем устанавливается вентилятор, который забирает воздух из морозильной и холодильной камер и прогоняет его через испаритель.

При прохождении через испаритель воздух охлаждается и по системе каналов направляется на охлаждаемые продукты. Большая часть охлаждённого воздуха поступает в морозильную камеру, а меньшая — по дополнительному каналу в холодильную.  Исключение составляют холодильники

FROST FREE, в холодильной камере которых установлен «плачущий» испаритель, и холодный воздух циркулирует только в пределах морозильной камеры.

Вопреки названию системы NO FROST (что у нас переводится как «без инея»), иней всё-таки образуется — просто его не видно, т.к. он образуется на закрытом от глаз испарителе. Периодически, раз в 8-16 часов, этот иней оттаивается нагревательными элементами, расположенными под испарителем или вмонтированы непосредственно в его конструкцию.

Командует оттайкой либо механический, либо электронный таймер. Подробнее о системе оттайки Вы можете узнать ниже на примере холодильника STINOL-104.

СИСТЕМА УПРАВЛЕНИЯ АВТОМАТИЧЕСКОЙ ОТТАЙКОЙ ХОЛОДИЛЬНИКОВ NO FROST

На данной схеме не изображены пуско-защитное реле, датчик задержки вентилятора и некоторые другие элементы, чтобы не усложнять схему.

Условные обозначения:

  • Пр — плавкий предохранитель;
  • Т-Т — терморегулятор;
  • 1, 2 и 3 — контакты таймера;
  • МТ- моторчик таймера;
  • R1 — нагреватель испарителя;
  • R2 — нагреватель поддона каплепадения;
  • ДП — датчик перегрева;
  • МВ -мотор вентилятора;
  • L 1 — индикаторная лампа.

Принцип работы:

При включении холодильника питание 220В подаётся на плавкий предохранитель ПР через включенные контакты термостата Т-Т, далее через контакты 1 и 2 таймера на мотор вентилятора и на мотор-компрессор.

Датчик перегрева в тёплом состоянии разомкнут, и ток через моторчик таймера не проходит, т.е. таймер в начале работы холодильника не работает. При понижении температуры в морозильной камере датчик перегрева, установленный на испарителе, замыкается, и таймер начинает отсчитывать время работы холодильника в режиме замораживания.

Отсчитав цикл замораживания, таймер размыкает контакты 1 и 2 и замыкает контакты 1 и 3. При этом разрывается цепь питания вентилятора и мотор-компрессора, и включаются нагреватели R1 и R2. Пока датчик перегрева замкнут, ток на моторчик таймера не поступает, и таймер не работает.

Температура на поверхности испарителя повышается, иней с него оттаивает, и из-за повышения температуры на испарителе размыкаются контакты датчика перегрева. Начинает работать моторчик таймера, и через некоторое время таймер размыкает контакты 1 и 3 и замыкает контакты 1 и 2. Запускается мотор-компрессор, вентилятор, и начинается цикл замораживания.

4. Принудительная заморозка (режим SUPER)

Режим принудительной заморозки продуктов применяется на морозильниках и двухкамерных холодильниках для замораживания большого количества тёплых продуктов.
Суть этого режима заключается в следующем: замораживаемые продукты, помещённые в морозильную камеру,  начинают охлаждаться с внешней части и лишь через некоторое время промерзают внутри.

Температура в холодильниках и морозильниках регулируется термостатом, или температурным датчиком, который отслеживает температуру либо самого испарителя, либо воздуха в морозильной камере, но не температуру замораживаемых продуктов.

И может случиться, что температура испарителя или воздуха в морозильной камере достигнет нужной для регулятора величины, и он отключит мотор-компрессор прежде, чем продукты промёрзнут насквозь.

Именно в таких случаях используется режим принудительной заморозки, при котором отключается регулятор температуры, и мотор-компрессор будет работать, без отключения, пока пользователь самостоятельно не отключит этот режим, убедившись в том, что продукты замёрзли.

Поскольку в режиме принудительной заморозки мотор-компрессор работает, без отключения, необходимо помнить, что такая работа мотора-компрессора более двух суток может привести к его поломке.

Включается режим принудительной заморозки (если он предусмотрен на данной модели холодильника или морозильника) специальной клавишей (кнопкой) или поворотом терморегулятора морозильной камеры по часовой стрелке до упора.

5. Обогрев дверного проёма

Обогрев дверного проёма применяется для предотвращения появления сконденсированной влаги на поверхности дверных проёмов. Конденсат на этих поверхностях появляется из-за разницы температуры внутри морозильного шкафа (камеры) и температуры окружающей среды.

К примеру, если в помещении, где установлен холодильник, температура + 30°С, а внутри морозильной камеры -18°С, то образование конденсата на торцах морозильного шкафа в местах прилегания уплотнительной резины практически неизбежно.

Хотя бывает, что на некоторых холодильниках функция электрического обогрева дверного проёма может быть отключена специальной клавишей. Это делается в случаях, когда в помещении, где находится холодильник, достаточно прохладно.

Функция отключения обогрева дверного проёма называется энергосберегающей, так как в таких холодильниках обогрев проёма осуществляется при помощи электрических нагревательных элементов. Однако в большинстве современных холодильников обогрев дверного проёма осуществляется за счёт горячего хладагента, нагнетаемого мотор-компрессором в конденсатор холодильного агрегата.

В таких моделях горячий хладагент, нагнетаемый мотор-компрессором, проходит по трубопроводу, проложенному в стенке холодильного шкафа, затем идёт по трубопроводу, уложенному внутри шкафа по периметру дверного проёма, обогревает этот проём и, уже немного остывший, по трубопроводу в стенке шкафа поступает в конденсатор агрегата.

В холодильниках и морозильниках с такой системой обогрева во время выхода холодильной системы в режим могут довольно сильно нагреваться стенки холодильного шкафа и дверной проём, что не является неисправностью.

6. Нулевая зона

Нулевой зоной называют специальный отсек холодильной камеры, предназначенный для хранения свежего мяса, свежей птицы и рыбы.

Как правило, этот отсек представляет собой выдвижные ящики, которые обычно располагаются между морозильной и холодильной камерами. Производителями декларируется поддержание в таком отделении определенной влажности и температуры около 0°С.

В некоторых моделях этот отсек представляет собой отдельную холодильную  камеру, которая обычно располагается между морозильной и холодильной камерами. В таком отделении влажность обычно не превышает 50% при температуре 0°С.

Благодаря таким условиям хранения многие продукты сохраняют свою свежесть в среднем в два-три раза дольше, чем в обычном холодильнике.

7. Зачем в некоторых холодильниках рядом с плачущим                    испарителем установлен вентилятор?

Этот вентилятор повышает эффективность теплообмена между воздухом холодильной камеры и поверхностью испарителя.

Принудительная циркуляция воздуха, которую обеспечивает вентилятор, позволяет точнее поддерживать заданную пользователем температуру во всем объеме холодильной камеры (особенно актуально для холодильных камер большого объема). Кроме того, значительно сокращается время, необходимое для охлаждения только что загруженных в камеру продуктов до температуры хранения.

8. Электронное управление или механическое, что лучше?

Электронная система управления, по сравнению с механической, имеет целый ряд преимуществ. Среди них более точное поддержание заданной температуры в камерах, возможность некоторой оптимизации процесса производства искусственного холода с целью повышения экономичности холодильника, предоставление пользователю целого перечня дополнительных функций и сервисов (индикация текущей температуры в камерах на электронном табло, звуковое и визуальное информирование о повышении температуры в камерах или неплотно закрытой двери, автоматическое отключение режима суперзаморозки по прошествии определенного времени и многое другое). Безусловно, если ориентироваться на технические характеристики и удобство пользования, то холодильники с электронной системой управления выглядят значительно привлекательнее своих «механических» собратьев.

Главным плюсом «механики» является простота и надежность. Конструкция механических приборов автоматики совершенствовалась на протяжении всей истории развития бытовых холодильников, и к настоящему моменту технология их производства отработана до мелочей. Механические устройства управления несколько дешевле электронных систем, а разработка холодильников на их основе требует меньших капиталовложений и происходит быстрее. В итоге, холодильник с механическим управлением оказывается дешевле аналогичного по размерам «электронного» аппарата.

Кроме того, в отличии от электроники, механические приборы практически нечувствительны к различным нестабильностям сетевого напряжения.

Следует учитывать и тот факт, что ремонт холодильника, оборудованного электроникой, как правило, обходится дороже. А необходимые для ремонта электронные комплектующие иногда приходится предварительно заказывать из-за границы, в то время, как для «механики» обычно все есть в наличии.

refer.lt

Знакомство c устройством и работой холодильных установок

Сегодня в охлаждении нуждается огромное количество продуктов, а еще без холода невозможно реализовать многие технологические процессы. То есть с необходимостью применения холодильных установок мы сталкиваемся в быту, в торговле, на производстве. Далеко не всегда удается использовать естественное охлаждение, ведь оно сможет понизить температуру лишь до параметров окружающего воздуха.

На выручку приходят холодильные установки. Их действие основано на реализации несложных физических процессов испарения и конденсации. К преимуществам машинного охлаждения относится поддержание в автоматическом порядке постоянных низких температур, оптимальных для определенного вида продукта. Также немаловажными являются незначительные удельные эксплуатационные, ремонтные затраты и расходы на своевременное техническое обслуживание.

Как работает холодильная машина

Для получения холода используется свойство холодильного агента корректировать собственную температуру кипения при изменении давления. Чтобы превратить жидкость в пар, к ней подводится определенное количество теплоты. Аналогично конденсация парообразной среды наблюдается при отборе тепла. На этих простых правилах и основывается принцип работы холодильной установки.

Это оборудование включает в себя четыре узла:
  • компрессор
  • конденсатор
  • терморегулирующий вентиль
  • испаритель

Между собой все эти узлы соединяются в замкнутый технологический цикл при помощи трубопроводной обвязки. По этому контуру подается холодильный агент. Это вещество, наделенное способностью кипеть при низких отрицательных температурах. Этот параметр зависит от давления парообразного хладагента в трубках испарителя. Более низкое давление соответствует низкой температуре кипения. Процесс парообразования будет сопровождаться отнятием тепла от той окружающей среды, в которую помещено теплообменное оборудование, что сопровождается ее охлаждением.

При кипении образуются пары хладагента. Они поступают на линию всасывания компрессора, сжимаются им и поступают в теплообменник-конденсатор. Степень сжатия зависит от температуры конденсации. В данном технологическом процессе наблюдается повышение температуры и давления рабочего продукта. Компрессором создают такие выходные параметры, при которых становится возможным переход пара в жидкую среду. Существуют специальные таблицы и диаграммы для определения давления, соответствующего определенной температуре. Это относится к процессу кипения и конденсации паров рабочей среды.

Конденсатор – это теплообменник, в котором горячие пары хладагента охлаждаются до температуры конденсации и переходят из пара в жидкость. Это происходит путем отбора от теплообменника тепла окружающим воздухом. Процесс реализуется при помощи естественной или же искусственной вентиляции. Второй вариант зачастую применяется в промышленных холодильных машинах.

После конденсатора жидкая рабочая среда поступает в терморегулирующий вентиль (дроссель). При его срабатывании давление и температура понижается рабочих параметров испарителя. Технологический процесс вновь идет по кругу. Чтобы получить холод необходимо подобрать температуру кипения хладагента, ниже параметров охлаждаемой среды.

На рисунке представлена схема простейшей установки, рассмотрев которую можно наглядно представить принцип работы холодильной машины. Из обозначений:
  • «И» — испаритель
  • «К» -компрессор
  • «КС» — конденсатор
  • «Д» — дроссельный вентиль

Стрелочками указано направление технологического процесса.

Помимо перечисленных основных узлов, холодильная машина оснащается приборами автоматики, фильтрами, осушителями и иными устройствами. Благодаря им установка максимально автоматизируется, обеспечивая эффективную работу с минимальным контролем со стороны человека.

В качестве холодильного агента сегодня в основном используются различные фреоны. Часть из них постепенно выводится из употребления ввиду негативного воздействия на окружающую среду. Доказано, что некоторые фреоны разрушают озоновый слой. Им на смену пришли новые, безопасные продукты, такие как R134а, R417а и пропан. Аммиак применяется лишь в масштабных промышленных установках.

Теоретический и реальный цикл холодильной установки

На этом рисунке представлен теоретический цикл простейшей холодильной установки. Видно, что в испарителе происходит не только непосредственно испарение, но и перегрев пара. А в конденсаторе пар превращается в жидкость и несколько переохлаждается. Это необходимо в целях повышения энергоэффективности технологического процесса.

Левая часть кривой – это жидкость в состоянии насыщения, а правая – насыщенный пар. То, что между ними – паро-жидкостная смесь. На линии D-A` происходит изменение теплосодержания холодильного агента, сопровождающееся выделением тепла. А вот отрезок В-С` наоборот, указывает на выделение холода в процессе кипения рабочей среды в трубках испарителя.

Реальный рабочий цикл отличается от теоретического ввиду наличия потерь давления на трубопроводной обвязке компрессора, а также на его клапанах.

Чтобы компенсировать данные потери работа сжатия должна быть увеличена, что снизит эффективности цикла. Данный параметр определяется отношением холодильной мощности, выделяемой в испарителе к мощности, потребляемой компрессором и электрической сети. Эффективность работы установки – это сравнительный параметр. Он не указывает непосредственно на производительность холодильника. Если данный параметр 3,3, это будет указывать, что на единицу электроэнергии, потребляемой установкой, приходится 3,3 единицы произведенного ею холода. Чем больше этот показатель, тем выше эффективность установки.

crio.pro

Общее описание принципов работы холодильника

В наше время холодильник — незаменимый атрибут современной жизни. Вы вряд ли найдете квартиру, в которой не будет холодильника. Как только его не называют в шутку — белый шкаф, большой друг, овощехранилище, источник еды и т.д. Иногда встречаются даже издевательские названия, а порой даже небрежно с ним обращаются. Но стоит холодильнику сломаться — все вдруг вспоминают его важность и необходимость и сразу же бросаются на поиски мастера по ремонту холодильников.

Несмотря на повсеместное применение холодильников в нашей жизни, мало кто знает, как работает холодильник, далеко не каждый даже слышал о принципе его действия.

В этой статье мы попробуем максимально просто (без всяких формул и технически фраз) рассказать о принципах работы холодильников.

Основные составляющие части холодильника

Основными и самыми главными составляющими любого холодильника являются:

1. Хладагент. Это не Джеймс Бонд и не специальный агент ФБР или ЦРУ, как можно было бы подумать, не зная специфики холодильного оборудования. Хладагент — это вещество, которое циркулирует внутри холодильники и переносит в себе тепло. Чаще всего в качестве хладагента используется газ — фреон. Именно его утечка часто становится причиной выхода из строя холодильника.

2. Компрессор. Компрессор — это специальный насос, который отвечает за прокачку хладагента по трубкам, чтобы тот мог собирать тепло и выводить его из холодильника.

Выход из строя компрессора холодильника также одна из часто встречающихся причин ремонта холодильников. Компрессор — это сердце в «организме» холодильника, а хладагент подобен крови. Обе составляющие имеют большое значение.

3. Конденсатор. Каждый видел ту странную решетку на задней стенке холодильника, но мало кто знает, что именно это штуковина называется конденсатором и отвечает за отдачу тепла из хладагента в окружающий холодильник воздух.

4. Испаритель. Эту деталь очень сложно увидеть. Как правило, испарителем служит внутренняя стенка холодильника. Именно при помощи испарителя происходит забор тепла в хладагент из холодильника.

 

 

 

 

 

Как же все это работает внутри холодильника?

Очень просто. Исключительно на законах физики.

 

В испарителе внутри холодильника хладагент находится в состоянии пара, оттуда его компрессор под давлением перекачивает в конденсатор. При этом под влиянием давления хладагент принимает жидкое состояние и становится текучим, одновременно с этими температура хладагента повышается. Нагретый хладагент проходит по трубкам конденсатора (черный решетки) и отдает взятое изнутри холодильника тепло в окружающий воздух.

Затем через очень узкое отверстие (капилляр) хладагент поступает в испаритель. При этом он сильно охлаждается. В результате он отнимает тепло у стенок испарителя, а испаритель, в свою очередь, охлаждает внутреннее пространство холодильника и продукты, содержащиеся в нем.

А из испарителя хладагент снова перекачивается в конденсатор. И так продолжается бесконечно долго по кругу. До тех пор, пока что-нибудь из этой цепочки не выходит из строя

Но в таких случаях Вам нечего боятся — наши специалисты всегда готовы прийти на помощь и выполнить качественный ремонт холодильника в Минске, предоставив Вам гарантии на выполненные работы и установленные детали.

 

Свежих Вам продуктов! А чтобы они были свежие, важно, чтобы в холодильнике хорошо пахло!

 

Читайте больше советов в нашем разделе

icehelp.by

Устройство и принцип работы бытового холодильника

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ИЖЕВСКАЯ ГОСУДАРСТВЕННАЯ СЕЛЬСКОХОЗЯЙСТВЕННАЯ АКАДЕМИЯ»

Кафедра ТОППП

утверждаю:

проректор по учебной работе

профессор Акмаров П.Б.

«____»______________2009 г.

Учебно-методическое пособие к лабораторной работе №1

по дисциплине «Холодильное и вентиляционное

оборудование» направление «Агроинженерия»

Ижевск 2009

Учебно-методическое пособие составлено к.т.н., доцентом каф. ТОППП Сергеевым А.А.

Рецензент – к.т.н., доцент каф. ТМППЖ Васильченко М.Ю.

Рекомендовано методической комиссией Агроинженерного факультета (протокол № 4 от 23.03.2009 г.).

1. Цель работы

Изучение конструкции и принципа действия холодильного агрегата бытового холодильника.

2. Теоретические положения

2.1. Основные сведения о холодильном агрегате

Холодильный агрегат компрессионного бытового холодильника состоит из герметичного компрессора, испарителя, конденсатора, системы трубопроводов и фильтра — осушителя. Герметичный компрессор со встроенным электродвигателем чаще всего установлен внизу под шкафом, конденсатор — на задней стенке, а испаритель образует небольшое морозильное отделение в верхней части камеры. Иногда встречается другая компоновка: компрессор устанавливают на шкафу, горизонтальный и частично наклонный конденсатор — в верхней части камеры, т.е. под компрессором.

В напольных холодильниках различают 2 типа агрегатов: с испарителем, который устанавливают через люк задней стенки шкафа, и с испарителем, монтируемым через дверной проем.

2.2. Принцип действия компрессионного холодильного агрегата

Охлаждение в холодильной камере осуществляется вследствие изменения агрегатного состояния хладагента в системе герметичного холодильного агрегата. Пары хладагента отсасываются из испарителя компрессором и проходят внутри кожуха, охлаждая обмотку электродвигателя. Сжатые в компрессоре пары хладагента по нагнетательной трубке поступают в охлаждаемый окружающим воздухом конденсатор. Давление паров хладагента в конденсаторе зависит от вида хладагента. В конденсаторе пары хладагента переходят в жидкое состояние, отдавая теплоту окружающей среде. Жидкий хладагент из конденсатора поступает через фильтр в капиллярную трубку (где происходит его дросселирование) и затем в испаритель. Капиллярная трубка создает необходимый для работы перепад давления между конденсатором и испарителем. Давление хладагента в испарителе понижается. Жидкий хладагент при низком давлении кипит, отнимая теплоту от стенок испарителя и воздуха холодильной камеры. Из испарителя пары хладагента по всасывающей трубке вновь поступают в кожух компрессора, и цикл повторяется. Холодные пары хладагента, проходя по всасывающей трубке, охлаждают жидкий хладагент, который поступает по капиллярной трубке из конденсатора в испаритель. Теплообменником служит участок всасывающей и капиллярной трубок, спаянных между собой. В некоторых моделях холодильников капиллярная трубка пропущена внутри всасывающей.

Компрессор приводится в движение встроенным однофазным электродвигателем переменного тока, имеющим рабочую и пусковую обмотки. Для пуска электродвигателя и защиты его от токовых перегрузок применяют пускозащитное реле. Заданная температура в холодильной камере поддерживается автоматически терморегулятором, чувствительный элемент которого крепится к испарителю.

Рис. 1. Схема компрессионного холодильного агрегата:

1 — компрессор; 2 — нагнетательная трубка;

3 — фильтр; 4 — конденсатор; 5 — испаритель;

6 — теплообменник; 7 — капиллярная трубка;

8 — всасывающая трубка.

studfiles.net

Устройство холодильника: как работает прибор?

Современный холодильник стал привычной частью жизни любого человека. Обычно такое оборудование работает бесперебойно, но следует только случиться неожиданной поломке, как его владелец теряется и впадает в панику. Причина этому – незнание внутреннего механизма агрегата. Несмотря на расхождение в строении, каждое современное устройство имеет общие черты. Поэтому, изучив основные детали конструкции, можно рассчитывать на самостоятельное обследование и ее ремонт.

Особенности конструкции

Для полноценной работы холодильника необходим фреон. Этот газ быстро меняет свои состояния, что позволяет ему успешно понижать температуру, тем самым способствуя бережному сохранению продуктов. Безопасность этого хладагента неоднократно подтверждалась практикой, поэтому беспокоиться о токсичности этого вещества не стоит. Холодильник – надежный агрегат, безупречно выдерживающий 5–10 лет беспрерывной работы. Обычный классический холодильник – это шкаф изотермического типа, работающий от электричества. Герметичность его стенок обеспечивает листовая сталь с внешним эмалевым покрытием или ударопрочный пластик. Каждый из таких агрегатов имеет следующее устройство.

Дверь представлена двумя панелями, соединенными изнутри теплоизолирующей вставкой, которую чаще всего размещают по стенкам, в нижней части, у дна или вдоль внутренней части дверного полотна. Для этого используют пенополистирол, пенополиуретан, минеральное волокно, стекловолокно. Магнитный уплотнитель, зафиксированный аналогичным способом, удерживает створку максимально плотно.

Компрессор – главная часть холодильника, предназначенная для закачки и перегона хладагента в конденсатор с последующим вытягиванием его паров из испарителя.

Современные холодильники оборудуют 1 или 2 такими элементами, а хладагент – вещество, вбирающее в себя тепло, такую функцию выполняет фреон.

Конденсатор имеет вид изогнутой трубки с диаметром в 5 мм. Такой змеевик постепенно соединяется с металлическим прутиком, в этой части фреон приобретает жидкое состояние, а тепло перемещается в окружающую среду.

Фильтр осушитель в виде цилиндрического прибора с зауженными краями устанавливается в конденсатор или около него. Его назначение – выводить влагу из системы и обеспечить фреону безупречную чистоту.

Испаритель действует совершенно по-другому, чем конденсатор: в процессе преобразования фреона в жидкое вещество происходит поглощение тепла и холодильник начинает вырабатывать холод. Его устанавливают в камерах или стенках любого агрегата.

Капиллярные медные трубки понижают давление фреона, их устанавливают в пространстве между испарителем и конденсатором. Пусковое реле обеспечивает постоянную работу компрессора и предохраняет холодильник от случайной поломки в результате скачка напряжения. Температурные датчики регулируют показатели тепла и холода в самой камере. При достижении определенных значений они приостанавливают работу компрессора.

Крыльчатки перемешают воздух по камере холодильника. Лампа загорается в момент открывания и гаснет при закрывании дверки, позволяя наиболее экономно расходовать энергию.

Принцип функционирования бытовых холодильников

Работа бытового холодильника основана на беспрерывном действии хладагента, в роли которого выступает фреон. Этот газ обеспечивает круговое движение с изменением температуры. Давление приводит к закипанию вещества, после чего оно переходит в парообразное состояние и вбирает в себя тепло от стенок испарителя. Такое действие приводит к снижению температуры в камере на несколько градусов.

Любой агрегат прекрасно работает при наличии у него компрессора, поддерживающего давление в нужных границах, испаряющего устройства, вбирающего тепло в холодильной камере, конденсатора, выбрасывающего накопленную энергию вовне, дросселирующих отверстий – терморегулирующего вентиля и капилляров.

Компрессор холодильника контролирует любые изменения в давлении системы. Он втягивает хладагент, доведенный до газообразного состояния, давит на него и выбрасывает назад в конденсатор. Это приводит к повышению температуры фреона, после этого вещество вновь превращается в жидкое состояние. Компрессор прекрасно работает за счет установленного внутри корпуса электродвигателя. Без этой детали невозможно нормальное функционирование агрегата.

Инверторный тип управления, свойственный современным холодильникам, обещает длительную и легкую эксплуатацию, а устройство обеспечит бесшумность работы. Наличие пускозащитного реле повышает работоспособность агрегата. Эта деталь активирует пусковую обмотку в момент подключения прибора и защищает компрессор от перегрева. По мере нагревания металлической детали в самом корпусе происходит автоматическое отключение системы.

Поэтому действие любого холодильника основано на передаче внутреннего тепла в окружающий воздух и постепенном охлаждении камеры. Этот эффект любой человек наблюдает в процессе ежедневного использования агрегата. Охлаждающее устройство поддерживает внутри корпуса постоянную температуру, что позволяет хранить продукты без опасения за их качество.

К сведению, любой современный холодильник имеет неодинаковую температуру в разных отделениях. Практически в каждом из агрегатов есть камера для заморозки, зона для хранения овощей, яиц, мясных продуктов.

Устройства с одной и двумя камерами

Охлаждающее устройство может иметь неодинаковое число камер. Однокамерные агрегаты действуют за счет испарений фреона, проникающих из морозильного отделения в холодильный отсек. Вначале пар поступает в конденсатор, затем он превращается в жидкость и, проходя сквозь фильтр и капиллярную трубку, оказывается в емкости испарителя. Постепенное закипание фреона приводит к охлаждению холодильника. Цикличность охлаждения происходит до того момента, пока температурные показания не будут достаточными, после чего компрессор отключится.

Двухкамерное устройство действует немного иначе. Здесь каждый отсек оборудован двумя испарителями. Жидкий фреон переходит, минуя капиллярные трубки и конденсатор, в испаряющую часть морозильного отделения, где образуются холодные массы. Затем хладон поступает в устройство другого испарителя и понижает температуру в холодильном отделении. По мере уравновешивания температуры происходит отключение компрессора.

Как видно, холодильник имеет упрощенную схему устройства, которая обеспечит бесперебойную и продолжительную работу в течение всего эксплуатационного срока.

openfile.ru

Холодильник бытовой и принцип его работы

Содержание статьи

 

Какая-то неведомая сила подняла Василия,
он медленно подошел к холодильнику,
открыл дверцу, и руки сами потянулись к
прохладной, запотевшей бутылке (с соком)
Данила Асов

Холодильник в доме, по моему мнению, самый важный, самый нужный бытовой прибор.

Возьмем, к примеру, обычный июльский день, семья, дети смотрят мультики по телевизору, жена за компьютером на сайте о саде-огороде, муж сбривает электробритвой трехдневную щетину.

И вдруг по неизвестным причинам отключается электричество. Телевизор погас, дети в расстройстве, компьютер отключился – жена огорчилась, не успела дочитать интересную статью о клематисах (это цветы такие).

Только муж спокоен, он же мужчина и невозмутимо продолжает брить свой подбородок — бритва-то аккумуляторная.

Эта ситуация с отключением света всегда выбивает из обычного течения жизни — так много приборов и устройств в доме, которые без электричества совершенно бесполезны.

Можно их долго перечислять — телевизор, компьютер, микроволновка, стиральная машина, освещение (особенно вечером), пылесос, утюг, кондиционер и так далее.

Но больше всего, хозяев волнует их бытовой холодильник, точнее его содержимое, те продукты, которые находятся в холодильной камере и в морозилке.

Бытовые холодильники некоторое время могут сохранять низкую температуру внутри шкафов после отключения электропитания, но все же желательно, чтобы это время было минимальным.

Поэтому сразу начинаются звонки в аварийные службы, выяснения причин отключения электроэнергии и главный вопрос – «а когда же включат электричество».

Историю развития холодильников мы рассмотрели ранее, сегодня мы ознакомимся с устройством
и принципом действия компрессорных холодильников.

Устройство холодильника

Холодильник однокамерный

Холодильники применяются не только дома, но и в других сферах деятельности человека.

Правда, называться они там могут чуть по-другому – холодильные установки на мясокомбинатах, холодильные витрины в магазинах, холодильные шкафы для напитков в кафе и барах.

Другими словами, холодильное оборудование используется везде, где присутствуют скоропортящиеся продукты – при их производстве, хранении, продаже.

Мы с вами будем рассматривать только холодильники бытовые компрессионные , как самые распространенные, самые популярные и которые есть практически в каждой семье.

Назначение холодильника бытового не требует пояснений — все знают, что этот аппарат предназначен для хранения скоропортящихся продуктов питания, а также лекарственных и косметических средств, для которых требуются особые условия хранения.

Увеличение сроков сохранности содержимого холодильника происходит за счет того, что температура внутри холодильника ниже, чем в помещении.

Устроен холодильник довольно просто, если не рассматривать подробно процессы, проходящие в холодильном агрегате холодильника и скрытые от глаз рядового потребителя.

Я попробую рассказать о принципах работы холодильника простым, понятным языком.

Обычно холодильник представляет собой вертикально расположенный шкаф, имеющий одну или две дверцы.

Между наружными и внутренними стенками холодильника проложен толстый слой теплоизоляционного материала. Он нужен для того, чтобы холод как можно меньше уходил наружу и не охлаждал воздух помещения.

Все современные холодильники имеют во внутреннем пространстве две зоны: холодильную и морозильную.

По типу компоновки холодильного и морозильного отделений холодильники могут быть однокамерными, двухкамерными и двухкамерными типа «бок о бок».

У однокамерных холодильников одна дверца, за ней в верхней части внутреннего объема располагается морозилка, а ниже холодильное отделение.

Морозилка, как правило, имеет собственную откидную или открывающуюся дверцу.

В холодильном отделении устанавливаются полки для продуктов, которые хозяйка может установить по своему усмотрению на определенном расстоянии друг от друга.

На внутренней стороне двери холодильника также имеются полки и закрывающиеся отделения для размещения продуктов, яиц, бутылок с напитками, лекарств.

Холодильник двухкамерный

У двухкамерных холодильников морозильная и холодильные камеры располагаются отдельно друг от друга, каждая камера имеет свою дверцу.

Это очень удобно – при укладке или выемке продуктов в одной камере, температура в другой камере остается неизменной.

Изготовителями применяются два варианта расположения камер в холодильнике:

— морозильная камера располагается снизу под холодильной камерой, такая компоновка называется европейской.
— морозильная камера располагается над холодильной камерой, такая компоновка называется азиатской.

У двухкамерных холодильников типа «бок о бок» обе камеры расположены рядом по всей высоте холодильника, такая компоновка называется американской. Как правило, ширина таких холодильников больше, чем у традиционных.

Для начала рассмотрим основные узлы холодильника, которые принимают непосредственное участие в производстве холода.

Компрессор

  • Компрессор представляет собой электродвигатель и компрессор, размещенные в одном корпусе. Задачей компрессора является – сжатие паров хладагента с целью их перемещения в заданном направлении.

Конденсатор

  • Конденсатором в холодильнике называется устройство в виде решетки, закрепленной на задней стенке холодильника. Конструкция конденсатора может быть различной, но все они выполняют одинаковую функцию – охлаждение горячих паров хладагента до температуры охлаждающего воздуха. При охлаждении паров они конденсируются (вот откуда название «конденсатор» и превращаются в жидкость.

Испаритель

  • Испаритель в холодильнике предназначен для отвода тепла из внутренних объемов холодильника. Отводит тепло испаритель очень энергично – температура в морозилке достигает минус 18 градусов. Примером испарителя может служить морозилка в старых типах холодильников. Это камера, выполненная обычно из алюминия, по всей площади внутри выполнен канал, по которому циркулирует хладагент. (Вот почему нельзя примерзшие куски мяса отрывать от поверхности морозилки с помощью ножа – можно повредить канал). Исполнение испарителей также может быть различным, но любой испаритель должен непосредственно контактировать с внутренним объемом холодильника, чтобы эффективно отводить оттуда тепло, за счет чего происходит понижение температуры внутри холодильника.

Эти три крупных узла связаны между собой трубопроводами (трубками) и все это в целом образует герметичную замкнутую систему.

Кроме этих трех крупных узлов в системе присутствуют и выполняют заданную функцию также фильтр-осушитель и капилляр.

Система заполнена определенным количеством специального вещества, которое называется хладагентом.

В качестве хладагента в бытовых холодильниках компрессионного типа обычно используется фреон (второе название – хладон).

Принцип действия холодильника

Холодильник side by side (бок о бок)

Как же происходит образование холода в компрессионном холодильнике?

Принцип работы холодильника постараюсь описать попроще, как обещал ранее, без ссылок на законы физики и термодинамики.

При включении в сеть начинает работать компрессор, в результате чего он сжимает пары хладагента, при этом происходит повышение давления паров, а также и возрастание их температуры.

Горячие пары хладагента под воздействием избыточного давления поступают в конденсатор.

Проходя по металлической трубке конденсатора, имеющей большую длину, пар через стенки трубки отдает тепло в окружающую среду, постепенно остывая до комнатной температуры, и превращается в жидкость (конденсируется).

Далее хладагент в жидком состоянии проходит через капилляр (капилляр — очень узкое отверстие), в результате этого давление на выходе капиллярной трубки уменьшается, вследствие этого температура хладагента также уменьшается и он превращается в газообразное состояние.

В испаритель хладагент поступает в виде достаточно охлажденного пара и проходя по каналам испарителя, этот пар как бы отбирает тепло из внутреннего пространства холодильника.

Далее подогретый пар из испарителя поступает снова в компрессор, и цикл повторяется снова и снова.

Не очень понятно, да? Можно сказать еще проще. Компрессор гоняет фреон по замкнутому кругу, при этом фреон за счет специальных устройств (испарителя и капилляра) превращается то в жидкое состояние, то снова в газообразное.

При этом фреон отбирает тепло из внутреннего объема холодильника и через конденсатор отдает это тепло в окружающее помещение, например кухню.

Управление холодильником

Холодильник с дисплеем

Эксплуатация холодильника и управление им не представляет никакой сложности, так как холодильник работает в автоматическом режиме днем и ночью, в будние дни и в выходные.

Нужно только при первом включении терморегулятором задать необходимую температуру в холодильнике.

Терморегуляторы в современных холодильниках могут быть двух видов – или электромеханические или электронные.

С помощью первых терморегуляторов температура в холодильнике устанавливается «на глазок» опытным путем и по рекомендациям, указанным в инструкции по эксплуатации холодильника в зависимости от вида продуктов, загружаемых в холодильник и их количества.

Ручка такого терморегулятора имеет несколько делений, например шесть. Первое деление соответствует режиму минимального охлаждения, шестое, соответственно, максимальной температуре.

Обычно рекомендуется сначала установить ручку регулятора в среднее положение, а потом через сутки подкорректировать степень охлаждения продуктов, повернув ручку чуть вправо или чуть влево.

Электронные регуляторы позволяют точно задать желаемую температуру в холодильнике, например, минус 18 градусов по Цельсию в морозильном отделении.

Температура задается с помощью кнопок или поворотной ручки, значение задаваемой температуры и температуры фактической отображается на жидкокристаллическом дисплее.

В некоторых моделях холодильников, предусмотрена возможность задания температуры не только в морозильном отделении, но также отдельно в холодильной камере.

После достижения заданной температуры внутри холодильника, терморегулятор отключает питание компрессора, и холодильник переходит в дежурный режим.

Термоизоляция стенок холодильника не идеальна, постепенно температура в камере повышается и в некоторый момент терморегулятор дает сигнал на включение компрессора, который начинает гонять хладагент по системе, температура начинает понижаться вплоть до достижения заданного значения и отключения компрессора.

Так циклы включения-отключения компрессора продолжаются постоянно до момента отключения электричества.

Такие циклы включения очень явно были слышны в старых моделях холодильников, изготовленных 20 -30 лет назад, особенно ночью. Отключение холодильника сопровождалось шумом и тряской аппарата. Возможно, такие холодильники еще сохранились у некоторых хозяев в деревнях, на дачах.

Современная техника практически работает бесшумно, иногда даже непонятно, включен компрессор или уже отключился.

На этом я закончу вступительную статью, посвященную бытовым холодильникам, где мы с вами ознакомились с устройством холодильников и принципом их действия.

В следующей статье по холодильникам я планирую рассмотреть системы разморозки современных бытовых холодильных аппаратов, их дополнительные современные функции, основные технические характеристики и критерии выбора холодильников.

Интересно также почитать:

toolsgid.ru

Принцип работы холодильника и его устройство

Если вы не хотите, чтобы мелкие неисправности или даже серьезные поломки бытовой техники застали вас врасплох, необходимо внимательно изучить принцип работы холодильника. В наши дни существует несколько технологий, по которым функционируют холодильники, но в целом принцип достаточно схожий. Вникнув в базовое устройство холодильника и принцип его работы, вы самостоятельно сможете определить причину поломки, и даже в некоторых случаях сумеете устранить неполадки.

Итак, как работает холодильник? Принцип работы современного холодильника основан на таком веществе как фреон, который способен быстро менять свое состояние и охлаждать продукты благодаря своим выдающимся качествам.

В современном производстве используются только безопасные и экологически чистые хладагенты, которые гарантированно не нанесут вреда вашему здоровью и здоровью ваших близких.

Фреон движется по системе благодаря компрессору, и испаряется следующим образом:

  1. На задней панели холодильника образуется повышенное давление;
  2. На испарителе образуется пониженное давление;
  3. На задней панели хладагенты становятся более сжиженными, а на испарителе наоборот – начинают испаряться;
  4. Нагнетается холодная температура.

Давление повышается благодаря особой капиллярной трубке, являющейся дополнением к трубкам с хладагентом. Это основной принцип работы стандартного холодильника с фреоном.

Компрессор

Главная деталь, благодаря которой функционирует холодильник – это компрессор. Его можно назвать своеобразным двигателем холодильника, который обеспечивает работу рефрижератора. Главная особенность современных компрессоров – инверторное управление, благодаря которому устройство может бесперебойно служить больше десятка лет. Помимо впечатляющего долголетия, благодаря такому подходу удалось добиться низкого уровня шума.

Для того чтобы холодильник эффективно функционировал, требуется наличие пускозащитного реле. Дело в том, что компрессор отличается несинхронным принципом работы. Пускозащитное реле отвечает за активацию пусковой обмотки, но только на момент запуска. Благодаря подобному подходу компрессор эффективно защищен от перегрева – как только металлический элемент внутри корпуса нагревается до определенной температуры, система отключается.

Однокамерные и двухкамерные

После того как вы поняли устройство компрессора и роль фреона в функционировании рефрижератора, можно перейти непосредственно к работе холодильника. У однокамерных и двухкамерных изделий устройство и принцип работы несколько различается.

Однокамерный холодильник охлаждает воздух за счет паров фреона, которые поступают сверху, из морозильной камеры, вниз в холодильный отсек. Сначала пары попадают в конденсатор благодаря работе компрессора, а затем переходят в жидкое состояние и через фильтр и капиллярную трубку попадают в резервуар испарителя. Там фреон закипает, и затем охлаждает холодильный шкаф.

Процесс охлаждения происходит в цикличном порядке, и движется вплоть до того момента, пока температура не достигнет должного уровня. Затем компрессор отключается.

В большинстве однокамерных агрегатов температура в холодильном шкафу регулируется простыми манипуляциями со специальными окошками. Под морозильным отсеком размещена особая панель с окошками, которые пропускают холодный воздух – чем шире они открыты, тем холоднее в камере. Очень простое, и при этом надежное и эффективное устройство.

Двухкамерный холодильник работает немного по другой схеме. Устройство такой системы предусматривает наличие двух испарителей, по одному в каждую камеру. Сначала фреон в жидком состоянии перекачивается через капиллярную трубку и конденсатор в испаритель морозильника, и начинает нагнетать там холодный воздух.

Только после того, как в морозильнике станет достаточно холодно, фреон попадает во второй испаритель и охлаждает воздух в холодильном отсеке. После того, как удалось добиться необходимой температуры, компрессор выключается. Как видите, устройство системы охлаждения достаточно простое, и именно поэтому частые поломки исключены (при правильной эксплуатации).

Плачущий испаритель

Данное название закрепилось не только в народе, но и стало официальным термином в мире производства бытовой техники. Сам испаритель выглядит как небольшая металлическая пластина, или своеобразная полка, размещенная на задней панели холодильника.

Данная деталь является одним из наиболее важных элементов, благодаря которым удается добиться низкой температуры.

Только попав в испаритель, фреон начинает вскипать и своими парами охлаждать холодильный отсек. Когда нужная температура достигнута (обычно это 4-5 градусов по Цельсию), компрессор отключается, а сам элемент начинает оттаивать. Соответственно, на нем начинает появляться конденсат, отсюда и появилось такое «говорящее» название.

No Frost

Холодильник системы No Frost работает по другой схеме, без привычного для обыкновенных рефрижераторов плачущего испарителя. Устройство системы выглядит следующим образом:

  1. Испаритель находится только в районе морозильного отсека, даже если речь идет о двухкамерных образцах. Сам испаритель в большей мере похож на радиатор.
  2. По вышеописанной системе воздух охлаждается через испаритель;
  3. И затем распространяется по всем отсекам холодильника благодаря встроенному вентилятору.

Подобное устройство позволяет избежать намораживания, и холодильник не покрывается слоем льда и инея, как в стандартных аппаратах. Холодильник системы No Frost является наиболее современным образцом в данной отрасли, и стремительно завоевывает популярность благодаря своим качествам.

В остальном принцип работы не слишком отличается – после того, как температура в камерах достигла нормы, компрессор отключается, и затем снова активируется благодаря внутренним элементам контроля.

Каждая из современных технологий обладает своими преимуществами и имеет право на жизнь, и каждый сам вправе выбирать себе бытовую технику по собственным предпочтениям. Но только изучив все особенности ее устройства, вы сможете наиболее эффективно использовать технику.

tehznatok.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *