Защита квартирной электросети: Защита электропроводки в квартире | ehto.ru

Содержание

Защита электропроводки в квартире | ehto.ru

Вступление

Защита электропроводки в квартире включает защиту отдельных групп электропроводок и всей электропроводки в целом при помощи специального оборудования, которое устанавливается на стороне потребителя, то есть вас. Если обратиться к ГОСТ Р. 50571.1-93, а это основной стандарт, электрики зданий, включая жилые, то увидим, что предполагается использовать четыре типа защитного оборудования, для защиты электроцепей.

Защита электропроводки в квартире – виды и типы

  • Защита от короткого замыкания. Иначе, это защита от сверхтоков, которые образуются в сети при касании разнофазных, нулевого и фазного, фазного и защитного проводников сети находящихся под  напряжением;
  • От замыкания любого фазного провода на землю;
  • От перенапряжения, то есть скачок напряжения в сети вверх;
  • От пропадания напряжения или понижения его номинального значения.

Для квартирной электропроводки, применять все четыре типа защитных устройств никто не будет, да и это не предусмотрено. По нормативам, да и по практике, в электрических цепях квартиры применяют устройства защиты от короткого замыкания (сверхтоков) и защиту от замыкания рабочих проводников на землю.

Аппараты для защиты электропроводки

Защита электропроводки в квартире от сверхтоков обеспечивают автоматы защиты. От замыкания на землю защищает организованная система заземления квартиры, система уравнивания потенциалов и устройства защитного отключения (УЗО).

Каждый из перечисленных устройств и способов защиты требует отдельных подробных разговоров. Здесь я только отмечу, что все автоматы защиты и УЗО должны иметь заранее рассчитанный номинал, в соответствии с планируемой нагрузкой. Хорошо если у вас есть профессионально сделанная, однолинейная расчетная схема вашей электропроводки. В противном случае расчет электрических цепей квартиры придется делать самостоятельно.

Также отмечу, что все защитные устройства электросети квартиры устанавливаются в квартирный электрощит или в щиток на этаже (этажный электрощит), за исключением СУП (системы уравнивания потенциалов), также ее  называют ДУП (дополнительное уравнивание потенциалов). Клемная колодка СУП располагается вблизи водопроводных стояков квартиры в специальном шкафу.

Хотя заявленная тема статьи — Защита электропроводки в квартире, не могу не сказать пару слов о защиты человека от поражений электротоком. Кроме упомянутых выше УЗО, нельзя забывать о механической защиты токоведущих частей квартирной электропроводки (прямого прикосновения).

Защита от прямого прикосновения

Если у вас квартирный щиток установлен в квартире, то вам нужно подумать о защите и здесь. Правда, в этом случае, защищать нужно не электропроводку, а жителей квартиры.

В квартирном щитке, должен быть установлен защитный кожух, закрывающий контакты всех устройств щита. Доступ должен быть только к клавишам автоматов, для их включения и выключения.

 

Все розетки и выключатели в квартире должны быть закрыты лицевыми декоративными крышками.

Розетки и бытовые приборы, включая светильники должны иметь защиту IP в соответствии с местом расположения. В квартире это требование актуально для ванной комнаты. В ванной, светильники и розетки должны быть защищены от попадания влаги и иметь степень защиты IP54 (5- пылезащитные, 4- защита от обрызгивания).

Заключение

В завершении, напомню, защита электропроводки в квартире не только обезопасит вас от пожаров, но и защитит вас от электротравм. Не забывайте о ней, как и об общих требованиях безопасности!

©Ehto.ru

Статьи по теме

Защита от скачков напряжения и обрыва нуля

Добрый день. У меня в старой квартире /загородном доме недавно на ГРЩ произошел обрыв «ноля»/ был скачок напряжения. Вся техника в квартире сгорела. Слава богу, у соседей тоже.

Данный диалог с различными вариациями  в офисе нашей компании раздается достаточно часто. Для того, чтобы Вы не произнесли его в один прекрасный день, предлагаем ознакомиться с некоторыми типовыми устройствами защиты от скачков напряжения, которые можно использовать для защиты перепадов напряжения

1. Ограничители перенапряженией –узип – предназначены для защиты оборудования от импульсных скачков перенапряжений, которые могут возникнуть например вследствие близкого удара молний в линию электропередач или близкой работы устройств с большой индуктивностью.. 

В основном применяются  в загородном жилье. 

Принцип работы: Во время импульса перенапряжения УЗИП  увеличивают свое сопротивление и замыкают на землю распространяющийся по системе разряд. 

Более подробно читаем про ограничители перенапряжений. В основном устанавливаются в электрощиты учета

2. Реле напряжения –используют для защиты оборудования от скачков напряжения в сети или «обрыва нуля»

Применяется как в городском, так и загородном жилье..

Принципе работы- реле разрывает цепь, при отклонениях напряжения в сети больше заданных значений. После восстановления напряжения в сети, устройство автоматически замыкает цепь. . 

Наиболее известные устройства на российском рынке. Устанавливаются при монтаже квартирных щитков

Реле РН 113 

 

Максимальный ток -32А

Регулировки напряжения Umin 170-230  Umax 240-290

Наличие дисплея, отображающего текущее напряжение в сети.

Устанавливается в распределительных квартирных щитах в однофазных сетях. В случае, если в квартиру или в дом запутывается с помощью трехфазной сети, то обычно обеспечивают защиту каждой фазы

Купить реле РН 113

 Реле 101М

 

Номинальный ток 16А,

  Регулировки напряжения Umin 160-220  Umax 230-280

Устанавливается путем включения в розетку электросети, защищаемое оборудование включается непосредственно в РН 101М.

Наличие ЖК экрана, с индикацией текущего напряжения в сети

Купить реле РН 101М

Наша компания является дилером компании Новатек Электро, поэтому своим клиентам мы преимущество рекомендует использовать именно реле РН 113.

Реле УЗМ 51  

Защита нагрузки от импульсных скачков сетевого напряжения

Макс. ток шунтирования импульсов варистором - 8000 А 

Обеспечивает подавление импульсов с энергией до 200 Дж

Защита нагрузки от повышенного напряжения (более 270 В, для УЗМ-51 242-286 В)

Защита нагрузки от пониженного напряжения (менее 170 В, для УЗМ-51 154-198 В)

Фиксированная задержка срабатывания - 0,2с при превышении напряжения

Номинальный ток 63А.

Купить реле УЗМ 51

Реле напряжения РН-106 Новатек Электро (аналог УЗМ51)


Защита отходящих линий от повышенного/пониженного напряжения (в диапазоне 160-280В) и обрыва нейтрали

Номинальный ток - 63А

Мощность подключаемых электроприборов - до 14 квт

Купить реле РН-106

3. Переключатель фаз ПЭФ 3

используется для повышения бесперебойности питания однофазных нагрузок от трехфазной сети. 

При изменении напряжения в питающей "фазе" реле переключит питание на другую фазу, в которой напряжение соответвуется зданным значениям.

Купить переключатель фаз  ПЭФ 301.

 

Защита электропроводки в квартире и доме

Просмотров 315 Опубликовано

15.06.2018 Обновлено

Электрическая проводка несет в наши квартиры и дома не только свет, тепло и уют, но и опасность. Этой опасностью может быть как поражение электрическим током, так и возникновение пожара. Более всего возникновению неисправностей подвержена старая проводка, которая устанавливалась в наших домах еще в соответствии со старыми нормами, когда электропроводка в квартире и в доме выполнялась с расчетной нагрузкой всего лишь в 1-1,5 кВт. Сейчас же столько потребляет обычныйт электрический чайник. А ведь в каждой квартире и частном доме есть еще стиральная машина, пылесос, электроводонагреватель и т.д. Поэтому наша электропроводка испытывает постоянную повышенную нагрузку, что представляет реальнейшую опасность как для человека, так и для его жилища.

Стоит сказать, что в девяностые годы для электрических сетей и электрического оборудования были введены новые нормы по безопасности и в ПУЭ (Правилах устройства электроустановок) были внесены некоторые изменения. Одним из главных изменений среди них стало то, что электропроводка в два провода была заменена проводкой состоящей из трех проводов, и теперь к конечному потребителю должны подводиться фаза, нулевой рабочий и заземляющий провод. С 2001 года внесены в ПУЭ изменение по материалу жил кабелей и проводов. Питающие и распределительные сети в квартирах можно выполнять только кабелями и проводами с медными жилами, т.е. алюминиевые провода запрещены.

Новая электропроводка способна отвечать значительно возросшим к ней требованиям по электро- и пожаробезопасности.

На сегодняшний день основная причина возникновения пожара в квартирах и частных домах (без учета пьянства) — это несоответствие допустимой нагрузки на электрическую сеть и потребляемой мощности электробытовой техники и электрооборудования. Другими словами — электрические провода, защитное оборудование, электроустановочные приборы не рассчитаны на наши электроприборы, которые мы включаем в сеть. В советские времена в квартирах и домах монтировалась проводка, которая была рассчитана на ток в 6 Ампер! Это всего-навсего 1,3 кВт пропускной мощности. В то же время электрическая проводка в современных домах рассчитана на 10/15А /220 В, гже номинальный максимальный ток нагрузки в 10 А, при напряжении в сети в 220 В, при этом проводка способна выдержать кратковременный ток перегрузки до 15 А. Необходимо отметить, что на такой коэффициент перегрузки, в свое время, была рассчитана наши старая электропроводка и арматура (автоматы, предохранители, выключатели и т.д.). Именно из-за этого наша старая электропроводка в квартире хотя и с трудом, но все же выдерживает возросшие на нее токовые нагрузки. От всех неприятностей и необходима защита электропроводки в квартире и доме.

Защита электропроводки

Защита электрических проводов и кабелей в электросети

Основная часть бытовых электроприборов, да и всех энергоприемников работают от переменного тока напряжением 220 или 380 вольт. Все функционирование электропроводки основывается на трех проводах: фазном, нулевом рабочем проводе и проводе заземления. Эти провода функционально неразрывны друг от друга в системах электропитания, но вместе с тем на всем протяжении электропроводки они должны быть полностью изолированы друг от друга. Фазный провод, нулевой провод и провод заземления должны быть изолированы не только друг от друга, но и от любой возможности прикосновения к ним.

Нарушение изоляции токоведущих проводов и возможность прикосновения к ним относятся к аварийному режиму работы электрической сети. Чтобы защитить человека, от поражения электрическим током и саму электрическую сеть, существует много устройств защиты. Все устройства защиты разработаны для защиты от определенной неисправности электросети. В наших домах, как правило, защита электропроводки выполнена автоматическими выключателями (автоматы защиты).

Автомат защиты — это электромеханическое устройство, которое обеспечивает протекание тока в нормальном режиме и автоматическом отключении тока (напряжения) при аварийных ситуациях: коротком замыкании и перегрузке.
Кроме защиты от аварийных ситуаций, автоматы защиты служат для оперативного выключения и включения питания для электрических сетей. Автоматы защиты — это еще и выключатели отдельных линий электрической сети или электрической сети в целом.

При перегрузке или коротком замыкании автоматы защиты отключают (обесточивают) электрическую сеть в которой они установлены. Для этого в них встроены специальные устройства-расцепители. От перегрузки защищает тепловой расцепитесь. От короткого замыкания — электромагнитный расцепитесь.

Короткое замыкание

Короткое замыкание — это аварийное соединение разных функциональных проводов электропроводки. В квартирах и домах это механическое касание фазного (L) и нулевого рабочего (N) проводников или фазного провода (L) и провода заземления (PE) электрической сети, находящейся под напряжением.

В электросетях с трехфазным электропитанием напряжением 380 вольт, коротким замыканием называется касание любого из трех фазных  проводов (L1,L2,L3) между собой или касание любого фазного провода и нулевого рабочего провода (N) или фазного провода и защитного проводника (PE).

Короткое замыкание проводов может привести к выходу из строя электропроводки или максимум к пожару. Гораздо опаснее, если ток короткого замыкания пройдет через человека. Это вполне возможно, если вы случайно касаетесь фазного провода под нагрузкой.

Для защиты от короткого замыкания в электрических сетях предназначены автоматы защиты с электромагнитным расцепителем.

Перегрузка в сети

Вся электрическая сеть помещения разбивается на группы. Каждая группа рассчитывается на определенное количество потребителей. Например: если это квартира, то могут быть отдельные группы на освещение, розетки на кухне, розетки в комнатах и т.д. Если электропроводка делается самостоятельно, то количество групп рассчитывается в зависимости от потребностей и для каждого отдельно случая может быть разная. В стандартных квартирах количество групп соответствует проекту квартиры. Для каждой группы рассчитывается максимально возможная нагрузка. В зависимости от нагрузки выбирается питающий кабель для этой группы.

Увеличение расчетной нагрузки вызывает перегрузку электрической сети. Возникает перегрузка, если в розетки одной группы, например, непродуманно включить все бытовые приборы. При увеличении расчетной нагрузки электрический кабель начинает греться. При длительной перегрузке изоляция начнет плавиться, что может привести к пожару или выгоранию проводки.

Чтобы защитить электропроводку от перегрузки устанавливаются автоматы защиты с встроенным тепловым расцепителем (биметаллическая пластина).

Автоматы защиты устанавливаются в щитки распределительные (этажные электрощитки). Наряду с тем, что замена электропроводки в квартире стала выполняться из трехжильного провода, появляются и другие новшества. Так, например, вместо обычных плавких предохранителей известных в быту под названием «пробки» и предохранителей с термобиметаллом, появились УЗО — устройства защитного отключения. УЗО не только отсекают питание в случае перегрузки электропроводки в квартирах или ее короткого замыкания, но еще и отсекают электропитание, срабатывая в случае разрушения изоляции наших бытовых электроприборов или (что очень важно) в результате неосторожного прикосновения человека к оголившемуся проводу, который находится под напряжением.

УЗО (устройства защитного отключения) защищает электропроводку в квартирах не только от тока перегрузки и от короткого замыкания, но еще защищает и от тока утечки. Для того, чтобы можно было по достоинству оценить появление в электропроводке в квартирах УЗО, необходимо получить некоторое представление о токе утечки. Обычно если электропроводка в квартире работает нормально и электропотребители исправны, то ток, протекающий в обоих проводах одинаковый. Как только человек коснется оголенного провода, по которому идет ток, ток пойдет через тело человека. В этом случае баланс токов в проводах, который «отслеживает» УЗО нарушится и УЗО разомкнет электрическую цепь сети. Произойдет это достаточно быстро, при значении тока утечки, еще не столь опасном для человеческого организма.

Из сказанного выше следует — безопасность старой двухжильной электропроводки в квартирах можно повысить путем установки устройства защитного отключения (УЗО). Но необходимо помнить, что хотя УЗО и предназначены именно для защиты от поражения человека электрическим током, поскольку срабатывание у них происходит при утечках тока, которые по своей величине значительно меньше, чем токи предохранителей (а для бытовых предохранителей это 2 ампера и более, что во много раз превышает значение смертельное для человеческого организма), тем не менее, установка этого защитного устройства является дополнительным защитным мероприятием (не выполняя монтаж проводки), а не заменой защиты от сверхтоков при помощи предохранителей. Также стоит помнить, что выбор защитных мер электропроводки и выбор электропроводки следует выполнять специалистам.

Защита домашней электроники и техники от скачков и перепадов напряжения в сети

Как защитить домашнюю электронику и технику от скачков и перепадов напряжения в сети.

Перепады сетевого напряжения существовали всегда. Причины различные: это включение выключение мощных нагрузок (особенно в однофазных сетях), работа неподалёку сварочного аппарата, междуфазное замыкание (обычно на воздушных ЛЭП), обрыв нулевого провода (как правило в старых многоэтажках и «хрущёвках» и не только) ,электромагнитный импульс, сопровождающий разряд молнии вызывает появление в воздушной линии электропередач, на расстоянии несколько километров, импульсов напряжения амплитудой от сотен до нескольких тысяч Вольт, длительностью от единиц до тысяч микросекунд и пр.

На сегодняшний день самый эффективный и дешёвый способ сохранить домашние электроприборы – «давить» и «отключать» ,т. е.:

  • Давить импульсные скачки напряжения до безопасной величины.
  • Производить отключение электрооборудования квартиры при выходе напряжения за допустимые значения.

Для осуществления этого необходимо:

  1. На входе устройства контроля напряжения надо установить мощный варистор на соответствующее напряжение, с энергией поглощения минимум 200 Дж и допустимым импульсным током поглощения не менее 4000А.
  2. Для защиты от повышенного или пониженного напряжения во входном квартирном щитке (сразу после счётчика) надо установить устройство контроля напряжения с порогом срабатывания по перенапряжению 250…270В и порогом на снижения напряжения – 160…170В, с временем срабатывания не более 0,5с и с автоматическим возвратом при восстановлении напряжения с задержкой 1..3 минуты. Допустимый ток контактов устройства должен быть не менее максимального тока потребления современной квартиры – 25…40А (5,5…8,8 кВт).

Устройство защиты многофункциональное УЗМ предназначено для защиты подключённого к нему оборудования (в квартире, офисе и пр. ) от разрушающего воздействия мощных импульсных скачков напряжения, вызванных электромагнитными импульсами близких грозовых разрядов или срабатыванием близкорасположенных и подключённых к этой же сети электромоторов, магнитных пускателей или электромагнитов, а также, для отключения оборудования при выходе сетевого напряжения за допустимые пределы (170 - 270В ) в однофазных сетях. При обрыве нулевого провода, неправильного подключения (например к двум фазам).

Включение оборудования происходит автоматически при восстановлении сетевого напряжения до нормального, по истечении задержки повторного включения.

  УЗМ не заменяет другие устройства защиты (автоматические выключатели, УЗО и пр.).

В УЗМ-16 (номинальный ток нагрузки 16А), УЗМ-51М есть возможность регулировки порогов, в УЗМ-50М пороги фиксированные.

Работа устройства от повышенного напряжения УЗМ-50М, УЗМ-51М,УЗМ-16:

   При подаче напряжения питания устройство выдерживает время готовности 10 секунд при этом индикация не работает, а затем зеленый индикатор начинает мигать указывая на отсчет выдержки времени включения t1. Если напряжение находится в допустимых пределах, нагрузка подключается к сети питающего напряжения и зажигается зеленый и желтый индикаторы. Возможно ускоренное подключение нагрузки вручную путем нажатия кнопки «ТЕСТ».

 ВНИМАНИЕ: Не использовать ручной режим при аварийном состоянии сети. При попытке ручного включения в аварийном режиме устройство не позволит включить питание на нагрузку.

   В рабочем режиме устройство контролирует напряжение питающей сети.

 При появлении в сети мощных импульсов напряжения встроенный варистор шунтирует их до безопасной для оборудования величины.

   Двухцветная индикация работает в различных режимах:

   При возрастании напряжения и приближения его к верхнему порогу отключения начинает мигать красный индикатор и при выходе напряжения за допустимый предел, происходит выключение встроенного реле, при этом желтый индикатор выключается, а красный постоянно горит. При возврате напряжения в норму начинается отсчет выдержки времени включения t1 при этом зеленый индикатор начинает мигать после окончания отсчета времени нагрузка подключается к сети питающего напряжения (если во время отсчета времени t1 произойдет выход напряжения за допустимые пределы, отсчет времени t1 сбрасывается).

   При понижении напряжения к нижнему порогу отключения мерцает зеленый индикатор и при выходе напряжения за допустимые пределы начинается отсчет времени задержки отключения t4 при этом красный индикатор начинает мигать, после окончания отсчета времени t4 происходит отключение нагрузки от сети, при этом желтый индикатор выключается, а красный загорается с периодичностью 2 секунды.

 При возврате напряжения в норму начинается отсчет выдержки времени включения t1 при этом зеленый индикатор начинает мигать после окончания отсчета времени нагрузка подключается к сети питающего напряжения (если во время отсчета времени t1 снова произойдет выход напряжения за допустимые пределы, отсчет времени t1 останавливается и сбрасывается).

   Если принудительно отключили нагрузку от сети нажатием кнопки «ТЕСТ» двухцветная индикация указывает на это поочередным включением красного и зеленого индикатора.

 Повторное нажатие кнопки «ТЕСТ» возвращает изделие в рабочий режим.

   ВНИМАНИЕ: Если отключили нагрузку кнопкой «ТЕСТ» устройство остается в выключенном состоянии так же после снятия и подачи напряжения питания. Включить реле можно только кнопкой «ТЕСТ» повторным нажатием.

 При необходимости можно изменить задержку времени включения t1 (10сек. или 6мин.) для этого:

 Вручную кнопкой «ТЕСТ» выключить внутреннее реле

 Затем нажать и удерживать кнопку «ТЕСТ» (индикатор «норма-авария» погаснет) до тех пор пока индикатор не начнет мигать. Если мигает зеленым цветом то время t1 установлено 10сек., если красным то время t1 установлено 6мин.

 Отпустить кнопку «ТЕСТ» внутреннее реле включится.

Диаграмма работы устройства защиты УЗМ-50M, УЗМ-51M:

Подключение УЗМ рекомендуется осуществлять после автоматического выключателя, который как правило, в квартире установлен после счетчика.

Технические характеристики:

Для защиты компьютеров, оргтехники рекомендуем использовать сетевые фильтры, для защиты от импульсных помех электросети и источники бесперебойного питания (ИБП) для защиты оборудования от неисправностей электросети, переключением на работу от аккумуляторов.

Как сделать электросеть безопасной – 2 защиты в 1 устройстве!

Планируя организовать надежную сеть электропитания, нельзя забывать и о устройствах её защиты. Речь пойдет об автоматических выключателях. Рассмотрим, как они эффективно защищают сеть и оборудование, простейшие правила их эксплуатации. А уж оценить, сравнив объемы возможных потерь и стоимость приобретения и установки автовыключателя – Вы сможете сами! Попробуем?

Итак, это устройство относится к щитовому оборудованию (устанавливается в квартирном или домовом распределительном электрическом щитке). Выполняет функцию защиты питающих линий от перегрузок во внутренней сети («за» устройством).

Гидра официальная

Official online store HYDRA ✓ Here you can find various - Hydra onion, hydra shop, hydra tor, hydra site

Гидра сайт futuron.tv

Как автоматический выключатель обнаруживает КЗ, «сверхноминальные» токи и напряжения, и как отключает питание – вот тут уже начинается техническое… искусство.

Как автоматический выключатель определяет перегрузки

Современный автовыключатель (можем упоминать его далее как «автомат»):

  • корпус;

  • контактная группа;

  • рычажный механизм;

  • дугогасительная камера;

  • биметаллическая пластина и т.д.

Детальнее схему компоновки автоматического выключателя можно рассмотреть на Рис.1:


Рис.1 Схема автоматического выключателя: элементы систем защиты, механические и электрические элементы, компоновка устройства

В этом устройстве реализованы два типа определения и защиты сети:

Тепловая защита

Она состоит из биметаллической пластины, через которую протекает номинальный ток. В случае, когда ток превышает номинальный, пластина нагревается, изгибается и этим активирует специальный рычажок. Который и отключает подачу электропитания через устройство.

Детальнее элементы конструкции автоматического выключателя можно рассмотреть на Рис.2:

Электромагнитная защита

Эта защита работает в основном против короткого замыкания (КЗ). При КЗ возникают токи, многократно превышающие номинальные. На них реагирует электромагнит, который и осуществляет в дальнейшем размыкание цепи электропитания.

Вот вкратце принцип действия автоматического выключателя. Практика показывает, что этот автомат является крайне надежным устройством защиты, безотказно хранящим Вашу сеть электропитания и потребителей электроэнергии на протяжении всего срока эксплуатации.

Следующим становится вопрос, по каким критериям выбирают автоматический выключатель? И тут место ещё более серьезному электроискусству:

Критерии выбора автоматического выключателя

Логично, что обе защиты рассчитаны на определенные значения номинальных тока и напряжения. Поэтому подбор идет в двух «плоскостях» – по номинальной нагрузке и по пропускной характеристике проводов, зависящей от их сечения.

Нагрузка считается согласно закону Ома I=P/U (здесь ток – I, напряжение – U и Р – мощность).

В щите автоматы устанавливаются каскадно, т.е. от большего номинала к меньшему. Основным считается автомат на вводе – к примеру, пропускаемая им мощность 40 Вт. Ток автоматического выключателя, «отвечающего» за кондиционеры в квартире, будет считаться по суммарной их мощности.

При напряжении в сети 220 В и суммарной мощности кондиционеров 4 кВт ток рассчитаем по приведенному закону Ома – 4000 Вт/220 В = 18,18 А.

Таким образом, для защиты группы кондиционеров необходим автомат на ближайшее «сверху» значение тока. А это устройство на 20 А. Учтем, что кондиционеры запитаны медными проводами сечением 2,5 мм кв.


Рис. 2 Один из претендентов на Ваш выбор - автоматический выключатель ABB Sh303, предназначен для защиты электросети с промышленными электроустановками

Особенности эксплуатации

Как и любое другое электрооборудование с движущимися частями, автоматический выключатель рассчитан на определенное количество срабатываний. Поэтому электрики, да и консультанты при продаже не рекомендуют часто пользоваться этим устройством для обесточивания квартиры на время отъезда, к примеру.

Почему? Причины просты – износ контактной группы, подгорание контактов и соответствующий нагрев устройства, выход его из строя.

Домашняя электросеть / Хабр

Здесь часто возникает тема защиты оборудования в домашней электросети, но очень часть при описании базовых параметров устройств защиты информация не соответствует действительности или же, в лучшем случае, основана на отдельных примерах. Потому далее будет своеобразный ликбез о том, как правильно сделать вводный электрощиток.

Это не столько инструкция, сколько объяснение, что должно быть сделано, так как каждое подключение по сути индивидуально. В любом случае необходима консультация с учетом реальной ситуации.

Вступление


В дальнейшем я буду исходить из того, что поставщик электроэнергии свою работу выполняет, как следует, потому напряжение остается в предписанных нормами пределах.

Исходить я буду из напряжения сети 230/400 В (второе важно знать при трехфазном вводе). Большинство потребителей однофазные, исключения могут составлять электроплиты и электромоторы насосов.

Оборудование


Автоматический выключатель


Всем привычные сегодня автоматические выключатели (далее просто автоматы).
В квартирах используются автоматы с временно-токовыми кривыми В и С. На самом деле их есть много и для разных целей. В этом документе на третей странице есть график, где можно посмотреть отличия. По вертикали время, по горизонтали – ток.

Но остановимся на В и С автоматах, как наиболее частых и применимых как в промышленности, так и в домашних условиях.

Каждый выключатель имеет две категории двух основных показателей по международным стандартам:

Категории:

  • Ток перегрузки
  • Ток короткого замыкания

Показатель:
  • Максимальный ток несрабатывания
  • Минимальный ток гарантированного срабатывания

В общем эти величины следующие для перегрузки через 1 час (срабатывание по тепловой энергии) для автоматов типов B или С при температуре среды 30 градусов:

Максимальный ток несрабатывания = 1,13 номинального тока
Минимальный ток гарантированного срабатывания = 1,45 номинального тока

При росте температур эти числа становятся меньше, но согласно нормам несрабатывание не должно быть меньше номинального тока при температуре окружающей среды в 50 градусов. Практически все производители указывают эти цифры в каталогах и они могут сильно варьироваться.

Для короткого замыкания эти величины отличаются для выключателей (т.н. электромагнитное срабатывание без задержки):

тип B — 3*In и 5*In
тип C — 5*In и 10*In

Хотя это называется «срабатывание без задержки» нормами гарантируется срабатывание за время до 0,1 секунды, не более. Фактически это время составляет 0,05-0,07 секунд.

Что происходит между граничными токами — никто гарантировать не может и не будет, согласно нормам отключение может длиться от 0,1 до 15 секунд (для С-автоматов). Хотя в принципе выключатель может срабатывать сразу от минимальной величины или не срабатывать полных 15 секунд до максимальной. И при выборе выключателей про это нужно помнить.
Пример ниже – время-токовые характеристики для В и С выключателей на 10А компании Siemens. 10А выбрано для удобства сравнения. В — черны цвет, С — красный.

Плавкий предохранитель


Ранее — единственное и очень широко применяемое устройство для жилых помещений, сейчас значительно реже. Самые распространенные в электросетях — пробковые и ножевые предохранители. На сегодня существуют комбинированные разъединители-предохранители, которые отличаются от автоматических выключателей тем, что при срабатывании перед повторным включением необходимо установить новые предохранители.

Одно из устройств, которое не смотря на возраст технологии, до сих пор предлагает некоторые очень полезные свойства.

Главное преимущество — гарантированное срабатывание в случае короткого замыкания. Главный недостаток — одноразовость.

Почему до сих пор используются плавкие предохранители? Во-первых, цена. Они намного дешевле автоматических выключателей, так как не имеют механических частей. Во-вторых, в случае достаточно высокого значения короткого тока (для предохранителя 10А — более 210 А) скорость срабатывания будет менее 0,01 секунды, менее половины периода переменного тока (так быстро не срабатывает ни один другой выключатель). В-третьих, их можно очень просто и гарантировано селективно выстроить (про селективность ниже). В этой статье речь о предохранителях общего предназначения, которые обозначаются gG (также ранее gL — защита линий).

В данном случае не существует производителей, которые делают предохранители в соответствии с нормами с точки зрения времени отключения, они всегда получаются лучше, чем предусмотрено. Но у каждого лучше по своему.

Ниже сравнение характеристик по нормам и по замерам от АВВ для предохранителя 10 А. Следует отметить, что нормами предусмотрено характеристики от 0,01 секунды, но так как для этого времени в принципе возможны только экстраполяции, то не в каждой программе есть эти графики. Черным цветом — согласно нормам, красным — производства АВВ.

Устройство дифференциального тока


Всегда есть возможность существования токов утечки, особенно в влажных помещениях. Потому было создано устройство, которое фиксирует этот ток, который называется устройство дифференциального тока или УДТ (обозначение согласно новых ГОСТов-переводов норм МЭК, также известно как УЗО — устройство защитного отключения). Идея проста — устройство сравнивает ток в фазе и нейтральном проводе, если они равны – все хорошо, если нет, то проводиться отключение. Существует целый ряд устройств которые возможно применять дома, с токами 10 мА, 30 мА, 100 мА, 300 мА и разными типами — АС, А, F, В, B+. Тип АС срабатывает только на синусоидальные по форме токи утечки, тип А может в дополнение к типу АС срабатывать на пульсирующие постоянные токи и так далее. Рекомендуется устанавливать тип В, так как он срабатывает на все возможные типы утечки. Тип В+ по сути своей берет на себя часть функций дуговой защиты. Сегодня УДТ с токами до 30 мА служат для защиты людей, от 100 и выше — для защиты оборудования, хотя раньше были и УДТ 500 мА для установки в квартирах.

Не стоит забывать, на разные токи у УДТ разная чувствительность. Например, указанные выше 30 мА означают верхнюю границу срабатывания на утечку переменного тока, фактически срабатывание может происходить по нормам между 15 и 30 мА (производители тут стараются выйти на отключение до 25 мА, как верхнюю границу). Если же взять пульсирующий постоянный ток, то здесь уже срабатывание будет между 12 и 42 мА.

Почему это важно? Ток утечки существует практически всегда, например в розетке или в электроприборе. Считается, что УЗД на 30 мА можно применять перед максимум 10 розетками, иначе будет отключение в нормальном режиме. Или же играет роль длина провода. В частности есть такие величины по току утечки на 100 метров провода (провод из фазы, нейтрального провода и земли):

1,5 мм² — 4,8 мА
2,5 мм² — 5,6 мА
4,0 мм² — 6,6 мА

Потому при планировании важно учесть длину кабелей и распределение по помещениям.
Так как часто используется как автоматический выключатель, так и УДТ, то существуют совмещенные приборы — дифференциальные автоматы, два в одном. Согласно новым нормам в Германии с 2018 года их использование рекомендовано для жилых помещений с целью экономии места и упрощения распределительных щитов.

Что следует помнить — устройство требует проверок. Как минимум раз в 6 месяцев следует проверять срабатывание при помощи кнопки на устройстве. Естественно, это не проверка на срабатывание по токам утечки, но многие забывают даже про такое. Срабатывание по токам утечки требует специального прибора, который включается за УДТ, и может произвести проверку различными видами тока.

Устройство защиты от перенапряжений


При ударе молнии рядом с кабелем возникает электромагнитная волна, которая может буквально уничтожить подключенные к сети приборы. Потому рекомендуется использование устройств защиты от перенапряжений (surge protective device, SPD).

По своей сути это реализация разрядника для низких напряжений. Идея состоит в использовании специальны материалов, которые при нормальном напряжении не проводят ток (в теории, на практике есть ток утечки), а при превышении определенного уровня становятся проводниками. Защитная функция состоит в отражении волны, потому устройство защищает как до, так и после себя (эффективное расстояние где-то 10 метров кабеля).

Существует три типа устройств:

Первый тип — молниезащита, иногда оборудован маленьким разрядником. Должен быть обязательно заземлен на главную заземляющую шину для отведения избыточной энергии. В результате срабатывания напряжение не должно превышать 6 кВ

Второй тип — средняя защита от перенапряжений. В результате защиты напряжение не должно превышать 4 кВ

Третий тип — защита устройств. Напряжение менее 1,5 кВ в результате защиты.

При отсутствии первого типа установка дальнейших устройств бессмысленна, так как энергия волны слишком высока для типа 2. Также устройства, установленные каскадом, должны быть между собой скоординированы (обычно означает — от одного производителя, так как есть отличия в характеристиках).

Кабель между заземляющим выходом устройства и шиной заземления или (в случает типов 2 и 3) PE не должна превышать 50 см.

Существуют комбинированные устройства из нескольких типов в одном, вроде типа 1+2 или 2+3.

Устройство дуговой защиты


Идея устройства в том, что, например, при повреждении изоляции возникает искрение, которое только впоследствии развивается в замыкание на землю или короткое замыкание. Подобное не распознается вышеприведенными устройствами. Сравнительно новые устройства на территории Европы и пока не получили широкого распространения.

На сегодняшний день эти устройства рекомендованы для использования во взрывоопасных помещениях, а также там, где много детей или пожилых людей. В остальных случаях устройства факультативны.

Так как пока их не применял в своей практике, то и детальнее описать, к сожалению, не могу.

Селективность


Устройства были описаны выше, теперь же детальнее о том, как их правильно подключить. Суть селективности — отключится должен самое близкое к месту короткого замыкания/перегрузки защитное устройство. Практически всегда такое возможно для оборудования в жилых помещениях, но в отдельных случаях (например, очень высокий ток короткого замыкания) не может быть гарантировано Далее будет пару примеров, разделенных по группам.

Плавкие предохранители


Здесь все относительно просто. Предохранители от 16А и выше при отношении номинальных токов 1,6 являются селективными. Например, для предохранителя 25А: 25*1,6=40А. В случае 40А это предохранитель 63А, хотя 40*1,6=64, так как выбирается ближайших по номинальному ряду. Хотя предохранители от одного производителя и могут иметь меньшее соотношение, но 1,6 — гарантированное соотношение для любого производителя.

Для предохранителей менее 16 А это соотношение отличается и может быть 1,9 (в случае Германии). Т.е. для предохранителя 10А селективным является 20А, а не 16А. В то же время многие производители выпускают предохранители с соотношением менее, чем 1,6, но исключительно для собственного производства и нет гарантии совместимости, скажем, между АВВ и Сименсом в этом случае.

Автоматические выключатели


Теоретически, если характеристики не пересекаются, то выключатели можно считать селективными. На практике такое может быть справедливо только для выключателей одного производителя и то, следует пользоваться таблицами селективности. В них указывается либо полная селективность, либо граничный ток, до которого селективность гарантируется. При превышении последнего сработать может любой из выключателей, в случае определенного расстояния между выключателями (не в одном щитке) больше вероятность срабатывания выключателя с питающей стороны.

Ниже приведен пример такой таблицы для выключателей АВВ. Буква Т означает полную («тотальную») селективность, цифры — максимальный ток в килоамперах.

Также существуют селективные выключатели. Они срабатывают с задрежкой при коротком замыкании, давая возможность вначале сработать ниже расположенным выключателям. При достаточно большом токе, как и в примере выше, могут сработать раньше.

Плавкие предохранители и автоматические выключатели


Здесь ситуация в целом сложнее и может быть, в случае сравнительно больших токов, определена только по таблицам, вроде такой, с оборудованием от Siemens.

Здесь было приведена только часть таблицы, в которой сравниваются выключатели с характеристикой С (вертикальные числа) к плавким предохранителям производства Siemens.

Для пример так выглядят характеристики автомата С16А и плавкого предохранителя 40А от Siemens

Те же компоненты, но от АВВ

К сожалению источники — разные программы, потому не получилось сделать шкалу одинаковой для сравнения.

Естественно, если в выше приведенном случае токи короткого замыкания в районе 160-300 А, то даже без таблиц ясно, что первым сработает выключатель. Но вот уже при 500 А без таблиц это никто гарантировать не сможет.

Разные производители выключателей


Во всех вышеприведенных случаях возможно провести собственный анализ. Для этого необходимо найти графики токоограничения и пропускаемой энергии устройств. Сравнивая их можно сделать определенные предположения. К сожалению, для гарантированной совместимости выключатели должны идти с большим запасом. В этом проявляется одно из преимуществ плавких предохранителей — вышеупомянутое соотношение 1,6 дает гарантированную селективность в большинстве ситуаций.

Параметры для выбора


Ток потребления


В случае выключателей в домашнем использовании следует выбирать по номиналу или по рекомендации производителя оборудования. В любом случае следует помнить, что срабатывание по тепловой энергии зависит от температуры среды, в которой находится выключатель.

Для плавких предохранителей часто производитель указывает, что долговременно не более 90% от номинального тока. Сильно зависит от производителя.

При долговременной работе выключателей и предохранителей они греются и, соответственно, нагревают друг друга. Потому существуют дополнительные поправочные коэффициенты, которые учитывают как количество, так и расположение выключателей. Данные таблицы также следует брать по данным производителя.

Кстати, не все знают, что обычные домашние розетки на 16А, вроде «шуко», тестируются максимальным током 16А только один час и при этом не должны быть горячее 70°C. Что происходит за этим периодом — никто не гарантирует. Потому рекомендованной является долговременная нагрузка не более 13А. Как вариант возможно использование промышленных розеток, там те же 16А, но они могут и на 6 и на 12 часов быть рассчитаны.

При выборе устройства не следует забывать, что у некоторых устройств бывают пусковые токи. В частности, внутренний блок кондиционера может иметь небольшой ток в нормальном режиме, 0,2-0,4А, но вот пусковые токи могут достигать 18-кратной величины.

Дифференциальный ток


УДТ для большинства случаев достаточно 30 мА. Для влажных помещений в последнее время ставят 10 мА. Здесь все зависит от протяженности сети. Также можно установить селективный УДТ на питании щитка. Их чувствительность по току хуже (100 или 300 мА) и это больше вспомогательное устройство на случай отказа одного из нижестоящих. Главное — брать такой же или худший тип по свойствам, не допускается селективный УДТ с типом В перед типом А.

Токи короткого замыкания


Как определить токи короткого замыкания? Увы, только измерить. Даже в новом доме длина кабеля может отличатся от проектной, сопротивление кабеля подчиняется даже у лучшего производителя нормальному распределению, могут быть изменения на трансформаторной подстанции, потому даже оператор сетей может дать лишь приблизительные значения. Есть специальные приборы, которые служат для измерения однофазного тока короткого замыкания. Если на данный момент есть только щиток или точка подключения, то ток короткого до розетки можно высчитать простым законом Ома, хотя в идеале стоит попробовать измерение.

В нормах предусматривается отключение короткого замыкания для TN-систем в течении 0,4 секунд и для ТТ-систем — в течении 0,2 секунд. Здесь следует помнить, что для автоматического выключателя соответствующим нормам в данном случае является отключение тока больше, чем гарантированное время электромагнитного срабатывания (10 раз и более номинального тока для С-выключателя и 5 или более — для В-выключателей). А вот у плавких предохранителей эта величина определяется по характеристике временно-токовой.

Нужно ли отключать нейтраль


Здесь все зависит от того, в какой системе выполнено питание.
Система ТТ

Заземление выполнено у дома и защитный провод не имеет связи с питающей сетью. Трансформатор где-то там далеко имеет собственное заземление В таком случае отключение нейтрали обязательно, так как ее потенциал даже при симметричной нагрузке будет отличатся от потенциала здания.
Система TN

Вариант TN-C
Защитный проводник и нейтраль в одном кабеле. В этом случае отключение нейтрального провода (PEN в данном случае) запрещено, так как он выполняет защитную функцию.

Вариант TN-C-S
В данном случае при вводе питания в дом PEN провод был разделен на N и PE. Отключение N допустимо, но отключение PEN — нет. Для выравнивания возможной разницы потенциалов PEN может иметь связь с заземлением здания. В случае непосредственной близости от подстанции такого может и не быть.

Вариант TN-S
В дом заведены отдельно N и PE. Также допустимо отключение N.

Детальнее про системы заземления можно прочитать здесь

Детали по установке УДТ


Естественно желание сэкономить и, например, установить один УДТ на несколько выключателей. Здесь важно учесть, что потом будет сложнее найти место срабатывания и токи утечки подключенного оборудования может превысить порог чувствительности устройства.

Темой обсуждений является порядок подключения — что ставить вначале, УДТ или выключатель/предохранитель? Однозначного ответа нет, чаще встречал на практике УДТ до выключателя или предохранителя, с появлением комбинированного устройства этот вопрос можно не учитывать.

Что важно помнить


Автоматические выключатели и плавкие предохранители служат для защиты линий и рассчитываются только до розетки. То, что будет включено позже не обязано ими защищаться.

Немного про провода


Провод должен выдерживать более высокие токи, чем защищающее его устройство. Так как сейчас существует огромное количество различных видов проводов, то при выборе следует ориентироваться на данные производителя касательно токов короткого замыкания и длительных токов, но есть пара моментов, о них дальше.

В этих данных можно встретить красивые цифры, вроде допустимого длительного тока для провода с ПВХ изоляцией 3х1,5 мм² в 27 А. Казалось бы, бери хоть С-автомат на 16 А, там все равно самое позднее на 23,2 А отключит линию. Но эта величина для прокладке в стене или в земле. Если посмотреть на данные для прокладки в воздухе или трубе, то уже будет всего 19 А. А потом еще есть ряд коэффициентов, вроде наличия соседних проводов. Например, если рядом находятся еще 2 других провода, которые одновременно загружены, то уже допустимый ток составит 13,3 А — здесь даже С-автомат на 10А использовать нельзя.

Что же касается значений токов короткого замыкания, то как правило, дается ток, который выдерживается на время 1 секунда. Для пересчета на другие величины (до 5 секунд) можно пользоваться следующей формулой:

Интересные статьи и ссылки


Цикл статей про заземление от arozhankov

Руководство по устройству электроустановок онлайн от Schneider Electric. Правда советую английскую или немецкую версию, они гораздо более полные.

Продолжение этой статьи с расчетами

3.4. Расчеты квартирной электросети . Профессиональные советы домашнему электрику

Расчет токовой нагрузки для одиночного потребителя

Для того чтобы выбрать сечение кабеля и номинал автомата защиты необходимо рассчитать предполагаемую нагрузку этой сети.

При расчете нагрузки электросети нужно помнить, что расчет токовой нагрузки отдельного бытового прибора и группы из нескольких потребителей отличаются друг от друга.

Расчет токовой нагрузки и выбор автомата защиты в однофазной электросети, 220 вольт для одиночного потребителя достаточно прост.

Для этого нужно вспомнить основной закон электротехники (закон Ома), посмотреть в паспорте на прибор его потребляемую мощность и рассчитать токовую нагрузку.

Например: проточный водонагреватель на 220 В. Потребляемая мощность 5 кВт.

Ток нагрузки можно рассчитать по закону Ома.

Iнагузки = 3000 Вт/220 В = 13,6 А.

Вывод: на линию для электропитания проточного водонагревателя нужно установить автомат защиты не менее 14 А. Таких автоматов в продаже нет, поэтому выбираем автомат с большим ближайшим номиналом в 16 А.

Расчет токовой нагрузки группы потребителей

Рассмотрим расчет токовой нагрузки и выбор автомата защиты в однофазной электросети, 220 вольт для электропроводки квартиры или группы в этой квартире.

Под группой электропроводки понимается несколько потребителей, подключенных параллельно к одному питающему кабелю от электрощитка. Для группы устанавливается общий автомат защиты. Автомат защиты устанавливается в квартирном электрощите или этажном щитке. Расчет сети электрогруппы отличается от расчета сети одиночного потребителя.

Для расчета токовой нагрузки электрогруппы потребителей вводится так называемый коэффициент спроса (Кс), который определяет вероятность одновременного включения всех потребителей в группе в течение длительного промежутка времени.

Кс = 1 соответствует одновременной работе всех электроприборов группы. Понятно, что включения и работы всех электроприборов в квартире одновременно практически не бывает. Есть целые системы расчета коэффициента спроса для домов, подъездов. Для каждой квартиры коэффициент спроса различается для отдельных комнат, отдельных потребителей и даже для различного стиля жизни жильцов. Например, коэффициент спроса для телевизора обычно равен 1, а коэффициент спроса пылесоса равен 0,1.

Поэтому для расчета токовой нагрузки и выбора автомата защиты в группе электропроводки коэффициент спроса влияет на результат.

Расчетная мощность группы электропроводки рассчитывается по формуле:

Ррасчетная = КспросаРустановочная

Iнагрузки = Ррасчетная/220 В

В табл. 3.2 приведены электроприборы одной небольшой квартиры. Рассчитаем токовую нагрузку для нее и выберем входной автомат защиты с учетом коэффициента спроса.

Приведенная мощность в сети рассчитывается как сумма мощностей всех потребителей, умноженная на их коэффициент спроса (правая колонка в табл. 3.2).

А коэффициент спроса квартиры равен соотношению мощностей: приведенной и полной.

Кс квартиры = 2842/8770 = 0,32.

Ток нагрузки рассчитывается из Приведенной мощности:

Iн = 2843 Вт/220 В = 12,92 А.

Соответственно, выбираем автомат защиты на шаг больше: 16 А.

Теперь определимся, как выбрать сечения кабелей для различных групп электропроводки.

По приведенным выше формулам можно рассчитать мощность электросети и значение рабочего тока в сети.

Останется по полученным значениям выбрать сечение электрического кабеля, который можно использовать для рассчитываемой проводки в квартире.

Правила устройства электроустановок ПУЭ такую таблицу приводят (табл. 3.3). По таблице ниже ищем значение:

♦ расчетного тока нагрузки;

♦ расчетную мощность сети.

Затем выбираем сечение электрического кабеля.

 Примечание.

Таблица приводится для медных жил кабелей, потому что использование кабелей с алюминиевыми жилами в электропроводке жилых помещений уже запрещено.

Табл. 3.4 может пригодиться для правильного выбора сечения кабеля и автоматов защиты. Это номенклатура мощностей электробытовых приборов и машин для расчета в электросетях жилых помещений (из нормативов для определения расчетных электрических нагрузок зданий (квартир), коттеджей, микрорайонов (кварталов) застройки и элементов городской распределительной сети).

Типовой вариант выбора сечений проводов и номиналов средств защиты

Номиналы автоматических выключателей применяют в соответствии с сечением примененного кабеля. Чаще всего поддерживается классический принцип:

♦ провод сечением 1,5 мм2 для освещения;

♦ провод сечением 2,5 мм2 на розетки;

♦ для электроплиты, водонагревателя, кондиционера — 4 мм2.

На входе в квартиру можно выбрать с приличным запасом сечение 10 мм2. В большинстве случаев бывает достаточно 6 мм2. На входе на всю квартиру применяется УЗО, назначение такого УЗО — пожарное, так как величина дифференциального тока 300 мА. Выпускаются также дифференциальные выключатели на токи 100 мА и меньшие номиналы.

Для защиты людей применяют УЗО с меньшими дифференциальными токами 10 или 30 мА непосредственно в потенциально опасные помещения. УЗО обычно защищают все розетки: на кухне, в санузле, а в комнатах — по необходимости.

Осветительная сеть может быть разделена на зоны и не снабжена УЗО. Разделение на зоны — очень удобное решение, а дополнительная защита осветительной сети не требуется. Во-первых, отсутствует случайное соприкосновение с электроприборами, а, во-вторых, подразумевается, что корпуса светильников вы соедините с РЕ проводом, со всеми вытекающими плюсами такого подключения.

«Система управления и защиты электричества» Эджимону Косисочукву Габриэль

Аннотация

Система мониторинга электричества в жилых домах - это счетчик электроэнергии, подключенный к Интернету, для предоставления данных о системе электроснабжения в вашем доме в режиме реального времени. REMS предназначен для замены распределительного щита, позволяя проводить серию тестов качества электроснабжения вашего дома / объекта, а в вашем доме обнаруживать основные неисправности проводки и позволять владельцам и поставщикам услуг выявлять потенциальные проблемы с электрические системы.

Система электрического мониторинга наконец передает надлежащий электрический контроль в руки владельца дома, предоставляя ему возможность контролировать распределение электроэнергии в доме из любой точки мира с помощью sms и просматривать аналитические данные через Интернет.

REMS способен измерять энергопотребление в отдельной комнате, обнаруживать скачки напряжения и отключать подачу напряжения в дом, обнаруживать высокие температуры на распределительных линиях в доме, даже обнаруживать высокие температуры в точках розеток, при отключении затронутых линий или даже весь дом.

R.E.M.S также способен обнаруживать электрический дым и настройку всей системы, а также связываться со службами экстренной помощи с помощью звонков и текстовых сообщений.

Он поддерживает GPRS, что дает ему функции Интернета и sms, то есть он может получать команды через sms, такие как «Выключить кухню», отправлять экстренные оповещения и предупреждения SOS и т.д. . E.M.S может обнаруживать простые неисправности электропроводки, короткое замыкание, использование слаботочных проводов на сильноточных распределительных линиях и т. Д.

Рекомендуемое цитирование

Габриэль, Эджимону Косисочукву (2019) «Система управления и защиты электричества в жилых домах», Журнал международных технологий и управления информацией : Vol. 27 : Вып. 4 , Статья 4.
Доступно по адресу: https://scholarworks.lib.csusb.edu/jitim/vol27/iss4/4

СКАЧАТЬ

С 06 августа 2019 г.

МОНЕТЫ

Защита от перегрузки по току - обзор

Защита от короткого замыкания —Проверьте работу встроенного устройства защиты от перегрузки по току для блоков и ячеек с помощью жесткого короткого замыкания менее 1 секунды за 10 минут.

Защита от перезарядки —Зарядка происходит с постоянной величиной тока, продолжается до тех пор, пока проверяемое оборудование не прервет зарядку путем автоматического отключения главных контакторов. Тест прекращается, когда уровень SOC превышает 130% или когда уровень температуры элемента превышает 55 ° C. Сбор данных / мониторинг должны продолжаться в течение 1 часа после остановки зарядки.

Защита от переразряда - Проверка работоспособности защиты от переразряда.Система управления батареями должна прерывать ток сверхразряда, чтобы предотвратить дальнейшие серьезные события, связанные с проверяемым оборудованием, вызванные током избыточного разряда. Испытание на разряд прекращается вручную, если было достигнуто 25% от номинального уровня напряжения или 30 минут после прохождения нормальных пределов разрядки проверяемого оборудования. Измерения включают напряжение, ток и температуру в зависимости от времени и сопротивления изоляции между корпусом проверяемого оборудования и положительной и отрицательной клеммами до и после испытания.

Испытание на осушение - моделирует использование системы / компонента в условиях высокой влажности окружающей среды. Устранение неисправностей, вызванных электрическими неисправностями, вызванными влажностью.

Испытание на тепловой удар - для определения устойчивости проверяемого оборудования к резким изменениям температуры. Испытание требует определенного количества температурных циклов, которые начинаются при комнатной температуре, за которыми следуют циклы высокой и низкой температуры.Рассматриваемые виды отказов - это электрические и механические неисправности, вызванные ускоренным циклическим изменением температуры.

Вибрация - Тест на неисправности и отказы, вызванные вибрацией - случайной вибрацией, вызванной движением по неровной дороге, а также внутренней вибрацией трансмиссии. Основные неисправности, которые должны быть идентифицированы этим испытанием, - это обрыв и потеря электрического контакта.

Ударная нагрузка - Испытание применимо к пакетам и системам, предназначенным для установки в жестких точках кузова или на раме транспортного средства.Нагрузка возникает, например, при наезде на бордюрный камень на большой скорости. Режим отказа - это механическое повреждение компонентов из-за возникающих в результате высоких ускорений.

Сдавливание - для характеристики реакции ячейки на внешние силы нагрузки, которые могут вызвать деформацию упаковки.

Падение - Имитирует механическую нагрузку во время обслуживания, когда аккумуляторная система снята с автомобиля. Во время испытания и в течение 1-часового периода наблюдения после испытания аккумуляторная система не должна иметь признаков возгорания или взрыва.

Краш-тест - моделирует инерционную нагрузку, которая может возникнуть во время аварии транспортного средства.

Контакт точечной нагрузки - Имитирует контактную нагрузку, которая может возникнуть во время аварии транспортного средства.

Погружение в воду - Испытания на устойчивость к сценариям погружения в воду, которые могут возникнуть при затоплении транспортного средства.

Тепловая нагрузка - Имитирует тепловую нагрузку, которая может возникнуть при пожаре в автомобиле.

Система охлаждения - повторяет системный отказ терморегулятора / охлаждения аккумуляторной батареи или системы.

Примечание: Испытания на раздавливание и проникновение, проведенные на аккумуляторных блоках, привели к зарегистрированным случаям теплового разгона на испытательных объектах в Европе, последствия которых становятся более потенциально опасными при проведении в замкнутом пространстве здания. Использование приспособленных для этой цели уличных снегоходов может показаться разумной процедурой, особенно при испытании единиц нового химического состава или конфигурации.

Об электроэнергетической системе США и ее влиянии на окружающую среду | Энергия и окружающая среда

Электроэнергетическая система США

Современная электроэнергетическая система США представляет собой сложную сеть, состоящую из электростанций, линий передачи и распределения, а также конечных потребителей электроэнергии. Сегодня большинство американцев получают электроэнергию от централизованных электростанций, которые используют широкий спектр энергоресурсов для производства электроэнергии, например уголь, природный газ, ядерную энергию или возобновляемые ресурсы, такие как вода, ветер или солнечная энергия.Эту сложную систему генерации, доставки и конечных пользователей часто называют электросетью .

Используйте схему ниже, чтобы узнать больше об электросети. Щелкните каждый компонент, чтобы получить обзор со ссылками на более подробную информацию.

Посмотреть текстовую версию этой схемы ►

Начало страницы

Источник: Управление энергетической информации США, Обозреватель данных по электроэнергии. Эти данные были доступны в декабре 2017 года.Как и где вырабатывается электроэнергия

Электроэнергия в Соединенных Штатах вырабатывается с использованием различных ресурсов. Три наиболее распространенных - это природный газ, уголь и атомная энергия. Одними из наиболее быстрорастущих источников являются возобновляемые ресурсы, такие как ветер и солнце. Большая часть электроэнергии в США вырабатывается на централизованных электростанциях. Гораздо меньшее, но растущее количество электроэнергии производится за счет распределенной генерации - различных технологий, которые генерируют электроэнергию там, где она будет использоваться или поблизости от нее, например, солнечные панели на месте и комбинированное производство тепла и электроэнергии. Узнайте больше о централизованной и распределенной генерации.

Начало страницы

Подача и использование электроэнергии

Когда электричество вырабатывается на централизованной электростанции, оно проходит через серию взаимосвязанных высоковольтных линий электропередачи. Подстанции «понижают» мощность высокого напряжения до более низкого напряжения, отправляя электроэнергию более низкого напряжения потребителям через сеть распределительных линий. Узнать больше о доставке электроэнергии.

На бытовых, коммерческих и промышленных потребителей приходится примерно треть потребляемой в стране электроэнергии. На транспортный сектор приходится небольшая часть потребления электроэнергии. Узнайте больше о конечных потребителях электроэнергии.

Источник: Управление энергетической информации США, Обозреватель данных по электроэнергии. Доступ к этим данным был получен в декабре 2017 г. Как сеть соответствует выработке и спросу

Количество электроэнергии, используемой в домах и на предприятиях, зависит от дня, времени и погоды.По большей части электричество должно вырабатываться в то время, когда оно используется. Электроэнергетические компании и операторы сетей должны работать вместе, чтобы производить необходимое количество электроэнергии для удовлетворения спроса. Когда спрос увеличивается, операторы могут отреагировать увеличением производства на уже работающих электростанциях, выработкой электроэнергии на электростанциях, которые уже работают на низком уровне или в режиме ожидания, импортом электроэнергии из удаленных источников или вызовом конечных пользователей, которые согласились потребляют меньше электроэнергии из сети.

Начало страницы

Воздействие энергосистемы на окружающую среду

Почти все части электроэнергетической системы могут повлиять на окружающую среду, и размер этих воздействий будет зависеть от того, как и где электроэнергия вырабатывается и доставляется. В общем, воздействие на окружающую среду может включать:

  • Выбросы парниковых газов и других загрязнителей воздуха, особенно при сжигании топлива.
  • Использование водных ресурсов для производства пара, охлаждения и других функций.
  • Сбросы загрязняющих веществ в водные объекты, в том числе теплового загрязнения (вода, температура которой превышает исходную температуру водоема).
  • Образование твердых отходов, которые могут включать опасные отходы.
  • Использование земель для производства топлива, выработки электроэнергии, а также линий передачи и распределения.
  • Воздействие на растения, животных и экосистемы в результате воздействия на воздух, воду, отходы и землю, указанные выше.

Некоторые из этих воздействий на окружающую среду могут также потенциально повлиять на здоровье человека, особенно если они приводят к тому, что люди подвергаются воздействию загрязнителей в воздухе, воде или почве.

Начало страницы

Воздействие на окружающую среду используемой вами электроэнергии будет зависеть от источников генерации («структуры электроэнергии»), имеющихся в вашем районе. Чтобы узнать о выбросах, связанных с потребляемой электроэнергией, посетите Power Profiler EPA.

Вы можете уменьшить воздействие на окружающую среду от использования электроэнергии, покупая экологически чистую энергию и повышая энергоэффективность. Узнайте больше о том, как уменьшить свое влияние.

В более широком смысле, несколько решений могут помочь снизить негативное воздействие на окружающую среду, связанное с производством электроэнергии, в том числе:

  • Энергоэффективность. Конечные пользователи могут удовлетворить некоторые свои потребности, приняв энергоэффективные технологии и методы. В этом отношении энергоэффективность - это ресурс, который снижает потребность в выработке электроэнергии. Узнайте больше об энергоэффективности.
  • Чистая централизованная генерация. Новые и существующие электростанции могут снизить воздействие на окружающую среду за счет повышения эффективности производства, установки средств контроля за загрязнением и использования более чистых источников энергии. Узнайте больше о централизованной генерации.
  • Чистая распределенная генерация. Некоторая распределенная генерация, такая как распределенная возобновляемая энергия, может помочь обеспечить доставку чистой и надежной энергии потребителям и снизить потери электроэнергии на линиях передачи и распределения. Узнать больше о распределенной генерации.
  • Теплоэлектроцентраль (ТЭЦ). Также известная как когенерация, ТЭЦ вырабатывает электроэнергию и тепло одновременно из одного источника топлива. Используя тепло, которое в противном случае было бы потрачено впустую, ТЭЦ является одновременно распределенной генерацией и формой энергоэффективности.Узнать больше о ТЭЦ.

Начало страницы

5 способов защитить ваш дом и бытовую технику от скачков напряжения

Скачки напряжения являются основной причиной повреждения устройств, связанных с электричеством. Это связано с тем, что при скачке напряжения любое подключенное устройство подвергается риску повреждения независимо от того, насколько оно велико или мало.

Национальная ассоциация производителей электрооборудования указывает, что источники в домах и офисах вызывают 60-80% всех скачков напряжения. Поэтому рекомендуется нанять подрядчика, предлагающего услуги по проектированию электротехники, чтобы использовать меры, которые защищают ваши приборы от скачков напряжения.

Что такое скачок напряжения?

Скачок напряжения - это неожиданное временное повышение тока или напряжения в электрической цепи, которое может ухудшить, повредить или разрушить чувствительные электронные устройства.

Когда устройство внезапно перестает использовать питание, в распределительной сети повышается напряжение, которое может быть направлено на другое устройство и может вызвать повреждение.

Как предотвратить скачки напряжения?

Мерцающие огни часто указывают на надвигающийся скачок напряжения.Выключив розетки, вы защитите свою электронику. Однако это не полностью защищает вашу технику.

Это связано с тем, что повреждение ваших устройств не обязательно вызвано одним сильным скачком напряжения. Это может произойти в результате повреждений, возникших в результате нескольких незначительных скачков напряжения.

Надлежащая защита от перенапряжения не сводится к принятию мер реагирования. Это вопрос, который требует, чтобы ваш поставщик услуг по проектированию электротехники принял превентивные меры, прежде чем это произойдет.

Вот несколько советов, как защитить дом и электрические приборы от скачков напряжения.

1. Установите устройство защиты от перенапряжения по всему дому

Компании, предлагающие услуги по проектированию электротехники, могут установить устройство защиты на главный выключатель. Он будет работать как шлюз для тока, поступающего в вашу электрическую систему.

В случае скачка напряжения ограничитель / протектор отключает питание, а затем перенаправляет избыточный ток на подземный провод.

2. Добавлена ​​защита для определенных устройств

Даже с сетевым фильтром для всего дома крайне важно обеспечить дополнительную защиту чувствительной электроники, такой как компьютеры и холодильники.Вот что рекомендуют компании, предлагающие бытовые электрические услуги:

  • Иметь станции перенапряжения для кабельных линий и телефонных станций
  • Используйте источник бесперебойного питания (ИБП) для защиты компьютеров
  • Используйте удлинители

3. Модернизируйте свой блок переменного тока

Кондиционеры воздуха, как правило, перезапускаются несколько раз в день. Когда это происходит, ток в здании увеличивается, что увеличивает вероятность скачка напряжения.

Новые модели переменного тока энергоэффективны, поэтому для работы требуется значительно меньше энергии.В результате избыточный ток в циркуляции будет меньше при перезапуске, что снижает вероятность скачка напряжения.

4. Отключите устройства во время шторма

Удары молнии являются основной причиной скачков напряжения. Только в 2013 году страховщиками было зарегистрировано около 115 000 претензий по молниям в жилищном секторе. На всякий случай отключайте все электрические устройства во время грозы.

5. Осмотрите свою проводку

Поврежденные или оголенные провода имеют небольшое сопротивление и нарушают прохождение тока.Это, в свою очередь, увеличивает вероятность скачка напряжения, особенно для конкретной розетки, к которой они ведут.

Вот несколько советов, которые помогут вам определить неисправную проводку:

  • Жужжащий звук или вибрация, исходящие от розеток
  • Частые срабатывания автоматических выключателей
  • Видимые следы ожогов или запах гари, исходящие от розеток

Если вы заметили любой из них знаков, вызовите электрика аварийной службы Тампы, чтобы предотвратить опасность. В дополнение к этому потребуется тщательный осмотр, и вам может потребоваться пройти внутрь стен и проверить все остальные провода по отдельности.Именно здесь на помощь приходит специалист по установке электрических систем.

Если вы хотите вложить средства в защиту от перенапряжения для своего дома, положитесь на опыт Kazar’s Electric сегодня.

Что нужно знать об устройствах защиты от перенапряжения для всего дома

Не так давно подрядчик по электротехнике Аллен Галлант был примерно на полпути к полному ремонту дома площадью 3200 квадратных футов в Актоне, штат Массачусетс, когда владельцы решили сэкономить деньги и не устанавливать защиту от перенапряжения всего дома от скачков молнии или перенапряжения. сбитые линии электропередач.

Разумеется, вскоре после завершения строительства Галлант получил телефонный звонок от обеспокоенных владельцев: молния ударила в столб электросети возле их дома, послав приливную волну напряжения по проводам, мимо панели главного выключателя и в электрическую сеть. жилой дом.

удлинитель Назначение: Обеспечивает базовую защиту для нескольких устройств. Ищите: Выключатели на каждую розетку; пространство между выводами для трехконтактных вилок и трансформаторов; световые индикаторы, указывающие на износ устройства; напряжение зажима не более 400 вольт. Стоимость: 20-40 долларов

«Сгорела материнская плата в холодильнике Sub-Zero, сгорели регуляторы температуры в духовке с двойными стенками, вышло из строя шесть диммеров, два компьютера и все розетки GFCI в доме», - говорит Галлант. «Это был убыток в размере 11 000 долларов».

Многие домовладельцы считают, что адекватная защита от перенапряжения начинается и заканчивается подключением их компьютера к удлинителю. К сожалению, это случается редко.

Во-первых, не все сетевые фильтры соответствуют своему названию; некоторые из них - не более чем прославленные удлинители.Во-вторых, волна будет следовать за любым проводом в дом, включая телефонные и кабельные линии, и угрожать факсимильным и автоответчикам, телевизорам, спутниковым системам, компьютерам и модемам. И в-третьих, как обнаружили владельцы переоборудования Актона, тонкие электронные схемы распространились по всем нашим домам, в результате чего обычные приборы так же уязвимы, как и компьютеры, к воздействию скачков напряжения.

Что вызывает скачки напряжения?

Скачок напряжения может длиться всего несколько миллионных долей секунды, но в худшем случае он несет десятки тысяч вольт, которых достаточно, чтобы поджарить печатные платы, сломать жесткие диски и разрушить домашние развлекательные системы.

Скачки, вызванные молнией, являются самыми мощными и наиболее опасными: толчок мощностью 200 000 ампер, пробивающий линию электропередачи, сожжет стандартную проводку на 20 ампер, как нить накаливания лампочки. Но удар молнии должен происходить менее чем в миле от дома, чтобы причинить вред, и на самом деле большинство повреждений, связанных с перенапряжением, вызвано не молниями.

Surge Station Назначение: Защищает телефонные линии и коаксиальный кабель, а также подключаемые устройства. Ищите: А напряжение зажима на 330 вольт меньше; встроенные тепловые предохранители. UL 497A для скачков напряжения в телефонных линиях и UL 1283 для электромагнитных и радиопомех. Стоимость: 40-70 долларов

Гораздо более распространенными, если не столь значительными, являются скачки напряжения, вызванные отключением линий электропередач, внезапными изменениями в потреблении электроэнергии на соседнем заводе или даже включением и выключением лазерных принтеров, электрических сушилок, кондиционеров, холодильников и других источников энергии -сасывающие устройства в доме.

Ущерб, нанесенный этими незначительными колебаниями мощности, может быть мгновенным, но может не проявляться в течение некоторого времени. «Вы можете даже не заметить этого», - говорит Энди Лигор, консультант A.M.I. Systems Inc., фирма, которая устанавливает системы защиты от перенапряжения как в жилых, так и в коммерческих целях. «Затем примерно через год ваша микроволновая печь перестанет работать».

Сетевые фильтры

Защита от скачков напряжения требует двухстороннего подхода: подавитель для всего дома для подавления больших, опасных скачков напряжения и индивидуальный (или «подключаемый») ограничитель перенапряжения для уязвимых бытовых и электронных устройств.

Оба типа действуют как предохранительные клапаны. Обычно они просто сидят и пропускают электрический ток. Но при превышении нормального напряжения устройства мгновенно отводят избыточное напряжение на заземляющий провод. (Лучшие из них реагируют менее чем за наносекунду.) Как только уровни напряжения возвращаются в норму, ток электричества восстанавливается, если только скачок не был достаточно большим, чтобы расплавить предохранитель, встроенный в некоторые устройства.

Сетевые фильтры для всего дома

Как правило, подавители помех для всего дома жестко подключаются к сервисной панели, и на этот процесс у лицензированного электрика уходит около двух часов.Системы для всего дома должны быть рассчитаны как минимум на защиту от скачков напряжения в 40 000 ампер. Функции, на которые следует обратить внимание, включают плавкие предохранители, а также индикаторы или сигналы тревоги, которые указывают на то, что устройство получило удар.

Защита среднего дома на 200 А обойдется примерно в 500 долларов, включая пару часов работы электрика. Для телефонных и кабельных линий рекомендуется использовать отдельные, но меньшие по размеру устройства для всего дома. Они защищают факсимильные и автоответчики, телевизоры и модемы.

Сами по себе глушители для всего дома не могут полностью остановить скачки напряжения; может просочиться до 15 процентов перенапряжения.Вот тут-то и пригодятся «подключаемые» устройства защиты от перенапряжения. Эти буферы между отдельными приборами и настенными розетками имеют огромное количество вариантов и цен. Они варьируются от 70 долларов, которые не намного больше компьютерной мыши, до 350 долларов размером с коробку для пиццы, которые защищают все компоненты домашнего кинотеатра.

Устройство защиты цепей

Источник бесперебойного питания Назначение: Обеспечивает чистое, бесперебойное питание.Резервный аккумулятор позволяет сэкономить время на сохранение данных во время отключения электроэнергии. Ищите: Контрольные лампы перегоревших предохранителей; телефонные и кабельные разъемы. Убедитесь, что он подключен к собственному удлинителю. Стоимость: $ 150–350

Но большинство сменных моделей делятся на три основные категории: знакомые многорозеточные удлинители; многозадачная импульсная станция, которая может работать с телефонными и кабельными гнездами, а также с шнурами питания; и ИБП (источник бесперебойного питания), который полностью очищает электроэнергию от случайных колебаний и обеспечивает кратковременное резервное питание от батареи на случай, если мощность снизится или полностью отключится.

Ожидайте, что вы заплатите от 20 до 70 долларов за качественный удлинитель или импульсную станцию ​​и от 100 до 350 долларов за ИБП.

Защита покупательной цепи (плагин)

Перед покупкой сменного модуля убедитесь, что он выполняет следующие функции:

  • Соответствует стандарту UL 1449 (второе издание)
  • Имеет ограничивающее напряжение - величину, при которой электричество отводится на землю - 400 вольт или меньше. Чем меньше цифра, тем лучше защита
  • Поглощает не менее 600 джоулей энергии
  • Защищает все три входящие линии: горячую, нейтральную и заземленную.Ищите «L-N, L-G, N-G» (линия на нейтраль, линия на землю, нейтраль на землю) в спецификации продукта
  • .
  • Прекращает работу, когда его цепи повреждены скачком напряжения

Типы как для всего дома, так и для подключаемых модулей могут быть отключены без вашего ведома; ищите световые индикаторы, которые сигнализируют, когда устройство больше не работает.

Даже самый лучший ограничитель перенапряжения не сможет выполнять свою работу, если домашняя проводка не заземлена должным образом; Для отвода отведенного электричества должен быть единственный путь.«Без хорошего заземления ток может пройти по другому проводу и попасть внутрь вашего модема или факсимильного аппарата», - говорит Том Плесич, директор по развитию бизнеса компании Innovative Technology, производителя оборудования для подавления перенапряжения.

Также избегайте подключения чувствительных к перенапряжениям электронных устройств к одному удлинителю с лазерными принтерами, кондиционерами или другими приборами с большой нагрузкой на двигатель. Они производят собственные скачки напряжения низкого уровня, которые повлияют на все устройства, использующие полоску.

Страховые компании обычно не предоставляют скидки на дома с защитой от перенапряжения, но инвестиции в защиту вполне могут окупить себя, а иногда и некоторые. Это то, что обнаружили владельцы дома в Эктоне - слишком поздно.

Сколько стоят сетевые фильтры для всего дома?

Подавитель для всего дома Что он делает: Предотвращает скачки напряжения в проводке дома. Отдельные устройства необходимы для силовых, телефонных и кабельных линий. Ищите: Номинальный ток от 20 000 до 40 000 ампер; внутренние предохранители и световые индикаторы неисправности. Стоимость: Около 200 долларов за единицу плюс два часа на установку электрика Майкл Хейко

Когда Аллен Галлант вернулся на место, пострадавшее от скачка напряжения, он потратил полтора часа на установку системы для всего дома, которая включала в себя устанавливаемый на панели ограничитель перенапряжения для всего дома и аналогичные устройства для телефонных и кабельных линий.

Новые настенные духовые шкафы (3000 долларов) теперь защищены от скачков напряжения, как и отремонтированный холодильник Sub-Zero (1200 долларов) и вся другая электроника в доме.Общий счет от Gallant: 940 долларов.

Где найти

Удлинитель питания:
Powermax 8 Универсальный сетевой фильтр переменного тока от Panamax Inc.

Станция защиты от перенапряжения:
Устройство защиты от перенапряжения SurgeArrest Pro8TV от American Power Conversion (APC)

Источник бесперебойного питания (ИБП):
Back-UPS VS 500 от APC

Подавитель для всего дома:
Primax GB13, Panamax, Inc.

Специализированная защита:
Ноутбуки:
Устройство защиты от перенапряжения для ноутбуков SurgeArrest PNotePro3 от APC
Компьютерные сети:
ProtectNET Thinnet Port Surge Protector (для оборудования 10 Base2 Lan) от APC
Телефон, компьютер или факс:
MAX 2Tel by Panamax
Домашние развлечения и аудио / видеосистемы:
MAX 5100 by Panamax

Нужна помощь в ремонте дома? Прочтите наши обзоры, чтобы узнать, может ли компания по гарантийному обслуживанию дома стать вашим решением.

Электроэнергетические системы в зданиях

В этой статье рассматриваются системы распределения электроэнергии в зданиях на самом базовом уровне. Мы обсудим общие принципы того, как электричество перемещается из инженерных сетей в удобную розетку в комнате. Компоненты системы различаются в зависимости от размера здания, поэтому мы будем рассматривать системы как для малых, так и для больших зданий.

Электроэнергия от энергокомпании

Электроэнергетические компании наиболее эффективно передают энергию от электростанции при очень высоких напряжениях.В Соединенных Штатах энергетические компании обеспечивают электроэнергией средние и большие здания напряжением 13 800 вольт (13,8 кВ). В небольших коммерческих зданиях или жилых домах энергокомпании понижают напряжение с помощью трансформатора, установленного на опоре или на земле. Оттуда электричество через счетчик подается в здание.

Распределение электроэнергии в малых зданиях

Небольшие коммерческие или жилые здания имеют очень простую систему распределения электроэнергии. Коммунальному предприятию будет принадлежать трансформатор, который будет установлен на площадке за пределами здания или будет прикреплен к опоре электросети.Трансформатор снижает напряжение с 13,8 кВ до 120/240 или 120/208 вольт, а затем передает электроэнергию на счетчик, который принадлежит коммунальному предприятию и ведет учет потребляемой мощности.

После выхода из счетчика мощность передается в здание, и вся проводка, панели и устройства являются собственностью владельца здания. Провода передают электричество от счетчика на щит, который обычно находится в подвале или гараже дома.В небольших коммерческих зданиях панель может располагаться в кладовой. Щит управления будет иметь главный служебный выключатель и серию автоматических выключателей, которые контролируют поток энергии к различным цепям в здании. Каждая ответвленная цепь обслуживает устройство (некоторые приборы требуют больших нагрузок) или несколько устройств, например розетки или фонари.

Распределение электроэнергии в больших зданиях

Большие здания имеют гораздо более высокую электрическую нагрузку, чем небольшие здания; поэтому электрическое оборудование должно быть больше и прочнее.Владельцы крупных зданий также будут покупать электроэнергию высокого напряжения (в США 13,8 кВ), потому что это дешевле. В этом случае владелец предоставит и обслужит собственный понижающий трансформатор, который понижает напряжение до более приемлемого уровня (в США 480/277 вольт). Этот трансформатор может быть установлен на площадке вне здания или в трансформаторной комнате внутри здания.

Затем электричество передается на распределительное устройство. Роль распределительного устройства заключается в безопасном и эффективном распределении электроэнергии между различными электрическими шкафами по всему зданию.Оборудование имеет множество функций безопасности, включая автоматические выключатели, которые позволяют отключать питание на выходе - это может произойти из-за неисправности или проблемы, но также может быть сделано намеренно, чтобы позволить техническим специалистам работать на определенных ветвях энергосистемы.

Следует отметить, что очень большие здания или здания со сложными электрическими системами могут иметь несколько трансформаторов, которые могут питать несколько частей распределительного устройства. Мы стараемся упростить эту статью, поделившись основными концепциями.

Электричество покидает распределительное устройство и перемещается по первичному фидеру или шине. Шина или фидер - это проводник большого сечения, способный безопасно и эффективно проводить ток большой силы тока по всему зданию. Автобус или фидер подключаются по мере необходимости, а проводник подводится к электрическому шкафу, который обслуживает зону или этаж здания.

В каждом электрическом шкафу будет еще один понижающий трансформатор - в США он снизит мощность с 480/277 вольт до 120 вольт для розеток.Этот трансформатор будет питать ответвительную панель, которая управляет серией ответвлений, покрывающих часть здания. Каждая ответвленная цепь покрывает подмножество электрических потребностей области, например: освещение, удобные розетки для ряда комнат или электричество для части оборудования.

Часто задаваемых вопросов об электроснабжении и газоснабжении во время COVID-19

Если вы являетесь бытовым потребителем, ваша электрическая или газовая служба не будет отключена, если вы получите электрическую или газовую услугу от коммунального предприятия, принадлежащего инвестору, такого как Eversource, National Grid, Unitil, Liberty Utilities или Berkshire Gas.В связи с пандемией, текущий мораторий на отключение электроэнергии и газа жилых домов, был продлен до 1 июля 2021 года.

Однако важно не отставать по своим счетам. Если вы - бытовой потребитель, изо всех сил пытающийся оплатить счета за коммунальные услуги или задерживающий платежи, обратитесь в свою электрическую или газовую компанию, чтобы обсудить доступные планы платежей и программы помощи в оплате, которые могут быть доступны. Выплата того, что вы можете, поможет избежать больших остатков на счетах и ​​отключения по окончании моратория.Бытовые потребители, осуществляющие платежи в соответствии с планами платежей с помощью принадлежащего инвестору электроэнергетического или газового предприятия, будут защищены от отключения после истечения моратория 1 июля 2021 года на время действия плана платежей.

Большинство муниципальных коммунальных предприятий также согласились приостановить отключение до 1 июля 2021 года. Если вы получаете бытовую электроэнергию или газ через муниципальную коммунальную компанию, свяжитесь с ними, чтобы узнать ее политику отключения и узнать о доступных программах помощи в оплате.

Однако, если вы являетесь клиентом из малого бизнеса, вы можете оказаться в опасности, когда вас отключат, если вы не оплатите свои счета. Мораторий на отключение коммерческих предприятий закончился 31 августа 2020 года. Немедленно обратитесь в свою электрическую или газовую компанию, чтобы подписаться на план оплаты, который защитит вас от потери услуги. Если вы зарегистрируетесь в плане платежей в своей электроэнергетической или газовой компании , принадлежащей инвестору, и произведете платежи, вы будете защищены от отключения услуг на время действия вашего плана платежей. Если вы являетесь клиентом из малого бизнеса, который получает электроэнергию или газ через муниципальное коммунальное предприятие, позвоните в свое муниципальное коммунальное предприятие, чтобы узнать, какие программы они предлагают, чтобы избежать отключения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *