Узнаем как проверить якорь электродвигателя в домашних условиях?
Якорь электродвигателя относится к вращающейся части, на которой собирается грязь, образуется нагар. При неисправностях можно провести диагностику в домашних условиях визуально и при помощи мультиметра. На трущихся поверхностях не должно быть сколов, царапин и трещин. При обнаружении таковых проводят меры по их устранению.
Типичные неисправности
Якорь электродвигателя при нормальных режимах работы не подвергается износу. Заменяют только щетки, замеряя допустимую длину. Но при длительных нагрузках обмотки статора начинают нагреваться, что приводит к образованию нагара.
Из-за механических воздействий якорь электродвигателя может перекоситься при повреждении подшипниковых узлов. Двигатель будет работать, но постепенный износ ламелей или пластин приведет к окончательному выходу его из строя. Но для спасения недешевого оборудования часто достаточно провести профилактический ремонт и прибором можно будет пользоваться длительное время.
К негативным факторам, влияющим на якорь электродвигателя, относят попадание влаги на металлические поверхности. Критичным является длительное воздействие влажности и появление ржавчины. Из-за рыжих скоплений и грязи происходит повышение трения, это увеличивает токовую нагрузку. Контактные части греются, припой может отслаиваться, создавая периодическую искру.
В сервисном центре могут помочь, но это потребует определённых затрат. С поломкой можно справиться и самостоятельно, ознакомившись с вопросом: как проверить якорь электродвигателя в домашних условиях. Для диагностики понадобится прибор, замеряющий сопротивление и инструменты.
Как проводится диагностика неисправности?
Проверка якоря электродвигателя начинается с определения самой неисправности. Полный выход из строя этого узла происходит из-за рассыпавшихся щеток коллектора, разрушения слоя диэлектрика между пластинами, а также за счет короткого замыкания в электрической цепи. В случае искрения внутри прибора делают вывод об износе или повреждении токосъемников.
Искрение щеток начинается из-за появления зазора в месте контакта с коллектором. Этому предшествует падение прибора, высокая нагрузка на вал при заклинивании, а также нарушение целостности припоя на выводах обмоток.
Неисправность на работающем электродвигателе проявляется типичными состояниями:
- Искрение основной признак неисправности.
- Гул и трение при вращении якоря.
- Ощутимая вибрация при работе.
- Смена направления вращения при прохождении якорем траектории менее оборота.
- Появление запаха оплавляющейся пластмассы либо сильный нагрев корпуса.
Что делать при появлении перечисленных отклонений в работе?
Частота вращения якоря электродвигателя поддерживается постоянной. При холостых оборотах неисправность может не проявляться. Под нагрузкой трение компенсируется увеличением тока, протекающего через обмотки. Если стали заметны отклонения в работе болгарки, дрели, стартера, то нужно снять подачу напряжения.
Дальнейшая эксплуатация приборов может привести к пожару или к поражению человека электрическим током. Первым делом рекомендуется осмотреть корпус изделия, оценить проводку на целостность, отсутствие оплавленных частей и повреждения изоляции. На ощупь проверяют температуру всех частей прибора. Рукой пробуют вращать якорь, он должен перемещаться легко, без заеданий. Если механические части целые и нет загрязнений переходят к разборке.
Диагностика внутренних частей
Обмотка якоря электродвигателя не должна иметь нагара, тёмных пятен, похожих на последствия перегрева. Поверхность контактных частей и области зазора не должна быть зосоренной. Мелкие частицы снижают мощность двигателя и повышают ток. Не стоит производить разборку приборов с включенной в сеть вилкой в целях безопасности проведения работ.
Рекомендуется проводить съемку процесса разборки для исключения сложностей при обратном процессе. Либо можно записывать на листок каждый шаг своих действий. Допускается некоторый износ щеток, ламелей. Но при обнаружении царапин следует выяснить причину их происхождения. Возможно, этому поспособствовала трещина в корпусе, которую можно заметить только при нагрузке.
Работа омметром
Искренние могло происходить из-за пропадания электрического контакта в одной из ламелей. Для замера сопротивления рекомендуется ставить щупы со стороны токосъемников. Вращая вал двигателя, наблюдают за показаниями циферблата. На экране должны быть нулевые значения. Если проскакивают цифры даже в несколько Ом, то это говорит о нагаре. При появлении бесконечного значения судят об обрыве в цепи.
Независимо от результатов далее следует проверить сопротивление между каждыми соседними ламелями. Оно должно быть одинаковым для каждого замера. При отклонениях нужно осмотреть все соединения катушек и поверхность прилегания щёток. Сами щетки должны иметь равномерный износ. При сколах и трещинах они подлежат замене.
Катушки соединяются с сердечником проводкой, которая могла отслоиться. Припой часто не выдерживает ударов от падений. У стартера ток через контакты может достигать 50А, что приводит к прогоранию некачественных соединений. Внешним осмотром определяют места повреждений. Если не обнаружили неисправности, то проводят замер сопротивления между ламелью и самой катушкой.
Если нет омметра?
При отсутствии мультиметра потребуется источник питания 12 Вольт и лампочка на соответствующее напряжение. У любого автолюбителя с таким набором не возникнет проблем. На вилку электроприбора подключают плюсовую и минусовую клеммы. В разрыв ставится лампа накаливания. Результат наблюдают визуально.
Вал якоря вращают рукой, лампа горит без скачков яркости. Если наблюдается затухание судят о неисправном двигателе. Скорее всего, произошло межвитковое замыкание. Полное пропадание свечения свидетельствует об обрыве в цепи. Причинами могут быть неконтакт щеток, обрыв в обмотке или отсутствие сопротивления в одной из ламелей.
Как «оживить» неисправный прибор?
Ремонт якоря электродвигателя начинают только после полной уверенности в неисправности узла. Царапины и сколы на ламелях убирают круговой проточкой поверхности. Нагар и копоть можно снять чистящими средствами для контактных электрических соединений. Разбитые подшипники перепрессовывают и меняют на новые. Важно соблюсти балансировку вала при сборке.
Вращение должно быть лёгким и без шума. Поврежденную изоляцию восстанавливают, можно использовать обычную изоленту. Соединения, вызывающие подозрения, лучше пропаять заново. При проблемах с катушками якоря рекомендуется прибегнуть к перемотке, которую можно выполнить самостоятельно.
Восстановление катушек
Перемотать якорь электродвигателя можно в условиях гаража, только требуется быть осторожным при нанесении каждого витка. Медная проводка подбирается аналогичной намотанной. Сечение нельзя менять, это приведёт к нарушению скоростных режимов работы двигателя. Бумага диэлектрическая потребуется для отделения обмоток. Катушки в конце заливают лаком.
Потребуется паяльник и навыки его использования. Места соединений обрабатывают кислотой, для нанесения оловянно-свинцового припоя пользуются канифолью. При демонтировании старой обмотки подсчитывают количество витков и наносят аналогичное количество новой намотки.
Корпус должен быть очищен от старого лака и других включений. Для этого подходит напильник, наждачка или горелка. Для якоря изготавливают гильзы, материалом служит электротехнический картон. Полученные заготовки укладывают в пазы. Намотанные катушки следует делать правыми витками. Выводы со стороны коллектора перематывают капроновой нитью.
Каждый провод припаивается к соответствующей ламели. Сборка должна заканчиваться очередными замерами сопротивления контактных соединений. Если все в норме и нет коротких замыканий можно проверять работу электродвигателя под напряжением.
Происхождение терминов «якорь» и «ротор»
01.04.2015
Во времена развития мореплавания и географических открытий ощущалась острая необходимость в магнитных компасах, основным элементом которых являлась магнитная стрелка. Стрелки делали из металла и намагничивали при помощи природных магнитов, иного способа не было. Для качественного намагничивания требовались мощные магниты, которые усиливали армированием из железа и прикрепляли к камням оправами из меди, серебра или золота. Все это стилизовалось орнаментами, надписями и различными фигурками.
Стоили магниты в то время довольно дорого. В комплект с магнитом входил съемный железный брусок, который крепился к полюсам. С одной стороны брусочек имел кольцо, или крючок для подвешивания гиревой чашки. Силу с которой магнит держит брусочек всегда можно было измерить весом гирьки, которая укладывалась в чашку. Так сам брусок с крючком и был именован «якорь магнита».
С изобретением электромагнитов в 1825 году, способ измерения их силы не изменился. Так, в 1838 году российский академик Б.С. Якоби в своем труде «О притяжении магнитов» пишет о том, что сила притяжения магнитов определялась весом гирь, которые накладывались до тех пор, пока якорь не отрывался.
Позже, когда открылось, что электромагниты могут создавать сильные магнитные поля, американский ученый Дж. Генри разработал электромагнит, якорь которого мог удерживать тяжесть весом в одну тонну. Но главной его заслугой стало то, что он сумел поставить якорь электромагнита на шарнир и заставил его при притяжении ударять по специальному колокольчику. Именно так появился первый электромагнитный звонок. Позже, приспособив к подвижному якорю контакты, ученый смог получить ранее неизвестное приспособление — реле для автоматического преобразования электрических цепей по сигналу извне, что позволило передавать телеграфные сообщения на любые расстояния.
После ряда своих открытий Дж. Генри сделал магнитопровод с катушкой, который устанавливался горизонтально, как коромысло лабораторных весов. Когда якорь качался, контакты, прикрепленные на концах коромысла, касались выводов двух гальванических элементов, которые питали катушку токами различного направления. Качаясь, коромысло притягивалось к двум постоянным магнитам, которые входили в систему.
Установка могла работать непрерывно, сообщая якорю в минуту 75 качаний. Именно так возникла одна из первых конструкций электродвигателя возвратно-поступательного движения. А превратить его в двигатель вращательного движения в то время труда не составляло. Стоит отметить, что машины с возвратно-поступательным движением в то время не поимели популярности, так как технологически более удобными были признаны электродвигатели с вращающимся якорем.
Позже пришла эра трехфазного переменного тока. Крутящиеся узлы двигателя переменного тока перестали называть якорем. Вращающееся магнитное поле стали именовать вихрем, а вращающуюся чать — ротором. Однако, в машинах постоянного тока терминология сохранилась. Якорь вращался, а полюсной наконечник получил название башмак.
Сегодня распространение получают многофазные линейные электродвигатели для поездов монорельсового типа. В качестве ротора применяется прикрепленный намертво монорельс, а статором служат обмотки, которые устанавливаются на магнитопроводе быстро мчащихся электропоездов.
Предприятие ЗАО «ПромЭлектроРемонт» имеет все необходимые сертификаты на оказание таких работ как:
- Ремонт и перемотка электрооборудования;
- Ремонт сварочных трансформаторов;
- Ремонт насосов, в том числе глубинных;
Другие события
Ответы на семь общих вопросов о работе генераторов и двигателей
Вращающееся оборудование настолько распространено, но так неправильно понимается, что даже очень опытные электрики и инженеры часто сталкиваются с вопросами об их работе. В этой статье мы ответим на семь наиболее часто задаваемых вопросов. Объяснения краткие и практичные из-за ограниченного места; тем не менее, они позволят вам лучше понять это оборудование.
Вопрос №1: Якорь, поле, ротор, статор: что есть что?
Статор по определению состоит из всех невращающихся электрических частей генератора или двигателя. Также по определению ротор включает в себя все вращающиеся электрические части.
Поле машины — это часть, которая создает прямое магнитное поле. Ток в поле не переменный. Обмотка якоря — это та, которая генерирует или имеет приложенное к ней переменное напряжение.
Обычно термины «якорь» и «поле» применяются только к генераторам переменного тока, синхронным двигателям, двигателям постоянного тока и генераторам постоянного тока.
Генераторы переменного тока . Поле синхронного генератора представляет собой обмотку, на которую подается постоянный ток возбуждения. Якорь – это обмотка, к которой подключена нагрузка. В малых генераторах обмотки возбуждения часто находятся на статоре, а обмотки якоря — на роторе. Однако большинство больших машин имеют вращающееся поле и неподвижный якорь.
Синхронный двигатель практически идентичен синхронному генератору. Таким образом, якорь — это статор, а поле — это ротор.
Машины постоянного тока . В машинах постоянного тока, как двигателях, так и генераторах, ротором является якорь, а статором — поле. Поскольку якорь всегда является ротором в машинах постоянного тока, многие электрики и инженеры ошибочно полагают, что ротором всех двигателей и генераторов является якорь.
Вопрос № 2: Я ослабил натяжение пружины на щетках, но они по-прежнему изнашиваются слишком быстро. Почему?
Износ щеток происходит по двум основным причинам: механическое трение и электрический износ. Механическое трение вызывается трением щеток о коллектор или контактное кольцо. Электрический износ вызван искрением и искрением щетки, когда она движется по коллектору. Механическое трение увеличивается с давлением щетки; Электрический износ уменьшается с давлением щетки.
Для любой установки щетки существует оптимальное давление щетки. Если давление снижается ниже этой величины, общий износ увеличивается, поскольку увеличивается электрический износ. Если давление увеличивается выше оптимального значения, общий износ снова увеличивается из-за увеличения механического трения.
Всегда следите за тем, чтобы давление щетки было установлено на уровне, рекомендованном производителем. Если износ по-прежнему чрезмерный, следует изучить тип и размер используемой щетки. Помните, что плотность тока (ампер на квадратный дюйм щетки) должна соответствовать применению. Надлежащая плотность тока необходима для того, чтобы на коллекторе или контактном кольце образовалась смазочная проводящая пленка. Эта пленка состоит из влаги, меди и углерода. Недостаточная плотность тока препятствует образованию этой пленки и может привести к чрезмерному износу щеток.
Кроме того, среда с очень низкой влажностью не обеспечивает достаточного количества влаги для образования смазочной пленки. Если в такой среде возникает проблема чрезмерного износа щеток, возможно, вам придется увлажнить место, где работает машина.
Вопрос № 3: Что такое сервис-фактор?
Коэффициент эксплуатации — это нагрузка, которая может быть приложена к двигателю без превышения допустимых значений. Например, если двигатель мощностью 10 л.с. имеет эксплуатационный фактор 1,25, он будет успешно развивать мощность 12,5 л.с. (10 x 1,25) без превышения заданного повышения температуры. Обратите внимание, что при таком приводе выше номинальной нагрузки двигатель должен питаться с номинальным напряжением и частотой.
Однако имейте в виду, что двигатель мощностью 10 л.с. с коэффициентом эксплуатации 1,25 не является двигателем мощностью 12,5 л.с. Если двигатель мощностью 10 л.с. будет постоянно работать при мощности 12,5 л.с., срок службы его изоляции может сократиться на две трети от нормального. Если вам нужен двигатель мощностью 12,5 л.с., купите его; эксплуатационный коэффициент следует использовать только для кратковременных условий перегрузки.
Вопрос № 4: Что такое вращающееся магнитное поле и почему оно вращается?
Вращающееся магнитное поле — это поле, северный и южный полюса которого движутся внутри статора, как если бы внутри машины вращался стержневой магнит или магниты.
Посмотрите на статор трехфазного двигателя, показанный на прилагаемой схеме. Это двухполюсный статор с тремя фазами, расположенными с интервалом 120 [градусов]. Ток от каждой фазы входит в катушку на одной стороне статора и выходит через катушку на противоположной стороне. Таким образом, если одна из катушек создает магнитный северный полюс, другая катушка (для той же фазы) создаст магнитный южный полюс на противоположной стороне статора.
В Позиции 1 фаза B создает сильный северный полюс вверху слева и сильный южный полюс внизу справа. А-фаза создает более слабый северный полюс внизу слева и более слабый южный полюс внизу. C-фаза создает общее магнитное поле с северным полюсом в левом верхнем углу и южным полюсом в правом нижнем углу.
В Позиции 2 фаза А создает сильный северный полюс внизу слева и сильный южный полюс вверху справа; таким образом, сильные полюса повернулись на 60 [градусов] против часовой стрелки. (Обратите внимание, что это магнитное вращение на 60 [градусов] точно соответствует электрическому изменению фазных токов на 60 [градусов].) Слабые полюса также повернулись на 60 [градусов] против часовой стрелки. Фактически это означает, что общее магнитное поле повернулось на 60 [градусов] от положения 1. фаз изменяется более чем на 60 электрических градусов. Анализ позиций 3, 4, 5 и 6 показывает, что магнитное поле продолжает вращаться.
Скорость, с которой вращается магнитное поле, называется синхронной скоростью и описывается следующим уравнением:
S = (f x P) / 120, где S = скорость вращения в оборотах в минуту f = частота подаваемого напряжения (Гц ) P = число магнитных полюсов во вращающемся магнитном поле
Если бы в этот статор был помещен постоянный магнит с валом, который позволял бы ему вращаться, его толкали бы (или тянули) вперед с синхронной скоростью. Точно так же работает синхронный двигатель, за исключением того, что магнитное поле ротора (поля) создается электромагнетизмом, а не постоянным магнитом.
Ротор асинхронного двигателя состоит из короткозамкнутых обмоток, и в обмотках ротора индуцируется ток, когда вращающееся магнитное поле пересекает их. Этот ток создает поле, противодействующее вращающемуся полю. В результате ротор толкается (или притягивается) вращающимся полем. Обратите внимание, что ротор асинхронного двигателя не может вращаться с синхронной скоростью, поскольку вращающееся поле должно прорезать обмотки ротора, чтобы создать крутящий момент. Разница между синхронной скоростью и фактической скоростью вращения ротора называется процентным скольжением; она выражается в процентах.
Однофазные двигатели также имеют вращающееся магнитное поле. Вращающееся поле, необходимое для запуска двигателя, создается второй обмоткой, называемой пусковой обмоткой. После разгона двигателя пусковая обмотка отключается, и вращающееся поле создается за счет взаимодействия основной обмотки статора и ротора.
Вопрос № 5: Как работает асинхронный генератор?
Асинхронный генератор по конструкции идентичен асинхронному двигателю. Обмотки статора подключены к трехфазной системе питания, и три фазы создают вращающееся магнитное поле. Ротор асинхронного генератора вращается первичным двигателем, который вращается быстрее синхронной скорости. Когда обмотки ротора пересекают вращающееся поле, в них индуцируется ток. Этот индуцированный ток создает поле, которое, в свою очередь, прорезает обмотки статора, создавая выходную мощность для нагрузки.
Таким образом, асинхронный генератор получает питание от энергосистемы, к которой он подключен. Асинхронный двигатель должен иметь синхронные генераторы, подключенные к его статору, чтобы начать генерировать. После того, как асинхронный генератор работает, конденсаторы могут использоваться для питания возбуждения.
Вопрос № 6: Почему подшипники генератора и двигателя изолированы?
Магнитное поле внутри двигателя или генератора не совсем однородно. Таким образом, при вращении ротора на валу в продольном направлении (непосредственно вдоль вала) возникает напряжение. Это напряжение вызовет протекание микротоков через смазочную пленку на подшипниках. Эти токи, в свою очередь, могут вызвать незначительное искрение, нагрев и, в конечном итоге, выход из строя подшипника. Чем больше машина, тем хуже становится проблема.
Чтобы избежать этой проблемы, корпус подшипника со стороны ротора часто изолируется от стороны статора. В большинстве случаев будет изолирован по крайней мере один подшипник, обычно самый дальний от первичного двигателя для генераторов и самый дальний от нагрузки для двигателей. Иногда оба подшипника изолированы.
Вопрос № 7: Как генераторы переменного тока регулируют переменную, напряжение и мощность?
Хотя элементы управления генератором взаимодействуют, верны следующие общие положения.
- Выходная мощность генератора контролируется его первичным двигателем.
- Вклад напряжения и/или реактивной мощности генератора контролируется уровнем тока возбуждения.
Например, предположим, что к выходу генератора подключена дополнительная нагрузка. Добавленный поток тока увеличит силу магнитного поля якоря и заставит генератор замедлиться. Чтобы поддерживать частоту, регулятор генератора увеличивает мощность, подводимую к первичному двигателю. Таким образом, дополнительная мощность, необходимая для генератора, регулируется вводом первичного двигателя.
В нашем примере чистый магнитный поток в воздушном зазоре уменьшится, так как увеличение якоря противодействует потоку поля. Если не увеличить поток поля, чтобы компенсировать это изменение, выходное напряжение генератора уменьшится. Таким образом, ток возбуждения используется для управления выходным напряжением.
Давайте посмотрим на другой пример для дальнейшего пояснения. Предположим, к нашему генератору добавлена дополнительная нагрузка VAR. В этом случае выходной ток генератора снова возрастет. Однако, поскольку новая нагрузка не является «настоящей» мощностью, первичный двигатель необходимо увеличивать только настолько, чтобы компенсировать дополнительное падение IR, создаваемое дополнительным током.
В качестве последнего примера предположим, что у нас есть два или более генераторов, работающих параллельно и питающих нагрузку. Генератор 1 (G1) несет всю нагрузку (активную и реактивную), в то время как Генератор 2 (G2) работает с нулевой мощностью и нулевой реактивной мощностью. Если оператор G2 открывает дроссельную заслонку первичного двигателя, G2 начинает подавать ватты в систему. Поскольку подключенная нагрузка не изменилась, оба генератора увеличат скорость, если G1 не снизится.
Поскольку G2 берет на себя дополнительную долю нагрузки, ему требуется повышенный поток поля. Если оператор G2 не увеличивает поле G2, G2 будет получать дополнительное возбуждение от G1, требуя, чтобы G1 увеличил уровень своего возбуждения. Если ни G1, ни G2 не увеличат уровень возбуждения, общее напряжение системы упадет.
Джон Кадик, ЧП является президентом Cadick Professional Services, Гарленд, Техас, международной ассоциации электрических испытаний. (NETA) член.
Электрические машины — арматура машины постоянного тока
Якорь электрической машины — исторически сложившееся название обмотки, в которой индуцируется напряжение и происходит передача мощности между электрическими и механическими системами.
Этот термин используется в машинах постоянного тока и синхронных машинах переменного тока. В машине постоянного тока якорь представляет собой вращающуюся цепь.Коммутация
В машине постоянного тока, разработанной до эпохи силовой электроники, используется механическая система для переключения напряжения контура, генерируемого переменным током, и подачи напряжения постоянного тока на клеммы машины. Этот процесс называется коммутацией. Механическое переключение достигается с помощью устройства, называемого коммутатором с разъемным кольцом. Рассмотрим рисунок и иллюстрацию на рис. 1. Каждый проводник (или каждая сторона петли) соединен с цилиндрическим проводником, который разделен на две половины. При вращении ротора цилиндр находится в контакте с неподвижными щетками. (Первоначально использовались втулки из медной проволоки; в современных машинах используются подпружиненные графитовые блоки.)
При вращении ротора половинки коллектора с разрезным кольцом проходят мимо стационарных щеток. С течением времени клеммы x и y подключаются к чередующимся концам проводящего контура ротора
Рассматривая графики индуцированного (красный) и терминального (синий) напряжения во времени, становится ясно, что напряжение, индуцированное в проводящем контуре на роторе продолжает чередоваться между положительным и отрицательным. Однако из-за расположения щеток измеренное напряжение на клеммах x-y является однонаправленным.
Рис. 1. Иллюстрация работы коммутатораУвеличенные полюса и проводники
Реалистичные конструкции машин постоянного тока обычно имеют более двух полюсов. Увеличение количества полюсов для определенного потока на полюс увеличит наведенное напряжение при заданной скорости и увеличит крутящий момент, доступный на ампер. На рис. 1 показана схема статора с 4 полюсами. Каждый полюс будет нести катушку, являющуюся частью обмотки возбуждения. Картина потока будет похожа на Показаны линии потока, чередующие северный и южный полюса.
Рис. 2. Иллюстрация 4-полюсного поля постоянного токаВ общем случае с \(p\) полюсами картина поля будет повторяться каждые \(720/p\) градусов.
В рассматриваемой исходной базовой машине имеется только 2 проводников, или одна петля на роторе. Если количество витков (и разрезных колец сегментов коммутатора) увеличивается, то щетки можно спроектировать так, чтобы они всегда были в контакте с проводником, который находится под поверхностью полюса. Пример этой идеи с двумя катушками показан на рис. 3 9.0003 Рис. 3. Анимация двухполюсной системы с двумя перпендикулярными катушками обмотки якоря
Уравнения для общей машины
\[ e_{av}=rlB_{av}\omega_m \]
\(e_{av}\) — среднее индуцированное напряжение и \(B_{av}\) — величина средней плотности потока под полюсом. Используя общее уравнение для площади поверхности полюса
\[ A_p=\frac{2\pi rl}{p} \]
уравнение для среднего напряжения, индуцированного на проводнике под поверхностью полюса можно найти через поток и скорость:
\[ e_{av}=\frac{p}{2\pi}\phi\omega_m \]
Теперь, если вместо одного витка провода есть катушка с общей Z проводников (\(Z/2\)витков) соединены последовательно в любое время:
\[ e_{av}=\frac{Zp}{2\pi}\phi\omega_m \]
Обмотка машины, в которой индуцируется напряжение, называется обмотка якоря. В машине постоянного тока обмоткой якоря является обмотка на роторе. Определение постоянной машины постоянного тока \(k\):
\[ k=\frac{ZP}{2\pi} \]
приводит к уравнению напряжения якоря.
\[ E_A=к\фи\омега_м \]
Аналогично общему расчету напряжения, крутящий момент на одном проводнике можно записать как
\[ \tau_{av}=rlB_{av}я \]
, что дает общий крутящий момент, заданный уравнением крутящего момента машины постоянного тока.
\[ \тау=к\фи I_A \]
Обратите внимание, что поскольку мы перешли к уравнениям с постоянными значениями постоянного тока, уравнение напряжения якоря записывается в верхнем регистре как \(E_A\), чтобы обозначить, что это постоянное напряжение, а уравнение крутящего момента использует \(I_A\ ), чтобы показать, что ток является постоянным значением постоянного тока.
Цепь якоря
Модель эквивалентной схемы якоря
Модель эквивалентной схемы для якоря машина постоянного тока показана на рис.
\[ V_T = E_A + I_A R_A \]
Рассматривая модель эквивалентной схемы, можно увидеть, что измеряемое напряжение машины, напряжение на клеммах \(V_T\) равно наведенному на якорь напряжению \(E_A\), когда ток якоря \(I_A\) равен нуль. Это происходит в двух случаях:
- без нагрузки: клеммы якоря подключены к источнику напряжения, но момент нагрузки отсутствует. В установившемся режиме момент двигателя и момент нагрузки равны и противоположны друг другу, то есть \(\tau=0\). Следовательно, ток якоря \(I_A\) равен нулю в соответствии с уравнением крутящего момента и \(E_A=V_T\)
- обрыв цепи: это тестовый случай, когда машина вращается внешней механической системой, а клеммы машины разомкнуты. Опять же, в этом случае \(I_A = 0 \) и \(E_A=V_T\)