Зачем нужен трансформатор: Трансформатор. Что такое? Зачем нужен?

Содержание

Для чего нужны трансформаторы тока

Трансформатор тока — электромагнитный аппарат который принадлежит к одному из видов трансформаторов измерительного вида. Одной из задач трансформатора тока является получение переменного тока во вторичной обмотке.

В общем определить одну определенную задачу трансформатора тока сложно, ведь она зависит от многих факторов в том числе и от конкретной ситуации при которой применение трансформатора просто необходимо.

Особенности

Но среди прочего все же выделяются три основных особенности трансформатора тока, а именно: защита, измерение и стабилизация электрического тока.

Трансформатор тока это аппарат который очень важен для использования в области электротехники. Для эффективной, безопасной и стабильной работы различных промышленных приборов и аппаратов, а также бытовых электрических приборов, необходим контроль текущих уровней электрического тока. Специально для этого к трансформатору тока подключаются различные измерительные электрические приборы позволяющие производить контроль всей системы в различных местах.

Трансформатор тока Т-0,66 150/5а

В трансформаторе тока первичный и вторичный ток пропорциональны друг другу. Первичная обмотка трансформатора тока включена последовательно, а вторичная замыкается на нагрузку. За счет этого действия получаются пропорциональные величины.

Пропорциональная величина трансформатора тока это – величина которая имеет одинаковое отношение между собой.

Обмотки

Первичная обмотка включения трансформатора тока бывает в двух типовых исполнениях. Первое — обмотка плоская, второе — обмотка в форме ролика выполненная из толстого провода.

Вторичная обмотка имеет большее число витков катушки которые намотаны на глянцевую основу магнитного материала. Вторичная обмотка трансформатора ток арсчитана на показатель который соответствует стандарту 1 или 5 Ампер.

Трансформаторы тока можно различить по классу точности а именно: 0,2; 0,5; 1; 3; и 10. Эти трансформаторы способны снижать высокие проходные электрические токи, на более низкие.

Данное действие обеспечивает безопасный контроль электрической энергии в переменной линии передачи.

Трансформаторы тока делятся также по по номинальной мощности которая имеет следующие значения: 25 кВа, 40 кВа, 63 кВа, 100 кВа и 160 кВа.

При эксплуатации трансформатора тока, возникает необходимость периодического обслуживания и его ремонта. Хочется отметить что обслуживание, ремонт а также замена составляющих запасных частей трансформатора тока, должна проводиться специализированной организацией имеющей допуски к данным видам работ.

Области и сферы назначения

По функциональному назначению трансформаторы тока можно разделить на 4 категории

  • измерение при помощи любого прибора силы электрического тока. В этом случае переменный ток остается переменным, и приемлемым для измерения. Для измерения силы тока подходит вольтметр или другие измерительные электрические приборы кроме амперметра.
  • трансформаторы тока служат для стабилизации работы, в тех случаях когда электрическая система является довольно мощной, это нужно для сохранения целостности изоляции, которая необходима для обеспечения безопасности жизни обслуживающего персонала, который проводит регулярные ремонтные и обслуживающие работы.
  • преобразование трехфазного переменного электрического тока в такой же переменный ток подходящего значения. Это нужно для стабилизации работы и защиты реле, которое подключается к определенной конкретной электрической цепи.
  • при эксплуатации оборудования исключив нарушение изоляции и технологических серьезных ошибок во время установки электрического оборудования, электрический ток все равно способен нанести ущерб здоровью и жизней персонала занимающегося его периодическим обслуживанием и ремонтом.

Назначение, принцип действия трансформаторов тока и отличие от ТН

  1. Главная
  2. Электрические аппараты
  3. org/ListItem»> Трансформаторы тока: назначение и принцип действия

В сегодняшнем материале, я решил начать рассматривать вопросы, касающиеся основ теории трансформаторов тока. Сами эти аппараты распространены повсеместно в электроустановках, и я думаю, всем будет интересно и полезно обновить в памяти принцип их работы.

Назначение трансформаторов тока: преобразование тока и разделение цепей

Начнем с ответа на вопрос – для чего нужен трансформатор тока? Здесь существует несколько основных вопросов, которые решает установка трансформаторов тока.

  • Во-первых, это измерение больших токов, когда измерение непосредственно реальной величины первичного тока не представляется возможным. Измеряют преобразованную в меньшую сторону после трансформатора тока величину. Обычно это 1, 5 или 10 ампер.
  • Во-вторых, это разделение первичных и вторичных цепей. Таким образом, происходит защита изоляции релейного оборудования, приборов учета электроэнергии, измерительных приборов.

Из чего состоит ТТ, принцип его работы

Трансформатор тока имеет замкнутый сердечник (магнитопровод), который собирают из листов электротехнической стали. На сердечнике расположено две обмотки: первичная и вторичная.

Первичная обмотка включается последовательно (в рассечку) цепи, по которой течет измеряемый (первичный) ток. К вторичной обмотке присоединяются последовательно соединенные реле, приборы, которые образуют вторичную нагрузку трансформатора тока. Такое описание состава трансформатора тока достаточно для описания принципа его работы, более подробное описание реального состава трансформатора тока приведено в другой статье.

Для рассмотрения принципа действия трансформатора тока рассмотрим схему, расположенную на рисунке.

В первичной обмотке протекает ток I1, создавая магнитный поток Ф1. Переменный магнитный поток Ф1 пересекает обе обмотки W1 и W2. При пересечении вторичной обмотки поток Ф1 индуцирует электродвижущую силу Е

2, которая создает вторичный ток I2. Ток I2, согласно закону Ленца имеет направление противоположное направлению I1. Вторичный ток создает магнитный поток Ф2, который направлен встречно Ф1. В результате сложения магнитных потоков Ф1 и Ф2 образуется результирующий магнитный поток (на рисунке он обозначен Фнам). Этот поток составляет несколько процентов от потока Ф1. Именно поток Фнам и является тем звеном, что производит передачу и трансформацию тока. Его называют потоком намагничивания.

Коэффициент трансформации идеального ТТ

В первичной обмотке w1 создается магнитодвижущая сила F1=w1*I1, а во вторичной — F2=w2*I2. Если принять, что в трансформаторе тока отсутствуют потери, то магнитодвижущие силы равно по величине, но противоположны по знаку.

F1=-F2. В итоге получаем, что I1/I2=w2/w1=n. Это отношение называется коэффициентом трансформации трансформатора тока.

Коэффициент трансформации реального ТТ

В реальном трансформаторе тока существуют потери энергии. Эти потери идут на:

  • создание магнитного потока в магнитопроводе
  • нагрев и перемагничивание магнитопровода
  • нагрев проводов вторичной обмотки и цепи

К магнитодвижущим силам из прошлого пункта прибавится мдс намагничивания Fнам=Iнам*w1. В выражении ниже токи и мдс это вектора. F1=F2+Fнам или I1*w1=I2*w2+Iнам*w1 или I1=I2*(w2/w1)+Iнам

В нормальном режиме, когда первичный ток не превышает номинальный ток трансформатора тока, величина тока Iнам не превышает 1-3 процента от первичного тока, и этой величиной можно пренебречь.

При ненормальных режимах происходит так называемый бросок тока намагничивания, об этом более подробно можно почитать здесь. Из формулы следует, что первичный ток разделяется на две цепи – цепь намагничивания и цепь нагрузки. Более подробно о схеме замещения ТТ и о векторной диаграмме ТТ.

Режимы работы трансформаторов тока

У ТТ существуют два основных режима работы – установившийся и переходный.

В установившемся режиме работы токи в первичной и вторичной обмотке не содержат свободных апериодических и периодических составляющих. В переходном режиме по первичной и вторичной обмотке проходят свободные затухающие составляющие токов.

Если ТТ выбран правильно, то в обоих режимах работы погрешности не должны превышать допустимых в этих режимах, а токи в обмотках не должны превышать допустимые по термической и динамической стойкости.

ТТ для измерений предусмотрены для работы в установившемся режиме, при условии не превышения допустимых погрешностей. Работа ТТ для защиты начинается с момента возникновения тока перегрузки или тока КЗ, в этих режимах должны обеспечиваться требования определенных типов защит.

Чем отличается трансформатор тока от трансформатора напряжения и силового трансформатора

Существуют отличия в работе ТТ и ТН.

  • Первичный ток ТТ не зависит от вторичной нагрузки, что свойственно ТН. Это определяется тем фактом, что сопротивление вторичной обмотки ТТ на порядок меньше сопротивления первичной цепи и вообще, чем оно ближе к нулю, тем точнее аппарат. В трансформаторах напряжения и силовых трансформаторах же первичный ток зависит от величины тока вторичной нагрузки.
  • ТТ всегда работает с замкнутой вторичной обмоткой и величина его вторичного сопротивления нагрузки в процессе работы не изменяется.
  • Не допускается работа ТТ с разомкнутой вторичной обмоткой, для ТН и силовых при размыкании вторичной обмотки происходит переход в режим работы холостого хода.

Зачем нужен трансформатор? — Наука и Техника — Каталог статей

Большинство людей, вероятно, слышали о трансформаторах и знают, что они являются частью все еще очевидной, но все еще загадочной электрической сети, которая поставляет электроэнергию в дома, на предприятия и в любое другое место, где требуется «сок». Но обычный человек воздерживается от изучения тонкостей подачи электроэнергии, возможно, потому, что весь процесс кажется скрытым в опасности. С юных лет дети учатся тому, что электричество может быть очень опасным, и все понимают, что провода любой энергокомпании держатся высоко вне досягаемости (или иногда прячутся в земле) по уважительной причине.

Но энергосистема на самом деле является триумфом человеческой инженерии, без которой цивилизация была бы неузнаваема по сравнению с той, в которой вы живете сегодня. Трансформатор является ключевым элементом в управлении и доставке электроэнергии от точки, в которой оно производится на электростанциях, до момента, когда он не попадает в дом, офисное здание или другое конечное место назначения.


Какова цель трансформатора?

Подумайте о дамбе, сдерживающей миллионы галлонов воды, чтобы сформировать искусственное озеро. Поскольку река, питающая это озеро, не всегда несет в район одно и то же количество воды, а ее воды имеют тенденцию повышаться весной после таяния снега во многих районах и отливания летом в более сухое время, любая эффективная и безопасная плотина должна быть оснащен устройствами, которые обеспечивают более точное управление водой, чем просто прекращение ее протекания до тех пор, пока уровень не поднимется настолько, что вода просто начнет проливаться на нее. Таким образом, дамбы включают в себя все виды шлюзовых ворот и другие механизмы, которые определяют, сколько воды будет проходить на выходной стороне плотины, независимо от величины давления воды на входной стороне.

Примерно так работает трансформатор, за исключением того, что материал, который течет, это не вода, а электрический ток. Трансформаторы служат для управления уровнем напряжения, протекающего через любую точку энергосистемы (подробно описанную ниже), таким образом, чтобы сбалансировать эффективность передачи с базовой безопасностью. Очевидно, что как для потребителей, так и для владельцев электростанции и энергосистемы финансово и практически выгодно предотвращать потери электроэнергии между выходом электроэнергии из электростанции и ее попаданием в дома или в другие пункты назначения. С другой стороны, если величина напряжения, протекающего через типичный высоковольтный силовой провод, не уменьшится перед входом в ваш дом, это приведет к хаосу и катастрофе.


Что такое напряжение?

Напряжение является мерой разности электрических потенциалов. Номенклатура может сбивать с толку, потому что многие студенты слышали термин «потенциальная энергия», что позволяет легко спутать напряжение с энергией. Фактически, напряжение — это электрическая потенциальная энергия на единицу заряда или джоули на кулон (Дж / с). Кулон является стандартной единицей электрического заряда в физике. Единственному электрону присваивают -1,609 × 10-19 кулонов, в то время как протон несет заряд, равный по величине, но противоположный по направлению (то есть положительный заряд).

Ключевым словом здесь, на самом деле, является «разница». Причиной того, что электроны текут из одного места в другое, является разница в напряжении между двумя контрольными точками. Напряжение представляет собой объем работы, который потребуется на единицу заряда, чтобы переместить заряд против электрического поля из первой точки во вторую. Чтобы получить представление о масштабе, знайте, что провода передачи на большие расстояния обычно имеют напряжение от 155 000 до 765 000 вольт, тогда как напряжение на входе в дом обычно составляет 240 вольт.


История Трансформера

В 1880-х годах поставщики электрических услуг использовали постоянный ток (DC). Это было чревато обязательствами, включая тот факт, что DC нельзя было использовать для освещения и было очень опасно, требуя толстых слоев изоляции. За это время изобретатель по имени Уильям Стэнли произвел индукционную катушку, устройство, способное создавать переменный ток (AC). В то время, когда Стэнли придумал это изобретение, физики знали о явлении переменного тока и его преимуществах с точки зрения энергоснабжения, но никто не смог придумать средства доставки переменного тока в больших масштабах. Индукционная катушка Стэнли будет служить шаблоном для всех будущих вариантов устройства.

Стэнли чуть не стал адвокатом, прежде чем решил работать электриком. Он начал в Нью-Йорке, прежде чем переехать в Питтсбург, где он начал работать над своим трансформатором. Он построил первую муниципальную систему переменного тока в 1886 году в городе Грейт Баррингтон, штат Массачусетс. После рубежа веков его энергетическая компания была куплена General Electric.

Может ли трансформатор увеличить напряжение?

Трансфор

Что такое и для чего нужен трансформатор тока 

Автор Alexey На чтение 4 мин. Просмотров 593 Опубликовано Обновлено

При использовании различных энергетических систем возникает необходимость в преобразовании определенных величин в аналоги с пропорционально измененными значениями.

Такая операция позволяет воссоздавать процессы в электронных устройствах, гарантируя безопасные учет их потребления. Для этого используется специальное оборудование — трансформатор тока наружной установки.

Когда нужны трансформаторы тока?

Измерительные трансформаторы тока предназначены для замера характеристик, ограниченных номинальным напряжением. Последняя величина варьируется от 0.66 до 750 кВ. ТТ широко используются для различных целей:

  1. При отделении низковольтных учетных приборов и реле от первичного напряжения в сети, что обеспечивает безопасность электрослужбам во время ремонта и диагностики.
  2. Силами трансформаторов тока релейные защитные цепи получают питание. В случае короткого замыкания или проблем с режимами работы электроприборов ТТ обеспечивает корректную и оперативную активацию релейной защиты.
  3. Используются для учета электроэнергии с помощью счетчика.

На практике встречаются различные модели измерительных трансформаторов и в компактных электроприборах с малым корпусом, и в полноценных энергетических установках с огромными габаритами.

Классификация и расчет

Расчет и выбор трансформаторов тока следует начинать с изучения классификации представленных на рынке устройств. Все ТТ в первую очередь подразделяются на две категории в зависимости от целевого назначения:

  1. Для измерения показателя счетчика.
  2. Для защиты электрооборудования.

Эти же категории, в свою очередь, классифицируются на виды в зависимости от типа подключения:

  • предназначенные для работы на открытом воздухе;
  • функционирующие в закрытом помещении;
  • используемые в качестве встроенных элементов электрооборудования;
  • накладные, предназначенные для для проходного изолятора;
  • переносные, дают возможность осуществлять расчет в любом месте;

Все трансформаторы тока могут иметь различный коэффициент трансформации, который получают при изменений количества витков первичной или вторичной обмотки. Также эти устройства различаются по количеству ступеней работы на одноступенчатые и каскадные.

Если рассматривать конструктивные особенности, то ТТ могут иметь различную по типу изоляцию:

  • сухую, изготовленную из фарфора, бакелита или литой эпоксидной изоляции;
  • бумажно-масляную;
  • газонаполненную;
  • залитую компаундом;

Также исходя из характеристик конструкции, выделяют катушечные, одновитковые и многовитковые ТТ с литой изоляцией.

Как выбрать трансформатор тока наружной установки для счетчика электроэнергии?

Расчет и выбор трансформаторов тока для счетчика следует начинать с анализа базовых параметров номинального тока:

  • номинальное напряжение сети;
  • параметр номинального тока первичной и вторичной обмотки;
  • коэффициент трансформации;
  • класс точности;
  • особенности конструкции;

При выборе номинального напряжения устройства необходимо подбирать значение превышающие или идентичное максимальному рабочему напряжению. Если рассматривать вариант счетчика 0.4 кВ, то здесь потребуется измерительный трансформатор на 0.66 кВ.

Подключение счетчика через трансформаторы тока представлено на это фото

Значение номинального тока вторичной обмотки для того же счетчика, как правило, составляет 5 А. А вот с параметром для первичной обмотки нужно быть осторожнее. От этого значения зависит практически все подключение. Номинальный ток первичной обмотки формуется относительно коэффициента трансформации.

Последний следует выбирать по нагрузке с учетом работы в аварийных ситуациях. Согласно официальным правилам устройства электроустановок, допустимо подключение и использование трансформаторных устройств с завышенным коэффициентом трансформации.

Класс точности следует выбирать в зависимости от целевого назначения счетчика электричества. Коммерческий учет требует высокий класса точности — 0.5S, а технический учет потребления допускает параметр точности в 1S.

Говоря о конструкции ТТ, нужно учесть, что для счетчика с напряжением до 18 кВ используются однофазные или трехфазные ТТ. Для более высоких значений подойдут только однофазные конфигурации.

Как осуществляется подключение измерительного ТТ тока для счетчика?

Обозначение на схеме

Специалисты не рекомендуют осуществлять подключение счетчика с помощью трехфазного ТТ. Это обусловлено его несимметричной магнитной системой и увеличенной погрешностью. В этом случае оптимальным вариантом будет группа из 2 однофазных приборов, соединенных в неполный треугольник.

Подробнее изучить классификацию, базовые параметры и технические требования на подключение и расчет ТТ для счетчика электроэнергии можно в ГОСТ 7746-2001.

Трансформаторы напряжения. Всё, что о них нужно знать

Что необходимо о них знать? Расскажем об этом в предлагаемой статье.

Трансформаторы незаменимы в электроэнергетике, электронике и радиотехнике. Их востребованность объясняется многофункциональностью, простотой устройства, высоким качеством работы (КПД – 99%), долговечной эксплуатацией.

Трансформаторы напряжения – это разновидность трансформаторов, задача которых не преобразовывать, а гальваническая развязка.

От источника электроэнергии или станции ток с высоким напряжением не может использоваться потребителями. Чтобы понизить его на входе устанавливаются понижающие трансформаторы. Они дают возможность работать на расчетном напряжении для бытовой техники, электроприборов и электроники. Их использование позволяет осуществлять работу типовых измерительных приборов. Трансформатор изолирует их от высокого сетевого напряжения, что крайне необходимо для их безопасного обслуживания и эксплуатации.

По назначению они разделяются на два основных вида – повышающие и понижающие. Преобразование напряжения в домашних условиях крайне необходимо. Бытовые приборы, питающиеся от сети 380 или 220 вольт, нуждаются в напряжении в несколько раз меньше. Во избежание выхода из строя бытового оборудования нужны понижающие. При необходимости используют повышающие аналоги.

Кроме главной функции – преобразования напряжения и тока, ТН могут быть источниками питания для автоматики, релейной защиты электролиний от замыкания, сигнализаций и т.п. Также они используются в качестве измерителей напряжения и мощности.

По сути – трансформатор напряжения – это статический электромагнитный прибор, который преобразует переменный ток одного напряжения в переменный ток другого напряжения. По конструктивным решениям и по принципу действия он сходен с силовым аналогом.

Устройство трансформатора напряжения

ТН состоят из двух главных элементов:

  • Стального магнитопровода.

  • Обособленных друг от друга, изолированных обмоток (первичной и вторичной).

На первичную обмотку ТН подается ток, а со вторичной он идет к объекту потребления.

Принцип работы

В основе работы ТН лежит его конструкция и явление электромагнитной индукции, возникающей между элементами:

  • Трансформатор подсоединяется к сети. На его первичную обмотку поступает ток.

  • Ток переменного характера проходит по магнитопроводу, вызывает магнитный поток, который в свою очередь проходит через обе обмотки и индуцирует в них ЭДС.

  • К вторичной обмотке поступает ток, возникший под действием ЭДС.

Величина ЭДС тесно связана с числом витков в каждой обмотке. Меняя число витков можно увеличить или уменьшить напряжение, идущее на потребителя с вторичной обмотки.

Виды трансформаторов напряжения

Существует довольно много трансформаторов напряжения. Их функции соответствуют определенному назначению. Поэтому, прежде чем выбирать тот или иной вариант трансформатора, необходимо определиться, для чего он нужен. Все разнообразие этих приборов отличается друг от друга конструкцией, которая и определяет особенности их эксплуатации.

Все ТН условно делятся на виды по определенным критериям:

  • Число фаз: одно- и трехфазные.

  • Количество обмоток – две или три.

  • Класс точности – диапазон допустимых параметров погрешности.

  • Тип охлаждения – масляные и сухие (воздушное охлаждение).

  • Способ размещения – внутренние или внешние.

ТН делятся также на группы согласно сферам применения и особенностям эксплуатации:

  • Заземляемый. Этот вариант представляет собой однофазное или трехфазное устройство. Один из его концов должен быть заземлен – это нейтраль обмотки. В маркировках этих моделей присутствует буква «З», например, ЗНОЛ, ЗНОМ.

  • Наземляемый. Он не нуждается в заземлении. Обязательно изолируются все уровни, зажимы. В зависимости от уровня напряжения, трансформатор может монтироваться на определенной высоте.

  • Каскадный. Его основная часть первичная обмотка, состоящая из нескольких секций. Они расположены на разном расстоянии от земли в виде каскада. Все части трансформатора соединены между собой дополнительными обмотками. Особенностью каскадных трансформаторов является то, что с увеличением числа элементов, увеличивается количество погрешностей в работе всей системы.

  • Емкостный. У этого прибора в отличие от других есть емкостный делитель. Этот вид устройств является пассивным, так как не добавляет мощности. Но хорошо справляется с контролем проходящей энергии по сети и выдает высокий КПД.

  • Двухобмоточный. Имеет две обмотки. Он может преобразовывать одно напряжение U1 в другое U2.

  • Трехобмоточный. Имеет кроме первичной обмотки еще две вторичные. Отлично заменяет два двухобмоточных прибора, что выгодно с точки зрения экономии затрат на приобретение электрооборудования.

Зачем нужен трансформатор

Статическое электромагнитное устройство, способное трансформировать переменный электрический ток определенного напряжения и частоты в электрический ток другого напряжения и такой же частоты называется трансформатором. Частота тока в соответствии с явлением электромагнитной индукции, остается неизменной. Данное устройство подлежит применению в различных электроприборах и схемах питания. А приобрести его будет выгодно у российского производителя и дистрибьютора современного электротехнического оборудования здесь https://epatrade.ru/catalog/transformatory/. Компания с пятнадцатилетним опытом работы на рынке отечественной энергетики способна обеспечить гарантию на производимую продукцию от трех лет и более.

Статический трансформатор включает в свой состав первичную и вторичную обмотки и сердечник (магнитопровод). Его способность передавать электрическую энергию на большие расстояния также уменьшает площадь сечения проводов линий электропередач, и соответственно снижает потери энергии.

Трансформаторы имеют следующие разновидности: повышающий, понижающий, силовой, вращающийся, импульсный, разделительный, согласующийся.

Трансформатор выполняет большое количество функций, приносящих непосредственную пользу. Передача электроэнергии на расстояние, повышение переменного напряжения делает трансформаторы незаменимыми. При использовании в электросетях они способны повысить напряжение, чтобы при передаче электроэнергии преодолеть сопротивление проводов.

Распределительные трансформаторы соседствуют с электростанциями, вырабатывающими электрический ток. Они предназначены для повышения напряжения при передаче электрического тока потребителям. А со стороны потребителей возведены понижающие трансформаторы, которые уменьшают напряжение до предназначенного для частного использования.

Трансформатор представляет собой часть блока питания в самых разных представителях электроники. Его способность понизить входное сетевое напряжение дает возможность выпрямить его светодиодным мостом и отфильтровав падать на плату. Кроме того, трансформатор питает радиолампы и электронно-лучевые трубки.

Понижающий трансформатор, схема, как работает, для чего нужен

Понижающий трансформатор — это обычный трансформатор который работает по тем же принципам и только нужен для преобразования определенное переменного напряжения с большого значения в меньшее. То есть если определенному устройству необходимо напряжение 12 Вольт, а с розетки подается стандартно 220 Вольт, нужно использовать понижающий трансформатор. Используется понижающий трансформатор так же в различных отраслях энергетики, электротехники.

схема понижающего трансформатора с 220 В на 12 В

ТН включается параллельно нагрузке. Его задача состоит в изменении входного напряжения с заданным коэффициентом.

Как определить этот коэффициент?

В простейшем случае он численно равен отношению количества витков в обмотках.

Говорят о понижающем трансформаторе, когда количество витков первичной (сетевой) обмотки меньше, чем у вторичной. Тогда на выходе напряжение также будет меньше. У повышающего, наоборот, количество витков вторичной (нагрузочной) обмотки превосходит количество первичной.

Обратите внимание!

В более общем случае устройство может иметь не две, а более обмоток. Для каждой из обмоток будет иметься свой коэффициент трансформации, причем часть обмоток будут понижающими, а часть –повышающими.

Любой трансформатор напряжения обратим, то есть, подав на любую из вторичных обмоток переменное напряжение, получим его и на выходе первичной, с тем же коэффициентом преобразования (трансформации).

Определение коэффициента трансформации производится по формуле: N=U1/U2.

Как уже говорилось, коэффициент трансформации определяется отношением количества витков. Это справедливо только для режимов холостого хода, когда сопротивления проводов обмоток не вносят потерь. Ток, который протекает в обмотках, создает на их сопротивлении падение напряжения, которое вычитается из ЭДС ненагруженного преобразователя. Таким образом, при увеличении нагрузки коэффициент трансформации падает. Аналогичная ситуация возникает для обмоток, выполненных проводами различного сечения.

Например.

Имеем понижающий трансформатор с коэффициентом трансформации, равным 10, на двух вторичных обмотках, но одна из которых выполнена проводом, сечением в два раза меньше. При одинаковых нагрузках напряжение на той обмотке, где использовался более тонкий провод, будет ниже на величину падения напряжения на сопротивлении обмоточного провода.

Существуют различные типы понижающих трансформаторов. Они могут быть одно-, двух- или трехфазными, что позволяет использовать их в различных областях энергетики. Конструкция этих устройств включает в себя две обмотки и шихтованный сердечник, для изготовления которого используется электротехническая сталь. 

У трансформатора может быть и одна обмотка. В таком случае он называется автотрансформатором. Обмотка в таком случае имеет как минимум три вывода. К одной из пары выводов подключается входное напряжение. Выходное напряжение снимается с одного из входных и оставшегося свободным. Автотрансформатор также может быть повышающим и понижающим.

автотрансформатор

В чем различие между повышающим и понижающим трансформатором

При наличии огромного количества электроприборов и электроники нередко возникает необходимость использования электрического трансформатора.

Это электромагнитное устройство позволяет изменить значение тока благодаря явлению самоиндукции. Корень «трансформ», собственно, и означает «изменение».

Использование трансформаторов в быту и в производстве связано с особенностями оборудования. Обычно это устройства иностранного производства, например, произведенные в Азии и Америке, где стандартная электросеть выдает отличные от российских стандартов значения тока. Трансформатор позволяет защитить электрооборудования от выхода из строя или просто обеспечить необходимое питание для его эффективной работы.

Понижающими называются трансформаторы, преобразующие ток с больших значений на меньшие – например, с 220 до 110 В.

Повышающими трансформаторами называют устройства с обратным эффектом: протекающий по ним ток за счет индукции в катушках изменяется с меньших на большие значения. Например, повысить напряжение с 35 кВольт на 110 кВ для передачи электроэнергии на большие расстояния.

Таким образом, становится понятно, какой трансформатор нужно выбирать для тех или иных целей. Отдельно можно рассматривать регулируемые модели, в которых доступна функция быстрого переключения с повышения на повышение вольтажа. Универсальные трансформирующие приборы несколько дороже по цене, но и удобнее.

Понижающий трансформаторы часто применяют трехфазные трансформаторы для снабжения электроэнергией промышленные предприятия и жилые дома.

Маркировка понижающих трансформаторов зависит от его свойств

Основными свойствами понижающих трансформаторов являются:

  • Мощность.
  • Напряжение выхода.
  • Частота.
  • Габаритные размеры.
  • Масса.

Частота тока для разных моделей трансформаторов будет одинаковой, в отличие от других перечисленных характеристик. Габаритные размеры и масса будут больше при повышении мощности модели. Максимальная величина мощности у промышленных образцов понижающих трансформаторов, так же как габаритные размеры и масса.

Напряжение на выходе вторичных обмоток может быть различным, и зависит от назначения прибора. Модели трансформаторов для бытовых нужд имеют малые габариты и вес. Их легко устанавливать и перевозить.

Обмотки трансформатора

Обмотки находятся на магнитопроводе прибора. Ближе к сердечнику как правило, располагают низковольтную обмотку, так как ее легче изолировать. Между обмотками укладывают изоляционные прокладки и другие диэлектрики, например электротехнический картон.

Первичная обмотка соединяется с сетью питания переменного напряжения. Вторичная обмотка выдает низкое напряжение и подключается к потребителям электроэнергии.  К одному трансформатору можно подключать сразу несколько бытовых устройств.

Для намотки катушек применяют изолированные провода, с изоляцией каждого слоя кабельной бумагой

Проводники бывают различных форм сечения:

  • Круглая.
  • Прямоугольная (шина).

По способу намотки обмотки делят:

  • Концентрические, на стержне.
  • Дисковые, намотанные чередованием.

Применение понижающих трансформаторов заключается в их достоинствах:

  • необходимостью уменьшения рабочего напряжения до 12 вольт для создания безопасности человека.
  • Другой причиной применения низкого напряжения является нетребовательность трансформаторов к значению входного напряжения, так как они могут функционировать, например, при 110 В, при этом обеспечивая стабильное напряжение на выходе.
  • Компактные размеры.
  • Малая масса.
  • Удобство транспортировки и монтажа.
  • Отсутствие помех.
  • Плавная регулировка напряжения.
  • Незначительный нагрев.

Недостатки

  • Недолгий срок службы.
  • Незначительная мощность.
  • Высокая цена.
Как выбрать понижающие трансформаторы

Торговая сеть электротехнических изделий предлагает модели бытовых понижающих трансформаторов на все случаи жизни. При выборе конкретного устройства, рекомендуется воспользоваться следующими критериями выбора:

  • Величина напряжения на входе. На корпусе устройства обычно есть маркировка входного напряжения 220, либо 380 вольт. Для бытовой сети подходит модель на 220 В.
  • Величина напряжения выхода. Зависит от назначения и применения устройства. Обычно это 12 или 36 вольт, о чем также должна быть маркировка.
  • Мощность устройства. Чтобы правильно подобрать стабилизатор по мощности, нужно сложить мощности всех планируемых к подключению потребителей, и добавить резервное значение 20%.
Эксплуатация и ремонт

Основным условием правильной и надежной эксплуатации понижающего трансформатора является специально оборудованное место для его монтажа и функционирования.

Понижающие трансформаторы необходимо содержать в чистоте, сухом виде, защищать от пыли и влаги. В домашних бытовых условиях для трансформатора используют специальный шкаф или металлический корпус.

Заземление для понижающего трансформатора является обязательным условием.

Трансформатор требует периодического обслуживания и ухода, в зависимости от выполняемых им задач и условий эксплуатации.

Чаще всего обслуживание включает в себя следующие работы:

  • Наружный осмотр, очистка от пыли и грязи.
  • Осмотр деталей уплотнения, колец, прокладок, подтяжка клемм.
  • Проверка изоляции на пробой.

В трансформаторе могут появиться неисправности и повреждения обмоток в виде трещин секций катушек. При этом не требуется демонтировать трансформатор. На поврежденную изоляцию накладывают лакоткань. При серьезных неисправностях, связанных с обрывом или коротким замыканием, осуществляют снятие трансформатора и его ремонт в электромастерской.

Видео: Понижающий трансформатор 220-110В 1500Вт . Как выбрать понижающий трансформатор

Поделиться ссылкой:

Основы электрических трансформаторов

Что такое электрические трансформаторы?

Электрические трансформаторы — это машины, передающие электроэнергию из одной цепи в другую с изменением уровня напряжения, но без изменения частоты. Сегодня они предназначены для использования в сети переменного тока, а это означает, что колебания напряжения питания зависят от колебаний тока. Таким образом, увеличение тока приведет к увеличению напряжения и наоборот.

Трансформаторы

помогают повысить безопасность и эффективность энергосистем, повышая и понижая уровни напряжения по мере необходимости. Они используются в широком спектре жилых и промышленных применений, в первую очередь и, возможно, наиболее важно для распределения и регулирования мощности на большие расстояния.

Строительство электрического трансформатора

Три важных компонента электрического трансформатора — это магнитный сердечник, первичная обмотка и вторичная обмотка. Первичная обмотка — это часть, которая подключена к источнику электричества, откуда первоначально создается магнитный поток. Эти катушки изолированы друг от друга, и основной поток индуцируется в первичной обмотке, откуда он передается на магнитный сердечник и соединяется со вторичной обмоткой трансформатора через путь с низким сопротивлением.

Сердечник передает поток во вторичную обмотку, чтобы создать магнитную цепь, которая замыкает поток, а внутри сердечника размещается путь с низким сопротивлением, чтобы максимизировать потокосцепление. Вторичная обмотка помогает завершить движение потока, который начинается на первичной стороне, а с помощью сердечника достигает вторичной обмотки. Вторичная обмотка способна набирать импульс, потому что обе обмотки намотаны на один и тот же сердечник, и, следовательно, их магнитные поля помогают создавать движение. Во всех типах трансформаторов магнитный сердечник собирается из многослойных стальных листов, оставляя минимально необходимый воздушный зазор между ними для обеспечения непрерывности магнитного пути.

Как работают трансформаторы?

В электрическом трансформаторе для работы используется закон электромагнитной индукции Фарадея: «Скорость изменения магнитной индукции во времени прямо пропорциональна наведенной ЭДС в проводнике или катушке».

Физическая основа трансформатора заключается во взаимной индукции между двумя цепями, которые связаны общим магнитным потоком. Обычно он имеет 2 обмотки: первичную и вторичную. Эти обмотки имеют общий магнитный сердечник, который является ламинированным, и взаимная индукция, возникающая между этими цепями, помогает передавать электричество из одной точки в другую.

В зависимости от количества связанного магнитного потока между первичной и вторичной обмотками будут разные скорости изменения магнитного потока. Чтобы обеспечить максимальную потокосцепление, то есть максимальный поток, проходящий через вторичную обмотку и связанный с ней от первичной обмотки, для обеих обмоток размещен путь с низким сопротивлением. Это приводит к повышению эффективности работы и образует сердечник трансформатора.

Приложение переменного напряжения к обмоткам первичной обмотки создает переменный поток в сердечнике.Это связывает обе обмотки, чтобы навести ЭДС как на первичной, так и на вторичной стороне. ЭДС во вторичной обмотке вызывает ток, известный как ток нагрузки, если к вторичной части подключена нагрузка.

Таким образом электрические трансформаторы передают мощность переменного тока из одной цепи (первичной) в другую (вторичную) посредством преобразования электрической энергии из одного значения в другое, изменяя уровень напряжения, но не частоту.

Видео кредит: Инженерное мышление

Как работает трансформатор — Принцип работы электротехники

Электрический трансформатор — КПД и потери

В электрическом трансформаторе не используются движущиеся части для передачи энергии, что означает отсутствие трения и, следовательно, потерь на ветер.Однако электрические трансформаторы страдают от незначительных потерь меди и железа. Потери меди возникают из-за потерь тепла при циркуляции токов по медным обмоткам, что приводит к потере электроэнергии. Это самые большие потери в работе электрического трансформатора. Потери в железе вызваны запаздыванием магнитных молекул, находящихся внутри сердечника. Это отставание происходит в ответ на изменение магнитного потока, которое приводит к трению, и это трение производит тепло, которое приводит к потере мощности в сердечнике.Эти потери можно значительно уменьшить, если сердечник изготовлен из специальных стальных сплавов.

Интенсивность потерь мощности определяет КПД электрического трансформатора и выражается в потерях мощности между первичной и вторичной обмотками. Результирующий КПД затем вычисляется как отношение выходной мощности вторичной обмотки к мощности, потребляемой первичной обмоткой. В идеале КПД электрического трансформатора составляет от 94% до 96%

Типы трансформаторов

Электрические трансформаторы можно разделить на различные категории в зависимости от их конечного использования, конструкции, поставки и назначения.

На основе проектирования
  • Трансформатор с сердечником Этот трансформатор имеет две горизонтальные секции с двумя вертикальными ветвями и прямоугольный сердечник с магнитной цепью. Цилиндрические катушки (ВН и НН) размещены на центральном плече трансформатора сердечника.
  • Корпус типа Трансформатор Трансформатор кожухового типа имеет двойную магнитную цепь и центральное плечо с двумя внешними краями.

На основе поставки
  • Однофазный Трансформатор Однофазный трансформатор имеет только один набор обмоток.Отдельные однофазные блоки могут дать те же результаты, что и трехфазные переключатели, когда они соединены внешне.
  • Трехфазный Трансформатор Трехфазный (или трехфазный) трансформатор имеет три набора первичных и вторичных обмоток, образующих группу из трех однофазных трансформаторов. Трехфазный трансформатор в основном используется для производства, передачи и распределения электроэнергии в промышленности.

По основанию назначения
  • Повышающий трансформатор
    Этот тип определяется количеством витков провода.Таким образом, если вторичный набор имеет большее количество витков, чем первичный, это означает, что напряжение будет соответствовать тому, которое образует базу повышающего трансформатора.
  • Понижающий трансформатор
    Этот тип обычно используется для понижения уровня напряжения в сети передачи и распределения электроэнергии, поэтому его механизм полностью противоположен повышающему трансформатору.

На основании использования
  • Силовой трансформатор
    Обычно используется для передачи электроэнергии и имеет высокий рейтинг.
  • Распределение трансформатор Этот электрический трансформатор имеет сравнительно более низкие характеристики и используется для распределения электроэнергии.
  • Инструмент трансформатор Этот электрический трансформатор подразделяется на трансформаторы тока и напряжения.
    • Трансформатор тока
    • Трансформатор потенциала

Эти трансформаторы используются для реле и защиты приборов одновременно.

На основе охлаждения
  • Самоохлаждающиеся масляные трансформаторы Этот тип обычно используется в небольших трансформаторах мощностью до 3 МВА и предназначен для самоохлаждения за счет окружающего воздушного потока.
  • Масляные трансформаторы с водяным охлаждением В этом типе электрических трансформаторов используется теплообменник для облегчения передачи тепла от масла к охлаждающей воде.
  • С воздушным охлаждением (воздушное охлаждение) Трансформаторы В трансформаторах этого типа выделяемое тепло охлаждается с помощью нагнетателей и вентиляторов, которые обеспечивают циркуляцию воздуха по обмоткам и сердечнику.

Основные характеристики трансформатора

Все трансформаторы имеют общие черты, независимо от их типа:

  • Частота входной и выходной мощности одинаковая
  • Все трансформаторы используют законы электромагнитной индукции
  • Первичная и вторичная обмотки не имеют электрического соединения (за исключением автотрансформаторов). Передача энергии осуществляется посредством магнитного потока.
  • Для передачи энергии не требуются движущиеся части, поэтому отсутствуют потери на трение или ветер, как в других электрических устройствах.
  • Потери, которые происходят в трансформаторах, меньше, чем в других электрических устройствах, и включают:
    • Потери в меди (потеря электроэнергии из-за тепла, создаваемого циркуляцией токов вокруг медных обмоток, считается самой большой потерей в трансформаторах)
    • Потери в сердечнике (потери на вихревые токи и гистерезис, вызванные запаздыванием магнитных молекул в ответ на переменный магнитный поток внутри сердечника)

Большинство трансформаторов очень эффективны, вырабатывая от 94% до 96% энергии при полной нагрузке.Трансформаторы очень большой мощности могут выдавать до 98%, особенно если они работают с постоянным напряжением и частотой.

Применение электрического трансформатора

Основные области применения электрического трансформатора:

  • Повышение или понижение уровня напряжения в цепи переменного тока.
  • Увеличение или уменьшение значения индуктивности или конденсатора в цепи переменного тока.
  • Предотвращение прохождения постоянного тока из одной цепи в другую.
  • Изоляция двух электрических цепей.
  • Повышение уровня напряжения на объекте выработки электроэнергии перед передачей и распределением электроэнергии.

Общие применения электрического трансформатора включают насосные станции, железные дороги, промышленность, коммерческие предприятия, ветряные мельницы и энергоблоки.

Советы по поиску и устранению неисправностей электрического трансформатора

Использование мультиметра — лучший способ проверить и устранить неисправности в электрической цепи.

  1. Начните с проверки напряжения цепи, которую необходимо проверить.Этот шаг поможет вам определить тип лампочки, необходимой для сборки тестера цепей.
  2. Вырежьте 2 полосы из провода AWG 16 калибра , убедившись, что каждая из них имеет длину не менее 12 дюймов.
  3. Используйте инструмент для зачистки, чтобы удалить четверть внешнего пластика с обоих концов проводов и 1 дюйм внешнего пластика с двух других концов. Как только это будет сделано, скрутите оголенную проволоку, чтобы пряди соединялись.
  4. Присоедините два конца, с которых вы сняли 1/4 дюйма дюйма пластмассы, к клеммам патрона лампы.
  5. Вставьте лампочку в патрон и прикрепите два оставшихся конца провода к клеммам, которые вы хотите проверить.

D&F Liquidators обслуживает потребности в строительных материалах для электротехники более 30 лет. Это международная информационная служба площадью 180 000 квадратных метров, расположенная в Хейворде, Калифорния. В нем хранится обширный перечень электрических разъемов, кабелепроводов, автоматических выключателей, распределительных коробок, проводных кабелей, предохранительных выключателей и т. Д.Он закупает электрические материалы у ведущих компаний по всему миру. Компания также ведет обширный инвентарь взрывозащищенной электротехнической продукции и современных решений в области электрического освещения. Поскольку компания D&F закупает материалы оптом, она имеет уникальную возможность предложить конкурентоспособную структуру ценообразования. Кроме того, он может удовлетворить самые взыскательные запросы и отгрузить материал в тот же день.

Установите пользовательское содержимое вкладки HTML для автора на странице профиля

Какова цель преобразователя?

Обновлено 16 ноября 2018 г.

Кевин Бек

Большинство людей, вероятно, слышали о трансформаторах и знают, что они являются частью когда-либо очевидной, но все еще таинственной энергосистемы, доставляющей электроэнергию в дома, предприятия и все другие места, где «сок» нужен.Но типичный человек отказывается изучать тонкости подачи электроэнергии, возможно, потому, что весь процесс кажется скрытым под угрозой. Дети с раннего возраста узнают, что электричество может быть очень опасным, и все понимают, что провода любой энергокомпании держатся в недоступном для них месте (или иногда закапываются в землю) по уважительной причине.

Но электросеть — это на самом деле триумф человеческой инженерии, без которой цивилизация была бы неузнаваема по сравнению с той, в которой вы живете сегодня.Трансформатор является ключевым элементом в управлении и доставке электроэнергии от точки, в которой она вырабатывается на электростанциях, до момента, когда она попадет в дом, офисное здание или другой конечный пункт назначения.

Для чего нужен трансформатор?

Представьте себе плотину, удерживающую миллионы галлонов воды, чтобы образовать искусственное озеро. Поскольку река, питающая это озеро, не всегда несет в этот район одинаковое количество воды, ее вода имеет тенденцию подниматься весной после таяния снега во многих областях и отливаться летом в более засушливые времена, любая эффективная и безопасная плотина должна быть оснащены устройствами, которые позволяют более точно контролировать воду, чем просто прекращать ее течь, пока уровень не поднимется настолько, что вода просто проливается на нее.Поэтому плотины включают в себя всевозможные шлюзовые затворы и другие механизмы, которые определяют, сколько воды будет проходить на нижнюю сторону плотины, независимо от величины давления воды на верхней стороне.

Примерно так работает трансформатор, за исключением того, что текущим материалом является не вода, а электрический ток. Трансформаторы служат для управления уровнем напряжения, протекающего через любую точку энергосистемы (подробно описанной ниже), таким образом, чтобы уравновешивать эффективность передачи с базовой безопасностью.Ясно, что как для потребителей, так и для владельцев электростанции и сети, это выгодно с финансовой и практической точки зрения, чтобы предотвратить потери электроэнергии между выходом электроэнергии из электростанции и ее поступлением в дома или другие места назначения. С другой стороны, если количество напряжения, проходящего через типичный высоковольтный силовой провод, не будет уменьшено перед входом в ваш дом, это приведет к хаосу и катастрофе.

Что такое напряжение?

Напряжение — это мера разности электрических потенциалов.Номенклатура может сбивать с толку, потому что многие студенты слышали термин «потенциальная энергия», что позволяет легко спутать напряжение с энергией. Фактически, напряжение — это электрическая потенциальная энергия на единицу заряда или джоулей на кулон (Дж / Кл). Кулон — это стандартная единица электрического заряда в физике. Отдельному электрону присваивается -1,609 × 10 -19 кулонов, в то время как протон несет заряд, равный по величине, но противоположный по направлению (т.е. положительный заряд).

Ключевое слово здесь действительно «разница».»Причина того, что электроны текут из одного места в другое, — это разница в напряжении между двумя контрольными точками. Напряжение представляет собой объем работы, который потребуется на единицу заряда , чтобы переместить заряд против электрического поля из первой точки в другую. второй. Чтобы получить представление о масштабе, знайте, что провода передачи на большие расстояния обычно имеют от 155000 до 765000 вольт, тогда как напряжение, входящее в дом, обычно составляет 240 В.

История трансформатора

В 1880-х годах электрические услуги поставщики использовали постоянный ток (DC).Это было связано с определенными обязательствами, в том числе с тем фактом, что постоянный ток нельзя было использовать для освещения и был очень опасным, так как требовались толстые слои изоляции. За это время изобретатель по имени Уильям Стэнли создал индукционную катушку, устройство, способное создавать переменный ток (AC). В то время, когда Стэнли придумал это изобретение, физики знали о явлении переменного тока и его преимуществах с точки зрения источника питания, но никто не смог придумать средства подачи переменного тока в больших масштабах.Индукционная катушка Стэнли послужит шаблоном для всех будущих вариантов устройства.

Стэнли чуть не стал юристом, прежде чем решил работать электриком. Он начал в Нью-Йорке, а затем переехал в Питтсбург, где начал работать над своим трансформатором. Он построил первую муниципальную энергосистему переменного тока в 1886 году в городе Грейт-Баррингтон, штат Массачусетс. На рубеже веков его энергетическая компания была куплена General Electric.

Может ли трансформатор повышать напряжение?

Трансформатор может как увеличивать (повышать), так и уменьшать (уменьшать) напряжение, проходящее через силовые провода.Это примерно аналогично тому, как кровеносная система может увеличивать или уменьшать приток крови к определенным частям тела в зависимости от потребности. После того, как кровь («сила») покидает сердце («энергетическая установка»), чтобы достичь ряда точек ветвления, она может в конечном итоге попасть в нижнюю часть тела вместо верхней части тела, а затем в правую ногу вместо верхней части тела. слева, а затем к икре вместо бедра и т. д. Это определяется расширением или сужением кровеносных сосудов в органах и тканях-мишенях.Когда электричество вырабатывается на электростанции, трансформаторы повышают напряжение с нескольких тысяч до сотен тысяч для целей передачи на большие расстояния. Когда эти провода достигают точек, называемых силовыми подстанциями, трансформаторы снижают напряжение до менее 10 000 вольт. Вы, наверное, видели эти подстанции и их трансформаторы среднего уровня в своих путешествиях; Трансформаторы обычно помещаются в коробки и немного напоминают холодильники, поставленные на обочине дороги.

Когда электричество покидает эти станции, что обычно происходит в разных направлениях, оно встречает другие трансформаторы ближе к своей конечной точке в подразделениях, микрорайонах и отдельных домах.Эти трансформаторы снижают напряжение с менее 10 000 вольт до примерно 240 — более чем в 1000 раз ниже типичных максимальных уровней, наблюдаемых в высоковольтных проводах большой протяженности.

Как электричество попадает в наши дома?

Трансформаторы — это, конечно, только один компонент так называемой энергосистемы, названия системы проводов, переключателей и других устройств, которые производят, отправляют и контролируют электричество, откуда оно генерируется и где оно в конечном итоге используется.

Первым шагом в создании электроэнергии является вращение вала генератора.Начиная с 2018 года, чаще всего это делается с использованием пара, выделяющегося при сгорании ископаемого топлива, такого как уголь, нефть или природный газ. Атомные электростанции и другие генераторы «чистой» энергии, такие как гидроэлектростанции и ветряные электростанции, также могут использовать или производить энергию, необходимую для привода генератора. В любом случае электричество, которое вырабатывается на этих станциях, называется трехфазной мощностью. Это связано с тем, что эти генераторы переменного тока вырабатывают электричество, которое колеблется между установленным минимальным и максимальным уровнем напряжения, и каждая из трех фаз смещена на 120 градусов по сравнению с фазами впереди и позади нее во времени.(Представьте, что вы идете взад и вперед по 12-метровой улице, в то время как двое других людей делают то же самое, делая 24-метровый круговой переход, за исключением того, что один из двух других людей всегда находится на 8 метров впереди вас, а другой — на 8 метров. позади вас. Иногда двое из вас будут идти в одном направлении, а иногда двое из вас будут идти в другом направлении, варьируя сумму ваших движений, но предсказуемым образом. Это примерно то, как работает трехфазный переменный ток.) ​​

Перед тем, как электричество покидает электростанцию, оно впервые встречает трансформатор.Это единственная точка, в которой трансформаторы в электросети заметно повышают напряжение, а не снижают его. Этот шаг необходим, потому что электричество затем поступает в большие линии передачи группами по три, по одной для каждой фазы мощности, и некоторым из них, возможно, придется пройти до 300 миль или около того.

В какой-то момент электричество попадает на подстанцию, где трансформаторы снижают напряжение до уровня, подходящего для менее важных линий электропередач, которые вы видите в окрестностях или проходят вдоль сельских шоссе.Именно здесь происходит фаза распределения (в отличие от передачи) подачи электроэнергии, поскольку линии обычно выходят из подстанций в нескольких направлениях, точно так же, как несколько артерий, ответвляющихся от крупного кровеносного сосуда в более или менее одном и том же соединении.

От подстанции электричество проходит в окрестности и покидает местные линии электропередач (которые обычно находятся на «телефонных столбах»), чтобы попасть в отдельные жилые дома. Меньшие трансформаторы (многие из которых выглядят как небольшие металлические мусорные баки) снижают напряжение примерно до 240 вольт, поэтому оно может попасть в дома без большого риска возникновения пожара или другого серьезного происшествия.

Какова функция трансформатора?

Трансформаторы не только должны выполнять работу по управлению напряжением, но они также должны быть устойчивы к повреждениям, будь то стихийные бедствия, такие как ураганы или целенаправленные атаки, созданные человеком. Невозможно сохранить электросеть вне досягаемости элементов или злоумышленников, но в то же время электросеть абсолютно жизненно важна для современной жизни. Такое сочетание уязвимости и необходимости привело к тому, что Министерство внутренней безопасности США заинтересовалось крупнейшими трансформаторами в американской энергосистеме, которые называются большими силовыми трансформаторами или LPT.Работа этих массивных трансформаторов, которые находятся на электростанциях и могут весить от 100 до 400 тонн и стоить миллионы долларов, имеет важное значение для поддержания повседневной жизни, поскольку отказ одного из них может привести к отключению электроэнергии на большой территории. . Это трансформаторы, которые значительно повышают напряжение до того, как электричество попадет в протяженные высоковольтные провода.

По состоянию на 2012 год средний возраст LPT в США составлял около 40 лет. Некоторые из современных высокотехнологичных трансформаторов сверхвысокого напряжения (СВН) рассчитаны на 345 000 вольт, и спрос на трансформаторы растет как в США.S. и во всем мире, вынуждая правительство США искать способы как заменить существующие LPT по мере необходимости, так и разработать новые по сравнительно низкой цене.

Как работает трансформатор?

Трансформатор представляет собой большой квадратный магнит с отверстием посередине. Электричество поступает с одной стороны через провода, несколько раз обмотанные вокруг трансформатора, и уходит с противоположной стороны через провода, обернутые вокруг трансформатора разное количество раз. Подача электричества индуцирует магнитное поле в трансформаторе, которое, в свою очередь, индуцирует электрическое поле в других проводах, которые затем уносят энергию от трансформатора.

На уровне физики трансформатор работает, используя закон Фарадея, который гласит, что соотношение напряжений двух катушек равно отношению количества витков в соответствующих катушках. Таким образом, если на трансформаторе требуется пониженное напряжение, вторая (выходная) катушка содержит меньше витков, чем первичная (входящая) катушка.

Какой трансформатор напряжения мне нужен? — Найдите подходящий продукт

Путешественники и эмигранты нередко привозят электронику и бытовую технику с собой за границу.Дилемма, конечно же, заключается в том, почему ACUPWR работает: разница в стандартах напряжения и мощности во всем мире. Мы устраняем международные разницы напряжения с помощью высококачественных международных преобразователей энергии. Если вы хотите использовать 120-вольтовую микроволновую печь в стране со стандартом 220–240-вольт, или вы хотите перевезти что-то гораздо большее за границу, например, холодильник или морозильник, ACUPWR поможет вам.

Линия трансформаторов напряжения и преобразователей мощности ACUPWR доступна с различной мощностью, от 100 до 2500 Вт, и они подходят для потребления мощности большинством бытовых приборов и электроники.Тем не менее, потребители не являются экспертами в таких вещах, как мощность, да и не должны ими быть.

С этой целью мы предоставили несколько таблиц ниже, чтобы помочь вам определить требования к мощности вашего устройства (или устройств) и требования к мощности для вашего трансформатора ACUPWR.

Еще один замечательный ресурс — это веб-сайт wattdoesituse.com, который позволяет пользователям вводить продукт по производителю и номеру модели.

Версия PDF:

Вот несколько советов по использованию этих диаграмм:

Шаг первый: проверьте свое устройство

Убедитесь, что на вашем приборе есть одно напряжение.Для устройств с двойным напряжением требуется просто переходник.

Шаг второй: определите мощность вашего устройства (а)

Для этого просто найдите букву «W» на этикетке вашего устройства. Это поможет вам определиться, какой трансформатор вам нужен. Если устройство на 300 Вт, то вам нужно будет купить трансформатор, который также на 300 Вт.

Другие компании заявляют, что максимальная мощность трансформатора напряжения должна быть равна или превышать номинальную мощность вашего устройства, умноженную на два.Вам не нужно играть в эту игру с продуктами ACUPWR Tru-Watts ™ — наши международные преобразователи мощности безопасны для непрерывного использования при 120% заявленной мощности. Вы получаете то, что видите, и вам нужно покупать только то, что вам нужно.

Шаг третий: определение общей рабочей мощности

Если вы перемещаетесь с более чем одним устройством и используете один трансформатор ACUPWR для всех из них, вам необходимо рассчитать общую рабочую (непрерывную) мощность этих устройств. Имейте в виду, что если вы планируете использовать глобальный сетевой фильтр (GSP), это должна быть модель ACUPWR AS6WWK.Использование GSP другого производителя приведет к аннулированию гарантии ACUPWR.

Шаг четвертый: определение ваших потребностей в конверсии

В США и Канаде (и на многих островах Карибского бассейна) стандарт напряжения составляет 110–120 вольт. Если вы путешествуете в другую часть мира, где напряжение составляет 220–240 В, что на самом деле является нормой в большинстве стран, и вы планируете использовать 120-вольтный прибор, вам понадобится понижающий преобразователь напряжения. . Понижающий трансформатор может преобразовывать 220–240 вольт в 110–120 вольт.Понижающий трансформатор напряжения понадобится вам, если вы путешествуете в любую страну, где уровень мощности выше, чем у вашей бытовой техники.

И наоборот, доставка приборов, работающих от 220–110 вольт в США или Канаду, требует повышающего преобразователя напряжения, который может преобразовывать 110–120 вольт в 220–240 вольт. Повышающий трансформатор понадобится вам, если вы путешествуете в любую страну, где уровень мощности ниже, чем у вашей бытовой техники.

В мире существует множество различных стандартов питания.Чтобы определить, с каким напряжением вы будете иметь дело, найдите пункт назначения в списке мировых стандартов мощности, чтобы узнать о напряжении, а также о типах вилок. Чтобы узнать больше, ознакомьтесь с нашим сообщением в блоге об истории стандартов питания и типов вилок!

Ознакомьтесь с нашей коллекцией международных силовых преобразователей и сетевых адаптеров сегодня, чтобы найти то, что вам нужно! Если у нас его нет, мы можем его создать. Свяжитесь с нашей командой сегодня, чтобы получить рекомендации или подробную информацию о наших услугах по созданию трансформаторов напряжения на заказ.

Нужен ли мне трансформатор?

Нужен ли мне трансформатор?

Если вы хотите использовать электроинструменты на 110 В дома или работаете на стройплощадке, вам понадобится трансформатор.

Что такое трансформатор?

Трансформатор, часто называемый «трансформатором напряжения» или «электрическим трансформатором», определяется как «устройство для уменьшения или увеличения напряжения переменного тока». Это небольшие электрические коробки с вилкой и несколькими розетками.Они используются для «повышения» или «понижения» напряжения. Так, например, если у вас есть источник питания 240 В и электроинструмент на 110 В, который вы хотите использовать, трансформатор используется для «понижения» напряжения с розетки 240 В на электроинструмент на 110 В. Трансформатор имеет вилку питания на 240 В, которая вставляется в розетку на 240 В. Он преобразует напряжение в 110 В и имеет несколько розеток на 110 В, к которым может быть подключен электроинструмент на 110 В, что позволяет включать инструмент и выполнять свою работу. Трансформаторы часто имеют две или более розеток, поэтому вы можете подключить к ним несколько электроинструментов на 110 В одновременно.

Зачем мне нужен трансформатор?

В то время как многие бытовые электроинструменты представляют собой оборудование на 240 В, большинство профессиональных электроинструментов рассчитаны на напряжение 110 В для обеспечения безопасности на месте, так как при разрезании кабеля питания во время работы снижается риск смертельного исхода. На месте трансформаторы обеспечивают две линии 55 В в противофазе. Это означает, что электроинструменты на 110 В можно подключать к трансформатору, и если шнур питания случайно оборвется, напряжение упадет вдвое, и удар будет менее смертельным.

В Великобритании бытовые розетки на 240 В.Вилка на 110 В не подходит для розетки на 240 В. Поэтому, если вы хотите использовать электроинструмент на 110 В дома для самостоятельной работы, вам понадобится трансформатор.

Какой тип трансформатора мне нужен?

Трансформаторы напряжения

доступны в различных размерах и с различными розетками. Тип трансформатора, который вам нужен, зависит от оборудования, которое вам нужно для питания. Если вы работаете дома с небольшими электроинструментами, такими как дрели, пилы и молотки, трансформатора на 3 кВА, скорее всего, будет достаточно.Для некоторых более мощных электроинструментов или оборудования для «непрерывного использования», такого как прожекторы и обогреватели, вам может потребоваться трансформатор на 5 кВА. Если вы работаете на объекте, вы можете воспользоваться более мощным трансформатором 10 кВА-20 кВА — если вам нужно питать большое количество оборудования и электроинструментов. Лучше всего проверить спецификации производителя или узнать в магазине, где вы приобрели или арендовали оборудование, чтобы узнать, какой трансформатор лучше всего использовать.

Примеры электроинструментов на 110 В, для использования которых в домашних условиях потребуется трансформатор:

Аренда электроинструментов и трансформаторов

У нас есть широкий выбор профессиональных электроинструментов и другого оборудования на 110 В, который можно взять напрокат по всей стране.В наш ассортимент электроинструментов входят дрели, пилы, угловые шлифовальные машины, отбойные молотки и многое другое. У нас также есть ряд доступных портативных осветительных приборов, прожекторов и обогревателей. Некоторое из нашего оборудования доступно на 110 или 240 В. Так что, если вы работаете дома, вы можете взять напрокат версию на 240 В и использовать ее дома без трансформатора. Мы поставляем силовые выключатели RCD с нашим оборудованием на 240 В для обеспечения безопасности. Если инструменты и оборудование недоступны для 240v, вы все равно можете арендовать 110v версию. Вам просто нужно будет взять напрокат электрический трансформатор в качестве аксессуара, чтобы вы могли без проблем использовать оборудование дома! Вы можете добавить трансформатор в свой заказ при онлайн-оплате или при заказе по телефону.

Почему силовые трансформаторы необходимы в современном мире

В современную эпоху цифровых технологий большинство современных устройств, таких как ноутбуки, смартфоны, Интернет-устройства и другие подключенные системы, не могут функционировать без наличия одного важного ингредиента, а именно электричества.

Подача электроэнергии и электричества в наши дома и другие места было бы невозможно без силовых трансформаторов. Итак, что делает силовой трансформатор и почему он необходим в современном мире? В этой статье обсуждается этот аспект.

Что такое силовой трансформатор?

Как и любой другой трансформатор, силовой трансформатор представляет собой устройство, состоящее из электромагнитного сердечника и обмотки катушки, и изменяет напряжение и ток электроэнергии, протекающей через него. Другими словами, силовой трансформатор может увеличивать или уменьшать уровень напряжения или тока в цепи переменного тока.

Необходимо прочитать : Силовые трансформаторы — что вы должны знать перед покупкой?

В отличие от других трансформаторов, силовой трансформатор предназначен для работы с входами высокого напряжения и может работать со 100% -ным КПД (по сравнению с КПД 60-70% для других трансформаторов).Типичные силовые трансформаторы выдерживают высокое напряжение в диапазоне от 33 до 400 кВ. Кроме того, в силовых трансформаторах используется дисковая обмотка, которая последовательно соединяет отдельные дисковые обмотки через внешний и внутренний переходы.

Почему силовые трансформаторы необходимы в современном мире?

Будь то освещение наших домов или поддержание работы холодильника, современный мир нуждается в непрерывном и безопасном подаче электроэнергии в жилые или коммерческие учреждения.

Силовые трансформаторы в сочетании с распределительными трансформаторами позволяют передавать электроэнергию в любое место.Силовые трансформаторы получают электроэнергию с чрезвычайно высоким напряжением, которое понижается трансформатором до более низких уровней напряжения, которые могут быть распределены через распределительные трансформаторы на отдельные жилые или коммерческие объекты. Более низкие уровни напряжения (или более высокие токи) подходят для работы используемых нами электроприборов.

Также прочтите : Руководство по выбору лучшего силового трансформатора

Дополнительное использование силовых трансформаторов на электростанциях, вырабатывающих электроэнергию для крупного города.Трансформаторы помогают увеличить выработку электроэнергии, чтобы обеспечить электричеством весь город. Без силовых трансформаторов электроэнергии на электростанциях было бы недостаточно для всего города.

В зависимости от назначения современные приборы имеют разные требования к напряжению, которое подается на них с помощью силовых трансформаторов. Кроме того, силовые трансформаторы изолируют электрическое устройство от основного источника питания, тем самым защищая его от любого повреждения или риска.

Заключение

Силовые трансформаторы играют важную роль в регулировании и обеспечении потока электроэнергии в нашей повседневной жизни, и ряд производителей силовых трансформаторов в Канаде делают все возможное, чтобы обеспечить вашу безопасность и удобство.

Зачем мне нужен электрический адаптер, когда я путешествую за границу?

Хотя технологии помогают сделать мир намного меньше, между странами все еще есть существенные различия.Электрическая стандартизация — это область, в которой мало что изменилось с тех пор, как в каждой стране были установлены исходные национальные стандарты. Если вы много путешествуете, это может сильно расстраивать!

В Соединенных Штатах и ​​большей части Западного полушария используются электрические системы, работающие от 110–120 вольт. Почти во всех остальных странах стандартное напряжение составляет 220–240 вольт. Системы на 110 В имеют цикл 60 Гц, в то время как большинство систем на 220 В работают при 50 Гц. Эта разница в количестве циклов в секунду обычно не имеет большого значения, но она может заставить определенные элементы, такие как электрические часы, работать быстрее или медленнее.За некоторыми исключениями, в первую очередь в Бразилии и Южной Африке, переменный ток (AC) — это метод, используемый для подачи электроэнергии. Но имейте в виду те страны, которые используют постоянный ток (DC) — он может легко вывести из строя любое подключенное оборудование, которое не предназначено для работы в этой системе.

Есть три элемента, которые могут потребоваться для переключения между различными системами питания:

  • Адаптеры
  • Преобразователи
  • Трансформаторы

Адаптер — это просто разъем, который меняет форму вилки в соответствии с розеткой.Он никоим образом не изменяет напряжение или электрическую мощность. Если вы знаете, что форма вилки — единственное различие между вашим оборудованием и электрической системой, которую вы планируете использовать, то адаптер — это все, что вам нужно. Некоторые элементы имеют возможность использовать либо 110 В, либо 220 В. Фактически, большинство компьютеров теперь имеют интеллектуальные блоки питания, которые можно переключать между ними. Посмотрите на разные формы вилок, показанные ниже для разных стран.

Если вашему оборудованию требуется определенное напряжение, то вам понадобится преобразователь или трансформатор .Преобразователи используют электронный переключатель, чтобы приблизить 110 В, быстро отключая и отключая ток, полученный от источника 220 В. Это нормально для некоторых электрических устройств, таких как фены, но не подходит для чего-либо электронного (что-то с компьютерным чипом). Кроме того, преобразователи не следует использовать для чего-либо, что будет подключаться дольше, чем несколько минут.

Электронным элементам нужен трансформатор. Вы также захотите использовать трансформатор, если вы увеличиваете мощность с 110 до 220. Там, где преобразователь просто ограничивал бы величину электрической мощности, не уменьшая ее, трансформатор фактически снижает напряжение проходящего через него электричества.Это очень важное различие. Всегда используйте трансформатор с электроникой!

Для получения дополнительной информации и интересных ссылок см. Следующую страницу.

Статьи по теме

Другие полезные ссылки

Справочник по номинальным характеристикам трансформатора, кВА

Перейти к:

Во многих отраслях промышленности, включая здравоохранение, производство, заключение контрактов на электроэнергию, высшее образование и исправительные учреждения, надежные высококачественные трансформаторы необходимы для обеспечения эффективной работы.Крупные объекты и производственные процессы требуют значительного количества энергии, и им нужны надежные трансформаторы для преобразования энергии, поступающей от электростанции, в форму, которую они могут использовать для своего оборудования и инженерных сетей.

Как трансформаторы помогают коммерческим и промышленным предприятиям достичь этих целей?

Трансформаторы преобразуют энергию источника в мощность, необходимую для нагрузки. Чтобы использовать свои трансформаторы эффективно, предприятиям необходимо знать, какую мощность могут дать им их трансформаторы.Эту информацию предоставляет рейтинг трансформатора.

Трансформатор обычно состоит из двух обмоток, первичной и вторичной обмоток. Входная мощность проходит через первичную обмотку. Затем вторичная обмотка преобразует мощность и отправляет ее на нагрузку через свои входные провода. Номинал трансформатора или его размер — это уровень его мощности в киловольт-амперах.

Когда часть электрооборудования выходит из строя, часто виноват трансформатор. В этом случае вам, вероятно, потребуется заменить трансформатор, а когда вы это сделаете, вам нужно будет выбрать трансформатор с правильной кВА для ваших нужд.В противном случае вы рискуете поджарить свое ценное оборудование.

Как выбрать размер трансформатора? К счастью, подобрать трансформатор относительно просто. Он включает в себя использование простой формулы для расчета требований кВА на основе тока и напряжения вашей электрической нагрузки. В приведенном ниже руководстве по номинальной мощности трансформатора кВА мы более подробно объясним, как рассчитать требуемую номинальную мощность в кВА.

Для получения дополнительной информации позвоните в ELSCO

Как определить мощность в кВА

Когда вы определяете мощность в кВА, полезно иметь терминологию и сокращения прямо перед тем, как вы начнете.Иногда можно встретить трансформаторы, особенно меньшего размера, измеряемые в ВА. ВА расшифровывается как вольт-амперы. Например, трансформатор с номинальной мощностью 100 ВА может выдерживать напряжение 100 В при токе в один ампер (ампер).

Единица измерения кВА представляет собой киловольт-ампер или 1000 вольт-ампер. Трансформатор с номинальной мощностью 1,0 кВА аналогичен трансформатору с номинальной мощностью 1000 ВА и может выдерживать напряжение 100 В при токе 10 ампер.

Расчет кВА Типоразмер

Чтобы определить мощность в кВА, вам необходимо выполнить ряд расчетов на основе вашей электрической схемы.

Электрическая нагрузка, которая подключается к вторичной обмотке, требует определенного входного напряжения или напряжения нагрузки. Назовем это напряжение V. Вам нужно знать, что это за напряжение — вы можете найти его, посмотрев на электрическую схему. Можно сказать, что в примере напряжение нагрузки V должно составлять 150 вольт.

Затем вам нужно будет определить конкретный ток, необходимый для вашей электрической нагрузки. Вы также можете посмотреть на электрическую схему, чтобы определить это число. Если вы не можете определить требуемый ток, его можно рассчитать, разделив входное напряжение на входное сопротивление.Допустим, требуемый ток фазы нагрузки, который мы назовем l, составляет 50 ампер.

После того, как вы нашли или рассчитали эти две цифры, вы можете использовать их, чтобы вычислить потребляемую нагрузкой мощность в киловаттах. Для этого вам нужно умножить требуемое входное напряжение (В) на требуемую токовую нагрузку в амперах (л), а затем разделить это число на 1000:

.

В приведенном выше примере вы должны умножить 150 на 50, чтобы получить 7 500, а затем разделить это число на 1000, чтобы получить 7,5 киловатт.

Последний шаг — преобразовать цифру в киловаттах в киловольт-амперы. Когда вы это сделаете, вам нужно будет разделить на 0,8, что представляет собой типичный коэффициент мощности нагрузки. В приведенном выше примере вы разделите 7,5 на 0,8, чтобы получить 9,375 кВА.

Однако, выбирая трансформатор, вы не найдете трансформатора мощностью 9,375 кВА. Большинство номинальных значений кВА являются целыми числами, а многие, особенно в более высоких диапазонах, кратны пяти или 10–15 кВА, 150 кВА, 1000 кВА и так далее. В большинстве случаев вам нужно выбрать трансформатор с номинальной мощностью немного выше рассчитанной вами кВА — в данном случае, вероятно, 10 или 15 кВА.

Вы также можете работать в обратном направлении и использовать известную мощность трансформатора в кВА для расчета силы тока, которую вы можете использовать. Если ваш трансформатор рассчитан на 1,5 кВА, и вы хотите, чтобы он работал при 25 вольт, умножьте 1,5 на 1000, чтобы получить 1500, а затем разделите 1500 на 25, чтобы получить 60. Ваш трансформатор позволит вам работать с током до 60 ампер. Текущий.

Если идея выполнения расчетов, когда вам нужно вычислить кВА, кажется устрашающей или непривлекательной, вы всегда можете обратиться к диаграммам. Многие производители предоставляют диаграммы, чтобы упростить определение правильной мощности в кВА.Если вы используете диаграмму, вы найдете напряжение и силу тока вашей системы в строках и столбцах, а затем найдете в списке кВА, где пересекаются выбранные вами строка и столбец.

Запрос цены на трансформатор

Стартовый фактор и особенности специализации

В приведенном выше примере мы разделили на 0,8, чтобы немного увеличить кВА трансформатора. Почему мы это сделали?

Для запуска устройства обычно требуется больше тока, чем для запуска. Чтобы учесть это дополнительное текущее требование, часто бывает полезно включить в свои расчеты начальный фактор.Хорошее практическое правило — умножить напряжение на силу тока, а затем умножить на дополнительный пусковой коэффициент 125%. Деление на 0,8, конечно, то же самое, что умножение на 1,25.

Однако, если вы часто запускаете трансформатор — скажем, чаще, чем один раз в час — вам может потребоваться кВА даже больше, чем рассчитанный вами размер. А если вы работаете со специализированными нагрузками, например, с двигателями или медицинским оборудованием, ваши требования кВА могут существенно отличаться. Для специализированных приложений вы, вероятно, захотите проконсультироваться с профессиональной компанией по производству трансформаторов, чтобы узнать, какая кВА вам нужна.

Уравнение для трехфазных трансформаторов, которое мы обсудим более подробно ниже, также немного отличается. Когда вы выполняете расчеты с трехфазными трансформаторами, вам нужно включить константу, чтобы убедиться, что ваша работа работает правильно.

Стандартные размеры трансформатора

Легко говорить о расчетах размеров трансформаторов абстрактно и придумать массив чисел. Но каковы стандартные размеры трансформаторов, которые вы могли бы купить?

Наиболее распространенными размерами трансформаторов, особенно для коммерческих зданий, являются:

  • 3 кВА
  • 6 кВА
  • 9 кВА
  • 15 кВА
  • 30 кВА
  • 37.5 кВА
  • 45 кВА
  • 75 кВА
  • 112,5 кВА
  • 150 кВА
  • 225 кВА
  • 300 кВА
  • 500 кВА
  • 750 кВА
  • 1000 кВА

Как определить напряжение нагрузки

Прежде чем вы сможете рассчитать необходимую кВА для вашего трансформатора, вам нужно вычислить напряжение нагрузки, которое является напряжением, необходимым для работы электрической нагрузки. Чтобы определить напряжение нагрузки, вы можете взглянуть на свою электрическую схему.

В качестве альтернативы, у вас может быть кВА вашего трансформатора и вы хотите рассчитать необходимое напряжение. В этом случае вы можете скорректировать уравнение, которое мы использовали выше. Поскольку вы знаете, что кВА = V * 1/1000, мы можем решить для V, чтобы получить V = kVA * 1000 / л.

Итак, вы умножите свою номинальную мощность в кВА на 1000, а затем разделите на силу тока. Если ваш трансформатор имеет номинальную мощность 75 кВА, а ваша сила тока 312,5, вы подставите эти числа в уравнение — 75 * 1000 / 312,5 = 240 вольт.

Как определить вторичное напряжение

Первичная и вторичная цепи наматываются вокруг магнитной части трансформатора.Пара различных факторов определяет вторичное напряжение — количество витков в катушках, а также напряжение и ток первичной цепи.

Вы можете рассчитать напряжение вторичной цепи, используя соотношение падений напряжения в первичной и вторичной цепях, а также количество витков цепи вокруг магнитной части трансформатора. Мы будем использовать уравнение t 1 / t 2 = V 1 / V 2 , где t 1 — количество витков в катушке первичной цепи, t 2 — количество витков витков в катушке вторичной цепи, V 1 — падение напряжения в катушке первичной цепи, а V 2 — падение напряжения в катушке вторичной цепи.

Допустим, у вас есть трансформатор с 300 витками первичной обмотки и 150 витками вторичной обмотки. Вы также знаете, что падение напряжения на первой катушке составляет 10 вольт. Подставляя эти числа в приведенное выше уравнение, получаем 300/150 = 10 / t 2 , так что вы знаете, что t 2 , падение напряжения на вторичной катушке, составляет 5 вольт.

Как определить первичное напряжение

Помните, что у каждого трансформатора есть первичная и вторичная стороны. Во многих случаях вам нужно рассчитать первичное напряжение, то есть напряжение, которое трансформатор получает от источника питания.

Вы можете определить это первичное напряжение, используя соотношение тока и напряжения на первичной и вторичной обмотках трансформатора. Возможно, вы знаете, что ваш трансформатор имеет ток 4 ампера и падение напряжения на вторичной обмотке 10 вольт. Вы также знаете, что ваш трансформатор пропускает через первичную обмотку ток 6 ампер. Каким должно быть падение напряжения на первичной обмотке?

Пусть i 1 и i 2 равны токам через две катушки. Вы можете использовать формулу i 1 / i 2 = V 2 / V 1 .В этом случае i 1 равно 6, i 2 равно 4, а V 2 равно 10, и если вы подставите эти числа в формулу, вы получите 6/4 = 10 / V 1 . Решение для V 1 дает V 1 = 10 * 4/6, поэтому падение напряжения в первичной цепи должно составлять 6,667 вольт.

Запрос цены на трансформатор

Однофазный номинальный ток, кВА

Однофазный трансформатор использует однофазный переменный ток. Он имеет две линии переменного тока (AC).Ниже приведены несколько распространенных типов:

  • залитый: Однофазный залитый трансформатор полезен для различных общих нагрузок, включая как внутренние, так и внешние нагрузки. Эти трансформаторы широко используются в промышленных и коммерческих операциях, включая многие типы осветительных приборов. При желании предприятия могут объединить эти блоки для создания трехфазных трансформаторов. Эти трансформаторы имеют относительно низкие номиналы, часто от 50 ВА до 25 кВА.
  • вентилируемый: вентилируемый однофазный трансформатор полезен для нескольких однофазных внутренних и наружных нагрузок.Эти трансформаторы широко используются в коммерческих и промышленных приложениях, включая системы освещения. Они часто имеют номиналы от 25 до 100 кВА.
  • Полностью закрытые невентилируемые трансформаторы : Полностью закрытые невентилируемые трансформаторы могут быть однофазными или трехфазными. Они идеально подходят для сред, содержащих большое количество грязи и мусора. Их номинальные характеристики обычно варьируются от 25 до 500 кВА.

Трехфазная мощность, кВА

Трехфазный трансформатор может иметь одну из нескольких различных форм.Обычно он имеет три линии питания, каждая из которых сдвинута по фазе с двумя другими на 120 градусов.

По сравнению с однофазными трансформаторами, трехфазные трансформаторы бывают аналогичных типов:

  • залитый: Трехфазный залитый трансформатор полезен для множества общих нагрузок, как наружных, так и внутренних, коммерческих и промышленных, включая системы освещения. Эти трансформаторы часто имеют номинальные характеристики от 3 до 75 кВА.
  • Вентилируемый: Трехфазный вентилируемый трансформатор используется для многих типов общих внутренних и внешних нагрузок, как промышленных, так и коммерческих, включая системы освещения.Эти трансформаторы могут иметь огромные мощности, до 1000 кВА.
  • Полностью закрытые без вентиляции: как и однофазные блоки, эти трехфазные системы идеальны для сред, содержащих большое количество грязи и мусора. Их номинальные характеристики обычно варьируются от 25 до 500 кВА.

Расчет для трехфазного трансформатора кВА немного отличается от расчета для однофазного кВА. После того, как вы умножите свое напряжение и силу тока, вам также нужно будет умножить его на константу — 1.732, который представляет собой квадратный корень из 3, усеченный до трех десятичных знаков:

Итак, если вы работаете с трехфазным трансформатором, вместо того, чтобы умножать напряжение на силу тока и делить на 1000, чтобы получить кВА, вы умножаете напряжение на силу тока на 1,732 и все равно делите на 1000, чтобы получить кВА.

Обратитесь в ELSCO Transformers, чтобы получить помощь с трансформатором

Чтобы увидеть преимущества качественных, высокопроизводительных трансформаторов для вашего бизнеса, станьте партнером ELSCO Transformers.Мы предоставляем ряд услуг по обслуживанию трансформаторов, чтобы обеспечить бесперебойную работу вашего бизнеса, включая ремонт трансформаторов, реконструкцию, модернизацию, перемотку и аварийную замену.

Мы также предлагаем несколько различных типов новейших трансформаторов среднего напряжения, в том числе сухие трансформаторы, трансформаторы для установки на площадках, блочные подстанции и трансформаторы подстанционного типа. Мы также рады разработать трансформаторы, изготовленные по индивидуальному заказу, в соответствии с уникальными потребностями и спецификациями вашего предприятия. У нас есть многолетний опыт поставок трансформаторов для различных отраслей промышленности, включая подрядчиков по электротехнике, дома электроснабжения, больницы, медицинские клиники и производственные предприятия, среди многих других.

Неисправный или неисправный трансформатор может привести к дорогостоящим задержкам и снизить прибыльность вашего бизнеса. Поддерживайте эффективную работу своей работы, следя за ремонтом трансформатора или приобретая новую систему от ELSCO Transformers.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *