Заземленная нейтраль что это такое – » :

Содержание

описание типов и видов, способов подключения

Воздушные, кабельные линии на трансформаторных подстанциях работают с высоким напряжением. Его передача предполагает соблюдение мер безопасности. Высоковольтные линии аналогично энергосистемам с 380 В подсоединяются по специально установленным схемам — так обеспечивается надлежащая защита от случайного поражения током, проходящим через действующую цепь. При этом нейтральная трансформаторная точка — «нейтраль» — подлежит надежному заземлению.

Способы подсоединения

Особенность функционирования высоковольтных систем заключается в том, что при повреждении, обрыве линии происходит замыкание на землю отдельного провода. При этом токи утечки представлены внушительными величинами. Отличительными являются меры безопасности, которые применяются к подобным сетям. Они несравнимы с аналогичными действиями, проводимыми в цепях конечных потребителей. В сетях с 6 — 35 кВ стандартно задействуются следующие виды заземления нейтрали:

  1. Прямая связь с заземляющим устройством (ЗУ), которое устанавливается вблизи высоковольтной опоры, подстанции с трансформатором. Такую схему принято называть глухозаземленной нейтралью.
  2. Подключение выполняется с помощью специальных устройств — компенсаторов или реакторов дугогасящего типа.
  3. В процессе задействуется заземляющая система, предполагающая подключение описываемой нейтральной точки посредством резистора.
  4. Создание изолированной нейтрали в обход к подсоединению ЗУ в пределах обслуживаемого объекта, защищаемой высоковольтной линии.

Монтирование компенсационных деталей по сети проведения нейтрального проводника помогает снизить величины токов замыкания. Работа подобной цепи заключается в нейтрализации опасного электричества через планомерное изменение индуктивности на катушке. В последней напряжение обязательно имеет обратную фазу.

Когда достигаются определенные показатели индуктивности, ток в месте замыкания используемого заземлителя достигает нулевых значений. Более эффективное действие подобного заземления с параллельной индукцией обеспечивается за счет включения резистора. Такой прибор обеспечивает стекание активного тока, который необходим для работы высоковольтного защитного реле.

Важно! Каждая описанная система предполагает установку на принимающей стороне отдельного ЗУ. С его помощью создается эффективное заземление нейтрали, обеспечиваются надлежащие условия по использованию ВЛ.

Без подключения в цепь обозначенных устройств невозможно создание эффективных защитных функций. Если случится случайная поломка нейтрального проводника, на подстанциях силовые действующие установки будут незащищенными.

Стоит упомянуть еще вариант заземления нейтрали, включенной в сети от 6 до 35 кВ. Общая точка подводится к питающей цепи, что дает возможность эффективно использовать заземлитель. При этом создаются оптимальные условия для стекания активного тока. Существенным недостатком метода выступает его высокая стоимость, по этой причине он задействуется только на территориях питающих подстанций, у которых входные напряжения достигают 110 кВ и более.

Системы с изоляцией от земли

Работа высоковольтных сетей с эффективно заземленной нейтралью изоляционного типа является распространенной в различных регионах России. В этом случае нейтральная точка в трансформаторе или генераторе с трехфазной обмоткой не заземляется. Популярность подобного варианта включения нейтрали объясняется тем, что замыкание на землю фазы не является коротким, т. к. попросту отсутствует взаимосвязь с грунтом.

Особенность же заключается в том, что ВЛ в таком аварийном режиме работает без существенных поломок на протяжении нескольких часов. Среди достоинств такой схемы отмечено также наличие малых токов в точке замыкания ОЗЗ (одна фаза на землю). Объясняется такой принцип небольшой емкостью сети по отношению к грунту.

Важно! Подобный тип включения имеет токи ОЗЗ на порядок ниже в сравнении с межфазными замыканиями. Это очередное преимущество обозначенных сетей.

Отсутствует необходимость во включении защитных быстродействующих устройств от ОЗЗ, в результате чего снижаются затраты при эксплуатации систем. Не обойтись и без недостатков при подключении:

  1. В некоторых случаях создаются перенапряжения, имеющие дуговой эффект даже при небольших токах в месте заземления одной фазы.
  2. Существует вероятность выхода из строя высоковольтных, кабельных установок вследствие повреждения изоляционного слоя.
  3. Ведется повышенный учет напряжений (380 В). При необходимости линейная электрическая техника подвергается тщательной изоляции.
  4. Сложное нахождение и определение конкретной точки повреждения.

Выбирая описанный тип подсоединения нейтральной точки, следует учитывать все его преимущества и недостатки, тщательно продумать последствия от возможных аварийных ситуаций.

Подключение с помощью низкоомного сопротивления

Среди многих видов нейтралей часто используется заземление через резистор с незначительной номинальной величиной. Они нашли широкое применение на территории Беларуси, России. Логично в таких схемах задействовать высокоомный резистор (RB-режим), который задает низкие уровни перенапряжений при ОЗЗ.

В других случаях при заземлении нейтральной точки задействуются комбинированные способы ее подсоединения посредством применения индуктивности (RB-режим и LB).

Более подробное изучение обозначенных подходов показывает, что резисторы высокоомного типа характеризуются внушительными размерами. К тому же они отличаются значительными ценами и массой. Однако и обустройство дугогасящих реакторов отличается своими особенностями и недостатками. Поэтому при выборе режима, поддерживаемого низкоомным резистором,

следует провести тщательные расчеты и исчисления с учетом обозначенных факторов.

Существует два типа проведения низкого заземления. В первом случае выполняется установка резонансного резисторного приспособления, с помощью которого срабатывает защита от токов при ОЗЗ. Что касается второго варианта, он предполагает использование заземленных схем посредством индуктивности. Они направлены на обеспечение защиты в случае фазных двойных замыканий.

При резистивном подключении стоит принимать во внимание дополнительные токи в нейтрали, которые могут стать причиной прерывания емкостных значений ОЗЗ до 3 раз и более. Индуктивные или реактивные схемы по уровню своего заземления не должны превышать общее значение электротоков, исходящих от двойных замыканий.

Исходя из ПУЭ, обозначенные выше рабочие режимы могут быть кратковременными или длительными. Последний вариант предполагает расположение заземляющих деталей в единую цепь, в которой нейтраль функционирует на постоянной основе.

Именно такой способ подключения, на что указывают правила устройства электрических установок, допустим только при выполнении качественного заземления с показателем RЗ ≤ 0,5 Ом. Подобный подход эффективен с точки зрения трудовых затрат и экономических соображений.

rusenergetics.ru

Глухозаземленная нейтраль: принцип работы, схема, применение

Глухозаземленная нейтраль лежит в основе системы электроснабжения потребителей, она направлена на безопасное использование сетей до 1000 Вольт, которые чаще всего применяются в быту и на производстве в качестве источника стандартного низковольтного напряжения. Нейтраль, в свою очередь, это общая точка соединения обмоток звездой у источников электроэнергии, которыми являются трансформаторы или же генераторы. Если эту точку соединить с землёй, то и получится сеть с глухозаземлённой нейтралью. В нулевой точке происходит выравнивание потенциалов, что очень удобно для обеспечения электроэнергией и однофазных, и трехфазных источников.

Устройство и принцип действия сетей с глухозаземлённой нейтралью

Принцип работы источников электроэнергии, в частности, понижающих трансформаторов основан на законе взаимоиндукции и передаче энергии по магнитному сердечнику. Первичная обмотка при этом может и не иметь нулевого провода, в отличие от вторичной, где соединение его с нулём через проводник с низким сопротивлением, который можно приравнять с нулевым значением, будет являться эффективным средством защиты от поражения человека опасным для его жизни и здоровья напряжением.

Главной особенностью сетей с глухозаземлённой нейтралью является появление не только линейного, но и фазного напряжения. Что это такое и чем оно отличается друг от друга, рассмотрим на примере простой принципиальной схемы.

Фазное напряжение — это потенциал между одним из проводов линии и нулевой точкой, присоединенной к земле, то есть наглухо заземлённой. Линейное напржение — разница потенциалов между двумя выводами линий, то есть L1 и L2, L1-L3, или же L2-L3, называется оно также межфазное. Такие источники электрической энергии в бытовых условиях имеют распространенное значение напряжения в виде 380 В — линейного, и 220 — фазного. Линейное напряжение больше фазного на √3, то есть на 1,72.

Но основная задача такой системы это не только транспортировка к потребителю двух систем электроснабжения с разными номиналами и разными количеством фаз, но и защита человека при пробое изоляции и появлении напряжения в точках, которые в нормальном состоянии не имеют опасного потенциала. В жилых зданиях это:

  • корпуса всех бытовых приборов, которые проводят электрический ток, то есть сделаны из стали или другого токопроводящего металла;
  • металлоконструкции щитовых и распределительных устройств;
  • защитная оболочка кабелей.

Также для обеспечения безопасности все перечисленные выше элементы должны быть заземлены, именно в этом случае опасность от использования напряжения и применения бытовых приборов в сетях с глухозаземлённой нейтралью будет минимальна. При этом для таких цепей обязательна равномерность распределения однофазных нагрузок.

Объяснение для чайников

Понижающая подстанция, в которой установлен трансформатор, имеет свой контур заземления. Он соединен между собой стальными шинами и прутами, в один заземляющий контур. К потребителям в электрический щиток от подстанции прокладывается кабель, который содержит четыре жилы. Если потребителю необходимо питание от трёхфазной цепи 380 Вольт, то подключаться необходимо ко всем жилам. В однофазное сети 220 В питание будет осуществляется от нулевого провода и от одной из фаз. Защита людей в однофазных и трехфазных цепях, если нет системы заземления, должна осуществляется за счёт специальных устройств защитного отключения (УЗО), которые срабатывают при небольшой утечке на ноль, при этом отключают надёжно потребителя от сети.

Классификация сетей с глухозаземлённой нейтралью

Современная система электроснабжения имеет стандартную маркировку где помимо рабочего нулевого проводника присутствует и защитный, что и даёт определение степени защищённости.

  • L — фазный проводник;
  • N — рабочий ноль;
  • РЕ — защитный нулевой проводник;
  • РЕN — рабочий и нулевой проводник выполнены одним проводом.

Существуют несколько подсистем в цепях с источником энергии, имеющим глухозаземлённую нейтраль:

  • TN-C. При данной системе нулевой и защитный проводник с подстанции организован одним проводником, возле приёмника его корпус (или другие элементы, подлежащие заземлению) соединяют с данным совмещенным проводником – это называется зануление. Это устаревшая система, применялась в старых домах при СССР, сейчас для бытовых потребителей не используется, так как небезопасная. Такая система имеет существенный недостаток, так как в случае обрыва РЕN проводника на пути от питающего трансформатора до приемника электроэнергии, на зануленных корпусах оборудования появляется опасный потенциал. Используется только для защиты промышленных потребителей (об этом говорится ниже в следующем разделе).
  • TN-S. Имеет больший процент безопасности во время аварийных ситуаций. Это достигается путём разделения защитного и рабочего проводников по всей длине питающей линии, от трансформатора до распределительного электрощита (до конечного потребителя). Однако за счёт того, что приходится применять кабельную продукцию имеющую пять жил, что сильно увеличивает стоимость прокладки и бюджет на организацию электроснабжения к потребителю, применяется данная система не всегда.
  • TN-C-S. Данная система заземления является наиболее распространенной в наше время. При данной системе нулевой и защитный проводник на всей длине линии объединены в один совмещенный проводник PEN. При входе в здание данный проводник разделяется на защитный PE и нулевой N, которые дальше распределяются по потребителям (квартирам). При данной системе в случае отгорания PEN проводника до точки разделения на заземленных корпусах электроприборов появится опасный потенциал. Для предотвращения этого на всей длине линии и при входе в здание делаются повторные заземления PEN проводника и предъявляются повышенные требования к механической защите данного проводника.
  • ТТ. Данная система заземления практикуется в том случае, если линия системы TN-C-S находится в неудовлетворительном техническом состоянии и не обеспечивается достаточной безопасности предусмотренного в ней защитного заземления. Данная система заземления предусматривает монтаж индивидуального контура заземления у потребителя, при этом PEN проводник электрической сети используется только в качестве нулевого провода N.

Важно знать

Для электроснабжения однофазных и трёхфазных потребителей в промышленности и в бытовых условиях используют так называемое зануление, которое «якобы» является действенным методом, обеспечивающим автоматическое отключение электроустановки или части её, в которой произошло короткое замыкание. При занулении в цепях с глухозаземлённой нейтралью к нулевому проводу подключаются все металлические части и корпуса электрооборудования. Как работает данная защита? Дело в том что при любом коротком замыкании на корпус цепь переходит в режим короткого замыкания, ток в цепи автоматического выключателя сильно увеличивается и аварийный участок отключается от сети.

Преимуществом такой системы являются экономия расходов на проводку защитного заземления, а также снижение стоимости кабельной продукции, так как к одной и той же цепи можно подключить и однофазные и трёхфазные электроприёмники.

Однако недостатком глухозаземлённой нейтрали, организованной по принципу защитного зануления, можно назвать недостаточность обеспечения защиты человека при пробое изоляции на корпус электроприбора во время обрыва нулевого провода, который является и защитным. И это очень важный момент — зануление является опасной мерой защиты, поэтому оно организовываться в домашних условиях ни в коем случае не должно!

Современное электроснабжение всё-таки направлено больше на безопасность, поэтому требует установки УЗО и отдельного защитного заземляющего контура, через который даже самые незначительные токи утечки будут уходить в землю, при этом не подвергая человека опасности.

Теперь вы знаете, что такое глухозаземленная нейтраль, какой у нее принцип работы и в каких сетях она применяется. Если остались вопросы, можете задавать их в комментариях под статьей!

Материалы по теме:

Нравится(0)Не нравится(0)

samelectrik.ru

7.4. Сеть с эффективно заземленной нейтралью

Сеть с эффективно заземленной нейтралью является частным слу­чаем сети с глухозаземленной нейтралью. Электрическая сеть с эффек­тивно заземленной нейтралью — трехфазная электрическая сеть напря­жением выше 1000 В, в которой коэффициент замыкания на землю не превышает 1,4.

Под К3 понимают отношение

где Uф.з — фазное напряжение неповрежденной фазы при замыкании на землю.

Сети напряжением 110 кВ и выше выполняются с эффективным за­землением нейтрали по соображениям стоимости изоляции, так как в таких сетях при замыкании на землю одной фазы напряжение на двух, других не превышает 0,8 номинального междуфазного напряжения. Это означает, что изоляцию рассчитывают на это напряжение, а не на полное между фазное напряжение в случае изолированной или компен­сированной нейтрали.

При эффективном заземлении нейтрали замыкание фазы на землю является, по существу, однофазным коротким замыканием, которое требует немедленного отключения. Тяжелым аварийным режимом яв­ляется также двух- или трехфазное короткое замыкание на землю. Од­нако при таких КЗ напряжения на неповрежденных фазах, а также токи КЗ оказываются меньшими, чем при однофазных замыканиях на зем­лю. Поэтому двух- и трехфазное короткое замыкание на землю не рас­сматривается.

Значительная часть однофазных замыканий в сетях 110 кВ и выше при снятии напряжения самоустраняется, поэтому автоматическое по­вторное включение восстанавливает питание потребителей.

Обычно в электрических сетях с эффективно заземленной нейтра­лью для ограничения тока однофазного КЗ заземляют нейтрали не всех, а лишь части силовых трансформаторов. Например, из двух уста­новленных на подстанции трансформаторов нейтраль заземляют толь­ко у одного. Для этой же цели в некоторых случаях нейтрали транс­форматоров заземляют через дополнительное активное или реактивное сопротивление.

Основным преимуществом такого заземления нейтрали, в особен­ности для сетей напряжением 110 кВ и более, является ограничение напряжений, возникающих в неповрежденных фазах при замыканиях на землю в сети. Следовательно, изоляцию таких сетей можно рассчи­тывать на меньшую кратность перенапряжений. Некоторое значение имеет также возможность применения в сетях с эффективным заземлением нейтрали относительно простых устройств релейной защиты от замыканий на землю.

К недостаткам таких сетей по сравнению с сетями, в которых обес­печивается режим изолированной нейтрали, относятся более тяжелые последствия однофазных замыканий на землю (необходимость их немедленного отключения и т.д.), а также более высокая электроопасность для обслуживающего персонала, пожаро- и взрывоопасность. Кроме того, реализация режима эффективного заземления нейтрали, которое должно быть рассчитано на больший ток КЗ, требует сущест­венного усложнения системы заземления на подстанциях.

Основными областями применения эффективного заземления ней-! трели следует считать сети с номинальными напряжениями 110 кВ и более, а также сети напряжением до 1000 В при условии отсутствия в них установок с повышенной электро-, пожаро- и взрывоопасностью.

Следует отметить, что в последние годы эффективное заземление нейтрали получает распространение и в городских сетях. В этом слу­чае, если сеть имеет К3 < 1,0, при замыкании на землю перенапряже­ния не возникают и изоляция фаз по отношению к земле выбирается по фазному, а не по линейному напряжению. Благодаря этому сеть с на­пряжением 6 кВ может эксплуатироваться с напряжением 10 кВ. В ре­зультате мощность, передаваемая по сети, увеличивается в раз без замены токоведущих частей и изоляции, в том числе без замены кабелей.

studfiles.net

заземленная нейтраль — это… Что такое заземленная нейтраль?


заземленная нейтраль

3.16 заземленная нейтраль: Нейтраль сети, соединенная с землей наглухо или через резистор или реактор, сопротивление которых достаточно мало, чтобы существенно ограничить колебания переходного процесса и обеспечить значение тока, необходимое для селективной защиты от замыкания на землю.

61 Заземленная нейтраль

[ГОСТ Р 52726-2007, пункт 3.16]

Нейтраль сети, соединенная с землей наглухо или через резистор или реактор, сопротивление которого достаточно мало, чтобы существенно ограничить колебания переходного процесса и обеспечить значение тока, необходимое для селективной защиты от замыкания на землю

заземленная нейтраль: Нейтраль сети, соединенная с землей наглухо или через резистор или реактор, сопротивление которых достаточно мало, чтобы существенно ограничить колебания переходного процесса и обеспечить значение тока, необходимое для селективной защиты от замыкания на землю.

[ГОСТ Р 52726-2007, пункт 3.16]

6. Заземленная нейтраль

Нейтраль генератора (трансформатора), присоединенная к заземляющему устройству непосредственно или через малое сопротивление

Словарь-справочник терминов нормативно-технической документации. academic.ru. 2015.

  • заземление системы электроснабжения
  • Заземленная система

Смотреть что такое «заземленная нейтраль» в других словарях:

  • Заземленная нейтраль — нейтраль генератора (трансформатора), присоединенная к заземляющему устройству непосредственно или через малое сопротивление …   Российская энциклопедия по охране труда

  • заземленная нейтраль — Нейтраль сети, соединенная с землей наглухо или через резистор или реактор, сопротивление которых достаточно мало, чтобы существенно ограничить колебания переходного процесса и обеспечить значение тока, необходимое для селективной защиты от… …   Справочник технического переводчика

  • Заземленная нейтраль — English: Earthed neutral Нейтраль генератора (трансформатора), присоединенная к заземляющему устройству непосредственно или через малое сопротивление (по ГОСТ 12.1.030 81) Источник: Термины и определения в электроэнергетике. Справочник …   Строительный словарь

  • глухо заземленная нейтраль — — [В.А.Семенов. Англо русский словарь по релейной защите] [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики релейная защитаэлектротехника, основные… …   Справочник технического переводчика

  • резонансно-заземленная нейтраль системы — — [В.А.Семенов. Англо русский словарь по релейной защите] Тематики релейная защита EN resonante earthed (neutral) system …   Справочник технического переводчика

  • заземленная средняя точка батареи — заземленная нейтраль — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы заземленная нейтраль EN earthed neutral …   Справочник технического переводчика

  • Заземленная система — система, у которой одна точка (как правило, нейтраль) непосредственно соединена с заземляющим устройством без преднамеренно включенного резистора …   Российская энциклопедия по охране труда

  • Заземленная система — 2.2 Заземленная система система, у которой одна точка (как правило, нейтраль) непосредственно соединена с заземляющим устройством без преднамеренно включенного резистора. Источник: ГОСТ Р МЭК 449 96: Электроустановки зданий. Диапазоны напряжения… …   Словарь-справочник терминов нормативно-технической документации

  • Заземленная система — English: Earthed system Система, у которой одна точка (как правило, нейтраль) непосредственно соединена с заземляющим устройством без преднамеренно включенного резистора (по ГОСТ Р МЭК 449 96) Источник: Термины и определения в электроэнергетике.… …   Строительный словарь

  • Заземленная система — – система, у которой одна точка (как правило, нейтраль) непосредственно соединена с заземляющим устройством без преднамеренно включенного резистора. ГОСТ Р МЭК 449 96 …   Коммерческая электроэнергетика. Словарь-справочник

normative_reference_dictionary.academic.ru

отличия, заземление, понятие и принцип действия

Чаще всего в электроустановках для защиты людей от удара током используется глухозаземленная нейтраль. В результате при аварийной ситуации потенциалы быстро уравниваются, а защитное оборудование работает более эффективно. Для грамотного использования этого механизма необходимо хорошо знать и уметь применять на практике нормы ПУЭ.

Преимущества и недостатки изолированной нейтрали

Сегодня в электроустановках используется два защитных механизма — изолированная и глухозаземленная нейтраль. Главное преимущество заключается в отсутствии необходимости экстренного отключения первого однофазного замыкания на землю. Также следует помнить, что в области повреждения электросети создается небольшой ток, но это справедливо только при низкой токовой емкости на землю. Однако есть несколько недостатков, из-за которых изолированная нейтраль используется сравнительно редко:

  • Возможно появление перемежающегося дугового напряжения.
  • Не исключается вероятность появления большего количества повреждений по причине пробоя изоляции проводников в местах появления дугового перенапряжения.
  • Все электрооборудование необходимо изолировать на линейное напряжение относительно земли.
  • Воздействие дугового перенапряжения на изоляцию носит продолжительный характер.
  • Часто возникают сложности с обнаружением мест повреждений.
  • При однофазном замыкании правильная работа систем релейной защиты не может быть гарантирована.

Все эти недостатки полностью нивелируют преимущества такого способа заземления нейтрали. В то же время этот метод защиты в некоторых ситуациях продолжает оставаться эффективным и не противоречит нормам ПУЭ.

Например, изолированная нейтраль может стать хорошим решением для защиты высоковольтных линий, так как позволяет избежать аварийного отключения. В свою очередь, требованиям защиты сетей конченого потребителя электроэнергии он не удовлетворяет.

Принцип работы глухозаземленной нейтрали

Сначала необходимо понять, что является определением понятия глухозаземленная нейтраль. Согласно ПУЭ этот способ предполагает прямое соединение нейтрали трансформатора с заземляющим элементом. В электротехнике такой способ заземления принято называть рабочим. Также необходимо помнить, что в электроустановках, рассчитанных на напряжение 220−380 вольт, сопротивление заземляющих элементов не должно превышать показатель в 4 Ом.

Принцип действия глухозаземленной нейтрали можно продемонстрировать на примере трехпроводной электроцепи, соединяющей источник энергии с жилым домом. При ее создании нейтраль просто распределяется по щитку, и к ней подключаются все заземляющие контуры потребителей. Такая цепь не предполагает наличия различных устройств, которые могут нарушить ее единство.

Если предположить, что по причине частых вибраций в холодильнике от места крепления отсоединился фазный проводник и вступил в контакт с корпусом, то такая ситуация является аварийной. Все это приводит к появлению короткого замыкания и стремительному увеличению силы тока. Однако автоматический выключатель быстро справляется с поставленной задачей и размыкает цепь. Если человек случайно дотронется до провода, то поражения током не произойдет, ведь сопротивление R0 будет меньше в сравнении с возникающим при прохождении через человеческое тело.

Плюсы и минусы способа

Глухозаземленная нейтраль имеет больше преимуществ и меньше недостатков в сравнении с изолированной. Среди преимуществ можно отметить:

  • Появляется возможность использовать оборудование с таким уровнем изоляции, который был изначально запланирован.
  • Отпадает необходимость в использовании специальных защитных схем.
  • Эффективно справляется с подавлением перенапряжения.

Однако это неидеальный способ и ему присущи некоторые недостатки. Начать стоит с того, что риски получения повреждений от удара электротоком сохраняются, хотя их и можно считать незначительными. Кроме этого, из-за большого замыкания тока на землю могут появиться помехи и даже повреждения сети.

Требования ПУЭ

Сегодня в электротехнике достаточно активно используются оба способа — глухозаземленная и изолированная нейтраль. Различия между ними в первую очередь заключаются в способе подключения трансформатора к заземляющему элементу. Вся необходимая информация по выбору способа защиты изложена в ПУЭ.

Если говорить о бытовой сети на 220 вольт, то место заземления можно расположить около трансформатора, и для решения поставленной задачи применяется отдельный проводник. Это позволит уменьшить путь прохождения тока и одновременно сократить расходы. В загородном доме допускается соединение с металлическим каркасом строения, расположенным в глубине земли.

Если же заземляющим элементом является фундамент, то к его арматуре необходимо выполнить подключение минимум в двух точках.

220v.guru

принцип действия и особенности эксплуатации. Установки с изолированной и глухозаземленной нейтралью

Источниками питания потребителей являются генераторы или силовые трансформаторы. Обычно трехфазные обмотки соединяются в звезду. Общая точка этого соединения называется нейтралью. Если она напрямую или через небольшое сопротивление (трансформатор тока) соединяется с контуром заземления непосредственно у источника электроснабжения, то это – глухозаземленная нейтраль.

Работа нейтрали с заземлением – лишь один из возможных режимов ее работы. В зависимости от условий работы сети при однофазных замыканиях на землю, требуемых способов защиты людей от поражения электрическим током, способов ограничения перенапряжений используются и другие режимы:

  • с незаземленной (изолированной) нейтралью;
  • с компенсированной (резонансно-заземленной) нейтралью;
  • с эффективно заземленной нейтралью.

Эти режимы характерны для электроустановок с напряжением 6 кВ и выше. Система с изолированной нейтралью применяется и при напряжении до 1000 В, но не столь широко, как заземленная. Она обеспечивает высокую безопасность при эксплуатации передвижных электроустановок, горных предприятий, где использование контура заземления для обеспечения электробезопасности ненадежно или неэффективно.

Установка в нейтральном проводнике компенсационных установок позволяет уменьшить емкостной ток замыкания на землю электроустановок выше 1000 В. Компенсация осуществляется за счет плавно или ступенчато изменяемой индуктивности катушки. В точке замыкания на землю ток при полной компенсации становится равным нулю. Дополнительно для эффективного срабатывания защиты используется резистивное заземление нейтрали. Она создает активную составляющую тока, на который реагирует реле ячейки, питающей поврежденную линию.

Эффективное заземление нейтрали применяется на линиях электропередач напряжением 110 кВ и выше.

Все бытовые, сельские, дачные электросети питаются от трансформаторных подстанций с глухозаземленной нейтралью. Поэтому рассмотрим особенности ее работы поподробнее.

Конструкция сетей с глухозаземленной нейтралью

Трансформаторы и генераторы, применяемые для этих электроустановок, имеют три фазных силовых вывода и один нейтральный (нулевой). Напряжение между фазными выводами называют линейным, а между любым фазным и нулевым выводом – фазным. Линейное напряжение определяет номинальное напряжение всей электроустановки. Оно может принимать стандартные значения 220 В, 380 В и 660 В. Линейное напряжение в бытовых сетях – 380 В.

Фазное напряжение меньше линейного в √3 раз, что соответствует 127, 220 и 380 В. При линейном 380 В фазное равно 220 В.

Таким образом, сеть 380 В с заземленной нейтралью пригодна для питания трехфазных потребителей на напряжение 380 В и однофазных на напряжение 220 В. Однофазные нагрузки подключаются между фазными и нулевыми проводниками и равномерно распределяются по фазам.

Подстанция, на которой установлен силовой трансформатор, имеет контур заземления: определенным образом соединенные между собой стальные или медные детали, заглубленные в грунт. Геометрические размеры контура заземления рассчитывают так, чтобы они эффективно способствовали растеканию по земле тока однофазного замыкания. Способность заземляющего устройства проводить этот ток количественно оценивается его сопротивлением растеканию. Допустимые значения этого параметра регламентированы ПУЭ. Для трансформаторных подстанций сопротивление контура заземления не должно превышать 4 Ом при номинальном напряжении 380 В.


Выводы от контура заземления на подстанции присоединяются к нулевой шине – металлической полосе распределительного устройства, к которой подключается и проводник от нулевого вывода трансформатора. К этой же шине подключаются соответствующие жилы отходящих кабелей. Фазные жилы подключаются к выводам коммутационных аппаратов: рубильников, автоматических выключателей, контактным площадкам держателей предохранителей.

Кабельные линии, отходящие от подстанции, выполняются четырехжильными кабелями. В электроустановках, построенных ранее, встречаются трехжильные кабели с алюминиевой оболочкой, которая используется в качестве нулевого проводника.

Электроустановки потребителя для ввода питающего напряжения имеют вводное распределительное устройство (ВРУ). Оно также содержит нулевую шину, как и подстанция. К ней подключаются нулевые жилы питающих и отходящих кабельных линий. ВРУ имеет контур повторного заземления, который тоже подключается к нулевой шине.

Защита людей от поражения током в сети с глухозаземленной нейтралью

Теперь переходим к непосредственному объяснению того, зачем делается заземление нейтрали трансформатора и как это работает.

Теоретически для любой точки электросети потенциал нулевого проводника относительно земли равен нулю. Контур повторного заземления у потребителя делает это равенство еще более п

levevg.ru

Режимы заземления нейтралей электрических сетей напряжением110кВ и выше

Работа электрических систем напряжением 110 – 150 кВ может предусматриваться как с глухозаземлённой, так и с эффективно заземлённой нейтралью. Электрические сети напряжением 220 кВ и выше должны работать только с глухозаземлённой нейтралью.

Глухим заземлением называют такой способ заземления, при котором нейтраль обмотки трансформатора присоединена к заземляющему устройству металлически или через малое сопротивление (например, через трансформаторы тока).

Эффективным заземлением нейтрали – называют такую сеть, в которой нейтрали большей части силовых элементов (трансформаторов, генераторов) заземлены. В данном режиме повышение напряжения по отношению к земле на неповреждённых фазах при однофазных замыканиях на землю в установившемся режиме не превышает 0,8 линейного напряжения и  коэффициент замыкания на землю не превышает 1,4.

Коэффициентом замыкания на землю в трёхфазной электрической сети называется отношение разности потенциалов между неповреждённой фазой и землёй в точке замыкания на землю другой или двух других фаз к разности потенциалов между фазой и землёй в этой точке до замыкания. Например, для сети  154 кВ:

Кз= 0,8 ·Uлин/ Uфаз.= 0,8· 154 / 89 =123,2/89 = 1,384<1,4.

Эффективное или глухое заземление нейтрали применяется во всех электроустановках напряжением 110 кВ и выше, и это объясняется большими технико-экономическими преимуществами такого способа именно для установок высокого напряжения. Внутренние перенапряжения в таких установках ниже, чем перенапряжения в сетях с изолированной нейтралью (не превышают 2.5) и поэтому стоимость изоляции линий и аппаратов получается значительно ниже, чем при изолированной нейтрали.

Другим преимуществом эффективного заземления нейтрали является возможность обеспечить чёткую быстродействующую защиту однофазных К.З., которые составляют до 80% всех видов повреждений. Кроме этого в этих сетях более эффективно применение автоматического повторного включения (АПВ).

Количество заземленных нейтралей на станции (подстанции) определяется необходимым значением тока, однофазного К.З., который не должен быть меньше 60% тока трехфазного К.З. в той же точке (Хо ≤ 3Х1) , чтобы повышение напряжения при этом на неповрежденных фазах не превышало 0,8. междуфазного напряжения в нормальном режиме работы. Такое значение тока может быть обеспечено при заземлении большей части нейтралей трансформаторов станции (подстанции), число которых должно быть определено специальным расчётом.

При этих расчётах необходимо учитывать обязательность заземления нейтралей автотрансформаторов, трансформаторов 220 кВ, и тяговых трансформаторов установленных на электрических станциях и подстанциях.

Чем больше число заземлённых нейтралей, тем меньше величина внутренних перенапряжений. Поэтому в сетях напряжением 220 кВ и выше применяют глухое заземление всех трансформаторов и автотрансформаторов, а в электропередачах 500-750 кВ, кроме того , в ряде случаев прибегают к дополнительному ограничению внутренних перенапряжений техническими средствами.

Заземление нейтралей всех без исключения трансформаторов подстанции не практикуется, так как при этом увеличиваются токи однофазных К.З. на землю, чего следует избегать в тех случаях, когда это возможно, как, например, в сетях напряжением 110 – 150 кВ. Кроме того, при наличии большого количества подстанций, присоединённых к линиям электропередачи глухими ответвлениями, количество заземлённых нейтралей трансформаторов в сети ограничивается также условиями релейной защиты. Поэтому в сетях 110 – 150 кВ заземляют только такое количество нейтралей, которое обеспечивает упомянутую выше эффективность заземления и допустимое напряжение на нейтрали незаземлённых трансформаторов с РПН при однофазных коротких замыканиях.

Однако рассматриваемый режим нейтрали имеет и ряд недостатков. Так, при замыкании одной фазы на землю образуется короткозамкнутый контур через землю и нейтраль источника с малым сопротивлением, к которому приложена Э.Д.С фазы (рис. 1).

 

Рисунок 1 –  Трехфазная сеть с эффективнозаземленной нейтралью

Возникает режим К.З. сопровождающийся протеканием больших токов. Во избежание повреждения оборудования длительное протекание больших токов недопустимо, поэтому К.З. быстро отключается релейной защитой. Правда, значительная часть однофазных повреждений в электрических сетях напряжением 110 кВ и выше относятся к самоустраняющимся, т.е. исчезающим после снятия напряжения. В таких случаях эффективны устройства автоматического повторного, включения (АПВ), которые, действуя после роботы устройств релейной защиты, восстанавливают питание потребителей за минимальное время.

Второй недостаток — значительное удорожание выполняемого в распределительных устройствах контура заземления, который должен отвести на землю большие токи К.З. и поэтому представляет собой в данном случае сложное инженерное сооружение.

Для такого контура ПУЭ допускает максимальную величину сопротивления заземляющего контура – 0,5 Ом, т.е., в 20 раз меньше, чем для систем с малыми токами замыкания на землю, к которым относятся сети 6-10-35 кВ.

Отсюда следует, что число электродов в данном случае должно быть весьма большими и, действительно, в зависимости от свойств грунта составляет от 75 до 200 электродов.

Несмотря на малое сопротивление заземляющего контура, падение напряжения на заземлителе при коротких замыканиях будет велико даже при сопротивлении  0,5 Ом.  Например, при Ìз = 3000 А , Uз = 0,5·3000 = 1500 В. При  таких условиях безопасность обслуживания может быть обеспечена быстрым автоматическим отключением повреждённой электроустановки, а также уменьшением напряжения прикосновения и шага, применением изолирующей обуви, перчаток, подставок и т. п.

Третий недостаток – значительный, ток однофазного К.З, который при большом количестве заземленных нейтралей трансформаторов, а также в сетях с автотрансформаторами может превышать токи трехфазного К.З. Для уменьшения токов однофазного К.З. применяют, если это возможно и эффективно, частичное разземление нейтралей в сетях 110–150 кВ. Возможно применение токоограничивающих сопротивлений, включаемых в нейтрали трансформаторов.

В сетях 110–220 кВ с  эффективно заземленной нейтралью со значением отношения хо1= 2-3 при  r0 / r1 ≤ 1 трёхфазное  К.З. приводит к появлению наибольших токов, а поэтому является наиболее опасным видом аварии. Однако вероятность такого повреждения сравнительно невелика и тем меньше, чем выше напряжение.

Так как благодаря широкому применению автотрансформаторов отношение х0 / х1 в мощных энергосистемах достигает значений 0,5 – 1,5, то уже в настоящее время нередки случаи, в особенности в сетях сверхвысоких напряжений, когда наиболее частый вид однофазных повреждений одновременно является наиболее тяжёлым, по которому нужно, в частности, производить выбор выключателей и другой аппаратуры, ошиновки, а также определять электродинамическую стойкость отдельных обмоток автотрансформаторов.

Необходимо также отметить, что вследствие того, что автотрансформаторы имеют малые значения напряжения К.З. между сторонами ВН→СН, токи однофазного К,З. в современных энергосистемах при глухом  заземлении нейтралей резко возрастают также на стороне среднего напряжения, что приводит к увеличению предельных токов отключения выключателей в этих сетях. Это обстоятельство необходимо тщательно анализировать в конкретных случаях, а результаты учитывать при выборе типа и параметров выключателей.

В соответствии со сказанным следует отметить, что токи однофазного К.З. в перспективе будут расти быстрее, чем токи трёхфазного К.З.  В то же время ограничение токов однофазного К.З. труднее, чем трёхфазного.

В связи с этим высказываются различные предложения. В частности, было предложено отказаться от заземления нейтралей всех блочных повышающих трансформаторов; применять в отдельных случаях кроме ограничительных межсистемных связей трансформаторы с электрически не связанными обмотками вместо автотрансформаторов. Известно, что токи трёхфазного и однофазного К.З. соответственно равны:

Ì(3)= Е/ Х1;

Ì(1) = 3Е / (2х1 + х0 )    при  Х1 = Х2,

где  Х1, Х2, Х0 – реактивные  сопротивления прямой, обратной и нулевой последовательностей. Отсюда

Ì(3)/ Ì(1) = (2Х1 + Х0) / 3Х1,

следовательно, если Х0 ≤Х1,   Ì(3) ≤ Ì(1).

Так как в современных энергосистемах благодаря применению автотрансформаторов  с обязательным глухим заземлением нейтралей, как правило,  Х0 < Х1, то  Ì(1)(3),что подтверждается рядом конкретных расчётов в энергосистемах. Так, в сети 400 кВ Англии  Ì(1) / Ì(3) =1,2; в некоторых пунктах системы Центральной Сибири   Ì(1) / Ì(3)  изменяется от 1,05 в сети 500 кВ до 1,28 в сети 220 кВ.

Увеличение токов однофазного К.З. в современных сетях обусловлено общим уменьшением полного сопротивления нулевой последовательности, вызванным помимо обязательного глухого заземления нейтрали  автотрансформаторов и непосредственной электрической связи сетей ВН  и  СН также наличием третичной обмотки. Необходимость последней в настоящее время широко дискутируется в ряде стран. Известно, что третичная обмотка автотрансформатора служит для образования цепи с малым полным сопротивлением для прохождения тока третьей гармоники в намагничивающем токе и исключения искажения синусоидального напряжения за счёт появления третьей  и кратной ей гармоник в фазном напряжении и третьей гармоники тока в линиях электропередачи. Одновременно она используется для подключения синхронного компенсатора или блока шунтовых реакторов, для питания собственных нужд подстанции и других целей. Однако благодаря повсеместному резкому увеличению токов однофазного К.З. и их частой вероятности возникновения, естественно, снова подвергается сомнению необходимость во всех случаях третичной обмотки.

Следует подчеркнуть, что для образования пути прохождения токов третьей гармоники третичная обмотка может быть принципиально малой мощности,  определяемой только её термической стойкостью (5 – 15% мощности главной обмотки).  Однако для обеспечения электродинамической стойкости мощность третичной обмотки ранее принималась равной не менее 33,5% мощности главной обмотки.

Примеры расчётов для автотрансформатора 300 МВА, 200/132 кВ и 1200 МВА, 400/275 кВ показали, что отказ от третичной обмотки существенно снижает значение несимметричных токов К.З. Таким образом, при возможности отказа от третичной обмотки такие автотрансформаторы могут быть использованы для ограничения однофазных токов К.З. в системе. При отказе от третичных обмоток обязательно глухое заземление нейтралей обмоток ВН и СН. Следует также иметь в виду, что при отсутствии третичной обмотки через нейтраль автотрансформатора и присоединённые к нему линии будут проходить токи  третьей гармоники к ближайшему источнику с заземлённой нейтралью или к ближайшему автотрансформатору с третичной обмоткой, оказывая влияние на проходящие вблизи линии связи. Как  указано выше, с точки зрения питания потребителей на низшем напряжении необходимость обмотки  невелика, однако при отказе от неё подстанция лишается источника для питания собственных нужд, синхронного компенсатора и третичного блока шунтирующих реакторов.

Поэтому в настоящее время вопрос об отказе от третичной обмотки в каждом случае решается индивидуально. В этом случае снижаются токи однофазного К.З., а также внутренние перенапряжения в режиме включения автотрансформатора вместе с линией со стороны  общей обмотки, что отмечалось  в сети 500 кВ  системы.

В настоящее время в сетях имеет место работа автотрансформаторов, как с третичной обмоткой, так и без неё.

Таким образом, в современных энергосистемах возможным путём для уменьшения токов однофазного К.З. является увеличение полного сопротивления нулевой последовательности за счёт:

– отказа  от третичной обмотки;

– частичного разземления нейтралей;

– введения  дополнительного реактивного сопротивления в цепь нулевой последовательности.

Под системой с эффективно заземлённой нейтралью принято считать систему, в которой Х0 / Х1 ≤ 3 и r0 / r1 ≤ 1 для всех конфигураций сети, где  r0 – активное сопротивление нулевой последовательности.

В системах, где нейтрали всех трансформаторов заземлены наглухо, х0 / х1 ≤ 1.  В большинстве систем с целью ограничения токов однофазного К.З. часть нейтралей разземляется; в этом случае за счёт влияния реактивного сопротивления линий х0 / х1 >1. На подстанциях  сетей напряжением 110–150 кВ в соответствии с требованиями пп 3.2.28, 3.2.63 ПУЭ для исключения повреждений трансформаторов и вентильных разрядников из–за перенапряжений при неполнофазных режимах, а также снижения токов однофазного короткого замыкания и обеспечения надежной работы релейной защиты режим работы нейтралей силовых трансформаторов в сети 110–150 кВ устанавливается следующий:

1. Должны иметь глухое заземления нейтралей:

1.1. Трансформаторы 110–150 кВ с устройствами регулирования напряжения под нагрузкой (РПН) с уровнем изоляции нейтралы 35 кВ (испытательное напряжение нейтрали частоты 50 Гц равно 85 кВ).

1.2. Трансформаторы, имеющие генерирующие источники питания со стороны низкого или среднего напряжения, независимо от класса изоляции нейтрали. Допускается часть нейтралей таких трансформаторов не заземлять, если в ремонтных или в аварийных режимах невозможно их выделение на работы с участком сети, не имеющим трансформаторов с заземлёнными нейтралями, или обеспечивается при замыканиях на землю отключение трансформаторов с изолированной нейтралью до отключения трансформаторов с заземленной нейтралью.

При этом, нейтрали, имеющие неполную изоляцию, должны быть защищены соответствующими разрядниками.

2. При подключении к транзитной линии или линии с радиальным питанием трансформаторов с уровнем изоляции нейтрали в соответствии с ГОСТ 1516.1–76 (испытательное напряжение нейтрали частоты  50 Гц 100 и 130 кВ трансформаторов 110–50 кВ соответственно ) необходимо производить:

2.1. При одном трансформаторе на данной ВЛ – глухое заземление его нейтрали.

2.2. При двух и более трансформаторах на данной ВЛ – глухое заземление нейтрали двух трансформаторов.

Работа других трансформаторов допускается с изолированной нейтралью при защите её соответствующим разрядником.

3. При подключении к транзитной линии или линии с радиальным питанием только трансформаторов с полным классом изоляции нейтрали необходимо производить глухое заземление нейтрали одного трансформатора.

4. При подключении одного или несколько трансформаторов с уровнем изоляции нейтрали в соответствии с ГОСТ 1516.1–76 к шинам подстанций, имеющих питание от двух и более источников, необходимо глухое заземление нейтрали одного трансформатора из числа подключенных к данной системе шин или секции, работа других трансформаторов этой системы шин или секций допускается с изолированной нейтралью при её защите соответствующим разрядником.

5. Защита нейтрали обмотки 110 и 150 кВ трансформаторов с уровнем изоляции по ГОСТ 1516.1–76 должна осуществляться вентильным разрядником:

РВС – 35 + РВС15 или РВМ – 35 + РВМ15 для трансформаторов 110 кВ и РВС 60 (2РВС20 + РВС–15) или 2РВМ35 (четыре элемента) для трансформаторов 150 кВ.

6. При отключении в ремонт трансформатора с глухозаземленной нейтралью должна заземляться нейтраль на другом трансформаторе, подключённом к данной линии или системе шин. При этом количество трансформаторов с глухозаземлённой нейтралью должно соответствовать требованию пунктов 2, 3, 4.

7. При производстве операций по включению и отключению трансформатора, имеющего неполную изоляцию нейтрали, необходимо, на время операции его нейтраль заземлять.

8. Все вновь вводимые силовые трансформаторы с уровнем изоляции нейтрали в соответствии с ГОСТ 1516.1–76 должны предусматривать работу, как с изолированной, так и заземленной нейтралью, для чего в его нейтрали должны быть смонтированы ЗОН – 110 и разрядник в соответствии с П.5.

Запрещается разземление нейтрали трансформаторов 110 кВ и выше и установка в цепи её заземления коммутационных аппаратов и вентильных разрядников, если изоляция нейтрали рассчитана на работу при глухом заземлении (тяговые трансформаторы и автотрансформаторы).

Вентильные разрядники для защиты нейтралей рекомендуется устанавливать непосредственно у трансформаторов.

 

а) у трансформаторов 110 кВ (испытательное напряжение нейтрали 100 кВ) с РП; б) у трансформаторов 150 кВ (испытательное напряжение нейтрали 130 кВ ) с РПН; в) и трансформаторов 110 -150 кВ (с испытательным напряжением нейтрали 85 кВ) с РПН; г) у тяговых трансформаторов 110 – 150 – 220 кВ;  д) у автотрансформаторов; е) у трансформаторов 220750 кВ. без РПН; ж) у трансформаторов 220 кВ. с РПН; з) у трансформаторов 330 -500 кВ. с РПН 

Рисунок 2 – Способы заземления нейтралей трансформаторов и автотрансформаторов

Свяжитесь со мной:

No related posts.

на Ваш сайт.

electric-zone.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *